WorldWideScience

Sample records for calcite surfaces implications

  1. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

    KAUST Repository

    Yutkin, Maxim P.

    2017-08-25

    Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of

  2. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

    KAUST Repository

    Yutkin, Maxim P.; Mishra, Himanshu; Patzek, Tadeusz; Lee, John; Radke, Clayton J.

    2017-01-01

    and surface equilibria draws several important inferences about the proposed LSW oil-recovery mechanisms. Diffuse double-layer expansion (DLE) is impossible for brine ionic strength greater than 0.1 molar. Because of rapid rock/brine equilibration

  3. Interaction of alcohols with the calcite surface

    DEFF Research Database (Denmark)

    Bovet, Nicolas Emile; Yang, Mingjun; Javadi, Meshkat Sadat

    2015-01-01

    . Controlling their growth requires complex polysaccharides. Polysaccharide activity depends on the functionality of OH groups, so to simplify the system in order to get closer to a molecular level understanding, we investigated the interaction of OH from a suite of alcohols with clean, freshly cleaved calcite...... surfaces. X-ray photoelectron spectroscopy (XPS) provided binding energies and revealed the extent of surface coverage. Molecular dynamics (MD) simulations supplemented with information about molecule ordering, orientation and packing density. The results show that all alcohols studied bond...... with the calcite surface through the OH group, with their carbon chains sticking away in a standing-up orientation. Alcohol molecules are closely packed and form a well-ordered monolayer on the surface....

  4. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Z.; de Leeuw, N.H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity.

  5. Molecular ordering of ethanol at the calcite surface

    DEFF Research Database (Denmark)

    Pasarín, I. S.; Yang, M.; Bovet, Nicolas Emile

    2012-01-01

    To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful...... for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [ Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S.Palentology 2004, 43 (Part 3), 725...... dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH 3-CH2-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol...

  6. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... preferentially as ion pairs at solution-calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70, converting...

  7. Is bicarbonate stable in and on the calcite surface?

    Science.gov (United States)

    Andersson, M. P.; Rodriguez-Blanco, J. D.; Stipp, S. L. S.

    2016-03-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3- CO32- + H+, when HCO3- is included in, and adsorbed on, a calcite surface. We have used cluster models (80-100 atoms) to represent the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from -6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 < pH < 6.35, where H2CO30 is the dominant dissolved species. When bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution, 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32- is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour of the carbonate species in calcite-water systems, particularly in the pH range where the bicarbonate species dominates in water and where the carbonate species dominates at the surface, i.e. when 7.5 < pH < 10.35. Our atomic scale data for the various calcite surface sites provide the needed input to improve and constrain surface complexation modelling and are especially useful for predicting behaviour in systems where experiments are difficult or impossible, such as at high temperature and pressure.

  8. Surface Forces Apparatus measurements of interactions between rough and reactive calcite surfaces.

    Science.gov (United States)

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon Einar; Nilsen, Ola; Røyne, Anja

    2018-05-28

    Nm-range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials, and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the Surface Forces Apparatus (SFA), we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC), or between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by Atomic Layer Deposition (ALD). We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time and this increase was correlated with a decrease of roughness at contacts, which parameter could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm to µm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over µm-sized areas, and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  9. Molecular ordering of ethanol at the calcite surface.

    Science.gov (United States)

    Pasarín, I S; Yang, M; Bovet, N; Glyvradal, M; Nielsen, M M; Bohr, J; Feidenhans'l, R; Stipp, S L S

    2012-02-07

    To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S. Palentology 2004, 43 (Part 3), 725-743] and molecular dynamics (MD) modeling [Yang, M., Stipp, S. L. S., and Harding, J. H. Cryst. Growth Des. 2008, 8 (11), 4066-4074], have suggested that OH functional groups control polysaccharide attachment. The purpose of this work was to characterize, using X-ray reflectivity (XR) combined with molecular dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH(3)-CH(2)-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH(3) ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems.

  10. Is bicarbonate stable in and on the calcite surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Rodriguez Blanco, Juan Diego; Stipp, Susan Louise Svane

    2016-01-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3− CO32− + H+, when HCO3− is included in, and adsorbed on, a calcite surface. We have used cluster models (80–100 atoms) to represent...... the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from −6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite...... even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution...

  11. Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite

    OpenAIRE

    Huifang Xu; Mo Zhou; Yihang Fang; H. Henry Teng

    2018-01-01

    The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg2+, the substrates’ (001) surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D) structure can affect the orientation of calcite nucleation with calcite (001) ~// mica (001) and calcite (010) ~// mica (010) to be the m...

  12. Effect of Mica and Hematite (001 Surfaces on the Precipitation of Calcite

    Directory of Open Access Journals (Sweden)

    Huifang Xu

    2018-01-01

    Full Text Available The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM, X-ray diffraction (XRD, and electron backscatter diffraction (EBSD methods. On mica, we found, in the absence of Mg2+, the substrates’ (001 surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D structure can affect the orientation of calcite nucleation with calcite (001 ~// mica (001 and calcite (010 ~// mica (010 to be the major interfacial relationship. On hematite, we did not observe frequent twinning relationship between adjacent calcite gains, but often saw preferentially nucleation of calcite at surface steps on hematite substrate. We suggest that calcite crystals initially nucleate from the Ca2+ layers adsorbed on the surfaces. The pseudo-hexagonal symmetry on mica (001 surface also leads to the observed calcite (001 twinning. A second and less common orientation between calcite {104} and mica (001 was detected but could be due to local structure damage of the mica surface. Results in the presence of Mg2+ show that the substrate surfaces can weaken Mg toxicity to calcite nucleation and lead to a higher level of Mg incorporation into calcite lattice.

  13. The role of silicate surfaces on calcite precipitation kinetics

    DEFF Research Database (Denmark)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas Emile

    2014-01-01

    The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25°C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite......, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a p...

  14. Influence of surface conductivity on the apparent zeta potential of calcite.

    Science.gov (United States)

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Paleohydrogeological implications from fracture calcites in fissures of low transmissivity. A report of investigations in 2011

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.

    2014-07-01

    Samples of fracture fillings were collected from 26 bedrock fractures at Olkiluoto. Special attention was paid to fractures having low transmissivities of <1E-8 m 2 /s. The chemical composition and the C and O isotopic composition of the fracture filling calcite were analysed. In addition, fluid inclusions were studied and microthermometric measurements conducted on fracture filling calcite. The most common minor element in calcite fillings was Mn, having concentrations up to 3.4 wt-%. The δ13C values had a wide range, from -13.0 to 14.5 per mille, and the δ18O values a narrower range, from -13.4 to -7.3 per mille. The δ18O values of late-stage calcite appear to be independent of the transmissivity of the fractures, ranging from -11.2 to -7.3 per mille over a T range from 3E -6 to 1.6E -1 1 m 2 /s. The δ13C values of late-stage calcite appear to have more variation at high transmissivities of >1E-8 m 2 /s. Unusually low and high δ13C values in late-stage calcite fillings occur in the upper ∼ 400 m of the bedrock and are probably related to microbial reduction processes, at near surface (<60 m) conditions to oxidation of organic matter resulting in low δ13C values and at ∼ 55-400 m to methanogenesis, causing high δ 13C values. A relatively low spread in the δ 13C values of late-stage calcite precipitates in low transmissivity (<1E-8 m 2 /s) fractures is most likely caused by stable conditions in the areas of low conductivity in the bedrock, reflecting slow dissolution/reprecipitation of older carbonate fillings. Fluid inclusion data indicate variation in fracture water types from high temperature, ∼ 200 deg C, low salinity fluid with < 4 wt-% of NaCl eq to low temperature, <100 deg C, high salinity fluid with 17-29 wt-% of NaCl eq . The high temperature fluid is associated with Group 5 calcite fillings and the low temperature fluid with Group 3 calcite. The composition of fluids related to Group 4 calcite falls roughly between the compositions

  16. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  17. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  18. Ethanol adsorption on the {10(1)over-bar4} calcite surface

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Stipp, Susan Louise Svane; Hassenkam, Tue

    2008-01-01

    Preliminary atomic force microscopy investigations of the {10 (1) over bar4} calcite Surface cleaved in ethanol indicate a different surface behaviour than that of the {10 (1) over bar4} surface cleaved in air. The results are consistent with recent theoretical studies and suggest strong ordering...

  19. Interaction of ethanol and water with the {1014} surface of calcite

    DEFF Research Database (Denmark)

    Cooke, David; Gray, R J; Sand, K K

    2010-01-01

    Molecular dynamics simulations have been used to model the interaction between ethanol, water, and the {1014} surface of calcite. Our results demonstrate that a single ethanol molecule is able to form two interactions with the mineral surface (both Ca-O and O-H), resulting in a highly ordered, st...

  20. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  1. Thermoluminescence and cathodoluminescence studies of calcite and MgO: surface defects and heat treatment

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Brown, L.M.

    1988-01-01

    Some of the problems which preclude accurate thermoluminescence (TL) dating of geologically formed calcite stem from different sample pre-treatment procedures, such as grinding, drilling or pre-heating. It has long been known that grinding can introduce spurious TL in calcite, but there have been wide differences of opinion as to the magnitude of the influence and its importance. Therefore, various grinding and acid-washing procedures have been suggested to avoid spurious thermoluminescence. Various models have been developed to explain the mechanism. We have studied the changes in thermoluminescence (TL) and cathodoluminescence (CL) properties as well as in the spectral composition of the glow from calcite and MgO due to surface defects and heat treatment. It is found that both laboratory heat treatment and surface indents give rise to changes in TL efficiency. (author)

  2. Adsorption and migration of single metal atoms on the calcite (10.4) surface

    International Nuclear Information System (INIS)

    Pinto, H; Haapasilta, V; Lokhandwala, M; Foster, Adam S; Öberg, S

    2017-01-01

    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3 d (Ti, Cr, Fe, Ni, Cu), 4 d (Zr, Nb, Mo, Pd, Ag) and 5 d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca–Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface. (paper)

  3. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2011-01-01

    The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite was stud......The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite...... of a high degree of super-saturation with respect to hydroxyapatite (SIHAP⩽7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the CO32- activity decreases (at constant pH) and as pH increases (at constant CO32- activity). The primary effect...... of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or >CaHPO4- as the adsorbed surface species...

  4. Integrated Approach for Understanding Impurity Adsorption on Calcite: Mechanisms for Micro-scale Surface Phenomena

    Science.gov (United States)

    Vinson, M. D.; Arvidson, R. S.; Luttge, A.

    2004-12-01

    A longstanding goal within the field of environmental geochemistry has been the development of a fundamental understanding of the kinetics that governs the interactions of solution-borne impurities with the calcite mineral surface. Recent dissolution experiments using Mg2+, Mn2+, and Sr2+ have shown distinct differences in the interaction of these three impurity ions with the calcite crystal surface. Because the dissolution of carbonate minerals in soils and sediments influences the uptake and migration of groundwater contaminants, a rigorous understanding of the basic processes that occur at the mineral-fluid interface is necessary. We have used vertical scanning interferometry (VSI) coupled with scanning probe microscopy (SPM) to examine calcite crystal dissolution in the presence of Mg2+, Mn2+, and Sr2+, all known dissolution inhibitors and possible groundwater contaminants. We have studied the kinetics of impurity-crystal interactions at a pH 8.8, and in the presence or absence of dissolved inorganic carbon. Our data show that, when individually introduced into undersaturated solutions, Mg2+ and Mn2+ are shown to activate the calcite crystal surface, resulting in enhanced etch pit nucleation rates and step density. Conversely, Sr2+ is shown to cause passivation of the calcite surface. The effect is intensified when solutions are saturated with respect to atmospheric CO2. Results indicate that aqueous CO32- (or HCO3-) may influence how aqueous metal ionic complexes interact with the crystal surface. Furthermore, the influence is differently exhibited, and passivation or activation ultimately depends on the properties of the diffusing metal ion or metal-hydroxide complex. These properties include for example, differences in hydration enthalpy, the effective ionic radius, and electron shell configuration.

  5. Tuning the wettability of calcite cubes by varying the sizes of the polystyrene nanoparticles attached to their surfaces

    International Nuclear Information System (INIS)

    He Yongjun; Li Tanliang; Yu Xiangyang; Zhao Shiyong; Lu Jianhua; He Jia

    2007-01-01

    The wettability of calcite cubes was tuned by varying the sizes of the polystyrene nanoparticles attached to their surfaces via a dispersion polymerization. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion spectrum (EDS) and Fourier transformation infrared spectrum (FTIR). The results showed that the hydrophobicity of the calcite cubes was enhanced with the increase of the size of the polystyrene nanoparticles attached. Using polystyrene nanoparticle-attached calcite cubes (PNACC) as emulsifiers, stable water-in-tricaprylin Pickering emulsions were produced. By gelling the water droplets of the Pickering emulsions, the hierarchical structures of polystyrene nanoparticle-attached calcite cube-armored microspheres were obtained. The polystyrene nanoparticle-attached calcite cubes were expected to have novel surface properties similar neither to traditional Pickering particles, nor to macroscopically asymmetrical Janus particles

  6. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan Vivian, E-mail: yan.li@colostate.edu [Colorado State University, Department of Design and Merchandising (United States); Cathles, Lawrence M., E-mail: lmc19@cornell.edu [Cornell University, Earth and Atmospheric Sciences (United States)

    2016-03-15

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl{sub 2}, and MgCl{sub 2}) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl{sub 2} and MgCl{sub 2} solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl{sub 2} and MgCl{sub 2} solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.Graphical Abstract.

  7. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    International Nuclear Information System (INIS)

    Li, Yan Vivian; Cathles, Lawrence M.

    2016-01-01

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl_2, and MgCl_2) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl_2 and MgCl_2 solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl_2 and MgCl_2 solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.Graphical Abstract

  8. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    KAUST Repository

    Li, Yan Vivian

    2016-03-02

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl2, and MgCl2) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl2 and MgCl2 solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl2 and MgCl2 solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.

  9. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  10. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces

    Science.gov (United States)

    Perry, Thomas D.; Cygan, Randall T.; Mitchell, Ralph

    2006-07-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Φ = 274 ± 7°, Ψ = 227 ± 5°, where Φ and Ψ are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (101¯4) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived.

  11. Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths-do we observe the mineral surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Hem, Caroline Piper; Schultz, Logan Nicholas

    2014-01-01

    broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also...... asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory...

  12. Structure and dynamics of microbe-exuded polymers and their interactions with calcite surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall Timothy; Mitchell, Ralph (Harvard University, Cambridge, MA); Perry, Thomas D. (Harvard University, Cambridge, MA)

    2005-12-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these organo-cation interactions are well suited to predictive molecular modeling studies for investigating the roles of conformation and configuration of polysaccharides on cation binding. In this study, alginic acid was chosen as a model polymer and representative disaccharide and polysaccharide subunits were modeled. The ability of disaccharide subunits to bind calcium and to associate with the surface of calcite was investigated. The findings were extended to modeling polymer interactions with calcium ions.

  13. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  14. Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Shawn L.; Kerisit, Sebastien N.

    2017-12-18

    Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significant anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.

  15. Sorption and catalytic oxidation of Fe(II) at the surface of calcite

    NARCIS (Netherlands)

    Mettler, S.; Wolthers, M.; Charlet, L.; Von Gunten, U.

    The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps:

  16. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    Science.gov (United States)

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  17. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Marutschke, Christoph; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika; Walters, Deron; Cleveland, Jason

    2014-01-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid–liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface. (paper)

  18. Paleohydrogeological implications from fracture calcites and sulfides in a major hydrogeological zone HZ19 at Olkiluoto

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.; Rinne, K.

    2009-08-01

    30 samples of fracture mineral fillings in or near water conducting fractures at Olkiluoto were collected from 10 drill cores for fracture mineral studies. The aim of the study was to obtain information about past hydrogeochemical conditions at Olkiluoto using the calcite morphology, the chemical characteristics and the isotopic composition of carbon and oxygen in calcite. The chemical composition of fracture calcites at Olkiluoto is nearly stoichiometric CaCO 3 . Most variation in the composition of calcite is due to differences in the Mn content, which could indicate variations in groundwater redox conditions. Meaningful REE patterns were obtained for the calcites. REE patterns showed generally negative Eu anomalies, but one fracture calcite specimen had a distinct positive Eu anomaly. This positive anomaly could be related to ancient hydrothermal conditions, although derivation of the anomaly from the host rock cannot be excluded. Preliminary results for calcite U-Th dating of fracture calcites are reported. The isotopic composition of U and Th were analysed by a new multiple collector LA-ICPMS instrument. U and Th concentrations in fracture calcites are generally 18 O values of calcite range from -17 to -7 per mille. Most of the calcites may have been precipitated in the presence of waters with oxygen isotope ratios similar to those in the present-day groundwaters at Olkiluoto. Two samples with an oxygen isotopic composition highly depleted in 18 O were interpreted to have been precipitated at elevated temperatures. The δ 13 C values of calcite showed a wide range of values from -26 to +35 per mille. Multiple sources for carbon are implied. The highest δ 13 C values indicate methanic conditions in the fracture at the time of calcite precipitation. It appears that the methanic environment has earlier extended to shallower depths compared to the location of the methanic environment in the present-day fracture system (> 300 m). Ten pyrite samples were analysed

  19. Molecular dynamics simulations of the calcite/solution interface as a means to explore surface modifications induced by nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Sascha; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Spijker, P. [Aalto Univ., Helsinki (Finland). Dept. of Applied Physics; Voitchovsky, K. [Durham Univ. (United Kingdom). Physics Dept.

    2016-07-01

    The reactivity of calcite, one of the most abundant minerals in the earth's crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO{sub 3} severely affect calcite's (104) surface and its reactivity. Molecular dynamics (MD) simulations reveal density profiles of different ions near calcite's surface, with NO{sub 3}{sup -} able to reach closer to the surface than CO{sub 3}{sup 2-} and in higher concentrations. Additionally, incorporation of NO{sub 3}{sup -} into the surface significantly disturbs the water structure at the interface.

  20. The surface reactivity of chalk (biogenic calcite) with hydrophilic and hydrophobic functional groups

    Science.gov (United States)

    Okhrimenko, D. V.; Dalby, K. N.; Skovbjerg, L. L.; Bovet, N.; Christensen, J. H.; Stipp, S. L. S.

    2014-03-01

    The surface properties of calcium carbonate minerals play an important role in a number of industrial and biological processes. Properties such as wettability and adsorption control liquid-solid interface behaviour and thus have a strong influence on processes such as biomineralisation, remediation of aquifers and oil recovery. We investigated how two model molecules of different polarity, namely water and ethanol, interact with reservoir and outcrop chalk samples and we compared their behaviour with that of pure, inorganically precipitated calcite. Thermodynamic quantities, such as the work of wetting, surface energy and isosteric adsorption enthalpy, were determined from vapour adsorption isotherms. The chalks were studied fresh and after extraction of organic residues that were originally present in these samples. The work of wetting correlates with the amount of organic matter present in the chalk samples but we observed a fundamental difference between the adsorption properties of chalk and pure, inorganically precipitated calcite toward the less polar, ethanol molecule. Further analysis of the chemical composition of the organic matter extracted from the chalk samples was made by gas chromatography (GC-MS). Monitoring surface composition by X-ray photoelectron spectroscopy (XPS) before and after extraction of the organic material, and with atomic force microscopy (AFM), showed that nanometer sized clay crystals observed on the chalk particle surfaces could be an important part of the reason for the differences. Removal of the extractable portion of the hydrocarbons liberates adsorption sites that have different wetting properties than the rest of the chalk and these have an energy distribution that is similar to clays. Thus, the results exemplify the complexity of biogenic calcite adsorption behaviour and demonstrate that chalk wetting in drinking water aquifers as well as oil reservoirs is controlled partly by the nanoparticles of clay that have grown on the

  1. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

    DEFF Research Database (Denmark)

    Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.

    2017-01-01

    The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms...... that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10...... monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound....

  2. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars

    Science.gov (United States)

    Martin, A. M.; Righter, K.; Treiman, A. H.

    2010-01-01

    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  3. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two

  4. The surface destabilization effect of nitrate on the calcite (104). Water interface and yttrium(III) sorption thereon

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrandt, S.E.; Hofmann, Sascha; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Stubbs, J.E.; Eng, P.J. [Chicago Univ., IL (United States). Center for Advanced Radiation Sources; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2016-07-01

    Calcite, as a most abundant mineral on earth, was studied with X-ray reflectivity under the influence of NaNO{sub 3} [1]. The calcite (104) surface undergoes significant destabilization effects in the presence of NaNO{sub 3}, which occurs as partial dissolution and the formation of an amorphous layer at the interface. The disordering of the surface reaches more than 15 Aa into the crystal bulk. Furthermore, this surface modification has also an effect on the sorption behavior of the rare earth element Y. Without NaNO{sub 3} Y{sup 3+} adsorbs as both inner and outer sphere complexes, this was verified with resonant anomalous X-ray reflectivity (RAXR). If NaNO{sub 3} is present, both species desorbs from the surface completely.

  5. Speciation of As in calcite by micro-XAFS: Implications for remediation of As contamination in groundwater

    International Nuclear Information System (INIS)

    Yokoyama, Y; Takahashi, Y; Iwatsuki, T; Terada, Y

    2013-01-01

    To evaluate the role of calcite as a host phase of arsenic (As) in As-contaminated groundwater, distribution behavior of Asbetween natural calcite and groundwater in deep underground was investigated based on As oxidation state. Speciation analyses of As in natural calcite by μ-XRF-XAFS analyses showed (i) preferentialarsenate uptake by calcite, and (ii) promptness of arsenate uptake by minor iron (Fe) carbonate minerals coprecipitated with calcite. These findings suggest that the effect of calcite on As remediation of the As-contamination systems stronglydepends on arsenite to arsenate ratio (i.e., redox condition) in groundwater, and maybe governed bythe amount of Fe coprecipitated with calcite.

  6. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    Science.gov (United States)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse

  7. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    Science.gov (United States)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  8. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  9. Methodology to obtain exchange properties of the calcite surface-Application to major and trace elements: Ca(II), HCO3-, and Zn(II)

    International Nuclear Information System (INIS)

    Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.; Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.

    2010-01-01

    Sorption of inorganic elements onto carbonate minerals has been intensively described in the literature by two reaction steps: (1) a first one rapid and completed within a few hours and (2) a second one slower, eventually irreversible, and occurring at a constant rate. The first step is often attributed to an ion-exchange process, but its reversibility is rarely investigated. Consequently, discrimination of the global sorption phenomenon into two different mechanisms is not always justified. In this study, we investigated, by batch experiments, both sorption and desorption of Ca(II), HCO 3 - , and Zn(II), radiolabeled with isotopes 45 Ca(II), H 14 CO 3 - , and 65 Zn(II), respectively, onto synthetic pure calcite. Solutions were pre-equilibrated with atmospheric p(CO 2 ) and saturated with respect to calcite. Therefore, our purpose was to: (1) obtain experimental distribution coefficients of major elements (Ca(II) and HCO 3 - ) and a trace element (Zn(II)) onto calcite from sorption and desorption experiments, (2) test the validity of a first-occurring ion-exchange process generally noted in the literature, by calculating distribution coefficients for the 'sole' exchange process, and (3) quantify the amounts of Ca(II), HCO 3 - , and Zn(II) sorbed on the calcite surface by the sole 'exchange process' and compare them with surface crystallochemical data. Ca(II) or HCO 3 - sorption experimental data suggest that a significant fraction of these two elements was sorbed irreversibly onto or in the calcite. By using a method based on isotopic ratios, the Ca(II) or HCO 3 - concentrations, which are reversibly adsorbed on the calcite, have been quantified. These concentrations are respectively estimated at 4. 0 ± 2. 0 * 10 -4 and 7. 0 ± 1. 5 * 10 -4 mol/kg. The obtained Ca(II) surface concentration value is one order of magnitude lower than the one obtained from isotopic measurement by former authors [Geochim. Cosmochim. Acta 55 (1991) 1549; Geochim. Cosmochim. Acta 51

  10. Adsorption of arsenic and phosphate onto the surface of calcite as revealed by batch experiments and surface complexation modelling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt

    different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, CO3 2- and HCO3 -. To avoid the precipitation of phosphate or arsenic-containing minerals the experiments were conducted using a short reaction time (generally 3 h) and a low concentration of phosphate...... adsorption affinity for calcite is greater as compared to arsenate and the phosphate sorption isotherms are more strongly curved. However, the amount of both arsenate and phosphate adsorbed varied with the solution composition in the same manner. In particular, adsorption increased as the CO3 2- activity...... decreased (at constant pH) and as pH increased (at constant CO3 2- activity). The dependency on the carbonate activity indicates competition for sorption sites between carbonate and arsenate/phosphate, whereas the pH dependency is likely a response to changes in arsenate and phosphate speciation...

  11. Nickel adsorption on chalk and calcite

    DEFF Research Database (Denmark)

    Belova, Dina Alexandrovna; Lakshtanov, Leonid; Carneiro, J.F.

    2014-01-01

    Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite...... = - 1.12 on calcite and log KNi = - 0.43 and - 0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts...... of polysaccharides and clay nanoparticles on the chalk surface....

  12. The radiogenic and stable Sr isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation

    Science.gov (United States)

    Andrews, M. Grace; Jacobson, Andrew D.

    2017-10-01

    volcanic C flux introduced to the atmosphere-ocean system as HCO3- after subsurface silicate weathering does not regulate long-term climate. Because hydrothermal calcite simply sequesters some of this HCO3- and delays its transmission to the atmosphere-ocean system until it dissolves at the surface later in time, it can be concluded the weathering of hydrothermal calcite bearing non-atmospheric C also has no effect on long-term climate regulation. Icelandic riverine HCO3- fluxes should be corrected for the hydrothermal calcite weathering contribution prior to quantifying atmospheric CO2 consumption rates by basalt weathering at the Earth's surface.

  13. The effect of the Ca2+ to CO32- activity ratio on spiral growth at the calcite {1014} surface

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Bechgaard, Klaus; Stipp, Susan Louise Svane

    2010-01-01

    Variation in the Ca2+ to CO 2¿ activity ratio of natural waters is rarely considered in models intended to describe calcite 3 growth. Atomic force microscopy (AFM) and differential interference contrast (DIC) microscopy were used to examine spiral growth on calcite f10¿14g surfaces from solutions...... velocity is achieved at higher relative 3 CO 2¿ activity. The obtuse step velocity data fit the ‘kinetic ionic ratio’ model of Zhang and Nancollas (1998) well, but acute 3 step velocities cannot be described by this model. This is attributed to dissimilar dehydration frequencies for Ca2+ and CO 2¿ 3...

  14. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    KAUST Repository

    Li, Yan Vivian; Cathles, Lawrence M.

    2016-01-01

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle

  15. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    Science.gov (United States)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes

  16. Calcite encrustation in macro-algae Chara and its implication to the formation of carbonate-bound cadmium

    International Nuclear Information System (INIS)

    Siong, Kian; Asaeda, Takashi

    2009-01-01

    We studied the relationship between macro-algae Chara (Stoneworts) calcite (CaCO 3 ) encrustation and the speciation of cadmium (Cd) accumulated by the plant. Results showed that 17% of the total Cd (0.3 mg kg -1 ) accumulated by Chara fibrosa exposed to 1 μg Cd L -1 was carbonate-bound. The percentage of carbonate-bound Cd in the plant exposed to 10 μg Cd L -1 increased from 48% in young thalli (total Ca -1 , total Cd: 125 mg kg -1 ) to 63% in calcified mature thalli (total Ca: 190 mg g -1 ; total Cd: 134 mg kg -1 ). Based on mineral saturation calculation and reliability analysis of the sequential fractionation procedure, precipitation of otavite (CdCO 3 ) and co-precipitation of Cd with calcite, occurring in the alkaline regions of Chara cell wall, are probably the mechanisms of carbonate-bound Cd formation. Thick marl sediment frequently found beneath charophyte meadows suggests a long-term storage of Ca as well as the precipitated or co-precipitated Cd in the sediment after the plant senescence and decomposition.

  17. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  18. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    Science.gov (United States)

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  19. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  20. Sequestration of Antimony on Calcite Observed by Time-Resolved Nanoscale Imaging.

    Science.gov (United States)

    Renard, François; Putnis, Christine V; Montes-Hernandez, German; King, Helen E; Breedveld, Gijs D; Okkenhaug, Gudny

    2018-01-02

    Antimony, which has damaging effects on the human body and the ecosystem, can be released into soils, ground-, and surface waters either from ore minerals that weather in near surface environments, or due to anthropogenic releases from waste rich in antimony, a component used in batteries, electronics, ammunitions, plastics, and many other industrial applications. Here, we show that dissolved Sb can interact with calcite, a widespread carbonate mineral, through a coupled dissolution-precipitation mechanism. The process is imaged in situ, at room temperature, at the nanometer scale by using an atomic force microscope equipped with a flow-through cell. Time-resolved imaging allowed following the coupled process of calcite dissolution, nucleation of precipitates at the calcite surface and growth of these precipitates. Sb(V) forms a precipitate, whereas Sb(III) needs to be oxidized to Sb(V) before being incorporated in the new phase. Scanning-electron microscopy and Raman spectroscopy allowed identification of the precipitates as two different calcium-antimony phases (Ca 2 Sb 2 O 7 ). This coupled dissolution-precipitation process that occurs in a boundary layer at the calcite surface can sequester Sb as a solid phase on calcite, which has environmental implications as it may reduce the mobility of this hazardous compound in soils and groundwaters.

  1. Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2016-02-01

    Full Text Available A traverse across the Stone Church syncline in the Ordovician Martinsburg turbidites reveals an axial planar cleavage (N40°E, SE dips in regional thrust-related folds (N40°E, shallow plunges and five phases of sparry calcite. Calcite fillings are bedding-parallel, cleavage-parallel, and one vein set cross-cuts both earlier phases; the youngest calcite filling is a bedding-parallel fault gouge that crosscuts the cleavage and preserves top-down-to-the-southeast normal fault kinematics. Calcite veins unique to disharmonically-folded calcareous siltstones (Maxwell, 1962 were also analyzed. Stable isotopic analysis (O, C of all of the calcite phases indicates a uniform fluid source (δ13C −2.0, δ18O −13.3 VPDB and, potentially, a similar precipitation and mechanical twinning age. The twinning strains (n = 1341; average Δσ = −32 MPa; average ε1 = −2.9% in the calcite suite are consistent with SE-NW thrust shortening, and sub-horizontal shortening perpendicular to evolving axial planar cleavage planes in the Stone Church syncline. Calcareous siltstone layers within the Martinsburg Fm. turbidites share concordant bedding planes and are unique, chemically (XRF, but folded and cleaved differently than the surrounding clay-rich Martinsburg turbidites. Neither sediment type yielded detrital zircons. Electron backscatter X-ray diffraction (EBSD and calcite twinning results in a folded calcareous siltstone layer preserving a layer-normal SE-NW shortening strain and Lattice Preferred Orientation (LPO. Shortening axes for the five-phase calcite suite trends ~N40°W, consistent with tectonic transport associated with crystalline nappe emplacement of the Reading Prong within the Piedmont province.

  2. Differences in the rheological properties of calcitic and dolomitic lime slurries: influence of particle characteristics and practical implications in lime-based mortar manufacturing

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2012-06-01

    Full Text Available The study of the rheological properties of lime suspensions is a useful means to evaluate the workability of lime mortars. In this work, we studied the flow behaviour of two industrial hydrated limes, one of calcitic and the other of dolomitic composition, by means of two types of rheometer with different geometry and setup mode. The obtained results were interpreted taking into account the differences in microstructure and surface properties of the suspended particles. Calcitic lime dry particles are formed by angular and polydisperse clusters and, once dispersed in water, they behave like thixotropic materials. On the other hand, the dolomitic lime is formed by nanoparticles and small round cluster and it shows a pronounced plastic behaviour in suspension. This fundamental difference between the two materials explains the traditional preference for dolomitic lime mortars for plastering and rendering applications.

    El estudio de las propiedades reológicas de suspensiones de cal es una herramienta muy útil para evaluar la trabajabilidad de morteros de cal. En este trabajo se ha estudiado el comportamiento en suspensión de dos cales hidratadas, de composición calcítica y dolomítica, mediante dos tipos de reómetros con geometría y modalidades distintas de medida. Los resultados obtenidos se han interpretado teniendo en cuenta las diferencias en la microestructura y las propiedades de superficie de las partículas en suspensión. Las partículas de cal calcítica están formadas por aglomerados angulares y polidispersos y, una vez dispersadas en agua, presentan un comportamiento tixotrópico. Por su parte, la cal dolomítica está formada por nanopartículas y pequeños agregados redondeados y muestra en suspensión un pronunciado comportamiento plástico. Esta importante diferencia entre las dos cales explica la preferencia tradicional de morteros de cal dolomítica para aplicaciones en revocos.

  3. An investigation of the heterogeneous nucleation of calcite

    International Nuclear Information System (INIS)

    House, W.A.; Tutton, J.A.

    1982-01-01

    The heterogeneous precipitation kinetics of calcite from dilute calcium bicarbonate solutions onto pyrex glass seeds is investigated by using a modified form of the Davies and Jones equation. The rate constant is evaluated from experiments using calcite seeds and it is demonstrated that the growth rate does not increase in proportion to the increase in surface area accompanying precipitation. The number of heteronucleated particles is estimated by assuming a constant density of growth sites on the different calcite surfaces. A comparison is made between the specific surface areas of calcite obtained by the calcium-45 isotopic exchange method and other values. (orig.)

  4. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst

    2015-01-01

    and adhesion behaviour tests. Comparative studies with a surfactant, protein, purified enzyme, enzyme stabiliser using n-decane (as a model for the oil) have also been carried out in order to verify experimental results. The enzymes that have the highest effect on the wettability have been identified. Those...... action has been found to be replacement of oil at the solid surface by the enzyme. Other mechanisms (modification of the surface tension or catalytic modification of hydrocarbons resulting in reducing the oil viscosity) have shown to be much less pronounced from the measurements reported here....

  5. Thermoluminescence from natural calcites

    International Nuclear Information System (INIS)

    Calderon, T.; Jaque, F.; Coy-yll, R.

    1984-01-01

    Thermoluminescence (TL) as well as absorption and EPR spectra of x-irradiated natural calcites have been obtained. Irradiation produces UV absorption bands and a decrease of the Mn 2+ EPR spectrum. A correlation of each TL peak with the bleaching steps of UV absorption bands and the recovering in intensity of the Mn 2+ EPR spectrum has been found. These experimental results support a new model for the radiation damage and thermoluminescence process in calcites. The main point in this model is that holes become trapped at impurities, and the electrons are trapped at dislocations in the form of CO 3 3- . (author)

  6. Structural incorporation of Neptunyl(V) into Calcite: Interfacial Reactions and Kinetics

    OpenAIRE

    Heberling, Frank

    2010-01-01

    In this experimental work the calcite-water interface is characterized by means of zetapotential and surface diffraction measurements. Based on the experimental results a new Basic Stern Surface Complexation model for calcite is developed. Neptunyl(V) adsorption at the calcite surface and incorporation into the calcite structure is studied by batch type adsorption- and mixed flow reactor experiments. Adsorption and incorporation species of Neptunyl are investigated by EXAFS spectroscopy.

  7. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  8. Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Garcia, Whitney L.; Kukkadapu, Ravi K.; Qafoku, Odeta; Bowden, Mark E.; Saslow, Sarah A.; Qafoku, Nikolla

    2018-09-15

    At the Hanford Site in southeastern Washington State, radionuclide (Tc-99/I-129) laden liquid wastes have been discharged to ground, resulting in vadose zone contamination, which provides a continuous source of these contaminants to groundwater. The presence of multiple contaminants increases the complexity of finding viable remediation technologies to sequester vadose zone contaminants in situ and protect groundwater. Although previous studies have shown the efficiency of zero valent iron (ZVI) and sulfur modified iron (SMI) in reducing mobile Tc(VII) to immobile Tc(IV) and iodate incorporation into calcite, the coupled effects from simultaneously using these remedial technologies have not been previously studied. In this first-of-a-kind laboratory study, we used two efficient reductants (i.e., ZVI and SMI) and calcite-forming solutions to simultaneously remove aqueous Tc(VII) and iodate via reduction and incorporation, respectively. The results confirmed that Tc(VII) was rapidly removed from the aqueous phase via reduction to Tc(IV). ZVI removed Tc(VII) faster than SMI, although both had removed the same amount by the end of the experiments. Most of the aqueous iodate was rapidly transformed to iodide, and therefore was not incorporated into calcite, but instead remained in the aqueous phase. The iodate reduction to iodide was much faster than iodate incorporation into calcite, suggesting that this remedial pathway is not efficient in removing aqueous iodate when strong reductants are present. Other experiments suggested that iodate removal via calcite precipitation should occur first and then reductants should be added for Tc(VII) removal. Although ZVI can negatively impact microbial populations and thereby inhibit natural attenuation mechanisms, only changes in the makeup of the microbial community were observed. However, these changes in the microbial community may have an impact on remediation efforts in the long term that could not be seen in a short

  9. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  10. Sealing process with calcite in the Nojima active fault zone revealed from isotope analysis of calcite

    International Nuclear Information System (INIS)

    Arai, Takashi; Tsukahara, Hiroaki; Morikiyo, Toshiro

    2003-01-01

    The Nojima fault appeared on the surface in the northern part of Awaji Island, central Japan as a result of the Hyogo-ken Nanbu earthquake (1995, M=7.2). Active fault drilling was performed by the Disaster Prevention Research Institute (DPRI), Kyoto University, and core samples were retrieved from 1410 to 1710 m, which were composed of intact and fractured granodiorites. We obtained calcite samples and gas samples from the vein in marginal fracture and non-fracture zones. We analyzed the carbon and oxygen isotope ratios of calcite and carbon dioxide to investigate the characteristic isotope ratios of fluids in the active fault zone, to estimate the origins of fluids, and to determine the sealing process of fractures. The analyzed values of carbon and oxygen isotope ratios of calcite were -10.3 to -7.2 per mille, 18 to 23 per mille, respectively, and carbon isotope ratios of CO 2 were -21 to -17 per mille. If carbon isotope ratios of calcite were at equilibrium with those of CO 2 , the precipitation temperature of calcite is calculated to be 30 to 50 deg C. This temperature is consistent with the present temperature of the depth where drilling cores were retrieved. Oxygen isotope ratios of H 2 O that, precipitated calcite were calculated to be -1.8 to -5.5 per mille. These values indicate calcite were precipitated from mixed fluids of sea water and meteoric water. Therefore, the marginal fracture zone of the Nojima fault was sealed with calcite, which was generated from mixing of sea water and meteoric water in situ. (author)

  11. Calcite Wettability in the Presence of Dissolved Mg2+ and SO42-

    DEFF Research Database (Denmark)

    Generosi, Johanna; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    that potential determining ions in seawater, Mg2+, Ca2+, and SO42–, are responsible for altering the wettability of calcite surfaces. In favorable conditions, e.g., elevated temperature, calcium at the calcite surface can be replaced by magnesium, making organic molecules bind more weakly and water molecules...... bind more strongly, rendering the surface more hydrophilic. We used atomic force microscopy in chemical force mapping mode to probe the adhesion forces between a hydrophobic CH3-terminated AFM tip and a freshly cleaved calcite {10.4} surface to investigate wettability change in the presence of Mg2...... with calcite even after rinsing with CaCO3-saturated deionized water, suggesting sorption on or in calcite. When the calcite-saturated solution of MgSO4 was replaced by calcite-saturated NaCl at the same ionic strength, adhesion force increased again, indicating that the effect is reversible and suggesting Mg...

  12. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  13. Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    Science.gov (United States)

    Antia, A. N.; Suffrian, K.; Holste, L.; Müller, M. N.; Nejstgaard, J. C.; Simonelli, P.; Carotenuto, Y.; Putzeys, S.

    2008-01-01

    Independent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45-55%, 37-53% and 5-22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates.

  14. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  15. Calcite precipitates in Slovenian bottled waters.

    Science.gov (United States)

    Stanič, Tamara Ferjan; Miler, Miloš; Brenčič, Mihael; Gosar, Mateja

    2017-06-01

    Storage of bottled waters in varying ambient conditions affects its characteristics. Different storage conditions cause changes in the initial chemical composition of bottled water which lead to the occurrence of precipitates with various morphologies. In order to assess the relationship between water composition, storage conditions and precipitate morphology, a study of four brands of Slovenian bottled water stored in PET bottles was carried out. Chemical analyses of the main ions and measurements of the physical properties of water samples were performed before and after storage of water samples at different ambient conditions. SEM/EDS analysis of precipitates was performed after elapsed storage time. The results show that the presence of Mg 2+ , SO 4 2- , SiO 2 , Al, Mn and other impurities such as K + , Na + , Ba and Sr in the water controlled precipitate morphology by inhibiting crystal growth and leading to elongated rhombohedral calcite crystal forms which exhibit furrowed surfaces and calcite rosettes. Different storage conditions, however, affected the number of crystallization nuclei and size of calcite crystals. Hollow calcite spheres composed of cleavage rhombohedrons formed in the water with variable storage conditions by a combination of evaporation and precipitation of water droplets during high temperatures or by the bubble templating method.

  16. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies

    International Nuclear Information System (INIS)

    Reeder, R.J.; Nugent, M.; Lamble, G.M.; Tait, C.D.; Morris, D.E.

    2000-01-01

    X-ray absorption, luminescence, and Raman spectroscopic studies of U(VI)-containing calcite and aragonite show that the UO 2 2+ ion, the dominant and mobile form of dissolved uranium in near-surface waters, has a disordered and apparently less stable coordination environment when incorporated into calcite in comparison to aragonite, both common polymorphs of CaCO 3 . Their findings suggest that calcite, a widely distributed authigenic mineral in soils and near-surface sediments and a principal weathering product of concrete-based containment structures, is not likely to be a suitable host for the long-term sequestration of U(VI). The more stable coordination provided by aragonite suggests that its long-term retention should be favored in this phase, until it inverts to calcite. Consequently, future remobilization of U(VI) coprecipitated with calcium carbonate minerals should not be ruled out in assessments of contaminated sites. Their observation of a similar equatorial coordination of UO 2 2+ in aragonite and the dominant aqueous species [UO 2 (CO 3 ) 3 4- ] but a different coordination in calcite indicates that a change in UO 2 2+ coordination is required for its incorporation into calcite. This may explain the observed preferential uptake of U(VI) by aragonite relative to calcite

  17. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  18. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  19. Strontium Incorporation into Calcite Generated by Bacterial Ureolysis

    International Nuclear Information System (INIS)

    Yoshiko Fujita; George D. Redden; Jani C. Ingram; Marnie M. Cortez; Robert W. Smith

    2004-01-01

    Strontium incorporation into calcite generated by bacterial ureolysis was investigated as part of an assessment of a proposed remediation approach for 90Sr contamination in groundwater. Urea hydrolysis produces ammonium and carbonate and elevates pH, resulting in the promotion of calcium carbonate precipitation. Urea hydrolysis by the bacterium Bacillus pasteurii in a medium designed to mimic the chemistry of the Snake River Plain Aquifer in Idaho resulted in a pH rise from 7.5 to 9.1. Measured average distribution coefficients (DEX) for Sr in the calcite produced by ureolysis (0.5) were up to an order of magnitude higher than values reported in the literature for natural and synthetic calcites (0.02-0.4). They were also higher than values for calcite produced abiotically by ammonium carbonate addition (0.3). The precipitation of calcite in these experiments was verified by X-ray diffraction. Time-of-flight secondary ion mass spectrometry (ToF SIMS) depth profiling (up to 350 nm) suggested that the Sr was not merely sorbed on the surface, but was present at depth within the particles. X-ray absorption near edge spectra showed that Sr was present in the calcite samples as a solid solution. The extent of Sr incorporation appeared to be driven primarily by the overall rate of calcite precipitation, where faster precipitation was associated with greater Sr uptake into the solid. The presence of bacterial surfaces as potential nucleation sites in the ammonium carbonate precipitation treatment did not enhance overall precipitation or the Sr distribution coefficient. Because bacterial ureolysis can generate high rates of calcite precipitation, the application of this approach is promising for remediation of 90Sr contamination in environments where calcite is stable over the long term

  20. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    Science.gov (United States)

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Coprecipitation of cadmium with calcite

    International Nuclear Information System (INIS)

    Fujino, Osamu; Kumagai, Tetsu; Shigematsu, Tsunenobu; Matsui, Masakazu

    1976-01-01

    The distribution of cadmium between precipitates of calcite and saturated aqueous solution was measured at 25 0 C to understand the distribution of cadmium in the bivalves. Calcite was precipitated from calcium bicarbonate solution by the gradual release of carbon dioxide. The cadmium ions were coprecipitated in calcite, obeying the logarithmic distribution law. The apparent distribution coefficient was decreased as α, α'-dipyridyl increased, but the true distribution coefficient was found to be an almost constant value, 560. This value is fairly close to the ratio of solubility product constants K sub(calcite)/K sub(CdCO 3 ), 890. This suggests that the deviation of the present solid solution from ideality is not very large. (auth.)

  2. Evolution and the Calcite Eye Lens

    OpenAIRE

    Williams, Vernon L.

    2013-01-01

    Calcite is a uniaxial, birefringent crystal, which in its optically transparent form, has been used for animal eye lenses, the trilobite being one such animal. Because of the calcite birefringence there is a difficulty in using calcite as a lens. When the propagation direction of incoming light is not exactly on the c-axis, the mages blur. In this paper, calcite blurring is evaluated, and the non-blurring by a crystallin eye lens is compared to a calcite one.

  3. Geobacillus thermoglucosidasius Endospores Function as Nuclei for the Formation of Single Calcite Crystals

    Science.gov (United States)

    Murai, Rie

    2013-01-01

    Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-13C]- and [2-13C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

  4. A time-resolved laser fluorescence spectroscopy (TRLFS) study of the interaction of trivalent actinides (curium(III)) with calcite

    International Nuclear Information System (INIS)

    Stumpf, Th.; Fanghaenel, Th.

    2002-01-01

    Cm(III) interaction with calcite was investigated in the trace concentration range. Two different Cm(III)/calcite sorption species were found. The first Cm(III) sorption species consists of a curium ion that is bonded onto the calcite surface. The second Cm(III) sorption species has lost its complete hydration sphere and is incorporated into the calcite bulk structure /1/. (orig.)

  5. Study of reverse flotation of calcite from scheelite in acidic media

    Science.gov (United States)

    Deng, Rongdong; Huang, Yuqing; Hu, Yuan; Ku, Jiangang; Zuo, Weiran; Yin, Wanzhong

    2018-05-01

    A new coated-reactive reverse flotation method based on the generation of CO2 bubbles at a calcite surface in acidic solution was used to separate calcite from scheelite. The dissolution kinetics of coated and uncoated calcite were studied in sulfuric acid. The CO2 bubbles generated on the uncoated calcite particle surface are enough to float the particle. However, most of these bubbles left the surface quickly, preventing calcite from floating. Here, a mixture of polyvinyl alcohol polymer and sodium dodecyl sulfonate was used to coat the mineral particles and form a stable membrane, resulting in the formation of a stable foam layer on the calcite surface. After the calcite is coated, the generated bubbles could be successfully captured on the calcite surface, and calcite particles could float to the air-water interface and remain there for more than one hour. Flotation tests indicated that a high-quality tungsten concentrate with a grade of more than 75% and a recovery of more than 99% could be achieved when the particle size was between 0.3 and 1.5 mm. The present results provide theoretical support for the development of a highly efficient flotation separation for carbonate minerals.

  6. Role of Fungi in the Biomineralization of Calcite

    Directory of Open Access Journals (Sweden)

    Saskia Bindschedler

    2016-05-01

    Full Text Available In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of organic acids such as oxalic acid for instance, an activity leading to the genesis of various metal complexes such as metal-oxalate. Their implications in the transformation of various mineral and metallic compounds has been widely acknowledged during the last decade, however, currently, their contribution to the genesis of a common biomineral, calcite, needs to be more thoroughly documented. Calcite is observed in many ecosystems and plays an essential role in the biogeochemical cycles of both carbon (C and calcium (Ca. It may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce its biomineralization. While fungi have often been suspected of being involved in this process in terrestrial environments, only scarce information supports this hypothesis in natural settings. As a result, calcite biomineralization by microbes is still largely attributed to bacteria at present. However, in some terrestrial environments there are particular calcitic habits that have been described as being fungal in origin. In addition to this, several studies dealing with axenic cultures of fungi have demonstrated the ability of fungi to produce calcite. Examples of fungal biomineralization range from induced to organomineralization processes. More examples of calcite biomineralization related to direct fungal activity, or at least to their presence, have been described within the last decade. However, the peculiar mechanisms leading to calcite biomineralization by fungi remain incompletely understood and more research is

  7. Interactions between cadmium and calcite

    NARCIS (Netherlands)

    van der Weijden, R.D.

    1995-01-01

    The thesis is composed of five chapters, some of which have been published or have been accepted for publication. The contents in some of the chapters may therefore slightly overlap, also because the subjects are closely related. The first two chapters focus mostly on the sorption of Cd on calcite,

  8. Interactions of U(VI), Nd, and Th(IV) at the Calcite-solution interface

    International Nuclear Information System (INIS)

    Carroll, S.A.; Dran, J.C.

    1992-01-01

    The interactions of U(VI), Nd, and Th(IV) at the calcite-solution interface at controlled pCO 2 (g) have been investigated by Rutherford backscattering (RBS), scanning electron microscopy (SEM) and energy dispersive (EDS) analyses of reacted calcite. Uranium precipitation at the calcite-solution interface was observed only for those experiments in which the initial [U(VI)] was greater than the solubility of rutherfordine, UO 2 CO 3 (s). At pH 8.0, flat radial uranium and calcium zoned precipitates form at the mineral-solution interface. At pH 4.3, uranium forms an anastomosing precipitate throughout the calcite surface. RBS analyses confirmed the SEM analyses showing that uranium forms a solid phase within the calcite surface, but formation of an uranium-calcium solid solution at depth is limited. In sharp contrast to U(VI), Nd is concentrated in the solid phase as individual neodymium-calcium carbonate crystals. Calcite and pure orthorhombic neodymium carbonate crystals dissolve at the expense of the formation of a more stable neodymium-calcium solid solution. In the presence of calcite, a thorium-calcium solid solution forms by exchanging Th for Ca in the calcite structure. Thorium precipitates in two linear trends which intersect each other at approximately 105deg C and 75deg C, parallel to calcite rhombohedral cleavage faces. (orig.)

  9. Interaction mechanisms of europium and nickel with calcite

    International Nuclear Information System (INIS)

    Sabau, Andrea

    2015-01-01

    In the context of the safety assessment of an underground repository for nuclear waste, sorption reactions are one of the main processes to take into account to predict the migration of the radionuclides which might be transferred from the waste canisters to underground waters over geological time scales. Sorption of aqueous species on minerals can include adsorption processes, surface (co)-precipitation, and even incorporation in the bulk of the material, which can lead to the irreversibility of some sorption reactions. This work is focused on two elements: Eu(III) as an analogue of trivalent actinides and Ni(II) as activation product. Calcite was chosen as adsorbent due to its presence in Callovian-Oxfordian clay rocks. Our study combines batch experiments with spectroscopic techniques (TRLFS, RBS and SEM-EDXS) to elucidate the mechanisms occurring at Eu(III)/Ni(II) calcite interface. To obtain a better understanding on the systems, before starting sorption experiments, aqueous chemistry of Eu(III) and Ni(II) was carefully investigated. Macroscopic results showed a strong retention of Eu(III) on calcite, no matter the initial concentration, contact time and CO 2 partial pressure. Ni(II) was also readily sorbed by calcite, but the retention was influenced by contact time and concentration. Time-dependent sorption experiments showed a marked and slow increase of retention upon a long time range (up to 4 months).Desorption results indicated a partly reversible sorption for Ni(II). TRLFS highlighted the influence of initial concentration and contact time on the interaction of Eu(III) with calcite. With the help of RBS and SEM-EDXS, it enabled to discriminate between different mechanisms like surface precipitation, inner-sphere complexation and incorporation. RBS showed incorporation of Eu(III) into calcite up to 250 nm, contrary to Ni(II) which was located at the surface. (author) [fr

  10. Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Chipera, S.J.

    1996-01-01

    Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a open-quotes barren zone,close quotes straddling the water table, where calcite is rare and mixing of surface and subsurface sources may occur. Deep in the SZ, distinctive Mn calcites reflect deep sources, including Ca released as analcime or albite formed and carbonates derived from underlying Paleozoic rocks. In the UZ and in the barren zone, above the deep Mn calcites, variations in calcite lanthanide chemistry can be used to distinguish rhyolitic from quartz-latitic sources. Lanthanide ratios and Sr contents of calcites record the chemical evolution of waters flowing through the UZ and upper SZ. Variations in calcite chemistry in the UZ and in the barren zone show that (1) Sr, which is readily exchanged with clays or zeolites, is essentially removed from some flowpaths that are in contact with these minerals and (2) traces of Mn oxides found in the tuffs have a significant effect of groundwater chemistry in the UZ and in the barren zone by removing almost all Ce from solution (evidenced by characteristic Ce depletions in calcite throughout this zone). Extreme Ce removal may be a result of Ce oxidation (Ce 3+ → Ce 4+ ) at the surfaces of some Mn oxides, particularly rancieite. Higher Sr contents and lack of Ce depletions in the deeper Mn calcites reflect different ages, origins, and transport systems. The calcite record of lanthanide and Sr transport in the UZ shows that minor minerals (clays and zeolites) and even trace minerals (Mn oxides) will affect the compositions of groundwaters that flow over distances greater than a few tens of meters. 43 refs., 8 figs., 4 tabs

  11. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hudak, Michael R.; Lerner, Allan [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grubbs, Robert K. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Wang, Shanmin [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Zhang, Zhan; Karapetrova, Evguenia [Advance Photon Source, Argonne National Laboratory, 9700S Cass Ave, Argonne, IL 60439 (United States); Hickmott, Donald [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Majewski, Jaroslaw, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2014-08-28

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO{sub 3}) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al{sub 2}O{sub 3} buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al{sub 2}O{sub 3} buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial

  12. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    International Nuclear Information System (INIS)

    Wang, Peng; Hudak, Michael R.; Lerner, Allan; Grubbs, Robert K.; Wang, Shanmin; Zhang, Zhan; Karapetrova, Evguenia; Hickmott, Donald; Majewski, Jaroslaw

    2014-01-01

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO 3 ) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al 2 O 3 buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al 2 O 3 buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial interactions

  13. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...

  14. Tear clearance implications for ocular surface health.

    Science.gov (United States)

    de Paiva, Cintia Sade; Pflugfelder, Stephen C

    2004-03-01

    Tear clearance/turnover provides a global assessment of the function of the lacrimal functional unit and of tear exchange on the ocular surface. It is an indirect measure of dry eye induced inflammation on the ocular surface. It shows better correlation with the severity of ocular irritation symptoms and corneal epithelial disease in dry eye than the Schirmer 1 test. Delayed tear clearance may prove to be the best measure for identifying patients with tear film disorders who may respond to anti-inflammatory therapy.

  15. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters

    Science.gov (United States)

    Rossi, Carlos; Lozano, Rafael P.

    2016-11-01

    Despite the paleoclimatic relevance of primary calcite to aragonite transitions in stalagmites, the relative role of fluid Mg/Ca ratio, supersaturation and CO32- concentration in controlling such transitions is still incompletely understood. Accordingly, we have monitored the hydrochemistry of 50 drips and 8 pools that are currently precipitating calcite and/or aragonite in El Soplao and Torca Ancha Caves (N. Spain), investigating the mineralogy and geochemistry of the CaCO3 precipitates on the corresponding natural speleothem surfaces. The data reveal that, apart from possible substrate effects, dripwater Mg/Ca is the only obvious control on CaCO3 polymorphism in the studied stalagmites and pools, where calcite- and aragonite-precipitating dripwaters are separated by an initial (i.e. at stalactite tips) Mg/Ca threshold at ≈1.1 mol/mol. Within the analyzed ranges of pH (8.2-8.6), CO32- concentration (1-6 mg/L), supersaturation (SIaragonite: 0.08-1.08; SIcalcite: 0.23-1.24), drip rate (0.2-81 drops/min) and dissolved Zn (6-90 μg/L), we observe no unequivocal influence of these parameters on CaCO3 mineralogy. Despite the almost complete overlapping supersaturations of calcite- and aragonite-precipitating waters, the latter are on average less supersaturated because the waters having Mg/Ca above ∼1.1 have mostly achieved such high ratios by previously precipitating calcite. Both calcite and aragonite precipitated at or near oxygen isotopic equilibrium, and Mg incorporation into calcite was consistent with literature-based predictions, indicating that in the studied cases CaCO3 precipitation was not significantly influenced by strong kinetic effects. In the studied cases, the calcites that precipitate at ∼11 °C from dripwaters with initial Mg/Ca approaching ∼1.1 incorporate ∼5 mol% MgCO3, close to the published value above which calcite solubility exceeds aragonite solubility, suggesting that aragonite precipitation in high-relative-humidity caves is

  16. Effect of dissolution kinetics on flotation response of calcite with oleate

    Directory of Open Access Journals (Sweden)

    D. G. Horta

    Full Text Available Abstract Phosphate flotation performance can be influenced by the dissolution kinetics of the minerals that compose the ore. The purpose of this work was to investigate the effect of dissolution kinetics on flotation response with oleate (collector of calcites from different origins and genesis. The calcite samples were first purified and characterized by x-ray Fluorescence (XRF and the Rietveld method applied to x-ray Diffractometry data (RXD. Experiments of calcite dissolution and microflotationwere performed at pH 8 and pH 10.The pH effect on the calcite dissolution and flotation indicates the possible influence of the carbonate/bicarbonate ions provided by the CO2 present in the air. In addition, the flotation response is greater as the dissolution increases, making more Ca2+ ions available to interact with collector molecules. This result corroborates the surface precipitation mechanism proposed foroleate adsorption on the calcite surface.

  17. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  18. A new theory for the static contact between rough, unmated surfaces in non-elastically deforming rock and its implications for rock friction

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    The closure behavior of fractures in marble and alabaster is markedly different from that in quartzite. The aperture decreases considerably more under normal stress and remains permanently reduced, for the same ratio of normal stress to unconfined compressive strength. Also, a larger permanent relative contact area develops between the surfaces of marble and alabaster than it does between surfaces of quartzite. The permanent contact area increases at an increasing rate with normal stress in marble and alabaster, unlike the nearly linear increase in quartzite. The failure of surface asperities of calcite and gypsum during closure accounts for these differences. We modeled this process by considering the surfaces to consist of paraboloids lying on a flat plane and having a range of initial heights. Closure occurs by pressing a plane rigid surface against the 'hills', flattening their peaks, keeping the base area of the hills constant. To allow for a changing resistance to deformation, the contact stress is assumed to vary linearly with the shortening strain, to a first approximation. This model was tested against measurements of fracture closure and contact area of rough surfaces of calcite marble with a known initial height distribution of surface peaks. The fit to the data is quite good. In all cases, the model shows that closure is accompanied by a decrease in contact strength of deforming asperities, suggested also by the cataclastic deformation observed petrographically. The number of contact spots and the total length of contact seen in profile are also reasonably well modeled. These results have important implications for our understanding of frictional strength of fractures. The overall resistance to shear along rough surfaces depends upon the product of the shear strength and true area of the contacts, both of which are affected by normal stress. Application of this model approach shows that the initial frictional resistance of some fractures in ductile

  19. Cretaceous joints in southeastern Canada: dating calcite-filled fractures

    Science.gov (United States)

    Schneider, David; Spalding, Jennifer; Gautheron, Cécile; Sarda, Philippe; Davis, Donald; Petts, Duane

    2017-04-01

    To resolve the timing of brittle tectonism is a challenge since the classical chronometers required for analyses are not often in equilibrium with the surrounding material or simply absent. In this study, we propose to couple LA-ICP-MS U-Pb and (U-Th)/He dating with geochemical proxies in vein calcite to tackle this dilemma. We examined intracratonic Middle Ordovician limestone bedrock that overlies Mesoproterozoic crystalline basement, which are cut by NE-trending fault zones that have historic M4-5 earthquakes along their trace. E-W to NE-SW vertical joint sets, the relatively youngest stress recorded in the bedrock, possess 1-7 mm thick calcite veins that seal fractures or coat fracture surfaces. The veins possess intragranular calcite that are lined with fine-grained calcite along the vein margin and can exhibit µm- to mm-scale offset (e.g. displaced fossil fragments in host rock). Calcite d18O and d13C values are analogous to the bulk composition of Middle to Late Ordovician limestones, and suggest vein formation from a source dominated by connate fluids. The calcite contain trails of fluid inclusions commonly along fractures, and 3He/4He analyses indicate a primitive, deep fluid signature (R/Ra: 0.5-2.7). Trace element geochemistry of the calcite is highly variable, generally following the elevated HREE and lower LREE of continental crust trends but individual crystals from a single vein may vary by three orders of magnitude. LA-ICP-MS geochemical traverse across veins show elevated concentrations along (sub)grain boundaries and the vein-host rock contact. Despite abundant helium concentrations, (U-Th)/He dating was unsuccessful yielding highly dispersed dates likely from excess helium derived from the fluid inclusions. However, LA-ICP-MS U-Pb dating on calcite separated from the veins yielded model ages of 110.7 ± 6.8 Ma (MSWD: 0.53; n: 16) to 81.4 ± 8.3 Ma (MSWD: 2.6; n: 17). Since all veins are from the same ENE-trend, we regressed all the calcite dates

  20. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, B.; Moscati, R.

    2000-01-01

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from ∼ 40 to ∼ 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits

  1. Surface history of Mercury - Implications for terrestrial planets

    Science.gov (United States)

    Murray, B. C.; Strom, R. G.; Trask, N. J.; Gault, D. E.

    1975-01-01

    A plausible surface history of Mercury is presented which is suggested by Mariner 10 television pictures. Five periods are postulated which are delineated by successive variations in the modification of the surface by external and internal processes: accretion and differentiation, terminal heavy bombardment, formation of the Caloris basin, flooding of that basin and other areas, and light cratering accumulated on the smooth plains. Each period is described in detail; the overall history is compared with the surface histories of Venus, Mars, and the moon; and the implications of this history for earth are discussed. It is tentatively concluded that: Mercury is a differentiated planet most likely composed of a large iron core enclosed by a relatively thin silicate layer; heavy surface bombardment occurred about four billion years ago, which probably affected all the inner planets, and was followed by a period of volcanic activity; no surface modifications caused by tectonic, volcanic, or atmospheric processes took place after the volcanic period.

  2. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  3. The coprecipitation of Sr2+ with calcite at 250C and 1 atm

    International Nuclear Information System (INIS)

    Pingitore, N.E. Jr.; Eastman, M.P.

    1986-01-01

    The incorporation of Sr 2+ into calcite at earth surface aqueous conditions is affected by the absolute concentration of Sr 2+ , the presence of Ba 2+ and NaCl in the solution and the rate of precipitation. At solution ratios (molar) of Sr 2+ to Ca 2+ in the low 10 -3 range, which yield calcites with several hundred ppm Sr 2+ , kappasub(calcite) sup(Sr) typically assumes a value between 0.10 and 0.20. Above these concentrations the value of kappasub(calcite) sup(Sr) drops to approximately 0.06. Furthermore, if minor amounts of Ba 2+ or large amounts of Na + (0.48 M) are added to a dilute Sr 2+ solution, a value around 0.06 for kappasub(calcite)sup(Sr) is found. This 'strontium concentration effect' and the associated 'competitive cation effect' suggest that small amounts of Sr 2+ may be incorporated into a limited number of nonlattice sites in calcite. Incorporation of Sr 2+ into these sites, presumably defects, noticeably affects kappasub(calcite)sup(Sr) only at low Sr 2+ concentrations and in the absence of competition from other large cations. An increase in kappasub(calcite)sup(Sr) with rate of precipitation, qualitatively similar to that found in other studies, was observed only when precipitation times were decreased from days to hours. For many geologic settings a partition coefficient for Sr 2+ into calcite of 0.06 appears appropriate, but there are situations - very low Sr 2+ concentrations, the presence of Mg 2+ , and fast precipitation rates - in which a larger value might better approximate natural partitioning. (author)

  4. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Sakuma, Hiroshi; Stipp, Susan Louise Svane

    2014-01-01

    We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral-fluid inte......We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral...

  5. Nucleation, growth and evolution of calcium phosphate films on calcite.

    Science.gov (United States)

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Model study of initial adsorption of SO{sub 2} on calcite and dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Malaga-Starzec, Katarina; Panas, Itai; Lindqvist, Oliver

    2004-01-30

    The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO{sub 2}. Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO{sub 2} catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO{sub 3} (s) and dolomite Ca{sub x}Mg{sub 1-x}CO{sub 3} (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO{sub 2} diffusion. The subsequent formation of gypsum under such conditions will not require SO{sub 4}{sup 2-} (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO{sub 2} coverage. Rather, upon oxidation, SO{sub 4}{sup 2-} (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals.

  7. Model study of initial adsorption of SO2 on calcite and dolomite

    International Nuclear Information System (INIS)

    Malaga-Starzec, Katarina; Panas, Itai; Lindqvist, Oliver

    2004-01-01

    The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO 2 . Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO 2 catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO 3 (s) and dolomite Ca x Mg 1-x CO 3 (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO 2 diffusion. The subsequent formation of gypsum under such conditions will not require SO 4 2- (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO 2 coverage. Rather, upon oxidation, SO 4 2- (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals

  8. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    Science.gov (United States)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its

  9. Selective Separation of Fluorite, Barite and Calcite with Valonea Extract and Sodium Fluosilicate as Depressants

    Directory of Open Access Journals (Sweden)

    Zijie Ren

    2017-02-01

    Full Text Available Fluorite, barite and calcite are important industry minerals. However, they often co-exist, presenting difficulty in selectively separating them due to their similar surface properties. In this study, valonea extract and sodium fluosilicate were used as depressants to selectively separate them by flotation, with sodium oleate as the collector. The single mineral flotation results showed that valonea extract displayed the strongest depression on calcite, while sodium fluosilicate displayed the strongest depression on barite. These two depressants allowed selective separation of the three minerals through sequential flotation. The flotation of mixed minerals showed that 94% of the calcite was successfully depressed by the valonea extract, and 95% recovery of the fluorite was achieved in the subsequent flotation with sodium fluosilicate depressing barite. The different depressant–mineral interactions were investigated via electro-kinetic studies and molecular dynamics (MD simulations using the Materials Studio 6.0 program. The valonea extract exhibited the strongest adsorption on the calcite surface, and sodium fluosilicate exhibited the strongest adsorption on the barite surface, which prevented oleate species from reacting with Ca2+ or Ba2+ surface sites. This study provides useful guidance for how to process fluorite, barite and calcite resources.

  10. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Science.gov (United States)

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  11. Hydrothermal replacement of calcite by Mg-carbonates

    Science.gov (United States)

    Jonas, Laura; Mueller, Thomas; Dohmen, Ralf

    2014-05-01

    The transport of heat and mass through the Earth's crust is coupled to mineral reactions and the exchange of isotopes and elements between different phases. Carbonate minerals are a major constituent of the Earth's crust and play an important role in different physical, chemical and even biological processes. In this experimental study, the element exchange reaction between calcite (CaCO3) and a Mg-rich fluid phase is investigated under hydrothermal conditions. Single crystals of calcite (2x2x2 mm) react with 1 ml of a 1 M MgCl2 solution at 200° C in a Teflon-lined steel autoclave for different times between one day and four weeks. The reaction leads to the formation of a porous reaction front and the pseudomorphic replacement of calcite by dolomite [CaMg(CO3)2] and magnesite (MgCO3). Scanning electron microscopy revealed that the reaction rim consists of small Mg-carbonate rhombs closely attached to each other, suggesting that the replacement reaction takes place by a dissolution-precipitation mechanism. Typically, the observed reaction front can be divided into two different domains. The outer part of the reaction rim, i.e. from the mineral surface in contact to the fluid inwards, consists of magnesite, whereas the inner part of the rim surrounding the unreacted calcite core consists of Ca-rich dolomite. The formation of a porous microstructure that varies in different parts of the reaction rim is a direct result of the large molar volume change induced by the replacement of calcite by magnesite and dolomite. The developing porosity therefore creates fluid pathways that promote the progress of the reaction front towards the unreacted core of the single crystal. Compositional profiles measured perpendicular to the mineral surface across the reactions rims using electron microprobe (EMPA) further revealed a compositional gradient within the reaction rim with regard to the structure-forming elements Mg and Ca. Here, the amount of Mg incorporated in both product

  12. Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.

    Science.gov (United States)

    Wilkinson, Bruce H.

    1982-01-01

    Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

  13. Biogenic processes in crystalline bedrock fractures indicated by carbon isotope signatures of secondary calcite

    International Nuclear Information System (INIS)

    Sahlstedt, Elina; Karhu, Juha A.; Pitkänen, Petteri; Whitehouse, Martin

    2016-01-01

    Variation in 13 C/ 12 C-isotope ratios of fracture filling calcite was analyzed in situ to investigate carbon sources and cycling in fractured bedrock. The study was conducted by separating sections of fracture fillings, and analyzing the 13 C/ 12 C-ratios with secondary ion mass spectrometry (SIMS). Specifically, the study was aimed at fillings where previously published sulfur isotope data indicated the occurrence of bacterial sulfate reduction. The results showed that the δ 13 C values of calcite were highly variable, ranging from −53.8‰ to +31.6‰ (VPDB). The analysis also showed high variations within single fillings of up to 39‰. The analyzed calcite fillings were mostly associated with two calcite groups, of which Group 3 represents possible Paleozoic fluid circulation, based on comparison with similar dated coatings within the Baltic Shield and the succeeding Group 1–2 fillings represent late-stage, low temperature mineralization and are possibly late Paleozoic to Quaternary in age. Both generations were associated with pyrite with δ 34 S values indicative of bacterial sulfate reduction. The δ 13 C values of calcite, however, were indicative of geochemical environments which were distinct for these generations. The δ 13 C values of Group 3 calcite varied from −22.1‰ to +11‰, with a distinct peak at −16‰ to −12‰. Furthermore, there were no observable depth dependent trends in the δ 13 C values of Group 3 calcite. The δ 13 C values of Group 3 calcite were indicative of organic matter degradation and methanogenesis. In contrast to the Group 3 fillings, the δ 13 C values of Group 1–2 calcite were highly variable, ranging from −53.8‰ to +31.6‰ and they showed systematic variation with depth. The near surface environment of <30 m (bsl) was characterized by δ 13 C values indicative of degradation of surface derived organic matter, with δ 13 C values ranging from −30.3‰ to −5.5‰. The intermediate depth of

  14. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    International Nuclear Information System (INIS)

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-01-01

    Calcite vein and vug fillings at fourth depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid ratios: most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at 2 vapor phase at open-quotes 100 degrees Cclose quotes. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface

  15. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    International Nuclear Information System (INIS)

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-01-01

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at 2 vapor phase at ''<100 degrees C''. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface

  16. Mechanisms of metasomatism in the calcite-pitchblende system: 2. Replacement of pitchblende by calcite

    International Nuclear Information System (INIS)

    Dymkov, Yu.M.

    1996-01-01

    The principal mechanisms of the nasturan replacement by calcite -intrametasomatism, frontal metasomatism, dispersive metasomatism, and transformative metasomatism - are discussed in terms of G.L. Pospelov's (1973) concept. The main chemical condition required by the process is an oxidized environment, in which the tetravalent uranium of pitchblende or transitional reduced phases (coffinite) oxidizes to yield readily soluble uranyl compounds. The latter are replaced by calcite

  17. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite

    Science.gov (United States)

    Jiang, Wei; Gao, Zhiyong; Khoso, Sultan Ahmed; Gao, Jiande; Sun, Wei; Pu, Wei; Hu, Yuehua

    2018-03-01

    Fluorite, a chief source of fluorine in the nature, usually coexists with calcite mineral in ore deposits. Worldwide, flotation techniques with a selective collector and/or a selective depressant are commonly preferred for the separation of fluorite from calcite. In the present study, an attempt was made to use benzhydroxamic acid (BHA) as a collector for the selective separation of fluorite from calcite without using any depressant. Results obtained from the flotation experiments for single mineral and mixed binary minerals revealed that the BHA has a good selective collecting ability for the fluorite when 50 mg/L of BHA was used at pH of 9. The results from the zeta potential and X-ray photoelectron spectroscopy (XPS) indicated that the BHA easily chemisorbs onto the fluorite as compared to calcite. Crystal chemistry calculations showed the larger Ca density and the higher Ca activity on fluorite surface mainly account for the selective adsorption of BHA on fluorite, leading to the selective separation of fluorite from calcite. Moreover, a stronger hydrogen bonding with BHA and the weaker electrostatic repulsion with BHA- also contribute to the stronger interaction of BHA species with fluorite surface.

  18. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  19. High-Magnesian Calcite Mesocrystals : A Coordination Chemistry Approach

    NARCIS (Netherlands)

    Lenders, Jos J. M.; Dey, Archan; Bomans, Paul H. H.; Spielmann, Jan; Hendrix, Marco M. R. M.; de With, Gijsbertus; Meldrum, Fiona C.; Harder, Sjoerd; Sommerdijk, Nico A. J. M.

    2012-01-01

    While biogenic calcites frequently contain appreciable levels of magnesium, the pathways leading to such high concentrations remain unclear. The production of high-magnesian calcites in vitro is highly challenging, because Mg-free aragonite, rather than calcite, is the favored product in the

  20. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth

  1. Neutralization of sulfuric acid solutions by calcite dissolution and the application to anoxic limestone drain design

    International Nuclear Information System (INIS)

    Huminicki, Danielle M.C.; Rimstidt, J. Donald

    2008-01-01

    Batch reactor (BR) experiments were conducted to measure the effect of hydrodynamics and gypsum coatings on calcite neutralization rates. A factorial array of BR experiments measured the H + concentration change by calcite dissolution over a pH range of 1.5-3.5 and Na 2 SO 4 concentrations of 0-1 M. The rate of H + concentration change with time was determined by numerical differentiation of H + concentration versus time. Regression modeling showed that for uncoated calcite, rates are only significantly affected by pH, r=-10 -2.32 a H + 0.76 . Whereas, for calcite coated with gypsum only time had a significant effect on calcite dissolution rates, r = -10 -1.96 t -0.53 . Because transport-limited dissolution rates for uncoated calcite are a function of the pH and Reynolds number, a model was developed to express the effects of these two variables on the rate of H + consumption for a solution with a Darcy velocity, q, through a porous medium with a particle radius, r p , such that r ' =1.08x10 -3 q 0.31 r p -0.69 m H + 0.87 . This equation was integrated via a numerical model to simulate the performance of an idealized anoxic limestone drain (ALD). This model predicts the pH and alkalinity change along the length of an ALD. The model shows that the efficiency of an ALD is greater when the Darcy velocity is low and the particle radius is small. In addition, the growth of gypsum coatings causes the rate of H + neutralization to decline as the square root of time as they form and block the H + transport to the calcite surface. Supersaturation with respect to gypsum, leading to coating formation, can be avoided by diluting the ALD feed solution or by replacing limestone with dolomite

  2. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

    Science.gov (United States)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Benning, Liane G

    2011-01-01

    The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.

  3. Cigarette smoke toxins deposited on surfaces: implications for human health.

    Directory of Open Access Journals (Sweden)

    Manuela Martins-Green

    Full Text Available Cigarette smoking remains a significant health threat for smokers and nonsmokers alike. Secondhand smoke (SHS is intrinsically more toxic than directly inhaled smoke. Recently, a new threat has been discovered - Thirdhand smoke (THS - the accumulation of SHS on surfaces that ages with time, becoming progressively more toxic. THS is a potential health threat to children, spouses of smokers and workers in environments where smoking is or has been allowed. The goal of this study is to investigate the effects of THS on liver, lung, skin healing, and behavior, using an animal model exposed to THS under conditions that mimic exposure of humans. THS-exposed mice show alterations in multiple organ systems and excrete levels of NNAL (a tobacco-specific carcinogen biomarker similar to those found in children exposed to SHS (and consequently to THS. In liver, THS leads to increased lipid levels and non-alcoholic fatty liver disease, a precursor to cirrhosis and cancer and a potential contributor to cardiovascular disease. In lung, THS stimulates excess collagen production and high levels of inflammatory cytokines, suggesting propensity for fibrosis with implications for inflammation-induced diseases such as chronic obstructive pulmonary disease and asthma. In wounded skin, healing in THS-exposed mice has many characteristics of the poor healing of surgical incisions observed in human smokers. Lastly, behavioral tests show that THS-exposed mice become hyperactive. The latter data, combined with emerging associated behavioral problems in children exposed to SHS/THS, suggest that, with prolonged exposure, they may be at significant risk for developing more severe neurological disorders. These results provide a basis for studies on the toxic effects of THS in humans and inform potential regulatory policies to prevent involuntary exposure to THS.

  4. Rearrangement of porous CaO aggregates during calcite decomposition in vacuum

    International Nuclear Information System (INIS)

    Beruto, D.; Barco, L.; Searcy, A.W.

    1983-01-01

    High-resolution SEM photographs, N 2 adsorption isotherms, Hg porosimetry, and micrometer measurements were used to characterize CaO particle shapes and pore-size distributions that result when calcite crystals are decomposed in vacuum at 686 0 C. The surface area of the CaO produced from large calcite crystals is constant at 116 + or - 4 m 2 /g independent of the extent of reaction. The volume occupied by a CaO aggregate is approx. = 98 + or - 2% that of the original calcite crystal. The approx. = 54% total porosity is comprised of 42% pores of approx. = 5 nm cross section and 12% pores of approx. = 10 μm cross section. The duplex pore structure is formed by a diffusionless repacking of CaO particles that initially form with a more uniform distribution of particles and pores

  5. Inferences of paleoenvironment from petrographic, chemical and stable-isotope studies of calcretes and fracture calcites

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Whelan, J.F.

    1994-01-01

    Past research has indicated a genetic connection between calcite formed in calcretes at the surface of Yucca Mountain, Nevada, and calcites deposited in underlying fractures of the unsaturated zone. This common genesis suggests that paleoenvironmental information, as well as the timing and pathways of past recharge episodes, might be obtained from studies of the deposits in both the calcretes and the unsaturated fractures. Chemical and isotopic modification of calcite-precipitating fluids appears to begin at the surface, largely under the influence of plant roots and their decay products. Chemical characteristics of the deeper calcites are either initiated or largely defined within the first few meters of fluid migration into the unsaturated tuffs beneath the calcretes. However, petrographic and isotopic data indicate a very unique low-δ 13 C microenvironment that is localized at the upper surfaces of the calcretes. These surfaces form an interface in the soil horizon where infiltration may pond above the underlying carbonate ''plug.'' In order to decipher the chemistry and petrology of past recharge events, it is important to first understand microenvironments such as this that contribute to mineral precipitation/dissolution events in the pedogenic environment

  6. Inhibiting Effect of Additives on Pressure Solution of Calcite

    Science.gov (United States)

    Traskine, V.; Skvortsova, Z.; Badun, G.; Chernysheva, M.; Simonov, Ya.; Gazizullin, I.

    2018-05-01

    The task of protection of cultural heritage requires a better understanding of combined effects of mechanical and chemical factors involved in environmental deterioration of monuments. The present paper deals with extending some known physicochemical methods proposed for inhibiting the decay of unstressed materials to their study during water-assisted deformation. The tests have been carried out on natural limestone samples and calcite powders in CaCO3 saturated aqueous solutions under static loads causing measurable pressure solution creep. In the solutions containing 1-hydroxyethylidene-1,1-diphosphonic acid, nitrilotriacetic acid, or ethylenediaminetetraacetic acid, the creep rate decreases considerably with increasing concentration of additives. The extent of creep deceleration has been found to be proportional to the independently estimated calcite surface area occupied by adsorbed species. This fact enables us to discriminate the adsorption-induced effect from other variables controlling the pressure solution rate and may be used in screening of compounds able to minimize the environmental impact on marble and limestone objects undergoing mechanical stresses.

  7. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    International Nuclear Information System (INIS)

    Gehoer, S.; Kaerki, A.; Taikina-aho, O.; Karhu, J.; Loefman, J.; Pitkaenen, P.; Ruotsalainen, P.

    2002-02-01

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO 3 ). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  8. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Gehoer, S.; Kaerki, A.; Taikina-aho, O. [Kivitieto Oy (Finland); Karhu, J. [Helsinki Univ. (Finland); Loefman, J. [VTT Processes, Espoo (Finland); Pitkaenen, P. [VTT Building and Transport, Espoo (Finland); Ruotsalainen, P. [TUKES, Helsinki (Finland)

    2002-02-01

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO{sub 3}). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  9. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content

    Science.gov (United States)

    Jin, Xiaobo; Liu, Chuanlian; Poulton, Alex J.; Dai, Minhan; Guo, Xianghui

    2016-08-01

    Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths) and the relative cellular levels of photosynthesis and calcification rates. All three of these factors vary between coccolithophore species and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition and cellular levels of calcite content. Average coccolithophore abundance and their calcite concentration in the water column were 11.82 cells mL-1 and 1508.3 pg C mL-1, respectively, during the cruise. Water samples can be divided into three floral groups according to their distinct coccolithophore communities. The vertical structure of the coccolithophore community in the water column was controlled by the trophic conditions, which were regulated by mesoscale eddies across the SCS basin. The evaluation of coccolithophore-based calcite in the surface ocean also showed that three key species in the SCS (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) and other larger, numerically rare species made almost equal contributions to total coccolith-based calcite in the water column. For Emiliania huxleyi biometry measurements, coccolith size positively correlated with nutrients (nitrate, phosphate), and it is suggested that coccolith length is influenced by light and nutrients through the regulation of growth rates. Larger-sized coccoliths were also linked statistically to low pH and calcite saturation states; however, it is not a simple cause and effect relationship, as carbonate chemistry was strongly co-correlated with the other key environmental factors (nutrients, light).

  10. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  11. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  12. Origin of calcite in the glacigenic Virttaankangas complex

    Directory of Open Access Journals (Sweden)

    Nina M. Kortelainen

    2007-01-01

    Full Text Available Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of occurrence of calcite and to identifyits sources. The mineralogy of the glacigenic Virttaankangas complex was studied using material from 21 sediment drill cores. Fine-grained calcite is present in trace amounts (<< 1.4 % in the glaciofluvial and glaciolacustrine depositional units of the Virttaankangas complex. The topmost littoral sands were practically devoid of calcite. The isotope records of carbon and oxygen, the angular morphology of the grains and the uniform dispersion of calcite in the complex suggest a clastic origin for calcite, with no evidence for in-situ precipitation. In order to constrain the source of calcite, the isotopic composition of carbon and oxygen in five calcite samples was compared to the isotopic data from five carbonate rock erratics and eight crystalline bedrock samples from the region. Based on carbon and oxygen isotope ratios and chemical compositions, the dispersed calcite grains of the Virttaankangas complex appear to have been derived from the Mesoproterozoic Satakunta Formation, some 30 km NW from the Virttaankangas area. In sandstone, calcite is predominantly present as diagenetic cement in grain interspaces, concretions and interlayers. The source of detrital calcite was unexpected, as prior to this study the Satakunta sandstone hasnot been known to contain calcite.

  13. Examination of TL and optical absorption in calcite's mineral

    International Nuclear Information System (INIS)

    Sabikoglu, I.; Can, N.

    2009-01-01

    Calcite which is a form of crystalline of the calcium carbonate composes parent material of chalk stone (limestone) and marble. Calcite which presents in various colors also in our country consists of yellow, blue, transparent and green colors. In this study, green calcite mineral which is taken from the region of Ayvalik, was examined of its thermoluminescence (TL) and optical absorption features in different doses. It has been obtained a large TL peak in 179 degree C and absorption peak in 550 mm.

  14. Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment

    Science.gov (United States)

    Casella, Laura A.; Griesshaber, Erika; Yin, Xiaofei; Ziegler, Andreas; Mavromatis, Vasileios; Müller, Dirk; Ritter, Ann-Christine; Hippler, Dorothee; Harper, Elizabeth M.; Dietzel, Martin; Immenhauser, Adrian; Schöne, Bernd R.; Angiolini, Lucia; Schmahl, Wolfgang W.

    2017-03-01

    . Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite-calcite transition occurs via an interface-coupled dissolution-reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.

  15. Atom-resolved AFM imaging of calcite nanoparticles in water

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Hirotake; Kimura, Kenjiro [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan); Onishi, Hiroshi, E-mail: oni@kobe-u.ac.jp [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite.

  16. Atom-resolved AFM imaging of calcite nanoparticles in water

    International Nuclear Information System (INIS)

    Imada, Hirotake; Kimura, Kenjiro; Onishi, Hiroshi

    2013-01-01

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite

  17. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study.

    OpenAIRE

    Walters, D A; Smith, B L; Belcher, A M; Paloczi, G T; Stucky, G D; Morse, D E; Hansma, P K

    1997-01-01

    A family of soluble proteins from the shell of Haliotis rufescens was introduced over a growing calcite crystal being scanned in situ by an atomic force microscope (AFM). Atomic step edges on the crystal surface were altered in shape and speed of growth by the proteins. Proteins attached nonuniformly to the surface, indicating different interactions with crystallographically different step edges. The observed changes were consistent with the habit modification induced by this family of protei...

  18. Controlling the size and morphology of precipitated calcite particles by the selection of solvent composition

    Science.gov (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2017-11-01

    Precipitated calcium carbonate is used as an additive in the manufacture of many products. Particles with specific characteristics can be obtained by the selection of precipitation conditions, including temperature and the composition of solvent. In this work, calcium carbonate particles were obtained in the reaction of calcium hydroxide with carbon dioxide at 65 °C. Initial Ca(OH)2 suspensions were prepared in pure water and aqueous solutions of ethylene glycol or glycerol of the concentration range up to 20% (vol.). The course of reaction was monitored by conductivity measurements. Precipitated solids were analyzed by FTIR, XRD, SEM and the particles size distribution was determined by a laser diffraction method. The adsorption of ethylene glycol or glycerol on the surface of scalenohedral and rhombohedral calcite was testes by a normal-phase high-performance liquid chromatography. The addition of organic solvents changed the viscosity of reaction mixtures, the rate of carbon dioxide absorption and the solubility of inorganic components and therefore influence calcium carbonate precipitation conditions. All synthesized calcium carbonate products were in a calcite form. Scalenohedral calcite crystals were produced when water was a liquid phase, whereas addition of organic solvents resulted in the formation of rhombo-scalenohedral particles. The increase in organic compounds concentration resulted in the decrease of mean particles size from 2.4 μm to 1.7 μm in ethylene glycol solutions and to 1.4 μm in glycerol solutions. On the basis of adsorption tests, it was confirm that calcite surface interact stronger with glycerol than ethylene glycol. The interaction between scalenohedral calcite and used organic additives was higher in comparison to the pure rhombohedral form applied as a stationary phase.

  19. Surface activity, lipid profiles and their implications in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Preetha A

    2005-01-01

    Full Text Available Background: The profiles of lipids in normal and cancerous tissues may differ revealing information about cancer development and progression. Lipids being surface active, changes in lipid profiles can manifest as altered surface activity profiles. Langmuir monolayers offer a convenient model for evaluating surface activity of biological membranes. Aims: The aims of this study were to quantify phospholipids and their effects on surface activity of normal and cancerous human cervical tissues as well as to evaluate the role of phosphatidylcholine (PC and sphingomyelin (SM in cervical cancer using Langmuir monolayers. Methods and Materials: Lipid quantification was done using thin layer chromatography and phosphorus assay. Surface activity was evaluated using Langmuir monolayers. Monolayers were formed on the surface of deionized water by spreading tissue organic phase corresponding to 1 mg of tissue and studying their surface pressure-area isotherms at body temperature. The PC and SM contents of cancerous human cervical tissues were higher than those of the normal human cervical tissues. Role of PC and SM were evaluated by adding varying amounts of these lipids to normal cervical pooled organic phase. Statistical analysis: Student′s t-test (p < 0.05 and one-way analysis of variance (ANOVA was used. Results: Our results reveals that the phosphatidylglycerol level in cancerous cervical tissue was nearly five folds higher than that in normal cervical tissue. Also PC and sphingomyelin SM were found to be the major phospholipid components in cancerous and normal cervical tissues respectively. The addition of either 1.5 µg DPPC or 0.5 µg SM /mg of tissue to the normal organic phase changed its surface activity profile to that of the cancerous tissues. Statistically significant surface activity parameters showed that PC and SM have remarkable roles in shifting the normal cervical lipophilic surface activity towards that of cancerous lipophilic

  20. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation.

    Science.gov (United States)

    Gao, Yuesheng; Gao, Zhiyong; Sun, Wei; Yin, Zhigang; Wang, Jianjun; Hu, Yuehua

    2018-02-15

    The efficient separation of scheelite from calcium-bearing minerals, especially calcite, remains a challenge in practice. In this work, a novel reagent scheme incorporating a depressant of sodium hexametaphosphate (SHMP) and a collector mixture of octyl hydroxamic acid (HXMA-8) and sodium oleate (NaOl) was employed in both single and mixed binary mineral flotation, and it proved to be highly effective for the separation. Furthermore, the role of the pH value in the separation was evaluated. Additionally, the mechanism of the selective separation was investigated systemically via zeta potential measurements, fourier transform infrared (FTIR) spectroscopy analysis, X-ray photoelectron (XPS) spectroscopy analysis and crystal chemistry calculations. It turns out that the selective chemisorption of SHMP on calcite (in the form of complexation between H 2 PO 4 - /HPO 4 2- and Ca 2+ ) over scheelite is ascribed to the stronger reactivity and higher density of Ca ions on the commonly exposed surfaces of calcite minerals. The intense adsorption of HXMA-8 on scheelite over calcite due to the match of the OO distances in WO 4 2- of scheelite and CONHOH of HXMA-8 holds the key to the successful separation. We were also interested in warranting the previous claim that NaOl is readily adsorbed on both minerals via chemisorption. Our results provided valuable insights into the application of mixed collectors and an effective depressant for flotation separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.

    Science.gov (United States)

    Coxall, Helen K; Wilson, Paul A; Pälike, Heiko; Lear, Caroline H; Backman, Jan

    2005-01-06

    The ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution is termed the calcite compensation depth. At present, this depth is approximately 4,500 m, with some variation between and within ocean basins. The calcite compensation depth is linked to ocean acidity, which is in turn linked to atmospheric carbon dioxide concentrations and hence global climate. Geological records of changes in the calcite compensation depth show a prominent deepening of more than 1 km near the Eocene/Oligocene boundary (approximately 34 million years ago) when significant permanent ice sheets first appeared on Antarctica, but the relationship between these two events is poorly understood. Here we present ocean sediment records of calcium carbonate content as well as carbon and oxygen isotopic compositions from the tropical Pacific Ocean that cover the Eocene/Oligocene boundary. We find that the deepening of the calcite compensation depth was more rapid than previously documented and occurred in two jumps of about 40,000 years each, synchronous with the stepwise onset of Antarctic ice-sheet growth. The glaciation was initiated, after climatic preconditioning, by an interval when the Earth's orbit of the Sun favoured cool summers. The changes in oxygen-isotope composition across the Eocene/Oligocene boundary are too large to be explained by Antarctic ice-sheet growth alone and must therefore also indicate contemporaneous global cooling and/or Northern Hemisphere glaciation.

  2. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  3. Emission polarization study on quartz and calcite.

    Science.gov (United States)

    Vincent, R. K.

    1972-01-01

    Calculation of the spectral emission polarization of quartz and calcite polished plates for observation angles of 20 and 70 deg by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  4. Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment

    International Nuclear Information System (INIS)

    Dong, Wenming; Ball, William P.; Liu, Chongxuan; Wang, Zheming; Stone, Alan T.; Bai, Jing; Zachara, John M.

    2005-01-01

    The influence of calcite and dissolved calcium on U(VI) adsorption was investigated using a calcite-containing sandy silt/clay sediment from the U. S. Department of Energy Hanford site. U(VI) adsorption to sediment, treated sediment, and sediment size fractions was studied in solutions that both had and had not been preequilibrated with calcite, at initial [U(VI)] ) 10-7-10-5 mol/L and final pH ) 6.0- 10.0. Kinetic and reversibility studies (pH 8.4) showed rapid sorption (30 min), with reasonable reversibility in the 3-day reaction time. Sorption from solutions equilibrated with calcite showed maximum U(VI) adsorption at pH 8.4 (0.1. In contrast, calcium-free systems showed the greatest adsorption at pH 6.0-7.2. At pH > 8.4, U(VI) adsorption was identical from calcium-free and calcium-containing solutions. For calcite-presaturated systems, both speciation calculations and laser-induced fluorescence spectroscopic analyses indicated that aqueous U(VI) was increasingly dominated by Ca2UO2(CO3)3 0(aq) at pH<8.4 and that formation of Ca2UO2(CO3)3 0(aq) is what suppresses U(VI) adsorption. Above pH 8.4, aqueous U(VI) speciation was dominated by UO2(CO3)3 4- in all solutions. Finally, results also showed that U(VI) adsorption was additive in regard to size fraction but not in regard to mineral mass: Carbonate minerals may have blocked U(VI) access to surfaces of higher sorption affinity

  5. Surface drainage in leveled land: Implication of slope

    Directory of Open Access Journals (Sweden)

    Antoniony S. Winkler

    Full Text Available ABSTRACT In the lowlands of Rio Grande do Sul, land leveling is mostly carried out with no slope for the purpose of rice production. In this environment, soils with a low hydraulic conductivity are predominant owing to the presence of a practically impermeable B-horizon near the surface. Land leveling leads to soil accommodation resulting in the formation of depressions where water accumulates after heavy rainfalls, subsequently leading to problems with crops implanted in succession to rice, such as soybeans. The objective of this research was to quantify the areas and volumes of water accumulation in soil as a function of the slope of land leveling. Five typical leveled lowland areas were studied as a part of this research. The original areas presented slopes of 0, 0.20, 0.25, 0.28 and 0.40%, which were used to generate new digital elevation models with slopes between 0 and 0.5%. These newly generated digital models were used to map the depressions with surface water storage. In conclusion, land leveling with slopes higher than 0.1% is recommended to minimize problems with superficial water storage in rice fields.

  6. Influence of water on clumped-isotope bond reordering kinetics in calcite

    Science.gov (United States)

    Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.

    2018-03-01

    Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external

  7. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2012-04-01

    In the Rehai geothermal area, located near Tengchong, there is an old succession of crystalline calcite that formed from a spring that is no longer active. The thin-bedded succession, exposed on the south bank of Zaotang River, is formed of three-dimensional dendrite bushes that are up to 6 cm high and 3 cm in diameter with multiple levels of branching. Bedding is defined by color, which ranges from white to gray to almost black and locally accentuated by differential weathering that highlights the branching motif of the dendrites. The succession developed through repeated tripartite growth cycles that involved: Phase I that was characterized by rapid vertical growth of the dendrite bushes with ever-increasing branching; Phase II that developed once growth of the dendrites had almost or totally ceased, and involved an initial phase of etching that was followed by the precipitation of various secondary minerals (sheet calcite, trigonal calcite crystals, hexagonal calcite crystals, hexagonal plates formed of Ca and P, Mn precipitates, Si-Mg reticulate coatings, opal-CT lepispheres) on the branches of the calcite dendrites, and Phase III that involved deposition of detrital quartz, feldspar, clay, and calcite on top of the dendrite bushes. The tripartite growth cycle is attributed primarily to aperiodic cycles in the CO2 content of the spring water that was controlled by subsurface igneous activity rather than climatic controls. High CO2 coupled with rapid CO2 degassing triggered growth of the dendrite bushes. As CO2 levels waned, saturation levels in the spring water decreased and calcite dendrite growth ceased and precipitation of the secondary minerals took place, possibly in the microcosms of microbial mats. Deposition of the detrital sediment was probably related to surface runoff that was triggered by periods of high rainfall. Critically, this study shows that intrinsic factors rather than extrinsic factors (e.g., climate) were the prime control on the

  8. Calcite/aragonite-biocoated artificial coral reefs for marine parks

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2017-08-01

    Full Text Available Natural formation of the coral reefs is complicated by slow biomediated precipitation of calcium carbonate from seawater. Therefore, manufactured artificial coral reefs can be used for the formation of “underwater gardens” in marine parks for the recreational fishing and diving that will protect natural coral reefs from negative anthropogenic effects. Additionally, the coating of the concrete, plastic or wooden surfaces of artificial coral reef with calcium carbonate layer could promote attachment and growth of coral larvae and photosynthetic epibiota on these surfaces. Three methods of biotechnological coating of the artificial coral reefs have been tested: (1 microbially induced calcium carbonate precipitation from concentrated calcium chloride solution using live bacterial culture of Bacillus sp. VS1 or dead but urease-active cells of Yaniella sp. VS8; (2 precipitation from calcium bicarbonate solution; (3 precipitation using aerobic oxidation of calcium acetate by bacteria Bacillus ginsengi strain VSA1. The thickness of biotechnologically produced calcium carbonate coating layer was from 0.3 to 3 mm. Biocoating using calcium salt and urea produced calcite in fresh water and aragonite in seawater. The calcium carbonate-coated surfaces were colonized in aquarium with seawater and hard corals as inoculum or in aquarium with fresh water using cyanobacteria Chlorella sorokiana as inoculum. The biofilm on the light-exposed side of calcium carbonate-coated surfaces was formed after six weeks of incubation and developed up to the average thickness of 250 µm in seawater and about 150 µm in fresh water after six weeks of incubation. The biotechnological manufacturing of calcium carbonate-coated concrete, plastic, or wooden surfaces of the structures imitating natural coral reef is technologically feasible. It could be commercially attractive solution for the introduction of aesthetically pleasant artificial coral reefs in marine parks and

  9. Physicochemical Processes and the Evolution of Strength in Calcite Fault Gouge at Room Temperature

    Science.gov (United States)

    Carpenter, B. M.; Viti, C.; Collettini, C.

    2015-12-01

    The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behavior of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. Furthermore, a variety of physical and chemical processes control the evolution of strength and style of slip along seismogenic faults and thus play a critical role in the seismic cycle. Determining the role and contributions of these types of mechanisms is essential to furthering our understanding of the processes and timescales that lead to the strengthening of faults during interseismic periods and their behavior during the earthquake nucleation process. To further our understanding of these processes, we performed laboratory-shearing experiments on calcite gouge at normal stresses from 1 to 100 MPa, under conditions of saturation and at room temperature. We performed velocity stepping (0.1-1000μm/s) and slide-hold-slide (1-3000s) tests, to measure the velocity dependence of friction and the amount of frictional strengthening respectively, under saturated conditions with pore fluid that was in equilibrium with CaCO3. At 5 MPa normal stress, we also varied the environmental conditions by performing experiments under conditions of 5% RH and 50 % RH, and saturation with: silicone oil, demineralized water, and the equilibrated solution combined with 0.5M NaCl. Finally, we collected post experimental samples for microscopic analysis. Our combined analyses of rate-dependence, strengthening behavior, and microstructures show that calcite fault gouge transitions from brittle to semi-brittle behavior at high normal stress and low sliding velocities. Furthermore, our results also highlight how changes in pore water chemistry can have significant influence on the mechanical behavior of calcite gouge in both the laboratory and in natural faults. Our observations have important implications for earthquake nucleation and propagation on faults in

  10. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.

    Science.gov (United States)

    Jeong, Jin-Hoon; Jo, Yoon-Soo; Park, Chang-Seon; Kang, Chang-Ho; So, Jae-Seong

    2017-07-28

    In this study, the feasibility of introducing calcite-forming bacteria into concrete pavements to improve their mechanical performance was investigated. Lysinibacillus sphaericus WJ-8, which was isolated in a previous study and is capable of exhibiting high urease activity and calcite production, was used. When analyzed via scanning electron microscopy (SEM) and X-ray diffraction, WJ-8 showed a significant amount of calcite precipitation. The compressive strength of cement mortar mixed with WJ-8 cells and nutrient medium (urea with calcium lactate) increased by 10% compared with that of the controls. Energy dispersive x-ray spectroscopy analyses confirmed that the increase in strength was due to the calcite formed by the WJ-8 cells.

  11. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    Energy Technology Data Exchange (ETDEWEB)

    Roedder, E. [Harvard Univ., Cambridge, MA (United States); Whelan, J.F. [Geological Survey, Denver, CO (United States); Vaniman, D.T. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at <100{degrees}C. The vapor-filled inclusions provide evidence that a separate vapor phase was present in the fluid during crystallization. Studies of these vapor-filled inclusions on the microscope crushing stage were interpreted in an earlier paper as indicating trapping of an air-water-CO{sub 2} vapor phase at ``<100{degrees}C``. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface.

  12. Selective Flotation of Calcite from Fluorite: A Novel Reagent Schedule

    Directory of Open Access Journals (Sweden)

    Zhiyong Gao

    2016-10-01

    Full Text Available Fluorite is an important strategic mineral. In general, fluorite ores will contain a certain amount of calcite gangue mineral. Thus, they need to be separated from each other. For an economic separation, a reverse flotation process is used to float calcite gangue from fluorite. However, little information on the separation is available. In this study, a novel reagent schedule using citric acid (CA as the depressant, sodium fluoride (NaF as the regulator and sulfoleic acid (SOA as the collector, was developed to separate calcite from fluorite. The results demonstrated a high selectivity for the flotation of calcite from fluorite using this new reagent schedule. The best selective separation for a single mineral and mixed binary minerals was obtained when 200 mg/L of NaF, 50 mg/L of CA, and 6 mg/L of SOA were used at pH 9. In addition, a batch flotation experiment was carried out using a run-of-mine feed material. Selective separation was achieved with 85.18% calcite removal while only 11.2% of fluorite was lost. An attempt was made to understand the effect of the new reagent schedule on the flotation of calcite. The results from both microflotation and bench scale flotation demonstrated a great potential for industrial application using this novel reagent schedule to upgrade fluorite ore.

  13. Ikaite pseudomorphs in the Zaire deep-sea fan: An intermediate between calcite and porous calcite

    Science.gov (United States)

    Jansen, J. H. F.; Woensdregt, C. F.; Kooistra, M. J.; van der Gaast, S. J.

    1987-03-01

    Translucent brown aggregates of calcium-carbonate crystals have been found in cores from the Zaire deep-sea fan (west equatorial Africa). The aggregates are well preserved but very friable. Upon storage they become yellowish white and cloudy and release water. Chemical, mineralogical (XRD), petrographical, crystal-morphological, and stable-isotope data demonstrate that the crystals have passed through three phases: (1) an authigenic carbonate phase, probably calcium carbonate, which is represented by the external habit of the present crystals; (2) a translucent brown ikaite phase (CaCO3·6H2O), unstable at temperatures above 5 °C; and (3) a phase consisting of calcite microcrystals that are poorly cemented and form a porous mass within the crystal form of the morphologically unchanged first phase. The transformation from the first phase into ikaite was probably a kinetic replacement. The transformation from ikaite into the third phase occurred because of storage at room temperature. The presence of ikaite is indicative of a low-temperature, anaerobic, organic-carbon-rich marine environment. Ikaite is probably the precursor of a great number of porous calcite pseudomorphs, and possibly also of many marine authigenic microcrystalline carbonate nodules.

  14. Geometrical properties of rough metallic surfaces and their implication in electromagnetic problems

    International Nuclear Information System (INIS)

    Hernandez, A.; Chicon, R.; Ortuno, M.; Abellan, J.

    1987-01-01

    We analyze the geometrical properties and their implications in the effective surface resistance and wall losses of rough metallic surfaces. The power spectrum and the autocorrelation function are calculated for a simple model that adequately represent the rough surface. The roughness parameters are obtained through average values of the roughness and its derivative. We calculate the density profile, directly related to the depth-dependent effective conductivity. The data from the profilometer are corrected to take into account the finite size of the tip. (author)

  15. Up-scaling mineral-aqueous interfacial processes that govern isotope and trace element partitioning during calcite growth

    Science.gov (United States)

    Lammers, L. N.

    2014-12-01

    The dependence of the isotopic and trace element composition of calcium carbonate minerals on growth conditions including temperature, pH, and salinity is widely used to infer paleoclimate conditions. These inferences rely heavily on phenomenological observations of biogenic and inorganic precipitation both in and ex situ, where only limited variability in solution conditions can be explored. Ionic fluxes between the mineral surface and aqueous growth solution govern the net uptake of both stoichiometric and trace species during calcification, so developing a mechanistic understanding of the reactions governing these fluxes is critical to refine existing proxies and to develop new ones. The micro-scale mechanisms of calcite precipitation from aqueous solution have been extensively studied, and net ionic uptake post-nucleation is known to occur primarily at monomolecular kink sites along step edges at the mineral surface. In this talk, I will present a theoretical framework that uses the quasi-elementary ion attachment and detachment reactions governing ion uptake at kink sites to simultaneously model bulk mineral growth kinetics and tracer partitioning during calcite precipitation. Several distinct processes occur during ion uptake at kink sites that can influence the distribution of trace species, directly impacting the composition of various carbonate paleoproxies including δ44Ca, δ18O, Sr/Ca and Mg/Ca. The distribution of these trace species will be shown to depend on (1) the relative rates of ion desolvation during attachment to kink sites, (2) the relative rates of bond breaking during detachment from kink sites, and (3) the equilibrium partitioning of trace aqueous species. This model accounts for the impact of solution conditions on net ion fluxes and surface speciation, which in turn controls the population of kink sites available for direct ion exchange with the aqueous phase. The impacts of solution variables including pH, temperature and salinity can

  16. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...... due to formation of Ca-pesticide-surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha -alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (= SiOH) than...

  17. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  18. Relationship between oxygen isotopes in rainfall, cave percolation waters and speleothem calcite at Waitomo, New Zealand

    International Nuclear Information System (INIS)

    Williams, P.W.; Fowler, A.

    2002-01-01

    The relationship between the δ 18 O values of rainfall, vadose percolation water, and speleothem calcite was investigated in a cave at Waitomo. Water samples were obtained approximately monthly for two years from a storage rain gauge on the surface and from stored seepage from three stalactites underground. Rain water δ 18 O SMOW values varied considerably throughout the observation period, with a precipitation-weighted mean of -5.3 permille. Seasonal variability was evident, with winter values being more negative than summer values. Cave seepage waters had a mean of about -5 permille and showed very little variability and no discernible annual variation. This is explained by thorough mixing in the soil and subcutaneous zone stores. Given the average cave temperature (12.8 degrees C) and the δ 18 O SMOW value determined for seepage water, the δ 18 O PDB value of calcite that is actively depositing in isotopic equilibrium on speleothems at Waitomo should fall in the range of -4.1 to -4.6 permille. Observed delta-values of modern speleothem calcites overlap the positive end of this range of theoretical values, indicating that some growing speleothems are not in isotopic equilibrium with seepage waters, but are experiencing either evaporation or kinetic fractionation. (author). 32 refs., 8 figs

  19. On the complex conductivity signatures of calcite precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  20. Influence of solution chemistry on the boron content in inorganic calcite grown in artificial seawater

    Science.gov (United States)

    Uchikawa, Joji; Harper, Dustin T.; Penman, Donald E.; Zachos, James C.; Zeebe, Richard E.

    2017-12-01

    The ratio of boron to calcium (B/Ca) in marine biogenic carbonates has been proposed as a proxy for properties of seawater carbonate chemistry. Applying this proxy to planktic foraminifera residing in the surface seawater largely in equilibrium with the atmosphere may provide a valuable handle on past atmospheric CO2 concentrations. However, precise controls on B/Ca in planktic foraminifera remain enigmatic because it has been shown to depend on multiple physicochemical seawater properties. To help establish a firm inorganic basis for interpreting the B/Ca records, we examined the effect of a suite of chemical parameters ([Ca2+], pH, [DIC], salinity and [PO43-]) on B/Ca in inorganic calcite precipitated in artificial seawater. These parameters were primarily varied individually while keeping all others constant, but we also tested the influence of pH and [DIC] at a constant calcite precipitation rate (R) by concurrent [Ca2+] adjustments. In the simple [Ca2+], pH and [DIC] experiments, both R and B/Ca increased with these parameters. In the pH-[Ca2+] and [DIC]-[Ca2+] experiments at constant R, on the other hand, B/Ca was invariant at different pH and decreased with [DIC], respectively. These patterns agree with the behavior of solution [BTotal/DIC] ratio such that, at a fixed [BTotal], it is independent of pH but decreases with [DIC]. Based on these results, R and [BTotal/DIC] ratio appear to be the primary controls on B/Ca in inorganic calcite, suggesting that both B(OH)4- and B(OH)3 are possibly involved in B incorporation. Moreover, B/Ca modestly increased with salinity and [PO43-]. Inorganic calcite precipitated at higher R and in the presence of oxyanions such as SO42- and PO43- in growth solutions often undergoes surface roughening due to formation of crystallographic defects, vacancies and, occasionally, amorphous/hydrous CaCO3. These non-lattice sites may provide additional space for B, particularly B(OH)3. Consequently, besides the macroscopic influence of

  1. Scratching the surface of ice: Interfacial phase transitions and their kinetic implications

    Science.gov (United States)

    Limmer, David

    The surface structure of ice maintains a high degree of disorder down to surprisingly low temperatures. This is due to a number of underlying interfacial phase transitions that are associated with incremental changes in broken symmetry relative to the bulk crystal. In this talk I summarize recent work attempting to establish the nature and locations of these different phase transitions as well as how they depend on external conditions and nonequilibrium driving. The implications of this surface disorder is discussed in the context of simple kinetic processes that occur at these interfaces. Recent experimental work on the roughening transition is highlighted.

  2. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios

  3. Diagenetic alteration in low-Mg calcite from macrofossils

    DEFF Research Database (Denmark)

    Ullmann, Clemens Vinzenz; Korte, Christoph

    2015-01-01

    microscopy) and chemical (trace element abundances, isotopic ratios) screening techniques used to assess the alteration degree of low-Mg calcite macrofossils and summarize the findings on diagenetic trends observed for elemental and isotopic systems in such materials. For a robust evaluation...... of the preservation state of biogenic calcite, it is advisable to combine a set of complementary techniques. Absolute limiting values of element and isotope ratios for discarding diagenetically altered materials cannot be universally applied, but should rather be evaluated on a case to case basis. The evaluation can...

  4. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  5. Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite and calcite mine spoils of India

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, V.; Ragupathy, S.; Parthipan, B.; Rani, D.B.R.; Mahadevan, A.

    1991-12-31

    Vesicular-arbuscular mycorhizzal (VAM) status was assessed for coal, lignite and calcite mine spoils. The three study sites were: The Kothagudem coal field in the south central region where waste materials are piled 1 to 2 m high on the soil surface. Samples were collected from plants growing on the waste. Neyveli, on the southeastern coast, is a lignite coal mine where the spoil is piled 70 to 100 m high on the soil surface. Samples were collected from recently revegetated mine spoil and from 25 year old revegetated sites. The calcite mine at Thazhaiyuthu in the south where the spoil is piled up 2 to 3 m on the soil surface. Samples were collected from 4 to 7 year old reclaimed sites. The wastes generally supported different plant species. The level of VAM infection of plants was markedly different in each mine spoil, with the maximum infection in the coal and calcite spoils, and the least in the lignite spoil. There was more infection in the 25 year old lignite spoil than in the newly revegetated spoil. There were different VAM species in each spoil, and no one species was present in all of the samples. The authors conclude that one of the factors leading to the differences between spoils is the amount of topsoil contained in the spoil (least in the lignite spoils which are very deep). The other is age of the spoils. Unfortunately the authors concluded that the best approach is to enrich the spoils with VAM rather than salvaging and replacing topsoil

  6. Nano-structured calcite produced by micro-organisms in ancient and modern loess in Chinese Loess Plateau

    Science.gov (United States)

    Xu, H.; Chen, T.; Lu, H.; Wang, X.

    2005-12-01

    The results from transmission electron microscopy (TEM) and field emission gun scanning microscopy (FEG-SEM) investigation show that there are calcite nano-fibers (CNFs) formed during pedogenic process. The CNFs are widely distributed in the loess and red clay samples of Caoxian, Luochuan, Lingtai, Lantian, and Xifeng profiles as well as the samples of modern surface loess soils in Chinese Loess Plateau. Diameters of all the NFCs are about 40 nm, the length of the CNFs ranges from tens nanometer to several micrometers. Elongation direction of NFCs is unusual near parallel (105)* or (115)*. Crystals of NFCs arrange as bird net like and lattice-like frameworks. X-ray EDS spectra show the weak peaks of magnesium, phosphorous, and sulfur. Our investigation indicates that CNFs are in pore space of loess and paleosol and made up most of carbonate except for caliche nodular layers. Concentration of NFCs in the loess layers are significantly higher than those of paleosol layers because of leaching of carbonate in the paleosol forming environment (warn and wet paleoclimate). The "nanobacteria-like CNFs are well crystalline calcite single crystals with smoothes surfaces. The morphologies of CNFs are very unusual and different from the calcite single crystals observed in most geological environments. The CNFs are directly related to microbial activities in both ancient and modern loess. It is proposed that the intervention of organic compounds derived from microbial activities control the formation of the calcite nano-fibers. Both morphology and bulk composition of CNFs indicate that the formation of the CNFs involves bio-organics derived from microorganisms in loess deposit environment. Formation conditions of the calcite nano-fibers may information about paleoclimate, paleo-environment and paleoecology. So, the discovery of CNFs in loess-paloesol sequences can provide a new route for reconstruct paleoclimate by oxygen and carbon isotope from the CNFs.

  7. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  8. Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation.

    Science.gov (United States)

    Heidari Nonakaran, Siamak; Pazhouhandeh, Maghsoud; Keyvani, Abdullah; Abdollahipour, Fatemeh Zahra; Shirzad, Akbar

    2015-12-01

    Biomineralization is a process by which living organisms produce minerals. The extracellular production of these biominerals by microbes has potential for various bioengineering applications. For example, crack remediation and improvement of durability of concrete is an important goal for engineers and biomineral-producing microbes could be a useful tool in achieving this goal. Here we report the isolation, biochemical characterization and molecular identification of Pseudomonas azotoformans, a microbe that produces calcite and which potentially be used to repair cracks in concrete structures. Initially, 38 bacterial isolates were isolated from soil and cements. As a first test, the isolates were screened using a urease assay followed by biochemical tests for the rate of urea hydrolysis, calcite production and the insolubility of calcite. Molecular amplification and sequencing of a 16S rRNA fragment of selected isolates permitted us to identify P. azotoformans as a good candidate for preparation of biotechnological concrete. This species was isolated from soil and the results show that among the tested isolates it had the highest rate of urea hydrolysis, produced the highest amount of calcite, which, furthermore was the most adhesive and insoluble. This species is thus of interest as an agent with the potential ability to repair cracks in concrete.

  9. Radiation-induced paramagnetic species in natural calcite speleothems

    International Nuclear Information System (INIS)

    Rossi, A.M.; Poupeau, G.

    1989-01-01

    The ESR natural spectrum of humic-free speleothem calcite single crytals in the region of g = 2.0000 is a composite of lines from 4 radiogenic species, in addition to Mn ++ lines. Laboratory irradiation causes appearrance of three more species. Use of isotropic F species (g = 2.0003) for dating is possible if specific cautions are followed. (author) [pt

  10. Removal of trace elements from landfill leachate by calcite precipitation

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Zelená, O.; Mihaljevič, M.; Šebek, O.; Strnad, L.; Coufal, P.; Bezdička, Petr

    2006-01-01

    Roč. 88, 1-3 (2006), s. 28-31 ISSN 0375-6742 R&D Projects: GA AV ČR(CZ) KJB3111402 Institutional research plan: CEZ:AV0Z40320502 Keywords : landfill leachate * calcite * scavenging Subject RIV: CA - Inorganic Chemistry Impact factor: 0.922, year: 2006

  11. Immobilization of nanoparticles by occlusion into microbial calcite

    DEFF Research Database (Denmark)

    Skuce, Rebecca L.; Tobler, Dominique Jeanette; MacLaren, Ian

    2017-01-01

    systems. In this study, the ureolytic bacteria Sporosarcina pasteurii was used to induce calcium carbonate precipitation in the presence of organo-metallic manufactured nanoparticles. As calcite crystals grew the nanoparticles in the solution became trapped inside these crystals. Capture of NPs within...

  12. The effect of annealing atmosphere on the thermoluminescence of synthetic calcite

    International Nuclear Information System (INIS)

    Pagonis, Vasilis

    1998-01-01

    Samples of high purity calcite powder were annealed in air, nitrogen and carbon dioxide atmospheres in the temperature range 300-700 deg. C and in atmospheric pressure. The samples were subsequently irradiated and the effect of the annealing atmosphere and temperature on the thermoluminescence (TL) of the samples was studied. Our results show that both carbonate and oxygen ions play an important part in the TL of calcite annealed in this temperature range. The intensities of the TL signal in the nitrogen and carbon dioxide anneals rise continuously with the annealing temperature. For all annealing temperatures it was found that the carbon dioxide atmosphere caused an increase in the observed TL signal as compared with anneals in an inert nitrogen atmosphere, while the shape of the TL glow curves remained the same. This increase in the observed TL signal is explained via the surface adsorption of carbonate ions. The shape and location of the TL peaks suggest that samples annealed in air exhibit a different type of TL center than samples annealed in nitrogen and carbon dioxide atmospheres. A possible mechanism for the role of oxygen ions involves a surface adsorption process and a subsequent diffusion of oxygen ions in the bulk of the crystal. Annealing of the samples in air at temperatures T>600 deg. C causes a collapse of the TL signal, in agreement with previous studies of calcite powders. No such collapse of the TL signal is observed for the nitrogen and carbon dioxide anneals, suggesting that a different type of TL center and/or recombination center is involved in air anneals. Arrhenius plots for the air anneals yield an activation energy E=0.45±0.05 eV, while the carbon dioxide and nitrogen anneals yield a lower activation energy E=0.28±0.04 eV

  13. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  14. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition

    Science.gov (United States)

    Bergmann, Kristin D.; Finnegan, Seth; Creel, Roger; Eiler, John M.; Hughes, Nigel C.; Popov, Leonid E.; Fischer, Woodward W.

    2018-03-01

    The secular increase in δ18O values of both calcitic and phosphatic marine fossils through early Phanerozoic time suggests either that (1) early Paleozoic surface temperatures were high, in excess of 40 °C (tropical MAT), (2) the δ18O value of seawater has increased by 7-8‰ VSMOW through Paleozoic time, or (3) diagenesis has altered secular trends in early Paleozoic samples. Carbonate clumped isotope analysis, in combination with petrographic and elemental analysis, can deconvolve fluid composition from temperature effects and therefore determine which of these hypotheses best explain the secular δ18O increase. Clumped isotope measurements of a suite of calcitic and phosphatic marine fossils from late Cambrian- to Middle-late Ordovician-aged strata-the first paired fossil study of its kind-document tropical sea surface temperatures near modern temperatures (26-38 °C) and seawater oxygen isotope ratios similar to today's ratios.

  15. Aragonite-Calcite Inversion During Biogenic Carbonate Sampling: Considerations for Interpreting Isotopic Measurements in Paleoclimate Studies

    Science.gov (United States)

    Waite, A. J.; Swart, P. K.

    2011-12-01

    As aragonite is the metastable polymorph of calcium carbonate, it lends itself to monotropic inversion to the more stable polymorph, calcite. This inversion is possible through an increase in the temperature and pressure conditions to which the sample is exposed and, although first noted nearly a century ago, has been primarily discussed in the context of sample roasting prior to analyses in paleoclimatological studies. Over the last several decades, however, researchers have found evidence to suggest that the friction associated with the sampling of biogenic carbonates via milling/drilling also induces inversion. Furthermore, this inversion may be associated with a shift in measured oxygen isotopic values and ultimately have significant implications for the interpretation of paleoclimatic reconstructions. Despite this, the isotopic heterogeneity of biogenic aragonite skeletons makes the effects of inversion challenging to test and the subject remains underrepresented in the literature. Here we present a first order study into the effects of milling on both the mineralogy and isotopic compositions measured in sclerosponges, corals, and molluscs. X-Ray diffraction analysis of samples hand ground with a mortar and pestle reveal 100% aragonitic skeletons. Conversely, samples milled with a computerized micromill show measurable inversion to calcite. On average, percent inversion of aragonite to calcite for individual specimens was 15% for sclerosponges, 16% for corals, and 9% for molluscs. Isotopic data from these specimens show that the higher the percentage of aragonite inverted to calcite, the more depleted the measured oxygen isotopic values. In the largest of the datasets (sclerosponges), it is evident that the range of oxygen isotope values from milled samples (-0.02 to +0.84%) exceeds the range in values for those samples which were hand ground and showed no inversion (+0.53 to +0.90%). This, coupled with the strong correlation between the two variables

  16. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells

    Energy Technology Data Exchange (ETDEWEB)

    Du Yang; Lian Fei [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2011-07-15

    The potential of using mollusk shell powder in aragonite (razor clam shells, RCS) and calcite phase (oyster shells, OS) to remove Pb{sup 2+}, Cd{sup 2+} and Zn{sup 2+} from contaminated water was investigated. Both biogenic sorbents displayed very high sorption capacities for the three metals except for Cd on OS. XRD, SEM and XPS results demonstrated that surface precipitation leading to crystal growth took place during sorption. Calcite OS displayed a remarkably higher sorption capacity to Pb than aragonite RCS, while the opposite was observed for Cd. However, both sorbents displayed similar sorption capacities to Zn. These could be due to the different extent of matching in crystal lattice between the metal bearing precipitate and the substrates. The initial pH of the solution, sorbent's dosage and grain size affected the removal efficiency of the heavy meals significantly, while the organic matter in mollusk shells affected the removal efficiency to a lesser extent. - Highlights: > Mollusk shells display high removal efficiency to heavy metals in contaminated water. > Surface precipitation leading to crystal growth takes place during the sorption. > Crystal structure similarity between precipitates and substrates affects the sorption. > pH, sorbent dosage and grain size of adsorbent affects the removal efficiency. > Organic matter in mollusk shells affects the removal efficiency to a less extent. - Mollusk shells display high sorption ability to heavy metals and crystal structure similarity between precipitates and substrates affects the sorption.

  17. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    International Nuclear Information System (INIS)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S.

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that open-quotes there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwaterclose quotes and that open-quotes instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fracturesclose quotes. Based on such information the Department of Energy has stated that it open-quotes finds no basis to continue to study the origin of these specific depositsclose quotes. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits

  18. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    International Nuclear Information System (INIS)

    Feng, Qicheng; Wen, Shuming; Zhao, Wenjuan; Deng, Jiushuai; Xian, Yongjun

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na_2S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na_2S, and the increase in the Na_2S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na_2S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na_2S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  19. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qicheng [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Wen, Shuming, E-mail: fqckmust@126.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Wenjuan [Kunming Metallurgical Research Institute, Kunming 650031 (China); Deng, Jiushuai; Xian, Yongjun [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na{sub 2}S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na{sub 2}S, and the increase in the Na{sub 2}S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na{sub 2}S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na{sub 2}S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  20. Mechanism for calcite dissolution and its contribution to development of reservoir porosity and permeability in the Kela 2 gas field,Tarim Basin,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2+ concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2+]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth

  1. Tuning hardness in calcite by incorporation of amino acids.

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D; Demarchi, Beatrice; Sparks, David; Reid, David G; Kunitake, Miki E; Tang, Chiu C; Duer, Melinda J; Freeman, Colin L; Pokroy, Boaz; Penkman, Kirsty; Harding, John H; Estroff, Lara A; Baker, Shefford P; Meldrum, Fiona C

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  2. Origin of calcite in the glacigenic Virttaankangas complex

    OpenAIRE

    Nina M. Kortelainen; Petri J. Korkeakoski; Juha A. Karhu

    2007-01-01

    Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of...

  3. Mineralogical-Chemical Characteristics of Calcite from Zletovo, Sasa and Buchim Deposits

    International Nuclear Information System (INIS)

    Shijakova-lvanova, Tena; Paneva-Zajkova, Vesna; Donova, Ilinka

    2006-01-01

    The paper presents mineralogical-chemical characteristics, dependence between some elements and concentration of some calcite elements of Zletovo, Sasa and Buchim deposits. Calcite from Sasa, Zletovo and Buchim occurs in rhombohedral crystals of different size. The colour is white, but in Buchim it is white, pink, and yellow. Their twinning is very common. Chemical composition of calcite was determined by AES-ICP. Results show that in calcite from Buchim the concentration of Ba is much higher in pink calcite from than in white or yellow. The concentration of Zn and Ph is the lowest in white calcite. The calcite from Zletovo contains much higher concentrations of Pb, Zn, Sr, but calcite of Buchim which is pink contains higher amounts of Ba and Co. The concentrations of CaO, MgO, and MnO in all calcite simples are approximately equal. Concentration of all other elements in calcite of Sasa, Zletovo and Buchim is approximately equal. TG and DTA curves out on all simples were recorded.The decompositions of the samples of calcite starts at different temperature and it is not finish until 1000 o C. (Author)

  4. Rate of radiocarbon retention onto calcite by isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lempinen, Janne; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2016-11-01

    Radiocarbon ({sup 14}C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO{sub 3}) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of {sup 14}C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  5. Rate of radiocarbon retention onto calcite by isotope exchange

    International Nuclear Information System (INIS)

    Lempinen, Janne; Lehto, Jukka

    2016-01-01

    Radiocarbon ( 14 C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO 3 ) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of 14 C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  6. PVC mixtures’ mechanical properties with the addition of modified calcite as filler

    Directory of Open Access Journals (Sweden)

    Vučinić Dušica R.

    2012-01-01

    Full Text Available In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking strength of the PVC mixture containing the calcite modified with 1.5% stearic acid using wet process, are higher for 2.8% and 5.2%, respectively, compared to the PVC mixture containing the calcite modified with the same amount of acid used in the dry process. The tensile strength difference between the mixtures increases with the increase of the concentration of used stearic acid up to 3%. The strength of PVC mixture with the calcite modified by wet process is 3.1% higher compared to the mixture containing calcite modified by dry process. The results showed that the bonding strength between calcite and the adsorbed organic component affected tensile strength, tensile elongation and breaking strength of the PVC mixtures. The best filler was obtained by wet modification using 1.5% stearic acid solution that provided the formation of a stearate monolayer chemisorbed on calcite. The PVC mixtures containing the calcite modified by wet process using 1.5% stearic acid solution exhibited the best mechanical properties. This calcite was completely hydrophobic with dominant chemically adsorbed surfactant, which means that stearate chemisorbed on calcite provided stronger interaction in the calcite-stearic acid-PVC system.

  7. Facet personality and surface-level diversity as team mental model antecedents: implications for implicit coordination.

    Science.gov (United States)

    Fisher, David M; Bell, Suzanne T; Dierdorff, Erich C; Belohlav, James A

    2012-07-01

    Team mental models (TMMs) have received much attention as important drivers of effective team processes and performance. Less is known about the factors that give rise to these shared cognitive structures. We examined potential antecedents of TMMs, with a specific focus on team composition variables, including various facets of personality and surface-level diversity. Further, we examined implicit coordination as an important outcome of TMMs. Results suggest that team composition in terms of the cooperation facet of agreeableness and racial diversity were significantly related to team-focused TMM similarity. TMM similarity was also positively predictive of implicit coordination, which mediated the relationship between TMM similarity and team performance. Post hoc analyses revealed a significant interaction between the trust facet of agreeableness and racial diversity in predicting TMM similarity. Results are discussed in terms of facilitating the emergence of TMMs and corresponding implications for team-related human resource practices. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  8. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    Science.gov (United States)

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  9. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Science.gov (United States)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; DeYoreo, James J.

    2014-01-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications. PMID:25189418

  10. Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean

    Science.gov (United States)

    Feely, Richard A.; Sabine, Christopher L.; Byrne, Robert H.; Millero, Frank J.; Dickson, Andrew G.; Wanninkhof, Rik; Murata, Akihiko; Miller, Lisa A.; Greeley, Dana

    2012-09-01

    Based on measurements from the WOCE/JGOFS global CO2 survey, the CLIVAR/CO2 Repeat Hydrography Program and the Canadian Line P survey, we have observed an average decrease of 0.34% yr-1 in the saturation state of surface seawater in the Pacific Ocean with respect to aragonite and calcite. The upward migrations of the aragonite and calcite saturation horizons, averaging about 1 to 2 m yr-1, are the direct result of the uptake of anthropogenic CO2 by the oceans and regional changes in circulation and biogeochemical processes. The shoaling of the saturation horizon is regionally variable, with more rapid shoaling in the South Pacific where there is a larger uptake of anthropogenic CO2. In some locations, particularly in the North Pacific Subtropical Gyre and in the California Current, the decadal changes in circulation can be the dominant factor in controlling the migration of the saturation horizon. If CO2 emissions continue as projected over the rest of this century, the resulting changes in the marine carbonate system would mean that many coral reef systems in the Pacific would no longer be able to sustain a sufficiently high rate of calcification to maintain the viability of these ecosystems as a whole, and these changes perhaps could seriously impact the thousands of marine species that depend on them for survival.

  11. A study on the coprecipitation of arsenite and arsenate into calcite coupled with the determination of oxidation states of arsenic both in calcite and water

    International Nuclear Information System (INIS)

    Yokoyama, Yuka; Takahashi, Yoshio; Mitsunobu, Satoshi; Tanaka, Kazuya; Itai, Takaaki

    2009-01-01

    It was found that the amount of arsenite incorporated into calcite is much less than that of arsenate. The result suggests that the sequestration of arsenic by coprecipitation with calcite cannot be an important chemical process under reducing conditions such as in groundwater where arsenite is the dominant arsenic species. (author)

  12. U-Pb Dating of Calcite to Constrain Basinal Brine Flux Events: An Example from the Upper Midwest USA

    Science.gov (United States)

    Rasbury, T.; Luczaj, J.

    2017-12-01

    Calcite forms in a variety of settings and can be the product of surface to deep basinal fluids. As such, this mineral can uniquely record details of the fluids responsible for its formation. The forms of calcium carbonates and their stratigraphic relationships from the thin section to the regional scale give important insights on pulses of fluids. A fundamental question is the age of such fluid pulses. While calcite excludes uranium (U) from its crystal structure, some is incorporated and depending on the U/Pb ratio, this provides an opportunity for radiometric dating. Calcite crystals of various sizes and crystal habits are found in Paleozoic carbonate rocks throughout the region from the western Michigan basin to the upper Mississippi valley. These are typically associated with Mississippi Valley-type (MVT) mineralization, including galena, sphalerite, and iron sulfides, but typically post-date the main MVT event. We have analyzed a variety of these calcites and find multiple generations of calcite, separated by tens of millions of years. The initial Pb isotope ratios are similar to the isotope ratios of nearby galena, strongly suggesting a genetic relationship. Our oldest ages are 200 Ma, and we find ages ranging into the Cenozoic. Based on the Paleozoic-hosted galena Pb-isotope isoscapes from the region, the fluids may have been sourced from both the Michigan and Illinois basins. An important and unanswered question is what would cause significant fluid movement out of the basins substantially after Appalachian orogenesis. Noble gas data from brines in the Michigan Basin have a mantle component and have been suggested to be responsible for recognized elevated temperatures across the basin (Ma et al., 2009). Multiple thermal events during the Paleozoic and Mesozoic eras may have an internal heat source related to reactivation of faults of the Keweenawan Rift system below the Michigan Basin. Perhaps a mantle heat source from below episodically fluxes into the

  13. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  14. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state

    Directory of Open Access Journals (Sweden)

    M. Raitzsch

    2010-03-01

    Full Text Available We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (Ω on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing and Ammonia tepida (low-Mg calcite, symbiont-barren were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite/(TE/Caseawater. The culturing study shows that DMg of A. tepida significantly decreases with increasing Ω at a gradient of −4.3×10−5 per Ω unit. The DSr value of A. tepida does not change with Ω, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing Ω, while DSr increases considerably with Ω at a gradient of 0.009 per Ω unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50–100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep

  15. Effects of Citrate and Arginine on Sorption of Nickel to Yazd Sepiolite and Calcite

    Directory of Open Access Journals (Sweden)

    Ahmadreza Sheikhhosseini

    2017-03-01

    Full Text Available Introduction: Pollution of soil and water environment by release of heavy metals is of great concerns of the last decades. Sorption of heavy metals by low cost materials is considered as an inexpensive and efficient method used for removal of heavy metals from soil-water systems. The presence of different ligands with various complexing abilities can change the sorption properties of heavy metals and their fate in the environment as well. In order to assess the effect of citrate and arginine as natural organic ligands in soil environment, in a batch study we investigated the effects of these ligands on equilibrium sorption of nickel to sepiolite and calcite minerals and also kinetics of Ni sorption by these minerals. Materials and Methods: Minerals used in this study included sepiolite from Yazd (Iran and pure calcite (Analytical grade, Merck, Germany. Sepiolite was purified, saturated with Ca using 0.5 M CaCl2, powdered in a mortar and sieved by non-metal 230 mesh standard wire sieve. For equilibrium sorption study, in a 50-mL polyethylene centrifuge tube,0.3 g sample of each mineral was suspended in 30 mL of a 0.01 M CaCl2 solution containing 0, 5, 10, 20, 40, 60, 80 and 100 mg L-1 Ni (NiCl2 and containing zero (as control or 0.1mmol L-1 citrate or arginine ligands. The applied concentrationsfor each ligand can naturally occur in soils. Preparedtubes were shaken (180±2 rpm, 25±1oC for 24 h using an orbital shaker and centrifuged (4000×g for 10 min and the supernatants were analyzed for Ni concentration using an atomic absorption spectrophotometer (AAnalyst 200 Perkin-Elmer at a wavelength of 232 nm and a detection limit of 0.05 mg L-1. The quantity of Ni retained by each mineral at equilibrium was calculated using equation qe = (Ci - CeV/W where qe was the amount of nickel retained by mineral surface at equilibrium. Ci and Ce were the initial and the equilibrium concentrations (mg L-1 of Ni, respectively, V was the volume (L of the solution

  16. Utilization of calcite produced in Turkey for paper coating

    Directory of Open Access Journals (Sweden)

    Hüdaverdi Eroğlu

    2002-03-01

    Full Text Available Calcium carbonate is one of the coating pigments widely used in paper industry. Especially, in recent years calcium carbonate filler has gained high importance in alkaline pulping. In Turkey industry actually imports calcium carbonate; whereas, there are rich calcite reservoirs in the country. In this study two different types of domestic ground (GCC calcite samples were used. Physical and chemical properties of calcite samples were tested firstly. CaCO3 percentages of both samples were 97.3 % and 97.6 % (min. 95 % CaCO3. MgCO3 and Fe2O3 percentages were within the desired limits. Brightness values were 95.5 % and 94.5 % and yellowness 1.1 % and 1.5 % elrepho. These values also were within the requested limits. Under 2 microns particle size and over 10 microns particle size fractions were 95 % and 89 % (min. 80 and 1 % and 2 % (max. 2 respectively. Dry matter rates were between 40 %-65 %, for the pilot plant-coating machine. During the preparation of coating color calcium carbonate has been used together with kaolin. The ratios of calcium carbonate to kaolin were 30/70, 40/60, 50/50, 60/40, 70/30, 100/0. In coating color preparation latex was used as a binder because of its wide applications. Latex percentages were 11, 12, and 13 %. Coated papers were glossed and physically tested. As a result, both calcium carbonate samples were found suitable for using in coating color preparation. By the utilization of domestic calcium carbonate in coated paper production, there will be foreign currencies saving.

  17. Calcite production by coccolithophores in the south east Pacific Ocean

    Directory of Open Access Journals (Sweden)

    L. Beaufort

    2008-08-01

    Full Text Available BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG from the Marquesas archipelago to the Peru-Chile upwelling (PCU. Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks were usually low and reached maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales represented more than 30% of all the suspended calcite particles detected in the size range 0.1–46 μm (22% of PIC in term of calcite weight. These species grew preferentially in the Chlorophyll maximum zone. In the SPG their maximum cell concentrations were recorded between depth of 150 and 200 m, which is unusually deep for these taxa. The weight of coccoliths and coccospheres were correlated to their size. Large and heavy coccoliths and coccospheres were found in regions with relatively high fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres were found west of the PCU. This distribution is strongly related to ocean chemistry in particular to alkalinity and to carbonate ions concentration. The biotic (coccolithophores production influence on calcification is mainly driven at the local scale (depth whereas the abiotic (carbonate chemistry plays its most important role at the regional (horizontal level. Here 94% of the variability of coccolith and coccosphere weight can be explained by a change in 7 environmental variables.

  18. Principles of calcite dissolution in human and artificial otoconia.

    Directory of Open Access Journals (Sweden)

    Leif Erik Walther

    Full Text Available Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV. The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic otoconia (calcite gelatin nanocomposits and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM. Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV.

  19. Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain

    Science.gov (United States)

    Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.

    2017-03-01

    A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.

  20. Incorporation of Eu(III) into calcite under recrystallization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrandt, S.E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Jordan, Norbert [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HGF Young Investigator Group; Hofmann, S.

    2017-06-01

    The interaction of three calcite powders with Eu(III) under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). Batch contact studies with reaction times from 1 week up to 3 years revealed that the speciation differs from that observed previously in co-precipitation experiments and is dominated by a newly identified species ''γ''. The speed of formation of this species was found to depend greatly on the recrystallization rate of the studied minerals.

  1. Incorporation of Eu(III) into calcite under recrystallization conditions

    International Nuclear Information System (INIS)

    Hellebrandt, S.E.; Jordan, Norbert; Barkleit, Astrid; Schmidt, Moritz; Hofmann, S.

    2017-01-01

    The interaction of three calcite powders with Eu(III) under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). Batch contact studies with reaction times from 1 week up to 3 years revealed that the speciation differs from that observed previously in co-precipitation experiments and is dominated by a newly identified species ''γ''. The speed of formation of this species was found to depend greatly on the recrystallization rate of the studied minerals.

  2. Sulphate partitioning into calcite: Experimental verification of pH control and application to seasonality in speleothems

    Science.gov (United States)

    Wynn, Peter M.; Fairchild, Ian J.; Borsato, Andrea; Spötl, Christoph; Hartland, Adam; Baker, Andy; Frisia, Silvia; Baldini, James U. L.

    2018-04-01

    Carbonate-associated sulphate (CAS) is a useful carrier of palaeoenvironmental information throughout the geologic record, particularly through its stable isotope composition. However, a paucity of experimental data restricts quantitative understanding of sulphate incorporation into carbonates, and consequently CAS concentrations and their diagenetic modifications are rarely interpreted. However, in the case of calcite speleothems, the remarkably high-resolution CAS records which are obtainable via modern microanalytical techniques represent a potentially invaluable source of palaeoenvironmental information. Here, we describe the results of controlled experiments of sulphate co-precipitation with calcite in freshwater solutions where pH, saturation state, and sulphate concentration were varied independently of each other. Solution pH is confirmed as the principal control on sulphate incorporation into calcite. The relative efficiency of incorporation was calculated as a partition coefficient DSO4 = (mSO4/mCO3)solid/(mSO4/mCO3)solution. High crystal growth rates (driven by either pH or saturation state) encouraged higher values of DSO4 because of an increasing concentration of defect sites on crystal surfaces. At low growth rates, DSO4 was reduced due to an inferred competition between sulphate and bicarbonate at the calcite surface. These experimental results are applied to understand the incorporation of sulphate into speleothem calcite. The experimentally determined pH-dependence suggests that strong seasonal variations in cave air PCO2 could account for annual cycles in sulphate concentration observed in stalagmites. Our new experimentally determined values of DSO4 were compared with DSO4 values calculated from speleothem-drip water monitoring from two caves within the Austrian and Italian Alps. At Obir cave, Austria, DSO4 (×105) varies between 11.1 (winter) and 9.0 (summer) and the corresponding figures for Ernesto cave, Italy, are 15.4 (winter) and 14

  3. Prediction of calcite Cement Distribution in Shallow Marine Sandstone Reservoirs using Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, N.E.

    1996-12-31

    This doctoral thesis investigates how calcite cemented layers can be detected by reflection seismic data and how seismic data combined with other methods can be used to predict lateral variation in calcite cementation in shallow marine sandstone reservoirs. Focus is on the geophysical aspects. Sequence stratigraphy and stochastic modelling aspects are only covered superficially. Possible sources of calcite in shallow marine sandstone are grouped into internal and external sources depending on their location relative to the presently cemented rock. Well data and seismic data from the Troll Field in the Norwegian North Sea have been analysed. Tuning amplitudes from stacks of thin calcite cemented layers are analysed. Tuning effects are constructive or destructive interference of pulses resulting from two or more closely spaced reflectors. The zero-offset tuning amplitude is shown to depend on calcite content in the stack and vertical stack size. The relationship is found by regression analysis based on extensive seismic modelling. The results are used to predict calcite distribution in a synthetic and a real data example. It is found that describing calcite cemented beds in shallow marine sandstone reservoirs is not a deterministic problem. Hence seismic inversion and sequence stratigraphy interpretation of well data have been combined in a probabilistic approach to produce models of calcite cemented barriers constrained by a maximum amount of information. It is concluded that seismic data can provide valuable information on distribution of calcite cemented beds in reservoirs where the background sandstones are relatively homogeneous. 63 refs., 78 figs., 10 tabs.

  4. Synthesis of sub-millimeter calcite from aqueous solution

    Science.gov (United States)

    Reimi, M. A.; Morrison, J. M.; Burns, P. C.

    2011-12-01

    A novel aqueous synthesis that leads to the formation of calcite (CaCO3) crystals, up to 500μm in diameter, will be used to facilitate the study of contaminant transport in aqueous environmental systems. Existing processes tend to be complicated and often yield nanometer-sized or amorphous CaCO3. The synthesis method presented here, which involves slow mixing of concentrated solutions of CaCl2 ¬and (NH4)2CO3, produces single crystals of rhombohedral calcite in 2 to 4 days. Variations on the experimental method, including changes in pH and solution concentration, were explored to optimize the synthesis. Scanning Electron Microscope images show the differences in size and purity observed when the crystals are grown at pH values ranging from 2 to 6. The crystals grown from solutions of pH 2 were large (up to 500 micrometers in diameter) with minimal polycrystalline calcium carbonate, while crystals grown from solutions with pH values beyond 4 were smaller (up to 100 micrometers in diameter) with significant polycrystalline calcium carbonate. The synthesis method, materials characterization, and use in future actinide contaminant studies will be discussed.

  5. Thermoluminescent of induced calcite by gamma and ultraviolet radiation

    International Nuclear Information System (INIS)

    Lima, J.F. de.

    1987-01-01

    Samples of brazilian calcite, exposed to gamma radiation in laboratory and heated at constant rate of 2.7 0 C/s, showed three glow peaks at 150, 250 and 350 0 C in their thermoluminescent emission curves. The analysis of these peaks, using different models, indicated that they follow a second order kinetics; it has been obtained, for the activation energy, 1.3, 1.5 and 1.7 eV, and, for the pre-exponential factors, 8.1 x 10 14 , 6.8 x10 13 and 2.4 x 10 12 s -1 . Although the total thermoluminescent emission has stayed constant, the relative height of glow peaks has changed with the temperature of annealing in the range of 400 to 700 0 C. Exposed samples were also illuminated with ultraviolet light and the resultant curves showed partial or total bleaching or some glow peaks and the growth of peaks at lower temperatures. Samples of virgin calcite, submited to increasing exposures of gamma rays, showed a corresponding enhancement of the optical absorption bands in the range of 25000 to 47000 cm -1 A subsequent illumination of these samples with ultraviolet light produced a decrease of the optical absorption bands at the same range. (author) [pt

  6. Geochemical and isotope aspects of calcite deposits and calcitic marbles hosts mineralizations, Serra do Carumbe, Vale do Ribeira, Parana state, Brazil

    International Nuclear Information System (INIS)

    Venusso, Gerson Caetano; Andrade e Silva, Antonio C. Gondim de

    2011-01-01

    The calcite deposits and the calcitic marbles hosts occur in Serra do Carumbe, in the Vale do Ribeira region, Parana State, were studied in their geochemical and isotopic aspects viewing the gathering of information about their genesis and economical use. The calcite deposits are constituted by veins and lenses, being three of them concordant and one discordant in relation to the S_0 from the hosting marbles. In these deposits four main types of calcite were recognized: rombohedrical, fibrous, banded and microcrystalline. The calcite reveal themselves having high purity, with CaO concentration above 55.30% and MgO below 0.42%. The lithogeochemical study of the marbles sequence was conducted in various suites revealing an uniformity in their composition, with high values of CaO (above 46.92%) in relation to the MgO values (below 3,37%), what favors their use for cement manufacture, except in sectors that suffered fault influences, where the marbles are impure (siliceous, magnesian, ferruginous and aluminous). Regarding their trace elements content, the hosting calcitic marbles have higher concentrations than the calcite, in the elements Sr, B, Ba and Mg, what makes evident their different formation environments. The δ"1"3C values from calcite range from –9,02 to –12,24 ‰ , referring to PDB, while the values δ"1"8O range from 24,48 to 25,23 ‰, referring to SMOW; meanwhile, for the calcitic marbles, the δ"1"3C values range from –4,03 to 1,42‰ and of δ"1"8O range from 20,71 to 23,00 ‰. The high δ"1"8O values would indicate enrichment referring to the interaction of the calcite's generator fluid with the carbonatic host rock. The δ"1"3C values indicate origin from hydrothermal solution for the calcite, although they would not allow to conclude if their sources would be superficial or profound. As for the hosting calcitic marbles, the isotopic values indicate genesis from pre-cambrian marine limestone. (author)

  7. Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: Implications for coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, M.A.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

    2009-08-15

    Dissolved gases can preferentially accumulate at the hydrophobic solid-water interface as revealed by neutron reflectivity measurements. In this paper, atomic force microscopy (AFM) was used to examine accumulation of dissolved gases at a hydrophobic surface in water and sodium chloride solutions. The solvent-exchange method was used to artificially form gaseous domains accumulated at the interface suitable for AFM imaging. Smooth graphite surfaces were used as model surfaces to minimize the secondary effect of surface roughness on the imaging. The concentration of NaCl up to 1 M was found to have a negligible influence on the geometry and population of pre-existing nanobubbles, nanopancakes and nanobubble-nanopancake composites. The implications of the findings on coal flotation in saline water are discussed in terms of attraction between hydrophobic surfaces in water, bubble-particle attachment and hydrophobic coagulation between particles.

  8. Manganese-calcium intermixing facilitates heteroepitaxial growth at the 101¯4 calcite-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.; Du, Yingge; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Qafoku, Odeta; Kerisit, Sebastien

    2017-10-01

    In situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10-14) surface of calcite (CaCO3) single crystals following reaction with Mn2+-bearing aqueous solutions with a range of initial concentrations. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces and in situ time-sequenced measurements demonstrated that their growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2+-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO3) and calcite display a 10% lattice mismatch, based on the area of their (10-14) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals with calcite-equilibrated aqueous solutions with concentrations of up to 250 µM MnCl2 and analyzed to determine the composition of the surface precipitates. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO3 solid solution with a spatially complex composition atop the calcite surface, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO3 for the thickest coatings. These findings explain the measured growth rates (the effective lattice mismatch was much smaller than nominal mismatch) and highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.

  9. Concurrence of hepatitis B surface antibodies and surface antigen: implications for postvaccination control of health care workers

    NARCIS (Netherlands)

    Zaaijer, Hans L.; Lelie, P. N.; Vandenbroucke-Grauls, C. M. J. E.; Koot, M.

    2002-01-01

    Among 1081 persons testing positive for hepatitis B surface antigen, 106 (10%) tested positive for antibodies to surface antigen (anti-HBs) in the same blood sample. Thirty of these persons were studied in detail: seven tested positive for hepatitis B e-antigen, nine were apparently healthy blood

  10. Accessory neurovascular foramina on the lingual surface of mandible: Incidence, topography, and clinical implications

    Directory of Open Access Journals (Sweden)

    B V Murlimanju

    2012-01-01

    Full Text Available Context: It was suggested that the accessory neurovascular foramina of the mandible might be of significance in relation to the effectiveness of local anesthesia following the routine inferior alveolar nerve block. Aims: To investigate the incidence of neurovascular foramina over the lingual surface of the mandible in South Indian population. Settings and Design: The study was conducted at the department of anatomy. Materials and Methods: The study included 67 human adult dry mandibles, the exact ages and sexes of which were not known. The location and number of neurovascular foramina were topographically analyzed. Statistical Analysis Used: Descriptive statistics. Results: The foramina were observed in 64 mandibles (95.5% and were often multiple in most of the cases. They were located between the two medial incisors in 8 mandibles (1.9%, between the medial and lateral incisor in 34 mandibles (50.7%; 25-bilateral; 7-right; 2-left, between the lateral incisor and canine in 7 mandibles (10.4%; 2-bilateral; 3-right; 2-left, between the canine and first premolar in 6 cases (8.9%; 3 on each side. Foramina were also present around the genial tubercle in 56 mandibles (83.6%. Among them, 52 mandibles showed a single foramen just above the genial tubercle, 34 mandibles had foramina below the tubercles, 13 mandibles had foramina on the right side of genial tubercle and 17 were having on the left side. Conclusion: Since the anatomical details of these foramina are important to various fields of dentistry and oncology, the present investigation was undertaken. The clinical significance and implications are emphasized.

  11. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.

    Directory of Open Access Journals (Sweden)

    Tomihiko Higuchi

    Full Text Available Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas.

  12. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  13. Structural evolution of calcite at high temperatures: Phase V unveiled

    Science.gov (United States)

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  14. Age constraints on fluid inclusions in calcite at Yucca Mountain

    International Nuclear Information System (INIS)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

    2001-01-01

    The(sup 207)Pb/(sup 235)U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88(+-) 0.05 and 9.7(+-) 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event

  15. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Nishad, K.K.; Bhosle, N.B.

    The effect of 2, 4-dinitrophenol (DNP) on extracelluar polysaccharides (EPS), cell surface charge, and hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene...

  16. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Science.gov (United States)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST

  17. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Directory of Open Access Journals (Sweden)

    K. Yi

    2017-07-01

    Full Text Available The response of surface ozone (O3 concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM. Idealized, spatially uniform sea surface temperature (SST anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage

  18. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained ;solubility product; of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  19. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    Science.gov (United States)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  20. Quantitative roughness characterization of geological surfaces and implications for radar signature analysis

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    1999-01-01

    Stochastic surface models are useful for analyzing in situ roughness profiles and synthetic aperture radar (SAR) images of geological terrain. In this paper, two different surface models are discussed: surfaces with a stationary random roughness (conventional model) and surfaces with a power...

  1. On the implications of the Surface Water and Ocean Topography (SWOT) mission for hydrologic science and applications (Invited)

    Science.gov (United States)

    Lettenmaier, D. P.

    2010-12-01

    The SWOT mission will provide surface water elevation and extent information with unprecedented accuracy and spatial resolution globally. All of the implications of thedata that SWOT will produce for the hydrologic science and applications communities are not yet apparent. The SWOT data will, however, certainly offer groundbreaking opportunities for estimation of two key terms in the land surface water budget: surface water storage (in almost all water bodies with surface area exceeding about 1 km2) and derived discharge for many of the world’s large rivers (widths greater than roughly 100-250 m). Among just a few of the science questions that the observations should allow us to address are a) what are the dynamics of floods and overbank flows in large rivers? b) what is the contribution of long-term, seasonal, and interannual storage in reservoirs, lakes, and wetlands to sea level? c) what is the magnitude of surface water storage changes at seasonal to decadal time scales and continental spatial scales relative to soil moisture and groundwater? d) what will be the implications of SWOT-based estimates of reservoir storage and storage change to the management of transboundary rivers? These quite likely are among just a few of the questions that SWOT will help elucidate. Others no doubt will arise from creative analyses of SWOT data in combination with data from other missions I conclude with a discussion of mechanisms that will help foster a community to investigate these and other questions, and the implications of a SWOT data policy.

  2. Absorption mechanism study of benzoic acid on calcite. Influence on the wettability; Etude du mecanisme d`absorption de l`acide benzoique sur la calcite. Incidence sur la mouillabilite

    Energy Technology Data Exchange (ETDEWEB)

    Legens, Ch

    1997-12-03

    A pure carbonate rock is strongly water-wet whereas oil accumulations study shows that most of carbonate reservoirs are oil-wet or of mixed-wettability. This is one of the main difficulties to extract crude oil. This change of behavior is due to the adsorption of some crude oil compounds on the mineral surface. We have mainly studied the interactions between acid molecules by adsorption on a calcite powder in an organic phase (benzoic acid and lauric acid) and in an aqueous phase (benzoic acid and lauric sodium salt). The technics which enabled us to define and characterize adsorption are thermogravimetry infrared diffuse reflection and thermal analysis with controlled kinetic linked to a mass spectrometer. Molecular modelling calculations have completed these analysis. It has been showed that when crude oil fills the biggest pores of the reservoir rock, the aqueous film is unstable and acids adsorb via ionic bonds on mineral calcium ions. Wettability is evaluated thanks to contact angle measurements of a water droplet deposited on a compacted powder pellet. Calcite wettability changes were all the greater as hydro-carbonated chains were longer, as it confers molecule hydrophobia. It has been also investigated acid molecules diffusion from the organic to the aqueous phase which saturates the smallest pores. Molecules which are able to diffuse from the first to the second medium do not adsorb on the surface. As a consequence, carbonate rock wettability changes require a direct contact between crude oil and mineral that involves aqueous film instability. (author) 128 refs.

  3. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    International Nuclear Information System (INIS)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, QunShan; Yan, Changzhou; Liu, Feng

    2011-01-01

    Highlights: → The attachment of Enano-TiO 2 to surface enhanced markedly sediment BET surface area and t-Plot external surface area. → The fill of Enano-TiO 2 into the micropores reduced significantly the sediment t-Plot micropore surface area. → Enano-TiO 2 could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. → P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO 2 (Enano-TiO 2 ) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO 2 . In this study, Enano-TiO 2 was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO 2 particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S max ). Contrarily, the fill of Enano-TiO 2 particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . Enano-TiO 2 would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO 2 and/or similar ENPs.

  4. Tracing the incorporation of carbon into benthic foraminiferal calcite following the Deepwater Horizon event.

    Science.gov (United States)

    Schwing, Patrick T; Chanton, Jeffrey P; Romero, Isabel C; Hollander, David J; Goddard, Ethan A; Brooks, Gregg R; Larson, Rebekka A

    2018-06-01

    Following the Deepwater Horizon (DWH) event in 2010, hydrocarbons were deposited on the continental slope in the northeastern Gulf of Mexico through marine oil snow sedimentation and flocculent accumulation (MOSSFA). The objective of this study was to test the hypothesis that benthic foraminiferal δ 13 C would record this depositional event. From December 2010 to August 2014, a time-series of sediment cores was collected at two impacted sites and one control site in the northeastern Gulf of Mexico. Short-lived radioisotopes ( 210 Pb and 234 Th) were employed to establish the pre-DWH, DWH, and post-DWH intervals. Benthic foraminifera (Cibicidoides spp. and Uvigerina spp.) were isolated from these intervals for δ 13 C measurement. A modest (0.2-0.4‰), but persistent δ 13 C depletion in the DWH intervals of impacted sites was observed over a two-year period. This difference was significantly beyond the pre-DWH (background) variability and demonstrated that benthic foraminiferal calcite recorded the depositional event. The longevity of the depletion in the δ 13 C record suggested that benthic foraminifera may have recorded the change in organic matter caused by MOSSFA from 2010 to 2012. These findings have implications for assessing the subsurface spatial distribution of the DWH MOSSFA event. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: its environmental implications.

    Science.gov (United States)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, Qunshan; Yan, Changzhou; Liu, Feng

    2011-09-15

    Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO(2) (Enano-TiO(2)) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO(2). In this study, Enano-TiO(2) was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO(2) particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S(max)). Contrarily, the fill of Enano-TiO(2) particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO(2). Enano-TiO(2) would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO(2) and/or similar ENPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. An XRPD and EPR spectroscopy study of microcrystalline calcite bioprecipitated by Bacillus subtilis

    Science.gov (United States)

    Perito, B.; Romanelli, M.; Buccianti, A.; Passaponti, M.; Montegrossi, G.; Di Benedetto, F.

    2018-05-01

    We report in this study the first XRPD and EPR spectroscopy characterisation of a biogenic calcite, obtained from the activity of the bacterium Bacillus subtilis. Microcrystalline calcite powders obtained from bacterial culture in a suitable precipitation liquid medium were analysed without further manipulation. Both techniques reveal unusual parameters, closely related to the biological source of the mineral, i.e., to the bioprecipitation process and in particular to the organic matrix observed inside calcite. In detail, XRPD analysis revealed that bacterial calcite has slightly higher c/a lattice parameters ratio than abiotic calcite. This correlation was already noticed in microcrystalline calcite samples grown by bio-mineralisation processes, but it had never been previously verified for bacterial biocalcites. EPR spectroscopy evidenced an anomalously large value of W 6, a parameter that can be linked to occupation by different chemical species in the next nearest neighbouring sites. This parameter allows to clearly distinguish bacterial and abiotic calcite. This latter achievement was obtained after having reduced the parameters space into an unbiased Euclidean one, through an isometric log-ratio transformation. We conclude that this approach enables the coupled use of XRPD and EPR for identifying the traces of bacterial activity in fossil carbonate deposits.

  7. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    International Nuclear Information System (INIS)

    Ramakrishna, Chilakala; Thenepalli, Thriveni; Ahn, Ji Whan

    2017-01-01

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO 2 flow rate, Ca (OH) 2 concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH) 2 concentration and increasing the CO 2 flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  8. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, Chilakala [Hanil Cement Corporation, Danyang (Korea, Republic of); Thenepalli, Thriveni; Ahn, Ji Whan [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of)

    2017-06-15

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO{sub 2} flow rate, Ca (OH){sub 2} concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH){sub 2} concentration and increasing the CO{sub 2} flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  9. Overstory removal and residue treatments affect soil surface, air, and soil temperature: implications for seedling survival

    Science.gov (United States)

    Roger D. Hungerford; Ronald E. Babbitt

    1987-01-01

    Potentially lethal ground surface temperatures were measured at three locations in the Northern Rocky Mountains but occurred more frequently under treatments with greater overstory removal. Observed maximum and minimum temperatures of exposed surfaces are directly related to the thermal properties of the surface materials. Survival of planted seedlings was consistent...

  10. Goblet cells contribute to ocular surface immune tolerance—implications for dry eye disease

    NARCIS (Netherlands)

    Barbosa, Flavia L.; Xiao, Yangyan; Bian, Fang; Coursey, Terry G.; Ko, Byung Yi; Clevers, Hans; de Paiva, Cintia S.; Pflugfelder, Stephen C.

    2017-01-01

    Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through

  11. Goblet Cells Contribute to Ocular Surface Immune Tolerance-Implications for Dry Eye Disease

    NARCIS (Netherlands)

    Barbosa, Flavia L; Xiao, Yangyan; Bian, Fang; Coursey, Terry G; Ko, Byung Yi; Clevers, Hans; de Paiva, Cintia S; Pflugfelder, Stephen C

    2017-01-01

    Conjunctival goblet cell (GC) loss in dry eye is associated with ocular surface inflammation. This study investigated if conjunctival GCs contribute to ocular surface immune tolerance. Antigens applied to the ocular surface, imaged by confocal microscopy, passed into the conjunctival stroma through

  12. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.

    Science.gov (United States)

    Otter, J A; Vickery, K; Walker, J T; deLancey Pulcini, E; Stoodley, P; Goldenberg, S D; Salkeld, J A G; Chewins, J; Yezli, S; Edgeworth, J D

    2015-01-01

    Microbes tend to attach to available surfaces and readily form biofilms, which is problematic in healthcare settings. Biofilms are traditionally associated with wet or damp surfaces such as indwelling medical devices and tubing on medical equipment. However, microbes can survive for extended periods in a desiccated state on dry hospital surfaces, and biofilms have recently been discovered on dry hospital surfaces. Microbes attached to surfaces and in biofilms are less susceptible to biocides, antibiotics and physical stress. Thus, surface attachment and/or biofilm formation may explain how vegetative bacteria can survive on surfaces for weeks to months (or more), interfere with attempts to recover microbes through environmental sampling, and provide a mixed bacterial population for the horizontal transfer of resistance genes. The capacity of existing detergent formulations and disinfectants to disrupt biofilms may have an important and previously unrecognized role in determining their effectiveness in the field, which should be reflected in testing standards. There is a need for further research to elucidate the nature and physiology of microbes on dry hospital surfaces, specifically the prevalence and composition of biofilms. This will inform new approaches to hospital cleaning and disinfection, including novel surfaces that reduce microbial attachment and improve microbial detachment, and methods to augment the activity of biocides against surface-attached microbes such as bacteriophages and antimicrobial peptides. Future strategies to address environmental contamination on hospital surfaces should consider the presence of microbes attached to surfaces, including biofilms. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters

    Directory of Open Access Journals (Sweden)

    C. Neal

    2001-01-01

    Full Text Available This paper examines the potential for calcium carbonate to reduce phosphate pollution in freshwaters by co-precipitation, a process known as a "self cleansing mechanism". Calcium carbonate saturation levels and phosphate concentrations (SRP - soluble reactive phosphate across the major eastern UK river basins are examined to test for solubility controls. The study shows that calcite saturation varies for each catchment as a function of flow and biological activity rather than by direct regulation by SRP. Indeed, there is no evidence, for any of the rivers studied, that calcite solubility controls hold. However, for groundwater and groundwater-fed springs in the Chalk of the Thames basin, calcite saturation is observed with associated low SRP levels. A self-cleansing mechanism may well be operative within the Chalk due to two factors. Firstly, there is a high potential for nucleation on the calcite micro-crystals in the aquifer. Secondly, there are within aquifer reactions that remove the calcite nucleating inhibitors (SRP and dissolved organic carbon, DOC to levels lower than those occurring within the rivers do. These inhibitors enter the catchment at very high concentrations in association with agricultural pollution (fertilizer application and animal slurry and household contamination (e.g. sewage sources from septic tanks. Under low flow conditions, when the saturation index for calcite is at its highest, so too is the concentration of the nucleation inhibitor SRP. Companion work shows that calcite precipitation can occur at the water-sediment interface of the river and this may involve SRP removal. The data, as a whole, define an apparent bound for calcite solubility control where in the presence of nucleating centres, SRP must be less than 4 mM-P l-1 and DOC must be less than 150 mM-C l-1: a condition that does not seem to pertain within most UK rivers. Keywords: calcite, calcium carbonate, phosphate, soluble reactive phosphate, dissolved

  14. Distribution of Minor Elements in Calcite From the Unsaturated Zone at Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Whelan, J. F.

    2001-12-01

    Calcite is sporadically distributed in fractures and cavities in the volcanic rocks that form the 500- to 700-m-thick unsaturated zone at Yucca Mountain. Previous work has shown that the calcite precipitated from water moving downward through the unsaturated zone since the volcanic rocks were emplaced approximately 13 Ma. Calcite thus serves as a proxy for the chemistry and amounts of past percolation, two parameters that are important in predictions of the future behavior of the potential radioactive waste repository at Yucca Mountain. Latest calcite, which began forming between approximately 5 and 2 Ma, typically displays fine-scale growth zoning defined by distributions of Mn (inferred from cathodoluminescence), Mg, and Sr. Electron microprobe (EPMA) mapping of outermost calcite reveals Mg growth zoning1 and higher overall concentrations of Mg in late calcite than in older calcite. Micro X-ray fluorescence (micro-XRF) maps were obtained by slow rastering of the samples over a 100-watt X-ray source collimated through a final aperture of 100 μ m. Although the spatial resolution of the micro-XRF mapping is much less than that of EPMA, this technique reveals distributions of some elements to which EPMA is less sensitive. Micro-XRF maps show that Sr is spatially correlated with Mg; Sr concentrations range to 500 μ g/g at the resolution of the 100-μ m collimator. Because both Mg and Sr have similar calcite-water distribution coefficients much less than one, the Mg/Sr in calcite reflects the Mg/Sr of the water that precipitated the calcite. The distribution coefficient for Mn is greater than one and variations in Mn are not correlated with Mg and Sr. Covariation of Mg and Sr in the percolating water may be explained by reactions that affect the rate of uptake of chemical constituents from the overlying rock and soil, and/or evaporation. Late calcite has lower δ 13C values, probably due to a regional change from wetter to drier climate conditions. The higher Mg and

  15. Monitoring of Calcite Precipitation in Hardwater Lakes with Multi-Spectral Remote Sensing Archives

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2017-01-01

    Full Text Available Calcite precipitation is a common phenomenon in calcium-rich hardwater lakes during spring and summer, but the number and spatial distribution of lakes with calcite precipitation is unknown. This paper presents a remote sensing based method to observe calcite precipitation over large areas, which are an important prerequisite for a systematic monitoring and evaluation of restoration measurements. We use globally archived satellite remote sensing data for a retrospective systematic assessment of past multi-temporal calcite precipitation events. The database of this study consists of 205 data sets that comprise freely available Landsat and Sentinel 2 data acquired between 1998 and 2015 covering the Northeast German Plain. Calcite precipitation is automatically identified using the green spectra and the metric BGR area, the triangular area between the blue, green and red reflectance value. The validation is based on field measurements of CaCO3 concentrations at three selected lakes, Feldberger Haussee, Breiter Luzin and Schmaler Luzin. The classification accuracy (0.88 is highest for calcite concentrations ≥0.7 mg/L. False negative results are caused by the choice of a conservative classification threshold. False positive results can be explained by already increased calcite concentrations. We successfully transferred the developed method to 21 other hardwater lakes in Northeast Germany. The average duration of lakes with regular calcite precipitation is 37 days. The frequency of calcite precipitation reaches from single time detections up to detections nearly every year. False negative classification results and gaps in Landsat time series reduce the accuracy of frequency and duration monitoring, but in future the image density will increase by acquisitions of Sentinel-2a (and 2b. Our study tested successfully the transfer of the classification approach to Sentinel-2 images. Our study shows that 15 of the 24 lakes have at least one phase of

  16. Time-lapse 3D imaging of calcite precipitation in a microporous column

    Science.gov (United States)

    Godinho, Jose R. A.; Withers, Philip J.

    2018-02-01

    Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.

  17. Chemistry of Frozen NaCl and MgSO4 Brines - Implications for Surface Expression of Europa's Ocean Composition

    Science.gov (United States)

    Johnson, P. V.; Hodyss, R. P.; Choukroun, M.; Vu, T. H.

    2015-12-01

    The composition of Europa's subsurface ocean is a critical determinant of its habitability, but current analysis of the ocean composition is limited to its expression on the Europan surface. While there is observational evidence indicating that ocean materials make their way to the surface, our understanding of the chemical processes that can alter this material under Europan surface conditions is limited. We present experimental data on the chemistry of mixed solutions of NaCl and MgSO4 as they are frozen to 100 K, replicating the conditions that may occur when subsurface ocean fluids are emplaced onto Europa's surface. Confocal micro-Raman spectroscopy is used to study the formation of salts during the freezing process, and the interaction of ions in the frozen brines. Our data indicate that mixed aqueous solutions of NaCl and MgSO4 form Na2SO4 and MgCl2 preferentially when frozen, rather than making NaCl and MgSO4 precipitates. The detection of epsomite (MgSO4Ÿ•7H2O) on Europa's surface may therefore imply an ocean composition relatively low in sodium, unless radiolytic chemistry converts MgCl2 to MgSO4 as suggested by Hand and Brown 2013 (ApJ 145 110). These results have important implications for the interpretation of remote sensing data of Europa's surface.

  18. The effect of fluids on the frictional behavior of calcite gouge

    Science.gov (United States)

    Rempe, M.; Di Toro, G.; Mitchell, T. M.; Hirose, T.; Smith, S. A. F.; Renner, J.

    2016-12-01

    The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by

  19. Metal-silicate fractionation in the surface dust layers of accreting planetesimals: Implications for the formation of ordinary chondrites and the nature of asteroid surfaces

    Science.gov (United States)

    Huang, Shaoxiong; Akridge, Glen; Sears, Derek W. G.

    Some of the most primitive solar system materials available for study in the laboratory are the ordinary chondrites, the largest meteorite class. The size and distribution of the chondrules (silicate beads) and metal, which leads to the definition of the H, L, and LL classes, suggest sorting before or during aggregation. We suggest that meteorite parent bodies (probably asteroids) had thick dusty surfaces during their early evolution that were easily mobilized by gases evolving from their interiors. Density and size sorting would have occurred in the surface layers as the upward drag forces of the gases (mainly water) acted against the downward force of gravity. The process is analogous to the industrially important process of fluidization and sorting in pyroclastic volcanics. We calculate that gas flow velocities and gas fluxes for the regolith of an asteroid-sized object heated by the impact of accreting objects or by 26Al would have been sufficient for fluidization. It can also explain, quantitatively in some cases, the observed metal-silicate sorting of ordinary chondrites, which has long been ascribed to processes occurring in the primordial solar nebula. Formation of the chondrites in the thick dynamic regolith is consistent with the major properties of chondritic meteorites (i.e., redox state, petrologic type, cooling rate, matrix abundance). These ideas have implications for the nature of asteroid surfaces and the virtual lack of asteroids with ordinary chondrite-like surfaces.

  20. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    Science.gov (United States)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  1. Surface dose measurements in and out of field. Implications for breast radiotherapy with megavoltage photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Lonski, Peta; Kron, Tomas [Peter MacCallum Cancer Centre, Melbourne (Australia); RMIT Univ., Melbourne (Australia); Ramachandran, Prabhakar; Franich, Rick [Peter MacCallum Cancer Centre, Melbourne (Australia)

    2017-07-01

    This study examines the difference in surface dose between flat and flattening filter free (FFF) photon beams in the context of breast radiotherapy. The surface dose was measured for 6 MV, 6 MV FFF, 10 MV, 10 MV FFF and 18 MV photon beams using a thin window ionisation chamber for various field sizes. Profiles were acquired to ascertain the change in surface dose off-axis. Out-of-field measurements were included in a clinically representative half beam block tangential breast field. In the field centres of FFF beams the surface dose was found to be increased for small fields and decreased for large fields compared to flat beams. For FFF beams, surface dose was found to decrease off-axis and resulted in lower surface dose out-of-field compared to flat beams.

  2. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  3. Conditions of uranium-bearing calcite formation in ore-enclosing sediments of the Semizbaj deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Maksimova, I.G.; Dojnikova, O.I.

    1995-01-01

    Consideration is given to results of investigation into uranium-bearing calcite, forming the cement of gravelly-sandy rocks of the Semizbaj uranium deposit. Core sampling in prospecting boreholes were used to establish geological conditions, place and time of uranium-bearing calcite formation. Calcite was investigated by optical, electron-microscope and radiographic methods. It is shown that uranium in calcite doesn't form its own mineral phase and exists in scattered state. Uranium in calcite-bearing minerals is present in isomorphic form. Uranium content in calcite was equal to 0.009-0.15 %. It is proposed that mineralization, formed in sedimentary rocks by processes of ground-stratum oxidation, is the source of uranium, enriching calcite. refs., 5 figs., 2 tabs

  4. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    International Nuclear Information System (INIS)

    Myneni, S.C.B.; Perera, R.C.C.

    1997-01-01

    Heavy metal-rich acidic waters (SO 4 2- , AsO 4 3- , SeO 4 2- , Fe 2+ , Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ ) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS 2 ), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS 2 + 3.5 O 2 + H 2 O ↔ Fe 2+ + SO 4 2- + 2H + . Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO 3 -rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined

  5. High School Forum: "Invitations to Enquiry": The Calcite/Acid Reaction.

    Science.gov (United States)

    Herron, J. Dudley, Ed.; Driscoll, D. R.

    1979-01-01

    Describes a high school chemistry experiment which involves the reaction between calcite and hydrochloric and sulfuric acids. This reaction can be carried out as a projected demonstration and on an individual basis. (HM)

  6. Calcite dissolution along a transect in the western tropical Indian Ocean: A multiproxy approach

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.

    Three paleocarbonate ion proxies, size index, planktonic foraminifera shell weight, and calcite crystallinity, have been employed here to a set of core top samples from the western tropical Indian Ocean in the water depth ranges from 1086 to 4730 m...

  7. Morphological changes of calcite single crystals induced by graphene-biomolecule adducts

    Science.gov (United States)

    Calvaresi, Matteo; Di Giosia, Matteo; Ianiro, Alessandro; Valle, Francesco; Fermani, Simona; Polishchuk, Iryna; Pokroy, Boaz; Falini, Giuseppe

    2017-01-01

    Calcite has the capability to interact with a wide variety of molecules. This usually induces changes in shape and morphology of crystals. Here, this process was investigated using sheets of graphene-biomolecule adducts. They were prepared and made dispersible in water through the exfoliation of graphite by tip sonication in the presence tryptophan or N-acetyl-D-glucosamine. The crystallization of calcium carbonate in the presence of these additives was obtained by the vapor diffusion method and only calcite formed. The analysis of the microscopic observations showed that the graphene-biomolecule adducts affected shape and morphology of rhombohedral {10.4} faced calcite crystals, due to their stabilization of additional {hk.0} faces. The only presence of the biomolecule affected minimally shape and morphology of calcite crystals, highlighting the key role of the graphene sheets as 2D support for the adsorption of the biomolecules.

  8. What concentration of actinides can be packed into calcite? Hints from rare earth element (REE) composition

    International Nuclear Information System (INIS)

    Christiansen, J.; Stipp, S.L.S.; Waight, T.; Baker, J.A.

    2005-01-01

    Full text of publication follows: For reliable modelling of actinide mobility in the event of spent fuel repository failure, we need data describing the uptake capacity of the minerals likely to find themselves in the transport path. Calcite (CaCO 3 ) is a common secondary mineral in fractures and pore fillings, especially downstream from degrading concrete facilities, so it is a likely candidate for incorporation. Investigations made under ACTAF, a 5. Framework EURATOM integrated project, as well as some other research studies, have shown that actinides are successfully incorporated as substituting ions within the calcite mineral structure. The question remaining, is how much can calcite take up. Geologists routinely use relative concentrations of rare Earth elements (REE's), the lanthanides, for interpreting rock genesis and history. One can also adopt them as analogues for the radioactive elements because their f-orbital electron configuration makes them behave very much like actinides. We collected and analysed a suite of 70 calcite samples from a great number of possible formation environments, geological ages and geographical locations, for the purpose of finding the range and maximum of total f-orbital substitution possible in calcite, under natural conditions. We analysed them using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The maximum concentration found was about 5 x 10 -3 mole/kg total REE in a sample that had a geological history of formation where REE fluids played a role. Over the whole suite, total REE ranged from less than 10 -4 moles/kg for limestone samples formed from biogenic calcite where REE-enriched fluids would have played a negligible role. Thus, in natural calcite, REE's are present and all evidence points to a structural incorporation within the mineral rather than as a separate REE-rich phase. These data compare favourably with mole fractions from calcite grown synthetically, where as much as 6 x 10 -3

  9. Precipitation of Calcite during the Deposition of Paleogene Sangkarewang Oil Shale, Ombilin Basin, West Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Haris Widayat

    2015-09-01

    Full Text Available DOI: 10.17014/ijog.2.3.185-197Geochemical and petrographical analyses were carried out to investigate the occurrence of calcite in theformer Ombilin lacustrine lake. The study involves eight samples taken from a 56 m long drill core of Sangkarewangoil shale. Geochemical investigation showed that the samples consist of varied terrigenous input represented by Si, Al, K, and Ti, and autochthonous input represented by S, total organic carbon (TOC, and d13C of bulk organic matter. Along the drill core profile the abundance of autochthonous input decreases upwards, while that of terrigenous input oppositely increases upwards. Petrographical analysis revealed that calcite is a major mineral in the samples. In this study, the abundance of calcite could be represented by the abundance of Ca, as calcite is the only significant Ca containing mineral. Ca is abundant in the samples (8.4% in average and its concentration varies similarly with those of S, TOC, and d13C, suggesting that the element as well as calcite incorporates the autochthonous input. Thevariation of calcite abundance in the drill core profile is considered to be related with primary productivity changes during the development of the former lake. Higher primary productivity represented by more positive of d13C value(-24.8‰ during the deposition of the lower part of the drill core profile promoted the higher amount of deposited organic matter. In such environment, the supersaturation of carbonate ion in lake water was also reached and significant precipitation of authigenic calcite occurred. As the lake developed, the primary productivity decreased as indicated by more negative of d13C value (eventually -26.8‰. This condition led to the decreases of deposited organic matterand calcite in the lake sediments.

  10. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    Science.gov (United States)

    Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

    2014-05-01

    Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with needle fibre calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this paper the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of fungi in CaCO3 biomineralization processes, a role still poorly documented. Moreover, on a global

  11. The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case

    Science.gov (United States)

    Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.

    2017-01-01

    Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.

  12. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy

    Science.gov (United States)

    Söngen, Hagen; Reischl, Bernhard; Miyata, Kazuki; Bechstein, Ralf; Raiteri, Paolo; Rohl, Andrew L.; Gale, Julian D.; Fukuma, Takeshi; Kühnle, Angelika

    2018-03-01

    It seems natural to assume that defects at mineral surfaces critically influence interfacial processes such as the dissolution and growth of minerals in water. The experimental verification of this claim, however, is challenging and requires real-space methods with utmost spatial resolution, such as atomic force microscopy (AFM). While defects at mineral-water interfaces have been resolved in 2D AFM images before, the perturbation of the surrounding hydration structure has not yet been analyzed experimentally. In this Letter, we demonstrate that point defects on the most stable and naturally abundant calcite (10.4) surface can be resolved using high-resolution 3D AFM—even within the fifth hydration layer. Our analysis of the hydration structure surrounding the point defect shows a perturbation of the hydration with a lateral extent of approximately one unit cell. These experimental results are corroborated by molecular dynamics simulations.

  13. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    Science.gov (United States)

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  14. Incorporating classic adsorption isotherms into modern surface complexation models: implications for sorption of radionuclides

    International Nuclear Information System (INIS)

    Kulik, D.A.

    2005-01-01

    Full text of publication follows: Computer-aided surface complexation models (SCM) tend to replace the classic adsorption isotherm (AI) analysis in describing mineral-water interface reactions such as radionuclide sorption onto (hydr) oxides and clays. Any site-binding SCM based on the mole balance of surface sites, in fact, reproduces the (competitive) Langmuir isotherm, optionally amended with electrostatic Coulomb's non-ideal term. In most SCM implementations, it is difficult to incorporate real-surface phenomena (site heterogeneity, lateral interactions, surface condensation) described in classic AI approaches other than Langmuir's. Thermodynamic relations between SCMs and AIs that remained obscure in the past have been recently clarified using new definitions of standard and reference states of surface species [1,2]. On this basis, a method for separating the Langmuir AI into ideal (linear) and non-ideal parts [2] was applied to multi-dentate Langmuir, Frumkin, and BET isotherms. The aim of this work was to obtain the surface activity coefficient terms that make the SCM site mole balance constraints obsolete and, in this way, extend thermodynamic SCMs to cover sorption phenomena described by the respective AIs. The multi-dentate Langmuir term accounts for the site saturation with n-dentate surface species, as illustrated on modeling bi-dentate U VI complexes on goethite or SiO 2 surfaces. The Frumkin term corrects for the lateral interactions of the mono-dentate surface species; in particular, it has the same form as the Coulombic term of the constant-capacitance EDL combined with the Langmuir term. The BET term (three parameters) accounts for more than a monolayer adsorption up to the surface condensation; it can potentially describe the surface precipitation of nickel and other cations on hydroxides and clay minerals. All three non-ideal terms (in GEM SCMs implementation [1,2]) by now are used for non-competing surface species only. Upon 'surface dilution

  15. Retention mechanisms and the flow wetted surface - implications for safety analysis

    International Nuclear Information System (INIS)

    Elert, M.

    1997-02-01

    The purpose of this report is to document the state-of-the-art concerning the flow wetted surface, its importance for radionuclide transport in the geosphere and review various suggestions on how to increase the present knowledge. Definitions are made of the various concepts used for the flow wetted surface as well as the various model parameters used. In the report methods proposed to assess the flow wetted surface are reviewed and discussed, tracer tests, tunnel and borehole investigations, geochemical studies, heat transport studies and theoretical modelling. Furthermore, a review is made of how the flow wetted surface has been treated in various safety analyses. Finally, an overall discussion with recommendations is presented, where it is concluded that at present no individual method for estimating the flow wetted surface can be selected that satisfies all requirements concerning giving relevant values, covering relevant distances and being practical to apply. Instead a combination of methods must be used. In the long-term research as well as in the safety assessment modelling focus should be put on assessing the ratio between flow wetted surface and water flux. The long-term research should address both the detailed flow within the fractures and the effective flow wetted surface along the flow paths. 55 refs

  16. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    Science.gov (United States)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  17. Mg and Sr in Arctic echinoderm calcite: Nature or nurture?

    Science.gov (United States)

    Iglikowska, A.; Borszcz, T.; Drewnik, A.; Grabowska, M.; Humphreys-Williams, E.; Kędra, M.; Krzemińska, M.; Piwoni-Piórewicz, A.; Kukliński, P.

    2018-04-01

    The Mg/Ca and Sr/Ca ratios in echinoderm skeletal calcite are used as a proxy for Phanerozoic seawater changes, since the skeletal concentrations are, to some extent, controlled by environmental factors. However, it remains unclear how the influence of environmental factors is modified by vital effects, especially in polar waters. Therefore, the goal of this study was to compare the ratios of Mg/Ca and Sr/Ca among the skeletal parts of 10 common Arctic echinoderm species belonging to three classes Echinoidea, Asteroidea and Ophiuroidea that contribute substantially to the carbon cycle in the Arctic benthic system. Significant differences were recorded in echinoid skeletal element concentrations among specific skeletal parts. The lowest Mg/Ca and Sr/Ca ratios were detected in the spines (mean Mg/Ca 37.5 ± 8.8 SD; Sr/Ca 1.8 ± 0.1). The components of the Aristotle's lantern (epiphyses, pyramids and rotulas) were characterised by the highest Mg levels (Mg/Ca 79.9 ± 6.0; 75.2 ± 9.1; 60.1 ± 3.8, respectively). It is likely that mouth parts experience greater mechanical pressure compared to other body parts, and the higher content of Mg in the Aristotle's lantern contributes to its robustness. We did not find any distinctive trends in the distribution of skeletal elements in the asteroid and ophiuroid skeletal parts. The heterogeneous concentrations of Mg and Sr in different skeleton parts of the echinoids suggest possible physiological regulation of the chemical composition rather than the composition only being influenced by the environment. We cannot recommend echinoderm skeletons as reliable indicators in palaeoenvironmental reconstructions due to the possible biological control of skeletal chemistry, which may interfere with the effect of environmental variables.

  18. Sea urchin tooth mineralization: Calcite present early in the aboral plumula

    Science.gov (United States)

    Stock, Stuart R.; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D.; Dorvee, Jason R.

    2012-01-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: When and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron x-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. PMID:22940703

  19. Sealing of rock joints by induced calcite precipitation. A case study from Bergeforsen hydro power plant

    International Nuclear Information System (INIS)

    Hakami, E.; Qvarfort, U.; Ekstav, A.

    1991-01-01

    The possibilities of sealing rock fractures by injecting water saturated with calcite solution, and hereby inducing a calcite precipitation inside the fracture, is investigated. The way of reaction and the amount of calcite precipitation will depend on the saturation of calcium carbonate in the water, the temperature, the pH and the CO 2 -pressure. There is experience of lime-saturated water injection in the rock foundation below the dam at Bergeforsens power plant (1955-1968). It was observed that the consumption of injected lime water decreased with time. A possible reason to the decrease in lime water consumption is that calcite has precipitated such that the permeability of the rock in general is lowered. Another explanation to this could be that calcite precipitation is concentrated to the fractures surrounding the injection holes, thus preventing the lime water from penetrating further into the rock. It is recommended that further studies of the fracture fillings in drill cores from Bergeforsen is performed. The aim of such study should be to determine the extent of induced calcite precipitation and to investigate its chemical and physical properties. (authors)

  20. Sea urchin tooth mineralization: calcite present early in the aboral plumula.

    Science.gov (United States)

    Stock, Stuart R; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D; Dorvee, Jason R

    2012-11-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: when and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron X-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  2. The mineralogic evolution of the Martian surface through time: Implications from chemical reaction path modeling studies

    Science.gov (United States)

    Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.

    1993-01-01

    Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.

  3. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhuanxi [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Wang, Zhenhong [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhangzhou Normal University, Department of Chemistry and Environment Sciences, Zhangzhou 363000 (China); Wei, QunShan [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Yan, Changzhou, E-mail: czyan@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Feng [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2011-09-15

    Highlights: {yields} The attachment of Enano-TiO{sub 2} to surface enhanced markedly sediment BET surface area and t-Plot external surface area. {yields} The fill of Enano-TiO{sub 2} into the micropores reduced significantly the sediment t-Plot micropore surface area. {yields} Enano-TiO{sub 2} could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. {yields} P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO{sub 2}. - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO{sub 2} (Enano-TiO{sub 2}) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO{sub 2}. In this study, Enano-TiO{sub 2} was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO{sub 2} particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S{sub max}). Contrarily, the fill of Enano-TiO{sub 2} particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO{sub 2}. Enano-TiO{sub 2} would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO{sub 2} and/or similar ENPs.

  4. Stable calcium isotope composition of a pedogenic carbonate in forested ecosystem: the case of the needle fibre calcite (NFC).

    Science.gov (United States)

    Milliere, Laure; Verrecchia, Eric; Gussone, Nikolaus

    2014-05-01

    Calcium (Ca), carbon (C) and oxygen (O) are important elements in terrestrial environment, as their biogeochemical cycles are directly related to the storage of atmospheric carbon. Nevertheless, contrarily to C and O, Ca isotope composition has been only poorly studied in the terrestrial carbonates. Needle Fibre Calcite (NFC) is one of the most common pedogenic carbonates, unless its origin is still under debate. Recent studies explain its formation by precipitation inside fungal hyphae. Due to this possible biogenic origin, NFC can be considered as a potential bridge between the biochemistry (precipitation inside organic structure) and geochemistry (pedogenic carbonate related to soil conditions) of the Ca. Thus, the study of the Ca isotope composition of NFC seem to be of first interest in order to shed light on the behaviour of Ca in terrestrial environment, especially when precipitation of secondary carbonates is involved. The sampling site is situated in the Swiss Jura Mountains and has been chosen due to a previous complete study of the C and O isotope composition of NFC in relation to the ecosystem, which represent a good precondition for the understanding of the NFC Ca isotope signatures in this context. In this study, the implication of the fungi in the origin of NFC is investigated, by comparing the Ca isotope composition of NFC and a purely physicochemical calcite cement (LCC), both precipitated in the same environment. The δ44Ca signature of NFC and LCC crystals were used to determine possible differences of the precipitation rate during their formation. NFC and LCC have similar δ18O composition and are supposed to precipitate at the same temperature (Milliere et al., 2011a). Thus the study of Ca isotope composition of NFC seems to demonstrate that the elongated shape of the calcite needle can be explained by different precipitation processes than the rhombohedric calcite crystals precipitated in the same environment; and more precisely, the specific

  5. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  6. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Palmer, C J

    2010-01-01

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  7. Neural mechanisms of intermuscular coherence: Implications for the rectification of surface electromyography

    NARCIS (Netherlands)

    Boonstra, T.W.; Breakspear, M.

    2012-01-01

    Oscillatory activity plays a crucial role in corticospinal control of muscle synergies and is widely investigated using corticospinal and intermuscular synchronization. However, the neurophysiological mechanisms that translate these rhythmic patterns into surface electromyography (EMG) are not well

  8. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation

    Science.gov (United States)

    Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei

    2017-12-01

    Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.

  9. Surface metal adsorption on zooplankton carapaces: implications for exposure and effects in consumer organisms

    International Nuclear Information System (INIS)

    Robinson, K.A.; Baird, D.J.; Wrona, F.J.

    2003-01-01

    Metals adsorbed to prey surfaces may be a mechanism of exposure in predators. - The current study aimed to determine the potential of two important aquatic invertebrate crustacean species, Daphnia magna and Ceriodaphnia dubia, to adsorb cadmium on to their carapaces from aqueous solution. Using the Langmuir equation to model data outputs, it was shown that cadmium readily became associated with the carapace surfaces of both species, with uptake being dependent on exposure time and concentration. Maximum carapace-adsorption potential was found to be directly related to surface area, so that at predicted carapace saturation, D. magna neonates bound approximately five times more cadmium than the smaller C. dubia neonates. However, adsorption per unit surface area was found to be similar under the same exposure conditions. Results of surface metal adsorption studies in C. dubia suggested that short term exposures to high concentrations of aqueous cadmium would lead to similar levels of adsorption as obtained with long-term exposures to low concentrations. The study illustrates that contaminants adsorbed to prey surfaces may be an important mechanism of exposure to predators, and highlights some potential problems of feeding organisms during long-term toxicity tests

  10. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    International Nuclear Information System (INIS)

    Blake, R W

    2009-01-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number (∼0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  11. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R W [Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)], E-mail: blake@zoology.ubc.ca

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ({approx}0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive

  12. Thermo-Compositional Evolution of a Brine Reservoir Beneath Ceres' Occator Crater and Implications for Cryovolcanism at the Surface

    Science.gov (United States)

    Quick, L. C.

    2017-12-01

    The Dawn spacecraft has imaged several putative cryovolcanic features on Ceres (Buczkowski et al., 2016; Ruesch et al., 2016), and several lines of evidence point to past cryovolcanic activity at Occator crater (De Sanctis et al., 2016; Krohn et al., 2016; Buczkowski et al., 2017; Nathues et al., 2017; Ruesch et al., 2017; Zolotov, 2017). Hence it is possible that cryovolcanism played a key role in delivering carbonate and/or chloride brines to Ceres' surface in the past. As any cryolavas delivered to the surface would have issued from a briny subsurface reservoir, or, cryomagma chamber, it is necessary to consider the thermal and compositional evolution of such a reservoir. The detection of a 200 km x 200 km negative Bouguer anomaly beneath Occator suggests the presence of a low-density region beneath the crater (Ermakov et al., 2017). If this region is a residual cryomagma chamber, excess pressures caused by its gradual freezing, or stresses produced by the Occator-forming impact, could have once facilitated the delivery of cryolavas to the Cerean surface. I have investigated the progressive solidification of a cryomagma chamber beneath Occator and implications for the changing compositions of cryolavas on Ceres. I will present the results of this study as well as discuss the dynamics and heat transfer associated with cryomagmatic ascent to the surface. Preliminary results suggest that a 200 km wide cryomagma chamber situated beneath Ceres' crust would take approximately 1 Gyr to completely crystallize. However, such a reservoir would be depleted in chloride and carbonate salts after only 54 Myr of cooling. If the reservoir contained NH3-bearing fluids, eruptions could proceed for another 100 Myr before increased reservoir crystallization rendered cryomagmatic fluids completely immobile. In addition, it is likely that cryomagmas delivered to Ceres' surface had viscosities < 108 Pa s, and were delivered in fractures with propagation speeds ≥ 10-5 m/s. I will

  13. Spectral and physical properties of metal in meteorite assemblages - implications of asteroid surface materials

    International Nuclear Information System (INIS)

    Gaffey, M.J.

    1986-01-01

    One of the objectives of the present paper is related to a definition of the spectral contribution of the nickel-iron metal component in meteoritic assemblages. Another objective is the elucidation of the chemical, physical, and petrographic properties of the metal grains which affect the spectral signature in asteroid surface materials. It is pointed out that an improved understanding of the spectral and physical properties of metal in asteroid regoliths should permit an improved characterization of these objects, and, in particular, a better evaluation of the differentiated or undifferentiated nature of the S-type and M-type asteroids. Attention is given to the spectra of iron and nickel-iron metals, the spectral effects of metal in chondritic assemblages, the spectral reflectance of metal grains in ordinary chondrites, the nature of the surfaces of chondritic metal grains, the origin of coats on chondritic metal grains, and the fragmentation of metal on asteroid surfaces. 57 references

  14. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    Science.gov (United States)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  15. Microbial Community Structure of an Alluvial Aquifer Treated to Encourage Microbial Induced Calcite Precipitation

    Science.gov (United States)

    Ohan, J.; Saneiyan, S.; Lee, J.; Ntarlagiannis, D.; Burns, S.; Colwell, F. S.

    2017-12-01

    An oligotrophic aquifer in the Colorado River floodplain (Rifle, CO) was treated with molasses and urea to encourage microbial induced calcite precipitation (MICP). This would stabilize the soil mass by reducing porosity and strengthening the mineral fabric. Over the course of a 15-day treatment period, microbial biomass was collected from monitoring well groundwater for DNA extraction and sequencing. Bromide, a conservative tracer, was co-injected and subsequently detected in downgradient wells, confirming effective nutrient delivery. Conductivity increased during the injection regime and an overall decrease in pH was observed. Groundwater chemistry showed a marked increase in ammonia, suggesting urea hydrolysis - a process catalyzed by the enzyme urease - the primary enzyme implicated in MICP. Additionally, soluble iron was detected, suggesting a general increase in microbial activity; possibly as iron-reducing bacteria changed insoluble ferric oxide to soluble ferrous hydroxide in the anoxic aquifer. DNA sequencing of the 16S rRNA gene confirmed the presence of iron reducing bacteria, including Shewanella and Desulfuromonadales. Generally, a decrease in microbial community diversity was observed when pre-injection community taxa were compared with post-injection community taxa. Phyla indicative of anoxic aquifers were represented in accordance with previous literature at the Rifle site. Linear discriminant analysis showed significant differences in representative phyla over the course of the injection series. Geophysical monitoring of the site further suggested changes that could be due to MICP. Induced polarization increased the phase shift in the primary treated area, in agreement with laboratory experiments. Cross-hole seismic testing confirmed that the shear wave velocities increased in the treated soil mass, implying the soil matrix became more stable. Future investigations will help elucidate the viability and efficacy of MICP treatment in changing

  16. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Glenn Charles [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  17. Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions

    Science.gov (United States)

    Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at calcite literature thermal data was obtained at 1000 mbar or higher pressures.

  18. FORMATION OF CALCITE AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Paces, J.B.; Whelan, J.F.; Peterman, Z.E.; Marshall, B.D.

    2000-01-01

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  19. Behaviour of uranium series radionuclides in surface water (Crouzille, Limousin). Geochemical implications

    International Nuclear Information System (INIS)

    Moulin, J.

    2008-06-01

    Understanding natural radionuclides behaviour in surface water is a required step to achieve uranium mine rehabilitation and preserve water quality. The first objective of this thesis is to determine which are the radionuclides sources in a drinking water reservoir. The second objective is to improve the knowledge about the behaviour of uranium series radionuclides, especially actinium. The investigated site is a brook (Sagnes, Limousin, France) which floods a peat bog contaminated by a former uranium mine and which empties into the Crouzille lake. It allows studying radionuclides transport in surface water and radionuclides retention through organic substance or water reservoir. Radionuclides distribution in particulate, colloidal and dissolved phases is determined thanks to ultra-filtrations. Gamma spectrometry allows measuring almost all natural radionuclides with only two counting stages. However, low activities of 235 U series radionuclides impose the use of very low background well-type Ge detectors, such as those of the Underground Laboratory of Modane (France). Firstly, this study shows that no or few radionuclides are released by the Sagnes peat bog, although its radioactivity is important. Secondly, it provides details on the behaviour of uranium series radionuclides in surface water. More specifically, it provides the first indications of actinium solubility in surface water. Actinium's behaviour is very close to uranium's even if it is a little less soluble. (author)

  20. Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion

    Science.gov (United States)

    Cercato, Michele

    2018-04-01

    The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.

  1. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    International Nuclear Information System (INIS)

    Liu, An; Liu, Liang; Li, Dunzhu; Guan, Yuntao

    2015-01-01

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse

  2. GROUNDWATER-SURFACE WATER EXCHANGE AND IMPLICATIONS FOR LARGE RIVER RESTORATION

    Science.gov (United States)

    Movement of river water into and out of high-porosity alluvial deposits can have an important influence on surface water quality and aquatic habitat. In our study of a 60-km reach of the Willamette River in Oregon, USA, we: 1) used tracers to estimate the rate of exchange betw...

  3. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    Energy Technology Data Exchange (ETDEWEB)

    Liu, An [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Cooperative Research and Education Centre for Environmental Technology, Kyoto University–Tsinghua University, 518055 Shenzhen (China); Liu, Liang; Li, Dunzhu [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Guan, Yuntao, E-mail: guanyt@tsinghua.edu.cn [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-05-15

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse.

  4. AFM Colloidal Probe Measurements Implicate Capillary Condensation in Punch-Particle Surface Interactions during Tableting.

    Science.gov (United States)

    Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Millqvist-Fureby, Anna; Rutland, Mark W

    2017-11-21

    Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture-due to the fast condensation kinetics-leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive

  5. Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

    International Nuclear Information System (INIS)

    De Wit, J. H. W.; Van den Brand, J.; De Wit, F. M.; Mol, J. M. C.

    2008-01-01

    The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. in addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond

  6. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    Science.gov (United States)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  7. Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey)

    Science.gov (United States)

    Capezzuoli, Enrico; Ruggieri, Giovanni; Rimondi, Valentina; Brogi, Andrea; Liotta, Domenico; Alçiçek, Mehmet Cihat; Alçiçek, Hülya; Bülbül, Ali; Gandin, Anna; Meccheri, Marco; Shen, Chuan-Chou; Baykara, Mehmet Oruç

    2018-02-01

    Linking the architecture of structural conduits with the hydrothermal fluids migrating from the reservoir up to the surface is a key-factor in geothermal research. A contribution to this achievement derives from the study of spring-related travertine deposits, but although travertine depositional systems occur widely, their feeding conduits are only rarely exposed. The integrated study carried out in the geothermal Gölemezli area, nearby the well-known Pamukkale area (Denizli Basin, western Anatolia, Turkey), focused on onyx-like calcite veins (banded travertine) and bedded travertine well exposed in a natural cross-section allowing the reconstruction of the shallower part of a geothermal system. The onyx-like veins represent the thickest vein network (> 150 m) so far known. New field mapping and structural/kinematic analyses allowed to document a partially dismantled travertine complex (bedded travertine) formed by proximal fissure ridges and distal terraced/pools depositional systems. The banded calcite veins, WNW-trending and up to 12 m thick, developed within a > 200 m thick damaged rock volume produced by parallel fault zones. Th/U dating indicates a long lasting (middle-late Pleistocene) fluids circulation in a palaeo-geothermal system that, due to its location and chemical characteristics, can be considered the analogue of the nearby, still active, Pamukkale system. The isotopic characteristics of the calcite veins together with data from fluid inclusions analyses, allow the reconstruction of some properties (i.e. temperature, salinity and isotopic composition) and processes (i.e. temperature variation and intensity of degassing) that characterized the parent fluids and the relation between degassing intensity and specific microfabric of calcite crystals (elongated/microsparite-micrite bands), controlled by changes/fluctuations of the physico-chemical fluid characteristics.

  8. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    Science.gov (United States)

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  9. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  10. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  11. Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    OpenAIRE

    Steyerl, A.; Malik, S. S.; Desai, A. M.; Kaufman, C.

    2009-01-01

    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggest...

  12. Adsorption of bis(2-hydroxy-3-chloropropyl) dodecylamine on quartz surface and its implication on flotation

    Science.gov (United States)

    Liu, Wengang; Liu, Wenbao; Dai, Shujuan; Wang, Benying

    2018-06-01

    In order to clarify the effect of polar group modification on flotation performance of amine collector, flotation properties of quartz and hematite using bis(2-hydroxy-3-chloropropyl) dodecylamine (N23) as a collector were investigated. And the adsorption mechanism of N23 on quartz surface was established by zeta potential measurements, SEM/EDS measurements, and molecular structure analysis. Single mineral flotation results indicated that N23 showed stronger collecting ability on quartz and hematite than DDA-CH3COOH. However, starch could depress the flotation of hematite. Flotation recovery of 98.10% for quartz could be achieved, when N23 concentration was 43.33 mg/L and starch concentration was 16.67 mg/L at natural slurry pH. Separation of artificially mixed minerals of hematite and quartz was achieved effectively using N23 as the collector. The optimized separation result with 66.29% iron grade and 90.06% iron recovery in concentrate was obtained when slurry pH was 7.34 with 43.33 mg/L N23 and 23.33 mg/L starch. The interaction energies of N23 with mineral surface also showed well consistency with flotation results. SEM/EDS analyses and zeta potential measurements revealed that N23 could absorb on quartz surface in the forms of strong electrostatic and hydrogen bonding interaction. Compared with DDA, N23 had a higher HLB value and better water-solubility, which resulted in better dispersion in water and stronger adsorption on mineral surface.

  13. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing

    International Nuclear Information System (INIS)

    Rocha, Adrian V; Loranty, Michael M; Higuera, Phil E; Mack, Michelle C; Hu Fengsheng; Jones, Benjamin M; Breen, Amy L; Rastetter, Edward B; Shaver, Gus R; Goetz, Scott J

    2012-01-01

    Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required. (letter)

  14. Spatial and temporal patterns of airflow across a foredune and beach surface under offshore winds: implications for aeolian sediment transport

    Science.gov (United States)

    Jackson, D.; Delgado-Fernandez, I.; Lynch, K.; Baas, A. C.; Cooper, J. A.; Beyers, M.

    2010-12-01

    The input of aeolian sediment into foredune systems from beaches represents a key component of sediment budget analysis along many soft sedimentary coastlines. Where there are significant offshore wind components in local wind regimes this is normally excluded from analysis. However, recent work has shown that if the topography of the foredune is favourable then this offshore component is steered or undergoes flow reversal through leeside eddying to give onshore transport events at the back beach under offshore flow conditions. At particular distances from the foredune crest flow reattaches to the surface to continue its incident offshore direction. The location of this reattachment point has important implications for aeolian transport of sand on the back beach and foredune toe locations. This study reports initial results where the positioning of the reattachment point is mobile and is driven by incident wind velocity (at the foredune crest) and the actual undulations of the foredune crest’s topography, dictating heterogeneous flow behaviour at the beach. Using detailed field measurements (25 Hz, three-dimensional sonic anemometry) and computational fluid dynamic modelling, a temporal and spatial pattern of reattachment positions are described. Implications for aeolian transport and dune evolution are also examined.

  15. Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States); Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Tanana, Heather [Univ. of Utah, Salt Lake City, UT (United States); Holt, Rebecca [Univ. of Utah, Salt Lake City, UT (United States)

    2011-12-01

    Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream

  16. Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics

    Science.gov (United States)

    Tisdale, William A., III

    Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots

  17. Variation in PAH inputs and microbial community in surface sediments of Hamilton Harbour: Implications to remediation and monitoring

    International Nuclear Information System (INIS)

    Slater, G.F.; Cowie, B.R.; Harper, N.; Droppo, I.G.

    2008-01-01

    Variations in concentrations of polycyclic aromatic hydrocarbons (PAHs) and microbial community indicators were investigated in representative highly contaminated and less contaminated surface sediment sites of Hamilton Harbour. Inputs of PAH to the upper 3 cm of sediments up to four times the average upper sediment concentrations were observed. Associated PAH fingerprint profiles indicated that the source was consistent with the PAH source to the industrial region of the harbour. Increased PAH loadings were associated with decreased bacterial populations as indicated by phospholipid fatty acid (PLFA) concentrations. However, relatively minor impacts on overall community composition were indicated. Porewater methane concentrations and isotopic data indicated a difference in the occurrence of methane oxidation between the two sites. This study confirms temporally limited transport of contaminants from highly impacted regions as a vector for contaminants within the harbour and the impact on microbial carbon cycling and bed stability. - Variations in PAH inputs to harbour sediments have implications to implementation and monitoring of mitigation/remediation efforts

  18. Observation of surface features on an active landslide, and implications for understanding its history of movement

    Directory of Open Access Journals (Sweden)

    M. Parise

    2003-01-01

    Full Text Available Surface features are produced as a result of internal deformation of active landslides, and are continuously created and destroyed by the movement. Observation of their presence and distribution, and surveying of their evolution may provide insights for the zonation of the mass movement in sectors characterized by different behaviour. The present study analyses and describes some example of surface features observed on an active mass movement, the Slumgullion earthflow, in the San Juan Mountains of southwestern Colorado. The Slumgullion earthflow is one of the most famous and spectacular landslides in the world; it consists of a younger, active part which moves on and over an older, much larger, inactive part. Total length of the earthflow is 6.8 km, with an estimated volume of 170 × 10 6 m 3 . Its nearly constant rate of movement (ranging from about 2 m per year at the head, to a maximum of 6–7 m per year at its narrow and central part, to values between 1.3 and 2 m per year at the active toe, and the geological properties of moving material, are well suited for the observation of the development and evolution of surface features. In the last 11 years, repeated surveying at the Slumgullion site has been performed through recognition of surface features, measurements of their main characteristics, and detailed mapping. In this study, two sectors of the Slumgullion earthflow are analysed through comparison of the features observed in this time span, and evaluation of the changes occurred: they are the active toe and an area located at the left flank of the landslide. Choice of the sectors was dictated in the first case, by particular activity of movement and the nearby presence of elements at risk (highway located only 250 m downhill from the toe; and in the second case, by the presence of many surface features, mostly consisting of several generations of flank ridges. The active toe of the landslide is characterized by continuous movement

  19. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    Energy Technology Data Exchange (ETDEWEB)

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.

    2009-12-01

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  20. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.

    Science.gov (United States)

    Wetzel, Maria; Kempka, Thomas; Kühn, Michael

    2018-04-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.

  1. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2012-01-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7–8.3) and covered a wide span in the activity of Ca2+ and View the MathML source. The results show that the adsorption...... that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately...

  2. Use of multiple attributes decision-making Technique for Order Preference by Similarity to Ideal Solution (TOPSIS for Ghare-Gheshlagh calcite in determination of optimum geochemical sampling sites

    Directory of Open Access Journals (Sweden)

    Mansour Rezaei Azizi

    2015-04-01

    Full Text Available Introduction Several valuable calcite deposits are located in Ghare-Gheshlagh, south basin of Urmia Lake, NW Iran. Ghare-Gheshlagh area is situated in the northern part of tectono-sedimentary unit, forming NW part of Tertiary Sanandaj-Sirjan geological belt (Stocklin and Nabavi, 1972. The predominant rock types of the area include light color limestones (Qom Formation and Quaternary alluviums and underlined dolomite in depth (Eftekharnejhad, 1973. The thickness of these units varies between 10 cm and 6 meters and up to some hundred meters in length. In the present study, the effect of geochemical parameters responsible for precipitating calcite from the carbonate aqueous fluids is interpreted by the TOPSIS method to find the most preferable sampling sites and geochemical data. Materials and Methods A total of 20 samples were taken from a NE-SW trending profile including 15 calcites of fresh surface outcrops (5 samples per each colored calcite units in order to determine the nature of the rocks. The mineral assemblages were analyzed by optical methods in combination with XRD powder diffraction analysis. Major elements were determined by X-Ray Fluorescence Spectrometry (XRF, trace and rare earth elements were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS in Geological Survey of Iran. Results The abundances of trace elements were normalized to the continental crust values (Taylor and McLennan, 1981. The green calcite revealed enrichment in Rb and Sr, while green and white calcite were enriched in U. The U enrichment in the green calcite indicates the reduction condition of deposition. Incompatible elements such as Ba, Th, Nb and P depleted in all calcites. Varying the Sr/Ba value between 3.18 and 5.21% indicates the continental deposition environment and non-magmatic waters as well (Cheng et al., 2013. The Sr2+ content of calcites varies from 123 to 427 ppm, indicates suitable condition for calcite precipitation. Eu anomalies

  3. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation

    International Nuclear Information System (INIS)

    Tulbure, Mirela G; Broich, Mark; Kininmonth, Stuart

    2014-01-01

    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999–2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as

  4. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation

    Science.gov (United States)

    Tulbure, Mirela G.; Kininmonth, Stuart; Broich, Mark

    2014-11-01

    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999-2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as

  5. Plot-scale field experiment of surface hydrologic processes with EOS implications

    Science.gov (United States)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  6. Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    International Nuclear Information System (INIS)

    Steyerl, A.; Malik, S. S.; Desai, A. M.; Kaufman, C.

    2010-01-01

    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that reported a large discrepancy of neutron lifetime with the current particle data value. Our partial reanalysis suggests the possibility of systematic effects that were not included in this publication.

  7. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  8. Neuronal Surface Autoantibodies in Neuropsychiatric Disorders: Are There Implications for Depression?

    Directory of Open Access Journals (Sweden)

    Shenghua Zong

    2017-07-01

    Full Text Available Autoimmune diseases are affecting around 7.6–9.4% of the general population. A number of central nervous system disorders, including encephalitis and severe psychiatric disorders, have been demonstrated to associate with specific neuronal surface autoantibodies (NSAbs. It has become clear that specific autoantibodies targeting neuronal surface antigens and ion channels could cause severe mental disturbances. A number of studies have focused or are currently investigating the presence of autoantibodies in specific mental conditions such as schizophrenia and bipolar disorders. However, less is known about other conditions such as depression. Depression is a psychiatric disorder with complex etiology and pathogenesis. The diagnosis criteria of depression are largely based on symptoms but not on the origin of the disease. The question which arises is whether in a subgroup of patients with depression, the symptoms might be caused by autoantibodies targeting membrane-associated antigens. Here, we describe how autoantibodies targeting membrane proteins and ion channels cause pathological effects. We discuss the physiology of these antigens and their role in relation to depression. Finally, we summarize a number of studies detecting NSAbs with a special focus on cohorts that include depression diagnosis and/or show depressive symptoms.

  9. Health initiatives to target obesity in surface transport industries: Review and implications for action

    Directory of Open Access Journals (Sweden)

    Anjum Naweed

    2015-06-01

    Full Text Available Lifestyle-related chronic diseases pose a considerable burden to the individual and the wider society, with correspondingly negative effects on industry. Obesity is a particular problem for the Australasian road and rail industries where it is associated with specific cardiac and fatigue-related safety risks, and levels are higher than those found in the general population. Despite this recognition, and the introduction of National Standards, very little consensus exists regarding approaches to preventative health for surface transport workers. A review of evidence regarding effective health promotion initiatives is urgently needed to inform best practice in this cohort. This review draws together research informing the scope and effectiveness of health promotion programs, initiatives and interventions targeting overweight and obesity in safety critical surface transport domains including the truck, bus and rail industries. A number of health interventions demonstrated measurable successes, including incentivising, peer mentoring, verbal counselling, development of personalised health profiles, and offer of healthier on-site food choices – some of which also resulted in sizeable return on investment over the long term.

  10. Alkaline phosphatase binds tenaciously to titanium; implications for biological surface evaluation following bone implant retrieval.

    Science.gov (United States)

    Mansell, J P; Shiel, A I; Harwood, C; Stephens, D

    2017-07-01

    Enhancing the performance and longevity of titanium (Ti) implants continues to be a significant developmental theme in contemporary biomaterials design. Our specific focus pertains to the surface functionalisation of Ti using the bioactive lipid, lysophosphatidic acid (LPA) and certain phosphatase-resistant analogues of LPA. Coating survivorship to a plethora of testing regimens is required to align with due regulatory process before novel biomaterials can enter clinical trials. One of the key acceptance criteria is coating retention to the physical stresses experienced during implantation. In assessing coating stability to insertion into porcine bone we found that a subsequent in vitro assessment to confirm coating persistence was masked by abundant alkaline phosphatase (ALP) contamination adsorbed to the metal surface. Herein we report that ALP can bind to Ti in a matter of minutes by simply immersing Ti samples in aqueous solutions of the enzyme. We strongly discourage the in vitro monitoring of osteoblast and stromal cell ALP expression when assessing bioactive coating survivorship following Ti implant retrieval form native bone tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  12. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    Science.gov (United States)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ˜ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ˜ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace

  13. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    Directory of Open Access Journals (Sweden)

    P. Boncio

    2018-01-01

    Full Text Available The criteria for zoning the surface fault rupture hazard (SFRH along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike–slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9. Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding. For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r and the width of the rupture zone (WRZ were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ∼ 2150 m on the footwall and  ∼  3100 m on the hanging wall. Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( >   ∼  50 % at distances  <   ∼  250 m. The widest WRZ are recorded where sympathetic slip (Sy on distant faults occurs, and/or where bending-moment (B-M or flexural-slip (F-S fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength, are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to

  14. Index of refraction enhancement of calcite particles coated with zinc carbonate

    Science.gov (United States)

    Lattaud, Kathleen; Vilminot, Serge; Hirlimann, Charles; Parant, Hubert; Schoelkopf, Joachim; Gane, Patrick

    2006-10-01

    ZnCO 3 coating on calcite particles has been developed in order to enhance the index of refraction of this mineral that is used as a charge in paper, paint and polymer industries. Chemical reaction between calcite particles in an aqueous suspension with zinc chloride promotes the formation of a ZnCO 3 coating consisting of two layers with different interactions with the calcite particle. The refraction index of the resulting composite particles increases with the Zn/Ca ratio. A model allows to evaluate the coating thickness. The value of the scattering S and diffusion K coefficients of sheets coated with the ZnCO 3 coated particles reveal a dependence on the preparation conditions with a 15% increase for the best samples.

  15. Neutron-activation determination of the rare earths in natural calcites using a semiconductor detector

    International Nuclear Information System (INIS)

    Vaganov, N.A.; Bulnaev, A.I.; Mejer, V.A.; Ponomarev, V.S.

    1976-01-01

    The application of germanium semiconducting detector is described. The detector has an energy resolution about 1 KeV and makes it possible to determine the content of Ce, Nd, Eu, Gd, Tb, and Yb in natural calcites with high sensitivity. The region of soft γ-radiation of activated calcites is more favourable for measurements to be performed than the region of hard γ-rays. Semiconducting detectors of radiation type are relatively cheap; they can be stored at room temperature. The limit of determining rare earth elements in calcites is (g): Eu-1.5.10 -9 ; Tb-4.0.10 -9 ; Yb-7.0.10 -9 ; Ce-1.0.10 -7 ; Nd-5.0.10 -7 ; Gd-1.0.10 -6 . A relative error of concentration determination is 10-20%

  16. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, Brian D.; Futa, Kiyoto

    2001-01-01

    Pore water in the Topopah Spring Tuff has a narrow range of (delta) 87 Sr values that can be calculated from the (delta) 87 Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of (delta) 87 Sr in the pore water through time; this approximates the variation of (delta) 87 Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model

  17. Advection and diffusion in random media implications for sea surface temperature anomalies

    CERN Document Server

    Piterbarg, Leonid I

    1997-01-01

    The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.

  18. Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    to 2 years. These differences suggest that spatial variations in physical oceanographic phenomena and sampling heterogeneities associated with opportunistic sampling could affect perceptions of biological responses to temperature fluctuations. The documentation that the coastally measured temperatures...... questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea-Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands...... at coastal sites co-varied strongly with each other and with opportunistically measured offshore temperatures despite separation distances between measuring locations of 20-1200 km. This covariance is probably due to the influence of large-scale atmospheric processes on regional temperatures...

  19. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications

    DEFF Research Database (Denmark)

    Pavlov, Alexey K.; Granskog, Mats A.; Stedmon, Colin A.

    2015-01-01

    radiation (PAR, 400-700nm), but does result in notable differences in ultraviolet (UV) light penetration, with higher attenuation in the EGC. Future changes in the Arctic Ocean system will likely affect EGC through diminishing sea-ice cover and potentially increasing CDOM export due to increase in river......Underwater light regime is controlled by distribution and optical properties of colored dissolved organic matter (CDOM) and particulate matter. The Fram Strait is a region where two contrasting water masses are found. Polar water in the East Greenland Current (EGC) and Atlantic water in the West...... Spitsbergen Current (WSC) differ with regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009 and 2010. CDOM absorption of Polar water in the EGC...

  20. Radioactive elements on Mercury's surface from MESSENGER: implications for the planet's formation and evolution.

    Science.gov (United States)

    Peplowski, Patrick N; Evans, Larry G; Hauck, Steven A; McCoy, Timothy J; Boynton, William V; Gillis-Davis, Jeffery J; Ebel, Denton S; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Nittler, Larry R; Solomon, Sean C; Rhodes, Edgar A; Sprague, Ann L; Starr, Richard D; Stockstill-Cahill, Karen R

    2011-09-30

    The MESSENGER Gamma-Ray Spectrometer measured the average surface abundances of the radioactive elements potassium (K, 1150 ± 220 parts per million), thorium (Th, 220 ± 60 parts per billion), and uranium (U, 90 ± 20 parts per billion) in Mercury's northern hemisphere. The abundance of the moderately volatile element K, relative to Th and U, is inconsistent with physical models for the formation of Mercury requiring extreme heating of the planet or its precursor materials, and supports formation from volatile-containing material comparable to chondritic meteorites. Abundances of K, Th, and U indicate that internal heat production has declined substantially since Mercury's formation, consistent with widespread volcanism shortly after the end of late heavy bombardment 3.8 billion years ago and limited, isolated volcanic activity since.

  1. Photodegradation of SF6 on polyisoprene surface: Implication on elimination of toxic byproducts

    International Nuclear Information System (INIS)

    Song Xiaoxiao; Liu Xingang; Ye Zhaolian; He Jincong; Zhang Renxi; Hou, Huiqi

    2009-01-01

    Photodegradation of SF 6 was performed on the surface of polyisoprene (PI) based on a brand new mechanism of 'controlled release of radicals'. Effective decomposition of SF 6 (60% of SF 6 was degraded in 4 h) was achieved due to the highly reductive radicals (mainly allylic radicals and excited C=C bond) which were generated from the photolysis of PI. No toxic fluoride was detected by FT-IR. The PI irradiated for 200 h in SF 6 circumstance was examined by XPS to be doped with fluorine and sulfur. Fouling due to photoinitiated polymerization on UV lamp was avoided because the radicals were released slowly. Photolysis of SF 6 in pure argon with the presence of irradiated PI showed kinetics of pseudo-first-order reaction and the degradation rate constant was 5.16 x 10 -5 s -1 . Factors which may affect the photolysis process such as introduction of O 2 and H 2 O were also examined.

  2. Glass-surface area to solution-volume ratio and its implications to accelerated leach testing

    International Nuclear Information System (INIS)

    Pederson, L.R.; Buckwalter, C.Q.; McVay, G.L.; Riddle, B.L.

    1982-10-01

    The value of glass surface area to solution volume ratio (SA/V) can strongly influence the leaching rate of PNL 76-68 glass. The leaching rate is largely governed by silicon solubility constraints. Silicic acid in solution reduced the elemental release of all glass components. No components are leached to depths greater than that of silicon. The presence of the reaction layer had no measurable effect on the rate of leaching. Accelerated leach testing is possible since PNL 76-68 glass leaching is solubility-controlled (except at very low SA/V values). A series of glasses leached with SA/V x time = constant will yield identical elemental release

  3. Surface based detection schemes for molecular interferometry experiments - implications and possible applications

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus

    2011-03-01

    Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.

  4. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    International Nuclear Information System (INIS)

    Chevalier, G.; Chevalier, G.; Sinatra, S.T.; Oschman, J.L.; Sokal, K.; Sokal, P.

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and un wellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits including better sleep and reduced pain from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance

  5. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    International Nuclear Information System (INIS)

    Mani, Devleena; Kumar, T. Satish; Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V.

    2011-01-01

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana–Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r 2 < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  6. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, S.C.B.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Heavy metal-rich acidic waters (SO{sub 4}{sup 2{minus}}, AsO{sub 4}{sup 3{minus}}, SeO{sub 4}{sup 2{minus}}, Fe{sup 2+}, Fe{sup 3+}, Al{sup 3+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS{sub 2}), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS{sub 2} + 3.5 O{sub 2} + H{sub 2}O {leftrightarrow} Fe{sup 2+} + SO{sub 4}{sup 2{minus}} + 2H{sup +}. Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO{sub 3}-rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined.

  7. The Labrador Sea during the Last Glacial Maximum: Calcite dissolution or low biogenic carbonate fluxes?

    Science.gov (United States)

    Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus

    2017-04-01

    Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that

  8. Coccolith calcite time capsules preserve a molecule-specific record of pCO2

    Science.gov (United States)

    McClelland, H. L. O.; Pearson, A.; Hermoso, M.; Wilkes, E.; Lee, R. B. Y.; Rickaby, R. E. M.

    2017-12-01

    Coccolithophores are single-celled phytoplankton that have contributed organic matter and calcite to marine sediments since the Late Triassic. The carbon isotopic compositions of both the calcite, and the organic matter, constitute valuable archives of information about the interaction between these organisms and the environments in which they lived. The isotopic composition of alkenone lipids, a recalcitrant component of coccolithophore organic carbon produced by a single family of coccolithophores, has been widely used to reconstruct pCO2 in the geological past. However, the robustness of this approach has remained controversial, due in part to the difficulties associated with reproducing pCO2 changes across periods of known pCO2 change, and uncertainties in relevant physiological variables such as growth rate and cell size. Meanwhile the calcite, produced in the form of plates called coccoliths, and which has had limited utility in paleoclimate reconstructions due to its large and variable departures from the isotopic composition of abiogenic calcite, has garnered increasing attention in recent years for the environmental and physiological information it contains. Here we show that polysaccharides preserved within the calcite crystal lattice of near monospecific fractions of fossil coccoliths constitute an ancient pristine source of organic carbon that unlike alkenones is unambiguously associated with the coccolith1. The isotopic composition of these polysaccharides, in tandem with that of the host coccolith calcite, and morphometrics from the same coccoliths2, can be used simultaneously constrain a recently published cellular carbon isotope flux model3, embedded in a more complex nutrient limitation model, in a powerful new approach to simultaneously predict cellular parameters and pCO2. We demonstrate the validity of this approach across a glacial / interglacial cycle. Lee, R. B. Y., et al,, Nat. Commun. 7, 13144 (2016). McClelland, H. L. O. et al. Sci. Rep. 6

  9. On the origin of calcite-cemented sandstones in the clearwater formation oil-sands, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Colquhoun, I.M.

    1999-01-01

    This thesis examined the formation of calcite-cemented sandstones in the Clearwater Formation within the Cold Lake and southern Primrose areas of the Alberta oil sands. Three stages of diagenesis have been recognized, both in the calcite-cemented sandstones and reservoir sands. Diagenesis of the Clearwater Formation in the Cold Lake and southern Primrose areas ended once the reservoir filled with hydrocarbons, but in the Cold Lake area, diagenesis of water-saturated sands likely continued after hydrocarbon emplacement. The reservoir sands in the formation contain a diverse clay mineral assemblage. In general, 0.7 nm clays dominate the diagenetic clay mineralogy of the Clearwater sands. Reservoir sands that contain large amounts of detrital clays and early diagenetic, grain-coating chlorite/smectite have significantly reduced bitumen-saturation. The presence of detrital and diagenetic smectitic clays complicates the removal of bitumen from the Clearwater formation using cyclic steam stimulation techniques because they swell during steam stimulation and reduce porosity and permeability of reservoir sands. Reservoir sands that contain kaolinite, feldspar and calcite react to form smectitic clays, which swell upon cyclic steam stimulation and further reduce porosity and permeability of reservoir sands. However, in the Cold Lake and Primrose areas, the dominant clay mineral is berthierine, which is associated with high calcite, which help to preserve porosity, permeability and bitumen saturation. The porous nature of bitumen-saturated, calcite-cemented sandstones that are laterally extensive could possibly provide a preferential path for steam to initiate calcite dissolution and produce significant concentrations of dissolved carbon dioxide in injected fluids. It was noted that this may then precipitate as carbonate scale within the reservoir and could cause formation damage or affect production equipment. 207 refs., 9 tabs., 58 figs., 3 appendices.

  10. Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite

    Science.gov (United States)

    Marsh, M. E.; Ridall, A. L.; Azadi, P.; Duke, P. J.

    2002-01-01

    The coccolithophores are valuable models for the design and synthesis of composite materials, because the cellular machinery controlling the nucleation, growth, and patterning of their calcitic scales (coccoliths) can be examined genetically. The coccoliths are formed within the Golgi complex and are the major CaCO(3) component in limestone sediments-particularly those of the Cretaceous period. In this study, we describe mutants lacking a sulfated galacturonomannan and show that this polysaccharide in conjunction with the Golgi-derived membrane is directly linked to the growth and shaping of coccolith calcite but not to the initial orientated nucleation of the mineral phase.

  11. Sturgeon and paddlefish (Acipenseridae) sagittal otoliths are composed of the calcium carbonate polymorphs vaterite and calcite.

    Science.gov (United States)

    Pracheil, B M; Chakoumakos, B C; Feygenson, M; Whitledge, G W; Koenigs, R P; Bruch, R M

    2017-02-01

    This study sought to resolve whether sturgeon (Acipenseridae) sagittae (otoliths) contain a non-vaterite fraction and to quantify how large a non-vaterite fraction is using neutron diffraction analysis. This study found that all otoliths examined had a calcite fraction that ranged from 18 ± 6 to 36 ± 3% by mass. This calcite fraction is most probably due to biological variation during otolith formation rather than an artefact of polymorph transformation during preparation. © 2016 The Fisheries Society of the British Isles.

  12. Characteristics of a calcite "limestone"-marble from Macedonia, used as flux material

    Directory of Open Access Journals (Sweden)

    Hristova E.

    2003-01-01

    Full Text Available The phase characteristics of calcite "limestone"-marble from Banjany area village (near Skopje, Macedonia were examined by means of XRD, SEM microscope in polarizing and reflected lights, chemical, DT/TG-analyses. It was concluded as follows: - calcite (CaCO3 is a major mineral component (cca 80-90 % prevailing in the marble over the other minerals - dolomite is generally of minor importance (cca 10-20 % in the rock - quartz, micas graphite, pyrite represent typical accessories. As result of the mentioned phase characteristics, this raw materials was for a long time (more than 30 years used as flux in the iron and steel metallurgy in Macedonia.

  13. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell

    DEFF Research Database (Denmark)

    Frølich, Simon; Sørensen, Henning Osholm; Hakim, Sepideh Sadat

    2015-01-01

    The growth and nucleation of biominerals are directed and affected by associated biological molecules. In this paper, we investigate the influence of occluded biomolecules on biogenic calcite from the coccolithophorid Pleurochrysis carterae and from chalk, a rock composed predominantly of fossil....... Two heating cycles allow us to differentiate the effects of thermal agitation and organic molecules. Single peak analysis and Rietveld refinement were combined to show significant differences resulting from the occluded biomolecules on the mineral phase in biogenic calcite in the mollusk shell...

  14. Organic geochemistry and stable isotope composition of New Zealand carbonate concretions and calcite fracture fills

    International Nuclear Information System (INIS)

    Pearson, M.J.; Nelson, C.S.

    2005-01-01

    Carbonate concretion bodies, representing a number of morphological types, and associated calcite fracture fills, mainly from New Zealand, have been studied both organically and inorganically. Extracted organic material is dominated by a complex polymeric dark brown highly polar fraction with a subordinate less polar and lighter coloured lipid fraction. The relative proportion of the two fractions is the principal control on the colour of fracture fill calcites. Concretions are classified mainly by reference to their carbonate stable carbon and oxygen isotope and cation composition. Typical subspherical calcitic septarian concretions, such as those in the Paleocene Moeraki and the Eocene Rotowaro Siltstones, contain carbon derived mainly by bacterial sulfate reduction in marine strata during early diagenesis. Other concretions, including a septarian calcitic type from the Northland Allochthon, have a later diagenetic origin. Siderite concretions, abundant in the nonmarine Waikato Coal Measures, are typically dominated by methanogenic carbon, whereas paramoudra-like structures from the Taranaki Miocene have the most extreme carbon isotope compositions, probably resulting from methane formation or oxidation in fluid escape conduits. Lipids from concretion bodies and most fracture fill calcites contain significant concentrations of fatty acids. Concretion bodies dominated by bimodally distributed n-fatty acids with strong even-over-odd preference, in which long chain n-acids are of terrestrial origin, have very low hydrocarbon biomarker maturities. Concretion bodies that lack long chain n-acids often have higher apparent biomarker maturity and prominent alpha-omega diacids. Such diacids are abundant in fracture fill calcites at Rotowaro, especially where calcite infills the septaria of a siderite concretion in the non-marine Waikato Coal Measures, and support the view that fluid transport resulted in carbonate entrapment of the fracture-hosted acids. Diacids also

  15. Complex source mechanisms of mining-induced seismic events - implications for surface effects

    Science.gov (United States)

    Orlecka-Sikora, B.; Cesca, S.; Lasocki, S.; Rudzinski, L.; Lizurek, L.; Wiejacz, P.; Urban, P.; kozlowska, M.

    2012-04-01

    The seismicity of Legnica-Głogów Copper District (LGCD) is induced by mining activities in three mines: Lubin, Rudna and Polkowice-Sieroszowice. Ground motion caused by strong tremors might affect local infrastructure. "Żelazny Most" tailings pond, the biggest structure of this type in Europe, is here under special concern. Due to surface objects protection, Rudna Mine has been running ground motion monitoring for several years. From June 2010 to June 2011 unusually strong and extensive surface impact has been observed for 6 mining tremors induced in one of Rudna mining sections. The observed peak ground acceleration (PGA) for both horizontal and vertical component were in or even beyond 99% confidence interval for prediction. The aim of this paper is analyze the reason of such unusual ground motion. On the basis of registrations from Rudna Mine mining seismological network and records from Polish Seismological Network held by the Institute of Geophysics Polish Academy of Sciences (IGF PAN), the source mechanisms of these 6 tremors were calculated using a time domain moment tensor inversion. Furthermore, a kinematic analysis of the seismic source was performed, in order to determine the rupture planes orientations and rupture directions. These results showed that in case of the investigated tremors, point source models and shear fault mechanisms, which are most often assumed in mining seismology, are invalid. All analyzed events indicate extended sources with non-shear mechanism. The rapture planes have small dip angles and the rupture starts at the tremors hypocenter and propagates in the direction opposite to the plane dip. The tensional component plays here also big role. These source mechanisms well explain such observed strong ground motion, and calculated synthetic PGA values well correlates with observed ones. The relationship between mining tremors were also under investigation. All subsequent tremors occurred in the area of increased stress due to

  16. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces.

    Science.gov (United States)

    Campoccia, Davide; Montanaro, Lucio; Arciola, Carla Renata

    2013-11-01

    Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. The important social, clinical and economic impacts of implant-related infections are promoting the efforts to obviate these severe diseases. In this context, the development of anti-infective biomaterials and of infection-resistant surfaces is being regarded as the main strategy to prevent the establishment of implant colonisation and biofilm formation by bacteria. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. © 2013 Elsevier Ltd. All rights reserved.

  17. The implications of economic development, climate change and European Water Policy on surface water quality threats

    Directory of Open Access Journals (Sweden)

    Jolanta Dąbrowska

    2017-06-01

    Full Text Available The paper presents historical background, up-to-date situation and future perspectives for the development of nutrient pollution threats to European surface water quality, as well as the evolution of the approach to water pollution. Utilized agricultural area in European countries is slightly diminishing, however the consumption of mineral fertilisers is steadily increasing. The consumption in Europe in the years 2015–2030 is projected to increase by 10%, and in the world by 20%. Both climate changes leading to the increase of temperature even of ca. 6°C (in comparison to the pre-industrial period and accelerated soil erosion due to high intensity rainfall cause increased productivity of water ecosystems. Those aspects have to be taken into consideration in water management. Due to legal regulations introduced in the last twenty years, wastewater treatment has been made more effective and population connected to wastewater treatment systems has increased. The improvement has been seen mainly in eastern and southern parts of Europe. After the implementation of Water Framework Directive theories regarding modern water management have been developed, with the aim to increase the ecosystem’s capacity and its resilience to climate changes and anthropopressure.

  18. Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

    International Nuclear Information System (INIS)

    Lee, Takhee; Liu Jia; Chen, N.-P.; Andres, R.P.; Janes, D.B.; Reifenberger, R.

    2000-01-01

    We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface

  19. The characteristics and interpretability of land surface change and implications for project design

    Science.gov (United States)

    Sohl, Terry L.; Gallant, Alisa L.; Loveland, Thomas R.

    2004-01-01

    The need for comprehensive, accurate information on land-cover change has never been greater. While remotely sensed imagery affords the opportunity to provide information on land-cover change over large geographic expanses at a relatively low cost, the characteristics of land-surface change bring into question the suitability of many commonly used methodologies. Algorithm-based methodologies to detect change generally cannot provide the same level of accuracy as the analyses done by human interpreters. Results from the Land Cover Trends project, a cooperative venture that includes the U.S. Geological Survey, Environmental Protection Agency, and National Aeronautics and Space Administration, have shown that land-cover conversion is a relatively rare event, occurs locally in small patches, varies geographically and temporally, and is spectrally ambiguous. Based on these characteristics of change and the type of information required, manual interpretation was selected as the primary means of detecting change in the Land Cover Trends project. Mixtures of algorithm-based detection and manual interpretation may often prove to be the most feasible and appropriate design for change-detection applications. Serious examination of the expected characteristics and measurability of change must be considered during the design and implementation phase of any change analysis project.

  20. Experiments On Sublimating Carbon Dioxide Ice And Implications For Contemporary Surface Processes On Mars.

    Science.gov (United States)

    Mc Keown, L E; Bourke, M C; McElwaine, J N

    2017-10-27

    Carbon dioxide is Mars' primary atmospheric constituent and is an active driver of Martian surface evolution. CO 2 ice sublimation mechanisms have been proposed for a host of features that form in the contemporary Martian climate. However, there has been very little experimental work or quantitative modelling to test the validity of these hypotheses. Here we present the results of the first laboratory experiments undertaken to investigate if the interaction between sublimating CO 2 ice blocks and a warm, porous, mobile regolith can generate features similar in morphology to those forming on Martian dunes today. We find that CO 2 sublimation can mobilise grains to form (i) pits and (ii) furrows. We have documented new detached pits at the termini of linear gullies on Martian dunes. Based on their geomorphic similarity to the features observed in our laboratory experiments, and on scaling arguments, we propose a new hypothesis that detached pits are formed by the impact of granular jets generated by sublimating CO 2 . We also study the erosion patterns formed underneath a sublimating block of CO 2 ice and demonstrate that these resemble furrow patterns on Mars, suggesting similar formation mechanisms.

  1. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    Science.gov (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  2. Warming and surface ocean acidification over the last deglaciation: implications for foraminiferal assemblages

    Science.gov (United States)

    Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.

    2017-12-01

    Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.

  3. The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt

    Science.gov (United States)

    Smith, Helen E. K.; Poulton, Alex J.; Garley, Rebecca; Hopkins, Jason; Lubelczyk, Laura C.; Drapeau, Dave T.; Rauschenberg, Sara; Twining, Ben S.; Bates, Nicholas R.; Balch, William M.

    2017-11-01

    The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups. Samples for phytoplankton enumeration were collected from the upper mixed layer (30 m) during two cruises, the first to the South Atlantic sector (January-February 2011; 60° W-15° E and 36-60° S) and the second in the South Indian sector (February-March 2012; 40-120° E and 36-60° S). The species composition of coccolithophores and diatoms was examined using scanning electron microscopy at 27 stations across the Subtropical, Polar, and Subantarctic fronts. The influence of environmental parameters, such as sea surface temperature (SST), salinity, carbonate chemistry (pH, partial pressure of CO2 (pCO2), alkalinity, dissolved inorganic carbon), macronutrients (nitrate + nitrite, phosphate, silicic acid, ammonia), and mixed layer average irradiance, on species composition across the GCB was assessed statistically. Nanophytoplankton (cells 2-20 µm) were the numerically abundant size group of biomineralizing phytoplankton across the GCB, with the coccolithophore Emiliania huxleyi and diatoms Fragilariopsis nana, F. pseudonana, and Pseudo-nitzschia spp. as the most numerically dominant and widely distributed. A combination of SST, macronutrient concentrations, and pCO2 provided the best statistical descriptors of the biogeographic variability in biomineralizing species composition between stations. Emiliania huxleyi occurred in silicic acid-depleted waters between the Subantarctic Front and the Polar Front, a favorable environment for this species after spring diatom blooms remove silicic acid

  4. Differential early diagenetic low-Mg calcite cementation and rhythmic hardground development in Campanian-Maastrichtian chalk

    DEFF Research Database (Denmark)

    Molenaar, Nicolaas; J.J.P., Zijlstra

    1997-01-01

    and differences in the degree of early diagenesis. Cemented layers and hardgrounds are the result of differential early marine calcite cementation. In these limestones early calcite cementation cannot be explained by the supply of cementing materials from saturated seawater, An alternative model for early marine......The Campanian-Maastrichtian limestones in the south of the Netherlands are well-sorted fine-grained mudstones and silt- to fine sand-sized bioclastic grainstones. These limestones show a distinct lithological cyclicity manifested by fining-upward grain-size cycles with calcite-cemented layers...... calcite cementation is proposed, in which early calcite cementation occurred within the sediment at some distance below the seafloor as a result of organic matter degradation and internal redistribution of bioclastic carbonate. Bacterial organic matter degradation caused dissolution of relatively unstable...

  5. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies

    Directory of Open Access Journals (Sweden)

    Silvia Frisia

    2015-01-01

    Full Text Available The systematic documentation of calcite fabrics in stalagmites and flowstones provides robustness to palaeoclimate interpretation based on geochemical proxies, but it has been neglected because it is difficult to transform crystal morphologies into numerical values, and construct fabric time series. Here, general criteria that allow for coding fabrics of calcite composing stalagmites and flowstones is provided. Being based on known models of fabric development, the coding ascribes sequential numbers to each fabric, which reflect climate-related parameters, such as changes in drip rate variability, bio-mediation or diagenetic modifications. Acronyms are proposed for Columnar types, Dendritic, Micrite, Microsparite and Mosaic fabrics, whose use could then render possible comparison of calcite fabrics in stalagmites and flowstones from diverse latitudinal and altitudinal settings. The climatic and environmental significance of similarities in the geochemical signals and trends analysed in coeval stalagmites and flowstones (or differences in the signals and trends will be more robust when compared with fabric time series. This is particularly true where, such as in the Holocene, changes in geochemical values may be subtle, yet fabrics may show changes related to variations in supersaturation, drip rate or input of detrital particles or organic compounds. The proposed microstratigraphic logging allows recognition of changes in stable isotope ratio or trace element values that can be ascribed to hydrology and diagenesis, with considerable improvement of reconstructions based on the chemical proxies of stalagmites and flowstones composed of calcite.

  6. Simple, simultaneous gravimetric determination of calcite and dolomite in calcareous soils

    Science.gov (United States)

    Literature pertaining to determination of calcite and dolomite is not modern and describes slow methods that require expensive specialized apparatus. The objective of this paper was to describe a new method that requires no specialized equipment. Linear regressions and correlation coefficients for...

  7. Cryogenic cave calcite from several Central European caves: age, carbon and a genetic model

    Czech Academy of Sciences Publication Activity Database

    Žák, K.; Urban, J.; Cílek, Václav; Hercman, H.

    2004-01-01

    Roč. 206, 1/2 (2004), s. 119-136 ISSN 0009-2541 R&D Projects: GA ČR(CZ) GA205/02/0449 Keywords : cryogenic calcite * periglacial zone Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.174, year: 2004

  8. Fulvic acid-like organic compounds control nucleation of marine calcite under suboxic conditions

    NARCIS (Netherlands)

    Neuweiler, F.; D'Orazio, M.; Immenhauser, A.M.; Geipel, G.; Heise, K.H.; Cocozza, C.; Miano, T.M.

    2003-01-01

    Intracrystalline organic compounds, enclosed within in situprecipitated marine microcrystalline calcite (automicrite), might represent either an inclusion or the catalyst of such precipitation. We use evidence from a Lower Cretaceous deep-water carbonate mound to show (1) the original source, (2)

  9. Mechanics, microstructure and AMS evolution of a synthetic porphyritic calcite aggregate deformed in torsion

    Czech Academy of Sciences Publication Activity Database

    Marques, F. O.; Machek, Matěj; Roxerová, Zuzana; Burg, J.-P.; Almqvist, B. S. G.

    2015-01-01

    Roč. 655, August (2015), s. 41-57 ISSN 0040-1951 Institutional support: RVO:67985530 Keywords : experimental rock deformation * porphyritic calcite aggregate * EBSD and plastic deformation Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.650, year: 2015

  10. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization

    DEFF Research Database (Denmark)

    Sand, K K; Yang, M; Makovicky, E

    2010-01-01

    The interaction of OH-containing compounds with calcite, CaCO(3), such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorp...

  11. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    Czech Academy of Sciences Publication Activity Database

    Einax, M.; Richter, T.; Nimmrich, M.; Rahe, P.; Stará, Irena G.; Starý, Ivo; Kühnle, A.; Maass, P.

    2016-01-01

    Roč. 145, č. 13 (2016), č. článku 134702. ISSN 0021-9606 Institutional support: RVO:61388963 Keywords : heptahelicene-2-carboxylic acid nanowires * nc-AFM * calcite * growth kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.965, year: 2016

  12. Morphology and formation mechanism in precipitation of calcite induced by Curvibacter lanceolatus strain HJ-1

    Science.gov (United States)

    Zhang, Chonghong; Li, Fuchun; Lv, Jiejie

    2017-11-01

    Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.

  13. Interactions of Ni and Ca at the calcite-solution interface

    International Nuclear Information System (INIS)

    Carlsson, T.; Aalto, H.

    1996-10-01

    The performance assessment of repositories for spent nuclear fuel need, among other things, data describing the solubilities of radionuclides in the near field and far field. The solubility limits are often used in order to estimate the maximum concentrations of radionuclides during their possible transport to the biosphere. The solubilities used are mostly the individual solubilities for pure solids of the actual radionuclides. This way of using solubility limits represents a conservative performance assessment where the estimated nuclide concentrations are unrealistically high. This is acceptable from a performance assessment point of view but very unsatisfactory for an optimal design of the repository. In order to make the assessment more realistic, coprecipitation and solid solution formation should be taken into account. Only solids which are, in geological terms, formed in fast reactions need to be considered, which in practice restricts the number of radionuclide scavengers to calcite and iron(III)oxihydroxide. This work focuses on the Ni coprecipitation with calcite. The systems were studied under anoxic conditions and consisted of calcite-saturated 0.05 M NaCl solutions in equilibrium with synthetic calcite. The solutions were initially spiked with 63 Ni and 45 Ca and the concentrations of these elements were determined using liquid scintillation counting. (18 refs.)

  14. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-12-01

    The present study was developed in four sub-basins of rivers Cávado and Douro, located in the North of mainland Portugal. The goal was to identify main stressors as well as driving and attenuating processes responsible for the presence of phosphorus in masses of surface water in those catchments. To accomplish the goal, the basins were selected where a quality station was present at the outlet, the forest occupation was greater than 75% and the phosphorus concentrations have repeatedly exceeded the threshold for the good ecological status in the period 2000-2006. Further, in two basins the quality station was installed in a lotic (free-flow water) environment whereas in the other two was placed in a lentic (dammed water) environment. The ArcMap GIS-based software package was used for the spatial analysis of stressors and processes. The yields of phosphorus vary widely across the studied basins, from 0.2-30 kg·ha(-1)·yr(-1). The results point to post-fire soil erosion and hardwood clear cuttings as leading factors of phosphorus exports across the watersheds, with precipitation intensity being the key variable of erosion. However, yields can be attenuated by sediment deposition along the pathway from burned or managed areas to water masses. The observed high yields and concentrations of phosphorus in surface water encompass serious implications for water resources management in the basins, amplified in the lentic cases by potential release of phosphorus from lake sediments especially during the summer season. Therefore, a number of measures were proposed as regards wildfire combat, reduction of phosphorus exports after tree cuts, attenuation of soil erosion and improvement of riparian buffers, all with the purpose of preventing phosphorus concentrations to go beyond the regulatory good ecological status. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Review of aragonite and calcite crystal morphogenesis in thermal spring systems

    Science.gov (United States)

    Jones, Brian

    2017-06-01

    Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.

  16. Molecular dynamics simulation of the rotational order-disorder phase transition in calcite

    International Nuclear Information System (INIS)

    Kawano, Jun; Miyake, Akira; Shimobayashi, Norimasa; Kitamura, Masao

    2009-01-01

    Molecular dynamics (MD) simulation of calcite was carried out with the interatomic potential model based on ab initio calculations to elucidate the phase relations for calcite polymorphs and the mechanism of the rotational order-disorder transition of calcite at high temperature at the atomic scale. From runs of MD calculations with increasing temperature within a pressure range of 1 atm and 2 GPa, the transition of calcite with R3-barc symmetry into a high-temperature phase with R3-barm symmetry was reproduced. In the high-temperature R3-barm phase, CO 3 groups vibrate with large amplitudes either around the original positions in the R3-barc structure or around other positions rotated ± 60 deg., and their positions change continuously with time. Moreover, contrary to the suggestion of previous investigators, the motion of CO 3 groups is not two-dimensional. At 1 atm, the transition between R3-barc and R3-barm is first order in character. Upon increasing temperature at high pressure, however, first a first-order isosymmetric phase transition between the R3-barc phases occurs, which corresponds to the start of ± 120 deg. flipping of CO 3 groups. Then, at higher temperatures, the transition of R3-barc to R3-barm phases happens, which can be considered second order. This set of two types of transitions at elevated pressure can be characterized by the appearance of an 'intermediate' R3-barc phase between the stable region of calcite and the high-temperature R3-barm phase, which may correspond to the CaCO 3 -IV phase.

  17. Crystallization of ikaite and its pseudomorphic transformation into calcite: Raman spectroscopy evidence

    Science.gov (United States)

    Sánchez-Pastor, N.; Oehlerich, Markus; Astilleros, José Manuel; Kaliwoda, Melanie; Mayr, Christoph C.; Fernández-Díaz, Lurdes; Schmahl, Wolfgang W.

    2016-02-01

    Ikaite (CaCO3·6H2O) is a metastable phase that crystallizes in nature from alkaline waters with high phosphate concentrations at temperatures close to 0 °C. This mineral transforms into anhydrous calcium carbonate polymorphs when temperatures rise or when exposed to atmospheric conditions. During the transformation in some cases the shape of the original ikaite crystal is preserved as a pseudomorph. Pseudomorphs after ikaite are considered as a valuable paleoclimatic indicator. In this work we conducted ikaite crystal growth experiments at near-freezing temperatures using the single diffusion silica gel technique, prepared with a natural aqueous solution from the polymictic lake Laguna Potrok Aike (51°57‧S, 70°23‧W) in Patagonia, Argentina. The ikaite crystals were recovered from the gels and the transformation reactions were monitored by in situ Raman spectroscopy at two different temperatures. The first spectra collected showed the characteristic features of ikaite. In successive spectra new bands at 1072, 1081 and 1086 cm-1 and changes in the intensity of bands corresponding to the OH modes were observed. These changes in the Raman spectra were interpreted as corresponding to intermediate stages of the transformation of ikaite into calcite and/or vaterite. After a few hours, the characteristics of the Raman spectrum were consistent with those of calcite. While ikaite directly transforms into calcite at 10 °C in contact with air, at 20 °C this transformation involves the formation of intermediate, metastable vaterite. During the whole process the external shape of ikaite crystals was preserved. Therefore, this transformation showed the typical characteristics of a pseudomorphic mineral replacement, involving the generation of a large amount of porosity to account for the large difference in molar volumes between ikaite and calcite. A mechanism involving the coupled dissolution of ikaite and crystallization of calcite/vaterite is proposed for this

  18. 14C-analyses of calcite coatings in open fractures from the Klipperaas study site, Southern Sweden

    International Nuclear Information System (INIS)

    Possnert, G.; Tullborg, E.L.

    1989-11-01

    Carbonate samples from open fractures in crystalline rock from the Klipperaas study site have been analysed for their 14 C contents using accelerator mass spectrometry. This technique makes it possible to analyse very small carbonate samples (c. 1 mg C). The analyses show low but varying contents of 14 C. However, contamination by CO 2 have taken place affecting small samples more than others. Attempts have been made to quantify the contamination and thus evaluate the analyses of the fracture samples. The obtained low 14 C values can be due to: 1. An effective retention of 14 C by sorption/fractionation forcing 14 C onto the calcite surfaces in the near-surface zone which means that the 14 C contribution to the deeper levels is diminished or 2. the penetration depth of surface groundwater is very shallow. The former is suggested as more probable based on evaluations of the hydrochemical conditions and the fracture mineral studies. (10 figs., 3 tabs., 9 refs.) (authors)

  19. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.

    Science.gov (United States)

    Wu, Min-Nan; Maity, Jyoti Prakash; Bundschuh, Jochen; Li, Che-Feng; Lee, Chin-Rong; Hsu, Chun-Mei; Lee, Wen-Chien; Huang, Chung-Ho; Chen, Chien-Yen

    2017-10-15

    The process of separating oil and water from oil/water mixtures is an attractive strategy to answer the menace caused by industrial oil spills and oily wastewater. In addition, water coproduced during hydrocarbon exploitation, which can be an economic burden and risk for freshwater resources, can become an important freshwater source after suitable water-oil separation. For oil-water separation purposes, considerable attention has been paid to the preparation of hydrophobic-oleophilic materials with modified surface roughness. However, due to issues of thermodynamic instability, costly and complex methods as well as lack of ecofriendly compounds, most of hydrophobic surface modified particles are of limited practical application. The study presents a facile procedure, to synthesize crystalline particles of calcite, which is the most stable polymorph of CaCO 3 from industrial CaCO 3 using oleic acid as an additive in a one-pot synthesis method. The XRD results show that the synthesized particles were a well-crystallized form of calcite. The FTIR results reflect the appearance of the alkyl groups from the oleic acid in synthesized particles which promotes the production of calcite with 'rice shape' (1.64 μm) (aggregated by spherical nanoparticle of 19.56 nm) morphology with concomitant changes in its surface wettability from hydrophilic to hydrophobic. The synthesized particles exhibited near to super hydrophobicity with ∼99% active ratio and a contact angle of 143.8°. The synthesized hydrophobic calcite particles had an oleophilic nature where waste diesel oil adsorption capacity of synthesized calcium carbonate (HCF) showed a very high (>99%) and fast (7 s) oil removal from oil-water mixture. The functional group of long alkyl chain including of CO bounds may play critical roles for adsorption of diesel oils. Moreover, the thermodynamically stable crystalline polymorph calcite (compared to vaterite) exhibited excellent recyclability. The isothermal study

  20. A New Moonquake Catalog from Apollo 17 Seismic Data II: Lunar Surface Gravimeter: Implications of Expanding the Passive Seismic Array

    Science.gov (United States)

    Phillips, D.; Dimech, J. L.; Weber, R. C.

    2017-12-01

    Apollo 17's Lunar Surface Gravimeter (LSG) was deployed on the Moon in 1972, and was originally intended to detect gravitational waves as a confirmation of Einstein's general theory of relativity. Due to a design problem, the instrument did not function as intended. However, remotely-issued reconfiguration commands permitted the instrument to act effectively as a passive seismometer. LSG recorded continuously until Sept. 1977, when all surface data recording was terminated. Because the instrument did not meet its primary science objective, little effort was made to archive the data. Most of it was eventually lost, with the exception of data spanning the period March 1976 until Sept. 1977, and a recent investigation demonstrated that LSG data do contain moonquake signals (Kawamura et al., 2015). The addition of useable seismic data at the Apollo 17 site has important implications for event location schemes, which improve with increasing data coverage. All previous seismic event location attempts were limited to the four stations deployed at the Apollo 12, 14, 15, and 16 sites. Apollo 17 extends the functional aperture of the seismic array significantly to the east, permitting more accurate moonquake locations and improved probing of the lunar interior. Using the standard location technique of linearized arrival time inversion through a known velocity model, Kawamura et al. (2015) used moonquake signals detected in the LSG data to refine location estimates for 49 deep moonquake clusters, and constrained new locations for five previously un-located clusters. Recent efforts of the Apollo Lunar Surface Experiments Package Data Recovery Focus Group have recovered some of the previously lost LSG data, spanning the time period April 2, 1975 to June 30, 1975. In this study, we expand Kawamura's analysis to the newly recovered data, which contain over 200 known seismic signals, including deep moonquakes, shallow moonquakes, and meteorite impacts. We have completed initial

  1. Stress dependence of microstructures in experimentally deformed calcite

    Science.gov (United States)

    Platt, John P.; De Bresser, J. H. P.

    2017-12-01

    Optical measurements of microstructural features in experimentally deformed Carrara marble help define their dependence on stress. These features include dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge size (Lρ), and the maximum scale length for surface-energy driven grain-boundary migration (Lγ). Taken together with previously published data Dr defines a paleopiezometer over the range 15-291 MPa and temperature over the range 500-1000 °C, with a stress exponent of -1.09 (CI -1.27 to -0.95), showing no detectable dependence on temperature. Sg and Dr measured in the same samples are closely similar in size, suggesting that the new grains did not grow significantly after nucleation. Lρ and Lγ measured on each sample define a relationship to stress with an exponent of approximately -1.6, which helps define the boundary between a region of dominant strain-energy-driven grain-boundary migration at high stress, from a region of dominant surface-energy-driven grain-boundary migration at low stress.

  2. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.

    Science.gov (United States)

    Yin, Xiaofei; Ziegler, Andreas; Kelm, Klemens; Hoffmann, Ramona; Watermeyer, Philipp; Alexa, Patrick; Villinger, Clarissa; Rupp, Ulrich; Schlüter, Lothar; Reusch, Thorsten B H; Griesshaber, Erika; Walther, Paul; Schmahl, Wolfgang W

    2018-02-01

    Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely

  3. Environmental controls for the precipitation of different fibrous calcite cement fabrics

    Science.gov (United States)

    Ritter, Ann-Christine; Wiethoff, Felix; Neuser, Rolf D.; Richter, Detlev K.; Immenhauser, Adrian

    2016-04-01

    Abiogenic calcite cements are widely used as climate archives. They can yield information on environmental change and climate dynamics at the time when the sediment was lithified in a (marine) diagenetic environment. Radiaxial-fibrous (RFC) and fascicular-optic fibrous (FOFC) calcite cements are two very common and similar pore-filling cement fabrics in Palaeozoic and Mesozoic carbonate rocks (Richter et al., 2011) and in Holocene Mg-calcitic speleothems (Richter et al., 2015). Both fabrics are characterised by distinct crystallographic properties. Current research has shown that these fabrics are often underexplored and that a careful combination of conservative and innovative proxies allows for a better applicability of these carbonate archives to paleoenvironmental reconstructions (Ritter et al., 2015). A main uncertainty in this context is that it is still poorly understood which parameters lead to the formation of either RFC or FOFC and if differential crystallographic parameters affect proxy data from these fabrics. This study aims at a better understanding of the environmental factors that may control either RFC or FOFC precipitation. Therefore, suitable samples (a stalagmite and a Triassic marine cement succession), each with clearly differentiable layers of RFC and FOFC, were identified and analysed in high detail using a multi-proxy approach. Detailed thin section and cathodoluminescence analysis of the samples allowed for a precise identification of layers consisting solely of either RFC or FOFC. Isotopic (δ13C, δ18O) as well as trace elemental compositions have been determined and the comparison of data obtained from these different carbonate archives sheds light on changes in environmental parameters during RFC or FOFC precipitation. References: Richter, D.K., et al., 2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239, 26-36 Richter, D.K., et al., 2015. Radiaxial-fibrous and fascicular-optic Mg-calcitic cave

  4. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    Science.gov (United States)

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions

    Directory of Open Access Journals (Sweden)

    Navdeep K. Dhami

    2018-02-01

    Full Text Available Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD and Tescan Integrated Mineral Analyzer (TIMA demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS. Scanning Electron Microscopy (SEM analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content

  6. Commentary on the state of knowledge of the origins of the Yucca Mountain calcite veins. Special report number 17, Contract number 94/96.0003

    International Nuclear Information System (INIS)

    Archambeau, C.

    1994-08-01

    This report is a compilation of papers and a letter providing technical information on the origin and geochemistry of calcite veins and calcretes in the vicinity of the Yucca Mountain repository. The information is presented to demonstrate that these deposits may be ''thermogenic'' in origin with some alteration by pedogenic processes. The papers present isotope ratios of uranium, strontium, and carbon to support the claims for a hydrothermal source. The letter provides a critical review of a previous paper presented at the 64th Advisory Committee on Nuclear Waste. The report makes an attempt to emphasize the need to review this possible origin because it has dramatic implications on the geologic history, paleo-ground water levels, and integrity of the repository

  7. Commentary on the state of knowledge of the origins of the Yucca Mountain calcite veins. Special report number 17, Contract number 94/96.0003

    Energy Technology Data Exchange (ETDEWEB)

    Archambeau, C.

    1994-08-01

    This report is a compilation of papers and a letter providing technical information on the origin and geochemistry of calcite veins and calcretes in the vicinity of the Yucca Mountain repository. The information is presented to demonstrate that these deposits may be ``thermogenic`` in origin with some alteration by pedogenic processes. The papers present isotope ratios of uranium, strontium, and carbon to support the claims for a hydrothermal source. The letter provides a critical review of a previous paper presented at the 64th Advisory Committee on Nuclear Waste. The report makes an attempt to emphasize the need to review this possible origin because it has dramatic implications on the geologic history, paleo-ground water levels, and integrity of the repository.

  8. Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.

    Science.gov (United States)

    Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C

    2018-05-23

    Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mass spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein

    International Nuclear Information System (INIS)

    Ludwig, K.R.; Simmons, K.R.; Szabo, B.J.; Riggs, A.C.; Winograd, I.J.; Landwehr, J.M.; Hoffman, R.J.

    1992-01-01

    The Devils Hole calcite vein contains a long-term climatic record, but requires accurate chronologic control for its interpretation. Mass-spectrometric U-series ages for samples from core DH-11 yielding 230 Th ages with precisions ranging from less than 1,000 years (2σ) for samples younger than ∼140 ka (thousands of years ago) to less than 50,000 years for the oldest samples (∼566 ka). The 234 U/ 238 U ages could be determined to a precision of ∼20,000 years for all ages. Calcite accumulated continuously from 566 ka until ∼60 ka at an average rate of 0.7 millimeter per 10 3 years. The precise agreement between replicate analyses and the concordance of the 230 Th/ 238 U and 234 U/ 238 U ages for the oldest samples indicate that the DH-11 samples were closed systems and validate the dating technique in general

  10. Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite-epidote-chlorite problem

    Science.gov (United States)

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.; Rockwell, B.W.

    2004-01-01

    A scheme to discriminate and identify materials having overlapping spectral absorption features has been developed and tested based on the U.S. Geological Survey (USGS) Tetracorder system. The scheme has been applied to remotely sensed imaging spectroscopy data acquired by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument. This approach was used to identify the minerals calcite, epidote, and chlorite in the upper Animas River watershed, Colorado. The study was motivated by the need to characterize the distribution of calcite in the watershed and assess its acid-neutralizing potential with regard to acidic mine drainage. Identification of these three minerals is difficult because their diagnostic spectral features are all centered at 2.3 ??m, and have similar shapes and widths. Previous studies overestimated calcite abundance as a result of these spectral overlaps. The use of a reference library containing synthetic mixtures of the three minerals in varying proportions was found to simplify the task of identifying these minerals when used in conjunction with a rule-based expert system. Some inaccuracies in the mineral distribution maps remain, however, due to the influence of a fourth spectral component, sericite, which exhibits spectral absorption features at 2.2 and 2.4 ??m that overlap the 2.3-??m absorption features of the other three minerals. Whereas the endmember minerals calcite, epidote, chlorite, and sericite can be identified by the method presented here, discrepancies occur in areas where all four occur together as intimate mixtures. It is expected that future work will be able to reduce these discrepancies by including reference mixtures containing sericite. ?? 2004 Elsevier Inc. All rights reserved.

  11. Quantitative laboratory measurements of biogeochemical processes controlling biogenic calcite carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Zendejas, Frank; Lane, Todd W.; Lane, Pamela D.

    2011-01-01

    The purpose of this LDRD was to generate data that could be used to populate and thereby reduce the uncertainty in global carbon cycle models. These efforts were focused on developing a system for determining the dissolution rate of biogenic calcite under oceanic pressure and temperature conditions and on carrying out a digital transcriptomic analysis of gene expression in response to changes in pCO2, and the consequent acidification of the growth medium.

  12. Microstructural Damage During High-Strain Torsion Experiments on Calcite-Anhydrite Aggregates

    Science.gov (United States)

    Cross, A. J.; Skemer, P. A.

    2016-12-01

    Ductile shear zones play a critical role in localising deformation in the Earth's crust and mantle. Severe grain size reduction - a ubiquitous feature of natural mylonites - is commonly thought to cause strain weakening via a transition to grain size sensitive deformation mechanisms. Although grain size reduction is modulated by grain growth in single-phase aggregates, grain boundary pinning in well-mixed poly-phase composites can inhibit grain growth, leading to microstructural `damage' which is likely a critical element of strain localization in the lithosphere. While dynamic recrystallization has been widely explored in rock mechanics and materials science, the mechanisms behind phase-mixing remain poorly understood. In this contribution we present results from high-strain, deformation experiments on calcite-anhydrite composites. Experiments were conducted in torsion at T = 500-700°C and P 1.5 GPa, using the new Large Volume Torsion (LVT) solid-medium apparatus, to shear strains of 0.5-30. As shear strain increases, progressive thinning and necking of initially large (≤ 1 mm) calcite domains is observed, resulting in an increase in the proportion of interphase boundaries. Grain-size is negatively correlated with the fraction of interphase boundaries, such that calcite grains in well-mixed regions are significantly smaller than those in single-phase domains. Crucially, progressive deformation leads to a reduction in grain-size beyond the lower limit established by the grain size piezometer for mono-phase calcite, implying microstructural damage. These data therefore demonstrate continued microstructural evolution in two-phase composites that is not possible in single-phase aggregates. These observations mark a new `geometric' mechanism for phase mixing, complementing previous models for phase mixing involving chemical reactions, material diffusion, and/or grain boundary sliding.

  13. EPR OF Mn2+ IMPURITIES IN CALCITE: A DETAILED STUDY PERTINENT TO MARBLE PROVENANCE DETERMINATION

    DEFF Research Database (Denmark)

    Weihe, H.; Piligkos, S.; Barra, A.L.

    2009-01-01

    We demonstrate that the electron paramagnetic resonance spectrum of Mn2+ impurities in calcite, and therefore also in marble, may be accurately reproduced by a traditional spin Hamiltonian formalism. The success of such a treatment, however, very much depends on the spin Hamiltonian parameters...... having the correct signs as well as magnitudes. We present data that determine the sign of the axial anisotropy parameter and thereby facilitate future quantum mechanical characterizations of marble electron paramagnetic resonance spectra that supplement provenance determination....

  14. Physical and Mechanical Characterization of Artificial Stone with Marble Calcite Waste and Epoxy Resin

    OpenAIRE

    Silva, Fernanda Souza; Ribeiro, Carlos Eduardo Gomes; Rodriguez, Rubén Jesus Sánchez

    2017-01-01

    The incorporation of calcite marble waste in epoxy resin for the production of artificial stone can represent a technical-economical method and environmentally viable, reducing the amount of discarded residue in the environment, and adding economic value to marble waste and enabling the generation of jobs. The production of natural stone in Brazil recorded an exorbitant amount of waste generated in marble processing. Only 75% of marble taken from the deposits it becomes the finished product t...

  15. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.

    Science.gov (United States)

    Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G

    2016-07-15

    There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Aragonite→calcite transformation studied by EPR of Mn 2+ ions

    Science.gov (United States)

    Lech, J.; Śl|zak, A.

    1989-05-01

    The irreversible transformation aragonite→calcite has been studied both at different fixed heating rates (5, 10, 15 and 20 K/min) and at different fixed temperatures. Apparent progression rates of the transformation were observed above 685 K. At 730 K the transformation became sudden and violent. Time developments of the transformation at fixed temperatures have been discussed in terms of Avrami-Lichti's approach to transitions involving nucleation processes.

  17. Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases

    International Nuclear Information System (INIS)

    Haase, Christoph; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2013-01-01

    Highlights: • CO 2 and calcite dissolution is calculated. • The codes PHREEQC, Geochemist’s Workbench, EQ3/6, and FactSage are used. • Comparison with Duan and Li (2008) shows lowest deviation using phreeqc.dat and wateq4f.dat. • Using Pitzer databases does not improve accurate calculations. • Uncertainty in dissolved CO 2 is largest using the geochemical models. - Abstract: A prognosis of the geochemical effects of CO 2 storage induced by the injection of CO 2 into geologic reservoirs or by CO 2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO 2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO 2 and the overlaying formations in the case of a CO 2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO 2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO 2 solubilities and can influence the safety issues. This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO 2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H 2 O–CO 2 –NaCl–CaCO 3 for the calculated range of dissolved calcite and CO 2 is the

  18. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes

    International Nuclear Information System (INIS)

    Randich, E.; Acton, R.U.

    1983-09-01

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO 2 release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800 0 C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete

  19. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.

    Science.gov (United States)

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-06-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10(-4) mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  20. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats

    Science.gov (United States)

    De Wit, Rutger; Gautret, Pascale; Bettarel, Yvan; Roques, Cécile; Marlière, Christian; Ramonda, Michel; Nguyen Thanh, Thuy; Tran Quang, Huy; Bouvier, Thierry

    2015-01-01

    Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification. PMID:26115121

  1. Numerical Simulations of Urea Hydrolysis and Calcite Precipitation in Porous Media Using STOMP

    International Nuclear Information System (INIS)

    Guo, Luanjing; Huang, Hai; Hu, Bill X.

    2010-01-01

    Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising in situ immobilization approach of these contaminants is engineered mineral (co)precipitation of calcite driven by urea hydrolysis that is catalyzed by enzyme urease. The tight nonlinear coupling among flow, transport, reaction and reaction-induced property changes of media of this approach was studied by reactive transport simulations with systematically increasing level of complexities of reaction network and physical/chemical heterogeneities using a numerical simulator named STOMP. Sensitivity studies on the reaction rates of both urea hydrolysis and calcite precipitation are performed via controlling urease enzyme concentration and precipitation rate constant according to the rate models employed. We have found that the rate of ureolysis is a dominating factor in the amount of precipitated mineral; however, the spatial distribution of the precipitates depends on both rates of ureolysis and calcite precipitation. A maximum 5% reduction in the porosity was observed within the simulation time period of 6 pore volumes in our 1-dimensional (1D) column simulations. When a low permeability inclusion is considered in the 2D simulations, the altered flow fields redistribute mineral forming constituents, leading to a distorted precipitation reaction front. The simulations also indicate that mineral precipitation occurs along the boundary of the low permeability zone, which implies that contaminants in the low permeability zone could be encapsulated and isolated from the flow paths.

  2. Calcite production by Coccolithophores in the South East Pacific Ocean: from desert to jungle

    Science.gov (United States)

    Beaufort, L.; Couapel, M.; Buchet, N.; Claustre, H.

    2007-09-01

    BIOSOPE cruise achieved an oceanographic transect from the Marquise Islands to the Peru-Chili upwelling (PCU) via the centre of the South Pacific Gyre (SPG). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks are usually low and reach maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales) represent 50% of all the suspended calcite particles detected in the size range 0.1-46 μm (21% of PIC in term of the calcite weight). The latter species are found to grow preferentially in the Chlorophyll maximum zone. In the SPG their maximum concentrations was found to occur between 150 and 200 m, which is very deep for these taxa. The weight and size of coccoliths and coccospheres are correlated. Large and heavy coccoliths and coccospheres are found in the regions with relative higher fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres are found west of the PCU. This distribution may correspond to that of the concentration of calcium and carbonate ions.

  3. On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions

    International Nuclear Information System (INIS)

    Dedera, Sebastian; Burchard, Michael; Glasmacher, Ulrich A.; Schöppner, Nicole; Trautmann, Christina; Severin, Daniel; Romanenko, Anton; Hubert, Christian

    2015-01-01

    A new on-line Raman System, which was installed at the M3-beamline at the UNILAC, GSI Helmholtzzentrum für Schwerionenforschung Darmstadt was used for first “in situ” spectroscopic measurements. Calcite and malachite samples were irradiated in steps between 1 × 10"9 and 1 × 10"1"2 ions/cm"2 with Au ions (calcite) and Xe ions (malachite) at an energy of 4.8 MeV/u. After irradiation, calcite revealed a new Raman band at 437 cm"−"1 and change of the full width at half maximum for the 1087 cm"−"1 Raman band. The Raman bands of malachite change significantly with increasing fluence. Up to a fluence of 7 × 10"1"0 ions/cm"2, all existing bands decrease in intensity. Between 8 × 10"1"0 and 1 × 10"1"1 ions/cm"2 a broad Cu_2O band between 110 and 220 cm"−"1 occurs, which superimposes the pre-existing Raman bands. Additionally, a new broad band between 1000 and 1750 cm"−"1 is formed, which is interpreted as a carbon coating. In contrast to the Cu_2O band, the carbon band vanished when further irradiating the sample. The installations as well as first in situ measurements at room temperature are presented.

  4. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability

    Science.gov (United States)

    Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica

    2017-10-01

    Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.

  5. Structure in continuously cored, deep drill holes at Yucca Mountain, Nevada, with notes on calcite occurrence

    International Nuclear Information System (INIS)

    Carr, W.J.

    1992-12-01

    A study of more than 22,000 feet of core from five deep drill holes at Yucca Mountain, Nevada, provided data on the attitude and vertical distribution of faults and fractures, the sense of fault displacement, and the occurrence of calcite. The study was done mainly to look for evidence of fault flattening at depth, but no consistent downward decrease in dip of faults was found, and no increase in strata rotation was evident with increasing depth. In the two drill holes located near prominent faults that dip toward the holes (USW G-3 and G-2), an apparent increase in the frequency of faults occurs below the tuffs and lavas of Calico Hills. Some of this increase occurs in brittle lavas and flow breccias in the lower part of the volcanic section. In the two holes presumed to be relatively removed from the influence of important faults at depth, the vertical distribution of faults is relatively uniform. Calcite occurs mainly in two general zones, voids in welded portions of the Paintbrush Tuff, and in a deeper zone, mostly below 3,500 feet. Calcite is least abundant in USW G-4, which may reflect the fewer faults and fractures encountered in that drill hole

  6. Diagenetic conditions of fibrous calcite vein formation in black shales: Petrographic, chemical and isotopic evidence

    Energy Technology Data Exchange (ETDEWEB)

    Al-Aasm, I.S.; Muir, I. (Imperial Oil Resources, Calgary, AB (Canada)); Morad, S. (Windsor Univ., ON (Canada))

    1992-03-01

    Antiaxial fibrous calcite veins 2-6 cm thick outcrop parallel to bedding in the Bluefish Member of the Middle Devonian Hare Indian Formation in the Norman Wells area of the Northwest Territories. The Bluefish Member consists of dark brown to black laminated shales with total organic matter content in the 1.8-8.0 wt % range. The basal part of the Member, characterized by the presence of low diversity macrofossils, was deposited under anaerobic conditions on top of the drowned Hume carbonate platform. The pattern of incorporation of host-shale fragments and tiny inclusions into the fibrous calcite indicates repeated episodes of vein opening and sealing. The [delta][sup 13]C values and the low Mn and Fe contents indicate a dominantly marine source of carbonate ions was related to the dissolution of metastable skeletal carbonates in the host shales. The [delta][sup 18]O values suggest precipitation at 30-50[degree]C and burial depths of tens to hundreds of meters. The formation of finely crystalline non-stoichiometric Ca-rich dolomite disseminated in the shale inclusions occurred subsequent to the emplacement of fibrous calcite veins under elevated burial temperatures. 54 refs., 8 figs., 3 tabs.

  7. Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.

    Science.gov (United States)

    Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J

    2017-09-06

    Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

  8. Direct measurements of surface scattering in Si nanosheets using a microscale phonon spectrometer: implications for Casimir-limit predicted by Ziman theory.

    Science.gov (United States)

    Hertzberg, Jared B; Aksit, Mahmut; Otelaja, Obafemi O; Stewart, Derek A; Robinson, Richard D

    2014-02-12

    Thermal transport in nanostructures is strongly affected by phonon-surface interactions, which are expected to depend on the phonon's wavelength and the surface roughness. Here we fabricate silicon nanosheets, measure their surface roughness (∼ 1 nm) using atomic force microscopy (AFM), and assess the phonon scattering rate in the sheets with a novel technique: a microscale phonon spectrometer. The spectrometer employs superconducting tunnel junctions (STJs) to produce and detect controllable nonthermal distributions of phonons from ∼ 90 to ∼ 870 GHz. This technique offers spectral resolution nearly 10 times better than a thermal conductance measurement. We compare measured phonon transmission rates to rates predicted by a Monte Carlo model of phonon trajectories, assuming that these trajectories are dominated by phonon-surface interactions and using the Ziman theory to predict phonon-surface scattering rates based on surface topology. Whereas theory predicts a diffuse surface scattering probability of less than 40%, our measurements are consistent with a 100% probability. Our nanosheets therefore exhibit the so-called "Casimir limit" at a much lower frequency than expected if the phonon scattering rates follow the Ziman theory for a 1 nm surface roughness. Such a result holds implications for thermal management in nanoscale electronics and the design of nanostructured thermoelectrics.

  9. Growing spherulitic calcite grains in saline, hyperalkaline lakes: Experimental evaluation of the effects of Mg-clays and organic acids

    NARCIS (Netherlands)

    Mercedes-Martín, R.; Rogerson, M.R.; Brasier, A.T.; Vonhof, H.B.; Prior, T.; Fellows, S.M.; Reijmer, J.J.G.; Billing, I.; Pedley, H.M.

    2016-01-01

    The origin of spherical-radial calcite bodies - spherulites - in sublacustrine, hyperalkaline and saline systems is unclear, and therefore their palaeoenvironmental significance as allochems is disputed. Here, we experimentally investigate two hypotheses concerning the origin of spherulites. The

  10. An isotopic and fluid inclusion study of fracture calcite from borehole OL-KR1 at the Olkiluoto site, Finland

    International Nuclear Information System (INIS)

    Blyth, A.; Frape, S.; Blomqvist, R.; Nissinen, P.; McNutt, R.

    1998-04-01

    A study of the geochemistry of fracture filling calcite in borehole OL-KR1 at the radioactive waste disposal investigation site Olkiluoto (in Finland) was undertaken in 1998. The purpose of the present study is to characterize the fracture calcite using mineralogy, oxygen, carbon and strontium isotopes, and fluid inclusions in order to determine past and present chemical and isotopic condition at the site

  11. An isotopic and fluid inclusion study of fracture calcite from borehole OL-KR1 at the Olkiluoto site, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, A.; Frape, S. [Univ. of Waterloo, ON (Canada); Blomqvist, R.; Nissinen, P. [Geological Survey of Finland, Espoo (Finland); McNutt, R. [McMaster Univ. of Hamilton, ON (Canada)

    1998-04-01

    A study of the geochemistry of fracture filling calcite in borehole OL-KR1 at the radioactive waste disposal investigation site Olkiluoto (in Finland) was undertaken in 1998. The purpose of the present study is to characterize the fracture calcite using mineralogy, oxygen, carbon and strontium isotopes, and fluid inclusions in order to determine past and present chemical and isotopic condition at the site 39 refs.

  12. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    Science.gov (United States)

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  13. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth

    2012-11-01

    Full Text Available Interpreting stable oxygen isotope (δ18O records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso. The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite.

    First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model.

    We then examine the response of the cave system to mid-Holocene (6000 yr before present, 6 ka climate conditions by forcing the ODSM with ECHAM5-wiso results from 6 ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors

  14. Isostructural exclusion of elements between aragonite and calcite layers in the shell of the Pacific oyster Crassostrea gigas

    International Nuclear Information System (INIS)

    Markwitz, A.; Gauldie, R.W.; Trompetter, W.J.; Pithie, J.; Jamieson, D.N.; Sharma, S.K.

    1999-01-01

    Sections of the shell of the farmed Pacific oyster 'Crassostrea gigas' that are available commercially in Wellington, New Zealand, showed a distinct alternating pattern in the shell mineral when observed by reflected light. The layers were identified by Raman scattering as alternating bands of the calcite and aragonite mineral forms of calcium carbonate using the micro-Raman facility at the Hawaii Institute of Geophysics and Planetology. The differences in the unit cell structure of calcite and aragonite favour different trace elements in the two minerals. Aragonite is isostructural with Strontianite SrCO 3 , and calcite is isostructural with Smithsonite ZnCO 3 . As a result, Sr deposition should be favoured in the aragonite layer and is excluded from the calcite layer; and, conversely, Zn deposition should be favoured in the calcite layer and is excluded from the aragonite layer. However, up to today, significant differences in the pattern of Sr and Zn in microprobe scans are not discovered. By ion microprobe analysis, it was shown that differences in the unit cell structure of calcite and aragonite favor different trace elements in the two minerals

  15. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monchau, F., E-mail: Francine.monchau@univ-artois.fr [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Hivart, Ph.; Genestie, B. [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Chai, F. [Laboratoire Medicaments et Biomateriaux a Liberation Controlee (INSERM U 1008, Universite Lille Nord de France), Groupe de Recherche sur les Biomateriaux (Universite Lille-2), Faculte de Medecine, 1, place de Verdun, 59045 Lille cedex (France); and others

    2013-01-01

    Close to the bone mineral phase, the calcic bioceramics, such as hydroxyapatite (HA) and {beta}-tricalcium phosphate ({beta}-TCP), are commonly used as substitutes or filling materials in bone surgery. Besides, calcium carbonate (CaCO{sub 3}) is also used for their excellent biocompatibility and bioactivity. However, the problem with the animal-origin aragonite demands the new technique to synthesize pure calcite capable of forming 3D bone implant. This study aims to manufacture and evaluate a highly-pure synthetic crystalline calcite with good cytocompatibility regarding to the osteoblasts, comparing to that of HA and {beta}-TCP. After the manufacture of macroporous bioceramic scaffolds with the identical internal architecture, their cytocompatibility is studied through MC3T3-E1 osteoblasts with the tests of cell viability, proliferation, vitality, etc. The results confirmed that the studied process is able to form a macroporous material with a controlled internal architecture, and this synthesized calcite is non-cytotoxic and facilitate the cell proliferation. Indeed requiring further improvement, the studied calcite is definitely an interesting alternative not only to coralline aragonite but also to calcium phosphate ceramics, particularly in bone sites with the large bone remodelling. Highlights: Black-Right-Pointing-Pointer Macroporous calcite manufacturing with controlled architecture as bone substitute Black-Right-Pointing-Pointer Cytotoxicity: adaptation of the colony-forming method with the target cells: MC3T3-E1 osteoblasts Black-Right-Pointing-Pointer Study of osteoblast proliferation and activity on calcite, HA and TCP.

  16. Fabrication of calcite blocks from gypsum blocks by compositional transformation based on dissolution-precipitation reactions in sodium carbonate solution.

    Science.gov (United States)

    Ishikawa, Kunio; Kawachi, Giichiro; Tsuru, Kanji; Yoshimoto, Ayami

    2017-03-01

    Calcium carbonate (CaCO 3 ) has been used as a bone substitute, and is a precursor for carbonate apatite, which is also a promising bone substitute. However, limited studies have been reported on the fabrication of artificial calcite blocks. In the present study, cylindrical calcite blocks (ϕ6×3mm) were fabricated by compositional transformation based on dissolution-precipitation reactions using different calcium sulfate blocks as a precursor. In the dissolution-precipitation reactions, both CaSO 4 ·2H 2 O and CaSO 4 transformed into calcite, a polymorph of CaCO 3 , while maintaining their macroscopic structure when immersed in 1mol/L Na 2 CO 3 solution at 80°C for 1week. The diametral tensile strengths of the calcite blocks formed using CaSO 4 ·2H 2 O and CaSO 4 were 1.0±0.3 and 2.3±0.7MPa, respectively. The fabrication of calcite blocks using CaSO 4 ·2H 2 O and CaSO 4 proposed in this investigation may be a useful method to produce calcite blocks because of the self-setting ability and high temperature stability of gypsum precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy

    Science.gov (United States)

    Hu, Zhongya; Hu, Wenxuan; Wang, Xiaomin; Lu, Yizhou; Wang, Lichao; Liao, Zhiwei; Li, Weiqiang

    2017-07-01

    Magnesium isotopes are an emerging tool to study the geological processes recorded in carbonates. Calcite, due to its ubiquitous occurrence and the large Mg isotope fractionation associated with the mineral, has attracted great interests in applications of Mg isotope geochemistry. However, the fidelity of Mg isotopes in geological records of carbonate minerals (e.g., calcite and dolomite) against burial metamorphism remains poorly constrained. Here we report our investigation on the Mg isotope systematics of a dolomitized Middle Triassic Geshan carbonate section in eastern China. Magnesium isotope analysis was complemented by analyses of Sr-C-O isotopic compositions, major and trace element concentrations, and petrographic and mineralogical features. Multiple lines of evidence consistently indicated that post-depositional diagenesis of carbonate minerals occurred to the carbonate rocks. Magnesium isotope compositions of the carbonate rocks closely follow a mixing trend between a high δ26Mg dolomite end member and a low δ26Mg calcite end member, irrespective of sample positions in the section and calcite/dolomite ratio in the samples. By fitting the measured Mg isotope data using a two-end member mixing model, an inter-mineral Δ26Mgdolomite-calcite fractionation of 0.72‰ was obtained. Based on the experimentally derived Mg isotope fractionation factors for dolomite and calcite, a temperature of 150-190 °C was calculated to correspond to the 0.72‰ Δ26Mgdolomite-calcite fractionation. Such temperature range matches with the burial-thermal history of the local strata, making a successful case of Mg isotope geothermometry. Our results indicate that both calcite and dolomite had been re-equilibrated during burial metamorphism, and based on isotope mass balance of Mg, the system was buffered by dolomite in the section. Therefore, burial metamorphism may reset Mg isotope signature of calcite, and Mg isotope compositions in calcite should be dealt with caution in

  18. Rare Earth element (REE) incorporation in natural calcite. Upper limits for actinide uptake in a secondary phase

    International Nuclear Information System (INIS)

    Stipp, S.L.S.; Christensen, J.T.; Waight, T.E.; Lakshtanov, L.Z.; Baker, J.A.

    2006-01-01

    Secondary minerals have the potential to sequester escaped actinides in the event of a radioactive waste repository failure, but currently, data to define their maximum uptake capacity are generally lacking. To estimate a maximum limit for solid solution in calcite, we took advantage of the behavioural similarities of the 4f-orbital lanthanides with some of the 5f-orbital actinides and used rare Earth element (REE) concentration as an analogue. A suite of 65 calcite samples, mostly pure single crystals, was assembled from a range of geological settings, ages and locations and analysed by isotope dilution MC-ICP-MS (multiple-collector inductively-coupled plasma mass spectroscopy). All samples were shown to contain significant lanthanide concentrations. The highest were in calcite formed from hydrothermal solutions and from carbonatite magma. Maximum total mole fraction of REE was 4.72 x 10 -4 , which represents one substituted atom for about 2000 Ca sites. In comparison, synthetic calcite, precipitated at growth rates slow enough to insure solid solution formation, incorporated 7.5 x 10 -4 mole fraction Eu(III). For performance assessment, we propose that 7.5 mmole substitution/kg calcite should be considered the upper limit for actinide incorporation in secondary calcite. The largest source of uncertainty in this estimate results from extrapolating lanthanide data to actinides. However, the data offer confidence that for waters in the hydrothermal temperature range, such as in the near-field, or at groundwater temperatures, such as in the far-field, if calcite formation is favoured and actinides are present, those with behaviour like the trivalent lanthanides, especially Am 3+ and Cm 3+ , will be incorporated. REE are abundant and widely distributed, and they have remained in calcite for millions of years. Thus, one can be certain that incorporated actinides will also remain immobilised in calcite formed in fractures and pore spaces, as long as solution conditions

  19. Fathoms Below: Propagation of Deep Water-driven Fractures and Implications for Surface Expression and Temporally-varying Activity at Europa

    Science.gov (United States)

    Walker, C. C.; Craft, K.; Schmidt, B. E.

    2015-12-01

    The fracture and failure of Europa's icy shell are not only observable scars of variable stress and activity throughout its evolution, they also serve key as mechanisms in the interaction of surface and subsurface material, and thus crucial aspects of the study of crustal overturn and ice shell habitability. Galileo images, our best and only reasonable-resolution views of Europa until the Europa Multiple Flyby Mission arrives in the coming decades, illustrates a single snapshot in time in Europa's history from which we deduce many temporally-based hypotheses. One of those hypotheses, which we investigate here, is that sub-surface water-both in the form of Great Lake-sized perched water pockets in the near-surface and the larger global ocean below-drives the deformation, fracture, and failure of the surface. Using Galileo's snapshot in time, we use a 2D/3D hydraulic fracturing model to investigate the propagation of vertical fractures upward into the ice shell, motion of water within and between fractures, and the subsequent break-up of ice over shallow water, forming the chaos regions and other smaller surface features. We will present results from a cohesive fragmentation model to determine the time over which chaos formation occurs, and use a fracking model to determine the time interval required to allow water to escape from basal fractures in the ice shell. In determining the style, energy, and timescale of these processes, we constrain temporal variability in observable activity and topography at the surface. Finally, we compare these results to similar settings on Earth-Antarctica-where we have much higher resolution imagery and observations to better understand how sub-surface water can affect ice surface morphology, which most certainly have implications for future flyby and surface lander exploration.

  20. Importance of Surface Texture to Infrared Remote Sensing Interpretations

    Science.gov (United States)

    Kirkland, L. E.; Adams, P. M.; Herr, K. C.; Salisbury, J. W.

    2001-11-01

    Thermal infrared remote sensing may be used to identify minerals present on the surface using diagnostic spectral bands. As band depth (spectral contrast) exhibited by the mineral increases, the mineral is easier to detect. In order to determine the expected spectral contrast, thermal infrared spectra of typical mineral endmembers are commonly measured in the laboratory. For example, for calcite, well-crystalline limestone is commonly studied. However, carbonates occur in several forms, including thin coatings, indurated carbonate (calcrete), and hot springs deposits. Different formation pathways may cause different microstructures and surface textures. This in turn can also affect the surface texture of the weathered material. Different surface textures can affect the measured band contrast, through roughness that causes a cavity (hohlraum) effect, and particle size and roughness on a scale that causes volume scattering. Thus since detection limits vary with the spectral contrast, surface texture can be an important variable in how detectable a mineral is. To study these issues, we have examined limestone and calcrete deposits at Mormon Mesa, Nevada that have two distinctly different microstructures and surface texture [Kirkland et al., 2001]. The limestone studied has larger grains and the grains frequently have flat, smooth surfaces on the order of 10-50 microns in cross-section length. The calcrete has smaller, more angular calcite grains, which exhibit almost no flat surfaces longer than 5 microns in cross-section length. We will show scanning electron microscope images to compare the different microstructures and surface textures of both the fresh and weathered surfaces, and we will show corresponding thermal infrared spectra to illustrate the different spectral signatures. The results demonstrate the importance of understanding the microstructure of mineral deposits to accurately interpret infrared remote sensing data, especially for studies that lack ground

  1. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry

    Science.gov (United States)

    Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David

    2014-03-01

    true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM-metal complexes [organic carbon-metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24-150 for V, Ni and Cu. This implies that ternary surface complexation (metal-ligand co-adsorption) can occur (as for NOM-Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM-metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems. The heterogeneous speciation and size distribution of aqueous NOM and metals (Lead and Wilkinson, 2006; Aiken et al., 2011). The variability in NOM-metal transport in caves that arises from the interaction between infiltration, flow routing, and the hydrodynamic properties of the fine colloids and particulates (Hartland et al., 2012). Variable dissociation kinetics through time as a function of (a) (Hartland et al., 2011). The surface charge of calcite and the availability of CaCO3 lattice sites as well as increased incidence of crystallographic defects with implications for incorporation of a range of trace species (Fairchild and Treble, 2009; Fairchild and Hartland, 2010). Thus, incorporation in speleothem calcite with consistent surface site properties will be determined by: The size and composition (i.e. hydrophilicity/hydrophobicity) of the NOM ligand, affecting adsorption and stability at the calcite surface. The lability (i.e. exchangeability) of the complexed metal and its binding affinity for the calcite surface. The concentration of aqueous complexes. Given the complexities, a partitioning approach to the problem is appropriate as a first approximation rather than a precise

  2. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification

    Science.gov (United States)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-01-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented

  3. Using neutron diffraction to examine the onset of mechanical twinning in calcite rocks

    Science.gov (United States)

    Covey-Crump, S. J.; Schofield, P. F.; Oliver, E. C.

    2017-07-01

    Experimental calibration of the calcite twin piezometer is complicated by the difficulty of establishing the stresses at which the twins observed in the final deformation microstructures actually formed. In principle, this difficulty may be circumvented if the deformation experiments are performed in a polychromatic neutron beam-line because this allows the elastic strain (and hence stress) in differently oriented grains to be simultaneously monitored from diffraction patterns collected as the experiment is proceeding. To test this idea small strain (marble (grain size 150 μm) and Solnhofen limestone (5 μm) at temperatures of 20°-600 °C using the ENGIN-X instrument at the ISIS neutron facility, UK. At the lowest temperatures (25 °C Carrara; 200 °C Solnhofen) the deformation response was purely elastic up to the greatest stresses applied (60 MPa Carrara; 175 MPa Solnhofen). The sign of the calcite elastic stiffness component c14 is confirmed to be positive when the obverse setting of the calcite rhombohedral lattice in hexagonal axes is used. In the Carrara marble samples deformed at higher temperatures, elastic twinning was initiated at small stresses (<15 MPa) in grains oriented such that the Schmid factor for twinning was positive on more than one e-twin system. At greater stresses (65 MPa at 200 °C decreasing to 41 MPa at 500 °C) there was an abrupt onset of permanent twinning in grains with large Schmid factors for twinning on any one e-twin system. No twinning was observed in the Solnhofen limestone samples deformed at 200° or 400 °C at applied stresses of <180 MPa. These results highlight the potential of this approach for detecting the onset of twinning and provide, through experiments on samples with different microstructures, a strategy for systematically investigating the effects of microstructural variables on crystallographically-controlled inelastic processes.

  4. Calcite Twin Analysis in the Central Andes of Northern Argentina and Southern Bolivia

    Science.gov (United States)

    Hardesty, E.; Hindle, D.

    2005-12-01

    The use of calcite twinning to infer compression directions and strain axes patterns has been applied widely in both fold and thrust belts, and continental interiors. Calcite twinning is noted to be one of the most precise methods for determining the internal strain of deformed rocks. Until now, such data from the deformed plate boundary of the Central Andes were lacking. This study has examined twinning orientations along the deformed Andean foreland (southern Bolivia and northern Argentina) from -25 to -20 latitude. In the Central Andes, we find an abundance of calcite twins in intervals of the Cretaceous age Yacorite limestone. Twin samples were collected, measured for orientation and type (I and II can be best used for strain analysis), and processed using the Groshong method, to give resultant strain tensors. The orientations of the twin short axes trend mostly NE-SW, which is close to the plate convergence direction. However, in a limited number of samples from the north, adjacent to the southern culmination of the active Subandean fold thrust belt, they trend NW-SE. This difference may be related to the more active, or more recent, shortening of the southern portion of the Eastern Cordillera, south of the culmination of the Subandean belt. This implies that twin short axes vary consistently with respect to geographic location and local tectonic regime. NW-SE trends in the northern region match well with fault kinematic studies in rocks pre-dating the San Juan del Oro unconformity (9-10 Ma). NE-SW trends in the south could correspond to much younger (~1-3 Ma) fault kinematic trends. In the Eastern Cordillera, where there is present day tectonic activity, the plunges of the twin short axes are found to be almost horizontal. This suggests that the twins were formed after folding occurred.

  5. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The influence of solution composition and grain boundaries on the replacement of calcite by dolomite

    Science.gov (United States)

    Moraila Martinez, Teresita de Jesus; Putnis, Christine V.; Putnis, Andrew

    2016-04-01

    Dolomite formation is a mineral replacement reaction that affects extensive rock volumes and comprises a large fraction of oil and gas reservoirs [1,2]. The most accepted hypothesis is the 'dolomitization' of limestone by Mg-rich fluids [3]. The objective of this research is to study the replacement mechanism of calcite by dolomite, the role of grain boundaries, highlighted by Etschmann et al. (2014), and the possible influence of solutions in dolomite formation under the presence of ions that are normally in crustal aqueous fluids. To accomplish this purpose, we performed hydrothermal experiments using Carrara marble cubes of ~1.5 mm size and 7-9 mg weight as starting material, reacted with 1M (Mg,Ca)Cl2 aqueous solutions, with Mg/Ca ratios of 3 and 5 at 200°C, for different reaction times. Additional experiments were performed adding 1mM of Na2SO4, NaCl or NaF to the previous solutions. After the reaction, the product phases were identified using Raman spectroscopy, X-Ray powder diffraction (XRD), electron microprobe analysis (EMPA), and the textural evolution was studied by scanning electron microscopy (SEM). Samples reacted with aqueous solutions resulted in the replacements of the calcite rock into magnesite and dolomite. The amount and type of reaction strongly depends on the Mg/Ca ratio. Samples reacted with a Mg/Ca ratio of 5 resulted in an almost complete replacement reaction and more favorable for magnesite formation than for dolomite. When the Mg/Ca ratio was 3 dolomite formed but the replacement was located in the core of the sample. We show that grain boundaries are very important for the infiltration of solution and the progress of a replacement reaction, acting as fluid pathways. Solution composition controls the nature of the replacement product. Acknowledgment: This work is funded within a Marie Curie EU Initial Training Network- CO2-React. 1. Etschmann B., Brugger J., Pearce M.A., Ta C., Brautigan D., Jung M., Pring A. (2014). Grain boundaries as

  7. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Batstone, Damien J.; Flores Alsina, Xavier

    2015-01-01

    , the present study aims to identify a broadly applicable precipitation modelling approach. The study uses two experimental platforms applied to calcite precipitating from synthetic aqueous solutions to identify and validate the model approach. Firstly, dynamic pH titration tests are performed to define...... an Arrhenius-style correction of kcryst. The influence of magnesium (a common and representative added impurity) on kcryst was found to be significant but was considered an optional correction because of a lesser influence as compared to that of temperature. Other variables such as ionic strength and pH were...

  8. Nyctemeral variations of magnesium intake in the calcitic layer of a Chilean mollusk shell ( Concholepas concholepas, Gastropoda)

    Science.gov (United States)

    Lazareth, Claire E.; Guzman, Nury; Poitrasson, Franck; Candaudap, Frederic; Ortlieb, Luc

    2007-11-01

    Mollusk shells are increasingly used as records of past environmental conditions, particularly for sea-surface temperature (SST) reconstructions. Many recent studies tackled SST (and/or sea-surface salinity) tracers through variations in the elementary (Mg and Sr) or stable isotope (δ 18O) composition within mollusk shells. But such attempts, which sometimes include calibration studies on modern specimens, are not always conclusive. We present here a series of Mg and Sr analyses in the calcitic layer of Concholepas concholepas (Muricidae, Gastropoda) with a very high time-resolution on a time window covering about 1 and a half month of shell formation, performed by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS) and electron probe micro-analysis (EPMA). The selected specimen of this common Chilean gastropod was grown under controlled environmental conditions and precise weekly time-marks were imprinted in the shell with calcein staining. Strontium variations in the shell are too limited to be interpreted in terms of environmental parameter changes. In contrast, Mg incorporation into the shell and growth rate appear to change systematically between night and day. During the day, Mg is incorporated at a higher rate than at night and this intake seems positively correlated with water temperature. The nightly reduced Mg incorporation is seemingly related to metabolically controlled processes, formation of organic-rich shell increments and nocturnal feeding activity of the animals. The nyctemeral Mg changes in the C. concholepas shell revealed in this study might explain at least part of the discrepancies observed in previous studies on the use of Mg as a SST proxy in mollusk shells. In the case of C. concholepas, Mg cannot be used straightforwardly as a SST proxy.

  9. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Filali, Larbi, E-mail: larbifilali5@gmail.com [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Brahmi, Yamina; Sib, Jamal Dine [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Bouhekka, Ahmed [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Département de Physique, Université Hassiba Ben Bouali, 02000 Chlef (Algeria); Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria)

    2016-10-30

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  10. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    Science.gov (United States)

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  11. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation.

    Science.gov (United States)

    Tiano, P; Biagiotti, L; Mastromei, G

    1999-05-01

    The weathering of monumental stones is a complex process inserted in the more general 'matter transformation cycle' operated by physical, chemical and biological factors. The consequence of these combined actions is a loss of cohesion with dwindling and scaling of stone material and the induction of a progressive mineral matrix dissolution. In the case of calcareous stones, calcite leaching increases the material porosity and decreases its mechanical features with a general weakening of the superficial structural strength. Attempts to stop, or at least to slow down, deterioration of monumental stones has been made by conservative treatments with both inorganic or organic products. More recent studies show a new approach to hinder these phenomena by inducing a bio-mediated precipitation of calcite directly inside the stone porosity. This can be achieved either through the application of organic matrix macromolecules extracted from sea shells or of living bacteria. The effectiveness of the treatment using calcinogenic bacteria has been evaluated with laboratory tests specifically developed to evaluate the parameters such as : porosity, superficial strength and chromatic changes, influenced by the treatment itself. The results obtained seem to indicate that this type of treatment might not be suitable for monumental stone conservation.

  12. Assessing the potential for using biogenic calcites as dosemeters for luminescence dating

    International Nuclear Information System (INIS)

    Duller, G.A.T.; Penkman, K.E.H.; Wintle, A.G.

    2009-01-01

    Calcium carbonate emits an intense thermoluminescence (TL) signal and previous work has explored the potential of using this signal to date both inorganic carbonates such as limestones and stalagmites and biogenic calcite produced by marine organisms. Luminescence analysis of biogenic calcites directly dates the secretion of the mineral by the organism and is therefore not reliant upon exposure of the sample to daylight. A method is outlined for using the TL signals from slug plates, from the Limacidae family, and opercula from the snail Bithynia tentaculata to construct a single-aliquot regenerative-dose growth curve. Analysis of slug plates from a number of Quaternary sites show that the equivalent dose (D e ) of a late Holocene sample is close to zero and that the D e increases with age over the last 500 ka. The TL signal from snail opercula is shown to increase up to doses over 4000 Gy. Replicate measurements from 16 opercula from a site ∼220 ka show a broad distribution. Potential causes of this scatter are discussed along with recommendations about how it could be reduced. The major challenge which remains to be solved before slug plates or snail opercula could be used to calculate ages is to develop methods for calculating the dose rate received during burial.

  13. Jet-Suspended, Calcite-Ballasted Cyanobacterial Waterwarts in a Desert Spring

    Science.gov (United States)

    Pichel-Garcia, Ferran; Wade, Bman D.; Farmer, Jack D.

    2002-01-01

    We describe a population of colonial cyanobacteria (waterwarts) that develops as the dominant primary producer in a bottom-fed, warm spring in the Cuatro Cienegas karstic region of the Mexican Chihuahuan Desert. The centimeter-sized waterwarts were suspended within a central, conically shaped, 6-m deep well by upwelling waters. Waterwarts were built by an unicellular cyanobacterium and supported a community of epiphytic filamentous cyanobacteria and diatoms but were free of heterotrophic bacteria inside. Sequence analysis of genes revealed that this cyanobacterium is only distantly related to several strains of other unicellular teria Cyanothece, Waterwarts contained orderly arrangements of mineral made up of microcrystalline low-magnesium calcite with high levels of strontium and sulfur. Waterwarts were 95.9% (v/v) glycan, 2.8% cells, and 1.3% mineral grains and had a buoyant density of 1.034 kg/L. An analysis of the hydrological properties of the spring well and the waterwarts demonstrated that both large colony size and the presence of controlled amounts of mineral ballast are required to prevent the population from being washed out of the well. The unique hydrological characteristics of the spring have likely selected for both traits. The mechanisms by which controlled nucleation of extracellular calcite is achieved remain to be explored.

  14. Remineralization of permeate water by calcite bed in the Daoura's plant (south of Morocco)

    Science.gov (United States)

    Biyoune, M. G.; Atbir, A.; Bari, H.; Hassnaoui, L.; Mongach, E.; Khadir, A.; Boukbir, L.; Bellajrou, R.; Elhadek, M.

    2017-04-01

    To face water shortage and to fight drought, the National office of Water and Electricity (ONEE) carried out a program aiming at constructing several desalination stations of seawater in the South of Morocco. However, the final product water after desalination (osmosis water) has turned out to be unbalanced and has an aggressive character. Therefore, a post-treatment of remineralization is necessary to recover the calco-carbonic equilibrium of water and to protect the distribution network from corrosion degradation. Thereby, our work aims to examine the performance of the remineralization used in Daoura plant by the calcite bed in the absence of carbon dioxide CO2 (without acidification), we have followed many parameters indicating the performance of this technique adopted such as pH, TAC (hydroxide, carbonate and bicarbonate content), Ca content, Langelier saturation index (LSI), Larson index (LR). The results obtained show that this technique adopted in Daoura plant brings to water back its entire calco-carbonic balance to measure up to the Moroccan standards of drinking water. Generally, the exploitation of the calcite bed technique for remineralization is simple, easy and it does not require any major efforts or precautions.

  15. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    Science.gov (United States)

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  16. Assessment of the potential for dating secondary calcite and quartz in fault zones

    International Nuclear Information System (INIS)

    Morency, Maurice

    1982-03-01

    Calcite and quartz occur frequently as secondary minerals in faults. In many instances these minerals are not deformed. Calcite, for example, often exhibits an undisturbed fibrous habit or appears as euhedral crystals. Direct dating of euhedral crystals would provide a minimum age of the last movement along a fault, whereas dating of fibrous crystals would furnish the real age of the last movement. This information would be essential in the evaluation and selection of sites for both nuclear power reactors and nuclear waste disposal. In the Canadian context, to be successful, the technique should be able to date minerals as old as tens of millions of years. In this study both isotopic and radioactive damage techniques were considered. It was found that thermoluminescence, thermally stimulated current, and electron spin resonance offer possibilities. Recent electron spin resonance studies of ancient flints have yielded dates of several hundred million years. It is anticipated that in the near future a combination of the above techniques will be extensively used in the field of geochronology

  17. Characterization of Shock Effects in Calcite by Raman Spectroscopy: Results of Experiments

    Science.gov (United States)

    Bell, M. S.

    2016-01-01

    Carbonates comprise approx. 20% by volume of present day Earth's sedimentary rocks and store most of the terrestrial CO2 inventory. Some of the oldest meta-sedimentary rocks found on Earth contain abundant carbonate from which impact-induced release of CO2 could have played a role in the formation and evolution of the atmosphere. Carbonates are also present in the target materials for approx. 30% of all terrestrial impact structures including large impacts such as Chicxulub which happened to occur at a location with extraordinarily thick platform carbonate 3-6 km deep. The impact release of CO2 from carbonates can cause global warming as a result of the well-known greenhouse effect and have subsequent effects on climate and biota. Therefore, the shock behavior of calcite is important in understanding the Cretaceous-Paleogene event and other impacts with carbonate-bearing sediments in their target(s) such as Mars and some asteroids. A comprehensive survey utilizing a variety of techniques to characterize the effects manifest in Calcite (Iceland Spar) experimentally shocked to 60.8 GPa has been completed. Results of analysis by Raman Spectroscopy are reported here.

  18. Environmentally acceptable effect of hydrogen peroxide on cave 'lamp-flora', calcite speleothems and limestones

    International Nuclear Information System (INIS)

    Faimon, Jiri; Stelcl, Jindrich; Kubesova, Svatava; Zimak, Jiri

    2003-01-01

    Hydrogen peroxide plus limestone fragments allows removal of organisms without corrosion of limestone and speleothem. - Mosses, algae, and cyanobacteria (lamp-flora) colonize illuminated areas in show caves. This biota is commonly removed by a sodium hypochlorite solution. Because chlorine and other deleterious compounds are released into a cave environment during lamp-flora cleansing, hydrogen peroxide was tested as an alternative agent. In a multidisciplinary study conducted in the Katerinska Cave (Moravian Karst, Czech Republic), 12 algae- and cyanobacteria taxons and 19 moss taxons were detected. The threshold hydrogen peroxide concentration for the destruction of this lamp-flora was found to be 15 vol.%. Based on laboratory experiments in stirred batch reactors, the dissolution rates of limestones and calcite speleothems in water were determined as 3.77x10 -3 and 1.81x10 -3 mol m -2 h -1 , respectively. In the 15% peroxide solution, the limestone and speleothem dissolution rates were one order of magnitude higher, 2.00x10 -2 and 2.21x10 -2 mol m -2 h -1 , respectively. So, the peroxide solution was recognised to attack carbonates somewhat more aggressively than karst water. In order to prevent the potential corrosion of limestone and speleothems, the reaching of preliminary peroxide saturation with respect to calcite is recommended, for example, by adding of few limestone fragments into the solution at least 10 h prior to its application

  19. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada

    International Nuclear Information System (INIS)

    Winograd, I.J.; Coplen, T.B.; Landwehr, J.M.; Revesz, K.M.; Riggs, A.C.; Ludwig, K.R.; Szabo, B.J.; Kolesar, P.T.

    1992-01-01

    Oxygen-18 (δ 18 O) variations in a 36-centimeter-long core (DH-11) of vein calcite from Devils Hole, Nevada, yield an uninterrupted 500,000-year paleotemperature record that closely mimics all major features in the Vostok (Antarctica) paleotemperature and marine δ 18 O ice-volume records. The chronology for this continental record is based on 21 replicated mass-spectrometric uranium-series dates. Between the middle and latest Pleistocene, the duration of the last four glacial cycles recorded in the calcite increased from 80,000 to 130,000 years; this variation suggests that major climate changes were aperiodic. The timing of specific climatic events indicates that orbitally controlled variations in solar insolation were not a major factor in trigering deglaciations. Interglacial climates lasted about 20,000 years. Collectively, these observations are inconsistent with the Milankovitch hypothesis for the origin of the Pleistocene glacial cycles but they are consistent with the thesis that these cycles originated from internal nonlinear feedbacks within the atmosphere-ice sheet-ocean system

  20. An integrated geophysical survey of Kilbourne Hole, southern New Mexico: Implications for near surface exploration of Mars and the Moon

    Science.gov (United States)

    Maksim, Nisa

    Features such as the Home Plate plateau on Mars, a suspected remnant of an ancient phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The eruption intensity of a phreatomagmatic volcano is controlled mainly by the quantity of water and magma, the internal geometry of the volcano, and the depth of the interaction zone between magma and water. In order to understand the paleohydrologic conditions at the time of eruption, we must understand all the factors that influenced the phreatomagmatic event. I conducted an integrated geophysical survey, which are magnetic and gravity surveys, and a ground-penetrating radar (GPR) surveys at Kilbourne Hole, a phreatomagmatic crater in southern New Mexico. These investigations serve an analog paleo-hydrogeological study that could be conducted on Mars and the Moon with an implication for planetary exploration. These geophysical surveys are designed to delineate the internal structure of a phreatomagmatic volcano and to define the volumes and masses of volcanic dikes and excavation unit, the depth of feeder dikes, and impacted velocity of the volcanic blocks. For the gravity and magnetic surveys at Kilbourne Hole, I collected data at a total of 171 gravity survey stations and 166 magnetics survey stations. A 2D gravity and magnetic inverse model was developed jointly to map the body of the magma intrusions and the internal structure of Kilbourne Hole. A total of 6 GPR surveys lines were also completed at Kilbourne Hole to image and to define locations of pyroclastic deposits, volcanic sags and blocks, the sizes distribution of volcanic blocks, and the impact velocity of the volcanic blocks. Using the size distribution and impact velocity of volcanic blocks from our GPR data, I derived the initial gas expansion velocity and the time duration of the gas expansion phase of the Kilbourne Hole eruption. These obtained parameters (volumes, masses, and depths of the feeder dikes and the excavation

  1. Late holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability.

    Digital Repository Service at National Institute of Oceanography (India)

    Boll, A.; Luckge, A.; Munz, P.; Forke, S.; Schulz, H.; Ramaswamy, V.; Rixen, T.; Gaye, B.; Emeis, K.-C.

    changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we...

  2. The Uptake of Eu(III) and Th(IV) by Calcite under Hyperalkaline Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tits, J.; Wieland, E.; Bradbury, M.H.; Eckert, P.; Schaible, A

    2002-10-01

    Calcite is an important component of Valanginian marl, a potential host rock for a low and intermediate level radioactive waste (L/ILW) repository in Switzerland. This mineral also forms an important component of the disturbed zone around a repository, as it remains largely unaffected by the hyperalkaline waters migrating out of the cementitious repository . The sorption behaviour of Eu(III) and Th(IV) on Merck calcite in an artificial cement pore water (ACW) at pH 13.3 has been studied in batch-type sorption experiments. In addition, the effect of {alpha}-isosaccharinic acid (ISA) and gluconic acid (GLU) on the sorption of these two cations has been investigated. In the absence of ISA and GLU, a strong interaction of Eu(III) and Th(IV) with Merck calcite was observed. Eu(III) and Th(IV) sorption kinetics were fast and the isotherms indicated a linear adsorption behaviour over the experimentally accessible concentration range. In the case of Eu(III), a decrease of the R{sub d} value with increasing solid to liquid (S:L) ratio was observed indicating that, along with adsorption, other processes might influence the immobilisation of this cation by Merck calcite under ACW conditions. In the case of Th(IV), however, changes in the S:L ratio had no effect on the sorption behaviour . High ISA and GLU concentrations in solution significantly affected the sorption of both Eu(III) and Th(IV): R{sub d} values for Eu(III) decreased significantly at ISA concentrations higher than 10{sup -5} M and at GLU concentrations higher than 10{sup -7} M. The sorption of Th(IV) was reduced at ISA concentrations above 2.10{sup -5} M and at GLU concentrations above 10{sup -6} M. The effects of ISA and GLU on the immobilisation of Eu(III) and Th(IV) were interpreted in terms of complex formation in solution. In the case of Eu(III) the metal ligand complexes were found to have a 1 : 1 stoichiometry. Complexation constants derived for the aqueous Eu(III)-ISA. and Eu(III)GLU complexes were

  3. The Uptake of Eu(III) and Th(IV) by Calcite under Hyperalkaline Conditions

    International Nuclear Information System (INIS)

    Tits, J.; Wieland, E.; Bradbury, M.H.; Eckert, P.; Schaible, A.

    2002-10-01

    Calcite is an important component of Valanginian marl, a potential host rock for a low and intermediate level radioactive waste (L/ILW) repository in Switzerland. This mineral also forms an important component of the disturbed zone around a repository, as it remains largely unaffected by the hyperalkaline waters migrating out of the cementitious repository . The sorption behaviour of Eu(III) and Th(IV) on Merck calcite in an artificial cement pore water (ACW) at pH 13.3 has been studied in batch-type sorption experiments. In addition, the effect of α-isosaccharinic acid (ISA) and gluconic acid (GLU) on the sorption of these two cations has been investigated. In the absence of ISA and GLU, a strong interaction of Eu(III) and Th(IV) with Merck calcite was observed. Eu(III) and Th(IV) sorption kinetics were fast and the isotherms indicated a linear adsorption behaviour over the experimentally accessible concentration range. In the case of Eu(III), a decrease of the R d value with increasing solid to liquid (S:L) ratio was observed indicating that, along with adsorption, other processes might influence the immobilisation of this cation by Merck calcite under ACW conditions. In the case of Th(IV), however, changes in the S:L ratio had no effect on the sorption behaviour . High ISA and GLU concentrations in solution significantly affected the sorption of both Eu(III) and Th(IV): R d values for Eu(III) decreased significantly at ISA concentrations higher than 10 -5 M and at GLU concentrations higher than 10 -7 M. The sorption of Th(IV) was reduced at ISA concentrations above 2.10 -5 M and at GLU concentrations above 10 -6 M. The effects of ISA and GLU on the immobilisation of Eu(III) and Th(IV) were interpreted in terms of complex formation in solution. In the case of Eu(III) the metal ligand complexes were found to have a 1 : 1 stoichiometry. Complexation constants derived for the aqueous Eu(III)-ISA. and Eu(III)GLU complexes were determined to be logβ 0 EulSA = -31.1

  4. Surface chemistry of carbon removal from indium tin oxide by base and plasma treatment, with implications on hydroxyl termination

    International Nuclear Information System (INIS)

    Chaney, John A.; Koh, Sharon E.; Dulcey, Charles S.; Pehrsson, Pehr E.

    2003-01-01

    The surface chemistry of carbon removal from indium tin oxide (ITO) has been investigated with Auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS), and high-resolution energy loss spectroscopy (HR-ELS). A vibrating Kelvin probe (KP) was used to monitor the work function (PHI) of ITO after cleaning, either by base-cleaning with alcoholic-KOH or by O 2 plasma-cleaning. Base-cleaning lowered PHI ITO as seen in the KP analysis, whereas plasma-cleaning slightly increased PHI ITO by an oxidative process. The degree of PHI ITO depression by base-cleaning was seen to depend on the initial surface, but the PHI depression itself was nonreductive to the ITO, as seen in the In-MNN AES lineshape. The nonreductive depression of PHI ITO by base-cleaning was further supported by a constant charge carrier density, as estimated from the HR-ELS. Base-cleaning was slightly more effective than the oxygen plasma in removing carbon from the ITO surface. However, base-cleaning preferentially removed graphitic carbon while leaving significant hydrocarbon contaminants, as determined by vibrational analysis with HREELS. All other ITO surfaces retained a significant carbon and hydrocarbon contamination as evidenced by AES and HREELS. There was little evidence of the formation of surface hydroxyl species, as expected for such an inherently contaminated surface as ITO

  5. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  6. Mineral contents and their solubility on calcium carbonat calcite nanocrystals from cockle shell powder (Anadara granosa Linn)

    Science.gov (United States)

    Widyastuti, S.; Pramushinta, I. A.

    2018-03-01

    Prepared and characterized calcium carbonat calcite nanocrystals improves solubility. Calcium carbonat calcite nanocrystals were synthesized using precipitation method from the waste of blood clam cockle shells (Anadara granosa Linn). This study was conducted to analyze mineral composition of nanocrystals calcium carbonat calcite cockle (Anadara granosa) shell for calcium fortification of food applications and to evaluate the solubilities of Calsium and Phospor. The sample of nanocrystals from cockle shells was evaluated to determine the content of 11 macro-and micro-elements. These elements are Calcium (Ca), Magnesium (Mg), Sodium (Na), Phosphorus (P), Potassium (K), Ferrum (Fe), Copper (Cu), Nickel (Ni), Zink (Zn), Boron (B) and Silica (Si)). Cockleshell powders were found to contain toxic elements below detectable levels. The solubilities of Calcium and Phospor were p<0.05.

  7. Climate change in the sea: the implications of increasing the carbon dioxide inputs to the surface ocean

    Energy Technology Data Exchange (ETDEWEB)

    Pfister, Cathy [University of Chicago

    2012-12-23

    The oceans are estimated to be absorbing one-third of the fossil fuel carbon released into the atmosphere, a process that is expected to change ocean carbon chemistry. I will present data from the Washington coast showing ocean pH declines and changes to the shell chemistry of bivalves. I will discuss implications of carbon cycle changes for marine species, including insights from a coastal area where I have worked for more than 24 years. I will summarize what we know to date about this process of “ocean acidification”.

  8. Common Ion Effects In Zeoponic Substrates: Dissolution And Cation Exchange Variations Due to Additions of Calcite, Dolomite and Wollastonite

    Science.gov (United States)

    Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.

    2003-01-01

    c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite

  9. Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany

    Science.gov (United States)

    Burisch, Mathias; Walter, Benjamin F.; Gerdes, Axel; Lanz, Maximilian; Markl, Gregor

    2018-02-01

    Tertiary) Pb-Zn-fluorite-quartz-barite assemblages in the same specific vein systems, albeit involving different fluid compositions. Late-stage hydrothermal (∼20-70 °C) vein assemblages reported in this study record the transition from deep (>2 km) to very shallow (0-1 km) crustal conditions. As a consequence of successive uplift, increasing proportions of shallower and cooler (∼50-70 °C) fluids could take part in such mixing processes. Associated changes in the fluid composition caused the vein mineralogy to change from sulphide-quartz-fluorite-barite to calcite-anhydrite/gypsum-siderite-dolomite, as the system passively ascended closer to the surface.

  10. An initial assessment of the impact of Australian aerosols on surface ultraviolet radiation and implications for human health

    International Nuclear Information System (INIS)

    Chee, C Y; Mills, F P

    2010-01-01

    Aerosols can have significant influence on surface radiation, and the intense surface ultraviolet radiation Australia experiences contributes to Australia's high incidence rates for related human diseases. Aerosol properties, such as total column aerosol optical depth, have been measured over several years for varying lengths of time at sites across Australia using sunphotometers. Statistical analysis of the average daily aerosol optical depth over sites near Alice Springs, Canberra, Darwin, and Perth provides one measure of the annual atmospheric loading of aerosols over these sites. The sunphotometers used at these sites do not make measurements in the UV-B spectral region and have only one channel in the UV-A spectral region, the regions of most interest for assessing human health impact. Consequently, model calculations using standard aerosol types have been used to make an initial estimate of the impact of the aerosols found over these four sites on surface ultraviolet radiation. The aerosol loading is at times sufficient to significantly reduce the surface ultraviolet radiation, but few such days occur each year. The annual average effect of aerosols on surface ultraviolet radiation, thus, appears to be small compared to lifestyle factors, such as clothing and use of sunscreen.

  11. Relative Shock Effects in Mixed Powders of Calcite, Gypsum, and Quartz: A Calibration Scheme from Shock Experiments

    Science.gov (United States)

    Bell, Mary S.

    2009-01-01

    The shock behavior of calcite and gypsum is important in understanding the Cretaceous/Tertiary event and other terrestrial impacts that contain evaporite sediments in their targets. Most interest focuses on issues of devolatilization to quantify the production of CO2 or SO2 to better understand their role in generating a temporary atmosphere and its effects on climate and biota [e.g., papers in 1,2,3,4]. Devolatilization of carbonate is also important because the dispersion and fragmentation of ejecta is strongly controlled by the expansion of large volumes of gas during the impact process as well [5,6]. Shock recovery experiments for calcite yield seemingly conflicting results: early experimental devolatilization studies [7,8,9] suggested that calcite was substantially outgassed at 30 GPa (> 50%). However, the recent petrographic work of [10,11,12] presented evidence that essentially intact calcite is recovered from 60 GPa experiments. [13] reported results of shock experiments on anhydrite, gypsum, and mixtures of those phases with silica. Their observations indicate little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another (preliminary) report of shock experiments on calcite, anhydrite, and gypsum, [14] observe calcite recrystallization when shock loaded at 61 GPa, only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa. [15] shock loaded anhydrite and quartz to a peak pressure of 60 GPa. All of the quartz grains were trans-formed to glass and the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggest that recrystallization of anhydrite grains is the result of a solid state transformation. [16] reanalyzed the calcite and anhydrite shock

  12. Calcite deposits in drill cores USW G-2 and USW GU-3/G-3 at Yucca Mountain, Nevada: Preliminary report

    International Nuclear Information System (INIS)

    Vaniman, D.T.

    1994-04-01

    Yucca Mountain is being studied as a potential site for deep geologic disposal of high-level radioactive waste. Should a repository be developed at Yucca Mountain, the preferred location is within the upper unsaturated tuffaceous volcanic rocks. In this location, one factor of concern is the amount and rate of aqueous transport through the unsaturated rocks toward the underlying saturated intervals. Calcite, one of the most recently-formed minerals at Yucca Mountain, is of minor abundance in the unsaturated rocks but is widely distributed. Studies of calcite ages, isotopic systematics, chemistry and petrography could lead to a better understanding of transport processes at Yucca Mountain

  13. Reconstructing sea surface temperature, sea surface salinity and partial pressure of carbon dioxide in atmosphere in the Okinawa Trough during the Holocene and their paleoclimatic implications

    Institute of Scientific and Technical Information of China (English)

    MENGXianwei; LIUYanguang; LlUZhenxia; DUDewen; HUANGQiyu; Y.Saito

    2003-01-01

    The sediment core DGKS9603 collected from the Okinawa Trough was used as research target. By use of unsaturated index U37k of long-chain alkenone, δ13C of POC and of planktonic foraminifera (G sacculifer), the evolutions of sea surface temperature and partial pressure of carbon dioxide in the atmosphere during the Holocene were reconstructed in the Okinawa Trough. And in combination of δ18O of planktonic foraminifera, the relative difference of sea surface salinity during the Holocene was also reconstructed.Consequently, three cooling events (E1-E3) were identified,each of which occurred at 1.7-1.6, 5.1-4.8 and 8.1-7.4kaBP (cal), respectively. Of the three events, E2 and E3 are globally comparable, their occurrence mechanism would be that the main stream of the Kuroshio Current shifted eastward due to the enhanced circulation of the northeastern Pacific Ocean, which was driven in turn by amplified intensity of sunshine and subsequent enhancement of subtropical high pressure; E1 corresponds to the Small Ice-Age Event occurring between 1550 and 1850AD in China. In the Okinawa Trough, E1 might be also related to the eastward shift of main stream of the Kuroshio current driven by powerful Asia winter monsoon.

  14. Reconstructing sea surface temperature, sea surface salinity and partial pressure of carbon dioxide in atmos- phere in the Okinawa Trough during the Holocene and their paleoclimatic implications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The sediment core DGKS9603 collected from the Okinawa Trough was used as research target. By use of unsaturated index of long-chain alkenone, δ13C of POC and of planktonic foraminifera (G. Sacculifer), the evolutions of sea surface temperature and partial pressure of carbon dioxide in the atmosphere during the Holocene were reconstructed in the Okinawa Trough. And in combination of δ18O of planktonic foraminifera, the relative difference of sea surface salinity during the Holocene was also reconstructed. Consequently, three cooling events (E1-E3) were identified, each of which occurred at 1.7-1.6, 5.1-4.8 and 8.1-7.4 kaBP (cal), respectively. Of the three events, E2 and E3 are globally comparable, their occurrence mechanism would be that the main stream of the Kuroshio Current shifted eastward due to the enhanced circulation of the northeastern Pacific Ocean, which was driven in turn by amplified intensity of sunshine and subsequent enhancement of subtropical high pressure; E1 corresponds to the Small Ice-Age Event occurring between 1550 and 1850AD in China. In the Okinawa Trough, E1 might be also related to the eastward shift of main stream of the Kuroshio current driven by powerful Asia winter monsoon.

  15. Surface-water interface induces conformational changes critical for protein adsorption: Implications for monolayer formation of EAS hydrophobin

    Directory of Open Access Journals (Sweden)

    Kamron eLey

    2015-11-01

    Full Text Available The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

  16. Nanoscale Structural/Chemical Characterization of Manganese Oxide Surface Layers and Nanoparticles, and the Associated Implications for Drinking Water

    Science.gov (United States)

    Michel Eduardo Vargas Vallejo

    Water treatment facilities commonly reduce soluble contaminants, such as soluble manganese (Mn2+), in water by oxidation and subsequent filtration. Previous studies have shown that conventional porous filter system removes Mn2+ from drinking water by developing Mn-oxides (MnO x(s)) bearing coating layers on the surface of filter media. Multiple models have been developed to explain this Mn2+ removal process and the formation mechanism of MnOx(s) coatings. Both, experimental and theoretical studies to date have been largely focused on the micrometer to millimeter scale range; whereas, coating layers are composed of nanoscale particles and films. Hence, understanding the nanoscale particle and film formation mechanisms is essential to comprehend the complexity of soluble contaminant removal processes. The primary objective of this study was to understand the initial MnOx(s) coating formation mechanisms and evaluate the influence of filter media characteristics on these processes. We pursued this objective by characterizing at the micro and nanoscale MnO x(s) coatings developed on different filter media by bench-scale column tests with simulating inorganic aqueous chemistry of a typical coagulation fresh water treatment plant, where free chlorine is present across filter bed. Analytical SEM and TEM, powder and synchrotron-based XRD, XPS, and ICPMS were used for characterization of coatings, filter media and water solution elemental chemistry. A secondary objective was to model how surface coating formation occurred and its correlation with experimentally observed physical characteristics. This modeling exercise indicates that surface roughness and morphology of filtering media are the major contributing factors in surface coating formation process. Contrary to previous models that assumed a uniform distribution and growth of surface coating, the experimental results showed that greater amounts of coating were developed in rougher areas. At the very early stage of

  17. Transformation of the Surface Structure of Marble under the Action of a Shock Wave

    Science.gov (United States)

    Shcherbakov, I. P.; Vettegren, V. I.; Bashkarev, A. Ya.; Mamalimov, R. I.

    2018-01-01

    The structure of marble fracture fragments formed after the destruction under the action of a shock wave have been analyzed by Raman, infrared, and luminescence spectroscopic techniques. It has been found that calcite I in the surface layer of fragments with thicknesses of about 2 μm is transformed into high-pressure phase calcite III. At the same time, concentrations of Mn2+, Eu3+, and other ions decrease to about onefourth of their initial values.

  18. Implications of long-term surface or near-surface storage of intermediate and low-level wastes in the UK

    International Nuclear Information System (INIS)

    Murray, N.; Vande Putte, D.; Ware, R.J.

    1986-02-01

    Various options for 200 year-long storage of all Low- and Intermediate-Level wastes generated to the year 2030 are considered. On-site storage and centralised storage have been examined and compared. The feasibility of storing some of the wastes in underground facilities that are convertible to repositories has been demonstrated, but it is shown that centralised, surface storage of wastes would be more economical. There appears to be little merit in storing Intermediate Level wastes in separate facilities that could be converted to repositories. Storage is shown to be more expensive than direct disposal, except if future costs are discounted by more than about 10%. With carefully designed stores and remote handling, the collective dose to operators could be limited to about 20-40 man Sv over the whole period of storage. (author)

  19. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L. E.

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary. PMID:26259555

  20. Investigating Deliquescence of Mars-like Soils from the Atacama Desert and Implications for Liquid Water Near the Martian Surface

    Science.gov (United States)

    Van Alstyne, A. M.; Tolbert, M. A.; Gough, R. V.; Primm, K.

    2017-12-01

    Recent images obtained from orbiters have shown that the Martian surface is more dynamic than previously thought. These images, showing dark features that resemble flowing water near the surface, have called into question the habitability of the Mars today. Recurring slope lineae (RSL), or the dark features seen in these images, are characterized as narrow, dark streaks that form and grow in the warm season, fade in the cold season, and recur seasonally. It is widely hypothesized that the movement of liquid water near the surface is what causes the appearance of RSL. However, the origin of the water and the potential for water to be stable near the surface is a question of great debate. Here, we investigate the potential for stable or metastable liquid water via deliquescence and efflorescence. The deliquescent properties of salts from the Atacama Desert, a popular terrestrial analog for Martian environments, were investigated using a Raman microscope outfitted with an environmental cell. The salts were put under Mars-relevant conditions and spectra were obtained to determine the presence or absence of liquid phases. The appearance of liquid phases under Mars-relevant conditions would demonstrate that liquid water could be available to cause or play a role in the formations of RSL.

  1. IMPLICATIONS OF MICROBIAL ADHESION TO HYDROCARBONS FOR EVALUATING CELL-SURFACE HYDROPHOBICITY .1. ZETA-POTENTIALS OF HYDROCARBON DROPLETS

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDEBELTGRITTER, B; VANDERMEI, HC

    1995-01-01

    Microbial adhesion to hydrocarbons (MATH) is generally considered to be a measure of the organisms cell surface hydrophobicity. As microbial adhesion is a complicated interplay of long-range van der Waals and electrostatic forces and various short-range interactions, the above statement only holds

  2. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics

    Science.gov (United States)

    Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.

    2018-04-01

    Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.

  3. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  4. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shankar, D.; Shetye, S.R.

    . The atmos0pheric heating associated with the convection plays a critical role in sustaining the monsoon winds, and the rainfall associated with it, not only over the bay but also over the Indian subcontinent, maintains a low-salinity surface layer...

  5. Bay breeze climatology at two sites along the Chesapeake bay from 1986-2010: Implications for surface ozone.

    Science.gov (United States)

    Stauffer, Ryan M; Thompson, Anne M

    Hourly surface meteorological measurements were coupled with surface ozone (O 3 ) mixing ratio measurements at Hampton, Virginia and Baltimore, Maryland, two sites along the Chesapeake Bay in the Mid-Atlantic United States, to examine the behavior of surface O 3 during bay breeze events and quantify the impact of the bay breeze on local O 3 pollution. Analyses were performed for the months of May through September for the years 1986 to 2010. The years were split into three groups to account for increasingly stringent environmental regulations that reduced regional emissions of nitrogen oxides (NO x ): 1986-1994, 1995-2002, and 2003-2010. Each day in the 25-year record was marked either as a bay breeze day, a non-bay breeze day, or a rainy/cloudy day based on the meteorological data. Mean eight hour (8-h) averaged surface O 3 values during bay breeze events were 3 to 5 parts per billion by volume (ppbv) higher at Hampton and Baltimore than on non-bay breeze days in all year periods. Anomalies from mean surface O 3 were highest in the afternoon at both sites during bay breeze days in the 2003-2010 study period. In conjunction with an overall lowering of baseline O 3 after the 1995-2002 period, the percentage of total exceedances of the Environmental Protection Agency (EPA) 75 ppbv 8-h O 3 standard that occurred on bay breeze days increased at Hampton for 2003-2010, while remaining steady at Baltimore. These results suggest that bay breeze circulations are becoming more important to causing exceedance events at particular sites in the region, and support the hypothesis of Martins et al. (2012) that highly localized meteorology increasingly drives air quality events at Hampton.

  6. Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)

    Science.gov (United States)

    Rousselet, Louise; de Verneil, Alain; Doglioli, Andrea M.; Petrenko, Anne A.; Duhamel, Solange; Maes, Christophe; Blanke, Bruno

    2018-04-01

    The patterns of the large-scale, meso- and submesoscale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE cruise (February-April 2015). Multi-disciplinary original in situ observations were achieved along a zonal transect through the WTSP and their analysis was coupled with satellite data. The use of Lagrangian diagnostics allows for the identification of water mass pathways, mesoscale structures, and submesoscale features such as fronts. In particular, we confirmed the existence of a global wind-driven southward circulation of surface waters in the entire WTSP, using a new high-resolution altimetry-derived product, validated by in situ drifters, that includes cyclogeostrophy and Ekman components with geostrophy. The mesoscale activity is shown to be responsible for counter-intuitive water mass trajectories in two subregions: (i) the Coral Sea, with surface exchanges between the North Vanuatu Jet and the North Caledonian Jet, and (ii) around 170° W, with an eastward pathway, whereas a westward general direction dominates. Fronts and small-scale features, detected with finite-size Lyapunov exponents (FSLEs), are correlated with 25 % of surface tracer gradients, which reveals the significance of such structures in the generation of submesoscale surface gradients. Additionally, two high-frequency sampling transects of biogeochemical parameters and microorganism abundances demonstrate the influence of fronts in controlling the spatial distribution of bacteria and phytoplankton, and as a consequence the microbial community structure. All circulation scales play an important role that has to be taken into account not only when analysing the data from OUTPACE but also, more generally, for understanding the global distribution of biogeochemical components.

  7. Mechanisms of plutonium sorption to mineral oxide surfaces: new insights with implications for colloid-enhanced migration

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Santschi, P.H.

    2010-01-01

    New equilibrium and kinetic models have been developed to describe rate-limited sorption and desorption of Pu onto and off of mineral oxide surfaces using a generic approach to estimate sorption constants that require minimal laboratory calibrations. Equilibrium, reactions describing a total of six surface species were derived from a combination of empirical relationships previously described in the literature and generated as part of this work. These sorption reactions and corresponding equilibrium constants onto goethite (and silica) are: triple bond SOH + Pu 3+ triple bond SOPu 2+ + H + , log K = -2.1(-10) (1) triple bond SOH + Pu 4+ triple bond SOPu 3+ + H + , log K = 15.3(7.2) (2) triple bond SOH + PuO 2 + triple bond SOPuO 2 + H + , log K = -8.5(-16.5) (3) triple bond SOH + PuO 2 2+ triple bond SOPuO 2 + + H + , log K = 1.2(-6.5) (4) triple bond SOH + Pu 4- + 3H 2 O triple bond SOPu(OH) 3 + 4H + , log K = 12.5(4.6) (5) triple bond SOH + Pu 4+ + 4H 2 O triple bond SOPu(OH) 4 - + 5H + , log K = 5.0(-2.3) (6) The kinetic model decouples reduced (III, IV) and oxidized (V, VI) forms of Pu via a single rate-limiting, but reversible, surface mediated reaction: triple bond SOPuO 2 + H 2 O + 1/2H 2(g) ↔ k 1 k 2 triple bond SOPu(OH) 2 log k 1 = -5.3 (7) Where the reaction rate is equal to: (d[ triple bond SOPu 2 ])/(d t ) = k 1 [Pu OX ] - k 2 [Pu red ] (8) and [Pu OX ] and [Pu red ] are the sums of the oxidized (V and VI) and reduced (III and IV) surface species, respectively. Predictions using the equilibrium and kinetic models were validated against previously published experimental results, which give credence to the validity of the proposed mechanisms controlling the sorption of Pu onto mineral oxide surfaces. Of importance, a reversible, rate-limited, reaction successfully predicted time dependent behavior associated with Pu sorption onto goethite. Previously, researchers have suggested desorption of Pu to these surfaces is extremely slow or even irreversible

  8. In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90

    Science.gov (United States)

    Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

    2014-01-01

    Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

  9. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    Science.gov (United States)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  10. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    Science.gov (United States)

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  11. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process...... leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal...... diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model...

  12. On some paramagnetic species induced in natural calcites by β and γ-rays irradiations

    International Nuclear Information System (INIS)

    Rossi, A.; Danon, J.

    1985-01-01

    The ESR absorption lines of calcite speleothems are studied both as monocrystals and powders, after energetic β-rays or γ-rays irradiation. Both Kinds of irradiation produce same lines. Angular variation studies of monocrystals revealed four induced paramagnetic species stable at room temperature. Three of these were attributed to CO 3 sup(---) group, CO 2 sup(-) groups with axial and orthorhombic symetry and a fourth one could be due to the CO 3 sup(-) group. Powder spectra show that these lines, are activated by irradiation in all speleothems we studied and can be present either in natural ESR spectra. Their relationships to the lines usually considered for ESR dating are discussed. (Author) [pt

  13. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  14. Field Investigation of Surface Deformation Induced by the 2016 Meinong Earthquake and its Implications to Regional Geological Structures

    Science.gov (United States)

    Yi, De-Cheng; Chuang, Ray Y.; Lin, Ching-Weei

    2017-04-01

    We demonstrate mapping results of a newly-identified active folding-associated fault in southwestern Taiwan, which was triggered by the distant ML 6.6 Meinong earthquake in 2016. The 14.6-km-deep main shock occurred in Meinong at 3:57 (GMT +08) on February 6th while a series of 21-27 km deep aftershocks were induced after 160 seconds in Guanmiao, where is 25km NW away from the epicenter of the main shock. The focal mechanism of the Meinong main shock shows a westward oblique thrust with the fault plane of 275°/42°/17° (strike/dip/rake) but Guanmiao aftershocks show the N-S striking eastward normal movement. The study area locates at an on-going fold-and-thrust belt close to the deformation front of Taiwan orogeny with high rates of convergence, uplift and erosion. The geology of SW Taiwan is characterized by the 3-km-thick mudstones with high fluid pressure underlying the loose sedimentary rocks forming mud diapirs or mud-core anticlines. The significance of the Meinong earthquake is (1) aftershocks are far away from the main shock, and (2) the surface cracks partially distributed systematically along lineaments observed from InSAR, which has never been recognized as geological structures before. This study aims to establish possible kinematic processes of shallow deformation induced by the Meinong earthquake. We mapped surface cracks around the lineaments by using hand-held GPS and measured surface cracks by the compass and vernier. Among 249 kinematic data measured from 244 observed surface cracks and ruptures, the type of deformation was mostly identified as dilation or lateral translation and only 4 data were compressional deformation. The overall surface displacement moved to the northwest and west, consistent with the regional coseismic movement. The opening of the surface cracks range from 0.5 to 105 mm and 85% of them are less than 10 mm. Preseismic deformed features such as failure of the retaining wall were also observed along the western and eastern

  15. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

    Directory of Open Access Journals (Sweden)

    Sujay Kulkarni

    2014-01-01

    Full Text Available The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5 archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.

  16. The influence of surface and incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. II. Root growth and agronomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lucerne (Medicago sativa. L) root elongation in acid soils amended by gypsiferous coal combustion by-products was investigated in a glasshouse study. Lime, fluidised bed boiler ash (FBA), and flue gas desulfurisation gypsum (FGDG) were mixed into the surface 50 mm of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil column, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. Lucerne was grown on each column after it was leached with 400 mm of water. Whereas the lime treatment had no effect on root elongation in the acidic subsurface of the Patua soil, the FBA and FGDG treatments significantly improved lucerne root penetration into the subsurface soil. This was due to the `self liming effect` induced by sulfate adsorption. In contrast, topsoil incorporated amendments did not influence root penetration into the acidic subsurface of the Kaawa soil, which is dominated by permanently charged clay minerals. The `self-liming erect` caused by gypsum application is not a sustainable practice. Lime should be applied to neutralise the topsoil acidity, when gypsum is used as subsurface soil acidity ameliorant. FBA, which contains both lime and gypsum, can meet these requirements.

  17. Downwelling Longwave Fluxes at Continental Surfaces-A Comparison of Observations with GCM Simulations and Implications for the Global Land-Surface Radiation Budget.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.

    1996-03-01

    Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.

  18. A model to determine the radiological implications of non-fixed radioactive contamination on the surfaces of packages and conveyances

    International Nuclear Information System (INIS)

    Hughes, J.S.; Warner Jones, S.M.; Lizot, M.T.; Perrin, M.L.; Thierfeld, S.; Schroedl, E.; Schwarz, G.; Rawl, R.; Munakata, M.; Hirose, M.

    2004-01-01

    The surfaces of packages and conveyances used to transport radioactive materials can sometimes become contaminated with radioactive material. This usually occurs as a result of the transfer of radioactive material from areas in which these packages and conveyances are handled. This contamination may subsequently be transferred to transport equipment, workers and to areas accessible to the public. This can represent a significant radiation safety issue that requires careful management. The current regulatory limits for non-fixed contamination on packages and conveyances have been in use for over 40 years, and are based on a simple exposure model. However, the bases on which these limits were derived have been subject to changes, as a result of successive revisions of international recommendations. In recognition of this need for a review and analysis of the current contamination limits an IAEA Co-ordinated Research Project (CRP) on the ''Radiological Aspects of Package and Conveyance Non-Fixed Contamination'' was initiated to review the scientific basis for the current regulatory limits for surface contamination. The CRP was also to develop guidance material for evaluating the radiological significance of surface contamination to workers and the public in light of state-of-the-art research, technical developments and current transport practices. The specific objectives of the work undertaken within this multi-national CRP were, in accordance with the terms of reference: To ensure that appropriate models exist for all package types including consideration of the aspects pertinent for assessing and revising a surface contamination model for transport. To collect - where possible - contamination, operational and dosimetric data to ensure modelling consistency. To use models for assessing the limitations and optimisation of radiation doses incurred in transport operations, and to consider preventive methods for package and conveyance contamination

  19. Dissected Mantle Terrain on Mars: Formation Mechanisms and the Implications for Mid- latitude Near-surface Ground Ice

    Science.gov (United States)

    Searls, M. L.; Mellon, M. T.

    2008-12-01

    Determining the present and past distribution of surface and subsurface ice on Mars is critical for understanding the volatile inventory and climatic history of the planet. An analysis of a latitude-dependent layer of surface material known as the dissected mantle terrain can provide valuable insight into the distribution of ice in the recent past. The dissected mantle terrain is a surface unit that occurs globally in the mid-latitude of Mars. This unit is characterized by a smooth mantle of uniform thickness and albedo that is draped over the existing topography. This smooth mantle is disaggregated and dissected in places resulting in a hummocky pitted appearance. We propose that the mid-latitude dissected terrain results from collapse of a dusty mantle into the void left from desiccation of an underlying ice-rich (pure or dirty ice) layer. During period(s) of high obliquity, it is possible for ice to become stable at lower latitudes. Due to lack of direct solar insolation, surface ice deposits will preferentially accumulate on pole-ward facing slopes first. A mantle of dust and dirt is then deposited on top of these ice-rich deposits. As the climate changes, desiccation of the now buried ice leads to collapse of the overlying dusty layer resulting in a hummocky pitted appearance. This theory is supported by the pole-ward preference for the dissection pits as well an increase in dissection with increasing latitude. A study of the global distribution of the mid-latitude dissected terrain can provide invaluable clues towards unlocking the distribution of ice in the recent past. An analysis of HiRISE images and MOLA data indicate that the distribution of dissection pits varies from one region to the next. Knowing the distribution of ice in conjunction with ice stability modeling can provide a global view of the climate and orbital history of Mars at the time these features formed.

  20. Observer success rates for identification of 3D surface reconstructed facial images and implications for patient privacy and security

    Science.gov (United States)

    Chen, Joseph J.; Siddiqui, Khan M.; Fort, Leslie; Moffitt, Ryan; Juluru, Krishna; Kim, Woojin; Safdar, Nabile; Siegel, Eliot L.

    2007-03-01

    3D and multi-planar reconstruction of CT images have become indispensable in the routine practice of diagnostic imaging. These tools cannot only enhance our ability to diagnose diseases, but can also assist in therapeutic planning as well. The technology utilized to create these can also render surface reconstructions, which may have the undesired potential of providing sufficient detail to allow recognition of facial features and consequently patient identity, leading to violation of patient privacy rights as described in the HIPAA (Health Insurance Portability and Accountability Act) legislation. The purpose of this study is to evaluate whether 3D reconstructed images of a patient's facial features can indeed be used to reliably or confidently identify that specific patient. Surface reconstructed images of the study participants were created used as candidates for matching with digital photographs of participants. Data analysis was performed to determine the ability of observers to successfully match 3D surface reconstructed images of the face with facial photographs. The amount of time required to perform the match was recorded as well. We also plan to investigate the ability of digital masks or physical drapes to conceal patient identity. The recently expressed concerns over the inability to truly "anonymize" CT (and MRI) studies of the head/face/brain are yet to be tested in a prospective study. We believe that it is important to establish whether these reconstructed images are a "threat" to patient privacy/security and if so, whether minimal interventions from a clinical perspective can substantially reduce this possibility.