WorldWideScience

Sample records for calcite surfaces implications

  1. Surface Forces Apparatus measurements of interactions between rough and reactive calcite surfaces.

    Science.gov (United States)

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon Einar; Nilsen, Ola; Røyne, Anja

    2018-05-28

    Nm-range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials, and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the Surface Forces Apparatus (SFA), we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC), or between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by Atomic Layer Deposition (ALD). We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time and this increase was correlated with a decrease of roughness at contacts, which parameter could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm to µm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over µm-sized areas, and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  2. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Z.; de Leeuw, N.H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity.

  3. Effect of Mica and Hematite (001 Surfaces on the Precipitation of Calcite

    Directory of Open Access Journals (Sweden)

    Huifang Xu

    2018-01-01

    Full Text Available The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM, X-ray diffraction (XRD, and electron backscatter diffraction (EBSD methods. On mica, we found, in the absence of Mg2+, the substrates’ (001 surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D structure can affect the orientation of calcite nucleation with calcite (001 ~// mica (001 and calcite (010 ~// mica (010 to be the major interfacial relationship. On hematite, we did not observe frequent twinning relationship between adjacent calcite gains, but often saw preferentially nucleation of calcite at surface steps on hematite substrate. We suggest that calcite crystals initially nucleate from the Ca2+ layers adsorbed on the surfaces. The pseudo-hexagonal symmetry on mica (001 surface also leads to the observed calcite (001 twinning. A second and less common orientation between calcite {104} and mica (001 was detected but could be due to local structure damage of the mica surface. Results in the presence of Mg2+ show that the substrate surfaces can weaken Mg toxicity to calcite nucleation and lead to a higher level of Mg incorporation into calcite lattice.

  4. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

    KAUST Repository

    Yutkin, Maxim P.

    2017-08-25

    Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of

  5. Is bicarbonate stable in and on the calcite surface?

    Science.gov (United States)

    Andersson, M. P.; Rodriguez-Blanco, J. D.; Stipp, S. L. S.

    2016-03-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3- CO32- + H+, when HCO3- is included in, and adsorbed on, a calcite surface. We have used cluster models (80-100 atoms) to represent the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from -6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 < pH < 6.35, where H2CO30 is the dominant dissolved species. When bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution, 10.35. This means that adsorbed carbonate is stable even when the concentration of dissolved CO32- is several orders of magnitude lower. This has a significant effect on surface charge and thus the behaviour of the calcite surface. Our results help explain the potential determining behaviour of the carbonate species in calcite-water systems, particularly in the pH range where the bicarbonate species dominates in water and where the carbonate species dominates at the surface, i.e. when 7.5 < pH < 10.35. Our atomic scale data for the various calcite surface sites provide the needed input to improve and constrain surface complexation modelling and are especially useful for predicting behaviour in systems where experiments are difficult or impossible, such as at high temperature and pressure.

  6. Influence of surface conductivity on the apparent zeta potential of calcite.

    Science.gov (United States)

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Interaction of alcohols with the calcite surface

    DEFF Research Database (Denmark)

    Bovet, Nicolas Emile; Yang, Mingjun; Javadi, Meshkat Sadat

    2015-01-01

    . Controlling their growth requires complex polysaccharides. Polysaccharide activity depends on the functionality of OH groups, so to simplify the system in order to get closer to a molecular level understanding, we investigated the interaction of OH from a suite of alcohols with clean, freshly cleaved calcite...... surfaces. X-ray photoelectron spectroscopy (XPS) provided binding energies and revealed the extent of surface coverage. Molecular dynamics (MD) simulations supplemented with information about molecule ordering, orientation and packing density. The results show that all alcohols studied bond...... with the calcite surface through the OH group, with their carbon chains sticking away in a standing-up orientation. Alcohol molecules are closely packed and form a well-ordered monolayer on the surface....

  8. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... preferentially as ion pairs at solution-calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70, converting...

  9. Is bicarbonate stable in and on the calcite surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Rodriguez Blanco, Juan Diego; Stipp, Susan Louise Svane

    2016-01-01

    We have used density functional theory with the COSMO-RS implicit solvent model to predict the pKa for the deprotonation of bicarbonate to carbonate, i.e. HCO3− CO32− + H+, when HCO3− is included in, and adsorbed on, a calcite surface. We have used cluster models (80–100 atoms) to represent...... the flat {10.4} surface, acute steps, obtuse steps, two types of kinks on the acute step and two types of kinks on the obtuse steps. Based on the predicted pKa values, which range from −6.0 to 2.4 depending on the surface site, we conclude that bicarbonate deprotonates to carbonate when it is in calcite...... even when pH in solution is very low. This is true for all surface sites, even for solutions where 2.4 bicarbonate is adsorbed on calcite, the predicted pKa for deprotonation is 7.5, which is ∼3 pH units lower than in aqueous solution...

  10. Molecular ordering of ethanol at the calcite surface

    DEFF Research Database (Denmark)

    Pasarín, I. S.; Yang, M.; Bovet, Nicolas Emile

    2012-01-01

    To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful...... for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [ Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S.Palentology 2004, 43 (Part 3), 725...... dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH 3-CH2-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol...

  11. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  12. Molecular ordering of ethanol at the calcite surface.

    Science.gov (United States)

    Pasarín, I S; Yang, M; Bovet, N; Glyvradal, M; Nielsen, M M; Bohr, J; Feidenhans'l, R; Stipp, S L S

    2012-02-07

    To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S. Palentology 2004, 43 (Part 3), 725-743] and molecular dynamics (MD) modeling [Yang, M., Stipp, S. L. S., and Harding, J. H. Cryst. Growth Des. 2008, 8 (11), 4066-4074], have suggested that OH functional groups control polysaccharide attachment. The purpose of this work was to characterize, using X-ray reflectivity (XR) combined with molecular dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH(3)-CH(2)-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH(3) ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems.

  13. Effect of Mica and Hematite (001) Surfaces on the Precipitation of Calcite

    OpenAIRE

    Huifang Xu; Mo Zhou; Yihang Fang; H. Henry Teng

    2018-01-01

    The substrate effect of mica and hematite on the nucleation and crystallization of calcite was investigated using scanning electron microscope (SEM), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD) methods. On mica, we found, in the absence of Mg2+, the substrates’ (001) surfaces with hexagonal and pseudo-hexagonal two-dimensional (2-D) structure can affect the orientation of calcite nucleation with calcite (001) ~// mica (001) and calcite (010) ~// mica (010) to be the m...

  14. Adsorption and migration of single metal atoms on the calcite (10.4) surface

    International Nuclear Information System (INIS)

    Pinto, H; Haapasilta, V; Lokhandwala, M; Foster, Adam S; Öberg, S

    2017-01-01

    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3 d (Ti, Cr, Fe, Ni, Cu), 4 d (Zr, Nb, Mo, Pd, Ag) and 5 d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca–Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface. (paper)

  15. Sequestration of Antimony on Calcite Observed by Time-Resolved Nanoscale Imaging.

    Science.gov (United States)

    Renard, François; Putnis, Christine V; Montes-Hernandez, German; King, Helen E; Breedveld, Gijs D; Okkenhaug, Gudny

    2018-01-02

    Antimony, which has damaging effects on the human body and the ecosystem, can be released into soils, ground-, and surface waters either from ore minerals that weather in near surface environments, or due to anthropogenic releases from waste rich in antimony, a component used in batteries, electronics, ammunitions, plastics, and many other industrial applications. Here, we show that dissolved Sb can interact with calcite, a widespread carbonate mineral, through a coupled dissolution-precipitation mechanism. The process is imaged in situ, at room temperature, at the nanometer scale by using an atomic force microscope equipped with a flow-through cell. Time-resolved imaging allowed following the coupled process of calcite dissolution, nucleation of precipitates at the calcite surface and growth of these precipitates. Sb(V) forms a precipitate, whereas Sb(III) needs to be oxidized to Sb(V) before being incorporated in the new phase. Scanning-electron microscopy and Raman spectroscopy allowed identification of the precipitates as two different calcium-antimony phases (Ca 2 Sb 2 O 7 ). This coupled dissolution-precipitation process that occurs in a boundary layer at the calcite surface can sequester Sb as a solid phase on calcite, which has environmental implications as it may reduce the mobility of this hazardous compound in soils and groundwaters.

  16. Ethanol adsorption on the {10(1)over-bar4} calcite surface

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Stipp, Susan Louise Svane; Hassenkam, Tue

    2008-01-01

    Preliminary atomic force microscopy investigations of the {10 (1) over bar4} calcite Surface cleaved in ethanol indicate a different surface behaviour than that of the {10 (1) over bar4} surface cleaved in air. The results are consistent with recent theoretical studies and suggest strong ordering...

  17. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  18. Integrated Approach for Understanding Impurity Adsorption on Calcite: Mechanisms for Micro-scale Surface Phenomena

    Science.gov (United States)

    Vinson, M. D.; Arvidson, R. S.; Luttge, A.

    2004-12-01

    A longstanding goal within the field of environmental geochemistry has been the development of a fundamental understanding of the kinetics that governs the interactions of solution-borne impurities with the calcite mineral surface. Recent dissolution experiments using Mg2+, Mn2+, and Sr2+ have shown distinct differences in the interaction of these three impurity ions with the calcite crystal surface. Because the dissolution of carbonate minerals in soils and sediments influences the uptake and migration of groundwater contaminants, a rigorous understanding of the basic processes that occur at the mineral-fluid interface is necessary. We have used vertical scanning interferometry (VSI) coupled with scanning probe microscopy (SPM) to examine calcite crystal dissolution in the presence of Mg2+, Mn2+, and Sr2+, all known dissolution inhibitors and possible groundwater contaminants. We have studied the kinetics of impurity-crystal interactions at a pH 8.8, and in the presence or absence of dissolved inorganic carbon. Our data show that, when individually introduced into undersaturated solutions, Mg2+ and Mn2+ are shown to activate the calcite crystal surface, resulting in enhanced etch pit nucleation rates and step density. Conversely, Sr2+ is shown to cause passivation of the calcite surface. The effect is intensified when solutions are saturated with respect to atmospheric CO2. Results indicate that aqueous CO32- (or HCO3-) may influence how aqueous metal ionic complexes interact with the crystal surface. Furthermore, the influence is differently exhibited, and passivation or activation ultimately depends on the properties of the diffusing metal ion or metal-hydroxide complex. These properties include for example, differences in hydration enthalpy, the effective ionic radius, and electron shell configuration.

  19. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  20. Interaction of ethanol and water with the {1014} surface of calcite

    DEFF Research Database (Denmark)

    Cooke, David; Gray, R J; Sand, K K

    2010-01-01

    Molecular dynamics simulations have been used to model the interaction between ethanol, water, and the {1014} surface of calcite. Our results demonstrate that a single ethanol molecule is able to form two interactions with the mineral surface (both Ca-O and O-H), resulting in a highly ordered, st...

  1. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    Science.gov (United States)

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  2. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Marutschke, Christoph; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika; Walters, Deron; Cleveland, Jason

    2014-01-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid–liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface. (paper)

  3. Molecular modeling studies of interactions between sodium polyacrylate polymer and calcite surface

    Energy Technology Data Exchange (ETDEWEB)

    Ylikantola, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Linnanto, J., E-mail: juha.m.linnanto@gmail.com [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); University of Tartu, Institute of Physics, Riia 142, EE-51014 Tartu (Estonia); Knuutinen, J.; Oravilahti, A. [University of Jyväskylä, Department of Chemistry, P.O. Box 35, University of Jyväskylä, FI-40014 (Finland); Toivakka, M. [Åbo Akademi University, Laboratory of Paper Coating and Converting and Center for Functional Materials, FI-20500 Turku/Åbo (Finland)

    2013-07-01

    The interactions between calcite pigment and sodium polyacrylate dispersing agent, widely used in papermaking as paper coating components, were investigated using classical force field and quantum chemical approaches. The objective was to understand interactions between the calcite surface and sodium polyacrylate polymer at 300 K using molecular dynamics simulations. A quantum mechanical ab initio Hartree–Fock method was also used to obtain detailed information about the sodium polyacrylate polymer structure. The effect of water molecules (moisture) on the interactions was also examined. Calculations showed that molecular weight, branching and the orientation of sodium polyacrylate polymers influence the interactions between the calcite surface and the polymer. The force field applied, and also water molecules, were found to have an impact on all systems studied. Ab initio Hartree–Fock calculations indicated that there are two types of coordination between sodium atoms and carboxylate groups of the sodium polyacrylate polymer, inter- and intra-carboxylate group coordination. In addition, ab initio Hartree–Fock calculations of the structure of the sodium polyacrylate polymer produced important information regarding interactions between the polymers and carboxylated styrene-butadiene latex particles.

  4. Thermoluminescence and cathodoluminescence studies of calcite and MgO: surface defects and heat treatment

    International Nuclear Information System (INIS)

    Goeksu, H.Y.; Brown, L.M.

    1988-01-01

    Some of the problems which preclude accurate thermoluminescence (TL) dating of geologically formed calcite stem from different sample pre-treatment procedures, such as grinding, drilling or pre-heating. It has long been known that grinding can introduce spurious TL in calcite, but there have been wide differences of opinion as to the magnitude of the influence and its importance. Therefore, various grinding and acid-washing procedures have been suggested to avoid spurious thermoluminescence. Various models have been developed to explain the mechanism. We have studied the changes in thermoluminescence (TL) and cathodoluminescence (CL) properties as well as in the spectral composition of the glow from calcite and MgO due to surface defects and heat treatment. It is found that both laboratory heat treatment and surface indents give rise to changes in TL efficiency. (author)

  5. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    Science.gov (United States)

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  6. Molecular dynamics simulations of the calcite/solution interface as a means to explore surface modifications induced by nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Sascha; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Spijker, P. [Aalto Univ., Helsinki (Finland). Dept. of Applied Physics; Voitchovsky, K. [Durham Univ. (United Kingdom). Physics Dept.

    2016-07-01

    The reactivity of calcite, one of the most abundant minerals in the earth's crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO{sub 3} severely affect calcite's (104) surface and its reactivity. Molecular dynamics (MD) simulations reveal density profiles of different ions near calcite's surface, with NO{sub 3}{sup -} able to reach closer to the surface than CO{sub 3}{sup 2-} and in higher concentrations. Additionally, incorporation of NO{sub 3}{sup -} into the surface significantly disturbs the water structure at the interface.

  7. Tuning the wettability of calcite cubes by varying the sizes of the polystyrene nanoparticles attached to their surfaces

    International Nuclear Information System (INIS)

    He Yongjun; Li Tanliang; Yu Xiangyang; Zhao Shiyong; Lu Jianhua; He Jia

    2007-01-01

    The wettability of calcite cubes was tuned by varying the sizes of the polystyrene nanoparticles attached to their surfaces via a dispersion polymerization. The products were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion spectrum (EDS) and Fourier transformation infrared spectrum (FTIR). The results showed that the hydrophobicity of the calcite cubes was enhanced with the increase of the size of the polystyrene nanoparticles attached. Using polystyrene nanoparticle-attached calcite cubes (PNACC) as emulsifiers, stable water-in-tricaprylin Pickering emulsions were produced. By gelling the water droplets of the Pickering emulsions, the hierarchical structures of polystyrene nanoparticle-attached calcite cube-armored microspheres were obtained. The polystyrene nanoparticle-attached calcite cubes were expected to have novel surface properties similar neither to traditional Pickering particles, nor to macroscopically asymmetrical Janus particles

  8. The role of silicate surfaces on calcite precipitation kinetics

    DEFF Research Database (Denmark)

    Stockmann, Gabrielle J.; Wolff-Boenisch, Domenik; Bovet, Nicolas Emile

    2014-01-01

    The aim of this study is to illuminate how calcite precipitation depends on the identity and structure of the growth substrate. Calcite was precipitated at 25°C from supersaturated aqueous solutions in the presence of seeds of either calcite or one of six silicate materials: augite, enstatite......, labradorite, olivine, basaltic glass and peridotite rock. Calcite saturation was achieved by mixing a CaCl2-rich aqueous solution with a NaHCO3-Na2CO3 aqueous buffer in mixed-flow reactors containing 0.5-2g of mineral, rock, or glass seeds. This led to an inlet fluid calcite saturation index of 0.6 and a p...

  9. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2011-01-01

    The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite was stud......The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite...... of a high degree of super-saturation with respect to hydroxyapatite (SIHAP⩽7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the CO32- activity decreases (at constant pH) and as pH increases (at constant CO32- activity). The primary effect...... of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or >CaHPO4- as the adsorbed surface species...

  10. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    KAUST Repository

    Li, Yan Vivian

    2016-03-02

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl2, and MgCl2) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl2 and MgCl2 solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl2 and MgCl2 solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.

  11. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan Vivian, E-mail: yan.li@colostate.edu [Colorado State University, Department of Design and Merchandising (United States); Cathles, Lawrence M., E-mail: lmc19@cornell.edu [Cornell University, Earth and Atmospheric Sciences (United States)

    2016-03-15

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl{sub 2}, and MgCl{sub 2}) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl{sub 2} and MgCl{sub 2} solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl{sub 2} and MgCl{sub 2} solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.Graphical Abstract.

  12. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    International Nuclear Information System (INIS)

    Li, Yan Vivian; Cathles, Lawrence M.

    2016-01-01

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle transport. We investigate the causes of inertness by studying the interactions with calcite of a nanoparticle of this class synthesized from malic acid and ethanolamine (M-dots) dispersed in brine (NaCl, CaCl_2, and MgCl_2) solutions. None of the M-dots are retained in calcite sand-packed columns when dispersed in DI water. Dispersed in the NaCl and mixed brine solutions, 5.6 % of and 7.3 % of the M-dots are initially retained, but 65 and 13 % of these retained particles are subsequently released when the column is flushed with DI water. When dispersed in the CaCl_2 and MgCl_2 solutions, 65 and 54 % of the M-dots are initially retained, and 28 and 26 % subsequently released in the DI water flush. The M-dots have a small negative zeta potential in all solutions, but the calcite zeta potential changes from strongly negative to strongly positive across the solution series, and the particle retention tracks this change. Derjaguin–Landau–Verwey–Overbeek (DLVO) modeling of the force between a calcite probe and an M-dot coated surface shows that hydration forces repel the particles in the DI water, NaCl, and mixed solutions, but not in the CaCl_2 and MgCl_2 solutions. These results show that near-zero charge and strongly hydrophilic decoration are the causes of the remarkable inertness of carbon-cored nanoparticles, and also suggest that nanoparticles could be useful in solute-surface interaction studies.Graphical Abstract

  13. Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths-do we observe the mineral surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Hem, Caroline Piper; Schultz, Logan Nicholas

    2014-01-01

    broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also...... asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory...

  14. Nickel adsorption on chalk and calcite

    DEFF Research Database (Denmark)

    Belova, Dina Alexandrovna; Lakshtanov, Leonid; Carneiro, J.F.

    2014-01-01

    Nickel uptake from solution by two types of chalk and calcite was investigated in batch sorption studies. The goal was to understand the difference in sorption behavior between synthetic and biogenic calcite. Experiments at atmospheric partial pressure of CO2, in solutions equilibrated with calcite...... = - 1.12 on calcite and log KNi = - 0.43 and - 0.50 on the two chalk samples. The study confirms that synthetic calcite and chalk both take up nickel, but Ni binds more strongly on the biogenic calcite than on inorganically precipitated, synthetic powder, because of the presence of trace amounts...... of polysaccharides and clay nanoparticles on the chalk surface....

  15. An investigation of the heterogeneous nucleation of calcite

    International Nuclear Information System (INIS)

    House, W.A.; Tutton, J.A.

    1982-01-01

    The heterogeneous precipitation kinetics of calcite from dilute calcium bicarbonate solutions onto pyrex glass seeds is investigated by using a modified form of the Davies and Jones equation. The rate constant is evaluated from experiments using calcite seeds and it is demonstrated that the growth rate does not increase in proportion to the increase in surface area accompanying precipitation. The number of heteronucleated particles is estimated by assuming a constant density of growth sites on the different calcite surfaces. A comparison is made between the specific surface areas of calcite obtained by the calcium-45 isotopic exchange method and other values. (orig.)

  16. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces

    Science.gov (United States)

    Perry, Thomas D.; Cygan, Randall T.; Mitchell, Ralph

    2006-07-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Φ = 274 ± 7°, Ψ = 227 ± 5°, where Φ and Ψ are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (101¯4) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived.

  17. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

    DEFF Research Database (Denmark)

    Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.

    2017-01-01

    The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms...... that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10...... monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound....

  18. Study of reverse flotation of calcite from scheelite in acidic media

    Science.gov (United States)

    Deng, Rongdong; Huang, Yuqing; Hu, Yuan; Ku, Jiangang; Zuo, Weiran; Yin, Wanzhong

    2018-05-01

    A new coated-reactive reverse flotation method based on the generation of CO2 bubbles at a calcite surface in acidic solution was used to separate calcite from scheelite. The dissolution kinetics of coated and uncoated calcite were studied in sulfuric acid. The CO2 bubbles generated on the uncoated calcite particle surface are enough to float the particle. However, most of these bubbles left the surface quickly, preventing calcite from floating. Here, a mixture of polyvinyl alcohol polymer and sodium dodecyl sulfonate was used to coat the mineral particles and form a stable membrane, resulting in the formation of a stable foam layer on the calcite surface. After the calcite is coated, the generated bubbles could be successfully captured on the calcite surface, and calcite particles could float to the air-water interface and remain there for more than one hour. Flotation tests indicated that a high-quality tungsten concentrate with a grade of more than 75% and a recovery of more than 99% could be achieved when the particle size was between 0.3 and 1.5 mm. The present results provide theoretical support for the development of a highly efficient flotation separation for carbonate minerals.

  19. Paleohydrogeological implications from fracture calcites in fissures of low transmissivity. A report of investigations in 2011

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.

    2014-07-01

    Samples of fracture fillings were collected from 26 bedrock fractures at Olkiluoto. Special attention was paid to fractures having low transmissivities of <1E-8 m 2 /s. The chemical composition and the C and O isotopic composition of the fracture filling calcite were analysed. In addition, fluid inclusions were studied and microthermometric measurements conducted on fracture filling calcite. The most common minor element in calcite fillings was Mn, having concentrations up to 3.4 wt-%. The δ13C values had a wide range, from -13.0 to 14.5 per mille, and the δ18O values a narrower range, from -13.4 to -7.3 per mille. The δ18O values of late-stage calcite appear to be independent of the transmissivity of the fractures, ranging from -11.2 to -7.3 per mille over a T range from 3E -6 to 1.6E -1 1 m 2 /s. The δ13C values of late-stage calcite appear to have more variation at high transmissivities of >1E-8 m 2 /s. Unusually low and high δ13C values in late-stage calcite fillings occur in the upper ∼ 400 m of the bedrock and are probably related to microbial reduction processes, at near surface (<60 m) conditions to oxidation of organic matter resulting in low δ13C values and at ∼ 55-400 m to methanogenesis, causing high δ 13C values. A relatively low spread in the δ 13C values of late-stage calcite precipitates in low transmissivity (<1E-8 m 2 /s) fractures is most likely caused by stable conditions in the areas of low conductivity in the bedrock, reflecting slow dissolution/reprecipitation of older carbonate fillings. Fluid inclusion data indicate variation in fracture water types from high temperature, ∼ 200 deg C, low salinity fluid with < 4 wt-% of NaCl eq to low temperature, <100 deg C, high salinity fluid with 17-29 wt-% of NaCl eq . The high temperature fluid is associated with Group 5 calcite fillings and the low temperature fluid with Group 3 calcite. The composition of fluids related to Group 4 calcite falls roughly between the compositions

  20. Structural incorporation of Neptunyl(V) into Calcite: Interfacial Reactions and Kinetics

    OpenAIRE

    Heberling, Frank

    2010-01-01

    In this experimental work the calcite-water interface is characterized by means of zetapotential and surface diffraction measurements. Based on the experimental results a new Basic Stern Surface Complexation model for calcite is developed. Neptunyl(V) adsorption at the calcite surface and incorporation into the calcite structure is studied by batch type adsorption- and mixed flow reactor experiments. Adsorption and incorporation species of Neptunyl are investigated by EXAFS spectroscopy.

  1. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars

    Science.gov (United States)

    Martin, A. M.; Righter, K.; Treiman, A. H.

    2010-01-01

    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  2. The surface destabilization effect of nitrate on the calcite (104). Water interface and yttrium(III) sorption thereon

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrandt, S.E.; Hofmann, Sascha; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Stubbs, J.E.; Eng, P.J. [Chicago Univ., IL (United States). Center for Advanced Radiation Sources; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2016-07-01

    Calcite, as a most abundant mineral on earth, was studied with X-ray reflectivity under the influence of NaNO{sub 3} [1]. The calcite (104) surface undergoes significant destabilization effects in the presence of NaNO{sub 3}, which occurs as partial dissolution and the formation of an amorphous layer at the interface. The disordering of the surface reaches more than 15 Aa into the crystal bulk. Furthermore, this surface modification has also an effect on the sorption behavior of the rare earth element Y. Without NaNO{sub 3} Y{sup 3+} adsorbs as both inner and outer sphere complexes, this was verified with resonant anomalous X-ray reflectivity (RAXR). If NaNO{sub 3} is present, both species desorbs from the surface completely.

  3. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    Science.gov (United States)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse

  4. Calcite Wettability in the Presence of Dissolved Mg2+ and SO42-

    DEFF Research Database (Denmark)

    Generosi, Johanna; Ceccato, Marcel; Andersson, Martin Peter

    2017-01-01

    that potential determining ions in seawater, Mg2+, Ca2+, and SO42–, are responsible for altering the wettability of calcite surfaces. In favorable conditions, e.g., elevated temperature, calcium at the calcite surface can be replaced by magnesium, making organic molecules bind more weakly and water molecules...... bind more strongly, rendering the surface more hydrophilic. We used atomic force microscopy in chemical force mapping mode to probe the adhesion forces between a hydrophobic CH3-terminated AFM tip and a freshly cleaved calcite {10.4} surface to investigate wettability change in the presence of Mg2...... with calcite even after rinsing with CaCO3-saturated deionized water, suggesting sorption on or in calcite. When the calcite-saturated solution of MgSO4 was replaced by calcite-saturated NaCl at the same ionic strength, adhesion force increased again, indicating that the effect is reversible and suggesting Mg...

  5. Sorption and catalytic oxidation of Fe(II) at the surface of calcite

    NARCIS (Netherlands)

    Mettler, S.; Wolthers, M.; Charlet, L.; Von Gunten, U.

    The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps:

  6. Methodology to obtain exchange properties of the calcite surface-Application to major and trace elements: Ca(II), HCO3-, and Zn(II)

    International Nuclear Information System (INIS)

    Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.; Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.

    2010-01-01

    Sorption of inorganic elements onto carbonate minerals has been intensively described in the literature by two reaction steps: (1) a first one rapid and completed within a few hours and (2) a second one slower, eventually irreversible, and occurring at a constant rate. The first step is often attributed to an ion-exchange process, but its reversibility is rarely investigated. Consequently, discrimination of the global sorption phenomenon into two different mechanisms is not always justified. In this study, we investigated, by batch experiments, both sorption and desorption of Ca(II), HCO 3 - , and Zn(II), radiolabeled with isotopes 45 Ca(II), H 14 CO 3 - , and 65 Zn(II), respectively, onto synthetic pure calcite. Solutions were pre-equilibrated with atmospheric p(CO 2 ) and saturated with respect to calcite. Therefore, our purpose was to: (1) obtain experimental distribution coefficients of major elements (Ca(II) and HCO 3 - ) and a trace element (Zn(II)) onto calcite from sorption and desorption experiments, (2) test the validity of a first-occurring ion-exchange process generally noted in the literature, by calculating distribution coefficients for the 'sole' exchange process, and (3) quantify the amounts of Ca(II), HCO 3 - , and Zn(II) sorbed on the calcite surface by the sole 'exchange process' and compare them with surface crystallochemical data. Ca(II) or HCO 3 - sorption experimental data suggest that a significant fraction of these two elements was sorbed irreversibly onto or in the calcite. By using a method based on isotopic ratios, the Ca(II) or HCO 3 - concentrations, which are reversibly adsorbed on the calcite, have been quantified. These concentrations are respectively estimated at 4. 0 ± 2. 0 * 10 -4 and 7. 0 ± 1. 5 * 10 -4 mol/kg. The obtained Ca(II) surface concentration value is one order of magnitude lower than the one obtained from isotopic measurement by former authors [Geochim. Cosmochim. Acta 55 (1991) 1549; Geochim. Cosmochim. Acta 51

  7. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hudak, Michael R.; Lerner, Allan [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Grubbs, Robert K. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Wang, Shanmin [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Zhang, Zhan; Karapetrova, Evguenia [Advance Photon Source, Argonne National Laboratory, 9700S Cass Ave, Argonne, IL 60439 (United States); Hickmott, Donald [Earth and Environmental Sciences Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Majewski, Jaroslaw, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2014-08-28

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO{sub 3}) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al{sub 2}O{sub 3} buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al{sub 2}O{sub 3} buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial

  8. X-ray scattering of calcite thin films deposited by atomic layer deposition: Studies in air and in calcite saturated water solution

    International Nuclear Information System (INIS)

    Wang, Peng; Hudak, Michael R.; Lerner, Allan; Grubbs, Robert K.; Wang, Shanmin; Zhang, Zhan; Karapetrova, Evguenia; Hickmott, Donald; Majewski, Jaroslaw

    2014-01-01

    Carbonates are one of the most abundant groups of minerals in earth systems and are important in many geological settings and industrial processes. Calcite (CaCO 3 ) thin films produced by atomic layer deposition offer a method to evaluate the surficial properties of carbonates as well as interactions at the carbonate–fluid interface. Using synchrotron X-ray reflectivity and X-ray diffraction, these films are observed to be porous, polycrystalline, and have crystallites oriented with the major (104) calcite cleavage plane parallel to the surface of the z-cut single crystal quartz substrate. An Al 2 O 3 buffer layer, present between quartz and the calcite film, does not affect the as-deposited film, but does influence how the films reorganize in contact with fluid. Without a buffer layer, calcite reorients its crystallites to have populations of (006) and (030) parallel to the substrate, while those with an Al 2 O 3 buffer layer become more amorphous. Amorphous films may represent an analog to amorphous calcium carbonate and provide insights into that material's thermophysical behavior. Due to a higher percentage of pore spaces available for fluid infiltration, films deposited at higher temperature make the calcite thin films more susceptible to amorphization. These films are chemically similar, but structurally dissimilar to bulk natural calcite. Nevertheless, they can be a complementary system to traditional single crystal X-ray surface scattering studies on carbonates, particularly for important but less common minerals, to evaluate mineral–fluid interfacial interactions. - Highlights: • Atomic layer deposition (ALD) used to produce calcite films. • Calcite film orientation and crystallinity depend on ALD parameters. • ALD calcite films can be both crystalline and amorphous. • Interaction of water with films can re-orient or amorphize the films. • ALD calcite films may be useful to study carbonate–fluid interfacial interactions

  9. Sealing process with calcite in the Nojima active fault zone revealed from isotope analysis of calcite

    International Nuclear Information System (INIS)

    Arai, Takashi; Tsukahara, Hiroaki; Morikiyo, Toshiro

    2003-01-01

    The Nojima fault appeared on the surface in the northern part of Awaji Island, central Japan as a result of the Hyogo-ken Nanbu earthquake (1995, M=7.2). Active fault drilling was performed by the Disaster Prevention Research Institute (DPRI), Kyoto University, and core samples were retrieved from 1410 to 1710 m, which were composed of intact and fractured granodiorites. We obtained calcite samples and gas samples from the vein in marginal fracture and non-fracture zones. We analyzed the carbon and oxygen isotope ratios of calcite and carbon dioxide to investigate the characteristic isotope ratios of fluids in the active fault zone, to estimate the origins of fluids, and to determine the sealing process of fractures. The analyzed values of carbon and oxygen isotope ratios of calcite were -10.3 to -7.2 per mille, 18 to 23 per mille, respectively, and carbon isotope ratios of CO 2 were -21 to -17 per mille. If carbon isotope ratios of calcite were at equilibrium with those of CO 2 , the precipitation temperature of calcite is calculated to be 30 to 50 deg C. This temperature is consistent with the present temperature of the depth where drilling cores were retrieved. Oxygen isotope ratios of H 2 O that, precipitated calcite were calculated to be -1.8 to -5.5 per mille. These values indicate calcite were precipitated from mixed fluids of sea water and meteoric water. Therefore, the marginal fracture zone of the Nojima fault was sealed with calcite, which was generated from mixing of sea water and meteoric water in situ. (author)

  10. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    Science.gov (United States)

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  11. Strontium Incorporation into Calcite Generated by Bacterial Ureolysis

    International Nuclear Information System (INIS)

    Yoshiko Fujita; George D. Redden; Jani C. Ingram; Marnie M. Cortez; Robert W. Smith

    2004-01-01

    Strontium incorporation into calcite generated by bacterial ureolysis was investigated as part of an assessment of a proposed remediation approach for 90Sr contamination in groundwater. Urea hydrolysis produces ammonium and carbonate and elevates pH, resulting in the promotion of calcium carbonate precipitation. Urea hydrolysis by the bacterium Bacillus pasteurii in a medium designed to mimic the chemistry of the Snake River Plain Aquifer in Idaho resulted in a pH rise from 7.5 to 9.1. Measured average distribution coefficients (DEX) for Sr in the calcite produced by ureolysis (0.5) were up to an order of magnitude higher than values reported in the literature for natural and synthetic calcites (0.02-0.4). They were also higher than values for calcite produced abiotically by ammonium carbonate addition (0.3). The precipitation of calcite in these experiments was verified by X-ray diffraction. Time-of-flight secondary ion mass spectrometry (ToF SIMS) depth profiling (up to 350 nm) suggested that the Sr was not merely sorbed on the surface, but was present at depth within the particles. X-ray absorption near edge spectra showed that Sr was present in the calcite samples as a solid solution. The extent of Sr incorporation appeared to be driven primarily by the overall rate of calcite precipitation, where faster precipitation was associated with greater Sr uptake into the solid. The presence of bacterial surfaces as potential nucleation sites in the ammonium carbonate precipitation treatment did not enhance overall precipitation or the Sr distribution coefficient. Because bacterial ureolysis can generate high rates of calcite precipitation, the application of this approach is promising for remediation of 90Sr contamination in environments where calcite is stable over the long term

  12. Speciation of As in calcite by micro-XAFS: Implications for remediation of As contamination in groundwater

    International Nuclear Information System (INIS)

    Yokoyama, Y; Takahashi, Y; Iwatsuki, T; Terada, Y

    2013-01-01

    To evaluate the role of calcite as a host phase of arsenic (As) in As-contaminated groundwater, distribution behavior of Asbetween natural calcite and groundwater in deep underground was investigated based on As oxidation state. Speciation analyses of As in natural calcite by μ-XRF-XAFS analyses showed (i) preferentialarsenate uptake by calcite, and (ii) promptness of arsenate uptake by minor iron (Fe) carbonate minerals coprecipitated with calcite. These findings suggest that the effect of calcite on As remediation of the As-contamination systems stronglydepends on arsenite to arsenate ratio (i.e., redox condition) in groundwater, and maybe governed bythe amount of Fe coprecipitated with calcite.

  13. Acidization of shales with calcite cemented fractures

    Science.gov (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek

    2017-04-01

    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  14. The surface reactivity of chalk (biogenic calcite) with hydrophilic and hydrophobic functional groups

    Science.gov (United States)

    Okhrimenko, D. V.; Dalby, K. N.; Skovbjerg, L. L.; Bovet, N.; Christensen, J. H.; Stipp, S. L. S.

    2014-03-01

    The surface properties of calcium carbonate minerals play an important role in a number of industrial and biological processes. Properties such as wettability and adsorption control liquid-solid interface behaviour and thus have a strong influence on processes such as biomineralisation, remediation of aquifers and oil recovery. We investigated how two model molecules of different polarity, namely water and ethanol, interact with reservoir and outcrop chalk samples and we compared their behaviour with that of pure, inorganically precipitated calcite. Thermodynamic quantities, such as the work of wetting, surface energy and isosteric adsorption enthalpy, were determined from vapour adsorption isotherms. The chalks were studied fresh and after extraction of organic residues that were originally present in these samples. The work of wetting correlates with the amount of organic matter present in the chalk samples but we observed a fundamental difference between the adsorption properties of chalk and pure, inorganically precipitated calcite toward the less polar, ethanol molecule. Further analysis of the chemical composition of the organic matter extracted from the chalk samples was made by gas chromatography (GC-MS). Monitoring surface composition by X-ray photoelectron spectroscopy (XPS) before and after extraction of the organic material, and with atomic force microscopy (AFM), showed that nanometer sized clay crystals observed on the chalk particle surfaces could be an important part of the reason for the differences. Removal of the extractable portion of the hydrocarbons liberates adsorption sites that have different wetting properties than the rest of the chalk and these have an energy distribution that is similar to clays. Thus, the results exemplify the complexity of biogenic calcite adsorption behaviour and demonstrate that chalk wetting in drinking water aquifers as well as oil reservoirs is controlled partly by the nanoparticles of clay that have grown on the

  15. Anisotropic Growth of Otavite on Calcite: Implications for Heteroepitaxial Growth Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Shawn L.; Kerisit, Sebastien N.

    2017-12-18

    Elucidating how cation intermixing can affect the mechanisms of heteroepitaxial growth in aqueous media has remained a challenging endeavor. Toward this goal, in situ atomic force microscopy was employed to image the heteroepitaxial growth of otavite (CdCO3) at the (10-14) surface of calcite (CaCO3) single crystals in static aqueous conditions. Heteroepitaxial growth proceeded via spreading of three-dimensional (3D) islands and two-dimensional (2D) atomic layers at low and high initial saturation levels, respectively. Experiments were carried out as a function of applied force and imaging mode thus enabling determination of growth mechanisms unaltered by imaging artifacts. This approach revealed the significant anisotropic nature of heteroepitaxial growth on calcite in both growth modes and its dependence on supersaturation, intermixing, and substrate topography. The 3D islands not only grew preferentially along the [42-1] direction relative to the [010] direction, resulting in rod-like surface precipitates, but also showed clear preference for growth from the island end rich in obtuse/obtuse kink sites. Pinning to step edges was observed to often reverse this tendency. In the 2D growth mode, the relative velocities of acute and obtuse steps were observed to switch between the first and second atomic layers. This phenomenon stemmed from the significant Cd-Ca intermixing in the first layer, despite bulk thermodynamics predicting the formation of almost pure otavite. Composition effects were also responsible for the inability of 3D islands to grow on 2D layers in cases where both modes were observed to occur simultaneously. Overall, the AFM images highlighted the effects of intermixing on heteroepitaxial growth, particularly how it can induce thickness-dependent growth mechanisms at the nanoscale.

  16. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies

    International Nuclear Information System (INIS)

    Reeder, R.J.; Nugent, M.; Lamble, G.M.; Tait, C.D.; Morris, D.E.

    2000-01-01

    X-ray absorption, luminescence, and Raman spectroscopic studies of U(VI)-containing calcite and aragonite show that the UO 2 2+ ion, the dominant and mobile form of dissolved uranium in near-surface waters, has a disordered and apparently less stable coordination environment when incorporated into calcite in comparison to aragonite, both common polymorphs of CaCO 3 . Their findings suggest that calcite, a widely distributed authigenic mineral in soils and near-surface sediments and a principal weathering product of concrete-based containment structures, is not likely to be a suitable host for the long-term sequestration of U(VI). The more stable coordination provided by aragonite suggests that its long-term retention should be favored in this phase, until it inverts to calcite. Consequently, future remobilization of U(VI) coprecipitated with calcium carbonate minerals should not be ruled out in assessments of contaminated sites. Their observation of a similar equatorial coordination of UO 2 2+ in aragonite and the dominant aqueous species [UO 2 (CO 3 ) 3 4- ] but a different coordination in calcite indicates that a change in UO 2 2+ coordination is required for its incorporation into calcite. This may explain the observed preferential uptake of U(VI) by aragonite relative to calcite

  17. Interaction mechanisms of europium and nickel with calcite

    International Nuclear Information System (INIS)

    Sabau, Andrea

    2015-01-01

    In the context of the safety assessment of an underground repository for nuclear waste, sorption reactions are one of the main processes to take into account to predict the migration of the radionuclides which might be transferred from the waste canisters to underground waters over geological time scales. Sorption of aqueous species on minerals can include adsorption processes, surface (co)-precipitation, and even incorporation in the bulk of the material, which can lead to the irreversibility of some sorption reactions. This work is focused on two elements: Eu(III) as an analogue of trivalent actinides and Ni(II) as activation product. Calcite was chosen as adsorbent due to its presence in Callovian-Oxfordian clay rocks. Our study combines batch experiments with spectroscopic techniques (TRLFS, RBS and SEM-EDXS) to elucidate the mechanisms occurring at Eu(III)/Ni(II) calcite interface. To obtain a better understanding on the systems, before starting sorption experiments, aqueous chemistry of Eu(III) and Ni(II) was carefully investigated. Macroscopic results showed a strong retention of Eu(III) on calcite, no matter the initial concentration, contact time and CO 2 partial pressure. Ni(II) was also readily sorbed by calcite, but the retention was influenced by contact time and concentration. Time-dependent sorption experiments showed a marked and slow increase of retention upon a long time range (up to 4 months).Desorption results indicated a partly reversible sorption for Ni(II). TRLFS highlighted the influence of initial concentration and contact time on the interaction of Eu(III) with calcite. With the help of RBS and SEM-EDXS, it enabled to discriminate between different mechanisms like surface precipitation, inner-sphere complexation and incorporation. RBS showed incorporation of Eu(III) into calcite up to 250 nm, contrary to Ni(II) which was located at the surface. (author) [fr

  18. Effect of dissolution kinetics on flotation response of calcite with oleate

    Directory of Open Access Journals (Sweden)

    D. G. Horta

    Full Text Available Abstract Phosphate flotation performance can be influenced by the dissolution kinetics of the minerals that compose the ore. The purpose of this work was to investigate the effect of dissolution kinetics on flotation response with oleate (collector of calcites from different origins and genesis. The calcite samples were first purified and characterized by x-ray Fluorescence (XRF and the Rietveld method applied to x-ray Diffractometry data (RXD. Experiments of calcite dissolution and microflotationwere performed at pH 8 and pH 10.The pH effect on the calcite dissolution and flotation indicates the possible influence of the carbonate/bicarbonate ions provided by the CO2 present in the air. In addition, the flotation response is greater as the dissolution increases, making more Ca2+ ions available to interact with collector molecules. This result corroborates the surface precipitation mechanism proposed foroleate adsorption on the calcite surface.

  19. Variations in calcite growth kinetics with surface topography: molecular dynamics simulations and process-based growth kinetics modelling

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Zhimei; de Leeuw, Nora H.

    2013-01-01

    It is generally accepted that cation dehydration is the rate-limiting step to crystal growth from aqueous solution. Here we employ classical molecular dynamics simulations to show that the water exchange frequency at structurally distinct calcium sites in the calcite surface varies by about two

  20. Model study of initial adsorption of SO2 on calcite and dolomite

    International Nuclear Information System (INIS)

    Malaga-Starzec, Katarina; Panas, Itai; Lindqvist, Oliver

    2004-01-01

    The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO 2 . Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO 2 catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO 3 (s) and dolomite Ca x Mg 1-x CO 3 (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO 2 diffusion. The subsequent formation of gypsum under such conditions will not require SO 4 2- (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO 2 coverage. Rather, upon oxidation, SO 4 2- (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals

  1. Paleohydrogeological implications from fracture calcites and sulfides in a major hydrogeological zone HZ19 at Olkiluoto

    International Nuclear Information System (INIS)

    Sahlstedt, E.; Karhu, J.; Rinne, K.

    2009-08-01

    30 samples of fracture mineral fillings in or near water conducting fractures at Olkiluoto were collected from 10 drill cores for fracture mineral studies. The aim of the study was to obtain information about past hydrogeochemical conditions at Olkiluoto using the calcite morphology, the chemical characteristics and the isotopic composition of carbon and oxygen in calcite. The chemical composition of fracture calcites at Olkiluoto is nearly stoichiometric CaCO 3 . Most variation in the composition of calcite is due to differences in the Mn content, which could indicate variations in groundwater redox conditions. Meaningful REE patterns were obtained for the calcites. REE patterns showed generally negative Eu anomalies, but one fracture calcite specimen had a distinct positive Eu anomaly. This positive anomaly could be related to ancient hydrothermal conditions, although derivation of the anomaly from the host rock cannot be excluded. Preliminary results for calcite U-Th dating of fracture calcites are reported. The isotopic composition of U and Th were analysed by a new multiple collector LA-ICPMS instrument. U and Th concentrations in fracture calcites are generally 18 O values of calcite range from -17 to -7 per mille. Most of the calcites may have been precipitated in the presence of waters with oxygen isotope ratios similar to those in the present-day groundwaters at Olkiluoto. Two samples with an oxygen isotopic composition highly depleted in 18 O were interpreted to have been precipitated at elevated temperatures. The δ 13 C values of calcite showed a wide range of values from -26 to +35 per mille. Multiple sources for carbon are implied. The highest δ 13 C values indicate methanic conditions in the fracture at the time of calcite precipitation. It appears that the methanic environment has earlier extended to shallower depths compared to the location of the methanic environment in the present-day fracture system (> 300 m). Ten pyrite samples were analysed

  2. Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    Science.gov (United States)

    Antia, A. N.; Suffrian, K.; Holste, L.; Müller, M. N.; Nejstgaard, J. C.; Simonelli, P.; Carotenuto, Y.; Putzeys, S.

    2008-01-01

    Independent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45-55%, 37-53% and 5-22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates.

  3. Role of Fungi in the Biomineralization of Calcite

    Directory of Open Access Journals (Sweden)

    Saskia Bindschedler

    2016-05-01

    Full Text Available In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of organic acids such as oxalic acid for instance, an activity leading to the genesis of various metal complexes such as metal-oxalate. Their implications in the transformation of various mineral and metallic compounds has been widely acknowledged during the last decade, however, currently, their contribution to the genesis of a common biomineral, calcite, needs to be more thoroughly documented. Calcite is observed in many ecosystems and plays an essential role in the biogeochemical cycles of both carbon (C and calcium (Ca. It may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce its biomineralization. While fungi have often been suspected of being involved in this process in terrestrial environments, only scarce information supports this hypothesis in natural settings. As a result, calcite biomineralization by microbes is still largely attributed to bacteria at present. However, in some terrestrial environments there are particular calcitic habits that have been described as being fungal in origin. In addition to this, several studies dealing with axenic cultures of fungi have demonstrated the ability of fungi to produce calcite. Examples of fungal biomineralization range from induced to organomineralization processes. More examples of calcite biomineralization related to direct fungal activity, or at least to their presence, have been described within the last decade. However, the peculiar mechanisms leading to calcite biomineralization by fungi remain incompletely understood and more research is

  4. Interactions of U(VI), Nd, and Th(IV) at the Calcite-solution interface

    International Nuclear Information System (INIS)

    Carroll, S.A.; Dran, J.C.

    1992-01-01

    The interactions of U(VI), Nd, and Th(IV) at the calcite-solution interface at controlled pCO 2 (g) have been investigated by Rutherford backscattering (RBS), scanning electron microscopy (SEM) and energy dispersive (EDS) analyses of reacted calcite. Uranium precipitation at the calcite-solution interface was observed only for those experiments in which the initial [U(VI)] was greater than the solubility of rutherfordine, UO 2 CO 3 (s). At pH 8.0, flat radial uranium and calcium zoned precipitates form at the mineral-solution interface. At pH 4.3, uranium forms an anastomosing precipitate throughout the calcite surface. RBS analyses confirmed the SEM analyses showing that uranium forms a solid phase within the calcite surface, but formation of an uranium-calcium solid solution at depth is limited. In sharp contrast to U(VI), Nd is concentrated in the solid phase as individual neodymium-calcium carbonate crystals. Calcite and pure orthorhombic neodymium carbonate crystals dissolve at the expense of the formation of a more stable neodymium-calcium solid solution. In the presence of calcite, a thorium-calcium solid solution forms by exchanging Th for Ca in the calcite structure. Thorium precipitates in two linear trends which intersect each other at approximately 105deg C and 75deg C, parallel to calcite rhombohedral cleavage faces. (orig.)

  5. Geobacillus thermoglucosidasius Endospores Function as Nuclei for the Formation of Single Calcite Crystals

    Science.gov (United States)

    Murai, Rie

    2013-01-01

    Geobacillus thermoglucosidasius colonies were placed on an agar hydrogel containing acetate, calcium ions, and magnesium ions, resulting in the formation of single calcite crystals (calcites) within and peripheral to the plating area or parent colony. Microscopic observation of purified calcites placed on the surface of soybean casein digest (SCD) nutrient medium revealed interior crevices from which bacterial colonies originated. Calcites formed on the gel contained [1-13C]- and [2-13C]acetate, demonstrating that G. thermoglucosidasius utilizes carbon derived from acetate for calcite formation. During calcite formation, vegetative cells swam away from the parent colony in the hydrogel. Hard-agar hydrogel inhibited the formation of calcites peripheral to the parent colony. The calcite dissolved completely in 1 M HCl, with production of bubbles, and the remaining endospore-like particles were easily stained with Brilliant green dye. The presence of DNA and protein in calcites was demonstrated by electrophoresis. We propose that endospores initiate the nucleation of calcites. Endospores of G. thermoglucosidasius remain alive and encapsulated in calcites. PMID:23455343

  6. Model study of initial adsorption of SO{sub 2} on calcite and dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Malaga-Starzec, Katarina; Panas, Itai; Lindqvist, Oliver

    2004-01-30

    The rate of calcareous stone degradation is to a significant extent controlled by their surface chemistry with SO{sub 2}. Initial surface sulphite is converted to a harmful gypsum upon, e.g. NO{sub 2} catalysed oxidation. However, it has been observed by scanning electron microscopy that the lateral distributions of gypsum crystals differ between calcitic and dolomitic marbles. The first-principles density functional theory is employed to understand the origin of these fundamentally different morphologies. Here, the stability differences of surface sulphite at calcite CaCO{sub 3} (s) and dolomite Ca{sub x}Mg{sub 1-x}CO{sub 3} (s) are determined. A qualitative difference in surface sulphite stability, favouring the former, is reported. This is taken to imply that calcitic micro-crystals embedded in a dolomitic matrix act as sinks in the surface sulphation process, controlled by SO{sub 2} diffusion. The subsequent formation of gypsum under such conditions will not require SO{sub 4}{sup 2-} (aq) ion transport. This explains the homogeneous distribution of gypsum observed on the calcitic micro-crystals in dolomite. In contrast, sulphation on purely calcitic marbles never reaches such high SO{sub 2} coverage. Rather, upon oxidation, SO{sub 4}{sup 2-} (aq) transport to nucleation centres, such as grain boundaries, is required for the growth of gypsum crystals.

  7. Structure and dynamics of microbe-exuded polymers and their interactions with calcite surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall Timothy; Mitchell, Ralph (Harvard University, Cambridge, MA); Perry, Thomas D. (Harvard University, Cambridge, MA)

    2005-12-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these organo-cation interactions are well suited to predictive molecular modeling studies for investigating the roles of conformation and configuration of polysaccharides on cation binding. In this study, alginic acid was chosen as a model polymer and representative disaccharide and polysaccharide subunits were modeled. The ability of disaccharide subunits to bind calcium and to associate with the surface of calcite was investigated. The findings were extended to modeling polymer interactions with calcium ions.

  8. Calcite precipitates in Slovenian bottled waters.

    Science.gov (United States)

    Stanič, Tamara Ferjan; Miler, Miloš; Brenčič, Mihael; Gosar, Mateja

    2017-06-01

    Storage of bottled waters in varying ambient conditions affects its characteristics. Different storage conditions cause changes in the initial chemical composition of bottled water which lead to the occurrence of precipitates with various morphologies. In order to assess the relationship between water composition, storage conditions and precipitate morphology, a study of four brands of Slovenian bottled water stored in PET bottles was carried out. Chemical analyses of the main ions and measurements of the physical properties of water samples were performed before and after storage of water samples at different ambient conditions. SEM/EDS analysis of precipitates was performed after elapsed storage time. The results show that the presence of Mg 2+ , SO 4 2- , SiO 2 , Al, Mn and other impurities such as K + , Na + , Ba and Sr in the water controlled precipitate morphology by inhibiting crystal growth and leading to elongated rhombohedral calcite crystal forms which exhibit furrowed surfaces and calcite rosettes. Different storage conditions, however, affected the number of crystallization nuclei and size of calcite crystals. Hollow calcite spheres composed of cleavage rhombohedrons formed in the water with variable storage conditions by a combination of evaporation and precipitation of water droplets during high temperatures or by the bubble templating method.

  9. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  10. Cretaceous joints in southeastern Canada: dating calcite-filled fractures

    Science.gov (United States)

    Schneider, David; Spalding, Jennifer; Gautheron, Cécile; Sarda, Philippe; Davis, Donald; Petts, Duane

    2017-04-01

    To resolve the timing of brittle tectonism is a challenge since the classical chronometers required for analyses are not often in equilibrium with the surrounding material or simply absent. In this study, we propose to couple LA-ICP-MS U-Pb and (U-Th)/He dating with geochemical proxies in vein calcite to tackle this dilemma. We examined intracratonic Middle Ordovician limestone bedrock that overlies Mesoproterozoic crystalline basement, which are cut by NE-trending fault zones that have historic M4-5 earthquakes along their trace. E-W to NE-SW vertical joint sets, the relatively youngest stress recorded in the bedrock, possess 1-7 mm thick calcite veins that seal fractures or coat fracture surfaces. The veins possess intragranular calcite that are lined with fine-grained calcite along the vein margin and can exhibit µm- to mm-scale offset (e.g. displaced fossil fragments in host rock). Calcite d18O and d13C values are analogous to the bulk composition of Middle to Late Ordovician limestones, and suggest vein formation from a source dominated by connate fluids. The calcite contain trails of fluid inclusions commonly along fractures, and 3He/4He analyses indicate a primitive, deep fluid signature (R/Ra: 0.5-2.7). Trace element geochemistry of the calcite is highly variable, generally following the elevated HREE and lower LREE of continental crust trends but individual crystals from a single vein may vary by three orders of magnitude. LA-ICP-MS geochemical traverse across veins show elevated concentrations along (sub)grain boundaries and the vein-host rock contact. Despite abundant helium concentrations, (U-Th)/He dating was unsuccessful yielding highly dispersed dates likely from excess helium derived from the fluid inclusions. However, LA-ICP-MS U-Pb dating on calcite separated from the veins yielded model ages of 110.7 ± 6.8 Ma (MSWD: 0.53; n: 16) to 81.4 ± 8.3 Ma (MSWD: 2.6; n: 17). Since all veins are from the same ENE-trend, we regressed all the calcite dates

  11. Selective Separation of Fluorite, Barite and Calcite with Valonea Extract and Sodium Fluosilicate as Depressants

    Directory of Open Access Journals (Sweden)

    Zijie Ren

    2017-02-01

    Full Text Available Fluorite, barite and calcite are important industry minerals. However, they often co-exist, presenting difficulty in selectively separating them due to their similar surface properties. In this study, valonea extract and sodium fluosilicate were used as depressants to selectively separate them by flotation, with sodium oleate as the collector. The single mineral flotation results showed that valonea extract displayed the strongest depression on calcite, while sodium fluosilicate displayed the strongest depression on barite. These two depressants allowed selective separation of the three minerals through sequential flotation. The flotation of mixed minerals showed that 94% of the calcite was successfully depressed by the valonea extract, and 95% recovery of the fluorite was achieved in the subsequent flotation with sodium fluosilicate depressing barite. The different depressant–mineral interactions were investigated via electro-kinetic studies and molecular dynamics (MD simulations using the Materials Studio 6.0 program. The valonea extract exhibited the strongest adsorption on the calcite surface, and sodium fluosilicate exhibited the strongest adsorption on the barite surface, which prevented oleate species from reacting with Ca2+ or Ba2+ surface sites. This study provides useful guidance for how to process fluorite, barite and calcite resources.

  12. The radiogenic and stable Sr isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation

    Science.gov (United States)

    Andrews, M. Grace; Jacobson, Andrew D.

    2017-10-01

    volcanic C flux introduced to the atmosphere-ocean system as HCO3- after subsurface silicate weathering does not regulate long-term climate. Because hydrothermal calcite simply sequesters some of this HCO3- and delays its transmission to the atmosphere-ocean system until it dissolves at the surface later in time, it can be concluded the weathering of hydrothermal calcite bearing non-atmospheric C also has no effect on long-term climate regulation. Icelandic riverine HCO3- fluxes should be corrected for the hydrothermal calcite weathering contribution prior to quantifying atmospheric CO2 consumption rates by basalt weathering at the Earth's surface.

  13. Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Chipera, S.J.

    1996-01-01

    Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a open-quotes barren zone,close quotes straddling the water table, where calcite is rare and mixing of surface and subsurface sources may occur. Deep in the SZ, distinctive Mn calcites reflect deep sources, including Ca released as analcime or albite formed and carbonates derived from underlying Paleozoic rocks. In the UZ and in the barren zone, above the deep Mn calcites, variations in calcite lanthanide chemistry can be used to distinguish rhyolitic from quartz-latitic sources. Lanthanide ratios and Sr contents of calcites record the chemical evolution of waters flowing through the UZ and upper SZ. Variations in calcite chemistry in the UZ and in the barren zone show that (1) Sr, which is readily exchanged with clays or zeolites, is essentially removed from some flowpaths that are in contact with these minerals and (2) traces of Mn oxides found in the tuffs have a significant effect of groundwater chemistry in the UZ and in the barren zone by removing almost all Ce from solution (evidenced by characteristic Ce depletions in calcite throughout this zone). Extreme Ce removal may be a result of Ce oxidation (Ce 3+ → Ce 4+ ) at the surfaces of some Mn oxides, particularly rancieite. Higher Sr contents and lack of Ce depletions in the deeper Mn calcites reflect different ages, origins, and transport systems. The calcite record of lanthanide and Sr transport in the UZ shows that minor minerals (clays and zeolites) and even trace minerals (Mn oxides) will affect the compositions of groundwaters that flow over distances greater than a few tens of meters. 43 refs., 8 figs., 4 tabs

  14. The effect of the Ca2+ to CO32- activity ratio on spiral growth at the calcite {1014} surface

    DEFF Research Database (Denmark)

    Larsen, Kirsten Kolbjørn; Bechgaard, Klaus; Stipp, Susan Louise Svane

    2010-01-01

    Variation in the Ca2+ to CO 2¿ activity ratio of natural waters is rarely considered in models intended to describe calcite 3 growth. Atomic force microscopy (AFM) and differential interference contrast (DIC) microscopy were used to examine spiral growth on calcite f10¿14g surfaces from solutions...... velocity is achieved at higher relative 3 CO 2¿ activity. The obtuse step velocity data fit the ‘kinetic ionic ratio’ model of Zhang and Nancollas (1998) well, but acute 3 step velocities cannot be described by this model. This is attributed to dissimilar dehydration frequencies for Ca2+ and CO 2¿ 3...

  15. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite

    Science.gov (United States)

    Jiang, Wei; Gao, Zhiyong; Khoso, Sultan Ahmed; Gao, Jiande; Sun, Wei; Pu, Wei; Hu, Yuehua

    2018-03-01

    Fluorite, a chief source of fluorine in the nature, usually coexists with calcite mineral in ore deposits. Worldwide, flotation techniques with a selective collector and/or a selective depressant are commonly preferred for the separation of fluorite from calcite. In the present study, an attempt was made to use benzhydroxamic acid (BHA) as a collector for the selective separation of fluorite from calcite without using any depressant. Results obtained from the flotation experiments for single mineral and mixed binary minerals revealed that the BHA has a good selective collecting ability for the fluorite when 50 mg/L of BHA was used at pH of 9. The results from the zeta potential and X-ray photoelectron spectroscopy (XPS) indicated that the BHA easily chemisorbs onto the fluorite as compared to calcite. Crystal chemistry calculations showed the larger Ca density and the higher Ca activity on fluorite surface mainly account for the selective adsorption of BHA on fluorite, leading to the selective separation of fluorite from calcite. Moreover, a stronger hydrogen bonding with BHA and the weaker electrostatic repulsion with BHA- also contribute to the stronger interaction of BHA species with fluorite surface.

  16. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Sakuma, Hiroshi; Stipp, Susan Louise Svane

    2014-01-01

    We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral-fluid inte......We have used density functional theory to predict the ion exchange energies for divalent cations Ni(2+), Sr(2+), Cd(2+), and Pb(2+) into a calcite {10.4} surface in equilibrium with water. Exchange energies were calculated for substitution into the topmost surface layer, at the mineral...

  17. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, B.; Moscati, R.

    2000-01-01

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from ∼ 40 to ∼ 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits

  18. Evolution and the Calcite Eye Lens

    OpenAIRE

    Williams, Vernon L.

    2013-01-01

    Calcite is a uniaxial, birefringent crystal, which in its optically transparent form, has been used for animal eye lenses, the trilobite being one such animal. Because of the calcite birefringence there is a difficulty in using calcite as a lens. When the propagation direction of incoming light is not exactly on the c-axis, the mages blur. In this paper, calcite blurring is evaluated, and the non-blurring by a crystallin eye lens is compared to a calcite one.

  19. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  20. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  1. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  2. Gallium isotope fractionation during Ga adsorption on calcite and goethite

    Science.gov (United States)

    Yuan, Wei; Saldi, Giuseppe D.; Chen, JiuBin; Vetuschi Zuccolini, Marino; Birck, Jean-Louis; Liu, Yujie; Schott, Jacques

    2018-02-01

    Gallium (Ga) isotopic fractionation during its adsorption on calcite and goethite was investigated at 20 °C as a function of the solution pH, Ga aqueous concentration and speciation, and the solid to solution ratio. In all experiments Ga was found to be enriched in light isotopes at the solid surface with isotope fractionation △71Gasolid-solution up to -1.27‰ and -0.89‰ for calcite and goethite, respectively. Comparison of Ga isotopic data of this study with predictions for 'closed system' equilibrium and 'Rayleigh fractionation' models indicates that the experimental data are consistent with a 'closed system' equilibrium exchange between the fluid and the solid. The results of this study can be interpreted based on Ga aqueous speciation and the structure of Ga complexes formed at the solid surfaces. For calcite, Ga isotope fractionation is mainly triggered by increased Ga coordination and Ga-O bond length, which vary respectively from 4 and 1.84 Å in Ga(OH)4- to 6 and 1.94 Å in the >Ca-O-GaOH(OH2)4+ surface complex. For goethite, despite the formation of Ga hexa-coordinated >FeOGa(OH)20 surface complexes (Ga-O distances of 1.96-1.98 Å) both at acid and alkaline pH, a similar extent of isotope fractionation was found at acid and alkaline pH, suggesting that Ga(OH)4- is preferentially adsorbed on goethite for all investigated pH conditions. In addition, the observed decrease of Ga isotope fractionation magnitude observed with increasing Ga surface coverage for both calcite and goethite is likely related to the formation of Ga surface polymers and/or hydroxides with reduced Ga-O distances. This first study of Ga isotope fractionation during solid-fluid interactions suggests that the adsorption of Ga by oxides, carbonates or clay minerals could yield significant Ga isotope fractionation between secondary minerals and surficial fluids including seawater. Ga isotopes thus should help to better characterize the surficial biogeochemical cycles of gallium and its

  3. Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.

    Science.gov (United States)

    Padukone, S Usha; Natarajan, K A

    2011-11-01

    Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A time-resolved laser fluorescence spectroscopy (TRLFS) study of the interaction of trivalent actinides (curium(III)) with calcite

    International Nuclear Information System (INIS)

    Stumpf, Th.; Fanghaenel, Th.

    2002-01-01

    Cm(III) interaction with calcite was investigated in the trace concentration range. Two different Cm(III)/calcite sorption species were found. The first Cm(III) sorption species consists of a curium ion that is bonded onto the calcite surface. The second Cm(III) sorption species has lost its complete hydration sphere and is incorporated into the calcite bulk structure /1/. (orig.)

  5. Inferences of paleoenvironment from petrographic, chemical and stable-isotope studies of calcretes and fracture calcites

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Whelan, J.F.

    1994-01-01

    Past research has indicated a genetic connection between calcite formed in calcretes at the surface of Yucca Mountain, Nevada, and calcites deposited in underlying fractures of the unsaturated zone. This common genesis suggests that paleoenvironmental information, as well as the timing and pathways of past recharge episodes, might be obtained from studies of the deposits in both the calcretes and the unsaturated fractures. Chemical and isotopic modification of calcite-precipitating fluids appears to begin at the surface, largely under the influence of plant roots and their decay products. Chemical characteristics of the deeper calcites are either initiated or largely defined within the first few meters of fluid migration into the unsaturated tuffs beneath the calcretes. However, petrographic and isotopic data indicate a very unique low-δ 13 C microenvironment that is localized at the upper surfaces of the calcretes. These surfaces form an interface in the soil horizon where infiltration may pond above the underlying carbonate ''plug.'' In order to decipher the chemistry and petrology of past recharge events, it is important to first understand microenvironments such as this that contribute to mineral precipitation/dissolution events in the pedogenic environment

  6. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  7. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  8. Hydrothermal replacement of calcite by Mg-carbonates

    Science.gov (United States)

    Jonas, Laura; Mueller, Thomas; Dohmen, Ralf

    2014-05-01

    The transport of heat and mass through the Earth's crust is coupled to mineral reactions and the exchange of isotopes and elements between different phases. Carbonate minerals are a major constituent of the Earth's crust and play an important role in different physical, chemical and even biological processes. In this experimental study, the element exchange reaction between calcite (CaCO3) and a Mg-rich fluid phase is investigated under hydrothermal conditions. Single crystals of calcite (2x2x2 mm) react with 1 ml of a 1 M MgCl2 solution at 200° C in a Teflon-lined steel autoclave for different times between one day and four weeks. The reaction leads to the formation of a porous reaction front and the pseudomorphic replacement of calcite by dolomite [CaMg(CO3)2] and magnesite (MgCO3). Scanning electron microscopy revealed that the reaction rim consists of small Mg-carbonate rhombs closely attached to each other, suggesting that the replacement reaction takes place by a dissolution-precipitation mechanism. Typically, the observed reaction front can be divided into two different domains. The outer part of the reaction rim, i.e. from the mineral surface in contact to the fluid inwards, consists of magnesite, whereas the inner part of the rim surrounding the unreacted calcite core consists of Ca-rich dolomite. The formation of a porous microstructure that varies in different parts of the reaction rim is a direct result of the large molar volume change induced by the replacement of calcite by magnesite and dolomite. The developing porosity therefore creates fluid pathways that promote the progress of the reaction front towards the unreacted core of the single crystal. Compositional profiles measured perpendicular to the mineral surface across the reactions rims using electron microprobe (EMPA) further revealed a compositional gradient within the reaction rim with regard to the structure-forming elements Mg and Ca. Here, the amount of Mg incorporated in both product

  9. Influence of water on clumped-isotope bond reordering kinetics in calcite

    Science.gov (United States)

    Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.

    2018-03-01

    Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external

  10. Coprecipitation of cadmium with calcite

    International Nuclear Information System (INIS)

    Fujino, Osamu; Kumagai, Tetsu; Shigematsu, Tsunenobu; Matsui, Masakazu

    1976-01-01

    The distribution of cadmium between precipitates of calcite and saturated aqueous solution was measured at 25 0 C to understand the distribution of cadmium in the bivalves. Calcite was precipitated from calcium bicarbonate solution by the gradual release of carbon dioxide. The cadmium ions were coprecipitated in calcite, obeying the logarithmic distribution law. The apparent distribution coefficient was decreased as α, α'-dipyridyl increased, but the true distribution coefficient was found to be an almost constant value, 560. This value is fairly close to the ratio of solubility product constants K sub(calcite)/K sub(CdCO 3 ), 890. This suggests that the deviation of the present solid solution from ideality is not very large. (auth.)

  11. Adsorption of polar aromatic hydrocarbons on synthetic calcite

    DEFF Research Database (Denmark)

    Madsen, Lene; Grahl-Madsen, Laila; Grøn, Christian

    1996-01-01

    The wettability of hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. A model system of synthetic call cite, cyclohexane and the three probe molecules: benzoic acid, benzyl alcohol and benzylamine, have been...

  12. The coprecipitation of Sr2+ with calcite at 250C and 1 atm

    International Nuclear Information System (INIS)

    Pingitore, N.E. Jr.; Eastman, M.P.

    1986-01-01

    The incorporation of Sr 2+ into calcite at earth surface aqueous conditions is affected by the absolute concentration of Sr 2+ , the presence of Ba 2+ and NaCl in the solution and the rate of precipitation. At solution ratios (molar) of Sr 2+ to Ca 2+ in the low 10 -3 range, which yield calcites with several hundred ppm Sr 2+ , kappasub(calcite) sup(Sr) typically assumes a value between 0.10 and 0.20. Above these concentrations the value of kappasub(calcite) sup(Sr) drops to approximately 0.06. Furthermore, if minor amounts of Ba 2+ or large amounts of Na + (0.48 M) are added to a dilute Sr 2+ solution, a value around 0.06 for kappasub(calcite)sup(Sr) is found. This 'strontium concentration effect' and the associated 'competitive cation effect' suggest that small amounts of Sr 2+ may be incorporated into a limited number of nonlattice sites in calcite. Incorporation of Sr 2+ into these sites, presumably defects, noticeably affects kappasub(calcite)sup(Sr) only at low Sr 2+ concentrations and in the absence of competition from other large cations. An increase in kappasub(calcite)sup(Sr) with rate of precipitation, qualitatively similar to that found in other studies, was observed only when precipitation times were decreased from days to hours. For many geologic settings a partition coefficient for Sr 2+ into calcite of 0.06 appears appropriate, but there are situations - very low Sr 2+ concentrations, the presence of Mg 2+ , and fast precipitation rates - in which a larger value might better approximate natural partitioning. (author)

  13. Biogenic processes in crystalline bedrock fractures indicated by carbon isotope signatures of secondary calcite

    International Nuclear Information System (INIS)

    Sahlstedt, Elina; Karhu, Juha A.; Pitkänen, Petteri; Whitehouse, Martin

    2016-01-01

    Variation in 13 C/ 12 C-isotope ratios of fracture filling calcite was analyzed in situ to investigate carbon sources and cycling in fractured bedrock. The study was conducted by separating sections of fracture fillings, and analyzing the 13 C/ 12 C-ratios with secondary ion mass spectrometry (SIMS). Specifically, the study was aimed at fillings where previously published sulfur isotope data indicated the occurrence of bacterial sulfate reduction. The results showed that the δ 13 C values of calcite were highly variable, ranging from −53.8‰ to +31.6‰ (VPDB). The analysis also showed high variations within single fillings of up to 39‰. The analyzed calcite fillings were mostly associated with two calcite groups, of which Group 3 represents possible Paleozoic fluid circulation, based on comparison with similar dated coatings within the Baltic Shield and the succeeding Group 1–2 fillings represent late-stage, low temperature mineralization and are possibly late Paleozoic to Quaternary in age. Both generations were associated with pyrite with δ 34 S values indicative of bacterial sulfate reduction. The δ 13 C values of calcite, however, were indicative of geochemical environments which were distinct for these generations. The δ 13 C values of Group 3 calcite varied from −22.1‰ to +11‰, with a distinct peak at −16‰ to −12‰. Furthermore, there were no observable depth dependent trends in the δ 13 C values of Group 3 calcite. The δ 13 C values of Group 3 calcite were indicative of organic matter degradation and methanogenesis. In contrast to the Group 3 fillings, the δ 13 C values of Group 1–2 calcite were highly variable, ranging from −53.8‰ to +31.6‰ and they showed systematic variation with depth. The near surface environment of <30 m (bsl) was characterized by δ 13 C values indicative of degradation of surface derived organic matter, with δ 13 C values ranging from −30.3‰ to −5.5‰. The intermediate depth of

  14. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    International Nuclear Information System (INIS)

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-01-01

    Calcite vein and vug fillings at fourth depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid ratios: most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at 2 vapor phase at open-quotes 100 degrees Cclose quotes. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface

  15. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    International Nuclear Information System (INIS)

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-01-01

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at 2 vapor phase at ''<100 degrees C''. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface

  16. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.

    Science.gov (United States)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Benning, Liane G

    2011-01-01

    The kinetics and mechanisms of nanoparticulate amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite, were studied at a range of environmentally relevant temperatures (7.5-25 °C) using synchrotron-based in situ time-resolved Energy Dispersive X-ray Diffraction (ED-XRD) in conjunction with high-resolution electron microscopy, ex situ X-ray diffraction and infrared spectroscopy. The crystallization process occurs in two stages; firstly, the particles of ACC rapidly dehydrate and crystallize to form individual particles of vaterite; secondly, the vaterite transforms to calcite via a dissolution and reprecipitation mechanism with the reaction rate controlled by the surface area of calcite. The second stage of the reaction is approximately 10 times slower than the first. Activation energies of calcite nucleation and crystallization are 73±10 and 66±2 kJ mol(-1), respectively. A model to calculate the degree of calcite crystallization from ACC at environmentally relevant temperatures (7.5-40 °C) is also presented.

  17. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    Science.gov (United States)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes

  18. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  19. Origin of calcite in the glacigenic Virttaankangas complex

    Directory of Open Access Journals (Sweden)

    Nina M. Kortelainen

    2007-01-01

    Full Text Available Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of occurrence of calcite and to identifyits sources. The mineralogy of the glacigenic Virttaankangas complex was studied using material from 21 sediment drill cores. Fine-grained calcite is present in trace amounts (<< 1.4 % in the glaciofluvial and glaciolacustrine depositional units of the Virttaankangas complex. The topmost littoral sands were practically devoid of calcite. The isotope records of carbon and oxygen, the angular morphology of the grains and the uniform dispersion of calcite in the complex suggest a clastic origin for calcite, with no evidence for in-situ precipitation. In order to constrain the source of calcite, the isotopic composition of carbon and oxygen in five calcite samples was compared to the isotopic data from five carbonate rock erratics and eight crystalline bedrock samples from the region. Based on carbon and oxygen isotope ratios and chemical compositions, the dispersed calcite grains of the Virttaankangas complex appear to have been derived from the Mesoproterozoic Satakunta Formation, some 30 km NW from the Virttaankangas area. In sandstone, calcite is predominantly present as diagenetic cement in grain interspaces, concretions and interlayers. The source of detrital calcite was unexpected, as prior to this study the Satakunta sandstone hasnot been known to contain calcite.

  20. Rearrangement of porous CaO aggregates during calcite decomposition in vacuum

    International Nuclear Information System (INIS)

    Beruto, D.; Barco, L.; Searcy, A.W.

    1983-01-01

    High-resolution SEM photographs, N 2 adsorption isotherms, Hg porosimetry, and micrometer measurements were used to characterize CaO particle shapes and pore-size distributions that result when calcite crystals are decomposed in vacuum at 686 0 C. The surface area of the CaO produced from large calcite crystals is constant at 116 + or - 4 m 2 /g independent of the extent of reaction. The volume occupied by a CaO aggregate is approx. = 98 + or - 2% that of the original calcite crystal. The approx. = 54% total porosity is comprised of 42% pores of approx. = 5 nm cross section and 12% pores of approx. = 10 μm cross section. The duplex pore structure is formed by a diffusionless repacking of CaO particles that initially form with a more uniform distribution of particles and pores

  1. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters

    Science.gov (United States)

    Rossi, Carlos; Lozano, Rafael P.

    2016-11-01

    Despite the paleoclimatic relevance of primary calcite to aragonite transitions in stalagmites, the relative role of fluid Mg/Ca ratio, supersaturation and CO32- concentration in controlling such transitions is still incompletely understood. Accordingly, we have monitored the hydrochemistry of 50 drips and 8 pools that are currently precipitating calcite and/or aragonite in El Soplao and Torca Ancha Caves (N. Spain), investigating the mineralogy and geochemistry of the CaCO3 precipitates on the corresponding natural speleothem surfaces. The data reveal that, apart from possible substrate effects, dripwater Mg/Ca is the only obvious control on CaCO3 polymorphism in the studied stalagmites and pools, where calcite- and aragonite-precipitating dripwaters are separated by an initial (i.e. at stalactite tips) Mg/Ca threshold at ≈1.1 mol/mol. Within the analyzed ranges of pH (8.2-8.6), CO32- concentration (1-6 mg/L), supersaturation (SIaragonite: 0.08-1.08; SIcalcite: 0.23-1.24), drip rate (0.2-81 drops/min) and dissolved Zn (6-90 μg/L), we observe no unequivocal influence of these parameters on CaCO3 mineralogy. Despite the almost complete overlapping supersaturations of calcite- and aragonite-precipitating waters, the latter are on average less supersaturated because the waters having Mg/Ca above ∼1.1 have mostly achieved such high ratios by previously precipitating calcite. Both calcite and aragonite precipitated at or near oxygen isotopic equilibrium, and Mg incorporation into calcite was consistent with literature-based predictions, indicating that in the studied cases CaCO3 precipitation was not significantly influenced by strong kinetic effects. In the studied cases, the calcites that precipitate at ∼11 °C from dripwaters with initial Mg/Ca approaching ∼1.1 incorporate ∼5 mol% MgCO3, close to the published value above which calcite solubility exceeds aragonite solubility, suggesting that aragonite precipitation in high-relative-humidity caves is

  2. Geochemical and isotope aspects of calcite deposits and calcitic marbles hosts mineralizations, Serra do Carumbe, Vale do Ribeira, Parana state, Brazil

    International Nuclear Information System (INIS)

    Venusso, Gerson Caetano; Andrade e Silva, Antonio C. Gondim de

    2011-01-01

    The calcite deposits and the calcitic marbles hosts occur in Serra do Carumbe, in the Vale do Ribeira region, Parana State, were studied in their geochemical and isotopic aspects viewing the gathering of information about their genesis and economical use. The calcite deposits are constituted by veins and lenses, being three of them concordant and one discordant in relation to the S_0 from the hosting marbles. In these deposits four main types of calcite were recognized: rombohedrical, fibrous, banded and microcrystalline. The calcite reveal themselves having high purity, with CaO concentration above 55.30% and MgO below 0.42%. The lithogeochemical study of the marbles sequence was conducted in various suites revealing an uniformity in their composition, with high values of CaO (above 46.92%) in relation to the MgO values (below 3,37%), what favors their use for cement manufacture, except in sectors that suffered fault influences, where the marbles are impure (siliceous, magnesian, ferruginous and aluminous). Regarding their trace elements content, the hosting calcitic marbles have higher concentrations than the calcite, in the elements Sr, B, Ba and Mg, what makes evident their different formation environments. The δ"1"3C values from calcite range from –9,02 to –12,24 ‰ , referring to PDB, while the values δ"1"8O range from 24,48 to 25,23 ‰, referring to SMOW; meanwhile, for the calcitic marbles, the δ"1"3C values range from –4,03 to 1,42‰ and of δ"1"8O range from 20,71 to 23,00 ‰. The high δ"1"8O values would indicate enrichment referring to the interaction of the calcite's generator fluid with the carbonatic host rock. The δ"1"3C values indicate origin from hydrothermal solution for the calcite, although they would not allow to conclude if their sources would be superficial or profound. As for the hosting calcitic marbles, the isotopic values indicate genesis from pre-cambrian marine limestone. (author)

  3. Mechanisms of metasomatism in the calcite-pitchblende system: 2. Replacement of pitchblende by calcite

    International Nuclear Information System (INIS)

    Dymkov, Yu.M.

    1996-01-01

    The principal mechanisms of the nasturan replacement by calcite -intrametasomatism, frontal metasomatism, dispersive metasomatism, and transformative metasomatism - are discussed in terms of G.L. Pospelov's (1973) concept. The main chemical condition required by the process is an oxidized environment, in which the tetravalent uranium of pitchblende or transitional reduced phases (coffinite) oxidizes to yield readily soluble uranyl compounds. The latter are replaced by calcite

  4. Nucleation, growth and evolution of calcium phosphate films on calcite.

    Science.gov (United States)

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. High-Magnesian Calcite Mesocrystals : A Coordination Chemistry Approach

    NARCIS (Netherlands)

    Lenders, Jos J. M.; Dey, Archan; Bomans, Paul H. H.; Spielmann, Jan; Hendrix, Marco M. R. M.; de With, Gijsbertus; Meldrum, Fiona C.; Harder, Sjoerd; Sommerdijk, Nico A. J. M.

    2012-01-01

    While biogenic calcites frequently contain appreciable levels of magnesium, the pathways leading to such high concentrations remain unclear. The production of high-magnesian calcites in vitro is highly challenging, because Mg-free aragonite, rather than calcite, is the favored product in the

  6. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    Science.gov (United States)

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  7. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  8. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    Energy Technology Data Exchange (ETDEWEB)

    Roedder, E. [Harvard Univ., Cambridge, MA (United States); Whelan, J.F. [Geological Survey, Denver, CO (United States); Vaniman, D.T. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at <100{degrees}C. The vapor-filled inclusions provide evidence that a separate vapor phase was present in the fluid during crystallization. Studies of these vapor-filled inclusions on the microscope crushing stage were interpreted in an earlier paper as indicating trapping of an air-water-CO{sub 2} vapor phase at ``<100{degrees}C``. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface.

  9. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    International Nuclear Information System (INIS)

    Gehoer, S.; Kaerki, A.; Taikina-aho, O.; Karhu, J.; Loefman, J.; Pitkaenen, P.; Ruotsalainen, P.

    2002-02-01

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO 3 ). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  10. Fracture calcites at Olkiluoto. Evidence from quaternary infills for palaeohydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Gehoer, S.; Kaerki, A.; Taikina-aho, O. [Kivitieto Oy (Finland); Karhu, J. [Helsinki Univ. (Finland); Loefman, J. [VTT Processes, Espoo (Finland); Pitkaenen, P. [VTT Building and Transport, Espoo (Finland); Ruotsalainen, P. [TUKES, Helsinki (Finland)

    2002-02-01

    Recently formed secondary minerals, predominantly calcite, occur in varying amounts as fracture infills, and the calcite types, their chemical compositions and isotope ratios reflect the compositions and physicochemical factors of the groundwater system in which they were formed. Fluid inclusions trapped in calcites give direct evidence of trapping temperatures and past salinities and of the chemical compositions of the palaeo fluids. A wide range of mineralogical and geochemical examinations were carried out within the EQUIP project to examine features of this kind. The fracture calcites at the Olkiluoto site are of various origins and represent several textural types. The exact number of calcite-producing events is unknown, but the duration of the period that was appropriate for the precipitation of low temperature calcite is estimated to have exceeded 1000 Ma. Thus the number of genetically related calcite units is assumed to be considerable. This study was focused on the petrogenesis of calcites crystallized in fractures of high water conductivity during the latest stages of geological evolution. The majority of these late stage calcites form physically homogeneous, scaly layers, and in a few cases thin layers composed of idiomorphic crystals. Chemically these are almost stoichiometric calcites (CaCO{sub 3}). The MnO content may exceed 1%, while the amounts of other elements present are minor, although the trace element concentrations, particularly those of large ionic trace elements, can be used as distinguishing features for the recognition of individual precipitates representing different calcite generations. Evidence from fluid inclusions, or more correctly from the absence of these in the late stage calcites, can be interpreted as an indication of slow rates of crystallization under cool conditions. Many chemical variables, e.g. oxygen isotope ratios, demonstrate an equilibrium between the latest calcites and water similar to the present groundwater. Older

  11. Thermoluminescence from natural calcites

    International Nuclear Information System (INIS)

    Calderon, T.; Jaque, F.; Coy-yll, R.

    1984-01-01

    Thermoluminescence (TL) as well as absorption and EPR spectra of x-irradiated natural calcites have been obtained. Irradiation produces UV absorption bands and a decrease of the Mn 2+ EPR spectrum. A correlation of each TL peak with the bleaching steps of UV absorption bands and the recovering in intensity of the Mn 2+ EPR spectrum has been found. These experimental results support a new model for the radiation damage and thermoluminescence process in calcites. The main point in this model is that holes become trapped at impurities, and the electrons are trapped at dislocations in the form of CO 3 3- . (author)

  12. Mineralogical-Chemical Characteristics of Calcite from Zletovo, Sasa and Buchim Deposits

    International Nuclear Information System (INIS)

    Shijakova-lvanova, Tena; Paneva-Zajkova, Vesna; Donova, Ilinka

    2006-01-01

    The paper presents mineralogical-chemical characteristics, dependence between some elements and concentration of some calcite elements of Zletovo, Sasa and Buchim deposits. Calcite from Sasa, Zletovo and Buchim occurs in rhombohedral crystals of different size. The colour is white, but in Buchim it is white, pink, and yellow. Their twinning is very common. Chemical composition of calcite was determined by AES-ICP. Results show that in calcite from Buchim the concentration of Ba is much higher in pink calcite from than in white or yellow. The concentration of Zn and Ph is the lowest in white calcite. The calcite from Zletovo contains much higher concentrations of Pb, Zn, Sr, but calcite of Buchim which is pink contains higher amounts of Ba and Co. The concentrations of CaO, MgO, and MnO in all calcite simples are approximately equal. Concentration of all other elements in calcite of Sasa, Zletovo and Buchim is approximately equal. TG and DTA curves out on all simples were recorded.The decompositions of the samples of calcite starts at different temperature and it is not finish until 1000 o C. (Author)

  13. Adsorption of arsenic and phosphate onto the surface of calcite as revealed by batch experiments and surface complexation modelling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt

    different calcite-equilibrated solutions that varied in pH, PCO2, ionic strength and activity of Ca2+, CO3 2- and HCO3 -. To avoid the precipitation of phosphate or arsenic-containing minerals the experiments were conducted using a short reaction time (generally 3 h) and a low concentration of phosphate...... adsorption affinity for calcite is greater as compared to arsenate and the phosphate sorption isotherms are more strongly curved. However, the amount of both arsenate and phosphate adsorbed varied with the solution composition in the same manner. In particular, adsorption increased as the CO3 2- activity...... decreased (at constant pH) and as pH increased (at constant CO3 2- activity). The dependency on the carbonate activity indicates competition for sorption sites between carbonate and arsenate/phosphate, whereas the pH dependency is likely a response to changes in arsenate and phosphate speciation...

  14. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth

  15. Controlling the size and morphology of precipitated calcite particles by the selection of solvent composition

    Science.gov (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2017-11-01

    Precipitated calcium carbonate is used as an additive in the manufacture of many products. Particles with specific characteristics can be obtained by the selection of precipitation conditions, including temperature and the composition of solvent. In this work, calcium carbonate particles were obtained in the reaction of calcium hydroxide with carbon dioxide at 65 °C. Initial Ca(OH)2 suspensions were prepared in pure water and aqueous solutions of ethylene glycol or glycerol of the concentration range up to 20% (vol.). The course of reaction was monitored by conductivity measurements. Precipitated solids were analyzed by FTIR, XRD, SEM and the particles size distribution was determined by a laser diffraction method. The adsorption of ethylene glycol or glycerol on the surface of scalenohedral and rhombohedral calcite was testes by a normal-phase high-performance liquid chromatography. The addition of organic solvents changed the viscosity of reaction mixtures, the rate of carbon dioxide absorption and the solubility of inorganic components and therefore influence calcium carbonate precipitation conditions. All synthesized calcium carbonate products were in a calcite form. Scalenohedral calcite crystals were produced when water was a liquid phase, whereas addition of organic solvents resulted in the formation of rhombo-scalenohedral particles. The increase in organic compounds concentration resulted in the decrease of mean particles size from 2.4 μm to 1.7 μm in ethylene glycol solutions and to 1.4 μm in glycerol solutions. On the basis of adsorption tests, it was confirm that calcite surface interact stronger with glycerol than ethylene glycol. The interaction between scalenohedral calcite and used organic additives was higher in comparison to the pure rhombohedral form applied as a stationary phase.

  16. Atom-resolved AFM imaging of calcite nanoparticles in water

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Hirotake; Kimura, Kenjiro [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan); Onishi, Hiroshi, E-mail: oni@kobe-u.ac.jp [Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite.

  17. Atom-resolved AFM imaging of calcite nanoparticles in water

    International Nuclear Information System (INIS)

    Imada, Hirotake; Kimura, Kenjiro; Onishi, Hiroshi

    2013-01-01

    Highlights: ► An advanced frequency-modulation AFM (FM-AFM) was applied for imaging particles. ► Atom-resolved topography of nano-sized particles of calcite was observed in water. ► Locally ordered structures were found and assigned to a (104) facet of calcite. ► A promising ability of FM-AFM was demonstrated in imaging nano-sized particles. - Abstract: The atom-resolved topography of calcite nanoparticles was observed in water using a frequency-modulation atomic force microscope. Locally ordered structures were found and assigned to a (104) facet of crystalline calcite

  18. Inhibiting Effect of Additives on Pressure Solution of Calcite

    Science.gov (United States)

    Traskine, V.; Skvortsova, Z.; Badun, G.; Chernysheva, M.; Simonov, Ya.; Gazizullin, I.

    2018-05-01

    The task of protection of cultural heritage requires a better understanding of combined effects of mechanical and chemical factors involved in environmental deterioration of monuments. The present paper deals with extending some known physicochemical methods proposed for inhibiting the decay of unstressed materials to their study during water-assisted deformation. The tests have been carried out on natural limestone samples and calcite powders in CaCO3 saturated aqueous solutions under static loads causing measurable pressure solution creep. In the solutions containing 1-hydroxyethylidene-1,1-diphosphonic acid, nitrilotriacetic acid, or ethylenediaminetetraacetic acid, the creep rate decreases considerably with increasing concentration of additives. The extent of creep deceleration has been found to be proportional to the independently estimated calcite surface area occupied by adsorbed species. This fact enables us to discriminate the adsorption-induced effect from other variables controlling the pressure solution rate and may be used in screening of compounds able to minimize the environmental impact on marble and limestone objects undergoing mechanical stresses.

  19. On the complex conductivity signatures of calcite precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  20. Adsorption of pesticides onto quartz, calcite, kaolinite, and α-alumina

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke; Madsen, L.

    2001-01-01

    adsorption characteristics of selected pesticides. Investigated mineral phases included quartz, calcite, kaolinite, and alpha -alumina. Selected pesticides comprised atrazine (6-chloro-N-2-ethyl-N-4-isopropyl-1,3,5-triazine-2,4-diamine isoproturon [3-(4-isopropyl-phenyl)-1,1-dimethylurea)], mecoprop [(RS)-2...... due to formation of Ca-pesticide-surface complexes. Adsorption of the uncharged pesticides (atrazine and isoproturon) was detected only on kaolinite. The lack of adsorption on alpha -alumina indicates that the uncharged pesticides have a greater affinity for the silanol surface sites (= SiOH) than...

  1. PVC mixtures’ mechanical properties with the addition of modified calcite as filler

    Directory of Open Access Journals (Sweden)

    Vučinić Dušica R.

    2012-01-01

    Full Text Available In this study mechanical properties of PVC mixtures (PVC, stabilizer, lubricant, filler such as tensile strength, tensile elongation, breaking strength, and breaking elongation were investigated. Unmodified calcite, as well as calcite modified by stearic acid, were used as fillers in wet and dry processes. The PVC mixtures containing the calcite modified by wet procedure have better mechanical properties compared to those with the calcite modified by the dry process. Tensile and breaking strength of the PVC mixture containing the calcite modified with 1.5% stearic acid using wet process, are higher for 2.8% and 5.2%, respectively, compared to the PVC mixture containing the calcite modified with the same amount of acid used in the dry process. The tensile strength difference between the mixtures increases with the increase of the concentration of used stearic acid up to 3%. The strength of PVC mixture with the calcite modified by wet process is 3.1% higher compared to the mixture containing calcite modified by dry process. The results showed that the bonding strength between calcite and the adsorbed organic component affected tensile strength, tensile elongation and breaking strength of the PVC mixtures. The best filler was obtained by wet modification using 1.5% stearic acid solution that provided the formation of a stearate monolayer chemisorbed on calcite. The PVC mixtures containing the calcite modified by wet process using 1.5% stearic acid solution exhibited the best mechanical properties. This calcite was completely hydrophobic with dominant chemically adsorbed surfactant, which means that stearate chemisorbed on calcite provided stronger interaction in the calcite-stearic acid-PVC system.

  2. Calcite Twinning in the Ordovician Martinsburg Formation, Delaware Water Gap, New Jersey, USA: Implications for Cleavage Formation and Tectonic Shortening in the Appalachian Piedmont Province

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2016-02-01

    Full Text Available A traverse across the Stone Church syncline in the Ordovician Martinsburg turbidites reveals an axial planar cleavage (N40°E, SE dips in regional thrust-related folds (N40°E, shallow plunges and five phases of sparry calcite. Calcite fillings are bedding-parallel, cleavage-parallel, and one vein set cross-cuts both earlier phases; the youngest calcite filling is a bedding-parallel fault gouge that crosscuts the cleavage and preserves top-down-to-the-southeast normal fault kinematics. Calcite veins unique to disharmonically-folded calcareous siltstones (Maxwell, 1962 were also analyzed. Stable isotopic analysis (O, C of all of the calcite phases indicates a uniform fluid source (δ13C −2.0, δ18O −13.3 VPDB and, potentially, a similar precipitation and mechanical twinning age. The twinning strains (n = 1341; average Δσ = −32 MPa; average ε1 = −2.9% in the calcite suite are consistent with SE-NW thrust shortening, and sub-horizontal shortening perpendicular to evolving axial planar cleavage planes in the Stone Church syncline. Calcareous siltstone layers within the Martinsburg Fm. turbidites share concordant bedding planes and are unique, chemically (XRF, but folded and cleaved differently than the surrounding clay-rich Martinsburg turbidites. Neither sediment type yielded detrital zircons. Electron backscatter X-ray diffraction (EBSD and calcite twinning results in a folded calcareous siltstone layer preserving a layer-normal SE-NW shortening strain and Lattice Preferred Orientation (LPO. Shortening axes for the five-phase calcite suite trends ~N40°W, consistent with tectonic transport associated with crystalline nappe emplacement of the Reading Prong within the Piedmont province.

  3. A new theory for the static contact between rough, unmated surfaces in non-elastically deforming rock and its implications for rock friction

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    The closure behavior of fractures in marble and alabaster is markedly different from that in quartzite. The aperture decreases considerably more under normal stress and remains permanently reduced, for the same ratio of normal stress to unconfined compressive strength. Also, a larger permanent relative contact area develops between the surfaces of marble and alabaster than it does between surfaces of quartzite. The permanent contact area increases at an increasing rate with normal stress in marble and alabaster, unlike the nearly linear increase in quartzite. The failure of surface asperities of calcite and gypsum during closure accounts for these differences. We modeled this process by considering the surfaces to consist of paraboloids lying on a flat plane and having a range of initial heights. Closure occurs by pressing a plane rigid surface against the 'hills', flattening their peaks, keeping the base area of the hills constant. To allow for a changing resistance to deformation, the contact stress is assumed to vary linearly with the shortening strain, to a first approximation. This model was tested against measurements of fracture closure and contact area of rough surfaces of calcite marble with a known initial height distribution of surface peaks. The fit to the data is quite good. In all cases, the model shows that closure is accompanied by a decrease in contact strength of deforming asperities, suggested also by the cataclastic deformation observed petrographically. The number of contact spots and the total length of contact seen in profile are also reasonably well modeled. These results have important implications for our understanding of frictional strength of fractures. The overall resistance to shear along rough surfaces depends upon the product of the shear strength and true area of the contacts, both of which are affected by normal stress. Application of this model approach shows that the initial frictional resistance of some fractures in ductile

  4. Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation.

    Science.gov (United States)

    Jeong, Jin-Hoon; Jo, Yoon-Soo; Park, Chang-Seon; Kang, Chang-Ho; So, Jae-Seong

    2017-07-28

    In this study, the feasibility of introducing calcite-forming bacteria into concrete pavements to improve their mechanical performance was investigated. Lysinibacillus sphaericus WJ-8, which was isolated in a previous study and is capable of exhibiting high urease activity and calcite production, was used. When analyzed via scanning electron microscopy (SEM) and X-ray diffraction, WJ-8 showed a significant amount of calcite precipitation. The compressive strength of cement mortar mixed with WJ-8 cells and nutrient medium (urea with calcium lactate) increased by 10% compared with that of the controls. Energy dispersive x-ray spectroscopy analyses confirmed that the increase in strength was due to the calcite formed by the WJ-8 cells.

  5. Nano-structured calcite produced by micro-organisms in ancient and modern loess in Chinese Loess Plateau

    Science.gov (United States)

    Xu, H.; Chen, T.; Lu, H.; Wang, X.

    2005-12-01

    The results from transmission electron microscopy (TEM) and field emission gun scanning microscopy (FEG-SEM) investigation show that there are calcite nano-fibers (CNFs) formed during pedogenic process. The CNFs are widely distributed in the loess and red clay samples of Caoxian, Luochuan, Lingtai, Lantian, and Xifeng profiles as well as the samples of modern surface loess soils in Chinese Loess Plateau. Diameters of all the NFCs are about 40 nm, the length of the CNFs ranges from tens nanometer to several micrometers. Elongation direction of NFCs is unusual near parallel (105)* or (115)*. Crystals of NFCs arrange as bird net like and lattice-like frameworks. X-ray EDS spectra show the weak peaks of magnesium, phosphorous, and sulfur. Our investigation indicates that CNFs are in pore space of loess and paleosol and made up most of carbonate except for caliche nodular layers. Concentration of NFCs in the loess layers are significantly higher than those of paleosol layers because of leaching of carbonate in the paleosol forming environment (warn and wet paleoclimate). The "nanobacteria-like CNFs are well crystalline calcite single crystals with smoothes surfaces. The morphologies of CNFs are very unusual and different from the calcite single crystals observed in most geological environments. The CNFs are directly related to microbial activities in both ancient and modern loess. It is proposed that the intervention of organic compounds derived from microbial activities control the formation of the calcite nano-fibers. Both morphology and bulk composition of CNFs indicate that the formation of the CNFs involves bio-organics derived from microorganisms in loess deposit environment. Formation conditions of the calcite nano-fibers may information about paleoclimate, paleo-environment and paleoecology. So, the discovery of CNFs in loess-paloesol sequences can provide a new route for reconstruct paleoclimate by oxygen and carbon isotope from the CNFs.

  6. Coccolithophore responses to environmental variability in the South China Sea: species composition and calcite content

    Science.gov (United States)

    Jin, Xiaobo; Liu, Chuanlian; Poulton, Alex J.; Dai, Minhan; Guo, Xianghui

    2016-08-01

    Coccolithophore contributions to the global marine carbon cycle are regulated by the calcite content of their scales (coccoliths) and the relative cellular levels of photosynthesis and calcification rates. All three of these factors vary between coccolithophore species and with response to the growth environment. Here, water samples were collected in the northern basin of the South China Sea (SCS) during summer 2014 in order to examine how environmental variability influenced species composition and cellular levels of calcite content. Average coccolithophore abundance and their calcite concentration in the water column were 11.82 cells mL-1 and 1508.3 pg C mL-1, respectively, during the cruise. Water samples can be divided into three floral groups according to their distinct coccolithophore communities. The vertical structure of the coccolithophore community in the water column was controlled by the trophic conditions, which were regulated by mesoscale eddies across the SCS basin. The evaluation of coccolithophore-based calcite in the surface ocean also showed that three key species in the SCS (Emiliania huxleyi, Gephyrocapsa oceanica, Florisphaera profunda) and other larger, numerically rare species made almost equal contributions to total coccolith-based calcite in the water column. For Emiliania huxleyi biometry measurements, coccolith size positively correlated with nutrients (nitrate, phosphate), and it is suggested that coccolith length is influenced by light and nutrients through the regulation of growth rates. Larger-sized coccoliths were also linked statistically to low pH and calcite saturation states; however, it is not a simple cause and effect relationship, as carbonate chemistry was strongly co-correlated with the other key environmental factors (nutrients, light).

  7. Neutralization of sulfuric acid solutions by calcite dissolution and the application to anoxic limestone drain design

    International Nuclear Information System (INIS)

    Huminicki, Danielle M.C.; Rimstidt, J. Donald

    2008-01-01

    Batch reactor (BR) experiments were conducted to measure the effect of hydrodynamics and gypsum coatings on calcite neutralization rates. A factorial array of BR experiments measured the H + concentration change by calcite dissolution over a pH range of 1.5-3.5 and Na 2 SO 4 concentrations of 0-1 M. The rate of H + concentration change with time was determined by numerical differentiation of H + concentration versus time. Regression modeling showed that for uncoated calcite, rates are only significantly affected by pH, r=-10 -2.32 a H + 0.76 . Whereas, for calcite coated with gypsum only time had a significant effect on calcite dissolution rates, r = -10 -1.96 t -0.53 . Because transport-limited dissolution rates for uncoated calcite are a function of the pH and Reynolds number, a model was developed to express the effects of these two variables on the rate of H + consumption for a solution with a Darcy velocity, q, through a porous medium with a particle radius, r p , such that r ' =1.08x10 -3 q 0.31 r p -0.69 m H + 0.87 . This equation was integrated via a numerical model to simulate the performance of an idealized anoxic limestone drain (ALD). This model predicts the pH and alkalinity change along the length of an ALD. The model shows that the efficiency of an ALD is greater when the Darcy velocity is low and the particle radius is small. In addition, the growth of gypsum coatings causes the rate of H + neutralization to decline as the square root of time as they form and block the H + transport to the calcite surface. Supersaturation with respect to gypsum, leading to coating formation, can be avoided by diluting the ALD feed solution or by replacing limestone with dolomite

  8. Examination of TL and optical absorption in calcite's mineral

    International Nuclear Information System (INIS)

    Sabikoglu, I.; Can, N.

    2009-01-01

    Calcite which is a form of crystalline of the calcium carbonate composes parent material of chalk stone (limestone) and marble. Calcite which presents in various colors also in our country consists of yellow, blue, transparent and green colors. In this study, green calcite mineral which is taken from the region of Ayvalik, was examined of its thermoluminescence (TL) and optical absorption features in different doses. It has been obtained a large TL peak in 179 degree C and absorption peak in 550 mm.

  9. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  10. Calcite encrustation in macro-algae Chara and its implication to the formation of carbonate-bound cadmium

    International Nuclear Information System (INIS)

    Siong, Kian; Asaeda, Takashi

    2009-01-01

    We studied the relationship between macro-algae Chara (Stoneworts) calcite (CaCO 3 ) encrustation and the speciation of cadmium (Cd) accumulated by the plant. Results showed that 17% of the total Cd (0.3 mg kg -1 ) accumulated by Chara fibrosa exposed to 1 μg Cd L -1 was carbonate-bound. The percentage of carbonate-bound Cd in the plant exposed to 10 μg Cd L -1 increased from 48% in young thalli (total Ca -1 , total Cd: 125 mg kg -1 ) to 63% in calcified mature thalli (total Ca: 190 mg g -1 ; total Cd: 134 mg kg -1 ). Based on mineral saturation calculation and reliability analysis of the sequential fractionation procedure, precipitation of otavite (CdCO 3 ) and co-precipitation of Cd with calcite, occurring in the alkaline regions of Chara cell wall, are probably the mechanisms of carbonate-bound Cd formation. Thick marl sediment frequently found beneath charophyte meadows suggests a long-term storage of Ca as well as the precipitated or co-precipitated Cd in the sediment after the plant senescence and decomposition.

  11. Experimental diagenesis: insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment

    Science.gov (United States)

    Casella, Laura A.; Griesshaber, Erika; Yin, Xiaofei; Ziegler, Andreas; Mavromatis, Vasileios; Müller, Dirk; Ritter, Ann-Christine; Hippler, Dorothee; Harper, Elizabeth M.; Dietzel, Martin; Immenhauser, Adrian; Schöne, Bernd R.; Angiolini, Lucia; Schmahl, Wolfgang W.

    2017-03-01

    . Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite-calcite transition occurs via an interface-coupled dissolution-reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.

  12. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.

    Directory of Open Access Journals (Sweden)

    Tomihiko Higuchi

    Full Text Available Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas.

  13. The effect of annealing atmosphere on the thermoluminescence of synthetic calcite

    International Nuclear Information System (INIS)

    Pagonis, Vasilis

    1998-01-01

    Samples of high purity calcite powder were annealed in air, nitrogen and carbon dioxide atmospheres in the temperature range 300-700 deg. C and in atmospheric pressure. The samples were subsequently irradiated and the effect of the annealing atmosphere and temperature on the thermoluminescence (TL) of the samples was studied. Our results show that both carbonate and oxygen ions play an important part in the TL of calcite annealed in this temperature range. The intensities of the TL signal in the nitrogen and carbon dioxide anneals rise continuously with the annealing temperature. For all annealing temperatures it was found that the carbon dioxide atmosphere caused an increase in the observed TL signal as compared with anneals in an inert nitrogen atmosphere, while the shape of the TL glow curves remained the same. This increase in the observed TL signal is explained via the surface adsorption of carbonate ions. The shape and location of the TL peaks suggest that samples annealed in air exhibit a different type of TL center than samples annealed in nitrogen and carbon dioxide atmospheres. A possible mechanism for the role of oxygen ions involves a surface adsorption process and a subsequent diffusion of oxygen ions in the bulk of the crystal. Annealing of the samples in air at temperatures T>600 deg. C causes a collapse of the TL signal, in agreement with previous studies of calcite powders. No such collapse of the TL signal is observed for the nitrogen and carbon dioxide anneals, suggesting that a different type of TL center and/or recombination center is involved in air anneals. Arrhenius plots for the air anneals yield an activation energy E=0.45±0.05 eV, while the carbon dioxide and nitrogen anneals yield a lower activation energy E=0.28±0.04 eV

  14. Influence of Calcite and Dissolved Calcium on Uranium(VI) Sorption to a Hanford Subsurface Sediment

    International Nuclear Information System (INIS)

    Dong, Wenming; Ball, William P.; Liu, Chongxuan; Wang, Zheming; Stone, Alan T.; Bai, Jing; Zachara, John M.

    2005-01-01

    The influence of calcite and dissolved calcium on U(VI) adsorption was investigated using a calcite-containing sandy silt/clay sediment from the U. S. Department of Energy Hanford site. U(VI) adsorption to sediment, treated sediment, and sediment size fractions was studied in solutions that both had and had not been preequilibrated with calcite, at initial [U(VI)] ) 10-7-10-5 mol/L and final pH ) 6.0- 10.0. Kinetic and reversibility studies (pH 8.4) showed rapid sorption (30 min), with reasonable reversibility in the 3-day reaction time. Sorption from solutions equilibrated with calcite showed maximum U(VI) adsorption at pH 8.4 (0.1. In contrast, calcium-free systems showed the greatest adsorption at pH 6.0-7.2. At pH > 8.4, U(VI) adsorption was identical from calcium-free and calcium-containing solutions. For calcite-presaturated systems, both speciation calculations and laser-induced fluorescence spectroscopic analyses indicated that aqueous U(VI) was increasingly dominated by Ca2UO2(CO3)3 0(aq) at pH<8.4 and that formation of Ca2UO2(CO3)3 0(aq) is what suppresses U(VI) adsorption. Above pH 8.4, aqueous U(VI) speciation was dominated by UO2(CO3)3 4- in all solutions. Finally, results also showed that U(VI) adsorption was additive in regard to size fraction but not in regard to mineral mass: Carbonate minerals may have blocked U(VI) access to surfaces of higher sorption affinity

  15. Distribution of vesicular-arbuscular mycorrhizal fungi in coal, lignite and calcite mine spoils of India

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, V.; Ragupathy, S.; Parthipan, B.; Rani, D.B.R.; Mahadevan, A.

    1991-12-31

    Vesicular-arbuscular mycorhizzal (VAM) status was assessed for coal, lignite and calcite mine spoils. The three study sites were: The Kothagudem coal field in the south central region where waste materials are piled 1 to 2 m high on the soil surface. Samples were collected from plants growing on the waste. Neyveli, on the southeastern coast, is a lignite coal mine where the spoil is piled 70 to 100 m high on the soil surface. Samples were collected from recently revegetated mine spoil and from 25 year old revegetated sites. The calcite mine at Thazhaiyuthu in the south where the spoil is piled up 2 to 3 m on the soil surface. Samples were collected from 4 to 7 year old reclaimed sites. The wastes generally supported different plant species. The level of VAM infection of plants was markedly different in each mine spoil, with the maximum infection in the coal and calcite spoils, and the least in the lignite spoil. There was more infection in the 25 year old lignite spoil than in the newly revegetated spoil. There were different VAM species in each spoil, and no one species was present in all of the samples. The authors conclude that one of the factors leading to the differences between spoils is the amount of topsoil contained in the spoil (least in the lignite spoils which are very deep). The other is age of the spoils. Unfortunately the authors concluded that the best approach is to enrich the spoils with VAM rather than salvaging and replacing topsoil

  16. Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Garcia, Whitney L.; Kukkadapu, Ravi K.; Qafoku, Odeta; Bowden, Mark E.; Saslow, Sarah A.; Qafoku, Nikolla

    2018-09-15

    At the Hanford Site in southeastern Washington State, radionuclide (Tc-99/I-129) laden liquid wastes have been discharged to ground, resulting in vadose zone contamination, which provides a continuous source of these contaminants to groundwater. The presence of multiple contaminants increases the complexity of finding viable remediation technologies to sequester vadose zone contaminants in situ and protect groundwater. Although previous studies have shown the efficiency of zero valent iron (ZVI) and sulfur modified iron (SMI) in reducing mobile Tc(VII) to immobile Tc(IV) and iodate incorporation into calcite, the coupled effects from simultaneously using these remedial technologies have not been previously studied. In this first-of-a-kind laboratory study, we used two efficient reductants (i.e., ZVI and SMI) and calcite-forming solutions to simultaneously remove aqueous Tc(VII) and iodate via reduction and incorporation, respectively. The results confirmed that Tc(VII) was rapidly removed from the aqueous phase via reduction to Tc(IV). ZVI removed Tc(VII) faster than SMI, although both had removed the same amount by the end of the experiments. Most of the aqueous iodate was rapidly transformed to iodide, and therefore was not incorporated into calcite, but instead remained in the aqueous phase. The iodate reduction to iodide was much faster than iodate incorporation into calcite, suggesting that this remedial pathway is not efficient in removing aqueous iodate when strong reductants are present. Other experiments suggested that iodate removal via calcite precipitation should occur first and then reductants should be added for Tc(VII) removal. Although ZVI can negatively impact microbial populations and thereby inhibit natural attenuation mechanisms, only changes in the makeup of the microbial community were observed. However, these changes in the microbial community may have an impact on remediation efforts in the long term that could not be seen in a short

  17. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  18. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study.

    OpenAIRE

    Walters, D A; Smith, B L; Belcher, A M; Paloczi, G T; Stucky, G D; Morse, D E; Hansma, P K

    1997-01-01

    A family of soluble proteins from the shell of Haliotis rufescens was introduced over a growing calcite crystal being scanned in situ by an atomic force microscope (AFM). Atomic step edges on the crystal surface were altered in shape and speed of growth by the proteins. Proteins attached nonuniformly to the surface, indicating different interactions with crystallographically different step edges. The observed changes were consistent with the habit modification induced by this family of protei...

  19. Physicochemical Processes and the Evolution of Strength in Calcite Fault Gouge at Room Temperature

    Science.gov (United States)

    Carpenter, B. M.; Viti, C.; Collettini, C.

    2015-12-01

    The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behavior of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. Furthermore, a variety of physical and chemical processes control the evolution of strength and style of slip along seismogenic faults and thus play a critical role in the seismic cycle. Determining the role and contributions of these types of mechanisms is essential to furthering our understanding of the processes and timescales that lead to the strengthening of faults during interseismic periods and their behavior during the earthquake nucleation process. To further our understanding of these processes, we performed laboratory-shearing experiments on calcite gouge at normal stresses from 1 to 100 MPa, under conditions of saturation and at room temperature. We performed velocity stepping (0.1-1000μm/s) and slide-hold-slide (1-3000s) tests, to measure the velocity dependence of friction and the amount of frictional strengthening respectively, under saturated conditions with pore fluid that was in equilibrium with CaCO3. At 5 MPa normal stress, we also varied the environmental conditions by performing experiments under conditions of 5% RH and 50 % RH, and saturation with: silicone oil, demineralized water, and the equilibrated solution combined with 0.5M NaCl. Finally, we collected post experimental samples for microscopic analysis. Our combined analyses of rate-dependence, strengthening behavior, and microstructures show that calcite fault gouge transitions from brittle to semi-brittle behavior at high normal stress and low sliding velocities. Furthermore, our results also highlight how changes in pore water chemistry can have significant influence on the mechanical behavior of calcite gouge in both the laboratory and in natural faults. Our observations have important implications for earthquake nucleation and propagation on faults in

  20. Selective Flotation of Calcite from Fluorite: A Novel Reagent Schedule

    Directory of Open Access Journals (Sweden)

    Zhiyong Gao

    2016-10-01

    Full Text Available Fluorite is an important strategic mineral. In general, fluorite ores will contain a certain amount of calcite gangue mineral. Thus, they need to be separated from each other. For an economic separation, a reverse flotation process is used to float calcite gangue from fluorite. However, little information on the separation is available. In this study, a novel reagent schedule using citric acid (CA as the depressant, sodium fluoride (NaF as the regulator and sulfoleic acid (SOA as the collector, was developed to separate calcite from fluorite. The results demonstrated a high selectivity for the flotation of calcite from fluorite using this new reagent schedule. The best selective separation for a single mineral and mixed binary minerals was obtained when 200 mg/L of NaF, 50 mg/L of CA, and 6 mg/L of SOA were used at pH 9. In addition, a batch flotation experiment was carried out using a run-of-mine feed material. Selective separation was achieved with 85.18% calcite removal while only 11.2% of fluorite was lost. An attempt was made to understand the effect of the new reagent schedule on the flotation of calcite. The results from both microflotation and bench scale flotation demonstrated a great potential for industrial application using this novel reagent schedule to upgrade fluorite ore.

  1. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.

    Science.gov (United States)

    Coxall, Helen K; Wilson, Paul A; Pälike, Heiko; Lear, Caroline H; Backman, Jan

    2005-01-06

    The ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution is termed the calcite compensation depth. At present, this depth is approximately 4,500 m, with some variation between and within ocean basins. The calcite compensation depth is linked to ocean acidity, which is in turn linked to atmospheric carbon dioxide concentrations and hence global climate. Geological records of changes in the calcite compensation depth show a prominent deepening of more than 1 km near the Eocene/Oligocene boundary (approximately 34 million years ago) when significant permanent ice sheets first appeared on Antarctica, but the relationship between these two events is poorly understood. Here we present ocean sediment records of calcium carbonate content as well as carbon and oxygen isotopic compositions from the tropical Pacific Ocean that cover the Eocene/Oligocene boundary. We find that the deepening of the calcite compensation depth was more rapid than previously documented and occurred in two jumps of about 40,000 years each, synchronous with the stepwise onset of Antarctic ice-sheet growth. The glaciation was initiated, after climatic preconditioning, by an interval when the Earth's orbit of the Sun favoured cool summers. The changes in oxygen-isotope composition across the Eocene/Oligocene boundary are too large to be explained by Antarctic ice-sheet growth alone and must therefore also indicate contemporaneous global cooling and/or Northern Hemisphere glaciation.

  2. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    International Nuclear Information System (INIS)

    Ramakrishna, Chilakala; Thenepalli, Thriveni; Ahn, Ji Whan

    2017-01-01

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO 2 flow rate, Ca (OH) 2 concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH) 2 concentration and increasing the CO 2 flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  3. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state

    Directory of Open Access Journals (Sweden)

    M. Raitzsch

    2010-03-01

    Full Text Available We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (Ω on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing and Ammonia tepida (low-Mg calcite, symbiont-barren were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite/(TE/Caseawater. The culturing study shows that DMg of A. tepida significantly decreases with increasing Ω at a gradient of −4.3×10−5 per Ω unit. The DSr value of A. tepida does not change with Ω, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing Ω, while DSr increases considerably with Ω at a gradient of 0.009 per Ω unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50–100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep

  4. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Carbonate (PCC) Formation

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishna, Chilakala [Hanil Cement Corporation, Danyang (Korea, Republic of); Thenepalli, Thriveni; Ahn, Ji Whan [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of)

    2017-06-15

    This review paper evaluates different kinds of synthesis methods for calcite precipitated calcium carbonates by using different materials. The various processing routes of calcite with different compositions are reported and the possible optimum conditions required to synthesize a desired particle sizes of calcite are predicted. This paper mainly focuses on that the calcite morphology and size of the particles by carbonation process using loop reactors. In this regard, we have investigated various parameters such as CO{sub 2} flow rate, Ca (OH){sub 2} concentration, temperature, pH effect, reaction time and loop reactor mechanism with orifice diameter. The research results illustrate the formation of well-defined and pure calcite crystals with controlled crystal growth and particle size, without additives or organic solvents. The crystal growth and particle size can be controlled, and smaller sizes are obtained by decreasing the Ca (OH){sub 2} concentration and increasing the CO{sub 2} flow rate at lower temperatures with suitable pH. The crystal structure of obtained calcite was characterized by using X-ray diffraction method and the morphology by scanning electron microscope (SEM). The result of x-ray diffraction recognized that the calcite phase of calcium carbonate was the dominating crystalline structure.

  5. Conditions of uranium-bearing calcite formation in ore-enclosing sediments of the Semizbaj deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Kondrat'eva, I.A.; Maksimova, I.G.; Dojnikova, O.I.

    1995-01-01

    Consideration is given to results of investigation into uranium-bearing calcite, forming the cement of gravelly-sandy rocks of the Semizbaj uranium deposit. Core sampling in prospecting boreholes were used to establish geological conditions, place and time of uranium-bearing calcite formation. Calcite was investigated by optical, electron-microscope and radiographic methods. It is shown that uranium in calcite doesn't form its own mineral phase and exists in scattered state. Uranium in calcite-bearing minerals is present in isomorphic form. Uranium content in calcite was equal to 0.009-0.15 %. It is proposed that mineralization, formed in sedimentary rocks by processes of ground-stratum oxidation, is the source of uranium, enriching calcite. refs., 5 figs., 2 tabs

  6. Monitoring of Calcite Precipitation in Hardwater Lakes with Multi-Spectral Remote Sensing Archives

    Directory of Open Access Journals (Sweden)

    Iris Heine

    2017-01-01

    Full Text Available Calcite precipitation is a common phenomenon in calcium-rich hardwater lakes during spring and summer, but the number and spatial distribution of lakes with calcite precipitation is unknown. This paper presents a remote sensing based method to observe calcite precipitation over large areas, which are an important prerequisite for a systematic monitoring and evaluation of restoration measurements. We use globally archived satellite remote sensing data for a retrospective systematic assessment of past multi-temporal calcite precipitation events. The database of this study consists of 205 data sets that comprise freely available Landsat and Sentinel 2 data acquired between 1998 and 2015 covering the Northeast German Plain. Calcite precipitation is automatically identified using the green spectra and the metric BGR area, the triangular area between the blue, green and red reflectance value. The validation is based on field measurements of CaCO3 concentrations at three selected lakes, Feldberger Haussee, Breiter Luzin and Schmaler Luzin. The classification accuracy (0.88 is highest for calcite concentrations ≥0.7 mg/L. False negative results are caused by the choice of a conservative classification threshold. False positive results can be explained by already increased calcite concentrations. We successfully transferred the developed method to 21 other hardwater lakes in Northeast Germany. The average duration of lakes with regular calcite precipitation is 37 days. The frequency of calcite precipitation reaches from single time detections up to detections nearly every year. False negative classification results and gaps in Landsat time series reduce the accuracy of frequency and duration monitoring, but in future the image density will increase by acquisitions of Sentinel-2a (and 2b. Our study tested successfully the transfer of the classification approach to Sentinel-2 images. Our study shows that 15 of the 24 lakes have at least one phase of

  7. Transformation of Mg-bearing amorphous calcium carbonate to Mg-calcite - In situ monitoring

    Science.gov (United States)

    Purgstaller, Bettina; Mavromatis, Vasileios; Immenhauser, Adrian; Dietzel, Martin

    2016-02-01

    The formation of Mg-bearing calcite via an amorphous precursor is a poorly understood process that is of relevance for biogenic and abiogenic carbonate precipitation. In order to gain an improved insight on the controls of Mg incorporation in calcite formed via an Mg-rich amorphous calcium carbonate (Mg-ACC) precursor, the precipitation of Mg-ACC and its transformation to Mg-calcite was monitored by in situ Raman spectroscopy. The experiments were performed at 25.0 ± 0.03 °C and pH 8.3 ± 0.1 and revealed two distinct pathways of Mg-calcite formation: (i) At initial aqueous Mg/Ca molar ratios ⩽ 1:6, Mg-calcite formation occurs via direct precipitation from solution. (ii) Conversely, at higher initial Mg/Ca molar ratios, Mg-calcite forms via an intermediate Mg-rich ACC phase. In the latter case, the final product is a calcite with up to 20 mol% Mg. This Mg content is significant higher than that of the Mg-rich ACC precursor phase. Thus, a strong net uptake of Mg ions from the solution into the crystalline precipitate throughout and also subsequent to ACC transformation is postulated. Moreover, the temporal evolution of the geochemical composition of the reactive solution and the Mg-ACC has no significant effect on the obtained ;solubility product; of Mg-ACC. The enrichment of Mg in calcite throughout and subsequent to Mg-ACC transformation is likely affected by the high aqueous Mg/Ca ratio and carbonate alkalinity concentrations in the reactive solution. The experimental results have a bearing on the formation mechanism of Mg-rich calcites in marine early diagenetic environments, where high carbonate alkalinity concentrations are the rule rather than the exception, and on the insufficiently investigated inorganic component of biomineralisation pathways in many calcite secreting organisms.

  8. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    Science.gov (United States)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  9. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation.

    Science.gov (United States)

    Gao, Yuesheng; Gao, Zhiyong; Sun, Wei; Yin, Zhigang; Wang, Jianjun; Hu, Yuehua

    2018-02-15

    The efficient separation of scheelite from calcium-bearing minerals, especially calcite, remains a challenge in practice. In this work, a novel reagent scheme incorporating a depressant of sodium hexametaphosphate (SHMP) and a collector mixture of octyl hydroxamic acid (HXMA-8) and sodium oleate (NaOl) was employed in both single and mixed binary mineral flotation, and it proved to be highly effective for the separation. Furthermore, the role of the pH value in the separation was evaluated. Additionally, the mechanism of the selective separation was investigated systemically via zeta potential measurements, fourier transform infrared (FTIR) spectroscopy analysis, X-ray photoelectron (XPS) spectroscopy analysis and crystal chemistry calculations. It turns out that the selective chemisorption of SHMP on calcite (in the form of complexation between H 2 PO 4 - /HPO 4 2- and Ca 2+ ) over scheelite is ascribed to the stronger reactivity and higher density of Ca ions on the commonly exposed surfaces of calcite minerals. The intense adsorption of HXMA-8 on scheelite over calcite due to the match of the OO distances in WO 4 2- of scheelite and CONHOH of HXMA-8 holds the key to the successful separation. We were also interested in warranting the previous claim that NaOl is readily adsorbed on both minerals via chemisorption. Our results provided valuable insights into the application of mixed collectors and an effective depressant for flotation separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Prediction of calcite Cement Distribution in Shallow Marine Sandstone Reservoirs using Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, N.E.

    1996-12-31

    This doctoral thesis investigates how calcite cemented layers can be detected by reflection seismic data and how seismic data combined with other methods can be used to predict lateral variation in calcite cementation in shallow marine sandstone reservoirs. Focus is on the geophysical aspects. Sequence stratigraphy and stochastic modelling aspects are only covered superficially. Possible sources of calcite in shallow marine sandstone are grouped into internal and external sources depending on their location relative to the presently cemented rock. Well data and seismic data from the Troll Field in the Norwegian North Sea have been analysed. Tuning amplitudes from stacks of thin calcite cemented layers are analysed. Tuning effects are constructive or destructive interference of pulses resulting from two or more closely spaced reflectors. The zero-offset tuning amplitude is shown to depend on calcite content in the stack and vertical stack size. The relationship is found by regression analysis based on extensive seismic modelling. The results are used to predict calcite distribution in a synthetic and a real data example. It is found that describing calcite cemented beds in shallow marine sandstone reservoirs is not a deterministic problem. Hence seismic inversion and sequence stratigraphy interpretation of well data have been combined in a probabilistic approach to produce models of calcite cemented barriers constrained by a maximum amount of information. It is concluded that seismic data can provide valuable information on distribution of calcite cemented beds in reservoirs where the background sandstones are relatively homogeneous. 63 refs., 78 figs., 10 tabs.

  11. Sulphate partitioning into calcite: Experimental verification of pH control and application to seasonality in speleothems

    Science.gov (United States)

    Wynn, Peter M.; Fairchild, Ian J.; Borsato, Andrea; Spötl, Christoph; Hartland, Adam; Baker, Andy; Frisia, Silvia; Baldini, James U. L.

    2018-04-01

    Carbonate-associated sulphate (CAS) is a useful carrier of palaeoenvironmental information throughout the geologic record, particularly through its stable isotope composition. However, a paucity of experimental data restricts quantitative understanding of sulphate incorporation into carbonates, and consequently CAS concentrations and their diagenetic modifications are rarely interpreted. However, in the case of calcite speleothems, the remarkably high-resolution CAS records which are obtainable via modern microanalytical techniques represent a potentially invaluable source of palaeoenvironmental information. Here, we describe the results of controlled experiments of sulphate co-precipitation with calcite in freshwater solutions where pH, saturation state, and sulphate concentration were varied independently of each other. Solution pH is confirmed as the principal control on sulphate incorporation into calcite. The relative efficiency of incorporation was calculated as a partition coefficient DSO4 = (mSO4/mCO3)solid/(mSO4/mCO3)solution. High crystal growth rates (driven by either pH or saturation state) encouraged higher values of DSO4 because of an increasing concentration of defect sites on crystal surfaces. At low growth rates, DSO4 was reduced due to an inferred competition between sulphate and bicarbonate at the calcite surface. These experimental results are applied to understand the incorporation of sulphate into speleothem calcite. The experimentally determined pH-dependence suggests that strong seasonal variations in cave air PCO2 could account for annual cycles in sulphate concentration observed in stalagmites. Our new experimentally determined values of DSO4 were compared with DSO4 values calculated from speleothem-drip water monitoring from two caves within the Austrian and Italian Alps. At Obir cave, Austria, DSO4 (×105) varies between 11.1 (winter) and 9.0 (summer) and the corresponding figures for Ernesto cave, Italy, are 15.4 (winter) and 14

  12. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.

    Science.gov (United States)

    Xue, Zhonghui; Hu, Binbin; Dai, Shuxi; Du, Zuliang

    2015-10-01

    Collagen Langmuir films were prepared by spreading the solution of collagen over deionized water, CaCl2 solution and Ca(HCO3)2 solution. Resultant collagen Langmuir monolayers were then compressed to a lateral pressure of 10 mN/m and held there for different duration, allowing the crystallization of CaCO3. The effect of crystallization time on the phase composition and microstructure of CaCO3 was investigated. It was found that amorphous calcium carbonate (ACC) was obtained at a crystallization time of 6 h. The amorphous CaCO3 was transformed to rod-like single crystal calcite crystals at an extended crystallization time of 12 h and 24 h, via "copying" the symmetry and dimensionalities of collagen fibers. Resultant calcite crystallites were well oriented along the longitudinal axis of collagen fibers. The ordered surface structure of collagen fibers and electrostatic interactions played key roles in tuning the oriented nucleation and growth of the calcite crystallites. The mineralized collagen possessing both desired mechanical properties of collagen fiber and good biocompatibility of calcium carbonate may be assembled into an ideal biomaterial for bone implants. Copyright © 2015. Published by Elsevier B.V.

  13. Up-scaling mineral-aqueous interfacial processes that govern isotope and trace element partitioning during calcite growth

    Science.gov (United States)

    Lammers, L. N.

    2014-12-01

    The dependence of the isotopic and trace element composition of calcium carbonate minerals on growth conditions including temperature, pH, and salinity is widely used to infer paleoclimate conditions. These inferences rely heavily on phenomenological observations of biogenic and inorganic precipitation both in and ex situ, where only limited variability in solution conditions can be explored. Ionic fluxes between the mineral surface and aqueous growth solution govern the net uptake of both stoichiometric and trace species during calcification, so developing a mechanistic understanding of the reactions governing these fluxes is critical to refine existing proxies and to develop new ones. The micro-scale mechanisms of calcite precipitation from aqueous solution have been extensively studied, and net ionic uptake post-nucleation is known to occur primarily at monomolecular kink sites along step edges at the mineral surface. In this talk, I will present a theoretical framework that uses the quasi-elementary ion attachment and detachment reactions governing ion uptake at kink sites to simultaneously model bulk mineral growth kinetics and tracer partitioning during calcite precipitation. Several distinct processes occur during ion uptake at kink sites that can influence the distribution of trace species, directly impacting the composition of various carbonate paleoproxies including δ44Ca, δ18O, Sr/Ca and Mg/Ca. The distribution of these trace species will be shown to depend on (1) the relative rates of ion desolvation during attachment to kink sites, (2) the relative rates of bond breaking during detachment from kink sites, and (3) the equilibrium partitioning of trace aqueous species. This model accounts for the impact of solution conditions on net ion fluxes and surface speciation, which in turn controls the population of kink sites available for direct ion exchange with the aqueous phase. The impacts of solution variables including pH, temperature and salinity can

  14. The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters

    Directory of Open Access Journals (Sweden)

    C. Neal

    2001-01-01

    Full Text Available This paper examines the potential for calcium carbonate to reduce phosphate pollution in freshwaters by co-precipitation, a process known as a "self cleansing mechanism". Calcium carbonate saturation levels and phosphate concentrations (SRP - soluble reactive phosphate across the major eastern UK river basins are examined to test for solubility controls. The study shows that calcite saturation varies for each catchment as a function of flow and biological activity rather than by direct regulation by SRP. Indeed, there is no evidence, for any of the rivers studied, that calcite solubility controls hold. However, for groundwater and groundwater-fed springs in the Chalk of the Thames basin, calcite saturation is observed with associated low SRP levels. A self-cleansing mechanism may well be operative within the Chalk due to two factors. Firstly, there is a high potential for nucleation on the calcite micro-crystals in the aquifer. Secondly, there are within aquifer reactions that remove the calcite nucleating inhibitors (SRP and dissolved organic carbon, DOC to levels lower than those occurring within the rivers do. These inhibitors enter the catchment at very high concentrations in association with agricultural pollution (fertilizer application and animal slurry and household contamination (e.g. sewage sources from septic tanks. Under low flow conditions, when the saturation index for calcite is at its highest, so too is the concentration of the nucleation inhibitor SRP. Companion work shows that calcite precipitation can occur at the water-sediment interface of the river and this may involve SRP removal. The data, as a whole, define an apparent bound for calcite solubility control where in the presence of nucleating centres, SRP must be less than 4 mM-P l-1 and DOC must be less than 150 mM-C l-1: a condition that does not seem to pertain within most UK rivers. Keywords: calcite, calcium carbonate, phosphate, soluble reactive phosphate, dissolved

  15. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  16. Influence of solution chemistry on the boron content in inorganic calcite grown in artificial seawater

    Science.gov (United States)

    Uchikawa, Joji; Harper, Dustin T.; Penman, Donald E.; Zachos, James C.; Zeebe, Richard E.

    2017-12-01

    The ratio of boron to calcium (B/Ca) in marine biogenic carbonates has been proposed as a proxy for properties of seawater carbonate chemistry. Applying this proxy to planktic foraminifera residing in the surface seawater largely in equilibrium with the atmosphere may provide a valuable handle on past atmospheric CO2 concentrations. However, precise controls on B/Ca in planktic foraminifera remain enigmatic because it has been shown to depend on multiple physicochemical seawater properties. To help establish a firm inorganic basis for interpreting the B/Ca records, we examined the effect of a suite of chemical parameters ([Ca2+], pH, [DIC], salinity and [PO43-]) on B/Ca in inorganic calcite precipitated in artificial seawater. These parameters were primarily varied individually while keeping all others constant, but we also tested the influence of pH and [DIC] at a constant calcite precipitation rate (R) by concurrent [Ca2+] adjustments. In the simple [Ca2+], pH and [DIC] experiments, both R and B/Ca increased with these parameters. In the pH-[Ca2+] and [DIC]-[Ca2+] experiments at constant R, on the other hand, B/Ca was invariant at different pH and decreased with [DIC], respectively. These patterns agree with the behavior of solution [BTotal/DIC] ratio such that, at a fixed [BTotal], it is independent of pH but decreases with [DIC]. Based on these results, R and [BTotal/DIC] ratio appear to be the primary controls on B/Ca in inorganic calcite, suggesting that both B(OH)4- and B(OH)3 are possibly involved in B incorporation. Moreover, B/Ca modestly increased with salinity and [PO43-]. Inorganic calcite precipitated at higher R and in the presence of oxyanions such as SO42- and PO43- in growth solutions often undergoes surface roughening due to formation of crystallographic defects, vacancies and, occasionally, amorphous/hydrous CaCO3. These non-lattice sites may provide additional space for B, particularly B(OH)3. Consequently, besides the macroscopic influence of

  17. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  18. An XRPD and EPR spectroscopy study of microcrystalline calcite bioprecipitated by Bacillus subtilis

    Science.gov (United States)

    Perito, B.; Romanelli, M.; Buccianti, A.; Passaponti, M.; Montegrossi, G.; Di Benedetto, F.

    2018-05-01

    We report in this study the first XRPD and EPR spectroscopy characterisation of a biogenic calcite, obtained from the activity of the bacterium Bacillus subtilis. Microcrystalline calcite powders obtained from bacterial culture in a suitable precipitation liquid medium were analysed without further manipulation. Both techniques reveal unusual parameters, closely related to the biological source of the mineral, i.e., to the bioprecipitation process and in particular to the organic matrix observed inside calcite. In detail, XRPD analysis revealed that bacterial calcite has slightly higher c/a lattice parameters ratio than abiotic calcite. This correlation was already noticed in microcrystalline calcite samples grown by bio-mineralisation processes, but it had never been previously verified for bacterial biocalcites. EPR spectroscopy evidenced an anomalously large value of W 6, a parameter that can be linked to occupation by different chemical species in the next nearest neighbouring sites. This parameter allows to clearly distinguish bacterial and abiotic calcite. This latter achievement was obtained after having reduced the parameters space into an unbiased Euclidean one, through an isometric log-ratio transformation. We conclude that this approach enables the coupled use of XRPD and EPR for identifying the traces of bacterial activity in fossil carbonate deposits.

  19. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    Energy Technology Data Exchange (ETDEWEB)

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.

    2009-12-01

    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  20. Sea urchin tooth mineralization: Calcite present early in the aboral plumula

    Science.gov (United States)

    Stock, Stuart R.; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D.; Dorvee, Jason R.

    2012-01-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: When and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron x-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. PMID:22940703

  1. A study on the coprecipitation of arsenite and arsenate into calcite coupled with the determination of oxidation states of arsenic both in calcite and water

    International Nuclear Information System (INIS)

    Yokoyama, Yuka; Takahashi, Yoshio; Mitsunobu, Satoshi; Tanaka, Kazuya; Itai, Takaaki

    2009-01-01

    It was found that the amount of arsenite incorporated into calcite is much less than that of arsenate. The result suggests that the sequestration of arsenic by coprecipitation with calcite cannot be an important chemical process under reducing conditions such as in groundwater where arsenite is the dominant arsenic species. (author)

  2. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    Science.gov (United States)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  3. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    International Nuclear Information System (INIS)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S.

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that open-quotes there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwaterclose quotes and that open-quotes instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fracturesclose quotes. Based on such information the Department of Energy has stated that it open-quotes finds no basis to continue to study the origin of these specific depositsclose quotes. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits

  4. A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition

    Science.gov (United States)

    Bergmann, Kristin D.; Finnegan, Seth; Creel, Roger; Eiler, John M.; Hughes, Nigel C.; Popov, Leonid E.; Fischer, Woodward W.

    2018-03-01

    The secular increase in δ18O values of both calcitic and phosphatic marine fossils through early Phanerozoic time suggests either that (1) early Paleozoic surface temperatures were high, in excess of 40 °C (tropical MAT), (2) the δ18O value of seawater has increased by 7-8‰ VSMOW through Paleozoic time, or (3) diagenesis has altered secular trends in early Paleozoic samples. Carbonate clumped isotope analysis, in combination with petrographic and elemental analysis, can deconvolve fluid composition from temperature effects and therefore determine which of these hypotheses best explain the secular δ18O increase. Clumped isotope measurements of a suite of calcitic and phosphatic marine fossils from late Cambrian- to Middle-late Ordovician-aged strata-the first paired fossil study of its kind-document tropical sea surface temperatures near modern temperatures (26-38 °C) and seawater oxygen isotope ratios similar to today's ratios.

  5. Diagenetic alteration in low-Mg calcite from macrofossils

    DEFF Research Database (Denmark)

    Ullmann, Clemens Vinzenz; Korte, Christoph

    2015-01-01

    microscopy) and chemical (trace element abundances, isotopic ratios) screening techniques used to assess the alteration degree of low-Mg calcite macrofossils and summarize the findings on diagenetic trends observed for elemental and isotopic systems in such materials. For a robust evaluation...... of the preservation state of biogenic calcite, it is advisable to combine a set of complementary techniques. Absolute limiting values of element and isotope ratios for discarding diagenetically altered materials cannot be universally applied, but should rather be evaluated on a case to case basis. The evaluation can...

  6. Interactions between cadmium and calcite

    NARCIS (Netherlands)

    van der Weijden, R.D.

    1995-01-01

    The thesis is composed of five chapters, some of which have been published or have been accepted for publication. The contents in some of the chapters may therefore slightly overlap, also because the subjects are closely related. The first two chapters focus mostly on the sorption of Cd on calcite,

  7. Morphological changes of calcite single crystals induced by graphene-biomolecule adducts

    Science.gov (United States)

    Calvaresi, Matteo; Di Giosia, Matteo; Ianiro, Alessandro; Valle, Francesco; Fermani, Simona; Polishchuk, Iryna; Pokroy, Boaz; Falini, Giuseppe

    2017-01-01

    Calcite has the capability to interact with a wide variety of molecules. This usually induces changes in shape and morphology of crystals. Here, this process was investigated using sheets of graphene-biomolecule adducts. They were prepared and made dispersible in water through the exfoliation of graphite by tip sonication in the presence tryptophan or N-acetyl-D-glucosamine. The crystallization of calcium carbonate in the presence of these additives was obtained by the vapor diffusion method and only calcite formed. The analysis of the microscopic observations showed that the graphene-biomolecule adducts affected shape and morphology of rhombohedral {10.4} faced calcite crystals, due to their stabilization of additional {hk.0} faces. The only presence of the biomolecule affected minimally shape and morphology of calcite crystals, highlighting the key role of the graphene sheets as 2D support for the adsorption of the biomolecules.

  8. Sea urchin tooth mineralization: calcite present early in the aboral plumula.

    Science.gov (United States)

    Stock, Stuart R; Veis, Arthur; Xiao, Xianghui; Almer, Jonathan D; Dorvee, Jason R

    2012-11-01

    In both vertebrate bone, containing carbonated hydroxyapatite as the mineral phase, and in invertebrate hard tissue comprised of calcium carbonate, a popular view is that the mineral phase develops from a long-lived amorphous precursor which later transforms into crystal form. Important questions linked to this popular view are: when and where is the crystallized material formed, and is amorphous solid added subsequently to the crystalline substrate? Sea urchin teeth, in which the earliest mineral forms within isolated compartments, in a time and position dependent manner, allow direct investigation of the timing of crystallization of the calcite primary plates. Living teeth of the sea urchin Lytechinus variegatus, in their native coelomic fluid, were examined by high-energy synchrotron X-ray diffraction. The diffraction data show that calcite is present in the most aboral portions of the plumula, representing the very earliest stages of mineralization, and that this calcite has the same crystal orientation as in the more mature adoral portions of the same tooth. Raman spectroscopy of the aboral plumula confirms the initial primary plate mineral material is calcite and does not detect amorphous calcium carbonate; in the more mature adoral incisal flange, it does detect a broader calcite peak, consistent with two or more magnesium compositions. We hypothesize that some portion of each syncytial membrane in the plumula provides the information for nucleation of identically oriented calcite crystals that subsequently develop to form the complex geometry of the single crystal sea urchin tooth. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios

  10. Mechanism for calcite dissolution and its contribution to development of reservoir porosity and permeability in the Kela 2 gas field,Tarim Basin,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2+ concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2+]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth

  11. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

    KAUST Repository

    Yutkin, Maxim P.; Mishra, Himanshu; Patzek, Tadeusz; Lee, John; Radke, Clayton J.

    2017-01-01

    and surface equilibria draws several important inferences about the proposed LSW oil-recovery mechanisms. Diffuse double-layer expansion (DLE) is impossible for brine ionic strength greater than 0.1 molar. Because of rapid rock/brine equilibration

  12. Distribution of Minor Elements in Calcite From the Unsaturated Zone at Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Whelan, J. F.

    2001-12-01

    Calcite is sporadically distributed in fractures and cavities in the volcanic rocks that form the 500- to 700-m-thick unsaturated zone at Yucca Mountain. Previous work has shown that the calcite precipitated from water moving downward through the unsaturated zone since the volcanic rocks were emplaced approximately 13 Ma. Calcite thus serves as a proxy for the chemistry and amounts of past percolation, two parameters that are important in predictions of the future behavior of the potential radioactive waste repository at Yucca Mountain. Latest calcite, which began forming between approximately 5 and 2 Ma, typically displays fine-scale growth zoning defined by distributions of Mn (inferred from cathodoluminescence), Mg, and Sr. Electron microprobe (EPMA) mapping of outermost calcite reveals Mg growth zoning1 and higher overall concentrations of Mg in late calcite than in older calcite. Micro X-ray fluorescence (micro-XRF) maps were obtained by slow rastering of the samples over a 100-watt X-ray source collimated through a final aperture of 100 μ m. Although the spatial resolution of the micro-XRF mapping is much less than that of EPMA, this technique reveals distributions of some elements to which EPMA is less sensitive. Micro-XRF maps show that Sr is spatially correlated with Mg; Sr concentrations range to 500 μ g/g at the resolution of the 100-μ m collimator. Because both Mg and Sr have similar calcite-water distribution coefficients much less than one, the Mg/Sr in calcite reflects the Mg/Sr of the water that precipitated the calcite. The distribution coefficient for Mn is greater than one and variations in Mn are not correlated with Mg and Sr. Covariation of Mg and Sr in the percolating water may be explained by reactions that affect the rate of uptake of chemical constituents from the overlying rock and soil, and/or evaporation. Late calcite has lower δ 13C values, probably due to a regional change from wetter to drier climate conditions. The higher Mg and

  13. Manganese-calcium intermixing facilitates heteroepitaxial growth at the 101¯4 calcite-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.; Du, Yingge; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Qafoku, Odeta; Kerisit, Sebastien

    2017-10-01

    In situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10-14) surface of calcite (CaCO3) single crystals following reaction with Mn2+-bearing aqueous solutions with a range of initial concentrations. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces and in situ time-sequenced measurements demonstrated that their growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2+-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO3) and calcite display a 10% lattice mismatch, based on the area of their (10-14) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals with calcite-equilibrated aqueous solutions with concentrations of up to 250 µM MnCl2 and analyzed to determine the composition of the surface precipitates. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO3 solid solution with a spatially complex composition atop the calcite surface, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO3 for the thickest coatings. These findings explain the measured growth rates (the effective lattice mismatch was much smaller than nominal mismatch) and highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.

  14. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.

    Science.gov (United States)

    Wetzel, Maria; Kempka, Thomas; Kühn, Michael

    2018-04-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.

  15. Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2012-04-01

    In the Rehai geothermal area, located near Tengchong, there is an old succession of crystalline calcite that formed from a spring that is no longer active. The thin-bedded succession, exposed on the south bank of Zaotang River, is formed of three-dimensional dendrite bushes that are up to 6 cm high and 3 cm in diameter with multiple levels of branching. Bedding is defined by color, which ranges from white to gray to almost black and locally accentuated by differential weathering that highlights the branching motif of the dendrites. The succession developed through repeated tripartite growth cycles that involved: Phase I that was characterized by rapid vertical growth of the dendrite bushes with ever-increasing branching; Phase II that developed once growth of the dendrites had almost or totally ceased, and involved an initial phase of etching that was followed by the precipitation of various secondary minerals (sheet calcite, trigonal calcite crystals, hexagonal calcite crystals, hexagonal plates formed of Ca and P, Mn precipitates, Si-Mg reticulate coatings, opal-CT lepispheres) on the branches of the calcite dendrites, and Phase III that involved deposition of detrital quartz, feldspar, clay, and calcite on top of the dendrite bushes. The tripartite growth cycle is attributed primarily to aperiodic cycles in the CO2 content of the spring water that was controlled by subsurface igneous activity rather than climatic controls. High CO2 coupled with rapid CO2 degassing triggered growth of the dendrite bushes. As CO2 levels waned, saturation levels in the spring water decreased and calcite dendrite growth ceased and precipitation of the secondary minerals took place, possibly in the microcosms of microbial mats. Deposition of the detrital sediment was probably related to surface runoff that was triggered by periods of high rainfall. Critically, this study shows that intrinsic factors rather than extrinsic factors (e.g., climate) were the prime control on the

  16. Aragonite-Calcite Inversion During Biogenic Carbonate Sampling: Considerations for Interpreting Isotopic Measurements in Paleoclimate Studies

    Science.gov (United States)

    Waite, A. J.; Swart, P. K.

    2011-12-01

    As aragonite is the metastable polymorph of calcium carbonate, it lends itself to monotropic inversion to the more stable polymorph, calcite. This inversion is possible through an increase in the temperature and pressure conditions to which the sample is exposed and, although first noted nearly a century ago, has been primarily discussed in the context of sample roasting prior to analyses in paleoclimatological studies. Over the last several decades, however, researchers have found evidence to suggest that the friction associated with the sampling of biogenic carbonates via milling/drilling also induces inversion. Furthermore, this inversion may be associated with a shift in measured oxygen isotopic values and ultimately have significant implications for the interpretation of paleoclimatic reconstructions. Despite this, the isotopic heterogeneity of biogenic aragonite skeletons makes the effects of inversion challenging to test and the subject remains underrepresented in the literature. Here we present a first order study into the effects of milling on both the mineralogy and isotopic compositions measured in sclerosponges, corals, and molluscs. X-Ray diffraction analysis of samples hand ground with a mortar and pestle reveal 100% aragonitic skeletons. Conversely, samples milled with a computerized micromill show measurable inversion to calcite. On average, percent inversion of aragonite to calcite for individual specimens was 15% for sclerosponges, 16% for corals, and 9% for molluscs. Isotopic data from these specimens show that the higher the percentage of aragonite inverted to calcite, the more depleted the measured oxygen isotopic values. In the largest of the datasets (sclerosponges), it is evident that the range of oxygen isotope values from milled samples (-0.02 to +0.84%) exceeds the range in values for those samples which were hand ground and showed no inversion (+0.53 to +0.90%). This, coupled with the strong correlation between the two variables

  17. Relationship between oxygen isotopes in rainfall, cave percolation waters and speleothem calcite at Waitomo, New Zealand

    International Nuclear Information System (INIS)

    Williams, P.W.; Fowler, A.

    2002-01-01

    The relationship between the δ 18 O values of rainfall, vadose percolation water, and speleothem calcite was investigated in a cave at Waitomo. Water samples were obtained approximately monthly for two years from a storage rain gauge on the surface and from stored seepage from three stalactites underground. Rain water δ 18 O SMOW values varied considerably throughout the observation period, with a precipitation-weighted mean of -5.3 permille. Seasonal variability was evident, with winter values being more negative than summer values. Cave seepage waters had a mean of about -5 permille and showed very little variability and no discernible annual variation. This is explained by thorough mixing in the soil and subcutaneous zone stores. Given the average cave temperature (12.8 degrees C) and the δ 18 O SMOW value determined for seepage water, the δ 18 O PDB value of calcite that is actively depositing in isotopic equilibrium on speleothems at Waitomo should fall in the range of -4.1 to -4.6 permille. Observed delta-values of modern speleothem calcites overlap the positive end of this range of theoretical values, indicating that some growing speleothems are not in isotopic equilibrium with seepage waters, but are experiencing either evaporation or kinetic fractionation. (author). 32 refs., 8 figs

  18. Isolation and identification of Pseudomonas azotoformans for induced calcite precipitation.

    Science.gov (United States)

    Heidari Nonakaran, Siamak; Pazhouhandeh, Maghsoud; Keyvani, Abdullah; Abdollahipour, Fatemeh Zahra; Shirzad, Akbar

    2015-12-01

    Biomineralization is a process by which living organisms produce minerals. The extracellular production of these biominerals by microbes has potential for various bioengineering applications. For example, crack remediation and improvement of durability of concrete is an important goal for engineers and biomineral-producing microbes could be a useful tool in achieving this goal. Here we report the isolation, biochemical characterization and molecular identification of Pseudomonas azotoformans, a microbe that produces calcite and which potentially be used to repair cracks in concrete structures. Initially, 38 bacterial isolates were isolated from soil and cements. As a first test, the isolates were screened using a urease assay followed by biochemical tests for the rate of urea hydrolysis, calcite production and the insolubility of calcite. Molecular amplification and sequencing of a 16S rRNA fragment of selected isolates permitted us to identify P. azotoformans as a good candidate for preparation of biotechnological concrete. This species was isolated from soil and the results show that among the tested isolates it had the highest rate of urea hydrolysis, produced the highest amount of calcite, which, furthermore was the most adhesive and insoluble. This species is thus of interest as an agent with the potential ability to repair cracks in concrete.

  19. Interactions of Ni and Ca at the calcite-solution interface

    International Nuclear Information System (INIS)

    Carlsson, T.; Aalto, H.

    1996-10-01

    The performance assessment of repositories for spent nuclear fuel need, among other things, data describing the solubilities of radionuclides in the near field and far field. The solubility limits are often used in order to estimate the maximum concentrations of radionuclides during their possible transport to the biosphere. The solubilities used are mostly the individual solubilities for pure solids of the actual radionuclides. This way of using solubility limits represents a conservative performance assessment where the estimated nuclide concentrations are unrealistically high. This is acceptable from a performance assessment point of view but very unsatisfactory for an optimal design of the repository. In order to make the assessment more realistic, coprecipitation and solid solution formation should be taken into account. Only solids which are, in geological terms, formed in fast reactions need to be considered, which in practice restricts the number of radionuclide scavengers to calcite and iron(III)oxihydroxide. This work focuses on the Ni coprecipitation with calcite. The systems were studied under anoxic conditions and consisted of calcite-saturated 0.05 M NaCl solutions in equilibrium with synthetic calcite. The solutions were initially spiked with 63 Ni and 45 Ca and the concentrations of these elements were determined using liquid scintillation counting. (18 refs.)

  20. Absorption mechanism study of benzoic acid on calcite. Influence on the wettability; Etude du mecanisme d`absorption de l`acide benzoique sur la calcite. Incidence sur la mouillabilite

    Energy Technology Data Exchange (ETDEWEB)

    Legens, Ch

    1997-12-03

    A pure carbonate rock is strongly water-wet whereas oil accumulations study shows that most of carbonate reservoirs are oil-wet or of mixed-wettability. This is one of the main difficulties to extract crude oil. This change of behavior is due to the adsorption of some crude oil compounds on the mineral surface. We have mainly studied the interactions between acid molecules by adsorption on a calcite powder in an organic phase (benzoic acid and lauric acid) and in an aqueous phase (benzoic acid and lauric sodium salt). The technics which enabled us to define and characterize adsorption are thermogravimetry infrared diffuse reflection and thermal analysis with controlled kinetic linked to a mass spectrometer. Molecular modelling calculations have completed these analysis. It has been showed that when crude oil fills the biggest pores of the reservoir rock, the aqueous film is unstable and acids adsorb via ionic bonds on mineral calcium ions. Wettability is evaluated thanks to contact angle measurements of a water droplet deposited on a compacted powder pellet. Calcite wettability changes were all the greater as hydro-carbonated chains were longer, as it confers molecule hydrophobia. It has been also investigated acid molecules diffusion from the organic to the aqueous phase which saturates the smallest pores. Molecules which are able to diffuse from the first to the second medium do not adsorb on the surface. As a consequence, carbonate rock wettability changes require a direct contact between crude oil and mineral that involves aqueous film instability. (author) 128 refs.

  1. Differential early diagenetic low-Mg calcite cementation and rhythmic hardground development in Campanian-Maastrichtian chalk

    DEFF Research Database (Denmark)

    Molenaar, Nicolaas; J.J.P., Zijlstra

    1997-01-01

    and differences in the degree of early diagenesis. Cemented layers and hardgrounds are the result of differential early marine calcite cementation. In these limestones early calcite cementation cannot be explained by the supply of cementing materials from saturated seawater, An alternative model for early marine......The Campanian-Maastrichtian limestones in the south of the Netherlands are well-sorted fine-grained mudstones and silt- to fine sand-sized bioclastic grainstones. These limestones show a distinct lithological cyclicity manifested by fining-upward grain-size cycles with calcite-cemented layers...... calcite cementation is proposed, in which early calcite cementation occurred within the sediment at some distance below the seafloor as a result of organic matter degradation and internal redistribution of bioclastic carbonate. Bacterial organic matter degradation caused dissolution of relatively unstable...

  2. Index of refraction enhancement of calcite particles coated with zinc carbonate

    Science.gov (United States)

    Lattaud, Kathleen; Vilminot, Serge; Hirlimann, Charles; Parant, Hubert; Schoelkopf, Joachim; Gane, Patrick

    2006-10-01

    ZnCO 3 coating on calcite particles has been developed in order to enhance the index of refraction of this mineral that is used as a charge in paper, paint and polymer industries. Chemical reaction between calcite particles in an aqueous suspension with zinc chloride promotes the formation of a ZnCO 3 coating consisting of two layers with different interactions with the calcite particle. The refraction index of the resulting composite particles increases with the Zn/Ca ratio. A model allows to evaluate the coating thickness. The value of the scattering S and diffusion K coefficients of sheets coated with the ZnCO 3 coated particles reveal a dependence on the preparation conditions with a 15% increase for the best samples.

  3. The coordination of sulfur in synthetic and biogenic Mg calcites: The red coral case

    Science.gov (United States)

    Perrin, J.; Rivard, C.; Vielzeuf, D.; Laporte, D.; Fonquernie, C.; Ricolleau, A.; Cotte, M.; Floquet, N.

    2017-01-01

    Sulfur has been recognized in biogenic calcites for a long time. However, its structural position is matter of debate. For some authors, sulfur is a marker of the organic matrix while it is part of the calcite structure itself for others. To better understand the place of sulfur in calcite, sulfated magnesian calcites (S-MgCalcite) have been synthetized at high pressure and temperature and studied by μ-XANES spectroscopy. S-MgCalcite XANES spectra show two different types of sulfur: sulfate (SO42-) as a predominant species and a small contribution of sulfite (SO32-), both substituting for carbonate ions in the calcite structure. To address the question of the position of sulfur in biogenic calcites, the oxidation states of sulfur in the skeleton and organic tissues of Corallium rubrum have been investigated by micro X-ray fluorescence (μ-XRF) and sulfur K-edge micro X-ray absorption near edge structure (μ-XANES) spectroscopy at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) on beamline ID21. In the skeleton, sulfur is mainly present as oxidized sulfur SO42- (+VI), plus a weak sulfite contribution. XANES spectra indicate that sulfur is inorganically incorporated as sulfur structurally substituted to carbonate ions (SSS). Although an organic matrix is present in the red coral skeleton, reduced organic sulfur could not be detected by μ-XANES spectroscopy in the skeleton probably due to low organic/inorganic sulfur ratio. In the organic tissues surrounding the skeleton, several sulfur oxidation states have been detected including disulfide (S-S), thioether (R-S-CH3), sulfoxide (SO2), sulfonate (SO2O-) and sulfate (SO42-). The unexpected occurrence of inorganic sulfate within the organic tissues suggests the presence of pre-organized organic/inorganic complexes in the circulatory system of the red coral, precursors to biomineralization ahead of the growth front.

  4. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.

    Science.gov (United States)

    Wu, Min-Nan; Maity, Jyoti Prakash; Bundschuh, Jochen; Li, Che-Feng; Lee, Chin-Rong; Hsu, Chun-Mei; Lee, Wen-Chien; Huang, Chung-Ho; Chen, Chien-Yen

    2017-10-15

    The process of separating oil and water from oil/water mixtures is an attractive strategy to answer the menace caused by industrial oil spills and oily wastewater. In addition, water coproduced during hydrocarbon exploitation, which can be an economic burden and risk for freshwater resources, can become an important freshwater source after suitable water-oil separation. For oil-water separation purposes, considerable attention has been paid to the preparation of hydrophobic-oleophilic materials with modified surface roughness. However, due to issues of thermodynamic instability, costly and complex methods as well as lack of ecofriendly compounds, most of hydrophobic surface modified particles are of limited practical application. The study presents a facile procedure, to synthesize crystalline particles of calcite, which is the most stable polymorph of CaCO 3 from industrial CaCO 3 using oleic acid as an additive in a one-pot synthesis method. The XRD results show that the synthesized particles were a well-crystallized form of calcite. The FTIR results reflect the appearance of the alkyl groups from the oleic acid in synthesized particles which promotes the production of calcite with 'rice shape' (1.64 μm) (aggregated by spherical nanoparticle of 19.56 nm) morphology with concomitant changes in its surface wettability from hydrophilic to hydrophobic. The synthesized particles exhibited near to super hydrophobicity with ∼99% active ratio and a contact angle of 143.8°. The synthesized hydrophobic calcite particles had an oleophilic nature where waste diesel oil adsorption capacity of synthesized calcium carbonate (HCF) showed a very high (>99%) and fast (7 s) oil removal from oil-water mixture. The functional group of long alkyl chain including of CO bounds may play critical roles for adsorption of diesel oils. Moreover, the thermodynamically stable crystalline polymorph calcite (compared to vaterite) exhibited excellent recyclability. The isothermal study

  5. Ikaite pseudomorphs in the Zaire deep-sea fan: An intermediate between calcite and porous calcite

    Science.gov (United States)

    Jansen, J. H. F.; Woensdregt, C. F.; Kooistra, M. J.; van der Gaast, S. J.

    1987-03-01

    Translucent brown aggregates of calcium-carbonate crystals have been found in cores from the Zaire deep-sea fan (west equatorial Africa). The aggregates are well preserved but very friable. Upon storage they become yellowish white and cloudy and release water. Chemical, mineralogical (XRD), petrographical, crystal-morphological, and stable-isotope data demonstrate that the crystals have passed through three phases: (1) an authigenic carbonate phase, probably calcium carbonate, which is represented by the external habit of the present crystals; (2) a translucent brown ikaite phase (CaCO3·6H2O), unstable at temperatures above 5 °C; and (3) a phase consisting of calcite microcrystals that are poorly cemented and form a porous mass within the crystal form of the morphologically unchanged first phase. The transformation from the first phase into ikaite was probably a kinetic replacement. The transformation from ikaite into the third phase occurred because of storage at room temperature. The presence of ikaite is indicative of a low-temperature, anaerobic, organic-carbon-rich marine environment. Ikaite is probably the precursor of a great number of porous calcite pseudomorphs, and possibly also of many marine authigenic microcrystalline carbonate nodules.

  6. Rate of radiocarbon retention onto calcite by isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lempinen, Janne; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2016-11-01

    Radiocarbon ({sup 14}C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO{sub 3}) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of {sup 14}C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  7. Rate of radiocarbon retention onto calcite by isotope exchange

    International Nuclear Information System (INIS)

    Lempinen, Janne; Lehto, Jukka

    2016-01-01

    Radiocarbon ( 14 C) is a top priority class radionuclide associated with the long-term safety of spent nuclear fuel disposal. Dissolved inorganic radiocarbon can be retained in bedrock via isotope exchange with calcite (CaCO 3 ) at solubility equilibrium with groundwater. In the present study, the rate of the isotope exchange process was investigated on synthetic calcite using batch experiments. Experiments were performed in solutions with a calcium concentration of 0.0002-0.1 M, including two synthetic reference groundwaters. The radiocarbon activity in the solutions decreased exponentially as a function of time, thus following first-order kinetics. The rate of isotope exchange was quantified from an exponential fit to the activity data over time. The rate of radiocarbon retention increased as a function of the calcium activity. The isotope exchange half-life was only 4.3 days at calcium ion activities over 0.01. This half-life is very much shorter than the half-life of 14 C or the time scale of groundwater movements; consequently calcite can effectively retain radiocarbon from brackish and saline groundwaters.

  8. Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions

    Science.gov (United States)

    Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at calcite literature thermal data was obtained at 1000 mbar or higher pressures.

  9. Environmental controls for the precipitation of different fibrous calcite cement fabrics

    Science.gov (United States)

    Ritter, Ann-Christine; Wiethoff, Felix; Neuser, Rolf D.; Richter, Detlev K.; Immenhauser, Adrian

    2016-04-01

    Abiogenic calcite cements are widely used as climate archives. They can yield information on environmental change and climate dynamics at the time when the sediment was lithified in a (marine) diagenetic environment. Radiaxial-fibrous (RFC) and fascicular-optic fibrous (FOFC) calcite cements are two very common and similar pore-filling cement fabrics in Palaeozoic and Mesozoic carbonate rocks (Richter et al., 2011) and in Holocene Mg-calcitic speleothems (Richter et al., 2015). Both fabrics are characterised by distinct crystallographic properties. Current research has shown that these fabrics are often underexplored and that a careful combination of conservative and innovative proxies allows for a better applicability of these carbonate archives to paleoenvironmental reconstructions (Ritter et al., 2015). A main uncertainty in this context is that it is still poorly understood which parameters lead to the formation of either RFC or FOFC and if differential crystallographic parameters affect proxy data from these fabrics. This study aims at a better understanding of the environmental factors that may control either RFC or FOFC precipitation. Therefore, suitable samples (a stalagmite and a Triassic marine cement succession), each with clearly differentiable layers of RFC and FOFC, were identified and analysed in high detail using a multi-proxy approach. Detailed thin section and cathodoluminescence analysis of the samples allowed for a precise identification of layers consisting solely of either RFC or FOFC. Isotopic (δ13C, δ18O) as well as trace elemental compositions have been determined and the comparison of data obtained from these different carbonate archives sheds light on changes in environmental parameters during RFC or FOFC precipitation. References: Richter, D.K., et al., 2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239, 26-36 Richter, D.K., et al., 2015. Radiaxial-fibrous and fascicular-optic Mg-calcitic cave

  10. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells

    Energy Technology Data Exchange (ETDEWEB)

    Du Yang; Lian Fei [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2011-07-15

    The potential of using mollusk shell powder in aragonite (razor clam shells, RCS) and calcite phase (oyster shells, OS) to remove Pb{sup 2+}, Cd{sup 2+} and Zn{sup 2+} from contaminated water was investigated. Both biogenic sorbents displayed very high sorption capacities for the three metals except for Cd on OS. XRD, SEM and XPS results demonstrated that surface precipitation leading to crystal growth took place during sorption. Calcite OS displayed a remarkably higher sorption capacity to Pb than aragonite RCS, while the opposite was observed for Cd. However, both sorbents displayed similar sorption capacities to Zn. These could be due to the different extent of matching in crystal lattice between the metal bearing precipitate and the substrates. The initial pH of the solution, sorbent's dosage and grain size affected the removal efficiency of the heavy meals significantly, while the organic matter in mollusk shells affected the removal efficiency to a lesser extent. - Highlights: > Mollusk shells display high removal efficiency to heavy metals in contaminated water. > Surface precipitation leading to crystal growth takes place during the sorption. > Crystal structure similarity between precipitates and substrates affects the sorption. > pH, sorbent dosage and grain size of adsorbent affects the removal efficiency. > Organic matter in mollusk shells affects the removal efficiency to a less extent. - Mollusk shells display high sorption ability to heavy metals and crystal structure similarity between precipitates and substrates affects the sorption.

  11. U-Pb Dating of Calcite to Constrain Basinal Brine Flux Events: An Example from the Upper Midwest USA

    Science.gov (United States)

    Rasbury, T.; Luczaj, J.

    2017-12-01

    Calcite forms in a variety of settings and can be the product of surface to deep basinal fluids. As such, this mineral can uniquely record details of the fluids responsible for its formation. The forms of calcium carbonates and their stratigraphic relationships from the thin section to the regional scale give important insights on pulses of fluids. A fundamental question is the age of such fluid pulses. While calcite excludes uranium (U) from its crystal structure, some is incorporated and depending on the U/Pb ratio, this provides an opportunity for radiometric dating. Calcite crystals of various sizes and crystal habits are found in Paleozoic carbonate rocks throughout the region from the western Michigan basin to the upper Mississippi valley. These are typically associated with Mississippi Valley-type (MVT) mineralization, including galena, sphalerite, and iron sulfides, but typically post-date the main MVT event. We have analyzed a variety of these calcites and find multiple generations of calcite, separated by tens of millions of years. The initial Pb isotope ratios are similar to the isotope ratios of nearby galena, strongly suggesting a genetic relationship. Our oldest ages are 200 Ma, and we find ages ranging into the Cenozoic. Based on the Paleozoic-hosted galena Pb-isotope isoscapes from the region, the fluids may have been sourced from both the Michigan and Illinois basins. An important and unanswered question is what would cause significant fluid movement out of the basins substantially after Appalachian orogenesis. Noble gas data from brines in the Michigan Basin have a mantle component and have been suggested to be responsible for recognized elevated temperatures across the basin (Ma et al., 2009). Multiple thermal events during the Paleozoic and Mesozoic eras may have an internal heat source related to reactivation of faults of the Keweenawan Rift system below the Michigan Basin. Perhaps a mantle heat source from below episodically fluxes into the

  12. What concentration of actinides can be packed into calcite? Hints from rare earth element (REE) composition

    International Nuclear Information System (INIS)

    Christiansen, J.; Stipp, S.L.S.; Waight, T.; Baker, J.A.

    2005-01-01

    Full text of publication follows: For reliable modelling of actinide mobility in the event of spent fuel repository failure, we need data describing the uptake capacity of the minerals likely to find themselves in the transport path. Calcite (CaCO 3 ) is a common secondary mineral in fractures and pore fillings, especially downstream from degrading concrete facilities, so it is a likely candidate for incorporation. Investigations made under ACTAF, a 5. Framework EURATOM integrated project, as well as some other research studies, have shown that actinides are successfully incorporated as substituting ions within the calcite mineral structure. The question remaining, is how much can calcite take up. Geologists routinely use relative concentrations of rare Earth elements (REE's), the lanthanides, for interpreting rock genesis and history. One can also adopt them as analogues for the radioactive elements because their f-orbital electron configuration makes them behave very much like actinides. We collected and analysed a suite of 70 calcite samples from a great number of possible formation environments, geological ages and geographical locations, for the purpose of finding the range and maximum of total f-orbital substitution possible in calcite, under natural conditions. We analysed them using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The maximum concentration found was about 5 x 10 -3 mole/kg total REE in a sample that had a geological history of formation where REE fluids played a role. Over the whole suite, total REE ranged from less than 10 -4 moles/kg for limestone samples formed from biogenic calcite where REE-enriched fluids would have played a negligible role. Thus, in natural calcite, REE's are present and all evidence points to a structural incorporation within the mineral rather than as a separate REE-rich phase. These data compare favourably with mole fractions from calcite grown synthetically, where as much as 6 x 10 -3

  13. Review of aragonite and calcite crystal morphogenesis in thermal spring systems

    Science.gov (United States)

    Jones, Brian

    2017-06-01

    Aragonite and calcite crystals are the fundamental building blocks of calcareous thermal spring deposits. The diverse array of crystal morphologies found in these deposits, which includes monocrystals, mesocrystals, skeletal crystals, dendrites, and spherulites, are commonly precipitated under far-from-equilibrium conditions. Such crystals form through both abiotic and biotic processes. Many crystals develop through non-classical crystal growth models that involve the arrangement of nanocrystals in a precisely controlled crystallographic register. Calcite crystal morphogenesis has commonly been linked to a ;driving force;, which is a conceptual measure of the distance of the growth conditions from equilibrium conditions. Essentially, this scheme indicates that increasing levels of supersaturation and various other parameters that produce a progressive change from monocrystals and mesocrystals to skeletal crystals to crystallographic and non-crystallographic dendrites, to dumbbells, to spherulites. Despite the vast amount of information available from laboratory experiments and natural spring systems, the precise factors that control the driving force are open to debate. The fact that calcite crystal morphogenesis is still poorly understood is largely a reflection of the complexity of the factors that influence aragonite and calcite precipitation. Available information indicates that variations in calcite crystal morphogenesis can be attributed to physical and chemical parameters of the parent water, the presence of impurities, the addition of organic or inorganic additives to the water, the rate of crystal growth, and/or the presence of microbes and their associated biofilms. The problems in trying to relate crystal morphogenesis to specific environmental parameters arise because it is generally impossible to disentangle the controlling factor(s) from the vast array of potential parameters that may act alone or in unison with each other.

  14. Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain

    Science.gov (United States)

    Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.

    2017-03-01

    A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.

  15. Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.

    Science.gov (United States)

    Wilkinson, Bruce H.

    1982-01-01

    Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

  16. Tuning calcite morphology and growth acceleration by a rational design of highly stable protein-mimetics

    Science.gov (United States)

    Chen, Chun-Long; Qi, Jiahui; Tao, Jinhui; Zuckermann, Ronald N.; DeYoreo, James J.

    2014-01-01

    In nature, proteins play a significant role in biomineral formation. One of the ultimate goals of bioinspired materials science is to develop highly stable synthetic molecules that mimic the function of these natural proteins by controlling crystal formation. Here, we demonstrate that both the morphology and the degree of acceleration or inhibition observed during growth of calcite in the presence of peptoids can be rationally tuned by balancing the electrostatic and hydrophobic interactions, with hydrophobic interactions playing the dominant role. While either strong electrostatic or hydrophobic interactions inhibit growth and reduces expression of the {104} faces, correlations between peptoid-crystal binding energies and observed changes in calcite growth indicate moderate electrostatic interactions allow peptoids to weakly adsorb while moderate hydrophobic interactions cause disruption of surface-adsorbed water layers, leading to growth acceleration with retained expression of the {104} faces. This study provides fundamental principles for designing peptoids as crystallization promoters, and offers a straightforward screening method based on macroscopic crystal morphology. Because peptoids are sequence-specific, highly stable, and easily synthesized, peptoid-enhanced crystallization offers a broad range of potential applications. PMID:25189418

  17. Sealing of rock joints by induced calcite precipitation. A case study from Bergeforsen hydro power plant

    International Nuclear Information System (INIS)

    Hakami, E.; Qvarfort, U.; Ekstav, A.

    1991-01-01

    The possibilities of sealing rock fractures by injecting water saturated with calcite solution, and hereby inducing a calcite precipitation inside the fracture, is investigated. The way of reaction and the amount of calcite precipitation will depend on the saturation of calcium carbonate in the water, the temperature, the pH and the CO 2 -pressure. There is experience of lime-saturated water injection in the rock foundation below the dam at Bergeforsens power plant (1955-1968). It was observed that the consumption of injected lime water decreased with time. A possible reason to the decrease in lime water consumption is that calcite has precipitated such that the permeability of the rock in general is lowered. Another explanation to this could be that calcite precipitation is concentrated to the fractures surrounding the injection holes, thus preventing the lime water from penetrating further into the rock. It is recommended that further studies of the fracture fillings in drill cores from Bergeforsen is performed. The aim of such study should be to determine the extent of induced calcite precipitation and to investigate its chemical and physical properties. (authors)

  18. Effects of Citrate and Arginine on Sorption of Nickel to Yazd Sepiolite and Calcite

    Directory of Open Access Journals (Sweden)

    Ahmadreza Sheikhhosseini

    2017-03-01

    Full Text Available Introduction: Pollution of soil and water environment by release of heavy metals is of great concerns of the last decades. Sorption of heavy metals by low cost materials is considered as an inexpensive and efficient method used for removal of heavy metals from soil-water systems. The presence of different ligands with various complexing abilities can change the sorption properties of heavy metals and their fate in the environment as well. In order to assess the effect of citrate and arginine as natural organic ligands in soil environment, in a batch study we investigated the effects of these ligands on equilibrium sorption of nickel to sepiolite and calcite minerals and also kinetics of Ni sorption by these minerals. Materials and Methods: Minerals used in this study included sepiolite from Yazd (Iran and pure calcite (Analytical grade, Merck, Germany. Sepiolite was purified, saturated with Ca using 0.5 M CaCl2, powdered in a mortar and sieved by non-metal 230 mesh standard wire sieve. For equilibrium sorption study, in a 50-mL polyethylene centrifuge tube,0.3 g sample of each mineral was suspended in 30 mL of a 0.01 M CaCl2 solution containing 0, 5, 10, 20, 40, 60, 80 and 100 mg L-1 Ni (NiCl2 and containing zero (as control or 0.1mmol L-1 citrate or arginine ligands. The applied concentrationsfor each ligand can naturally occur in soils. Preparedtubes were shaken (180±2 rpm, 25±1oC for 24 h using an orbital shaker and centrifuged (4000×g for 10 min and the supernatants were analyzed for Ni concentration using an atomic absorption spectrophotometer (AAnalyst 200 Perkin-Elmer at a wavelength of 232 nm and a detection limit of 0.05 mg L-1. The quantity of Ni retained by each mineral at equilibrium was calculated using equation qe = (Ci - CeV/W where qe was the amount of nickel retained by mineral surface at equilibrium. Ci and Ce were the initial and the equilibrium concentrations (mg L-1 of Ni, respectively, V was the volume (L of the solution

  19. Rare Earth element (REE) incorporation in natural calcite. Upper limits for actinide uptake in a secondary phase

    International Nuclear Information System (INIS)

    Stipp, S.L.S.; Christensen, J.T.; Waight, T.E.; Lakshtanov, L.Z.; Baker, J.A.

    2006-01-01

    Secondary minerals have the potential to sequester escaped actinides in the event of a radioactive waste repository failure, but currently, data to define their maximum uptake capacity are generally lacking. To estimate a maximum limit for solid solution in calcite, we took advantage of the behavioural similarities of the 4f-orbital lanthanides with some of the 5f-orbital actinides and used rare Earth element (REE) concentration as an analogue. A suite of 65 calcite samples, mostly pure single crystals, was assembled from a range of geological settings, ages and locations and analysed by isotope dilution MC-ICP-MS (multiple-collector inductively-coupled plasma mass spectroscopy). All samples were shown to contain significant lanthanide concentrations. The highest were in calcite formed from hydrothermal solutions and from carbonatite magma. Maximum total mole fraction of REE was 4.72 x 10 -4 , which represents one substituted atom for about 2000 Ca sites. In comparison, synthetic calcite, precipitated at growth rates slow enough to insure solid solution formation, incorporated 7.5 x 10 -4 mole fraction Eu(III). For performance assessment, we propose that 7.5 mmole substitution/kg calcite should be considered the upper limit for actinide incorporation in secondary calcite. The largest source of uncertainty in this estimate results from extrapolating lanthanide data to actinides. However, the data offer confidence that for waters in the hydrothermal temperature range, such as in the near-field, or at groundwater temperatures, such as in the far-field, if calcite formation is favoured and actinides are present, those with behaviour like the trivalent lanthanides, especially Am 3+ and Cm 3+ , will be incorporated. REE are abundant and widely distributed, and they have remained in calcite for millions of years. Thus, one can be certain that incorporated actinides will also remain immobilised in calcite formed in fractures and pore spaces, as long as solution conditions

  20. Precipitation of Calcite during the Deposition of Paleogene Sangkarewang Oil Shale, Ombilin Basin, West Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Agus Haris Widayat

    2015-09-01

    Full Text Available DOI: 10.17014/ijog.2.3.185-197Geochemical and petrographical analyses were carried out to investigate the occurrence of calcite in theformer Ombilin lacustrine lake. The study involves eight samples taken from a 56 m long drill core of Sangkarewangoil shale. Geochemical investigation showed that the samples consist of varied terrigenous input represented by Si, Al, K, and Ti, and autochthonous input represented by S, total organic carbon (TOC, and d13C of bulk organic matter. Along the drill core profile the abundance of autochthonous input decreases upwards, while that of terrigenous input oppositely increases upwards. Petrographical analysis revealed that calcite is a major mineral in the samples. In this study, the abundance of calcite could be represented by the abundance of Ca, as calcite is the only significant Ca containing mineral. Ca is abundant in the samples (8.4% in average and its concentration varies similarly with those of S, TOC, and d13C, suggesting that the element as well as calcite incorporates the autochthonous input. Thevariation of calcite abundance in the drill core profile is considered to be related with primary productivity changes during the development of the former lake. Higher primary productivity represented by more positive of d13C value(-24.8‰ during the deposition of the lower part of the drill core profile promoted the higher amount of deposited organic matter. In such environment, the supersaturation of carbonate ion in lake water was also reached and significant precipitation of authigenic calcite occurred. As the lake developed, the primary productivity decreased as indicated by more negative of d13C value (eventually -26.8‰. This condition led to the decreases of deposited organic matterand calcite in the lake sediments.

  1. Molecular dynamics simulation of the rotational order-disorder phase transition in calcite

    International Nuclear Information System (INIS)

    Kawano, Jun; Miyake, Akira; Shimobayashi, Norimasa; Kitamura, Masao

    2009-01-01

    Molecular dynamics (MD) simulation of calcite was carried out with the interatomic potential model based on ab initio calculations to elucidate the phase relations for calcite polymorphs and the mechanism of the rotational order-disorder transition of calcite at high temperature at the atomic scale. From runs of MD calculations with increasing temperature within a pressure range of 1 atm and 2 GPa, the transition of calcite with R3-barc symmetry into a high-temperature phase with R3-barm symmetry was reproduced. In the high-temperature R3-barm phase, CO 3 groups vibrate with large amplitudes either around the original positions in the R3-barc structure or around other positions rotated ± 60 deg., and their positions change continuously with time. Moreover, contrary to the suggestion of previous investigators, the motion of CO 3 groups is not two-dimensional. At 1 atm, the transition between R3-barc and R3-barm is first order in character. Upon increasing temperature at high pressure, however, first a first-order isosymmetric phase transition between the R3-barc phases occurs, which corresponds to the start of ± 120 deg. flipping of CO 3 groups. Then, at higher temperatures, the transition of R3-barc to R3-barm phases happens, which can be considered second order. This set of two types of transitions at elevated pressure can be characterized by the appearance of an 'intermediate' R3-barc phase between the stable region of calcite and the high-temperature R3-barm phase, which may correspond to the CaCO 3 -IV phase.

  2. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2012-01-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7–8.3) and covered a wide span in the activity of Ca2+ and View the MathML source. The results show that the adsorption...... that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately...

  3. Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment

    Directory of Open Access Journals (Sweden)

    Yeh MS

    2010-01-01

    Full Text Available Abstract Powdery calcium carbonates, predominantly calcite and aragonite, with planar defects and cation–anion mixed surfaces as deposited on low-carbon steel by magnetic water treatment (MWT were characterized by X-ray diffraction, electron microscopy, and vibration spectroscopy. Calcite were found to form faceted nanoparticles having 3x ( commensurate superstructure and with well-developed { } and { } surfaces to exhibit preferred orientations. Aragonite occurred as laths having 3x ( commensurate superstructure and with well-developed ( surface extending along [100] direction up to micrometers in length. The (hkil-specific coalescence of calcite and rapid lath growth of aragonite under the combined effects of Lorentz force and a precondensation event account for a beneficial larger particulate/colony size for the removal of the carbonate scale from the steel substrate. The coexisting magnetite particles have well-developed {011} surfaces regardless of MWT.

  4. Immobilization of nanoparticles by occlusion into microbial calcite

    DEFF Research Database (Denmark)

    Skuce, Rebecca L.; Tobler, Dominique Jeanette; MacLaren, Ian

    2017-01-01

    systems. In this study, the ureolytic bacteria Sporosarcina pasteurii was used to induce calcium carbonate precipitation in the presence of organo-metallic manufactured nanoparticles. As calcite crystals grew the nanoparticles in the solution became trapped inside these crystals. Capture of NPs within...

  5. Differences in the rheological properties of calcitic and dolomitic lime slurries: influence of particle characteristics and practical implications in lime-based mortar manufacturing

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2012-06-01

    Full Text Available The study of the rheological properties of lime suspensions is a useful means to evaluate the workability of lime mortars. In this work, we studied the flow behaviour of two industrial hydrated limes, one of calcitic and the other of dolomitic composition, by means of two types of rheometer with different geometry and setup mode. The obtained results were interpreted taking into account the differences in microstructure and surface properties of the suspended particles. Calcitic lime dry particles are formed by angular and polydisperse clusters and, once dispersed in water, they behave like thixotropic materials. On the other hand, the dolomitic lime is formed by nanoparticles and small round cluster and it shows a pronounced plastic behaviour in suspension. This fundamental difference between the two materials explains the traditional preference for dolomitic lime mortars for plastering and rendering applications.

    El estudio de las propiedades reológicas de suspensiones de cal es una herramienta muy útil para evaluar la trabajabilidad de morteros de cal. En este trabajo se ha estudiado el comportamiento en suspensión de dos cales hidratadas, de composición calcítica y dolomítica, mediante dos tipos de reómetros con geometría y modalidades distintas de medida. Los resultados obtenidos se han interpretado teniendo en cuenta las diferencias en la microestructura y las propiedades de superficie de las partículas en suspensión. Las partículas de cal calcítica están formadas por aglomerados angulares y polidispersos y, una vez dispersadas en agua, presentan un comportamiento tixotrópico. Por su parte, la cal dolomítica está formada por nanopartículas y pequeños agregados redondeados y muestra en suspensión un pronunciado comportamiento plástico. Esta importante diferencia entre las dos cales explica la preferencia tradicional de morteros de cal dolomítica para aplicaciones en revocos.

  6. Crystallization of ikaite and its pseudomorphic transformation into calcite: Raman spectroscopy evidence

    Science.gov (United States)

    Sánchez-Pastor, N.; Oehlerich, Markus; Astilleros, José Manuel; Kaliwoda, Melanie; Mayr, Christoph C.; Fernández-Díaz, Lurdes; Schmahl, Wolfgang W.

    2016-02-01

    Ikaite (CaCO3·6H2O) is a metastable phase that crystallizes in nature from alkaline waters with high phosphate concentrations at temperatures close to 0 °C. This mineral transforms into anhydrous calcium carbonate polymorphs when temperatures rise or when exposed to atmospheric conditions. During the transformation in some cases the shape of the original ikaite crystal is preserved as a pseudomorph. Pseudomorphs after ikaite are considered as a valuable paleoclimatic indicator. In this work we conducted ikaite crystal growth experiments at near-freezing temperatures using the single diffusion silica gel technique, prepared with a natural aqueous solution from the polymictic lake Laguna Potrok Aike (51°57‧S, 70°23‧W) in Patagonia, Argentina. The ikaite crystals were recovered from the gels and the transformation reactions were monitored by in situ Raman spectroscopy at two different temperatures. The first spectra collected showed the characteristic features of ikaite. In successive spectra new bands at 1072, 1081 and 1086 cm-1 and changes in the intensity of bands corresponding to the OH modes were observed. These changes in the Raman spectra were interpreted as corresponding to intermediate stages of the transformation of ikaite into calcite and/or vaterite. After a few hours, the characteristics of the Raman spectrum were consistent with those of calcite. While ikaite directly transforms into calcite at 10 °C in contact with air, at 20 °C this transformation involves the formation of intermediate, metastable vaterite. During the whole process the external shape of ikaite crystals was preserved. Therefore, this transformation showed the typical characteristics of a pseudomorphic mineral replacement, involving the generation of a large amount of porosity to account for the large difference in molar volumes between ikaite and calcite. A mechanism involving the coupled dissolution of ikaite and crystallization of calcite/vaterite is proposed for this

  7. Organic geochemistry and stable isotope composition of New Zealand carbonate concretions and calcite fracture fills

    International Nuclear Information System (INIS)

    Pearson, M.J.; Nelson, C.S.

    2005-01-01

    Carbonate concretion bodies, representing a number of morphological types, and associated calcite fracture fills, mainly from New Zealand, have been studied both organically and inorganically. Extracted organic material is dominated by a complex polymeric dark brown highly polar fraction with a subordinate less polar and lighter coloured lipid fraction. The relative proportion of the two fractions is the principal control on the colour of fracture fill calcites. Concretions are classified mainly by reference to their carbonate stable carbon and oxygen isotope and cation composition. Typical subspherical calcitic septarian concretions, such as those in the Paleocene Moeraki and the Eocene Rotowaro Siltstones, contain carbon derived mainly by bacterial sulfate reduction in marine strata during early diagenesis. Other concretions, including a septarian calcitic type from the Northland Allochthon, have a later diagenetic origin. Siderite concretions, abundant in the nonmarine Waikato Coal Measures, are typically dominated by methanogenic carbon, whereas paramoudra-like structures from the Taranaki Miocene have the most extreme carbon isotope compositions, probably resulting from methane formation or oxidation in fluid escape conduits. Lipids from concretion bodies and most fracture fill calcites contain significant concentrations of fatty acids. Concretion bodies dominated by bimodally distributed n-fatty acids with strong even-over-odd preference, in which long chain n-acids are of terrestrial origin, have very low hydrocarbon biomarker maturities. Concretion bodies that lack long chain n-acids often have higher apparent biomarker maturity and prominent alpha-omega diacids. Such diacids are abundant in fracture fill calcites at Rotowaro, especially where calcite infills the septaria of a siderite concretion in the non-marine Waikato Coal Measures, and support the view that fluid transport resulted in carbonate entrapment of the fracture-hosted acids. Diacids also

  8. Coccolith calcite time capsules preserve a molecule-specific record of pCO2

    Science.gov (United States)

    McClelland, H. L. O.; Pearson, A.; Hermoso, M.; Wilkes, E.; Lee, R. B. Y.; Rickaby, R. E. M.

    2017-12-01

    Coccolithophores are single-celled phytoplankton that have contributed organic matter and calcite to marine sediments since the Late Triassic. The carbon isotopic compositions of both the calcite, and the organic matter, constitute valuable archives of information about the interaction between these organisms and the environments in which they lived. The isotopic composition of alkenone lipids, a recalcitrant component of coccolithophore organic carbon produced by a single family of coccolithophores, has been widely used to reconstruct pCO2 in the geological past. However, the robustness of this approach has remained controversial, due in part to the difficulties associated with reproducing pCO2 changes across periods of known pCO2 change, and uncertainties in relevant physiological variables such as growth rate and cell size. Meanwhile the calcite, produced in the form of plates called coccoliths, and which has had limited utility in paleoclimate reconstructions due to its large and variable departures from the isotopic composition of abiogenic calcite, has garnered increasing attention in recent years for the environmental and physiological information it contains. Here we show that polysaccharides preserved within the calcite crystal lattice of near monospecific fractions of fossil coccoliths constitute an ancient pristine source of organic carbon that unlike alkenones is unambiguously associated with the coccolith1. The isotopic composition of these polysaccharides, in tandem with that of the host coccolith calcite, and morphometrics from the same coccoliths2, can be used simultaneously constrain a recently published cellular carbon isotope flux model3, embedded in a more complex nutrient limitation model, in a powerful new approach to simultaneously predict cellular parameters and pCO2. We demonstrate the validity of this approach across a glacial / interglacial cycle. Lee, R. B. Y., et al,, Nat. Commun. 7, 13144 (2016). McClelland, H. L. O. et al. Sci. Rep. 6

  9. Importance of Surface Texture to Infrared Remote Sensing Interpretations

    Science.gov (United States)

    Kirkland, L. E.; Adams, P. M.; Herr, K. C.; Salisbury, J. W.

    2001-11-01

    Thermal infrared remote sensing may be used to identify minerals present on the surface using diagnostic spectral bands. As band depth (spectral contrast) exhibited by the mineral increases, the mineral is easier to detect. In order to determine the expected spectral contrast, thermal infrared spectra of typical mineral endmembers are commonly measured in the laboratory. For example, for calcite, well-crystalline limestone is commonly studied. However, carbonates occur in several forms, including thin coatings, indurated carbonate (calcrete), and hot springs deposits. Different formation pathways may cause different microstructures and surface textures. This in turn can also affect the surface texture of the weathered material. Different surface textures can affect the measured band contrast, through roughness that causes a cavity (hohlraum) effect, and particle size and roughness on a scale that causes volume scattering. Thus since detection limits vary with the spectral contrast, surface texture can be an important variable in how detectable a mineral is. To study these issues, we have examined limestone and calcrete deposits at Mormon Mesa, Nevada that have two distinctly different microstructures and surface texture [Kirkland et al., 2001]. The limestone studied has larger grains and the grains frequently have flat, smooth surfaces on the order of 10-50 microns in cross-section length. The calcrete has smaller, more angular calcite grains, which exhibit almost no flat surfaces longer than 5 microns in cross-section length. We will show scanning electron microscope images to compare the different microstructures and surface textures of both the fresh and weathered surfaces, and we will show corresponding thermal infrared spectra to illustrate the different spectral signatures. The results demonstrate the importance of understanding the microstructure of mineral deposits to accurately interpret infrared remote sensing data, especially for studies that lack ground

  10. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  11. On the origin of calcite-cemented sandstones in the clearwater formation oil-sands, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Colquhoun, I.M.

    1999-01-01

    This thesis examined the formation of calcite-cemented sandstones in the Clearwater Formation within the Cold Lake and southern Primrose areas of the Alberta oil sands. Three stages of diagenesis have been recognized, both in the calcite-cemented sandstones and reservoir sands. Diagenesis of the Clearwater Formation in the Cold Lake and southern Primrose areas ended once the reservoir filled with hydrocarbons, but in the Cold Lake area, diagenesis of water-saturated sands likely continued after hydrocarbon emplacement. The reservoir sands in the formation contain a diverse clay mineral assemblage. In general, 0.7 nm clays dominate the diagenetic clay mineralogy of the Clearwater sands. Reservoir sands that contain large amounts of detrital clays and early diagenetic, grain-coating chlorite/smectite have significantly reduced bitumen-saturation. The presence of detrital and diagenetic smectitic clays complicates the removal of bitumen from the Clearwater formation using cyclic steam stimulation techniques because they swell during steam stimulation and reduce porosity and permeability of reservoir sands. Reservoir sands that contain kaolinite, feldspar and calcite react to form smectitic clays, which swell upon cyclic steam stimulation and further reduce porosity and permeability of reservoir sands. However, in the Cold Lake and Primrose areas, the dominant clay mineral is berthierine, which is associated with high calcite, which help to preserve porosity, permeability and bitumen saturation. The porous nature of bitumen-saturated, calcite-cemented sandstones that are laterally extensive could possibly provide a preferential path for steam to initiate calcite dissolution and produce significant concentrations of dissolved carbon dioxide in injected fluids. It was noted that this may then precipitate as carbonate scale within the reservoir and could cause formation damage or affect production equipment. 207 refs., 9 tabs., 58 figs., 3 appendices.

  12. Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    Science.gov (United States)

    Bindschedler, S.; Cailleau, G.; Braissant, O.; Millière, L.; Job, D.; Verrecchia, E. P.

    2014-05-01

    Calcitic nanofibres are ubiquitous habits of secondary calcium carbonate (CaCO3) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enigmatic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in nature. They are very often observed in association with needle fibre calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent association is likely to be an important fact to help understanding the origin of nanofibres. In this paper the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothesis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morphological resemblance when compared to their natural counterparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hypothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically influenced mineralization process, generating calcitic nanofibres. This highlights the possible involvement of fungi in CaCO3 biomineralization processes, a role still poorly documented. Moreover, on a global

  13. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes

    International Nuclear Information System (INIS)

    Randich, E.; Acton, R.U.

    1983-09-01

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO 2 release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800 0 C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete

  14. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats

    Science.gov (United States)

    De Wit, Rutger; Gautret, Pascale; Bettarel, Yvan; Roques, Cécile; Marlière, Christian; Ramonda, Michel; Nguyen Thanh, Thuy; Tran Quang, Huy; Bouvier, Thierry

    2015-01-01

    Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification. PMID:26115121

  15. FORMATION OF CALCITE AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Paces, J.B.; Whelan, J.F.; Peterman, Z.E.; Marshall, B.D.

    2000-01-01

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  16. The effect of fluids on the frictional behavior of calcite gouge

    Science.gov (United States)

    Rempe, M.; Di Toro, G.; Mitchell, T. M.; Hirose, T.; Smith, S. A. F.; Renner, J.

    2016-12-01

    The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by

  17. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  18. Tuning hardness in calcite by incorporation of amino acids.

    Science.gov (United States)

    Kim, Yi-Yeoun; Carloni, Joseph D; Demarchi, Beatrice; Sparks, David; Reid, David G; Kunitake, Miki E; Tang, Chiu C; Duer, Melinda J; Freeman, Colin L; Pokroy, Boaz; Penkman, Kirsty; Harding, John H; Estroff, Lara A; Baker, Shefford P; Meldrum, Fiona C

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  19. Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean

    Science.gov (United States)

    Feely, Richard A.; Sabine, Christopher L.; Byrne, Robert H.; Millero, Frank J.; Dickson, Andrew G.; Wanninkhof, Rik; Murata, Akihiko; Miller, Lisa A.; Greeley, Dana

    2012-09-01

    Based on measurements from the WOCE/JGOFS global CO2 survey, the CLIVAR/CO2 Repeat Hydrography Program and the Canadian Line P survey, we have observed an average decrease of 0.34% yr-1 in the saturation state of surface seawater in the Pacific Ocean with respect to aragonite and calcite. The upward migrations of the aragonite and calcite saturation horizons, averaging about 1 to 2 m yr-1, are the direct result of the uptake of anthropogenic CO2 by the oceans and regional changes in circulation and biogeochemical processes. The shoaling of the saturation horizon is regionally variable, with more rapid shoaling in the South Pacific where there is a larger uptake of anthropogenic CO2. In some locations, particularly in the North Pacific Subtropical Gyre and in the California Current, the decadal changes in circulation can be the dominant factor in controlling the migration of the saturation horizon. If CO2 emissions continue as projected over the rest of this century, the resulting changes in the marine carbonate system would mean that many coral reef systems in the Pacific would no longer be able to sustain a sufficiently high rate of calcification to maintain the viability of these ecosystems as a whole, and these changes perhaps could seriously impact the thousands of marine species that depend on them for survival.

  20. Isostructural exclusion of elements between aragonite and calcite layers in the shell of the Pacific oyster Crassostrea gigas

    International Nuclear Information System (INIS)

    Markwitz, A.; Gauldie, R.W.; Trompetter, W.J.; Pithie, J.; Jamieson, D.N.; Sharma, S.K.

    1999-01-01

    Sections of the shell of the farmed Pacific oyster 'Crassostrea gigas' that are available commercially in Wellington, New Zealand, showed a distinct alternating pattern in the shell mineral when observed by reflected light. The layers were identified by Raman scattering as alternating bands of the calcite and aragonite mineral forms of calcium carbonate using the micro-Raman facility at the Hawaii Institute of Geophysics and Planetology. The differences in the unit cell structure of calcite and aragonite favour different trace elements in the two minerals. Aragonite is isostructural with Strontianite SrCO 3 , and calcite is isostructural with Smithsonite ZnCO 3 . As a result, Sr deposition should be favoured in the aragonite layer and is excluded from the calcite layer; and, conversely, Zn deposition should be favoured in the calcite layer and is excluded from the aragonite layer. However, up to today, significant differences in the pattern of Sr and Zn in microprobe scans are not discovered. By ion microprobe analysis, it was shown that differences in the unit cell structure of calcite and aragonite favor different trace elements in the two minerals

  1. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies

    Directory of Open Access Journals (Sweden)

    Silvia Frisia

    2015-01-01

    Full Text Available The systematic documentation of calcite fabrics in stalagmites and flowstones provides robustness to palaeoclimate interpretation based on geochemical proxies, but it has been neglected because it is difficult to transform crystal morphologies into numerical values, and construct fabric time series. Here, general criteria that allow for coding fabrics of calcite composing stalagmites and flowstones is provided. Being based on known models of fabric development, the coding ascribes sequential numbers to each fabric, which reflect climate-related parameters, such as changes in drip rate variability, bio-mediation or diagenetic modifications. Acronyms are proposed for Columnar types, Dendritic, Micrite, Microsparite and Mosaic fabrics, whose use could then render possible comparison of calcite fabrics in stalagmites and flowstones from diverse latitudinal and altitudinal settings. The climatic and environmental significance of similarities in the geochemical signals and trends analysed in coeval stalagmites and flowstones (or differences in the signals and trends will be more robust when compared with fabric time series. This is particularly true where, such as in the Holocene, changes in geochemical values may be subtle, yet fabrics may show changes related to variations in supersaturation, drip rate or input of detrital particles or organic compounds. The proposed microstratigraphic logging allows recognition of changes in stable isotope ratio or trace element values that can be ascribed to hydrology and diagenesis, with considerable improvement of reconstructions based on the chemical proxies of stalagmites and flowstones composed of calcite.

  2. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.

    Science.gov (United States)

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-06-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10(-4) mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  3. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.

    Science.gov (United States)

    Yin, Xiaofei; Ziegler, Andreas; Kelm, Klemens; Hoffmann, Ramona; Watermeyer, Philipp; Alexa, Patrick; Villinger, Clarissa; Rupp, Ulrich; Schlüter, Lothar; Reusch, Thorsten B H; Griesshaber, Erika; Walther, Paul; Schmahl, Wolfgang W

    2018-02-01

    Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the "nuclear envelope junction". The narrow gap of this junction likely

  4. The Labrador Sea during the Last Glacial Maximum: Calcite dissolution or low biogenic carbonate fluxes?

    Science.gov (United States)

    Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus

    2017-04-01

    Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that

  5. Morphology and formation mechanism in precipitation of calcite induced by Curvibacter lanceolatus strain HJ-1

    Science.gov (United States)

    Zhang, Chonghong; Li, Fuchun; Lv, Jiejie

    2017-11-01

    Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.

  6. Neutron-activation determination of the rare earths in natural calcites using a semiconductor detector

    International Nuclear Information System (INIS)

    Vaganov, N.A.; Bulnaev, A.I.; Mejer, V.A.; Ponomarev, V.S.

    1976-01-01

    The application of germanium semiconducting detector is described. The detector has an energy resolution about 1 KeV and makes it possible to determine the content of Ce, Nd, Eu, Gd, Tb, and Yb in natural calcites with high sensitivity. The region of soft γ-radiation of activated calcites is more favourable for measurements to be performed than the region of hard γ-rays. Semiconducting detectors of radiation type are relatively cheap; they can be stored at room temperature. The limit of determining rare earth elements in calcites is (g): Eu-1.5.10 -9 ; Tb-4.0.10 -9 ; Yb-7.0.10 -9 ; Ce-1.0.10 -7 ; Nd-5.0.10 -7 ; Gd-1.0.10 -6 . A relative error of concentration determination is 10-20%

  7. High School Forum: "Invitations to Enquiry": The Calcite/Acid Reaction.

    Science.gov (United States)

    Herron, J. Dudley, Ed.; Driscoll, D. R.

    1979-01-01

    Describes a high school chemistry experiment which involves the reaction between calcite and hydrochloric and sulfuric acids. This reaction can be carried out as a projected demonstration and on an individual basis. (HM)

  8. Utilization of calcite produced in Turkey for paper coating

    Directory of Open Access Journals (Sweden)

    Hüdaverdi Eroğlu

    2002-03-01

    Full Text Available Calcium carbonate is one of the coating pigments widely used in paper industry. Especially, in recent years calcium carbonate filler has gained high importance in alkaline pulping. In Turkey industry actually imports calcium carbonate; whereas, there are rich calcite reservoirs in the country. In this study two different types of domestic ground (GCC calcite samples were used. Physical and chemical properties of calcite samples were tested firstly. CaCO3 percentages of both samples were 97.3 % and 97.6 % (min. 95 % CaCO3. MgCO3 and Fe2O3 percentages were within the desired limits. Brightness values were 95.5 % and 94.5 % and yellowness 1.1 % and 1.5 % elrepho. These values also were within the requested limits. Under 2 microns particle size and over 10 microns particle size fractions were 95 % and 89 % (min. 80 and 1 % and 2 % (max. 2 respectively. Dry matter rates were between 40 %-65 %, for the pilot plant-coating machine. During the preparation of coating color calcium carbonate has been used together with kaolin. The ratios of calcium carbonate to kaolin were 30/70, 40/60, 50/50, 60/40, 70/30, 100/0. In coating color preparation latex was used as a binder because of its wide applications. Latex percentages were 11, 12, and 13 %. Coated papers were glossed and physically tested. As a result, both calcium carbonate samples were found suitable for using in coating color preparation. By the utilization of domestic calcium carbonate in coated paper production, there will be foreign currencies saving.

  9. Calcite/aragonite-biocoated artificial coral reefs for marine parks

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2017-08-01

    Full Text Available Natural formation of the coral reefs is complicated by slow biomediated precipitation of calcium carbonate from seawater. Therefore, manufactured artificial coral reefs can be used for the formation of “underwater gardens” in marine parks for the recreational fishing and diving that will protect natural coral reefs from negative anthropogenic effects. Additionally, the coating of the concrete, plastic or wooden surfaces of artificial coral reef with calcium carbonate layer could promote attachment and growth of coral larvae and photosynthetic epibiota on these surfaces. Three methods of biotechnological coating of the artificial coral reefs have been tested: (1 microbially induced calcium carbonate precipitation from concentrated calcium chloride solution using live bacterial culture of Bacillus sp. VS1 or dead but urease-active cells of Yaniella sp. VS8; (2 precipitation from calcium bicarbonate solution; (3 precipitation using aerobic oxidation of calcium acetate by bacteria Bacillus ginsengi strain VSA1. The thickness of biotechnologically produced calcium carbonate coating layer was from 0.3 to 3 mm. Biocoating using calcium salt and urea produced calcite in fresh water and aragonite in seawater. The calcium carbonate-coated surfaces were colonized in aquarium with seawater and hard corals as inoculum or in aquarium with fresh water using cyanobacteria Chlorella sorokiana as inoculum. The biofilm on the light-exposed side of calcium carbonate-coated surfaces was formed after six weeks of incubation and developed up to the average thickness of 250 µm in seawater and about 150 µm in fresh water after six weeks of incubation. The biotechnological manufacturing of calcium carbonate-coated concrete, plastic, or wooden surfaces of the structures imitating natural coral reef is technologically feasible. It could be commercially attractive solution for the introduction of aesthetically pleasant artificial coral reefs in marine parks and

  10. Microstructural Damage During High-Strain Torsion Experiments on Calcite-Anhydrite Aggregates

    Science.gov (United States)

    Cross, A. J.; Skemer, P. A.

    2016-12-01

    Ductile shear zones play a critical role in localising deformation in the Earth's crust and mantle. Severe grain size reduction - a ubiquitous feature of natural mylonites - is commonly thought to cause strain weakening via a transition to grain size sensitive deformation mechanisms. Although grain size reduction is modulated by grain growth in single-phase aggregates, grain boundary pinning in well-mixed poly-phase composites can inhibit grain growth, leading to microstructural `damage' which is likely a critical element of strain localization in the lithosphere. While dynamic recrystallization has been widely explored in rock mechanics and materials science, the mechanisms behind phase-mixing remain poorly understood. In this contribution we present results from high-strain, deformation experiments on calcite-anhydrite composites. Experiments were conducted in torsion at T = 500-700°C and P 1.5 GPa, using the new Large Volume Torsion (LVT) solid-medium apparatus, to shear strains of 0.5-30. As shear strain increases, progressive thinning and necking of initially large (≤ 1 mm) calcite domains is observed, resulting in an increase in the proportion of interphase boundaries. Grain-size is negatively correlated with the fraction of interphase boundaries, such that calcite grains in well-mixed regions are significantly smaller than those in single-phase domains. Crucially, progressive deformation leads to a reduction in grain-size beyond the lower limit established by the grain size piezometer for mono-phase calcite, implying microstructural damage. These data therefore demonstrate continued microstructural evolution in two-phase composites that is not possible in single-phase aggregates. These observations mark a new `geometric' mechanism for phase mixing, complementing previous models for phase mixing involving chemical reactions, material diffusion, and/or grain boundary sliding.

  11. Radiation-induced paramagnetic species in natural calcite speleothems

    International Nuclear Information System (INIS)

    Rossi, A.M.; Poupeau, G.

    1989-01-01

    The ESR natural spectrum of humic-free speleothem calcite single crytals in the region of g = 2.0000 is a composite of lines from 4 radiogenic species, in addition to Mn ++ lines. Laboratory irradiation causes appearrance of three more species. Use of isotropic F species (g = 2.0003) for dating is possible if specific cautions are followed. (author) [pt

  12. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity

    Energy Technology Data Exchange (ETDEWEB)

    Monchau, F., E-mail: Francine.monchau@univ-artois.fr [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Hivart, Ph.; Genestie, B. [Laboratoire Genie Civil et geo-Environnement (EA 4515, Universite Lille Nord de France), Equipe Biomateriaux Artois (Universite d' Artois), IUT/GMP, 1230, rue de l' Universite, BP 819, 62408 Bethune cedex (France); Chai, F. [Laboratoire Medicaments et Biomateriaux a Liberation Controlee (INSERM U 1008, Universite Lille Nord de France), Groupe de Recherche sur les Biomateriaux (Universite Lille-2), Faculte de Medecine, 1, place de Verdun, 59045 Lille cedex (France); and others

    2013-01-01

    Close to the bone mineral phase, the calcic bioceramics, such as hydroxyapatite (HA) and {beta}-tricalcium phosphate ({beta}-TCP), are commonly used as substitutes or filling materials in bone surgery. Besides, calcium carbonate (CaCO{sub 3}) is also used for their excellent biocompatibility and bioactivity. However, the problem with the animal-origin aragonite demands the new technique to synthesize pure calcite capable of forming 3D bone implant. This study aims to manufacture and evaluate a highly-pure synthetic crystalline calcite with good cytocompatibility regarding to the osteoblasts, comparing to that of HA and {beta}-TCP. After the manufacture of macroporous bioceramic scaffolds with the identical internal architecture, their cytocompatibility is studied through MC3T3-E1 osteoblasts with the tests of cell viability, proliferation, vitality, etc. The results confirmed that the studied process is able to form a macroporous material with a controlled internal architecture, and this synthesized calcite is non-cytotoxic and facilitate the cell proliferation. Indeed requiring further improvement, the studied calcite is definitely an interesting alternative not only to coralline aragonite but also to calcium phosphate ceramics, particularly in bone sites with the large bone remodelling. Highlights: Black-Right-Pointing-Pointer Macroporous calcite manufacturing with controlled architecture as bone substitute Black-Right-Pointing-Pointer Cytotoxicity: adaptation of the colony-forming method with the target cells: MC3T3-E1 osteoblasts Black-Right-Pointing-Pointer Study of osteoblast proliferation and activity on calcite, HA and TCP.

  13. Nanoscale observations of the effect of citrate on calcium oxalate precipitation on calcite surfaces.

    Science.gov (United States)

    Burgos-Cara, Alejandro; Ruiz-Agudo, Encarnacion; Putnis, Christine V.

    2016-04-01

    Calcium oxalate (CaC2O4ṡxH2O) minerals are naturally occurring minerals found in fossils, plants, kidney stones and is a by-product in some processes such as paper, food and beverage production [1,2]. In particular, calcium oxalate monohydrate phase (COM) also known as whewellite (CaC2O4ṡH2O), is the most frequently reported mineral phase found in urinary and kidney stones together with phosphates. Organic additives are well known to play a key role in the formation of minerals in both biotic and abiotic systems, either facilitating their precipitation or hindering it. In this regard, recent studies have provided direct evidence demonstrating that citrate species could enhance dissolution of COM and inhibit their precipitation. [3,4] The present work aims at evauate the influence of pH, citrate and oxalic acid concentrations in calcium oxalate precipitation on calcite surfaces (Island Spar, Chihuahua, Mexico) through in-situ nanoscale observation using in situ atomic force microscopy (AFM, Multimode, Bruker) in flow-through experiments. Changes in calcium oxalate morphologies and precipitated phases were observed, as well as the inhibitory effect of citrate on calcium oxalate precipitation, which also lead to stabilization an the amorphous calcium oxalate phase. [1] K.D. Demadis, M. Öner, Inhibitory effects of "green"additives on the crystal growth of sparingly soluble salts, in: J.T. Pearlman (Ed.), Green Chemistry Research Trends, Nova Science Publishers Inc., New York, 2009, pp. 265-287. [2] M. Masár, M. Zuborová, D. Kaniansky, B. Stanislawski, Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection, J. Sep. Sci. 26 (2003) 647-652. [3] Chutipongtanate S, Chaiyarit S, Thongboonkerd V. Citrate, not phosphate, can dissolve calcium oxalate monohydrate crystals and detach these crystals from renal tubular cells. Eur J Pharmacol 2012;689:219-25. [4] Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ

  14. Relative Shock Effects in Mixed Powders of Calcite, Gypsum, and Quartz: A Calibration Scheme from Shock Experiments

    Science.gov (United States)

    Bell, Mary S.

    2009-01-01

    The shock behavior of calcite and gypsum is important in understanding the Cretaceous/Tertiary event and other terrestrial impacts that contain evaporite sediments in their targets. Most interest focuses on issues of devolatilization to quantify the production of CO2 or SO2 to better understand their role in generating a temporary atmosphere and its effects on climate and biota [e.g., papers in 1,2,3,4]. Devolatilization of carbonate is also important because the dispersion and fragmentation of ejecta is strongly controlled by the expansion of large volumes of gas during the impact process as well [5,6]. Shock recovery experiments for calcite yield seemingly conflicting results: early experimental devolatilization studies [7,8,9] suggested that calcite was substantially outgassed at 30 GPa (> 50%). However, the recent petrographic work of [10,11,12] presented evidence that essentially intact calcite is recovered from 60 GPa experiments. [13] reported results of shock experiments on anhydrite, gypsum, and mixtures of those phases with silica. Their observations indicate little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another (preliminary) report of shock experiments on calcite, anhydrite, and gypsum, [14] observe calcite recrystallization when shock loaded at 61 GPa, only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa. [15] shock loaded anhydrite and quartz to a peak pressure of 60 GPa. All of the quartz grains were trans-formed to glass and the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggest that recrystallization of anhydrite grains is the result of a solid state transformation. [16] reanalyzed the calcite and anhydrite shock

  15. Fabrication of calcite blocks from gypsum blocks by compositional transformation based on dissolution-precipitation reactions in sodium carbonate solution.

    Science.gov (United States)

    Ishikawa, Kunio; Kawachi, Giichiro; Tsuru, Kanji; Yoshimoto, Ayami

    2017-03-01

    Calcium carbonate (CaCO 3 ) has been used as a bone substitute, and is a precursor for carbonate apatite, which is also a promising bone substitute. However, limited studies have been reported on the fabrication of artificial calcite blocks. In the present study, cylindrical calcite blocks (ϕ6×3mm) were fabricated by compositional transformation based on dissolution-precipitation reactions using different calcium sulfate blocks as a precursor. In the dissolution-precipitation reactions, both CaSO 4 ·2H 2 O and CaSO 4 transformed into calcite, a polymorph of CaCO 3 , while maintaining their macroscopic structure when immersed in 1mol/L Na 2 CO 3 solution at 80°C for 1week. The diametral tensile strengths of the calcite blocks formed using CaSO 4 ·2H 2 O and CaSO 4 were 1.0±0.3 and 2.3±0.7MPa, respectively. The fabrication of calcite blocks using CaSO 4 ·2H 2 O and CaSO 4 proposed in this investigation may be a useful method to produce calcite blocks because of the self-setting ability and high temperature stability of gypsum precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characteristics of a calcite "limestone"-marble from Macedonia, used as flux material

    Directory of Open Access Journals (Sweden)

    Hristova E.

    2003-01-01

    Full Text Available The phase characteristics of calcite "limestone"-marble from Banjany area village (near Skopje, Macedonia were examined by means of XRD, SEM microscope in polarizing and reflected lights, chemical, DT/TG-analyses. It was concluded as follows: - calcite (CaCO3 is a major mineral component (cca 80-90 % prevailing in the marble over the other minerals - dolomite is generally of minor importance (cca 10-20 % in the rock - quartz, micas graphite, pyrite represent typical accessories. As result of the mentioned phase characteristics, this raw materials was for a long time (more than 30 years used as flux in the iron and steel metallurgy in Macedonia.

  17. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy

    Science.gov (United States)

    Hu, Zhongya; Hu, Wenxuan; Wang, Xiaomin; Lu, Yizhou; Wang, Lichao; Liao, Zhiwei; Li, Weiqiang

    2017-07-01

    Magnesium isotopes are an emerging tool to study the geological processes recorded in carbonates. Calcite, due to its ubiquitous occurrence and the large Mg isotope fractionation associated with the mineral, has attracted great interests in applications of Mg isotope geochemistry. However, the fidelity of Mg isotopes in geological records of carbonate minerals (e.g., calcite and dolomite) against burial metamorphism remains poorly constrained. Here we report our investigation on the Mg isotope systematics of a dolomitized Middle Triassic Geshan carbonate section in eastern China. Magnesium isotope analysis was complemented by analyses of Sr-C-O isotopic compositions, major and trace element concentrations, and petrographic and mineralogical features. Multiple lines of evidence consistently indicated that post-depositional diagenesis of carbonate minerals occurred to the carbonate rocks. Magnesium isotope compositions of the carbonate rocks closely follow a mixing trend between a high δ26Mg dolomite end member and a low δ26Mg calcite end member, irrespective of sample positions in the section and calcite/dolomite ratio in the samples. By fitting the measured Mg isotope data using a two-end member mixing model, an inter-mineral Δ26Mgdolomite-calcite fractionation of 0.72‰ was obtained. Based on the experimentally derived Mg isotope fractionation factors for dolomite and calcite, a temperature of 150-190 °C was calculated to correspond to the 0.72‰ Δ26Mgdolomite-calcite fractionation. Such temperature range matches with the burial-thermal history of the local strata, making a successful case of Mg isotope geothermometry. Our results indicate that both calcite and dolomite had been re-equilibrated during burial metamorphism, and based on isotope mass balance of Mg, the system was buffered by dolomite in the section. Therefore, burial metamorphism may reset Mg isotope signature of calcite, and Mg isotope compositions in calcite should be dealt with caution in

  18. Synthesis of sub-millimeter calcite from aqueous solution

    Science.gov (United States)

    Reimi, M. A.; Morrison, J. M.; Burns, P. C.

    2011-12-01

    A novel aqueous synthesis that leads to the formation of calcite (CaCO3) crystals, up to 500μm in diameter, will be used to facilitate the study of contaminant transport in aqueous environmental systems. Existing processes tend to be complicated and often yield nanometer-sized or amorphous CaCO3. The synthesis method presented here, which involves slow mixing of concentrated solutions of CaCl2 ¬and (NH4)2CO3, produces single crystals of rhombohedral calcite in 2 to 4 days. Variations on the experimental method, including changes in pH and solution concentration, were explored to optimize the synthesis. Scanning Electron Microscope images show the differences in size and purity observed when the crystals are grown at pH values ranging from 2 to 6. The crystals grown from solutions of pH 2 were large (up to 500 micrometers in diameter) with minimal polycrystalline calcium carbonate, while crystals grown from solutions with pH values beyond 4 were smaller (up to 100 micrometers in diameter) with significant polycrystalline calcium carbonate. The synthesis method, materials characterization, and use in future actinide contaminant studies will be discussed.

  19. Inherent wettability of different rock surfaces at nanoscale: a theoretical study

    Science.gov (United States)

    Chang, Xiao; Xue, Qingzhong; Li, Xiaofang; Zhang, Jianqiang; Zhu, Lei; He, Daliang; Zheng, Haixia; Lu, Shuangfang; Liu, Zilong

    2018-03-01

    Investigating the inherent wettability of rock surfaces at nanoscale is of great importance in ore floatation and oil recovery field. Using molecular dynamics simulations, we systematically study the wetting behavior of water on different rock surfaces (silica, calcite, gypsum, halite and graphite) at nanoscale. It is demonstrated that the inherent rock wettability follows the order of gypsum > calcite > halite > silica > graphite. Remarkably, we also manifest that the polarity of oil molecules can affect the water contact angles on silica surface. For example, the water contact angles on silica surface in hexane, dodecane, thiophene and toluene are 58 ± 2°, 63 ± 3°, 90 ± 1°, 118 ± 1°, respectively. Furthermore, we investigate the wetting behavior of water on heterogeneous rock surfaces and find that water molecules can move from hydrophobic surface to hydrophilic surface.

  20. Stable calcium isotope composition of a pedogenic carbonate in forested ecosystem: the case of the needle fibre calcite (NFC).

    Science.gov (United States)

    Milliere, Laure; Verrecchia, Eric; Gussone, Nikolaus

    2014-05-01

    Calcium (Ca), carbon (C) and oxygen (O) are important elements in terrestrial environment, as their biogeochemical cycles are directly related to the storage of atmospheric carbon. Nevertheless, contrarily to C and O, Ca isotope composition has been only poorly studied in the terrestrial carbonates. Needle Fibre Calcite (NFC) is one of the most common pedogenic carbonates, unless its origin is still under debate. Recent studies explain its formation by precipitation inside fungal hyphae. Due to this possible biogenic origin, NFC can be considered as a potential bridge between the biochemistry (precipitation inside organic structure) and geochemistry (pedogenic carbonate related to soil conditions) of the Ca. Thus, the study of the Ca isotope composition of NFC seem to be of first interest in order to shed light on the behaviour of Ca in terrestrial environment, especially when precipitation of secondary carbonates is involved. The sampling site is situated in the Swiss Jura Mountains and has been chosen due to a previous complete study of the C and O isotope composition of NFC in relation to the ecosystem, which represent a good precondition for the understanding of the NFC Ca isotope signatures in this context. In this study, the implication of the fungi in the origin of NFC is investigated, by comparing the Ca isotope composition of NFC and a purely physicochemical calcite cement (LCC), both precipitated in the same environment. The δ44Ca signature of NFC and LCC crystals were used to determine possible differences of the precipitation rate during their formation. NFC and LCC have similar δ18O composition and are supposed to precipitate at the same temperature (Milliere et al., 2011a). Thus the study of Ca isotope composition of NFC seems to demonstrate that the elongated shape of the calcite needle can be explained by different precipitation processes than the rhombohedric calcite crystals precipitated in the same environment; and more precisely, the specific

  1. 14C-analyses of calcite coatings in open fractures from the Klipperaas study site, Southern Sweden

    International Nuclear Information System (INIS)

    Possnert, G.; Tullborg, E.L.

    1989-11-01

    Carbonate samples from open fractures in crystalline rock from the Klipperaas study site have been analysed for their 14 C contents using accelerator mass spectrometry. This technique makes it possible to analyse very small carbonate samples (c. 1 mg C). The analyses show low but varying contents of 14 C. However, contamination by CO 2 have taken place affecting small samples more than others. Attempts have been made to quantify the contamination and thus evaluate the analyses of the fracture samples. The obtained low 14 C values can be due to: 1. An effective retention of 14 C by sorption/fractionation forcing 14 C onto the calcite surfaces in the near-surface zone which means that the 14 C contribution to the deeper levels is diminished or 2. the penetration depth of surface groundwater is very shallow. The former is suggested as more probable based on evaluations of the hydrochemical conditions and the fracture mineral studies. (10 figs., 3 tabs., 9 refs.) (authors)

  2. Principles of calcite dissolution in human and artificial otoconia.

    Directory of Open Access Journals (Sweden)

    Leif Erik Walther

    Full Text Available Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV. The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic otoconia (calcite gelatin nanocomposits and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM. Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV.

  3. Galacturonomannan and Golgi-derived membrane linked to growth and shaping of biogenic calcite

    Science.gov (United States)

    Marsh, M. E.; Ridall, A. L.; Azadi, P.; Duke, P. J.

    2002-01-01

    The coccolithophores are valuable models for the design and synthesis of composite materials, because the cellular machinery controlling the nucleation, growth, and patterning of their calcitic scales (coccoliths) can be examined genetically. The coccoliths are formed within the Golgi complex and are the major CaCO(3) component in limestone sediments-particularly those of the Cretaceous period. In this study, we describe mutants lacking a sulfated galacturonomannan and show that this polysaccharide in conjunction with the Golgi-derived membrane is directly linked to the growth and shaping of coccolith calcite but not to the initial orientated nucleation of the mineral phase.

  4. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, Brian D.; Futa, Kiyoto

    2001-01-01

    Pore water in the Topopah Spring Tuff has a narrow range of (delta) 87 Sr values that can be calculated from the (delta) 87 Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of (delta) 87 Sr in the pore water through time; this approximates the variation of (delta) 87 Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model

  5. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  6. Removal of trace elements from landfill leachate by calcite precipitation

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Zelená, O.; Mihaljevič, M.; Šebek, O.; Strnad, L.; Coufal, P.; Bezdička, Petr

    2006-01-01

    Roč. 88, 1-3 (2006), s. 28-31 ISSN 0375-6742 R&D Projects: GA AV ČR(CZ) KJB3111402 Institutional research plan: CEZ:AV0Z40320502 Keywords : landfill leachate * calcite * scavenging Subject RIV: CA - Inorganic Chemistry Impact factor: 0.922, year: 2006

  7. Calcite microcrystals in the pineal gland of the human brain: second harmonic generators and possible piezoelectric transducers

    International Nuclear Information System (INIS)

    Lang, S.B.

    2004-01-01

    Full text: A new form of biomineralization in the pineal gland of the human brain has been studied. It consists of small crystals that are less than 20 μm in length and that are completely distinct from the often-observed mulberry-type hydroxyapatite concretions. Cubic, hexagonal and cylindrical morphologies have been identified using scanning electron microscopy. Energy dispersive spectroscopy, selected-area electron diffraction and near infrared Raman spectroscopy established that the crystals were calcite. Experiments at the European Synchrotron Radiation Facility (ESRF) to study the biomineralization showed the presence of sulfur originating from both sugars and proteins. Other studies at the ESRF furnished information on the complex texture crystallization of the calcite. With the exception of the otoconia structure of the inner ear, this is the only known non-pathological occurrence of calcite in the human body. The calcite microcrystals are believed to be responsible for the previously observed second harmonic generation (SHG) in pineal tissue sections. There is a strong possibility that the complex twinned structure of the crystals may lower their symmetry and permit the existence of a piezoelectric effect

  8. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  9. Amino Acid-Assisted Incorporation of Dye Molecules within Calcite Crystals.

    Science.gov (United States)

    Marzec, Bartosz; Green, David C; Holden, Mark A; Coté, Alexander S; Ihli, Johannes; Khalid, Saba; Kulak, Alexander; Walker, Daniel; Tang, Chiu; Duffy, Dorothy M; Kim, Yi-Yeoun; Meldrum, Fiona C

    2018-05-23

    Biomineralisation processes invariably occur in the presence of multiple organic additives, which act in combination to give exceptional control over structures and properties. However, few synthetic studies have investigated the cooperative effects of soluble additives. This work addresses this challenge and focuses on the combined effects of amino acids and coloured dye molecules. The experiments demonstrate that strongly coloured calcite crystals only form in the presence of Brilliant Blue R (BBR) and four of the seventeen soluble amino acids, as compared with almost colourless crystals using the dye alone. The active amino acids are identified as those which themselves effectively occlude in calcite, suggesting a mechanism where they can act as chaperones for individual molecules or even aggregates of dyes molecules. These results provide new insight into crystal-additive interactions and suggest a novel strategy for generating materials with target properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Surface history of Mercury - Implications for terrestrial planets

    Science.gov (United States)

    Murray, B. C.; Strom, R. G.; Trask, N. J.; Gault, D. E.

    1975-01-01

    A plausible surface history of Mercury is presented which is suggested by Mariner 10 television pictures. Five periods are postulated which are delineated by successive variations in the modification of the surface by external and internal processes: accretion and differentiation, terminal heavy bombardment, formation of the Caloris basin, flooding of that basin and other areas, and light cratering accumulated on the smooth plains. Each period is described in detail; the overall history is compared with the surface histories of Venus, Mars, and the moon; and the implications of this history for earth are discussed. It is tentatively concluded that: Mercury is a differentiated planet most likely composed of a large iron core enclosed by a relatively thin silicate layer; heavy surface bombardment occurred about four billion years ago, which probably affected all the inner planets, and was followed by a period of volcanic activity; no surface modifications caused by tectonic, volcanic, or atmospheric processes took place after the volcanic period.

  11. Use of multiple attributes decision-making Technique for Order Preference by Similarity to Ideal Solution (TOPSIS for Ghare-Gheshlagh calcite in determination of optimum geochemical sampling sites

    Directory of Open Access Journals (Sweden)

    Mansour Rezaei Azizi

    2015-04-01

    Full Text Available Introduction Several valuable calcite deposits are located in Ghare-Gheshlagh, south basin of Urmia Lake, NW Iran. Ghare-Gheshlagh area is situated in the northern part of tectono-sedimentary unit, forming NW part of Tertiary Sanandaj-Sirjan geological belt (Stocklin and Nabavi, 1972. The predominant rock types of the area include light color limestones (Qom Formation and Quaternary alluviums and underlined dolomite in depth (Eftekharnejhad, 1973. The thickness of these units varies between 10 cm and 6 meters and up to some hundred meters in length. In the present study, the effect of geochemical parameters responsible for precipitating calcite from the carbonate aqueous fluids is interpreted by the TOPSIS method to find the most preferable sampling sites and geochemical data. Materials and Methods A total of 20 samples were taken from a NE-SW trending profile including 15 calcites of fresh surface outcrops (5 samples per each colored calcite units in order to determine the nature of the rocks. The mineral assemblages were analyzed by optical methods in combination with XRD powder diffraction analysis. Major elements were determined by X-Ray Fluorescence Spectrometry (XRF, trace and rare earth elements were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS in Geological Survey of Iran. Results The abundances of trace elements were normalized to the continental crust values (Taylor and McLennan, 1981. The green calcite revealed enrichment in Rb and Sr, while green and white calcite were enriched in U. The U enrichment in the green calcite indicates the reduction condition of deposition. Incompatible elements such as Ba, Th, Nb and P depleted in all calcites. Varying the Sr/Ba value between 3.18 and 5.21% indicates the continental deposition environment and non-magmatic waters as well (Cheng et al., 2013. The Sr2+ content of calcites varies from 123 to 427 ppm, indicates suitable condition for calcite precipitation. Eu anomalies

  12. Strontium geochemistry and carbon and oxygen isotopic compositions of Lower Proterozoic dolomite and calcite marbles from the Marmorilik Formation, West Greenland

    International Nuclear Information System (INIS)

    Garde, A.A.

    1979-01-01

    The Marmorilik Formation, Rinkian mobile belt, West Greenland, is a large, Lower Proterozoic carbonate-rock sequence, deformed and metamorphosed under greenschist to amphibolite facies conditions. The pre-deformation thickness of the sequence is at least 2000 m, with about 1400 m of dolomite marble and 350 m of calcite marble. Strontium contents of forty-two dolomite and calcite marbles range from 30 to 100 ppm and 300 to 800 ppm, respectively, whereas samples with calcite of secondary origin have strontium contents between 80 ppm and 200 ppm. Carbon and oxygen isotope ratios were determined for forty calcite and dolomite marbles as -0.2+-1.0 per 1000 delta 13 C and -9.9+-1.5 per 1000 delta 18 O (vs. PDB) and are compatible with the isotopic compositions of unmetamorphosed carbonates of similar age. Calcite from eight calciumsilicate rocks, breccias and calcite veins is significantly more negative in delta 13 C and delta 18 O. Five 13 C analyses of graphite in marble range from -9.6 to -14 per 1000. Possible post-depositional changes in the strontium content and carbon and oxygen isotope compositions are discussed. It is concluded that (a) the calcite marbles are not dedolomites and are therefore of primary origin, (b) the delta 13 C and delta 18 O values of the marbles are primary or diagenetic (i.e., pre-metamorphic), and (c) the isotopic composition of the graphite is compatible with, though not necessarily evidence for, a biogenic origin. (Auth.)

  13. Mineral contents and their solubility on calcium carbonat calcite nanocrystals from cockle shell powder (Anadara granosa Linn)

    Science.gov (United States)

    Widyastuti, S.; Pramushinta, I. A.

    2018-03-01

    Prepared and characterized calcium carbonat calcite nanocrystals improves solubility. Calcium carbonat calcite nanocrystals were synthesized using precipitation method from the waste of blood clam cockle shells (Anadara granosa Linn). This study was conducted to analyze mineral composition of nanocrystals calcium carbonat calcite cockle (Anadara granosa) shell for calcium fortification of food applications and to evaluate the solubilities of Calsium and Phospor. The sample of nanocrystals from cockle shells was evaluated to determine the content of 11 macro-and micro-elements. These elements are Calcium (Ca), Magnesium (Mg), Sodium (Na), Phosphorus (P), Potassium (K), Ferrum (Fe), Copper (Cu), Nickel (Ni), Zink (Zn), Boron (B) and Silica (Si)). Cockleshell powders were found to contain toxic elements below detectable levels. The solubilities of Calcium and Phospor were p<0.05.

  14. Common Ion Effects In Zeoponic Substrates: Dissolution And Cation Exchange Variations Due to Additions of Calcite, Dolomite and Wollastonite

    Science.gov (United States)

    Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.

    2003-01-01

    c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite

  15. Origin of calcite in the glacigenic Virttaankangas complex

    OpenAIRE

    Nina M. Kortelainen; Petri J. Korkeakoski; Juha A. Karhu

    2007-01-01

    Groundwaters of the glacigenic Virttaankangas complex in southern Finland are characterized by high pH values ranging up to 9.5. These values are significantly higher than those observed in silicate-rich shallow groundwater formations in crystalline bedrock areas. TheVirttaankangas sediments were discovered to contain small amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. The primary goal of this study was to determine the mode of...

  16. Simple, simultaneous gravimetric determination of calcite and dolomite in calcareous soils

    Science.gov (United States)

    Literature pertaining to determination of calcite and dolomite is not modern and describes slow methods that require expensive specialized apparatus. The objective of this paper was to describe a new method that requires no specialized equipment. Linear regressions and correlation coefficients for...

  17. Smaller calcite lattice deformation caused by occluded organic material in coccoliths than in mollusk shell

    DEFF Research Database (Denmark)

    Frølich, Simon; Sørensen, Henning Osholm; Hakim, Sepideh Sadat

    2015-01-01

    The growth and nucleation of biominerals are directed and affected by associated biological molecules. In this paper, we investigate the influence of occluded biomolecules on biogenic calcite from the coccolithophorid Pleurochrysis carterae and from chalk, a rock composed predominantly of fossil....... Two heating cycles allow us to differentiate the effects of thermal agitation and organic molecules. Single peak analysis and Rietveld refinement were combined to show significant differences resulting from the occluded biomolecules on the mineral phase in biogenic calcite in the mollusk shell...

  18. Calcite veining and feeding conduits in a hydrothermal system: Insights from a natural section across the Pleistocene Gölemezli travertine depositional system (western Anatolia, Turkey)

    Science.gov (United States)

    Capezzuoli, Enrico; Ruggieri, Giovanni; Rimondi, Valentina; Brogi, Andrea; Liotta, Domenico; Alçiçek, Mehmet Cihat; Alçiçek, Hülya; Bülbül, Ali; Gandin, Anna; Meccheri, Marco; Shen, Chuan-Chou; Baykara, Mehmet Oruç

    2018-02-01

    Linking the architecture of structural conduits with the hydrothermal fluids migrating from the reservoir up to the surface is a key-factor in geothermal research. A contribution to this achievement derives from the study of spring-related travertine deposits, but although travertine depositional systems occur widely, their feeding conduits are only rarely exposed. The integrated study carried out in the geothermal Gölemezli area, nearby the well-known Pamukkale area (Denizli Basin, western Anatolia, Turkey), focused on onyx-like calcite veins (banded travertine) and bedded travertine well exposed in a natural cross-section allowing the reconstruction of the shallower part of a geothermal system. The onyx-like veins represent the thickest vein network (> 150 m) so far known. New field mapping and structural/kinematic analyses allowed to document a partially dismantled travertine complex (bedded travertine) formed by proximal fissure ridges and distal terraced/pools depositional systems. The banded calcite veins, WNW-trending and up to 12 m thick, developed within a > 200 m thick damaged rock volume produced by parallel fault zones. Th/U dating indicates a long lasting (middle-late Pleistocene) fluids circulation in a palaeo-geothermal system that, due to its location and chemical characteristics, can be considered the analogue of the nearby, still active, Pamukkale system. The isotopic characteristics of the calcite veins together with data from fluid inclusions analyses, allow the reconstruction of some properties (i.e. temperature, salinity and isotopic composition) and processes (i.e. temperature variation and intensity of degassing) that characterized the parent fluids and the relation between degassing intensity and specific microfabric of calcite crystals (elongated/microsparite-micrite bands), controlled by changes/fluctuations of the physico-chemical fluid characteristics.

  19. Effects of limestone petrography and calcite microstructure on OPC clinker raw meals burnability

    Science.gov (United States)

    Galimberti, Matteo; Marinoni, Nicoletta; Della Porta, Giovanna; Marchi, Maurizio; Dapiaggi, Monica

    2017-10-01

    Limestone represents the main raw material for ordinary Portland cement clinker production. In this study eight natural limestones from different geological environments were chosen to prepare raw meals for clinker manufacturing, aiming to define a parameter controlling the burnability. First, limestones were characterized by X-Ray Fluorescence, X-Ray Powder Diffraction and Optical Microscopy to assess their suitability for clinker production and their petrographic features. The average domains size and the microstrain of calcite were also determined by X-Ray Powder Diffraction line profile analysis. Then, each limestone was admixed with clay minerals to achieve the adequate chemical composition for clinker production. Raw meals were thermally threated at seven different temperatures, from 1000 to 1450 °C, to evaluate their behaviour on heating by ex situ X-Ray Powder Diffraction and to observe the final clinker morphology by Scanning Electron Microscopy. Results indicate the calcite microstrain is a reliable parameter to predict the burnability of the raw meals, in terms of calcium silicates growth and lime consumption. In particular, mixtures prepared starting from high-strained calcite exhibit a better burnability. Later, when the melt appears this correlation vanishes; however differences in the early burnability still reflect on the final clinker composition and texture.

  20. Calcite production by coccolithophores in the south east Pacific Ocean

    Directory of Open Access Journals (Sweden)

    L. Beaufort

    2008-08-01

    Full Text Available BIOSOPE cruise covered an oceanographic transect through the centre of the South Pacific Gyre (SPG from the Marquesas archipelago to the Peru-Chile upwelling (PCU. Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks were usually low and reached maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales represented more than 30% of all the suspended calcite particles detected in the size range 0.1–46 μm (22% of PIC in term of calcite weight. These species grew preferentially in the Chlorophyll maximum zone. In the SPG their maximum cell concentrations were recorded between depth of 150 and 200 m, which is unusually deep for these taxa. The weight of coccoliths and coccospheres were correlated to their size. Large and heavy coccoliths and coccospheres were found in regions with relatively high fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres were found west of the PCU. This distribution is strongly related to ocean chemistry in particular to alkalinity and to carbonate ions concentration. The biotic (coccolithophores production influence on calcification is mainly driven at the local scale (depth whereas the abiotic (carbonate chemistry plays its most important role at the regional (horizontal level. Here 94% of the variability of coccolith and coccosphere weight can be explained by a change in 7 environmental variables.

  1. Improvement Of The U-Th Method For Dating Of Impure Calcite Having A Large Amount Of Clay And Very Low Uranium Content

    Directory of Open Access Journals (Sweden)

    Samer Farkh

    2015-01-01

    Full Text Available Abstract The U-Th method also called series method of uranium is improved by a new experimental protocol and successfully applied to the impure calcite with uranium concentration 005 dpmg which was previously difficult to be dated accurately. Our experiments performed on 15 calcite samples taken from France and Morocco have highlighted the importance of this methodological improvement by enabling i the elimination of 100 of clay residues ii the reduction of calcite quantity necessary to the chemical manipulation from 20g to 5g iii the analysis of calcite samples poor in uranium and on the other hand rich with clay and iiii the reduction of the lower limit of the U-Th method from 10 Kyrs to 6 Kyrs. The optimization of U-Th method in this work provided a better dating of the accurate age of calcite. Thus this technique is important for the chemical analysis of stalagmite floors of different caves in the region of the Near East.

  2. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2016-11-01

    Two active spring vent pools at Shiqiang (Yunnan Province, China) are characterized by a complex array of precipitates that coat the wall around the pool and the narrow ledges that surround the vent pool. These precipitates include arrays of aragonite crystals, calcite cone-dendrites, red spar calcite, unattached dodecahedral and rhombohedral calcite crystals, and late stage calcite that commonly coats and disguises the earlier formed precipitates. Some of the microbial mats that grow on the ledges around the pools have been partly mineralized by microspheres that are formed of Si and minor amounts of Fe. The calcite and aragonite that are interspersed with each other at all scales are both primary precipitates. Some laminae, for example, change laterally from aragonite to calcite over distances of only a few millimetres. The precipitates at Shiqiang are similar to precipitates found in and around the vent pools of other springs found in Yunnan Province, including those at Gongxiaoshe, Zhuyuan, Eryuan, and Jifei. In all cases, the δDwater and δ18Owater indicate that the spring water is of meteoric origin. These are thermogene springs with the carrier CO2 being derived largely from the mantle and reaction of the waters with bedrock. Variations in the δ13Ctravertine values indicate that the waters in these springs were mixed, to varying degrees, with cold groundwater and its soil-derived CO2. Calcite and aragonite precipitation took place once the spring waters had become supersaturated with respect to CaCO3, probably as a result of rapid CO2 degassing. These precipitates, which were not in isotopic equilibrium with the spring water, are characterized by their unusual crystal morphologies. The precipitation of calcite and aragonite, seemingly together, can probably be attributed to microscale variations in the saturation levels that are, in turn, attributable to microscale variations in the rate of CO2 degassing.

  3. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Directory of Open Access Journals (Sweden)

    A. Wackerbarth

    2012-11-01

    Full Text Available Interpreting stable oxygen isotope (δ18O records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso. The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite.

    First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model.

    We then examine the response of the cave system to mid-Holocene (6000 yr before present, 6 ka climate conditions by forcing the ODSM with ECHAM5-wiso results from 6 ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors

  4. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    Science.gov (United States)

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  5. Sturgeon and paddlefish (Acipenseridae) sagittal otoliths are composed of the calcium carbonate polymorphs vaterite and calcite.

    Science.gov (United States)

    Pracheil, B M; Chakoumakos, B C; Feygenson, M; Whitledge, G W; Koenigs, R P; Bruch, R M

    2017-02-01

    This study sought to resolve whether sturgeon (Acipenseridae) sagittae (otoliths) contain a non-vaterite fraction and to quantify how large a non-vaterite fraction is using neutron diffraction analysis. This study found that all otoliths examined had a calcite fraction that ranged from 18 ± 6 to 36 ± 3% by mass. This calcite fraction is most probably due to biological variation during otolith formation rather than an artefact of polymorph transformation during preparation. © 2016 The Fisheries Society of the British Isles.

  6. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  7. Thermoluminescent of induced calcite by gamma and ultraviolet radiation

    International Nuclear Information System (INIS)

    Lima, J.F. de.

    1987-01-01

    Samples of brazilian calcite, exposed to gamma radiation in laboratory and heated at constant rate of 2.7 0 C/s, showed three glow peaks at 150, 250 and 350 0 C in their thermoluminescent emission curves. The analysis of these peaks, using different models, indicated that they follow a second order kinetics; it has been obtained, for the activation energy, 1.3, 1.5 and 1.7 eV, and, for the pre-exponential factors, 8.1 x 10 14 , 6.8 x10 13 and 2.4 x 10 12 s -1 . Although the total thermoluminescent emission has stayed constant, the relative height of glow peaks has changed with the temperature of annealing in the range of 400 to 700 0 C. Exposed samples were also illuminated with ultraviolet light and the resultant curves showed partial or total bleaching or some glow peaks and the growth of peaks at lower temperatures. Samples of virgin calcite, submited to increasing exposures of gamma rays, showed a corresponding enhancement of the optical absorption bands in the range of 25000 to 47000 cm -1 A subsequent illumination of these samples with ultraviolet light produced a decrease of the optical absorption bands at the same range. (author) [pt

  8. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    Czech Academy of Sciences Publication Activity Database

    Einax, M.; Richter, T.; Nimmrich, M.; Rahe, P.; Stará, Irena G.; Starý, Ivo; Kühnle, A.; Maass, P.

    2016-01-01

    Roč. 145, č. 13 (2016), č. článku 134702. ISSN 0021-9606 Institutional support: RVO:61388963 Keywords : heptahelicene-2-carboxylic acid nanowires * nc-AFM * calcite * growth kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.965, year: 2016

  9. Resolving Point Defects in the Hydration Structure of Calcite (10.4) with Three-Dimensional Atomic Force Microscopy

    Science.gov (United States)

    Söngen, Hagen; Reischl, Bernhard; Miyata, Kazuki; Bechstein, Ralf; Raiteri, Paolo; Rohl, Andrew L.; Gale, Julian D.; Fukuma, Takeshi; Kühnle, Angelika

    2018-03-01

    It seems natural to assume that defects at mineral surfaces critically influence interfacial processes such as the dissolution and growth of minerals in water. The experimental verification of this claim, however, is challenging and requires real-space methods with utmost spatial resolution, such as atomic force microscopy (AFM). While defects at mineral-water interfaces have been resolved in 2D AFM images before, the perturbation of the surrounding hydration structure has not yet been analyzed experimentally. In this Letter, we demonstrate that point defects on the most stable and naturally abundant calcite (10.4) surface can be resolved using high-resolution 3D AFM—even within the fifth hydration layer. Our analysis of the hydration structure surrounding the point defect shows a perturbation of the hydration with a lateral extent of approximately one unit cell. These experimental results are corroborated by molecular dynamics simulations.

  10. Application of kinetic models to the design of a calcite permeable reactive barrier (PRB) for fluoride remediation.

    Science.gov (United States)

    Cai, Qianqian; Turner, Brett D; Sheng, Daichao; Sloan, Scott

    2018-03-01

    The kinetics of fluoride sorption by calcite in the presence of metal ions (Co, Mn, Cd and Ba) have been investigated and modelled using the intra-particle diffusion (IPD), pseudo-second order (PSO), and the Hill 4 and Hill 5 kinetic models. Model comparison using the Akaike Information Criterion (AIC), the Schwarz Bayseian Information Criterion (BIC) and the Bayes Factor allows direct comparison of model results irrespective of the number of model parameters. Information Criterion results indicate "very strong" evidence that the Hill 5 model was the best fitting model for all observed data due to its ability to fit sigmoidal data, with confidence contour analysis showing the model parameters were well constrained by the data. Kinetic results were used to determine the thickness of a calcite permeable reactive barrier required to achieve up to 99.9% fluoride removal at a groundwater flow of 0.1 m.day -1 . Fluoride removal half-life (t 0.5 ) values were found to increase in the order Ba ≈ stonedust (a 99% pure natural calcite) barrier width of 0.97 ± 0.02 m was found to be required for the fluoride/calcite (stonedust) only system when using no factor of safety, whilst in the presence of Mn and Co, the width increased to 2.76 ± 0.28 and 19.83 ± 0.37 m respectively. In comparison, the PSO model predicted a required barrier thickness of ∼46.0, 62.6 & 50.3 m respectively for the fluoride/calcite, Mn and Co systems under the same conditions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  11. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  12. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization.

    Science.gov (United States)

    Kayano, Keisuke; Saruwatari, Kazuko; Kogure, Toshihiro; Shiraiwa, Yoshihiro

    2011-02-01

    Marine coccolithophorids (Haptophyceae) produce calcified scales "coccoliths" which are composed of CaCO(3) and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO(3) crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO(3) crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO(3) crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.

  13. Time-lapse 3D imaging of calcite precipitation in a microporous column

    Science.gov (United States)

    Godinho, Jose R. A.; Withers, Philip J.

    2018-02-01

    Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.

  14. Identification of spectrally similar materials using the USGS Tetracorder algorithm: The calcite-epidote-chlorite problem

    Science.gov (United States)

    Dalton, J.B.; Bove, D.J.; Mladinich, C.S.; Rockwell, B.W.

    2004-01-01

    A scheme to discriminate and identify materials having overlapping spectral absorption features has been developed and tested based on the U.S. Geological Survey (USGS) Tetracorder system. The scheme has been applied to remotely sensed imaging spectroscopy data acquired by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument. This approach was used to identify the minerals calcite, epidote, and chlorite in the upper Animas River watershed, Colorado. The study was motivated by the need to characterize the distribution of calcite in the watershed and assess its acid-neutralizing potential with regard to acidic mine drainage. Identification of these three minerals is difficult because their diagnostic spectral features are all centered at 2.3 ??m, and have similar shapes and widths. Previous studies overestimated calcite abundance as a result of these spectral overlaps. The use of a reference library containing synthetic mixtures of the three minerals in varying proportions was found to simplify the task of identifying these minerals when used in conjunction with a rule-based expert system. Some inaccuracies in the mineral distribution maps remain, however, due to the influence of a fourth spectral component, sericite, which exhibits spectral absorption features at 2.2 and 2.4 ??m that overlap the 2.3-??m absorption features of the other three minerals. Whereas the endmember minerals calcite, epidote, chlorite, and sericite can be identified by the method presented here, discrepancies occur in areas where all four occur together as intimate mixtures. It is expected that future work will be able to reduce these discrepancies by including reference mixtures containing sericite. ?? 2004 Elsevier Inc. All rights reserved.

  15. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    Science.gov (United States)

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Diagenetic conditions of fibrous calcite vein formation in black shales: Petrographic, chemical and isotopic evidence

    Energy Technology Data Exchange (ETDEWEB)

    Al-Aasm, I.S.; Muir, I. (Imperial Oil Resources, Calgary, AB (Canada)); Morad, S. (Windsor Univ., ON (Canada))

    1992-03-01

    Antiaxial fibrous calcite veins 2-6 cm thick outcrop parallel to bedding in the Bluefish Member of the Middle Devonian Hare Indian Formation in the Norman Wells area of the Northwest Territories. The Bluefish Member consists of dark brown to black laminated shales with total organic matter content in the 1.8-8.0 wt % range. The basal part of the Member, characterized by the presence of low diversity macrofossils, was deposited under anaerobic conditions on top of the drowned Hume carbonate platform. The pattern of incorporation of host-shale fragments and tiny inclusions into the fibrous calcite indicates repeated episodes of vein opening and sealing. The [delta][sup 13]C values and the low Mn and Fe contents indicate a dominantly marine source of carbonate ions was related to the dissolution of metastable skeletal carbonates in the host shales. The [delta][sup 18]O values suggest precipitation at 30-50[degree]C and burial depths of tens to hundreds of meters. The formation of finely crystalline non-stoichiometric Ca-rich dolomite disseminated in the shale inclusions occurred subsequent to the emplacement of fibrous calcite veins under elevated burial temperatures. 54 refs., 8 figs., 3 tabs.

  17. Dissolution of minerals with rough surfaces

    Science.gov (United States)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate

  18. Numerical Simulations of Urea Hydrolysis and Calcite Precipitation in Porous Media Using STOMP

    International Nuclear Information System (INIS)

    Guo, Luanjing; Huang, Hai; Hu, Bill X.

    2010-01-01

    Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising in situ immobilization approach of these contaminants is engineered mineral (co)precipitation of calcite driven by urea hydrolysis that is catalyzed by enzyme urease. The tight nonlinear coupling among flow, transport, reaction and reaction-induced property changes of media of this approach was studied by reactive transport simulations with systematically increasing level of complexities of reaction network and physical/chemical heterogeneities using a numerical simulator named STOMP. Sensitivity studies on the reaction rates of both urea hydrolysis and calcite precipitation are performed via controlling urease enzyme concentration and precipitation rate constant according to the rate models employed. We have found that the rate of ureolysis is a dominating factor in the amount of precipitated mineral; however, the spatial distribution of the precipitates depends on both rates of ureolysis and calcite precipitation. A maximum 5% reduction in the porosity was observed within the simulation time period of 6 pore volumes in our 1-dimensional (1D) column simulations. When a low permeability inclusion is considered in the 2D simulations, the altered flow fields redistribute mineral forming constituents, leading to a distorted precipitation reaction front. The simulations also indicate that mineral precipitation occurs along the boundary of the low permeability zone, which implies that contaminants in the low permeability zone could be encapsulated and isolated from the flow paths.

  19. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  20. An isotopic and fluid inclusion study of fracture calcite from borehole OL-KR1 at the Olkiluoto site, Finland

    International Nuclear Information System (INIS)

    Blyth, A.; Frape, S.; Blomqvist, R.; Nissinen, P.; McNutt, R.

    1998-04-01

    A study of the geochemistry of fracture filling calcite in borehole OL-KR1 at the radioactive waste disposal investigation site Olkiluoto (in Finland) was undertaken in 1998. The purpose of the present study is to characterize the fracture calcite using mineralogy, oxygen, carbon and strontium isotopes, and fluid inclusions in order to determine past and present chemical and isotopic condition at the site

  1. An isotopic and fluid inclusion study of fracture calcite from borehole OL-KR1 at the Olkiluoto site, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, A.; Frape, S. [Univ. of Waterloo, ON (Canada); Blomqvist, R.; Nissinen, P. [Geological Survey of Finland, Espoo (Finland); McNutt, R. [McMaster Univ. of Hamilton, ON (Canada)

    1998-04-01

    A study of the geochemistry of fracture filling calcite in borehole OL-KR1 at the radioactive waste disposal investigation site Olkiluoto (in Finland) was undertaken in 1998. The purpose of the present study is to characterize the fracture calcite using mineralogy, oxygen, carbon and strontium isotopes, and fluid inclusions in order to determine past and present chemical and isotopic condition at the site 39 refs.

  2. Aragonite→calcite transformation studied by EPR of Mn 2+ ions

    Science.gov (United States)

    Lech, J.; Śl|zak, A.

    1989-05-01

    The irreversible transformation aragonite→calcite has been studied both at different fixed heating rates (5, 10, 15 and 20 K/min) and at different fixed temperatures. Apparent progression rates of the transformation were observed above 685 K. At 730 K the transformation became sudden and violent. Time developments of the transformation at fixed temperatures have been discussed in terms of Avrami-Lichti's approach to transitions involving nucleation processes.

  3. Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry

    Science.gov (United States)

    Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David

    2014-03-01

    true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM-metal complexes [organic carbon-metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24-150 for V, Ni and Cu. This implies that ternary surface complexation (metal-ligand co-adsorption) can occur (as for NOM-Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM-metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems. The heterogeneous speciation and size distribution of aqueous NOM and metals (Lead and Wilkinson, 2006; Aiken et al., 2011). The variability in NOM-metal transport in caves that arises from the interaction between infiltration, flow routing, and the hydrodynamic properties of the fine colloids and particulates (Hartland et al., 2012). Variable dissociation kinetics through time as a function of (a) (Hartland et al., 2011). The surface charge of calcite and the availability of CaCO3 lattice sites as well as increased incidence of crystallographic defects with implications for incorporation of a range of trace species (Fairchild and Treble, 2009; Fairchild and Hartland, 2010). Thus, incorporation in speleothem calcite with consistent surface site properties will be determined by: The size and composition (i.e. hydrophilicity/hydrophobicity) of the NOM ligand, affecting adsorption and stability at the calcite surface. The lability (i.e. exchangeability) of the complexed metal and its binding affinity for the calcite surface. The concentration of aqueous complexes. Given the complexities, a partitioning approach to the problem is appropriate as a first approximation rather than a precise

  4. Fulvic acid-like organic compounds control nucleation of marine calcite under suboxic conditions

    NARCIS (Netherlands)

    Neuweiler, F.; D'Orazio, M.; Immenhauser, A.M.; Geipel, G.; Heise, K.H.; Cocozza, C.; Miano, T.M.

    2003-01-01

    Intracrystalline organic compounds, enclosed within in situprecipitated marine microcrystalline calcite (automicrite), might represent either an inclusion or the catalyst of such precipitation. We use evidence from a Lower Cretaceous deep-water carbonate mound to show (1) the original source, (2)

  5. On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions

    International Nuclear Information System (INIS)

    Dedera, Sebastian; Burchard, Michael; Glasmacher, Ulrich A.; Schöppner, Nicole; Trautmann, Christina; Severin, Daniel; Romanenko, Anton; Hubert, Christian

    2015-01-01

    A new on-line Raman System, which was installed at the M3-beamline at the UNILAC, GSI Helmholtzzentrum für Schwerionenforschung Darmstadt was used for first “in situ” spectroscopic measurements. Calcite and malachite samples were irradiated in steps between 1 × 10"9 and 1 × 10"1"2 ions/cm"2 with Au ions (calcite) and Xe ions (malachite) at an energy of 4.8 MeV/u. After irradiation, calcite revealed a new Raman band at 437 cm"−"1 and change of the full width at half maximum for the 1087 cm"−"1 Raman band. The Raman bands of malachite change significantly with increasing fluence. Up to a fluence of 7 × 10"1"0 ions/cm"2, all existing bands decrease in intensity. Between 8 × 10"1"0 and 1 × 10"1"1 ions/cm"2 a broad Cu_2O band between 110 and 220 cm"−"1 occurs, which superimposes the pre-existing Raman bands. Additionally, a new broad band between 1000 and 1750 cm"−"1 is formed, which is interpreted as a carbon coating. In contrast to the Cu_2O band, the carbon band vanished when further irradiating the sample. The installations as well as first in situ measurements at room temperature are presented.

  6. Jet-Suspended, Calcite-Ballasted Cyanobacterial Waterwarts in a Desert Spring

    Science.gov (United States)

    Pichel-Garcia, Ferran; Wade, Bman D.; Farmer, Jack D.

    2002-01-01

    We describe a population of colonial cyanobacteria (waterwarts) that develops as the dominant primary producer in a bottom-fed, warm spring in the Cuatro Cienegas karstic region of the Mexican Chihuahuan Desert. The centimeter-sized waterwarts were suspended within a central, conically shaped, 6-m deep well by upwelling waters. Waterwarts were built by an unicellular cyanobacterium and supported a community of epiphytic filamentous cyanobacteria and diatoms but were free of heterotrophic bacteria inside. Sequence analysis of genes revealed that this cyanobacterium is only distantly related to several strains of other unicellular teria Cyanothece, Waterwarts contained orderly arrangements of mineral made up of microcrystalline low-magnesium calcite with high levels of strontium and sulfur. Waterwarts were 95.9% (v/v) glycan, 2.8% cells, and 1.3% mineral grains and had a buoyant density of 1.034 kg/L. An analysis of the hydrological properties of the spring well and the waterwarts demonstrated that both large colony size and the presence of controlled amounts of mineral ballast are required to prevent the population from being washed out of the well. The unique hydrological characteristics of the spring have likely selected for both traits. The mechanisms by which controlled nucleation of extracellular calcite is achieved remain to be explored.

  7. Transformation of the Surface Structure of Marble under the Action of a Shock Wave

    Science.gov (United States)

    Shcherbakov, I. P.; Vettegren, V. I.; Bashkarev, A. Ya.; Mamalimov, R. I.

    2018-01-01

    The structure of marble fracture fragments formed after the destruction under the action of a shock wave have been analyzed by Raman, infrared, and luminescence spectroscopic techniques. It has been found that calcite I in the surface layer of fragments with thicknesses of about 2 μm is transformed into high-pressure phase calcite III. At the same time, concentrations of Mn2+, Eu3+, and other ions decrease to about onefourth of their initial values.

  8. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.

    Science.gov (United States)

    Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G

    2016-07-15

    There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Geometrical properties of rough metallic surfaces and their implication in electromagnetic problems

    International Nuclear Information System (INIS)

    Hernandez, A.; Chicon, R.; Ortuno, M.; Abellan, J.

    1987-01-01

    We analyze the geometrical properties and their implications in the effective surface resistance and wall losses of rough metallic surfaces. The power spectrum and the autocorrelation function are calculated for a simple model that adequately represent the rough surface. The roughness parameters are obtained through average values of the roughness and its derivative. We calculate the density profile, directly related to the depth-dependent effective conductivity. The data from the profilometer are corrected to take into account the finite size of the tip. (author)

  10. Incorporation of Eu(III) into calcite under recrystallization conditions

    International Nuclear Information System (INIS)

    Hellebrandt, S.E.; Jordan, Norbert; Barkleit, Astrid; Schmidt, Moritz; Hofmann, S.

    2017-01-01

    The interaction of three calcite powders with Eu(III) under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). Batch contact studies with reaction times from 1 week up to 3 years revealed that the speciation differs from that observed previously in co-precipitation experiments and is dominated by a newly identified species ''γ''. The speed of formation of this species was found to depend greatly on the recrystallization rate of the studied minerals.

  11. Incorporation of Eu(III) into calcite under recrystallization conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hellebrandt, S.E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Jordan, Norbert [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HGF Young Investigator Group; Hofmann, S.

    2017-06-01

    The interaction of three calcite powders with Eu(III) under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). Batch contact studies with reaction times from 1 week up to 3 years revealed that the speciation differs from that observed previously in co-precipitation experiments and is dominated by a newly identified species ''γ''. The speed of formation of this species was found to depend greatly on the recrystallization rate of the studied minerals.

  12. Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export

    Science.gov (United States)

    Poulton, Alex J.; Adey, Tim R.; Balch, William M.; Holligan, Patrick M.

    2007-03-01

    Recent measurements of surface coccolithophore calcification from the Atlantic Ocean (50°N-50°S) are compared to similar measurements from other oceanic settings. By combining the different data sets of surface measurements, we examine general and regional patterns of calcification relative to organic carbon production (photosynthesis) and other characteristics of the phytoplankton community. Generally, surface calcification and photosynthesis are positively correlated, although the strength of the relationship differs between biogeochemical provinces. Relationships between surface calcification, chlorophyll- a and calcite concentrations are also statistically significant, although again there is considerable regional variability. Such variability appears unrelated to phytoplankton community composition or hydrographic conditions, and may instead reflect variations in coccolithophore physiology. The contribution of inorganic carbon fixation (calcification) to total carbon fixation (calcification plus photosynthesis) is ˜1-10%, and we estimate a similar contribution from coccolithophores to total organic carbon fixation. However, these contributions vary between biogeochemical provinces, and occasionally coccolithophores may account for >20% of total carbon fixation in unproductive central subtropical gyres. Combining surface calcification and photosynthetic rates with standing stocks of calcite, particulate organic carbon, and estimated phytoplankton carbon allows us to examine the fates of these three carbon pools. The relative turnover times vary between different biogeochemical provinces, with no clear relationship to the overall productivity or phytoplankton community structure found in each province. Rather, interaction between coccolithophore physiology (coccolith production and detachment rates), species diversity (cell size), and food web dynamics (grazer ecology) may control the composition and turnover times of calcite particles in the upper ocean.

  13. The effect of heat treatment on the thermoluminescence of naturally-occurring calcites and their use as a gamma-ray dosimeter

    International Nuclear Information System (INIS)

    Engin, Birol; Gueven, Olgun

    2000-01-01

    The feasibility of using naturally-occurring calcite for gamma-ray dosimetry was investigated. Anneal treatment above 350 deg. C increased the sensitivity of all radiation-induced TL peaks except the glow peaks above 300 deg. C. On the other hand, annealing in air, at a temperature of 700 deg. C caused a collapse in the TL sensitivity. The increase in TL efficiency was found to depend on the annealing temperature and time. Heating at 600 deg. C for 5 h and quenching in ambient air are the optimum conditions for TL sensitivity enhancement in the calcite materials investigated. These results are explained using the energy scheme of the pre-dose model of and in terms of the impurity rearrangements in the crystal lattice induced by heating. It was found that the values of the kinetic parameters E, s and b for TL glow peaks remained unchanged for annealed samples. The TL dose-response curves for stable dosimetric peaks of annealed and unannealed calcite samples could be fitted to the same linear mathematical function. This implies that the annealing process probably does not change the nature of the trapping centers except the low temperature TL peaks at 125 and 160 deg. C of flowstone. The TL dosimetric parameters of calcite samples annealed, including glow curves, fading characteristics, dose-responses, dose-rate responses and energy responses, have also been studied in detail. The response to gamma-rays of annealed calcite samples was found to be linear from 0.05 to 10 4 Gy. The lower limit of observable doses for each calcite sample was about 0.05 Gy. This offers the possibility of applying the investigated materials for gamma-ray dosimetry within this useful range. These dosimeters can be used in various applications, such as, in industries related to chemical technology (polymerization), food processing and in determining the dose received by the patient during medical examination and treatment

  14. Adjustment errors of sunstones in the first step of sky-polarimetric Viking navigation: studies with dichroic cordierite/ tourmaline and birefringent calcite crystals.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Blahó, Miklós; Barta, András; Egri, Ádám; Kretzer, Balázs; Hegedüs, Tibor; Jäger, Zoltán; Horváth, Gábor

    2016-01-01

    According to an old but still unproven theory, Viking navigators analysed the skylight polarization with dichroic cordierite or tourmaline, or birefringent calcite sunstones in cloudy/foggy weather. Combining these sunstones with their sun-dial, they could determine the position of the occluded sun, from which the geographical northern direction could be guessed. In psychophysical laboratory experiments, we studied the accuracy of the first step of this sky-polarimetric Viking navigation. We measured the adjustment error e of rotatable cordierite, tourmaline and calcite crystals when the task was to determine the direction of polarization of white light as a function of the degree of linear polarization p. From the obtained error functions e(p), the thresholds p* above which the first step can still function (i.e. when the intensity change seen through the rotating analyser can be sensed) were derived. Cordierite is about twice as reliable as tourmaline. Calcite sunstones have smaller adjustment errors if the navigator looks for that orientation of the crystal where the intensity difference between the two spots seen in the crystal is maximal, rather than minimal. For higher p (greater than p crit) of incident light, the adjustment errors of calcite are larger than those of the dichroic cordierite (p crit=20%) and tourmaline (p crit=45%), while for lower p (less than p crit) calcite usually has lower adjustment errors than dichroic sunstones. We showed that real calcite crystals are not as ideal sunstones as it was believed earlier, because they usually contain scratches, impurities and crystal defects which increase considerably their adjustment errors. Thus, cordierite and tourmaline can also be at least as good sunstones as calcite. Using the psychophysical e(p) functions and the patterns of the degree of skylight polarization measured by full-sky imaging polarimetry, we computed how accurately the northern direction can be determined with the use of the Viking

  15. Mechanics, microstructure and AMS evolution of a synthetic porphyritic calcite aggregate deformed in torsion

    Czech Academy of Sciences Publication Activity Database

    Marques, F. O.; Machek, Matěj; Roxerová, Zuzana; Burg, J.-P.; Almqvist, B. S. G.

    2015-01-01

    Roč. 655, August (2015), s. 41-57 ISSN 0040-1951 Institutional support: RVO:67985530 Keywords : experimental rock deformation * porphyritic calcite aggregate * EBSD and plastic deformation Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.650, year: 2015

  16. Calcite production by Coccolithophores in the South East Pacific Ocean: from desert to jungle

    Science.gov (United States)

    Beaufort, L.; Couapel, M.; Buchet, N.; Claustre, H.

    2007-09-01

    BIOSOPE cruise achieved an oceanographic transect from the Marquise Islands to the Peru-Chili upwelling (PCU) via the centre of the South Pacific Gyre (SPG). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks are usually low and reach maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales) represent 50% of all the suspended calcite particles detected in the size range 0.1-46 μm (21% of PIC in term of the calcite weight). The latter species are found to grow preferentially in the Chlorophyll maximum zone. In the SPG their maximum concentrations was found to occur between 150 and 200 m, which is very deep for these taxa. The weight and size of coccoliths and coccospheres are correlated. Large and heavy coccoliths and coccospheres are found in the regions with relative higher fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres are found west of the PCU. This distribution may correspond to that of the concentration of calcium and carbonate ions.

  17. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada

    International Nuclear Information System (INIS)

    Winograd, I.J.; Coplen, T.B.; Landwehr, J.M.; Revesz, K.M.; Riggs, A.C.; Ludwig, K.R.; Szabo, B.J.; Kolesar, P.T.

    1992-01-01

    Oxygen-18 (δ 18 O) variations in a 36-centimeter-long core (DH-11) of vein calcite from Devils Hole, Nevada, yield an uninterrupted 500,000-year paleotemperature record that closely mimics all major features in the Vostok (Antarctica) paleotemperature and marine δ 18 O ice-volume records. The chronology for this continental record is based on 21 replicated mass-spectrometric uranium-series dates. Between the middle and latest Pleistocene, the duration of the last four glacial cycles recorded in the calcite increased from 80,000 to 130,000 years; this variation suggests that major climate changes were aperiodic. The timing of specific climatic events indicates that orbitally controlled variations in solar insolation were not a major factor in trigering deglaciations. Interglacial climates lasted about 20,000 years. Collectively, these observations are inconsistent with the Milankovitch hypothesis for the origin of the Pleistocene glacial cycles but they are consistent with the thesis that these cycles originated from internal nonlinear feedbacks within the atmosphere-ice sheet-ocean system

  18. Cryogenic cave calcite from several Central European caves: age, carbon and a genetic model

    Czech Academy of Sciences Publication Activity Database

    Žák, K.; Urban, J.; Cílek, Václav; Hercman, H.

    2004-01-01

    Roč. 206, 1/2 (2004), s. 119-136 ISSN 0009-2541 R&D Projects: GA ČR(CZ) GA205/02/0449 Keywords : cryogenic calcite * periglacial zone Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.174, year: 2004

  19. The Uptake of Eu(III) and Th(IV) by Calcite under Hyperalkaline Conditions

    International Nuclear Information System (INIS)

    Tits, J.; Wieland, E.; Bradbury, M.H.; Eckert, P.; Schaible, A.

    2002-10-01

    Calcite is an important component of Valanginian marl, a potential host rock for a low and intermediate level radioactive waste (L/ILW) repository in Switzerland. This mineral also forms an important component of the disturbed zone around a repository, as it remains largely unaffected by the hyperalkaline waters migrating out of the cementitious repository . The sorption behaviour of Eu(III) and Th(IV) on Merck calcite in an artificial cement pore water (ACW) at pH 13.3 has been studied in batch-type sorption experiments. In addition, the effect of α-isosaccharinic acid (ISA) and gluconic acid (GLU) on the sorption of these two cations has been investigated. In the absence of ISA and GLU, a strong interaction of Eu(III) and Th(IV) with Merck calcite was observed. Eu(III) and Th(IV) sorption kinetics were fast and the isotherms indicated a linear adsorption behaviour over the experimentally accessible concentration range. In the case of Eu(III), a decrease of the R d value with increasing solid to liquid (S:L) ratio was observed indicating that, along with adsorption, other processes might influence the immobilisation of this cation by Merck calcite under ACW conditions. In the case of Th(IV), however, changes in the S:L ratio had no effect on the sorption behaviour . High ISA and GLU concentrations in solution significantly affected the sorption of both Eu(III) and Th(IV): R d values for Eu(III) decreased significantly at ISA concentrations higher than 10 -5 M and at GLU concentrations higher than 10 -7 M. The sorption of Th(IV) was reduced at ISA concentrations above 2.10 -5 M and at GLU concentrations above 10 -6 M. The effects of ISA and GLU on the immobilisation of Eu(III) and Th(IV) were interpreted in terms of complex formation in solution. In the case of Eu(III) the metal ligand complexes were found to have a 1 : 1 stoichiometry. Complexation constants derived for the aqueous Eu(III)-ISA. and Eu(III)GLU complexes were determined to be logβ 0 EulSA = -31.1

  20. Calcite dissolution along a transect in the western tropical Indian Ocean: A multiproxy approach

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.

    Three paleocarbonate ion proxies, size index, planktonic foraminifera shell weight, and calcite crystallinity, have been employed here to a set of core top samples from the western tropical Indian Ocean in the water depth ranges from 1086 to 4730 m...

  1. Commentary on the state of knowledge of the origins of the Yucca Mountain calcite veins. Special report number 17, Contract number 94/96.0003

    International Nuclear Information System (INIS)

    Archambeau, C.

    1994-08-01

    This report is a compilation of papers and a letter providing technical information on the origin and geochemistry of calcite veins and calcretes in the vicinity of the Yucca Mountain repository. The information is presented to demonstrate that these deposits may be ''thermogenic'' in origin with some alteration by pedogenic processes. The papers present isotope ratios of uranium, strontium, and carbon to support the claims for a hydrothermal source. The letter provides a critical review of a previous paper presented at the 64th Advisory Committee on Nuclear Waste. The report makes an attempt to emphasize the need to review this possible origin because it has dramatic implications on the geologic history, paleo-ground water levels, and integrity of the repository

  2. Commentary on the state of knowledge of the origins of the Yucca Mountain calcite veins. Special report number 17, Contract number 94/96.0003

    Energy Technology Data Exchange (ETDEWEB)

    Archambeau, C.

    1994-08-01

    This report is a compilation of papers and a letter providing technical information on the origin and geochemistry of calcite veins and calcretes in the vicinity of the Yucca Mountain repository. The information is presented to demonstrate that these deposits may be ``thermogenic`` in origin with some alteration by pedogenic processes. The papers present isotope ratios of uranium, strontium, and carbon to support the claims for a hydrothermal source. The letter provides a critical review of a previous paper presented at the 64th Advisory Committee on Nuclear Waste. The report makes an attempt to emphasize the need to review this possible origin because it has dramatic implications on the geologic history, paleo-ground water levels, and integrity of the repository.

  3. Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation.

    Science.gov (United States)

    Miyata, Kazuki; Tracey, John; Miyazawa, Keisuke; Haapasilta, Ville; Spijker, Peter; Kawagoe, Yuta; Foster, Adam S; Tsukamoto, Katsuo; Fukuma, Takeshi

    2017-07-12

    The microscopic understanding of the crystal growth and dissolution processes have been greatly advanced by the direct imaging of nanoscale step flows by atomic force microscopy (AFM), optical interferometry, and X-ray microscopy. However, one of the most fundamental events that govern their kinetics, namely, atomistic events at the step edges, have not been well understood. In this study, we have developed high-speed frequency modulation AFM (FM-AFM) and enabled true atomic-resolution imaging in liquid at ∼1 s/frame, which is ∼50 times faster than the conventional FM-AFM. With the developed AFM, we have directly imaged subnanometer-scale surface structures around the moving step edges of calcite during its dissolution in water. The obtained images reveal that the transition region with typical width of a few nanometers is formed along the step edges. Building upon insight in previous studies, our simulations suggest that the transition region is most likely to be a Ca(OH) 2 monolayer formed as an intermediate state in the dissolution process. On the basis of this finding, we improve our understanding of the atomistic dissolution model of calcite in water. These results open up a wide range of future applications of the high-speed FM-AFM to the studies on various dynamic processes at solid-liquid interfaces with true atomic resolution.

  4. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    Science.gov (United States)

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structure in continuously cored, deep drill holes at Yucca Mountain, Nevada, with notes on calcite occurrence

    International Nuclear Information System (INIS)

    Carr, W.J.

    1992-12-01

    A study of more than 22,000 feet of core from five deep drill holes at Yucca Mountain, Nevada, provided data on the attitude and vertical distribution of faults and fractures, the sense of fault displacement, and the occurrence of calcite. The study was done mainly to look for evidence of fault flattening at depth, but no consistent downward decrease in dip of faults was found, and no increase in strata rotation was evident with increasing depth. In the two drill holes located near prominent faults that dip toward the holes (USW G-3 and G-2), an apparent increase in the frequency of faults occurs below the tuffs and lavas of Calico Hills. Some of this increase occurs in brittle lavas and flow breccias in the lower part of the volcanic section. In the two holes presumed to be relatively removed from the influence of important faults at depth, the vertical distribution of faults is relatively uniform. Calcite occurs mainly in two general zones, voids in welded portions of the Paintbrush Tuff, and in a deeper zone, mostly below 3,500 feet. Calcite is least abundant in USW G-4, which may reflect the fewer faults and fractures encountered in that drill hole

  6. Magnesian calcite and the problem of the origin of carbonates in the deep-sea Old Black Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, V M

    1988-04-01

    The Old Black Sea (Lower-Middle Holocene) deep-sea sediments in the Black Sea basin contain carbonate laminae with a fixed position in the section - in the base of the typical sapropelic muds. The areal distribution of these laminae covers the whole continental slope and rise. They are usually lacking in the sediments of the abyssal plain. XRD, SEM and EDS studies show that the laminae comprise mainly authigenic carbonates - aragonite and magnesian calcite. Aragonite occurs as elongated rice-shaped monocrystals or as diverse aggregates of elongated crystal platelets. The magnesian calcite (6-14 mol % MgCO/sub 3/) forms aggregates of isometric grains with submicritic dimensions between the aragonite grains or individual laminae consisting of idiomorphic rhombohedral and/or skeleton crystals. Low-magnesian calcite is also found sometimes. Usually it is related to Holocene coccoliths without traces of recrystallization. The laminae do not show traces of lithification. A hemogenic-synsedimentary genesis of the carbonate laminae is suggested; their mineral composition witnesses marine chemical composition of the initial solutions with a high Mg/Ca ratio.

  7. Geochemical signatures of fluid paleo-transfer in fracture filling calcite from low permeability rock masses: examples taken from Bure's and Tournemire's site in France and northern Switzerland; Signatures geochimiques de paleocirculations aqueuses dans la calcite de remplissage de fracture de massifs argileux peu permeables et de leurs encaissants: exemples pris sur les sites de Bure, Tournemire et Suisse du nord

    Energy Technology Data Exchange (ETDEWEB)

    Lecocq, D

    2002-12-15

    Fractures in rock masses represent preferential path for fluid transfer and, as such, are the most efficient way for migration of radionuclides at a regional scale. The impact of fracturing on hydrogeological system is a major challenge for underground radioactive waste storage projects. In this context, geochemistry of fracture-filling calcite is used to better understand physical and chemical properties of palaeo-fluids. A new methodology has been developed to analyze Mg, Mn, Fe, Sr and Rare Earth Elements REE (La, Ce, Nd, Sm, Eu, Dy and Yb) in calcite by Secondary Ion Mass Spectrometry. Analyses of calcite crystals have been performed in fractures from Jurassic clays and limestones in France (Bure and Tournemire sites) and northern Switzerland (Mt Terri's tunnel and deep borehole). On each case, several geochemical signatures are observed, according to REE partitioning and Mn and Fe concentrations. In the Bure site, a dependence of calcite geochemistry from fracture host rock has been evidenced. On the other hand, speciation of REE in solution equilibrated with clayey or calcareous rocks at circum-neutral pH (7 to 8) is not significantly influenced by the media: speciation is dominated by carbonate species in both cases and phosphate complexes can modify heavy REE availability in relatively to light REE. These results point out that in fractures in clays, calcite crystallizes at equilibrium with a fluid expulsed during diagenesis from clay minerals, recording the effect of clays and accessory phases. In limestone fractures, calcite records a later event related to the past functioning of the present aquifer, and the fluid has reached equilibrium with the rock minerals. In secondary filling calcite from Toarcian Argilites faults close to Tournemire's tunnel, three successive generations of calcite are observed in an extensive fault, and a fourth in a compressive one. In Aalenian Opalinus Clays veins, comparison between existing isotopic data and Mn, Fe

  8. The origin of the ore-bearing solution in the Pb-Zn veins of the western Harz, Germany, as deduced from rare-earth element and isotope distributions in calcites

    International Nuclear Information System (INIS)

    Moeller, P.; Parekh, P.P.; Morteani, G.; Hoefs, J.

    1979-01-01

    Rare-earth element (REE) and stable-isotope distribution patterns in calcites from the mining areas of St. Andreasberg, Clausthal and Bad Grund, western Harz, Germany, have been determined. Three types of REE distribution patterns were found: type I is characterized by high amounts of light REE without any Ce and Eu anomalies and relativity homogeneous C- and O-isotopic composition. Type II displays conspicuous Ce and Eu anomalies at lower levels of concentration of the light REE. Type III has very low amounts of REE. Type II and III exhibit a more variable C-isotopic composition than type I. The calcite with type I patterns is assumed to be derived mainly from magnetic waters. A possible source for the magnetic waters seems to be the Brocken-Oker granite. Type-II calcites and the sulfides are probably derived from upheated country rock whereas calcite with type-III pattern mineralized from relatively cold descending solutions. The calcite with type-I pattern turns out to be not in equilibrium with sulfides, although both are in intimate contact, e.g. in banded ores. This non-equilibrium indicates two independent sources for this calcite with type-I pattern and the sulfides. (Auth.)

  9. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    International Nuclear Information System (INIS)

    Myneni, S.C.B.; Perera, R.C.C.

    1997-01-01

    Heavy metal-rich acidic waters (SO 4 2- , AsO 4 3- , SeO 4 2- , Fe 2+ , Fe 3+ , Al 3+ , Cu 2+ , Zn 2+ , Cd 2+ ) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS 2 ), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS 2 + 3.5 O 2 + H 2 O ↔ Fe 2+ + SO 4 2- + 2H + . Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO 3 -rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined

  10. Quantitative laboratory measurements of biogeochemical processes controlling biogenic calcite carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Zendejas, Frank; Lane, Todd W.; Lane, Pamela D.

    2011-01-01

    The purpose of this LDRD was to generate data that could be used to populate and thereby reduce the uncertainty in global carbon cycle models. These efforts were focused on developing a system for determining the dissolution rate of biogenic calcite under oceanic pressure and temperature conditions and on carrying out a digital transcriptomic analysis of gene expression in response to changes in pCO2, and the consequent acidification of the growth medium.

  11. Characterization of Shock Effects in Calcite by Raman Spectroscopy: Results of Experiments

    Science.gov (United States)

    Bell, M. S.

    2016-01-01

    Carbonates comprise approx. 20% by volume of present day Earth's sedimentary rocks and store most of the terrestrial CO2 inventory. Some of the oldest meta-sedimentary rocks found on Earth contain abundant carbonate from which impact-induced release of CO2 could have played a role in the formation and evolution of the atmosphere. Carbonates are also present in the target materials for approx. 30% of all terrestrial impact structures including large impacts such as Chicxulub which happened to occur at a location with extraordinarily thick platform carbonate 3-6 km deep. The impact release of CO2 from carbonates can cause global warming as a result of the well-known greenhouse effect and have subsequent effects on climate and biota. Therefore, the shock behavior of calcite is important in understanding the Cretaceous-Paleogene event and other impacts with carbonate-bearing sediments in their target(s) such as Mars and some asteroids. A comprehensive survey utilizing a variety of techniques to characterize the effects manifest in Calcite (Iceland Spar) experimentally shocked to 60.8 GPa has been completed. Results of analysis by Raman Spectroscopy are reported here.

  12. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation.

    Science.gov (United States)

    Tiano, P; Biagiotti, L; Mastromei, G

    1999-05-01

    The weathering of monumental stones is a complex process inserted in the more general 'matter transformation cycle' operated by physical, chemical and biological factors. The consequence of these combined actions is a loss of cohesion with dwindling and scaling of stone material and the induction of a progressive mineral matrix dissolution. In the case of calcareous stones, calcite leaching increases the material porosity and decreases its mechanical features with a general weakening of the superficial structural strength. Attempts to stop, or at least to slow down, deterioration of monumental stones has been made by conservative treatments with both inorganic or organic products. More recent studies show a new approach to hinder these phenomena by inducing a bio-mediated precipitation of calcite directly inside the stone porosity. This can be achieved either through the application of organic matrix macromolecules extracted from sea shells or of living bacteria. The effectiveness of the treatment using calcinogenic bacteria has been evaluated with laboratory tests specifically developed to evaluate the parameters such as : porosity, superficial strength and chromatic changes, influenced by the treatment itself. The results obtained seem to indicate that this type of treatment might not be suitable for monumental stone conservation.

  13. The Uptake of Eu(III) and Th(IV) by Calcite under Hyperalkaline Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tits, J.; Wieland, E.; Bradbury, M.H.; Eckert, P.; Schaible, A

    2002-10-01

    Calcite is an important component of Valanginian marl, a potential host rock for a low and intermediate level radioactive waste (L/ILW) repository in Switzerland. This mineral also forms an important component of the disturbed zone around a repository, as it remains largely unaffected by the hyperalkaline waters migrating out of the cementitious repository . The sorption behaviour of Eu(III) and Th(IV) on Merck calcite in an artificial cement pore water (ACW) at pH 13.3 has been studied in batch-type sorption experiments. In addition, the effect of {alpha}-isosaccharinic acid (ISA) and gluconic acid (GLU) on the sorption of these two cations has been investigated. In the absence of ISA and GLU, a strong interaction of Eu(III) and Th(IV) with Merck calcite was observed. Eu(III) and Th(IV) sorption kinetics were fast and the isotherms indicated a linear adsorption behaviour over the experimentally accessible concentration range. In the case of Eu(III), a decrease of the R{sub d} value with increasing solid to liquid (S:L) ratio was observed indicating that, along with adsorption, other processes might influence the immobilisation of this cation by Merck calcite under ACW conditions. In the case of Th(IV), however, changes in the S:L ratio had no effect on the sorption behaviour . High ISA and GLU concentrations in solution significantly affected the sorption of both Eu(III) and Th(IV): R{sub d} values for Eu(III) decreased significantly at ISA concentrations higher than 10{sup -5} M and at GLU concentrations higher than 10{sup -7} M. The sorption of Th(IV) was reduced at ISA concentrations above 2.10{sup -5} M and at GLU concentrations above 10{sup -6} M. The effects of ISA and GLU on the immobilisation of Eu(III) and Th(IV) were interpreted in terms of complex formation in solution. In the case of Eu(III) the metal ligand complexes were found to have a 1 : 1 stoichiometry. Complexation constants derived for the aqueous Eu(III)-ISA. and Eu(III)GLU complexes were

  14. Using neutron diffraction to examine the onset of mechanical twinning in calcite rocks

    Science.gov (United States)

    Covey-Crump, S. J.; Schofield, P. F.; Oliver, E. C.

    2017-07-01

    Experimental calibration of the calcite twin piezometer is complicated by the difficulty of establishing the stresses at which the twins observed in the final deformation microstructures actually formed. In principle, this difficulty may be circumvented if the deformation experiments are performed in a polychromatic neutron beam-line because this allows the elastic strain (and hence stress) in differently oriented grains to be simultaneously monitored from diffraction patterns collected as the experiment is proceeding. To test this idea small strain (marble (grain size 150 μm) and Solnhofen limestone (5 μm) at temperatures of 20°-600 °C using the ENGIN-X instrument at the ISIS neutron facility, UK. At the lowest temperatures (25 °C Carrara; 200 °C Solnhofen) the deformation response was purely elastic up to the greatest stresses applied (60 MPa Carrara; 175 MPa Solnhofen). The sign of the calcite elastic stiffness component c14 is confirmed to be positive when the obverse setting of the calcite rhombohedral lattice in hexagonal axes is used. In the Carrara marble samples deformed at higher temperatures, elastic twinning was initiated at small stresses (<15 MPa) in grains oriented such that the Schmid factor for twinning was positive on more than one e-twin system. At greater stresses (65 MPa at 200 °C decreasing to 41 MPa at 500 °C) there was an abrupt onset of permanent twinning in grains with large Schmid factors for twinning on any one e-twin system. No twinning was observed in the Solnhofen limestone samples deformed at 200° or 400 °C at applied stresses of <180 MPa. These results highlight the potential of this approach for detecting the onset of twinning and provide, through experiments on samples with different microstructures, a strategy for systematically investigating the effects of microstructural variables on crystallographically-controlled inelastic processes.

  15. Calcite Twin Analysis in the Central Andes of Northern Argentina and Southern Bolivia

    Science.gov (United States)

    Hardesty, E.; Hindle, D.

    2005-12-01

    The use of calcite twinning to infer compression directions and strain axes patterns has been applied widely in both fold and thrust belts, and continental interiors. Calcite twinning is noted to be one of the most precise methods for determining the internal strain of deformed rocks. Until now, such data from the deformed plate boundary of the Central Andes were lacking. This study has examined twinning orientations along the deformed Andean foreland (southern Bolivia and northern Argentina) from -25 to -20 latitude. In the Central Andes, we find an abundance of calcite twins in intervals of the Cretaceous age Yacorite limestone. Twin samples were collected, measured for orientation and type (I and II can be best used for strain analysis), and processed using the Groshong method, to give resultant strain tensors. The orientations of the twin short axes trend mostly NE-SW, which is close to the plate convergence direction. However, in a limited number of samples from the north, adjacent to the southern culmination of the active Subandean fold thrust belt, they trend NW-SE. This difference may be related to the more active, or more recent, shortening of the southern portion of the Eastern Cordillera, south of the culmination of the Subandean belt. This implies that twin short axes vary consistently with respect to geographic location and local tectonic regime. NW-SE trends in the northern region match well with fault kinematic studies in rocks pre-dating the San Juan del Oro unconformity (9-10 Ma). NE-SW trends in the south could correspond to much younger (~1-3 Ma) fault kinematic trends. In the Eastern Cordillera, where there is present day tectonic activity, the plunges of the twin short axes are found to be almost horizontal. This suggests that the twins were formed after folding occurred.

  16. Emission polarization study on quartz and calcite.

    Science.gov (United States)

    Vincent, R. K.

    1972-01-01

    Calculation of the spectral emission polarization of quartz and calcite polished plates for observation angles of 20 and 70 deg by the substitution of complex index of refraction values for each mineral into Fresnel's equations. The emission polarization is shown to be quite wavelength-dependent, demonstrating that selected narrow or medium-width spectral bands exhibit a significantly higher percentage of polarization than a broad spectral band for these two minerals. Field measurements with a broadband infrared radiometer yield polarizations on the order of 2% for a coarse-grained granite rock and beach sand (both quartz-rich). This implies that a more sensitive detector with a selected medium-width filter may be capable of measuring emission polarization accurately enough to make this parameter useful as a remote sensing tool for discrimination among rocks on the basis of texture.

  17. Assessment of the potential for dating secondary calcite and quartz in fault zones

    International Nuclear Information System (INIS)

    Morency, Maurice

    1982-03-01

    Calcite and quartz occur frequently as secondary minerals in faults. In many instances these minerals are not deformed. Calcite, for example, often exhibits an undisturbed fibrous habit or appears as euhedral crystals. Direct dating of euhedral crystals would provide a minimum age of the last movement along a fault, whereas dating of fibrous crystals would furnish the real age of the last movement. This information would be essential in the evaluation and selection of sites for both nuclear power reactors and nuclear waste disposal. In the Canadian context, to be successful, the technique should be able to date minerals as old as tens of millions of years. In this study both isotopic and radioactive damage techniques were considered. It was found that thermoluminescence, thermally stimulated current, and electron spin resonance offer possibilities. Recent electron spin resonance studies of ancient flints have yielded dates of several hundred million years. It is anticipated that in the near future a combination of the above techniques will be extensively used in the field of geochronology

  18. Genesis and Development of Soils along Different Geomorphic Surfaces in Kouh Birk Area, Mehrestan City

    Directory of Open Access Journals (Sweden)

    Mohammad Akbar Bahoorzahi

    2017-02-01

    the presence of argillic and petrocalcic horizons in rock pediment, soils of this surface were more developed compared to other landforms. High amount of CaCO3 (39.5% was observed in pedon 4 on rock pediment geomorphic surface which is attributed to calcareous parent material. The presence of argillic horizon in this geomorphic position is due to the more available water of the past climate. The maximum salinity was observed in the mantled pediments. Calcic over gypsic horizons formed in pedon 7 on alluvial fan surface due to higher solubility of gypsum than calcium carbonate. Kaolinite, illite, chlorite, and palygorskite clay minerals were found in pedons 1 and 4 on rock pediment. Palygorskite in this position seems to be pedogenic, but kaolinite, illite, and chlorite are inherited from parent material. Mantled pediment and alluvial fan showed smectite, kaolinite, illite, chlorite, and palygorskite clay minerals. Pedogenic smectite in this position is probably formed from weathering of illite and chlorite. On the other hand, palygorskite stability decreased in mantled pediment surface. This is the reason why smectite was the dominant clay mineral in this landform. Clay and calcite coatings were investigated in Bt horizon of pedon 1 (rock pediment. Coatings and infillings of calcite in Bk2 horizon of the same geomorphic position caused a calcic crystallitic b fabric. A diffused clay coating due to the presence of Na in Btn horizon of pedon 3 in rock pediment was observed. Micromorphological observations of By2 horizon in pedon 5 (mantled pediment showed gypsum interlocked plates and gypsum infillings. Interlocked plates formed due to re-solubility of gypsum crystals. Micro spars and infillings of calcite are among dominant pedofeatures found in Bk1 horizon of pedon 7 (alluvial fan geomorphic surface. A calcic crystallitic b fabric and Primary calcite mineral were also observed in this pedon. Release of Ca from calcareous parent material caused Ca+2 to SO4-2 ratio to

  19. The Raman spectrum of CaCO{sub 3} polymorphs calcite and aragonite: A combined experimental and computational study

    Energy Technology Data Exchange (ETDEWEB)

    De La Pierre, Marco, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; Maschio, Lorenzo; Orlando, Roberto; Dovesi, Roberto [Dipartimento di Chimica, Università di Torino and NIS (Nanostructured Interfaces and Surfaces) Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Carteret, Cédric, E-mail: cedric.carteret@univ-lorraine.fr, E-mail: marco.delapierre@unito.it; André, Erwan [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME), UMR 7564, Université de Lorraine-CNRS, 405 rue de Vandoeuvre, 54601 Villers-lès-Nancy (France)

    2014-04-28

    Powder and single crystal Raman spectra of the two most common phases of calcium carbonate are calculated with ab initio techniques (using a “hybrid” functional and a Gaussian-type basis set) and measured both at 80 K and room temperature. Frequencies of the Raman modes are in very good agreement between calculations and experiments: the mean absolute deviation at 80 K is 4 and 8 cm{sup −1} for calcite and aragonite, respectively. As regards intensities, the agreement is in general good, although the computed values overestimate the measured ones in many cases. The combined analysis permits to identify almost all the fundamental experimental Raman peaks of the two compounds, with the exception of either modes with zero computed intensity or modes overlapping with more intense peaks. Additional peaks have been identified in both calcite and aragonite, which have been assigned to {sup 18}O satellite modes or overtones. The agreement between the computed and measured spectra is quite satisfactory; in particular, simulation permits to clearly distinguish between calcite and aragonite in the case of powder spectra, and among different polarization directions of each compound in the case of single crystal spectra.

  20. Graphite content and isotopic fractionation between calcite-graphite pairs in metasediments from the Mgama Hills, Southern Kenya

    International Nuclear Information System (INIS)

    Arneth, J.D.; Schidlowski, M.; Sarbas, B.; Goerg, U.; Amstutz, G.C.

    1985-01-01

    Amphibolite-grade metasediments from the Mgama Hills region, Kenya, contain conspicuous quantities of graphite, most probably derived from organic progenitor materials,. The highest graphite contents are found in schists whereas calcite marbles intercalated in the sequence contain relatively low amounts. The graphitic constituents are consistently enriched in 13 C relative to common sedimentary organic material, with the highest isotopic ratios in graphite from the marbles. Carbon isotope fractionations between calcite and graphite mostly vary between 3.3 and 7.1 per mille, which comes close to both empirically recorded and thermodynamically calculated fractionations in the temperature range of the upper amphibolite facies. However, larger values occasionally encountered in the marbles suggest that complete isotopic equilibrium is not always attained in amphibolite-facies metamorphism. (author)

  1. Assessing the potential for using biogenic calcites as dosemeters for luminescence dating

    International Nuclear Information System (INIS)

    Duller, G.A.T.; Penkman, K.E.H.; Wintle, A.G.

    2009-01-01

    Calcium carbonate emits an intense thermoluminescence (TL) signal and previous work has explored the potential of using this signal to date both inorganic carbonates such as limestones and stalagmites and biogenic calcite produced by marine organisms. Luminescence analysis of biogenic calcites directly dates the secretion of the mineral by the organism and is therefore not reliant upon exposure of the sample to daylight. A method is outlined for using the TL signals from slug plates, from the Limacidae family, and opercula from the snail Bithynia tentaculata to construct a single-aliquot regenerative-dose growth curve. Analysis of slug plates from a number of Quaternary sites show that the equivalent dose (D e ) of a late Holocene sample is close to zero and that the D e increases with age over the last 500 ka. The TL signal from snail opercula is shown to increase up to doses over 4000 Gy. Replicate measurements from 16 opercula from a site ∼220 ka show a broad distribution. Potential causes of this scatter are discussed along with recommendations about how it could be reduced. The major challenge which remains to be solved before slug plates or snail opercula could be used to calculate ages is to develop methods for calculating the dose rate received during burial.

  2. Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions

    Directory of Open Access Journals (Sweden)

    Navdeep K. Dhami

    2018-02-01

    Full Text Available Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD and Tescan Integrated Mineral Analyzer (TIMA demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS. Scanning Electron Microscopy (SEM analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content

  3. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas and its effects on marine biological calcification

    Directory of Open Access Journals (Sweden)

    J. B. Ries

    2010-09-01

    Full Text Available Synchronized transitions in the polymorph mineralogy of the major reef-building and sediment-producing calcareous marine organisms and abiotic CaCO3 precipitates (ooids, marine cements throughout Phanerozoic time are believed to have been caused by tectonically induced variations in the Mg/Ca ratio of seawater (molar Mg/Ca>2="aragonite seas", <2="calcite seas". Here, I assess the geological evidence in support of secular variation in seawater Mg/Ca and its effects on marine calcifiers, and review a series of recent experiments that investigate the effects of seawater Mg/Ca (1.0–5.2 on extant representatives of calcifying taxa that have experienced variations in this ionic ratio of seawater throughout the geologic past.

    Secular variation in seawater Mg/Ca is supported by synchronized secular variations in (1 the ionic composition of fluid inclusions in primary marine halite, (2 the mineralogies of late stage marine evaporites, abiogenic carbonates, and reef- and sediment-forming marine calcifiers, (3 the Mg/Ca ratios of fossil echinoderms, molluscs, rugose corals, and abiogenic carbonates, (4 global rates of tectonism that drive the exchange of Mg2+ and Ca2+ along zones of ocean crust production, and (5 additional proxies of seawater Mg/Ca including Sr/Mg ratios of abiogenic carbonates, Sr/Ca ratios of biogenic carbonates, and Br concentrations in marine halite.

    Laboratory experiments have revealed that aragonite-secreting bryopsidalean algae and scleractinian corals and calcite-secreting coccolithophores exhibit higher rates of calcification and growth in experimental seawaters formulated with seawater Mg/Ca ratios that favor their skeletal mineral. These results support the assertion that seawater Mg/Ca played an important role in determining which hypercalcifying marine organisms were the major reef-builders and sediment-producers throughout Earth history. The observation that primary

  4. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    Science.gov (United States)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  5. Greenschist-Facies Pseudotachylytes and Gouge: a Microstructural Study of the Deformation Propagation at the Boundary Between Hp-Metabasite and Calcite Bearing Metasediments

    Science.gov (United States)

    Crispini, L.; Scambelluri, M.; Capponi, G.

    2013-12-01

    Recent friction experiments on calcite-bearing systems reproduce pseudotachylyte structures, that are diagnostic of dinamic calcite recrystallization related to seismic slip in the shallow crust. Here we provide the study of a pseudotachylyte (PT) bearing low angle oblique-slip fault. The fault is linked to the exhumation of Alpine HP-ophiolites and it is syn- to post-metamorphic with respect to retrograde greenschist facies metamorphism. The observed microstructures developed at the brittle-ductile transition and suggest that seismic and interseismic slip was enhanced by interaction with fluids. The fault zone is in-between high-pressure eclogite-facies metabasites (hangingwall) and calcite bearing metasediments (footwall). The mafic rocks largely consist of upper greenschist facies hornblende, albite, chlorite, epidote with relict eclogitic garnet, Na-pyroxene and rutile; metasediments correspond to calcschist and micaschist with quartz, phengite, zoisite, chlorite, calcite and relics of garnet. Key features of the oucrop are: the thickness and geometry of the PT and gouge; the multiple production of PT characterized by overprinting plastic and brittle deformation; the occurrence in footwall metasediments of mm-thick bands of finely recrystallized calcite coeval with PT development in the hangingwall. The damage zone is ca. 2 m-thick and is characterized by two black, ultra-finegrained straight and sharp Principal Slip Zones (PSZ) marked by PT. The damage zone shows a variety of fault rocks (cataclasite and ultracataclasite, gouge and PT) with multiple crosscutting relationships. Within the two main PSZ, PT occurs in 10-20 cm thick layer, in small scale injection veins and in microfractures. In the mafic hanging wall, the PT is recrystallized and does not preserve glass: it shows flow structures with subrounded, embayed and rebsorbed quartz in a fine grained matrix composed of isotropic albite + chlorite + quartz + epidote + titanite, suggesting recrystallization

  6. Tracing the incorporation of carbon into benthic foraminiferal calcite following the Deepwater Horizon event.

    Science.gov (United States)

    Schwing, Patrick T; Chanton, Jeffrey P; Romero, Isabel C; Hollander, David J; Goddard, Ethan A; Brooks, Gregg R; Larson, Rebekka A

    2018-06-01

    Following the Deepwater Horizon (DWH) event in 2010, hydrocarbons were deposited on the continental slope in the northeastern Gulf of Mexico through marine oil snow sedimentation and flocculent accumulation (MOSSFA). The objective of this study was to test the hypothesis that benthic foraminiferal δ 13 C would record this depositional event. From December 2010 to August 2014, a time-series of sediment cores was collected at two impacted sites and one control site in the northeastern Gulf of Mexico. Short-lived radioisotopes ( 210 Pb and 234 Th) were employed to establish the pre-DWH, DWH, and post-DWH intervals. Benthic foraminifera (Cibicidoides spp. and Uvigerina spp.) were isolated from these intervals for δ 13 C measurement. A modest (0.2-0.4‰), but persistent δ 13 C depletion in the DWH intervals of impacted sites was observed over a two-year period. This difference was significantly beyond the pre-DWH (background) variability and demonstrated that benthic foraminiferal calcite recorded the depositional event. The longevity of the depletion in the δ 13 C record suggested that benthic foraminifera may have recorded the change in organic matter caused by MOSSFA from 2010 to 2012. These findings have implications for assessing the subsurface spatial distribution of the DWH MOSSFA event. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Iron oxide and calcite associated with Leptothrix sp. biofilms within an estavelle in the upper Floridan aquifer

    Directory of Open Access Journals (Sweden)

    Florea Lee J.

    2011-07-01

    Full Text Available In Thornton’s Cave, an estavelle in west-central Florida, SEM, EDS, and XRD data reveal biofilms that are predominantly comprisedof FeOOH-encrusted hollow sheaths that are overgrown and intercalated with calcite. Fragments of this crystalline biofilm adhereto the walls and ceiling as water levels vary within the cave. Those on the wall have a ‘cornflake’ appearance and those affixed tothe ceiling hang as fibrous membranes. PCR of DNA in the active biofilm, combined with morphologic data from the tubes in SEMmicrographs, point to Leptothrix sp., a common Fe-oxidizing bacteria, as the primary organism in the biofilm. Recent discoveries of‘rusticles’ in other Florida caves suggest that Fe-oxidizing bacteria may reside elsewhere in Florida groundwater and may play a rolein the mobility of trace metals in the Upper Florida aquifer. SEM micrographs from two marble tablets submerged for five months, oneexposed to microbial activity and a second isolated from microbial action, revealed no visible etchings or borings and very limited lossof mass. EDS data from the electron micrographs of the unfiltered tablet document the same FeOOH-encrusted hollow sheaths andsimilar deposits of calcite as seen in the ‘cornflakes’. These results, combined with water chemistry data imply that the biofilm mayfocus or even promote calcite precipitation during low-water level conditions when CO2 degasses from the cave pools.

  8. Scratching the surface of ice: Interfacial phase transitions and their kinetic implications

    Science.gov (United States)

    Limmer, David

    The surface structure of ice maintains a high degree of disorder down to surprisingly low temperatures. This is due to a number of underlying interfacial phase transitions that are associated with incremental changes in broken symmetry relative to the bulk crystal. In this talk I summarize recent work attempting to establish the nature and locations of these different phase transitions as well as how they depend on external conditions and nonequilibrium driving. The implications of this surface disorder is discussed in the context of simple kinetic processes that occur at these interfaces. Recent experimental work on the roughening transition is highlighted.

  9. Mass spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein

    International Nuclear Information System (INIS)

    Ludwig, K.R.; Simmons, K.R.; Szabo, B.J.; Riggs, A.C.; Winograd, I.J.; Landwehr, J.M.; Hoffman, R.J.

    1992-01-01

    The Devils Hole calcite vein contains a long-term climatic record, but requires accurate chronologic control for its interpretation. Mass-spectrometric U-series ages for samples from core DH-11 yielding 230 Th ages with precisions ranging from less than 1,000 years (2σ) for samples younger than ∼140 ka (thousands of years ago) to less than 50,000 years for the oldest samples (∼566 ka). The 234 U/ 238 U ages could be determined to a precision of ∼20,000 years for all ages. Calcite accumulated continuously from 566 ka until ∼60 ka at an average rate of 0.7 millimeter per 10 3 years. The precise agreement between replicate analyses and the concordance of the 230 Th/ 238 U and 234 U/ 238 U ages for the oldest samples indicate that the DH-11 samples were closed systems and validate the dating technique in general

  10. Two new solid solutions in calcite-magnesite system identified in a sample from coral reefs in the northern Perth basin

    International Nuclear Information System (INIS)

    Li, D.Y.; O'Connor, B.H.; Zhu, Z.R.; Collins, L.B.; Hunter, B.

    1998-01-01

    Full text: Dolomite, CaMg(CO 3 ) 2 , is an economically important mineral, being of particular significance in petroleum geology. Carbonate rocks have long been a focus of investigation because these rocks contain an estimated 60 percent of the world's recoverable petroleum, and include most of the world's largest reservoirs. Correct phase identification in carbonates has concerned sedimentologists and petroleum geologists for decades. A new type of solid solution in the calcite (CaCO 3 ) - magnesite (MgCO 3 ) system has been identified at Curtin University by Rietveld XRD and neutron diffraction data analysis in a sample from late Pleistocene reefs in the northern Perth Basin. It is known that the structure of calcite (space group R3C) will be transformed to dolomite (R3), which has an ordered distribution of Ca and Mg in the structure, if 50% of its Ca atoms are substituted by Mg in terms of the Ca-Mg atomic ratio. However, the upper limit of Mg substitution for Ca in calcite under sedimentary-geological conditions without there being a change in structure to dolomite is still unknown. Two carbonates examined at Curtin showed Mg substitution for Ca in calcite under coral reef sedimentary conditions of 18.1% and 37.7%, whereas Bragg peak shifts for a 'dolomite, line for these samples were interpreted by geologists as indicative of dolomite with a certain extent of order-disorder distribution between Ca and Mg atoms. The observations have provided an opportunity to re-examine the origins of dolomite and aspects of dolomitization in a coral reef environment in the Quaternary

  11. Uncertainty in geochemical modelling of CO2 and calcite dissolution in NaCl solutions due to different modelling codes and thermodynamic databases

    International Nuclear Information System (INIS)

    Haase, Christoph; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2013-01-01

    Highlights: • CO 2 and calcite dissolution is calculated. • The codes PHREEQC, Geochemist’s Workbench, EQ3/6, and FactSage are used. • Comparison with Duan and Li (2008) shows lowest deviation using phreeqc.dat and wateq4f.dat. • Using Pitzer databases does not improve accurate calculations. • Uncertainty in dissolved CO 2 is largest using the geochemical models. - Abstract: A prognosis of the geochemical effects of CO 2 storage induced by the injection of CO 2 into geologic reservoirs or by CO 2 leakage into the overlaying formations can be performed by numerical modelling (non-invasive) and field experiments. Until now the research has been focused on the geochemical processes of the CO 2 reacting with the minerals of the storage formation, which mostly consists of quartzitic sandstones. Regarding the safety assessment the reactions between the CO 2 and the overlaying formations in the case of a CO 2 leakage are of equal importance as the reactions in the storage formation. In particular, limestone formations can react very sensitively to CO 2 intrusion. The thermodynamic parameters necessary to model these reactions are not determined explicitly through experiments at the total range of temperature and pressure conditions and are thus extrapolated by the simulation code. The differences in the calculated results lead to different calcite and CO 2 solubilities and can influence the safety issues. This uncertainty study is performed by comparing the computed results, applying the geochemical modelling software codes The Geochemist’s Workbench, EQ3/6, PHREEQC and FactSage/ChemApp and their thermodynamic databases. The input parameters (1) total concentration of the solution, (2) temperature and (3) fugacity are varied within typical values for CO 2 reservoirs, overlaying formations and close-to-surface aquifers. The most sensitive input parameter in the system H 2 O–CO 2 –NaCl–CaCO 3 for the calculated range of dissolved calcite and CO 2 is the

  12. Ca and S K-edge XANES studies of calcite-acid mine water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Myneni, S.C.B.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Heavy metal-rich acidic waters (SO{sub 4}{sup 2{minus}}, AsO{sub 4}{sup 3{minus}}, SeO{sub 4}{sup 2{minus}}, Fe{sup 2+}, Fe{sup 3+}, Al{sup 3+}, Cu{sup 2+}, Zn{sup 2+}, Cd{sup 2+}) and related ochreous coatings are common around abandoned sulfide and coal mine sites. This is mainly caused by the natural weathering of pyrite (FeS{sub 2}), arsenopyrite (FeAsS), and other metal sulfide containing shales. Acid generation in the case of pyrite can be explained by a general reaction: FeS{sub 2} + 3.5 O{sub 2} + H{sub 2}O {leftrightarrow} Fe{sup 2+} + SO{sub 4}{sup 2{minus}} + 2H{sup +}. Also, these low pH waters interact with the soils, and mobilize their soluble elements. One of the common remediation strategies is to allow these acid waters to react with limestone (CaCO{sub 3}-rich rock) and neutralize the pH and precipitate out soluble metals. Yet, the associated problem is the precipitation of Fe and Al oxides and hydroxy sulfate coatings on limestone surfaces, which block calcite reactive sites, and make them ineffective a few hours after initiation of treatment. The main objectives of this research are to examine: (1) the chemistry of limestone surface coatings, and (2) their toxic metal uptake and the conditions that inhibit their formation. Previous molecular studies using X-ray diffraction, and vibrational spectroscopy on limestone surface coatings (sampled from Athens, OH) indicate that the surface-most layer (the layer in contact with water) is composed of schwertmannite (Fe(III)-hydroxy sulfate) like phases. However, white, X-ray amorphous; Al-, sulfate- and carbonate-rich; and Ca-poor phases appeared at the interface between the limestone and the iron oxide coatings. The structure, morphology, and coordination chemistry of component major and trace elements of these white precipitate phases have not previously been examined.

  13. In-situ buildup of cosmogenic isotopes at the earth's surface: measurement of erosion rates and exposure times

    International Nuclear Information System (INIS)

    Fifield, L.K.; Allan, G.L.; Stone, J.O.H.; Evans, J.M.; Cresswell, R.G.; Ophel, T.R.

    1993-01-01

    Cosmic rays produce a number of nuclides in rocks that can be used to determine the geomorphic history of surfaces. The most useful are the radioactive isotopes 10 Be (t 1/2 = 1.5Ma), 26 Al (0.7Ma) and 36 Cl (0.3Ma). Within the top 2m of the surface, these are produced principally by fast neutrons. At greater depths, production is dominated by the capture of negative muons. Measurements of a single nuclide produced in situ can be used to determine total exposure times or erosion rates. The use of multiple nuclides with different half-lives makes it possible to determine more complex histories, such as exposures interrupted by periods of burial. At the ANU, all three of the isotopes above are being used to study a variety of problems in geomorphology and paleoclimatology, although to date, most of the work has concentrated on 36 Cl. The accumulation of cosmogenic 36 Cl in calcite (CaCO 3 ) provides a means of measuring erosion rates on limestone surfaces. Sensitivity is achieved over a wide range of erosion rates due to the high production rate of 36 Cl in calcite (typically greater than 30 atoms/g/yr) and a detection limit of ca. 5000 atoms/g attainable with the ANU AMS system. The method is simplified by the predominance of Ca reactions (principally spallation) over other sources of 36 Cl in calcite, and the ease of sample preparation. This presentation discuss the results of measurements of 36 Cl in calcite from limestone samples from Australia and Papua New Guinea. Erosion rates derived from these measurements range from 3 microns per year (Australia) to over 200 microns per year in the New Guinea highlands. 3 refs

  14. Multiple phases of mg-calcite in crustose coralline algae suggest caution for temperature proxy and ocean acidification assessment: lessons from the ultrastructure and biomineralization in Phymatolithon (Rhodophyta, Corallinales)1.

    Science.gov (United States)

    Nash, Merinda C; Adey, Walter

    2017-10-01

    Magnesium content, strongly correlated with temperature, has been developed as a climate archive for the late Holocene without considering anatomical controls on Mg content. In this paper, we explore the ultrastructure and cellular scale Mg-content variations within four species of North Atlantic crust-forming Phymatolithon. The cell wall has radial grains of Mg-calcite, whereas the interfilament (middle lamella) has grains aligned parallel to the filament axis. The proportion of interfilament and cell wall carbonate varies by tissue and species. Three distinct primary phases of Mg-calcite were identified: interfilament Mg-calcite (mean 8.9 mol% MgCO 3 ), perithallial cell walls Mg-calcite (mean 13.4 mol% MgCO 3 ), and hypothallium Mg-calcite (mean 17.1 mol% MgCO 3 ). Magnesium content for the bulk crust, an average of all phases present, showed a strongly correlated (R 2  = 0.975) increase of 0.31 mol% MgCO 3 per °C. Of concern for climate reconstructions is the potential for false warming signals from undetected postgrazing wound repair carbonate that is substantially enriched in Mg, unrelated to temperature. Within a single crust, Mg-content of component carbonates ranged from 8 to 20 mol% MgCO 3 , representing theoretical thermodynamic stabilities from aragonite-equivalent to unstable higher-Mg-calcite. It is unlikely that existing current predictions of ocean acidification impact on coralline algae, based on saturation states calculated using average Mg contents, provide an environmentally relevant estimate. © 2017 Phycological Society of America.

  15. Palaeoclimatic and geomorphic implications of 230Th/ 234U dates on speleothems from Britain

    International Nuclear Information System (INIS)

    Atkinson, T.C.; Harmon, R.S.; Smart, P.L.; Waltham, A.C.

    1978-01-01

    It is stated that a priori arguments and empirical evidence both suggest that widespread deposition of calcite in caves takes place in non-glacial climatic conditions. Radiometric dates from calcite speleothems in Britain indicate deposition before 170,000 yr b.p., during an interglacial around 90 to 140,000 yr b.p., an interstadial at 60,000 yr b.p., and in the late Devensian and Holocene. The positions of speleothems within caves allow minimum ages to be estimated for the past water tables and associated surface landforms. The main erosion of the Yorkshire Dales is shown to date from 400,000 yr b.p., while Cheddar Gorge in the Mendip Hills has been deepened by 70 m during the last 400 millenia. (author)

  16. In-situ buildup of cosmogenic isotopes at the earth`s surface: measurement of erosion rates and exposure times

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L K; Allan, G L; Stone, J O.H.; Evans, J M; Cresswell, R G; Ophel, T R [Australian National Univ., Canberra, ACT (Australia)

    1994-12-31

    Cosmic rays produce a number of nuclides in rocks that can be used to determine the geomorphic history of surfaces. The most useful are the radioactive isotopes {sup 10}Be (t{sub 1/2} = 1.5Ma), {sup 26}Al (0.7Ma) and {sup 36}Cl (0.3Ma). Within the top 2m of the surface, these are produced principally by fast neutrons. At greater depths, production is dominated by the capture of negative muons. Measurements of a single nuclide produced in situ can be used to determine total exposure times or erosion rates. The use of multiple nuclides with different half-lives makes it possible to determine more complex histories, such as exposures interrupted by periods of burial. At the ANU, all three of the isotopes above are being used to study a variety of problems in geomorphology and paleoclimatology, although to date, most of the work has concentrated on {sup 36}Cl. The accumulation of cosmogenic {sup 36}Cl in calcite (CaCO{sub 3}) provides a means of measuring erosion rates on limestone surfaces. Sensitivity is achieved over a wide range of erosion rates due to the high production rate of {sup 36}Cl in calcite (typically greater than 30 atoms/g/yr) and a detection limit of ca. 5000 atoms/g attainable with the ANU AMS system. The method is simplified by the predominance of Ca reactions (principally spallation) over other sources of {sup 36}Cl in calcite, and the ease of sample preparation. This presentation discuss the results of measurements of {sup 36}Cl in calcite from limestone samples from Australia and Papua New Guinea. Erosion rates derived from these measurements range from 3 microns per year (Australia) to over 200 microns per year in the New Guinea highlands. 3 refs.

  17. In-situ buildup of cosmogenic isotopes at the earth`s surface: measurement of erosion rates and exposure times

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Allan, G.L.; Stone, J.O.H.; Evans, J.M.; Cresswell, R.G.; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia)

    1993-12-31

    Cosmic rays produce a number of nuclides in rocks that can be used to determine the geomorphic history of surfaces. The most useful are the radioactive isotopes {sup 10}Be (t{sub 1/2} = 1.5Ma), {sup 26}Al (0.7Ma) and {sup 36}Cl (0.3Ma). Within the top 2m of the surface, these are produced principally by fast neutrons. At greater depths, production is dominated by the capture of negative muons. Measurements of a single nuclide produced in situ can be used to determine total exposure times or erosion rates. The use of multiple nuclides with different half-lives makes it possible to determine more complex histories, such as exposures interrupted by periods of burial. At the ANU, all three of the isotopes above are being used to study a variety of problems in geomorphology and paleoclimatology, although to date, most of the work has concentrated on {sup 36}Cl. The accumulation of cosmogenic {sup 36}Cl in calcite (CaCO{sub 3}) provides a means of measuring erosion rates on limestone surfaces. Sensitivity is achieved over a wide range of erosion rates due to the high production rate of {sup 36}Cl in calcite (typically greater than 30 atoms/g/yr) and a detection limit of ca. 5000 atoms/g attainable with the ANU AMS system. The method is simplified by the predominance of Ca reactions (principally spallation) over other sources of {sup 36}Cl in calcite, and the ease of sample preparation. This presentation discuss the results of measurements of {sup 36}Cl in calcite from limestone samples from Australia and Papua New Guinea. Erosion rates derived from these measurements range from 3 microns per year (Australia) to over 200 microns per year in the New Guinea highlands. 3 refs.

  18. Calcite deposits in drill cores USW G-2 and USW GU-3/G-3 at Yucca Mountain, Nevada: Preliminary report

    International Nuclear Information System (INIS)

    Vaniman, D.T.

    1994-04-01

    Yucca Mountain is being studied as a potential site for deep geologic disposal of high-level radioactive waste. Should a repository be developed at Yucca Mountain, the preferred location is within the upper unsaturated tuffaceous volcanic rocks. In this location, one factor of concern is the amount and rate of aqueous transport through the unsaturated rocks toward the underlying saturated intervals. Calcite, one of the most recently-formed minerals at Yucca Mountain, is of minor abundance in the unsaturated rocks but is widely distributed. Studies of calcite ages, isotopic systematics, chemistry and petrography could lead to a better understanding of transport processes at Yucca Mountain

  19. Remineralization of permeate water by calcite bed in the Daoura's plant (south of Morocco)

    Science.gov (United States)

    Biyoune, M. G.; Atbir, A.; Bari, H.; Hassnaoui, L.; Mongach, E.; Khadir, A.; Boukbir, L.; Bellajrou, R.; Elhadek, M.

    2017-04-01

    To face water shortage and to fight drought, the National office of Water and Electricity (ONEE) carried out a program aiming at constructing several desalination stations of seawater in the South of Morocco. However, the final product water after desalination (osmosis water) has turned out to be unbalanced and has an aggressive character. Therefore, a post-treatment of remineralization is necessary to recover the calco-carbonic equilibrium of water and to protect the distribution network from corrosion degradation. Thereby, our work aims to examine the performance of the remineralization used in Daoura plant by the calcite bed in the absence of carbon dioxide CO2 (without acidification), we have followed many parameters indicating the performance of this technique adopted such as pH, TAC (hydroxide, carbonate and bicarbonate content), Ca content, Langelier saturation index (LSI), Larson index (LR). The results obtained show that this technique adopted in Daoura plant brings to water back its entire calco-carbonic balance to measure up to the Moroccan standards of drinking water. Generally, the exploitation of the calcite bed technique for remineralization is simple, easy and it does not require any major efforts or precautions.

  20. Effects of freshwater Synechococcus sp. cyanobacteria pH buffering on CaCO3 precipitation: Implications for CO2 sequestration

    International Nuclear Information System (INIS)

    Martinez, Raul E.; Weber, Sebastian; Grimm, Christian

    2016-01-01

    In the present study, a mixed-flow steady-state bio-reactor was designed to biomineralize CO 2 as a consequence of photosynthesis from active Synechococcus sp. Dissolved CO 2 , generated by constant air bubbling of inorganic and cyanobacteria stock solutions, was the only source of inorganic carbon. The release of hydroxide ion by cyanobacteria from photosynthesis maintained highly alkaline pH conditions. In the presence of Ca 2+ and carbonate species, this led to calcite supersaturation under steady state conditions. Ca 2+ remained constant throughout the experiments showing the presence of steady state conditions. Similarly, the Synechococcus sp. biomass concentration remained stable within uncertainty. A gradual pH decrease was observed for the highest Ca 2+ condition coinciding with the formation of CaCO 3 . The high degree of supersaturation, under steady-state conditions, contributed to the stabilization of calcite and maintained a constant driving force for the mineral nucleation and growth. For the highest Ca 2+ condition a fast crystal growth rate was consistent with rapid calcite precipitation as suggested further by affinity calculations. Although saturation state based kinetic precipitation models cannot accurately reflect the controls on crystal growth kinetics or reliably predict growth mechanisms, the relatively reaction orders obtained from modeling of calcite precipitation rates as function of decreasing carbonate concentration suggest that the precipitation occurred via surface-controlled rate determining reactions. These high reaction orders support in addition the hypothesis that crystal growth proceeded through complex surface controlled mechanisms. In conclusion, the steady state supersaturated conditions generated by a constant cyanobacteria biomass and metabolic activity strongly suggest that these microorganisms could be used for the development of efficient CO 2 sequestration methods in a controlled large-scale environment. - Highlights:

  1. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization

    DEFF Research Database (Denmark)

    Sand, K K; Yang, M; Makovicky, E

    2010-01-01

    The interaction of OH-containing compounds with calcite, CaCO(3), such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorp...

  2. On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: development of crystallinity and protein involvement.

    Science.gov (United States)

    Veis, Arthur; Stock, Stuart R; Alvares, Keith; Lux, Elizabeth

    2011-01-01

    Sea urchin teeth grow continuously and develop a complex mineralized structure consisting of spatially separate but crystallographically aligned first stage calcitic elements of high Mg content (5-15 mol% mineral). These become cemented together by epitaxially oriented second stage very high Mg calcite (30-40 mol% mineral). In the tooth plumula, ingressing preodontoblasts create layered cellular syncytia. Mineral deposits develop within membrane-bound compartments between cellular syncytial layers. We seek to understand how this complex tooth architecture is developed, how individual crystalline calcitic elements become crystallographically aligned, and how their Mg composition is regulated. Synchrotron microbeam X-ray scattering was performed on live, freshly dissected teeth. We observed that the initial diffracting crystals lie within independent syncytial spaces in the plumula. These diffraction patterns match those of mature tooth calcite. Thus, the spatially separate crystallites grow with the same crystallographic orientation seen in the mature tooth. Mineral-related proteins from regions with differing Mg contents were isolated, sequenced, and characterized. A tooth cDNA library was constructed, and selected matrix-related proteins were cloned. Antibodies were prepared and used for immunolocaliztion. Matrix-related proteins are acidic, phosphorylated, and associated with the syncytial membranes. Time-of-flight secondary ion mass spectroscopy of various crystal elements shows unique amino acid, Mg, and Ca ion distributions. High and very high Mg calcites differ in Asp content. Matrix-related proteins are phosphorylated. Very high Mg calcite is associated with Asp-rich protein, and it is restricted to the second stage mineral. Thus, the composition at each part of the tooth is related to architecture and function. Copyright © 2011 S. Karger AG, Basel.

  3. Calcite Phase Conversion Prediction Model for CaO-Al2O3-SiO2 Slag: An Aqueous Carbonation Process at Ambient Pressure

    Science.gov (United States)

    Zhang, Huining; Dong, Jianhong; Li, Hui; Xiong, Huihui; Xu, Anjun

    2018-06-01

    To evaluate the effect of the mineralogical phase on carbonation efficiency for CaO-Al2O3-SiO2 slag, a calcite phase conversion prediction model is proposed. This model combines carbon dioxide solubility with carbonation reaction kinetic analysis to improve the prediction capability. The effect of temperature and carbonation time on the carbonation degree is studied in detail. Results show that the reaction rate constant ranges from 0.0135 h-1 to 0.0458 h-1 and that the mineralogical phase contribution sequence for the carbonation degree is C2S, CaO, C3A and CS. The model accurately predicts the effect of temperature and carbonation time on the simulated calcite conversion, and the results agree with the experimental data. The optimal carbonation temperature and reaction time are 333 K and 90 min, respectively. The maximum carbonation efficiency is about 184.3 g/kg slag, and the simulation result of the calcite phase content in carbonated slag is about 20%.

  4. Calcite twinning strain variations across the Proterozoic Grenville orogen and Keweenaw-Kapuskasing inverted foreland, USA and Canada

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2017-11-01

    Full Text Available We report the calcite twinning strain results of a traverse across the Grenville orogen from Parry Sound, Ontario (NW to Ft. Ann, New York (SE, including the younger, adjacent Ordovician Taconic allochthon. Fifty four carbonates (marbles, calcite veins, Ordovician limestone were collected resulting in 68 strain analyses on mechanically twinned calcite (n = 2337 grains across the Central Gneiss Belt (CGB; 3 samples, the Central Metasedimentary Belt (CMB; 27 samples, the Central Granulite Terrane (CGT; Adirondack's; 13 samples and the Ottawan Orogenic Lid (OOL; 11 samples. Twinning strains in the greenschist-grade OOL marbles preserve N–S shortening and U-Pb titanite ages (∼1150 Ma; n = 4 document these marbles formed during the Shawinigan (1190–1140 Ma part of the Grenville orogen. From northwest to southeast, the Ottawan (1095–1020 Ma twinning strain is dominantly a layer-parallel shortening fabric oriented N–S (Parry Sound, then becomes parallel to the Grenville thrust direction (NW–SE across the CMB to the Adirondack Highlands where the sub-horizontal shortening strain becomes margin-parallel (SW–NE. Within the regional sample suite there are two areas studied in detail, the Bancroft shear zone (n = 11 and a roadcut on the southeast side of the Adirondack Mountains (Ft. Ann, NY; n = 8. Marbles from the Bancroft shear zone contain calcite grains with 2 sets of twin lamellae (e1 and e2. The better-developed e1 sets (n = 406 record a horizontal fabric oriented NW–SE whereas the younger e2 lamellae (n = 146 preserve a margin-parallel (SW–NE horizontal fabric. Both the e1 and e2 strains record an overprint vertical shortening strain (NEV, perhaps related to extensional orogenic collapse. We also report an Ottawan orogen-aged granoblastic mylonite (1093 Ma, U-Pb zircon; 1102 Ma Ar-Ar biotite in the Keweenaw thrust hanging wall 500 km inboard of the Grenville front and interpret the relations of Grenville

  5. The surface interactions of a near-neutral carbon nanoparticle tracer with calcite

    KAUST Repository

    Li, Yan Vivian; Cathles, Lawrence M.

    2016-01-01

    A new class of nearly charge-neutral carbon-cored nanoparticle tracers are remarkably non-interactive with solid surfaces and could provide a valuable baseline for diverse hydrological and environmental studies of subsurface flow and particle

  6. The influence of solution composition and grain boundaries on the replacement of calcite by dolomite

    Science.gov (United States)

    Moraila Martinez, Teresita de Jesus; Putnis, Christine V.; Putnis, Andrew

    2016-04-01

    Dolomite formation is a mineral replacement reaction that affects extensive rock volumes and comprises a large fraction of oil and gas reservoirs [1,2]. The most accepted hypothesis is the 'dolomitization' of limestone by Mg-rich fluids [3]. The objective of this research is to study the replacement mechanism of calcite by dolomite, the role of grain boundaries, highlighted by Etschmann et al. (2014), and the possible influence of solutions in dolomite formation under the presence of ions that are normally in crustal aqueous fluids. To accomplish this purpose, we performed hydrothermal experiments using Carrara marble cubes of ~1.5 mm size and 7-9 mg weight as starting material, reacted with 1M (Mg,Ca)Cl2 aqueous solutions, with Mg/Ca ratios of 3 and 5 at 200°C, for different reaction times. Additional experiments were performed adding 1mM of Na2SO4, NaCl or NaF to the previous solutions. After the reaction, the product phases were identified using Raman spectroscopy, X-Ray powder diffraction (XRD), electron microprobe analysis (EMPA), and the textural evolution was studied by scanning electron microscopy (SEM). Samples reacted with aqueous solutions resulted in the replacements of the calcite rock into magnesite and dolomite. The amount and type of reaction strongly depends on the Mg/Ca ratio. Samples reacted with a Mg/Ca ratio of 5 resulted in an almost complete replacement reaction and more favorable for magnesite formation than for dolomite. When the Mg/Ca ratio was 3 dolomite formed but the replacement was located in the core of the sample. We show that grain boundaries are very important for the infiltration of solution and the progress of a replacement reaction, acting as fluid pathways. Solution composition controls the nature of the replacement product. Acknowledgment: This work is funded within a Marie Curie EU Initial Training Network- CO2-React. 1. Etschmann B., Brugger J., Pearce M.A., Ta C., Brautigan D., Jung M., Pring A. (2014). Grain boundaries as

  7. A generalised chemical precipitation modelling approach in wastewater treatment applied to calcite

    DEFF Research Database (Denmark)

    Mbamba, Christian Kazadi; Batstone, Damien J.; Flores Alsina, Xavier

    2015-01-01

    , the present study aims to identify a broadly applicable precipitation modelling approach. The study uses two experimental platforms applied to calcite precipitating from synthetic aqueous solutions to identify and validate the model approach. Firstly, dynamic pH titration tests are performed to define...... an Arrhenius-style correction of kcryst. The influence of magnesium (a common and representative added impurity) on kcryst was found to be significant but was considered an optional correction because of a lesser influence as compared to that of temperature. Other variables such as ionic strength and pH were...

  8. Incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers Cultured Under Controlled pCO2

    Science.gov (United States)

    Not, C.; Thibodeau, B.; Yokoyama, Y.

    2018-01-01

    Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.

  9. Final report for DOE Grant No. DE-SC0006609 - Persistence of Microbially Facilitated Calcite Precipitation as an in situ Treatment for Strontium-90

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W. [Univ. of Idaho, Idaho Falls, ID (United States); Fujita, Yoshiko [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hubbard, Susan S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-11-15

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have previously found that nutrient addition can stimulate microbial ureolytic activity, that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days and was followed by long-term monitoring which continued for 13 months. A post experiment core located within the inter-wellbore zone was collected on day 321 and characterized with respect to cation exchange capacity, mineral carbonate content, urease activity, ureC gene abundance, extractable ammonium (a urea hydrolysis product) content, and the 13C isotopic composition of solid carbonates. It was also subjected to selective extractions for strontium and uranium. Result

  10. Interactions of fines with base fractions of oil and its implication in smart water flooding

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Migration of fines, and formation of oil emulsion have been independently observed during smart water flooding both have been suggested to play a vital role in enhanced oil recovery (EOR). But, the exact role of fines and the reason of emulsion formation are not well studied for carbonate...... reservoirs. This study shows that addition of water and crude oil on calcite fines leads to formation of soluble oil emulsions in the water phase. Formation of these emulsions and its implication in EOR has been experimentally analyzed....

  11. Atomic force microscopy and X-ray photoelectron spectroscopy study of NO2 reactions on CaCO3 (1014) surfaces in humid environments.

    Science.gov (United States)

    Baltrusaitis, Jonas; Grassian, Vicki H

    2012-09-13

    In this study, alternating current (AC) mode atomic force microscopy (AFM) combined with phase imaging and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of nitrogen dioxide (NO2) adsorption on calcium carbonate (CaCO3) (101̅4) surfaces at 296 K in the presence of relative humidity (RH). At 70% RH, CaCO3 (101̅4) surfaces undergo rapid formation of a metastable amorphous calcium carbonate layer, which in turn serves as a substrate for recrystallization of a nonhydrated calcite phase, presumably vaterite. The adsorption of nitrogen dioxide changes the surface properties of CaCO3 (101̅4) and the mechanism for formation of new phases. In particular, the first calcite nucleation layer serves as a source of material for further island growth; when it is depleted, there is no change in total volume of nitrocalcite, Ca(NO3)2, particles formed whereas the total number of particles decreases. This indicates that these particles are mobile and coalesce. Phase imaging combined with force curve measurements reveals areas of inhomogeneous energy dissipation during the process of water adsorption in relative humidity experiments, as well as during nitrocalcite particle formation. Potential origins of the different energy dissipation modes within the sample are discussed. Finally, XPS analysis confirms that NO2 adsorbs on CaCO3 (101̅4) in the form of nitrate (NO3(-)) regardless of environmental conditions or the pretreatment of the calcite surface at different relative humidity.

  12. The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt

    Science.gov (United States)

    Smith, Helen E. K.; Poulton, Alex J.; Garley, Rebecca; Hopkins, Jason; Lubelczyk, Laura C.; Drapeau, Dave T.; Rauschenberg, Sara; Twining, Ben S.; Bates, Nicholas R.; Balch, William M.

    2017-11-01

    The Great Calcite Belt (GCB) of the Southern Ocean is a region of elevated summertime upper ocean calcite concentration derived from coccolithophores, despite the region being known for its diatom predominance. The overlap of two major phytoplankton groups, coccolithophores and diatoms, in the dynamic frontal systems characteristic of this region provides an ideal setting to study environmental influences on the distribution of different species within these taxonomic groups. Samples for phytoplankton enumeration were collected from the upper mixed layer (30 m) during two cruises, the first to the South Atlantic sector (January-February 2011; 60° W-15° E and 36-60° S) and the second in the South Indian sector (February-March 2012; 40-120° E and 36-60° S). The species composition of coccolithophores and diatoms was examined using scanning electron microscopy at 27 stations across the Subtropical, Polar, and Subantarctic fronts. The influence of environmental parameters, such as sea surface temperature (SST), salinity, carbonate chemistry (pH, partial pressure of CO2 (pCO2), alkalinity, dissolved inorganic carbon), macronutrients (nitrate + nitrite, phosphate, silicic acid, ammonia), and mixed layer average irradiance, on species composition across the GCB was assessed statistically. Nanophytoplankton (cells 2-20 µm) were the numerically abundant size group of biomineralizing phytoplankton across the GCB, with the coccolithophore Emiliania huxleyi and diatoms Fragilariopsis nana, F. pseudonana, and Pseudo-nitzschia spp. as the most numerically dominant and widely distributed. A combination of SST, macronutrient concentrations, and pCO2 provided the best statistical descriptors of the biogeographic variability in biomineralizing species composition between stations. Emiliania huxleyi occurred in silicic acid-depleted waters between the Subantarctic Front and the Polar Front, a favorable environment for this species after spring diatom blooms remove silicic acid

  13. On the implications of the Surface Water and Ocean Topography (SWOT) mission for hydrologic science and applications (Invited)

    Science.gov (United States)

    Lettenmaier, D. P.

    2010-12-01

    The SWOT mission will provide surface water elevation and extent information with unprecedented accuracy and spatial resolution globally. All of the implications of thedata that SWOT will produce for the hydrologic science and applications communities are not yet apparent. The SWOT data will, however, certainly offer groundbreaking opportunities for estimation of two key terms in the land surface water budget: surface water storage (in almost all water bodies with surface area exceeding about 1 km2) and derived discharge for many of the world’s large rivers (widths greater than roughly 100-250 m). Among just a few of the science questions that the observations should allow us to address are a) what are the dynamics of floods and overbank flows in large rivers? b) what is the contribution of long-term, seasonal, and interannual storage in reservoirs, lakes, and wetlands to sea level? c) what is the magnitude of surface water storage changes at seasonal to decadal time scales and continental spatial scales relative to soil moisture and groundwater? d) what will be the implications of SWOT-based estimates of reservoir storage and storage change to the management of transboundary rivers? These quite likely are among just a few of the questions that SWOT will help elucidate. Others no doubt will arise from creative analyses of SWOT data in combination with data from other missions I conclude with a discussion of mechanisms that will help foster a community to investigate these and other questions, and the implications of a SWOT data policy.

  14. Structural evolution of calcite at high temperatures: Phase V unveiled

    Science.gov (United States)

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  15. Protein sequences bound to mineral surfaces persist into deep time

    DEFF Research Database (Denmark)

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa

    2016-01-01

    of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell......, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated...

  16. Role of marble microstructure in near-infrared laser-induced damage during laser cleaning

    International Nuclear Information System (INIS)

    Rodriguez-Navarro, Carlos; Rodriguez-Navarro, Alejandro; Elert, Kerstin; Sebastian, Eduardo

    2004-01-01

    When marble is cleaned by nanosecond neodymium yttrium-aluminum-garnet lasers (1064 nm), strongly absorbing surface contaminants are removed at fluences substantially below the damage threshold for the much less absorptive marble substrate. Recent studies have shown, however, that unacceptable roughening of the marble surface also may occur at low fluences due to removal of individual grains. In order to elucidate this effect, we have compared the low-fluence response of marbles with two different grain sizes and single-crystal calcite, in the fluence range 0.12-1.25 J cm-2. Damage was greater in fine-grained than coarse-grained marble, and did not occur in the single-crystal calcite at these fluences. The temperature rise following defect-mediated absorption triggers thermal plasma emission and generates shock waves; the concomitant surface damage depends on the size and crystallographic orientation of the crystals. Laser irradiation anneals the defects and increases ''crystallite size.'' The implications for the laser-assisted cleaning of marble artworks are outlined

  17. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate

    International Nuclear Information System (INIS)

    Versteegh, E.A.A.; Black, S.; Hodson, M.E.

    2017-01-01

    In this study we investigate carbon isotope fractionation during the crystallization of biogenic calcium carbonate. Several species of earthworm including Lumbricus terrestris secrete CaCO_3. Initially a milky fluid comprising micro-spherules of amorphous CaCO_3 (ACC) is secreted into pouches of the earthworm calciferous gland. The micro-spherules coalesce and crystalize to form millimetre scale granules, largely comprising calcite. These are secreted into the earthworm intestine and from there into the soil. L. terrestris were cultured for 28 days in two different soils, moistened with three different mineral waters at 10, 16 and 20 °C. The milky fluid in the calciferous glands, granules in the pouches of the calciferous glands and granules excreted into the soil were collected and analysed by FTIR spectroscopy to determine the form of CaCO_3 present and by IRMS to determine δ"1"3C values. The milky fluid was ACC. Granules removed from the pouches and soil were largely calcite; the granules removed from the pouches contained more residual ACC than those recovered from the soil. The δ"1"3C values of milky fluid and pouch granules became significantly more negative with increasing temperature (p ≤ 0.001). For samples from each temperature treatment, δ"1"3C values became significantly (p ≤ 0.001) more negative from the milky fluid to the pouch granules to the soil granules (−13.77, −14.69 and −15.00 respectively at 10 °C; −14.37, −15.07 and −15.18 respectively at 16 °C and −14.89, −15.41 and −15.65 respectively at 20 °C). Fractionation of C isotopes occurred as the ACC recrystallized to form calcite with the fractionation factor ε_c_a_l_c_i_t_e_-_A_C_C = −1.20 ± 0.52‰. This is consistent with the crystallization involving dissolution and reprecipitation rather than a solid state rearrangement. Although C isotopic fractionation has previously been described between different species of dissolved inorganic carbon

  18. Growing spherulitic calcite grains in saline, hyperalkaline lakes: Experimental evaluation of the effects of Mg-clays and organic acids

    NARCIS (Netherlands)

    Mercedes-Martín, R.; Rogerson, M.R.; Brasier, A.T.; Vonhof, H.B.; Prior, T.; Fellows, S.M.; Reijmer, J.J.G.; Billing, I.; Pedley, H.M.

    2016-01-01

    The origin of spherical-radial calcite bodies - spherulites - in sublacustrine, hyperalkaline and saline systems is unclear, and therefore their palaeoenvironmental significance as allochems is disputed. Here, we experimentally investigate two hypotheses concerning the origin of spherulites. The

  19. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    International Nuclear Information System (INIS)

    Feng, Qicheng; Wen, Shuming; Zhao, Wenjuan; Deng, Jiushuai; Xian, Yongjun

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na_2S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na_2S, and the increase in the Na_2S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na_2S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na_2S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  20. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qicheng [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Wen, Shuming, E-mail: fqckmust@126.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Wenjuan [Kunming Metallurgical Research Institute, Kunming 650031 (China); Deng, Jiushuai; Xian, Yongjun [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na{sub 2}S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na{sub 2}S, and the increase in the Na{sub 2}S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na{sub 2}S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na{sub 2}S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  1. Physical and Mechanical Characterization of Artificial Stone with Marble Calcite Waste and Epoxy Resin

    OpenAIRE

    Silva, Fernanda Souza; Ribeiro, Carlos Eduardo Gomes; Rodriguez, Rubén Jesus Sánchez

    2017-01-01

    The incorporation of calcite marble waste in epoxy resin for the production of artificial stone can represent a technical-economical method and environmentally viable, reducing the amount of discarded residue in the environment, and adding economic value to marble waste and enabling the generation of jobs. The production of natural stone in Brazil recorded an exorbitant amount of waste generated in marble processing. Only 75% of marble taken from the deposits it becomes the finished product t...

  2. Characterization of Qatar's surface carbonates for CO2 capture and thermochemical energy storage

    Science.gov (United States)

    Kakosimos, Konstantinos E.; Al-Haddad, Ghadeer; Sakellariou, Kyriaki G.; Pagkoura, Chrysa; Konstandopoulos, Athanasios G.

    2017-06-01

    Samples of surface carbonates were collected from three different areas of the Qatar peninsula. We employed material characterization techniques to examine the morphology and composition of the samples, while their CO2 capture capacity was assessed via multiple successive calcination-carbonation cycles. Our samples were mainly calcite and dolomite based. Calcite samples showed higher initial capacity of around 11 mmol CO2 g-1 which decayed rapidly to less than 2 mmol CO2 g-1. On the other hand, dolomite samples showed an excellent stability (˜15 cycles) with a capacity of 6 mmol CO2 g-1. The performance of the dolomite samples is better compared to other similar natural samples, from literature. A promising result for future studies towards improving their performance by physical and chemical modification.

  3. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    Science.gov (United States)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    there were no active processes during the summers that changed surface roughness. Images from NASA's MODIS instrument (1640 nm, band 6) delineate winter flooding on the playa. Areas of water in the winter tend to be smoother in the summer. In particular, a smooth area of the play in summer 2010 aligns very closely with ponded water in February 2010. This indicates that standing water disrupts the playa surface, reducing roughness. We also compared the distribution of surface roughness across the playa to playa composition. X-ray diffraction (XRD) of samples from the Black Rock Desert demonstrates that the playa surface is composed of approximately 30% quartz, 45% clays, 10% calcite, and 5% halite. Calcite and halite concentrations vary significantly between samples. We produced a map of calcite concentration in the Black Rock Desert based on hyperspectral data from NASA's EO-1 Hyperion instrument. We find that calcite concentrations are higher in smooth areas that have been inundated by water. Without an understanding of the surface processes associated with dust emission, it is difficult to model atmospheric dust, especially in the past or future when there is much less data for an empirical dust model.

  4. Relationship between 13C and 18O fractionation and changes in major element composition in a recent calcite-depositing spring - a model of chemical variations with inorganic CaCO3 precipitation

    International Nuclear Information System (INIS)

    Usdowski, E.; Hoefs, J.; Menschel, G.

    1979-01-01

    A theoretical model is derived in which isotopic fractionations can be calculated as a function of variations in dissolved carbonate species on CO 2 degassing and calcite precipitation. This model is tested by application to a calcite-depositing spring system near Westerhof, Germany. In agreement with the model, 13 C of the dissolved carbonate species changes systematically along the flow path. The difference in delta values between the upper and lower part of the stream is about 1%. The 13 C content of the precipitated calcite is different from that expected from the theoretical partitioning. The isotopic composition of the solid CaCO 3 is similar to that of the dissolved carbonate, though in theory it should be isotopically heavier by about 2.4%. The 18 O composition of dissolved carbonate and H 2 O is constant along the stream. Calculated calcite-water temperatures differ by about +5 0 C from the observed temperatures demonstrating isotopic disequilibrium between the water and precipitated solid. This is attributed to kinetic effects during CaCO 3 deposited from a highly supersaturated solution, in which precipitation is faster than equilibration with respect to isotopes. Plant populations in the water have virtually no influence on CO 2 degassing, calcite saturation and isotopic fractionation. Measurements of Psub(CO 2 ), Ssub(C) and 13 C within a diurnal cycle demonstrate that metabolic effects are below the detection limit in a system with a high supply-rate of dissolved carbonate species. The observed variations are due to differences in CO 2 degassing and calcite precipitation, caused by a continuously changing hydrodynamic conditions and carbonate nucleation rates. (Auth.)

  5. Geothermometry obtained from the calcite twin and fluid inclusions in barite (Irankuh Pb-Zn deposit, Southwest of Isfahan

    Directory of Open Access Journals (Sweden)

    Alijan Aftabi

    2017-03-01

    Full Text Available The Irankuh mining district is located 20 km southwest of Isfahan and is geologically situated in Sanandaj - Sirjan zone and the lower Cretaceous sequence of Isfahan-Malayer ore mineralization area. The ore minerals are emplaced in the faulted contact of Jurassic shale and Cretaceous carbonates and include pyrite, galena, sphalerite, calcite, barite, dolomite, quartz as well as minor marcasite, smithsonite, cerussite, gypsum, malachite, hematite and goethite. The mineralization is mainly occurred as hydrothermal veins and veinlets associated with fractures and faults, suggesting the deposit is likely to be of epigenetic type. A comparison between geothermometric results obtained from calcite twins and fluid inclusions showed a similar temperature range for the mineralization (less than 170ºc. Fluid inclusion studies indicate the temperature, salinity and density ranges of 80-166ºc, 5.39-20.94 wt.% NaCl and 0.95-1.12, respectively. The obtained data share many similarities with those of the MVT deposits

  6. Pedogenic calcite as evidence for an early Holocene dry period in the San Francisco Bay area, California

    Science.gov (United States)

    Borchardt, G.; Lienkaemper, J.J.

    1999-01-01

    Rainfall at the site of Union City, California, during early Holocene time appears to have been about half that of today, 470 mm/yr. We base this conclusion on detailed descriptions and particle-size analyses of 12 soil profiles and 1:20 scale logs of the fluvial stratigraphy in two 100-m-long, 5-m-deep excavations dug perpendicular to the axis of an alluvial fan along the Hayward fault. Subsidence and right-lateral movement along the fault allowed an offset stream to produce a nearly continuous alluvial record documented by 35 14C ages on detrital charcoal. Bk (calcitic) horizons in paleosols developed in the fan suggest that a relatively dry climatic period occurred from 10 to 7 ka (calendar-corrected ages). The pedogenic calcite exists primarily as vertically oriented filaments and fine, cavernous nodules formed at ped intersections. Soils and paleosols formed before 10 ka or since 7 ka did not have Bk horizons. Bk horizons that were buried suddenly at 7 ka were overlain by leached zones averaging 41 ?? 3 cm thick - about half the current depth of leaching.

  7. An Exercise on Calibration: DRIFTS Study of Binary Mixtures of Calcite and Dolomite with Partially Overlapping Spectral Features

    Science.gov (United States)

    De Lorenzi Pezzolo, Alessandra

    2013-01-01

    Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…

  8. Iodine-129 and Iodine-127 speciation in groundwater at the Hanford Site, U.S.: iodate incorporation into calcite

    International Nuclear Information System (INIS)

    Zhang, Saijin; Yeager, Chris; Wellman, Dawn M.; Santschi, Peter H.

    2013-01-01

    The Hanford Site, the most contaminated nuclear site in the United States, has large radioactive waste plumes containing high 129I levels. The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounts for up to 84%, followed by organo-iodine and minimal levels of iodide. The relatively high pH and oxidizing environment may have prevented iodate reduction. Our results identified that calcite precipitation caused by degassing of CO2 during deep groundwater sampling incorporated between 7 to 40% of dissolved iodine (including 127I and 129I) that was originally in the groundwater, transforming dissolved to particulate iodate during sampling. In order to understand the mechanisms underlying iodine incorporation by calcite, laboratory experiments were carried out to replicate this iodine sequestering processes. Two methods were utilized in this study, 1) addition of sodium carbonate; 2) addition of calcium chloride followed by sodium carbonate where the pH was well controlled at ~8.2, which is close to the average pH of Hanford Site groundwater. It was demonstrated that iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevated pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of 129I at the Hanford Site and reveals a potential means for improved remediation strategies of 129I

  9. Utilisation of the image analysis method for the detection of the morphological anisotropy of calcite grains in marble

    Czech Academy of Sciences Publication Activity Database

    Obara, B.; Kožušníková, Alena

    2007-01-01

    Roč. 11, č. 4 (2007), s. 275-281 ISSN 1420-0597 R&D Projects: GA ČR GA105/04/1019 Institutional research plan: CEZ:AV0Z30860518 Keywords : image analysis * calcite grains * morphological anisotropy Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.742, year: 2007 http://springerlink.com

  10. Co-adsorption of surfactants and water at inorganic solid surfaces.

    Science.gov (United States)

    Cooper, Timothy G; de Leeuw, Nora H

    2002-07-21

    Computer simulations of the co-adsorption of water and methanoic acid at a range of surface features of calcite and fluorite minerals have shown that the relative adsorption energies for the two minerals are reversed when solvent effects are included in the calculations, a finding which is important in the search for effective surfactant reagents in flotation techniques, which are used extensively in the mining and pharmaceutical industries and in environmental remediation processes.

  11. Mineralogical controls on surface colonization by sulfur-metabolizing microbial communities

    Science.gov (United States)

    Jones, A. A.; Bennett, P.

    2012-12-01

    When characterizing microbial diversity and the microbial ecosystem of the shallow subsurface the mineral matrix is generally assumed to be homogenous and unreactive. We report here experimental evidence that microorganisms colonize rock surfaces according to the rock's chemistry and the organism's metabolic requirements and tolerances. We investigated this phenomenon using laboratory biofilm reactors with both a pure culture of sulfur-oxidizing Thiothrix unzii and a mixed environmental sulfur-metabolizing community from Lower Kane, Cave, WY, USA. Reactors contained rock and mineral chips (calcite, albite, microcline, quartz, chert, Madison Limestone (ML), Madison Dolostone (MD), and basalt) amended with one of the two inoculants. Biomass of attached microorganisms on each mineral surface was quantified. The 16S rRNA of attached microbial communities were compared using Roche FLX and Titanium 454 next generation pyrosequencing. A primary controlling factor on taxonomy of attached microorganisms in both pure and mixed culture experiments was mineral buffering capacity. In mixed culture experiments acid-buffering carbonates were preferentially colonized by neutrophilic sulfur-oxidizing microorganisms (~18% to ~27% of microorganisms), while acidophilic sulfur-oxidizing microorganisms colonized non-buffering quartz exclusively (~46% of microorganisms). The nutrient content of the rock was a controlling factor on biomass accumulation, with neutrophilic organisms selecting between carbonate surfaces of equivalent buffer capacities according to the availability of phosphate. Dry biomass on ML was 17.8 ± 2.3 mg/cm2 and MD was 20.6 ± 6.8 mg/cm2; while nutrient poor calcite accumulated 2.4 ± 0.3 mg/cm2. Biomass accumulation was minimal on non-buffering nutrient-limited surfaces. These factors are countered by the competitive exclusion of some populations. A pure culture of T. unzii preferentially colonizes carbonates while a very closely related Thiothrix spp is excluded

  12. Realisation of four-wave mixing phase matching for frequency components at intracavity stimulated Raman scattering in a calcite crystal

    International Nuclear Information System (INIS)

    Smetanin, Sergei N; Fedin, Aleksandr V; Shurygin, Anton S

    2013-01-01

    The possibilities of implementing four-wave mixing (FWM) phase matching at stimulated Raman scattering (SRS) in a birefringent SRS-active crystal placed in a cavity with highly reflecting mirrors have been theoretically and experimentally investigated. Phase-matching angles providing conditions for five types of phase matching are determined for a calcite crystal. These types are characterised by different combinations of polarisation directions for the interacting waves and ensure FWM generation of either an anti-Stokes wave or the second Stokes SRS component. In agreement with the calculation results, low-threshold generation of the second Stokes SRS component with a wavelength 0.602 μm was observed at angles of incidence on a calcite crystal of 4.8° and 18.2°, under SRS pumping at a wavelength of 0.532 μm. This generation is due to the FWM coupling of the first and second Stokes SRS components with the SRS-pump wave. (nonlinear optical phenomena)

  13. Treatment of liquid radioactive waste by adsorption of some radionuclides on calcite sand, volcanic ash and comparing it with nickel ferro-cyanide

    International Nuclear Information System (INIS)

    Takriti, S.; Ali, A. F.

    2009-09-01

    Adsorption of 137 Cs existed in the liquid radioactive waste on the calcite sand and volcanic ash has been investigated. X-ray studies of sand and ash were used to have more information about the geological composition. The geological results show that the sand used is calcium carbonate and the ash is uncrystalline old volcanic ash. The radioactive measurements indicated that the calcite sand able to adsorb the 137 Cs with weak bond that can not resist the water flow. Otherwise, the volcanic ash can maintain the 137 Cs for long time and the water flow can not liberate the 137 Cs adsorbed into the volcanic ash. The adsorption of 137 Cs on nickel ferro-cyanide was more effective than other compounds. (author)

  14. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars

    Science.gov (United States)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.

    2018-06-01

    A diverse suite of carbonate minerals including calcite (CaCO3) and magnesite (MgCO3) have been observed on the martian surface and in meteorites. Terrestrial carbonates usually form via aqueous processes and often record information about the environment in which they formed, including chemical and textural biosignatures. In addition, terrestrial carbonates are often found in association with evaporite deposits on Earth. Similar high salinity environments and processes were likely active on Mars and some areas may contain active high salinity brines today. In this study, we directly compare calcite and magnesite dissolution in ultrapure water, dilute sulfate and chloride solutions, as well as near-saturated sulfate and chloride brines with known activity of water (aH2O) to determine how dissolution rates vary with mineralogy and aH2O, as well as aqueous cation and anion chemistry to better understand how high salinity fluids may have altered carbonate deposits on Mars. We measured both calcite and magnesite initial dissolution rates at 298 K and near neutral pH (6-8) in unbuffered solutions containing ultrapure water (18 MΩ cm-1 UPW; aH2O = 1), dilute (0.1 mol kg-1; aH2O = 1) and near-saturated Na2SO4 (2.5 mol kg-1, aH2O = 0.92), dilute (0.1 mol kg-1, aH2O = 1) and near-saturated NaCl (5.7 mol kg-1, aH2O = 0.75). Calcite dissolution rates were also measured in dilute and near-saturated MgSO4 (0.1 mol kg-1, aH2O = 1 and 2.7 mol kg-1, aH2O = 0.92, respectively) and MgCl2 (0.1 mol kg-1, aH2O = 1 and 3 mol kg-1, aH2O = 0.73, respectively), while magnesite dissolution rates were measured in dilute and near-saturated CaCl2 (0.1 mol kg-1, aH2O = 1 and 9 mol kg-1, aH2O = 0.35). Initial calcite dissolution rates were fastest in near-saturated MgCl2 brine, while magnesite dissolution rates were fastest in dilute (0.1 mol kg-1) NaCl and CaCl2 solutions. Calcite dissolution rates in near-saturated Na2SO4 were similar to those observed in the dilute solutions (-8.00 ± 0

  15. Environmentally acceptable effect of hydrogen peroxide on cave 'lamp-flora', calcite speleothems and limestones

    International Nuclear Information System (INIS)

    Faimon, Jiri; Stelcl, Jindrich; Kubesova, Svatava; Zimak, Jiri

    2003-01-01

    Hydrogen peroxide plus limestone fragments allows removal of organisms without corrosion of limestone and speleothem. - Mosses, algae, and cyanobacteria (lamp-flora) colonize illuminated areas in show caves. This biota is commonly removed by a sodium hypochlorite solution. Because chlorine and other deleterious compounds are released into a cave environment during lamp-flora cleansing, hydrogen peroxide was tested as an alternative agent. In a multidisciplinary study conducted in the Katerinska Cave (Moravian Karst, Czech Republic), 12 algae- and cyanobacteria taxons and 19 moss taxons were detected. The threshold hydrogen peroxide concentration for the destruction of this lamp-flora was found to be 15 vol.%. Based on laboratory experiments in stirred batch reactors, the dissolution rates of limestones and calcite speleothems in water were determined as 3.77x10 -3 and 1.81x10 -3 mol m -2 h -1 , respectively. In the 15% peroxide solution, the limestone and speleothem dissolution rates were one order of magnitude higher, 2.00x10 -2 and 2.21x10 -2 mol m -2 h -1 , respectively. So, the peroxide solution was recognised to attack carbonates somewhat more aggressively than karst water. In order to prevent the potential corrosion of limestone and speleothems, the reaching of preliminary peroxide saturation with respect to calcite is recommended, for example, by adding of few limestone fragments into the solution at least 10 h prior to its application

  16. Seasonal dynamics of stable isotopes and element ratios in authigenic calcites during their precipitation and dissolution, Sacrower See (northeastern Germany

    Directory of Open Access Journals (Sweden)

    Bernd ZOLITSCHKA

    2009-08-01

    Full Text Available The seasonal evolution of chemical and physical water properties as well as particle fluxes was monitored in Sacrower See (northeastern Germany during two consecutive years (Oct 2003 - Oct 2005. Additonally, we measured δ18O and δ13C as well as Sr:Ca and Mg:Ca ratios of authigenic calcites that were collected in sequencing sediment traps in order to disentangle environmental and climatic factors controlling these parameters. In particular, our aim was to find out if element ratios and the isotopic composition of calcites reflect changes in water and air temperatures. Lake water is highly enriched in 18O (-1.3 to -2.5‰ VSMOW with an evaporative increase of 0.6‰ during summer. Values are 5-6‰ more positive than groundwater values and 4-5‰ more positive than long-term weighted annual means of precipitation. During spring and summer, high amounts of dissolved phosphate cause eutrophic conditions and calcite precipitation in isotopic disequilibrium. Measured values are depleted in 18O by 2 to 10‰ compared to calculated equilibrium values. Resuspension and partial dissolution of calcite in the water column contribute to this isotopic divergence in summer and autumn as δ18Oca and δ13C values increased in the hypolimnion during this time. Mg:Ca and Sr:Ca ratios are altered by dissolution as well. In the hypolimnion these ratios were higher than in the epilimnion. Another reason for the huge deviation between measured and theoretical δ18Oca values during summer is the occurrence of large amounts of Phacotus lenticularis in the carbonate fraction. High amounts of Phacotus lead to more negative δ18Oca and more positive δ13C values. Several characteristics of δ18Oca and δ13C are also reflected by Mg:Ca and Sr:Ca ratios and isotopic composition of oxygen and carbon were influenced by the onset and stability of stratification. Especially the earlier onset of stratification in 2005 caused higher sediment fluxes and more positive carbon and

  17. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  18. Phosphate adsorption and precipitation on calcite under calco-carbonic equilibrium condition.

    Science.gov (United States)

    Li, Zhenxuan; Sun, Xiaowen; Huang, Lidong; Liu, Dagang; Yu, Luji; Wu, Hongsheng; Wei, Dongyang

    2017-09-01

    Phosphate (PO 4 3- ) removal on calcite often entails two processes: adsorption and precipitation. Separating these two processes is of great importance for assessment of PO 4 3- stability after removal. Thus, this study was aimed at finding a critical range of conditions for separating these two processes in calco-carbonic equilibrium, by adjusting PO 4 3- concentration, reaction time and pH. PO 4 3- removal kinetic results showed that: (I) At pH7.7, PO 4 3- removal was mainly by adsorption at initial PO 4 3- concentration ≤2.2 mg L -1 and reaction time ≤24 h, with dominant precipitation occurring at initial PO 4 3- concentration ≥3 mg L -1 after 24 h reaction; (II) At pH8.3, adsorption was the key removal process at initial PO 4 3- concentration ≤7.5 mg L -1 and reaction time ≤24 h, whereas precipitation was observed at initial PO 4 3- concentration of 10 mg L -1 after 24 h reaction, (III) At pH 9.1 and 10.1, PO 4 3- removal mechanism was mainly by adsorption at initial PO 4 3- concentration ≤10 mg L -1 within 24 h reaction. Based on the kinetic results, it is suggested that PO 4 3- precipitation will occur after 24 h reaction when saturation index of amorphous calcium phosphate is between 1.97 and 2.19. Besides, increasing PO 4 3- concentration does not cause a continuous decline of PO 4 3- removal percentage. Moreover, experimental removal data deviated largely from the theoretical adsorption value by CD-MUSIC model. These indicate occurrence of precipitation which is in agreement with the kinetic result. Therefore our study will provide fundamental reference information for better understanding of phosphorous stabilization after removal by calcite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. CRACK2 - Modelling calcium carbonate deposition from bicarbonate solution in cracks in concrete

    International Nuclear Information System (INIS)

    Brodersen, K.

    2003-03-01

    The numerical CRACK2 model simulates precipitation of calcite from calcium bicarbonate solution (e.g. groundwater) passing through cracks in concrete or other cementitious materials. A summary of experimental work is followed by a detailed description of the model. Hydroxyl ions are transported by diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. The cementitious material is simulated as calcium hydroxide mixed with inert material but with sodium hydroxide dissolved in the pore solution. Diffusive migration of cesium as radioactive isotope is also considered. Electrical interaction of the migrating ions is taken into account. Example calculations demonstrate effects of parameter variations on distribution of precipitated calcite in the crack and on the composition of the outflowing solution, which can be compared directly with experimental results. Leaching behavior of sodium can be used to tune the model to experimental observations. The calcite is mostly precipitated on top of the original crack surface and may under certain circumstances fill the crack. The produced thin layers of low porosity calcite act as a diffusion barrier limiting contact between cement and solution. Pore closure mechanisms in such layers are discussed. Implications for safety assessment of radioactive waste disposal are shortly mentioned. The model is also relevant for conventional uses of concrete. (au)

  20. Age constraints on fluid inclusions in calcite at Yucca Mountain

    International Nuclear Information System (INIS)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

    2001-01-01

    The(sup 207)Pb/(sup 235)U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88(+-) 0.05 and 9.7(+-) 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event

  1. EPR OF Mn2+ IMPURITIES IN CALCITE: A DETAILED STUDY PERTINENT TO MARBLE PROVENANCE DETERMINATION

    DEFF Research Database (Denmark)

    Weihe, H.; Piligkos, S.; Barra, A.L.

    2009-01-01

    We demonstrate that the electron paramagnetic resonance spectrum of Mn2+ impurities in calcite, and therefore also in marble, may be accurately reproduced by a traditional spin Hamiltonian formalism. The success of such a treatment, however, very much depends on the spin Hamiltonian parameters...... having the correct signs as well as magnitudes. We present data that determine the sign of the axial anisotropy parameter and thereby facilitate future quantum mechanical characterizations of marble electron paramagnetic resonance spectra that supplement provenance determination....

  2. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: Direct measurements of ballasting by opal and calcite

    DEFF Research Database (Denmark)

    Ploug, H.; Iversen, M.H.; Koski, Marja

    2008-01-01

    sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d(-1) independent on diet (range: 0.08-0.21 d(-1)). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +/- 169 m d...

  3. Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: Implications for coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, M.A.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

    2009-08-15

    Dissolved gases can preferentially accumulate at the hydrophobic solid-water interface as revealed by neutron reflectivity measurements. In this paper, atomic force microscopy (AFM) was used to examine accumulation of dissolved gases at a hydrophobic surface in water and sodium chloride solutions. The solvent-exchange method was used to artificially form gaseous domains accumulated at the interface suitable for AFM imaging. Smooth graphite surfaces were used as model surfaces to minimize the secondary effect of surface roughness on the imaging. The concentration of NaCl up to 1 M was found to have a negligible influence on the geometry and population of pre-existing nanobubbles, nanopancakes and nanobubble-nanopancake composites. The implications of the findings on coal flotation in saline water are discussed in terms of attraction between hydrophobic surfaces in water, bubble-particle attachment and hydrophobic coagulation between particles.

  4. On-surface synthesis on a bulk insulator surface

    Science.gov (United States)

    Richter, Antje; Floris, Andrea; Bechstein, Ralf; Kantorovich, Lev; Kühnle, Angelika

    2018-04-01

    On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2  +  2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic

  5. Nano sized clay detected on chalk particle surfaces

    DEFF Research Database (Denmark)

    Skovbjerg, Lone; Hassenkam, Tue; Makovicky, Emil

    2012-01-01

    that in calcite saturated water, both the polar and the nonpolar functional groups adhere to the nano sized clay particles but not to calcite. This is fundamentally important information for the development of conceptual and chemical models to explain wettability alterations in chalk reservoirs...

  6. Microbial Community Structure of an Alluvial Aquifer Treated to Encourage Microbial Induced Calcite Precipitation

    Science.gov (United States)

    Ohan, J.; Saneiyan, S.; Lee, J.; Ntarlagiannis, D.; Burns, S.; Colwell, F. S.

    2017-12-01

    An oligotrophic aquifer in the Colorado River floodplain (Rifle, CO) was treated with molasses and urea to encourage microbial induced calcite precipitation (MICP). This would stabilize the soil mass by reducing porosity and strengthening the mineral fabric. Over the course of a 15-day treatment period, microbial biomass was collected from monitoring well groundwater for DNA extraction and sequencing. Bromide, a conservative tracer, was co-injected and subsequently detected in downgradient wells, confirming effective nutrient delivery. Conductivity increased during the injection regime and an overall decrease in pH was observed. Groundwater chemistry showed a marked increase in ammonia, suggesting urea hydrolysis - a process catalyzed by the enzyme urease - the primary enzyme implicated in MICP. Additionally, soluble iron was detected, suggesting a general increase in microbial activity; possibly as iron-reducing bacteria changed insoluble ferric oxide to soluble ferrous hydroxide in the anoxic aquifer. DNA sequencing of the 16S rRNA gene confirmed the presence of iron reducing bacteria, including Shewanella and Desulfuromonadales. Generally, a decrease in microbial community diversity was observed when pre-injection community taxa were compared with post-injection community taxa. Phyla indicative of anoxic aquifers were represented in accordance with previous literature at the Rifle site. Linear discriminant analysis showed significant differences in representative phyla over the course of the injection series. Geophysical monitoring of the site further suggested changes that could be due to MICP. Induced polarization increased the phase shift in the primary treated area, in agreement with laboratory experiments. Cross-hole seismic testing confirmed that the shear wave velocities increased in the treated soil mass, implying the soil matrix became more stable. Future investigations will help elucidate the viability and efficacy of MICP treatment in changing

  7. The passivation of calcite by acid mine water. Column experiments with ferric sulfate and ferric chloride solutions at pH 2

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Josep M. [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain)], E-mail: jsoler@ija.csic.es; Boi, Marco [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain); Mogollon, Jose Luis [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Instituto de Ciencias de la Tierra, Universidad Central de Venezuela, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cama, Jordi; Ayora, Carlos [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain); Nico, Peter S.; Tamura, Nobumichi; Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2008-12-15

    Column experiments, simulating the behavior of passive treatment systems for acid mine drainage, have been performed. Acid solutions (HCl or H{sub 2}SO{sub 4}, pH 2), with initial concentrations of Fe(III) ranging from 250 to 1500 mg L{sup -1}, were injected into column reactors packed with calcite grains at a constant flow rate. The composition of the solutions was monitored during the experiments. At the end of the experiments (passivation of the columns), the composition and structure of the solids were measured. The dissolution of calcite in the columns caused an increase in pH and the release of Ca into the solution, leading to the precipitation of gypsum and Fe-oxyhydroxysulfates (Fe(III)-SO{sub 4}-H{sup +} solutions) or Fe-oxyhydroxychlorides (Fe(III)-Cl-H{sup +} solutions). The columns worked as an efficient barrier for some time, increasing the pH of the circulating solutions from 2 to {approx}6-7 and removing its metal content. However, after some time (several weeks, depending on the conditions), the columns became chemically inert. The results showed that passivation time increased with decreasing anion and metal content of the solutions. Gypsum was the phase responsible for the passivation of calcite in the experiments with Fe(III)-SO{sub 4}-H{sup +} solutions. Schwertmannite and goethite appeared as the Fe(III) secondary phases in those experiments. Akaganeite was the phase responsible for the passivation of the system in the experiments with Fe(III)-Cl-H{sup +} solutions.

  8. A Sr-isotopic comparison between thermal waters, rocks, and hydrothermal calcites, Long Valley caldera, California

    Science.gov (United States)

    Goff, F.; Wollenberg, H.A.; Brookins, D.C.; Kistler, R.W.

    1991-01-01

    The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr of 0.7081-0.7078 but show systematically lighter values from west to east in the direction of lateral flow. We believe the decrease in ratio from west to east signifies increased interaction of deeply circulating thermal water with relatively fresh volcanic rocks filling the caldera depression. All types of pre-, syn-, and post-caldera volcanic rocks in the west and central caldera have (87Sr/86Sr)m between about 0.7060 and 0.7072 and values for Sierra Nevada granodiorites adjacent to the caldera are similar. Sierran pre-intrusive metavolcanic and metasedimentary rocks can have considerably higher Sr-isotope ratios (0.7061-0.7246 and 0.7090-0.7250, respectively). Hydrothermally altered volcanic rocks inside the caldera have (87Sr/86Sr)m slightly heavier than their fresh volcanic equivalents and hydrothermal calcites (0.7068-0.7105) occupy a midrange of values between the volcanic/plutonic rocks and the Sierran metamorphic rocks. These data indicate that the Long Valley geothermal reservoir is first equilibrated in a basement complex that contains at least some metasedimentary rocks. Reequilibration of Sr-isotope ratios to lower values occurs in thermal waters as convecting geothermal fluids flow through the isotopically lighter volcanic rocks of the caldera fill. ?? 1991.

  9. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle

    Science.gov (United States)

    Merlini, M.; Hanfland, M.; Crichton, W. A.

    2012-06-01

    Calcite, CaCO3, undergoes several high pressure phase transitions. We report here the crystal structure determination of the CaCO3-III and CaCO3-VI high-pressure polymorphs obtained by single-crystal synchrotron X-ray diffraction. This new technical development at synchrotron beamlines currently affords the possibility of collecting single-crystal data suitable for structure determination in-situ at non-ambient conditions, even after multiphase transitions. CaCO3-III, observed in the pressure range 2.5-15 GPa, is triclinic, and it presents two closely related structural modifications, one, CaCO3-III, with 50 atoms in the unit cell [a=6.281(1) Å, b=7.507(2) Å, c=12.516(3) Å, α=93.76(2)°, β=98.95(2)°, γ=106.49(2)°, V=555.26(20) Å3 at 2.8 GPa], the second, CaCO3-IIIb, with 20 atoms [a=6.144(3) Å, b=6.3715(14) Å, c=6.3759(15) Å, α= 93.84(2)°, β=107.34(3)°, γ=107.16(3)°, V=224.33(13) Å3 at 3.1 GPa]. Different pressure-time experimental paths can stabilise one or the other polymorph. Both structures are characterised by the presence of non-coplanar CO3 groups. The densities of CaCO3-III (2.99 g/cm3 at 2.8 GPa) and CaCO3-IIIb (2.96 g/cm3 at 3.1 GPa) are lower than aragonite, in agreement with the currently accepted view of aragonite as the thermodynamically stable Ca-carbonate phase at these pressures. The presence of different cation sites, with variable volume and coordination number (7-9), suggests however that these structures have the potential to accommodate cations with different sizes without introducing major structural strain. Indeed, this structure can be adopted by natural Ca-rich carbonates, which often exhibit compositions deviating from pure calcite. Mg-calcites are found both in nature (Frezzotti et al., 2011) and in experimental syntheses at conditions corresponding to deep subduction environments (Poli et al., 2009). At these conditions, the low pressure rhombohedral calcite structure is most unlikely to be stable, and, at the same

  10. Ostracod calcite records the 18O/16O ratio of the bicarbonate and carbonate ions in water

    Science.gov (United States)

    Devriendt, Laurent S.; McGregor, Helen V.; Chivas, Allan R.

    2017-10-01

    The δ18O of ostracod valves is widely used to infer water δ18O and temperature. However, ostracod δ18O appears sensitive to other environmental variables. In addition, there is species-dependent ostracod calcite 18O enrichment, relative to slowly precipitated inorganic calcite under the same conditions. Together these uncertainties complicate ostracod paleoclimate reconstructions. This study presents a new understanding of the causes of ostracod δ18O variations based on a global database of published ostracod δ18O values in lake, marine and coastal environments, and from culture experiments. The database includes associated field/experiment host water parameters including temperature (-1 to 32 °C), water δ18O (-13.2‰ to 4.3‰ VSMOW), pH (6.9-10.4), salinity (0-72 g/kg), calcite saturation states (0.6-26), and dissolved inorganic carbon concentration [DIC] (0.9-54.3 mmol/kg). The data show that: (1) the δ18O of marine and non-marine ostracods reflects the 18O/16O of the sum of host water CO32- and HCO3- ions. For example, at a given temperature, the δ18O of non-marine ostracods decreases by 4‰ to 6‰ as [CO32-]/[DIC] reaches 70%, depending on the ostracod species. In low [CO32-]/[DIC] settings (i.e. high HCO3-/CO32-), ostracod 18O/16O is close to the 18O/16O of HCO3- ions, which explains why on average ostracod δ18O is higher than the δ18O of inorganic calcite precipitated slowly under the same conditions. (2) Taxonomic offsets in ostracod δ18O vary with the host water [CO32-]/[DIC]. In environments where HCO3- ≫ CO32- (i.e. most freshwater lakes), the 18O/16O of Candonids is indistinguishable from the 18O/16O of HCO3- ions (difference of 0.10 ± 0.16‰) while the 18O/16O of Cyprids is lower than the 18O/16O of HCO3- ions by -0.77‰ to -0.32‰, Cytherids by -0.88 ± 0.29‰, and Limnocytherids by -1.12 ± 0.05‰. (3) The sensitivity of ostracod δ18O to [CO32-]/[DIC] also varies with taxonomy. For each percent increase in [CO32-]/[DIC

  11. Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite-dolomite marbles from the Greek Rhodope massif in the system CaO-MgO-Al 2O 3-SiO 2-CO 2 and indications of prior aragonite

    Science.gov (United States)

    Proyer, A.; Mposkos, E.; Baziotis, I.; Hoinkes, G.

    2008-08-01

    Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti-)clinohumite and phlogopite were observed in calcite-dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO-MgO-Al 2O 3-SiO 2-CO 2 (CMAS-CO 2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite-calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO 2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO 2, garnet has to be present in aluminous calcite-dolomite-marble at UHP conditions.

  12. Criteria for the recognition of pedogenic/supergene and nonpedogenic/hypogene deposits and their relationship to the origin of calcite/opal deposits at Yucca Mountain. Special report No. 14

    International Nuclear Information System (INIS)

    Hill, C.A.; Schluter, C.M.; Monger, H.C.

    1993-10-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this report is to try and establish criteria for the recognition of pedogenic/supergene deposits of calcite/opal versus non-pedogenic/hypogene deposits of calcite/opal. Far from being of esoteric concern, this subject is of paramount importance to the pedogenic-hypogene debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site

  13. Geothermometry obtained from the calcite twin and fluid inclusions in barite (Irankuh Pb-Zn deposit, Southwest of Isfahan)

    OpenAIRE

    Alijan Aftabi; Hengameh Hosseini-Dinani

    2017-01-01

    The Irankuh mining district is located 20 km southwest of Isfahan and is geologically situated in Sanandaj - Sirjan zone and the lower Cretaceous sequence of Isfahan-Malayer ore mineralization area. The ore minerals are emplaced in the faulted contact of Jurassic shale and Cretaceous carbonates and include pyrite, galena, sphalerite, calcite, barite, dolomite, quartz as well as minor marcasite, smithsonite, cerussite, gypsum, malachite, hematite and goethite. The mineralization is mainly occu...

  14. Calcification response of Pleurochrysis carterae to iron concentrations in batch incubations: implication for the marine biogeochemical cycle

    Science.gov (United States)

    Zou, Xiang; Sun, Shiyong; Lin, Sen; Shen, Kexuan; Dong, Faqin; Tan, Daoyong; Nie, Xiaoqin; Liu, Mingxue; Wei, Jie

    2017-12-01

    Calcified coccolithophores, a diverse and widely distributed group of marine microalgae, produce biogenic calcite in the form of coccoliths located on the cell surface. Using batch incubations of the coccolithophorid Pleurochrysis carterae, we investigated the responses of this calcification process to iron concentrations by changing the iron supply in the initial culture media from a normal concentration to 1 ppm (parts per million), 5 ppm, and 10 ppm. Time-dependent measurements of cell population, production of inorganic carbon (coccoliths), and organic carbon (organic cellular components) showed that elevated iron supply in the growth medium of P. carterae stimulates carbon sequestration by increasing growth along enhanced photosynthetic activity and calcification. In addition, the acquired time-dependent UV-Vis and FT-IR spectra revealed that iron fertilization-enhanced coccolith calcification is accompanied by a crystalline phase transition from calcite to aragonite or amorphous phase. Our results suggest that iron concentration has a significant influence on the marine carbon cycle of coccolithophores.

  15. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    Science.gov (United States)

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  16. Reactivity of the calcite–water-interface, from molecular scale processes to geochemical engineering

    International Nuclear Information System (INIS)

    Heberling, Frank; Bosbach, Dirk; Eckhardt, Jörg-Detlef; Fischer, Uwe; Glowacky, Jens; Haist, Michael; Kramar, Utz; Loos, Steffen; Müller, Harald S.; Neumann, Thomas; Pust, Christopher; Schäfer, Thorsten; Stelling, Jan

    2014-01-01

    Highlights: • The current state of some aspects of calcite–water-interface chemistry is reviewed. • The interface structure is characterized at a molecular scale. • Experimental and theoretical studies on contaminant sorption at calcite are presented. • The influence of phosphonates on calcite growth is investigated. • The effect of limestone on the workability of cement suspensions is addressed. - Abstract: Surface reactions on calcite play an important role in geochemical and environmental systems, as well as many areas of industry. In this review, we present investigations of calcite that were performed in the frame of the joint research project “RECAWA” (reactivity of calcite–water-interfaces: molecular process understanding for technical applications). As indicated by the project title, work within the project comprised a large range of length scales. The molecular scale structure of the calcite (1 0 4)–water-interface is refined based on surface diffraction data. Structural details are related to surface charging phenomena, and a simplified basic stern surface complexation model is proposed. As an example for trace metal interactions with calcite surfaces we review and present new spectroscopic and macroscopic experimental results on Selenium interactions with calcite. Results demonstrate that selenate (SeO 4 2− ) shows no significant interaction with calcite at our experimental conditions, while selenite (SeO 3 2− ) adsorbs at the calcite surface and can be incorporated into the calcite structure. Atomistic calculations are used to assess the thermodynamics of sulfate (SO 4 2− ), selenate (SeO 4 2− ), and selenite (SeO 3 2− ) partitioning in calcite and aragonite. The results show that incorporation of these oxo-anions into the calcite structure is so highly endothermic that incorporation is practically impossible at bulk equilibrium and standard conditions. This indicates that entrapment processes are involved when

  17. Petrographic description of calcite/opal samples collected on field trip of December 5-9, 1992. Special report No. 7

    International Nuclear Information System (INIS)

    Hill, C.A.; Schluter, C.M.

    1993-06-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed analysis and assessment of the water-deposited minerals of Yucca Mountain and adjacent regions. Forty-three separate stops were made and 203 samples were collected during the five days of the field trip. This report describes petrographic observations made on the calcite/opal samples

  18. Ikaite precipitation in a lacustrine environment - implications for palaeoclimatic studies using carbonates from Laguna Potrok Aike (Patagonia, Argentina)

    Science.gov (United States)

    Oehlerich, Markus; Mayr, Christoph; Griesshaber, Erika; Lücke, Andreas; Oeckler, Oliver M.; Ohlendorf, Christian; Schmahl, Wolfgang W.; Zolitschka, Bernd

    2013-07-01

    The monoclinic mineral ikaite (CaCO3 · 6H2O) and its pseudomorphs are potentially important archives for palaeoenvironmental reconstructions. Natural ikaite occurs in a small temperature range near freezing point and is reported mainly from marine and only rarely from continental aquatic environments. Ikaite transforms to more stable anhydrous forms of CaCO3 after an increase in temperature or when exposed to atmospheric conditions. The knowledge about conditions for natural ikaite formation, its stable isotope fractionation factors and isotopic changes during transformation to calcite is very restricted. Here, for the first time, primary precipitation of idiomorphic ikaite and its calcite pseudomorphs are reported from a subsaline lake, Laguna Potrok Aike, in southern Argentina. The calculated stable oxygen isotope fractionation factor between lake water and ikaite-derived calcite (αPAI = 1.0324 at a temperature of 4.1 °C) is close to but differs from that of primarily inorganically precipitated calcite. Pseudomorphs after ikaite rapidly disintegrate into calcite powder that is indistinguishable from μm-sized calcite crystals in the sediment record of Laguna Potrok Aike suggesting an ikaite origin of sedimentary calcites. Therefore, the Holocene carbonates of Laguna Potrok Aike have the potential to serve as a recorder of past hydrological variation.

  19. Soil properties and clover establishment six years after surface application of calcium-rich by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ritchey, K.D.; Belesky, D.P.; Halvorson, J.J. [USDA ARS, Beaver, WV (US). Appalachian Farming Systems Research Center

    2004-12-01

    Calcium-rich soil amendments can improve plant growth by supplying Ca and reducing detrimental effects of soil acidity, but solubility and neutralizing capacity of Ca sources vary. Our objectives were to evaluate effects of calcitic dolomite and several coal combustion by-products on soil properties at various depths 6 yr after surface application and their influence on grass-clover herbage accumulation. Calcium and Mg soil amendments were surface-applied to an acidic grassland in 1993, and orchardgrass (Dactylis glomerata L.) and tall fescue (Lolium arundinaceum (Schreb.) Darbyshire) were oversown in 1994. In 1998, amendment treatment plots were split to accommodate sod seeding with red clover (Trifolium pratense L.) or white clover (T. repens L.) as well as a nonseeded control. No N fertilizer was applied after sod seeding. Six years after amendment application, reductions in soil Al and Mn and increases in Ca and pH from 4654 kg ha{sup -1} calcitic dolomite, 15 000 kg ha{sup -1} fluidized bed combustion residue, or 526 kg ha{sup -1} MgO amendment were greatest in the surface 2.5 cm while rates of gypsum as high as 32 000 kg ha{sup -1} left little residual effect except for decreases in Mg. Percentage clover in the sward tripled as pH increased from 4.3 to 5.0 while herbage mass increased 75% as clover percentage increased. Herbage mass was generally more closely correlated with properties of soil samples collected from the surface 2.5 cm than from deeper samples.

  20. Toward Molecular Nanowires Self-Assembled on an Insulating Substrate: Heptahelicene-2-carboxylic acid on Calcite (10(1)over-bar4)

    Czech Academy of Sciences Publication Activity Database

    Rahe, P.; Nimmrich, M.; Greuling, A.; Schütte, J.; Stará, Irena G.; Rybáček, Jiří; Huerta-Angeles, Gloria; Starý, Ivo; Rohlfing, M.; Kühnle, A.

    2010-01-01

    Roč. 114, č. 3 (2010), s. 1547-1552 ISSN 1932-7447 R&D Projects: GA ČR GA203/07/1664; GA MŠk LC512 Grant - others:European Commission(XE) FP6-015847 Institutional research plan: CEZ:AV0Z40550506 Keywords : nanowires * self-assembly * calcite (1014) Subject RIV: CC - Organic Chemistry Impact factor: 4.520, year: 2010

  1. Foliar application of processed calcite particles improves leaf photosynthesis of potted Vitis vinifera L. (var. ‘Cot’ grown under water deficit

    Directory of Open Access Journals (Sweden)

    Faouzi Attia

    2014-12-01

    Significance and impact of the study: In the context of climate change, grapevine will most likely experience long periods of drought during its seasonal cycle. Foliar application of processed mineral particles is widely used to reduce heat stress in perennial fruit crops. Here, the micronized calcite Megagreen® does improve photosynthesis of water stressed grapevines.

  2. On some paramagnetic species induced in natural calcites by β and γ-rays irradiations

    International Nuclear Information System (INIS)

    Rossi, A.; Danon, J.

    1985-01-01

    The ESR absorption lines of calcite speleothems are studied both as monocrystals and powders, after energetic β-rays or γ-rays irradiation. Both Kinds of irradiation produce same lines. Angular variation studies of monocrystals revealed four induced paramagnetic species stable at room temperature. Three of these were attributed to CO 3 sup(---) group, CO 2 sup(-) groups with axial and orthorhombic symetry and a fourth one could be due to the CO 3 sup(-) group. Powder spectra show that these lines, are activated by irradiation in all speleothems we studied and can be present either in natural ESR spectra. Their relationships to the lines usually considered for ESR dating are discussed. (Author) [pt

  3. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Nielsen, Sidsel Marie; Pedersen, Hanne Høst

    2015-01-01

    and adhesion behaviour tests. Comparative studies with a surfactant, protein, purified enzyme, enzyme stabiliser using n-decane (as a model for the oil) have also been carried out in order to verify experimental results. The enzymes that have the highest effect on the wettability have been identified. Those...... action has been found to be replacement of oil at the solid surface by the enzyme. Other mechanisms (modification of the surface tension or catalytic modification of hydrocarbons resulting in reducing the oil viscosity) have shown to be much less pronounced from the measurements reported here....

  4. Nyctemeral variations of magnesium intake in the calcitic layer of a Chilean mollusk shell ( Concholepas concholepas, Gastropoda)

    Science.gov (United States)

    Lazareth, Claire E.; Guzman, Nury; Poitrasson, Franck; Candaudap, Frederic; Ortlieb, Luc

    2007-11-01

    Mollusk shells are increasingly used as records of past environmental conditions, particularly for sea-surface temperature (SST) reconstructions. Many recent studies tackled SST (and/or sea-surface salinity) tracers through variations in the elementary (Mg and Sr) or stable isotope (δ 18O) composition within mollusk shells. But such attempts, which sometimes include calibration studies on modern specimens, are not always conclusive. We present here a series of Mg and Sr analyses in the calcitic layer of Concholepas concholepas (Muricidae, Gastropoda) with a very high time-resolution on a time window covering about 1 and a half month of shell formation, performed by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry (LA-ICP-MS) and electron probe micro-analysis (EPMA). The selected specimen of this common Chilean gastropod was grown under controlled environmental conditions and precise weekly time-marks were imprinted in the shell with calcein staining. Strontium variations in the shell are too limited to be interpreted in terms of environmental parameter changes. In contrast, Mg incorporation into the shell and growth rate appear to change systematically between night and day. During the day, Mg is incorporated at a higher rate than at night and this intake seems positively correlated with water temperature. The nightly reduced Mg incorporation is seemingly related to metabolically controlled processes, formation of organic-rich shell increments and nocturnal feeding activity of the animals. The nyctemeral Mg changes in the C. concholepas shell revealed in this study might explain at least part of the discrepancies observed in previous studies on the use of Mg as a SST proxy in mollusk shells. In the case of C. concholepas, Mg cannot be used straightforwardly as a SST proxy.

  5. Thermo-Compositional Evolution of a Brine Reservoir Beneath Ceres' Occator Crater and Implications for Cryovolcanism at the Surface

    Science.gov (United States)

    Quick, L. C.

    2017-12-01

    The Dawn spacecraft has imaged several putative cryovolcanic features on Ceres (Buczkowski et al., 2016; Ruesch et al., 2016), and several lines of evidence point to past cryovolcanic activity at Occator crater (De Sanctis et al., 2016; Krohn et al., 2016; Buczkowski et al., 2017; Nathues et al., 2017; Ruesch et al., 2017; Zolotov, 2017). Hence it is possible that cryovolcanism played a key role in delivering carbonate and/or chloride brines to Ceres' surface in the past. As any cryolavas delivered to the surface would have issued from a briny subsurface reservoir, or, cryomagma chamber, it is necessary to consider the thermal and compositional evolution of such a reservoir. The detection of a 200 km x 200 km negative Bouguer anomaly beneath Occator suggests the presence of a low-density region beneath the crater (Ermakov et al., 2017). If this region is a residual cryomagma chamber, excess pressures caused by its gradual freezing, or stresses produced by the Occator-forming impact, could have once facilitated the delivery of cryolavas to the Cerean surface. I have investigated the progressive solidification of a cryomagma chamber beneath Occator and implications for the changing compositions of cryolavas on Ceres. I will present the results of this study as well as discuss the dynamics and heat transfer associated with cryomagmatic ascent to the surface. Preliminary results suggest that a 200 km wide cryomagma chamber situated beneath Ceres' crust would take approximately 1 Gyr to completely crystallize. However, such a reservoir would be depleted in chloride and carbonate salts after only 54 Myr of cooling. If the reservoir contained NH3-bearing fluids, eruptions could proceed for another 100 Myr before increased reservoir crystallization rendered cryomagmatic fluids completely immobile. In addition, it is likely that cryomagmas delivered to Ceres' surface had viscosities < 108 Pa s, and were delivered in fractures with propagation speeds ≥ 10-5 m/s. I will

  6. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  7. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Palmer, C J

    2010-01-01

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  8. Petrology, geochemistry and zirconology of impure calcite marbles from the Precambrian metamorphic basement at the southeastern margin of the North China Craton

    Science.gov (United States)

    Liu, Yi-Can; Zhang, Pin-Gang; Wang, Cheng-Cheng; Groppo, Chiara; Rolfo, Franco; Yang, Yang; Li, Yuan; Deng, Liang-Peng; Song, Biao

    2017-10-01

    Impure calcite marbles from the Precambrian metamorphic basement of the Wuhe Complex, southeastern margin of the North China Craton, provide an exceptional opportunity to understand the depositional processes during the Late Archean and the subsequent Palaeoproterozoic metamorphic evolution of one of the oldest cratons in the world. The studied marbles are characterized by the assemblage calcite + clinopyroxene + plagioclase + K-feldspar + quartz + rutile ± biotite ± white mica. Based on petrography and geochemistry, the marbles can be broadly divided into two main types. The first type (type 1) is rich in REE with a negative Eu anomaly, whereas the second type (type 2) is relatively poor in REE with a positive Eu anomaly. Notably, all marbles exhibit remarkably uniform REE patterns with moderate LREE/HREE fractionation, suggesting a close genetic relationship. Cathodoluminescence imaging, trace elements and mineral inclusions reveal that most zircons from two dated samples display distinct core-rim structures. Zircon cores show typical igneous features with oscillatory growth zoning and high Th/U ratios (mostly in the range 0.3-0.7) and give ages of 2.53 - 2.48 Ga, thus dating the maximum age of deposition of the protolith. Zircon rims overgrew during granulite-facies metamorphism, as evidenced by calcite + clinopyroxene + rutile + plagioclase + quartz inclusions, by Ti-in-zircon temperatures in the range 660-743 °C and by the low Th/U (mostly marbles are ascribed to syn-depositional felsic hydrothermal activity which occurred at 2.53 - 2.48 Ga. Our results, together with other published data and the inferred tectonic setting, suggest that the marbles' protolith is an impure limestone, rich in detrital silicates of igneous origin, deposited in a back-arc basin within an active continental margin during the late Archean and affected by synchronous high-T hydrothermalism at the southeastern margin of the North China Craton.

  9. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    Science.gov (United States)

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  10. Late-stage anhydrite-gypsum-siderite-dolomite-calcite assemblages record the transition from a deep to a shallow hydrothermal system in the Schwarzwald mining district, SW Germany

    Science.gov (United States)

    Burisch, Mathias; Walter, Benjamin F.; Gerdes, Axel; Lanz, Maximilian; Markl, Gregor

    2018-02-01

    Tertiary) Pb-Zn-fluorite-quartz-barite assemblages in the same specific vein systems, albeit involving different fluid compositions. Late-stage hydrothermal (∼20-70 °C) vein assemblages reported in this study record the transition from deep (>2 km) to very shallow (0-1 km) crustal conditions. As a consequence of successive uplift, increasing proportions of shallower and cooler (∼50-70 °C) fluids could take part in such mixing processes. Associated changes in the fluid composition caused the vein mineralogy to change from sulphide-quartz-fluorite-barite to calcite-anhydrite/gypsum-siderite-dolomite, as the system passively ascended closer to the surface.

  11. Coccolithophores and calcite saturation state in the Baltic and Black Seas

    Directory of Open Access Journals (Sweden)

    T. Tyrrell

    2008-04-01

    Full Text Available The Baltic and Black Seas are both brackish, that is to say both have salinities intermediate between freshwater and seawater. The coccolithophore Emiliania huxleyi is abundant in one, the Black Sea, but absent from the other, the Baltic Sea. Here we present summertime coccolithophore measurements confirming this difference, as well as data on the calcium carbonate saturation state of the Baltic Sea. We find that the Baltic Sea becomes undersaturated (or nearly so in winter, with respect to both the aragonite and calcite mineral forms of CaCO3. Data for the Black Sea are more limited, but it appears to remain strongly supersaturated year-round. The absence of E. huxleyi from the Baltic Sea could therefore potentially be explained by dissolution of their coccoliths in winter, suggesting that minimum annual (wintertime saturation states could be most important in determining future ocean acidification impacts. In addition to this potential importance of winter saturation state, alternative explanations are also possible, either related to differences in salinity or else to differences in silicate concentrations.

  12. Geochemistry of fluoride in the Black Creek aquifer system of Horry and Georgetown Counties, South Carolina--and its physiological implications

    Science.gov (United States)

    Zack, Allen L.

    1980-01-01

    High concentrations of fluoride in ground-water supplies in certain areas of Horry and Georgetown Counties, S.C., have been the cause of dental fluorosis (tooth mottling) among persons who have lived in these areas and have ingested the water as children. Geochemical evidence and laboratory experiments demonstrate that fluorapatite in the form of fossil shark teeth is the source of fluoride, and that the fluoride ions are liberated to the ground-water system through anion exchange, rather than by dissolution. Calcite-cemented quartz sand in the upper third of the Black Creek Formation of Late Cretaceous age contains the fossil shark teeth. As ground water progresses downdip, the calcite matrix dissolves and hydrolyzes, releasing bicarbonate, hydroxyl, and calcium ions. The calcium ions are immediately exchanged for sodium ions adsorbed on sodium-rich clays, and the bicarbonate ions accumulate. As the shark teeth are exposed, the hydroxyl ions in solution exchange with fluoride ions on fluorapatite surfaces. Experiments using fossil shark teeth show that sodium chloride in solution inhibits the rate of exchange of fluoride ions from tooth surfaces for hydroxyl ions in solution. The amount of fluoride removed from water and exchanged for hydroxyl ions in the presence of pure hydroxylapatite (hog teeth) was greater in saline water than in freshwater.

  13. Structure and interactions of calcite spherulites with α-chitin in the brown shrimp (Penaeus aztecus) shell

    International Nuclear Information System (INIS)

    Heredia, A.; Aguilar-Franco, M.; Magana, C.; Flores, C.; Pina, C.; Velazquez, R.; Schaeffer, T.E.; Bucio, L.; Basiuk, V.A.

    2007-01-01

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous α-chitin matrix. We studied mechanisms of interaction of amorphous α-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of α-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 μm in diameter). Our models of crystal-biopolymer interaction found high affinity of CO 3 2- anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca 2+ cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering

  14. Structure and interactions of calcite spherulites with {alpha}-chitin in the brown shrimp (Penaeus aztecus) shell

    Energy Technology Data Exchange (ETDEWEB)

    Heredia, A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico); Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Aguilar-Franco, M. [Instituto de Fisica, Depto de Fisicoquimica, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Magana, C. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Flores, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Pina, C. [Instituto de Investigaciones en Materiales, Depto de Estado Solido, Laboratorio de Biomateriales, UNAM, Circuito Exterior C.U. S/N CP 04510 Mexico, D.F. (Mexico); Velazquez, R. [Centro de Fisica Aplicada Tecnologia Avanzada, UNAM, Km. 15 Carretera Queretaro-San Luis Potosi, C.P. 76230, Queretaro, Qro. (Mexico); Schaeffer, T.E. [Physikalisches Institut and Center for Nanotechnology, Universitaet Muenster, Gievenbecker Weg 11, 48149 Muenster (Germany); Bucio, L. [Instituto de Fisica, Depto de Estado Solido, UNAM, Circuito Exterior s/n, Ciudad Universitaria Apartado Postal 20-364 01000 Mexico D.F. (Mexico); Basiuk, V.A. [Instituto de Ciencias Nucleares, Departamento de Quimica de Radiaciones y Radioquimica, UNAM, Circuito Exterior C.U. Apdo., Postal 70-543, 04510 Mexico, D.F. (Mexico)

    2007-01-15

    White spots form in the brown shrimp (Penaeus aztecus, Decapoda) shell during frozen storage. The mineral formed consists of calcite incorporated into an amorphous {alpha}-chitin matrix. We studied mechanisms of interaction of amorphous {alpha}-chitin macromolecules with hkl crystal planes to form highly ordered structures, as well as the role of specific sites in the biopolymer, which can be related to nucleation and spheroidal crystal growth. We used low vacuum scanning electron microscopy (LVSEM), X-ray powder diffraction (XRD), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and molecular mechanics modeling (MM+ method). AFM images showed fingerprint distances in the biopolymer and a highly layered structure in the crystalline material. The presence of {alpha}-chitin, with a specific spatial distribution of radicals, is thought to be responsible for nucleation and to thermodynamically stabilize ions to form the spherulite crystalline phase, which are usually oval to spherical (0.10 to 200 {mu}m in diameter). Our models of crystal-biopolymer interaction found high affinity of CO{sub 3} {sup 2-} anions in the (104) crystalline plane (the main plane in calcite monocrystals) to NH- groups of the biopolymer, as well as of the C=O in the biopolymer to Ca{sup 2+} cations in the crystalline structure. These interactions explain the spherical growth and inhibition in some planes. The specific physicochemical interactions (docking of groups depending on their geometrical distribution) suggest that the biomineral structure is controlled by the biopolymer on a local scale. This information is useful for further design and improvement of (hybrid) materials for versatile application, from nanotechnology to biomedicine and engineering.

  15. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    Science.gov (United States)

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  16. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Skovbjerg, Lone Lindbæk; Stipp, Susan Louise Svane

    2009-01-01

    been drilled in a water-bearing formation. At this site, the chalk has never seen oil, though at other locations, the same stratigraphic horizon with the same rock properties is known to be a productive oil reservoir. Thus the properties of the investigated particle surfaces are inherent to the chalk......Ultimate Oil recovery from chalk reservoirs is limited by many factors - including the grain size and the surface properties of the small mainly biogenic calcite particles that chalk is made off . Wettability, the tendency for water or oil to spread over a surface, of the particle surfaces is one...... of the controlling factors for the effectiveness of water flooding, one of the most common methods to improve oil recovery in Chalk reservoirs. Understanding surface wetting and its variability at scales smaller than the pore dimension will potentially provide clues for more effective oil production methods. We used...

  17. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  18. Cell surface groups of two picocyanobacteria strains studied by zeta potential investigations, potentiometric titration, and infrared spectroscopy.

    Science.gov (United States)

    Dittrich, Maria; Sibler, Sabine

    2005-06-15

    In order to clarify the role of picocyanobacteria in aquatic biogeochemical processes (e.g., calcite precipitation), cell surface properties need to be investigated. An experimental study of the cell surface characteristics of two Synechococcus-type unicellular autotrophic picocyanobacterial strains was carried out. One strain was isolated from Lake Plon and contained phycocyanin, the other strain came from Lago Maggiore and was rich in phycoerythrin. Potentiometric titrations were conducted to determine the different types of sites present on the bacteria cell walls. Infrared spectroscopy allowed characterization of the various functional groups (RNH(2), RCOOH, ROH, RPO(2)) and investigations of zeta potential provided insight into the isoelectrical points of the strains. Titrations reveal three distinct sites on the bacterial surfaces of phycocyanin- and phycoerythrin-rich strains with pK values of 4.8+/-0.3/5.0+/-0.2, 6.6+/-0.2/6.7+/-0.4, and 8.8+/-0.1/8.7+/-0.2, corresponding to carboxyl, phosphate, and amine groups with surface densities of 2.6+/-0.4/7.4+/-1.6 x 10(-4), 1.9+/-0.5/4.4+/-0.8 x 10(-4), and 2.5+/-0.4/4.8+/-0.7 x 10(-4) mol/g of dry bacteria. The deprotonation constants are similar to those of bacterial strains and site densities are also within an order of magnitude of other strains. The phycoerythrin-rich strain had a higher number of binding sites than the phycocyanin-rich strain. The results showed that picocyanobacteria may adsorb either calcium cations or carbonate anions and therefore strongly influence the biogeochemical cycling of calcite in pelagic systems.

  19. Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)

    Science.gov (United States)

    Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

    2013-03-01

    Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 157±1° and a very low contact angle hysteresis (CAH) (roll-off angle=1°) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (156±2°) and CAH (180°) in a "Cassie impregnating wetting state".

  20. Influence of lysozyme on the precipitation of calcium carbonate: a kinetic and morphologic study

    Science.gov (United States)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Alejandro; Dominguez-Vera, Jose M.; Garcia-Ruiz, Juan M.

    2003-05-01

    Several mechanisms have been proposed to explain the interactions between proteins and mineral surfaces, among them a combination of electrostatic, stereochemical interactions and molecular recognition between the protein and the crystal surface. To identify the mechanisms of interaction in the lysozyme-calcium carbonate model system, the effect of this protein on the precipitation kinetics and morphology of calcite crystals was examined. The solution chemistry and morphology of the solid were monitored over time in a set of time-series free-drift experiments in which CaCO 3 was precipitated from solution in a closed system at 25°C and 1 atm total pressure, in the presence and absence of lysozyme. The precipitation of calcite was preceded by the precipitation of a metastable phase that later dissolved and gave rise to calcite as the sole phase. With increasing lysozyme concentration, the nucleation of both the metastable phase and calcite occurred at lower Ω calcite, indicating that lysozyme favored the nucleation of both phases. Calcite growth rate was not affected by the presence of lysozyme, at least at protein concentrations ranging from 0 mg/mL to 10 mg/mL. Lysozyme modified the habit of calcite crystals. The degree of habit modification changed with protein concentration. At lower concentrations of lysozyme, the typical rhombohedral habit of calcite crystals was modified by the expression of {110} faces, which resulted from the preferential adsorption of protein on these faces. With increasing lysozyme concentration, the growth of {110}, {100}, and finally {001} faces was sequentially inhibited. This adsorption sequence may be explained by an electrostatic interaction between lysozyme and calcite, in which the inhibition of the growth of {110}, {100}, and {001} faces could be explained by a combined effect of the density of carbonate groups in the calcite face and the specific orientation (perpendicular) of these carbonate groups with respect to the calcite

  1. Distortions of the calcite and aragonite atomic structures from interstitial water

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.; Rez, P., E-mail: Peter.Rez@asu.edu

    2015-05-01

    Amorphous calcium carbonate (ACC), as observed by diffraction or infra-red spectroscopy, is especially significant as a precursor in biomineralization. The atomic structure and mechanisms for transformation to the crystalline phases are still unknown. It is conceivable that insertion of water molecules could give rise to distortions that result in the observed diffraction patterns and infrared spectra. We use the VASP density functional theory code to relax model supercells with 24 formula units of CaCO{sub 3} where we have inserted up to 5 water molecules, corresponding to 3.75 wt%. The main effect is tilting of the carbonate planes, which can be as high as 50°. This leads to a range of Ca–O distances that are consistent with the observed changes in the IR spectra in ACC. The spread in cation–cation distances is not enough to destroy coherent diffraction from regions 70 nm across, and so does not explain amorphous diffraction profiles. - Highlights: • Low concentrations of water in the calcite or aragonite structures lead to tilting of the carbonate planes. • This is consistent with IR observations from amorphous calcium carbonate. • It does not explain amorphous diffraction patterns.

  2. Pyrite-pyrrhotite intergrowths in calcite marble from Bistriški Vintgar, Slovenia

    International Nuclear Information System (INIS)

    Zavašnik, J

    2016-01-01

    Roman marble quarry in Bistrica gorge in southern Pohorje Mt. (north-eastern Slovenia) is situated in a 20 m thick lens of layered marble, at the contact zone between granodiorite and metamorphites. Grey and yellowish non-homogenous calcite marble is heavily included by mica, quartz, feldspars, zoisite, pyrite and amphiboles. In the present research, we have studied numerous pyrite (FeS 2 ) crystals associated with yellowish-bronze non-stoichiometric pyrrhotite (Fe 1−x S), not previously reported from this locality. SEM investigation revealed unusual sequence of crystallisation: primary skeletal pyrrhotite matrix is sparsely overgrown by well-crystalline pyrite, both being overgrown by smaller, well-developed hexagonal pyrrhotite crystals of the second generation. With TEM we identify the pyrrhotite as 5T-Fe 1-x S phase, where x is about 0.1 and is equivalent to Fe 9 S 10 . The pyrite-pyrrhotite coexistence allows us a construction of fO 2 -pH diagram of stability fields, which reflects geochemical conditions at the time of marble re-crystallisation. (paper)

  3. Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite

    Science.gov (United States)

    Van Rampelbergh, M.; Verheyden, S.; Allan, M.; Quinif, Y.; Keppens, E.; Claeys, P.

    2014-10-01

    Speleothems provide paleoclimate information on multimillennial to decadal scales in the Holocene. However, seasonal or even monthly resolved records remain scarce. Such records require fast-growing stalagmites and a good understanding of the proxy system on very short timescales. The Proserpine stalagmite from the Han-sur-Less cave (Belgium) displays well-defined/clearly visible darker and lighter seasonal layers of 0.5 to 2 mm thickness per single layer, which allows a measuring resolution at a monthly scale. Through a regular cave monitoring, we acquired a good understanding of how δ18O and δ13C signals in modern calcite reflect climate variations on the seasonal scale. From December to June, outside temperatures are cold, inducing low cave air and water temperature, and bio-productivity in the soil is limited, leading to lower pCO2 and higher δ13C values of the CO2 in the cave air. From June to December, the measured factors display an opposite behavior. The absence of epikarst water recharge between May and October increases prior calcite precipitation (PCP) in the vadose zone, causing drip water to display increasing pH and δ13C values over the summer months. Water recharge of the epikarst in winter diminishes the effect of PCP and as a result the pH and δ13C of the drip water gradually decrease. The δ18O and δ13C signals of fresh calcite precipitated on glass slabs also vary seasonally and are both reflecting equilibrium conditions. Lowest δ18O values occur during the summer, when the δ13C values are high. The δ18O values of the calcite display seasonal variations due to changes in the cave air and water temperature. The δ13C values reflect the seasonal variation of the δ13CDIC of the drip water, which is affected by the intensity of PCP. This same anticorrelation of the δ18O versus the δ13C signals is seen in the monthly resolved speleothem record that covers the period between 1976 and 1985 AD. Dark layers display lower δ18O and higher δ13C

  4. Chemistry of Frozen NaCl and MgSO4 Brines - Implications for Surface Expression of Europa's Ocean Composition

    Science.gov (United States)

    Johnson, P. V.; Hodyss, R. P.; Choukroun, M.; Vu, T. H.

    2015-12-01

    The composition of Europa's subsurface ocean is a critical determinant of its habitability, but current analysis of the ocean composition is limited to its expression on the Europan surface. While there is observational evidence indicating that ocean materials make their way to the surface, our understanding of the chemical processes that can alter this material under Europan surface conditions is limited. We present experimental data on the chemistry of mixed solutions of NaCl and MgSO4 as they are frozen to 100 K, replicating the conditions that may occur when subsurface ocean fluids are emplaced onto Europa's surface. Confocal micro-Raman spectroscopy is used to study the formation of salts during the freezing process, and the interaction of ions in the frozen brines. Our data indicate that mixed aqueous solutions of NaCl and MgSO4 form Na2SO4 and MgCl2 preferentially when frozen, rather than making NaCl and MgSO4 precipitates. The detection of epsomite (MgSO4Ÿ•7H2O) on Europa's surface may therefore imply an ocean composition relatively low in sodium, unless radiolytic chemistry converts MgCl2 to MgSO4 as suggested by Hand and Brown 2013 (ApJ 145 110). These results have important implications for the interpretation of remote sensing data of Europa's surface.

  5. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: its environmental implications.

    Science.gov (United States)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, Qunshan; Yan, Changzhou; Liu, Feng

    2011-09-15

    Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO(2) (Enano-TiO(2)) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO(2). In this study, Enano-TiO(2) was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO(2) particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S(max)). Contrarily, the fill of Enano-TiO(2) particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO(2). Enano-TiO(2) would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO(2) and/or similar ENPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Final Technical Report for DOE Award DE-FG02-07ER64403 [Modeling of Microbially Induced Calcite Precipitation for the Immobilization of Strontium-90 Using a Variable Velocity Streamtube Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, Timothy R. [University of California, Davis; Weathers, Tess [University of California, Davis

    2013-08-26

    Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understanding of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized

  7. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  8. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation.

    Science.gov (United States)

    Sharma, T K; Alazhari, M; Heath, A; Paine, K; Cooper, R M

    2017-05-01

    Characterization of alkaliphilic Bacillus species for spore production and germination and calcite formation as a prelude to investigate their potential in microcrack remediation in concrete. Conditions, extent and timing of endospore production was determined by dark-field light microscopy; germination induction and kinetics were assessed by combining reduction in optical density with formation of refractile bodies by phase-contrast microscopy. Bacillus pseudofirmus was selected from several species as the most suitable isolate. Levels and timing of calcium carbonate precipitated in vitro by B. pseudofirmus were evaluated by atomic absorption spectroscopy and structural identity confirmed as calcite and aragonite by Raman spectroscopy and FTIR. The isolate produced copious spores that germinated rapidly in the presence of germinants l-alanine, inosine and NaCl. Bacterial cells produced CaCO 3 crystals in microcracks and the resulting occlusion markedly restricted water ingress. By virtue of rapid spore production and germination, calcium carbonate formation in vitro and in situ, leading to sealing of microcracks, B. pseudofirmus shows clear potential for remediation of concrete on a commercial scale. Microbial sealing of microcracks should become a practicable and sustainable means of increasing concrete durability. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  9. Metal-silicate fractionation in the surface dust layers of accreting planetesimals: Implications for the formation of ordinary chondrites and the nature of asteroid surfaces

    Science.gov (United States)

    Huang, Shaoxiong; Akridge, Glen; Sears, Derek W. G.

    Some of the most primitive solar system materials available for study in the laboratory are the ordinary chondrites, the largest meteorite class. The size and distribution of the chondrules (silicate beads) and metal, which leads to the definition of the H, L, and LL classes, suggest sorting before or during aggregation. We suggest that meteorite parent bodies (probably asteroids) had thick dusty surfaces during their early evolution that were easily mobilized by gases evolving from their interiors. Density and size sorting would have occurred in the surface layers as the upward drag forces of the gases (mainly water) acted against the downward force of gravity. The process is analogous to the industrially important process of fluidization and sorting in pyroclastic volcanics. We calculate that gas flow velocities and gas fluxes for the regolith of an asteroid-sized object heated by the impact of accreting objects or by 26Al would have been sufficient for fluidization. It can also explain, quantitatively in some cases, the observed metal-silicate sorting of ordinary chondrites, which has long been ascribed to processes occurring in the primordial solar nebula. Formation of the chondrites in the thick dynamic regolith is consistent with the major properties of chondritic meteorites (i.e., redox state, petrologic type, cooling rate, matrix abundance). These ideas have implications for the nature of asteroid surfaces and the virtual lack of asteroids with ordinary chondrite-like surfaces.

  10. A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry

    Science.gov (United States)

    Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei

    2018-04-01

    Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.

  11. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    International Nuclear Information System (INIS)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, QunShan; Yan, Changzhou; Liu, Feng

    2011-01-01

    Highlights: → The attachment of Enano-TiO 2 to surface enhanced markedly sediment BET surface area and t-Plot external surface area. → The fill of Enano-TiO 2 into the micropores reduced significantly the sediment t-Plot micropore surface area. → Enano-TiO 2 could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. → P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO 2 (Enano-TiO 2 ) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO 2 . In this study, Enano-TiO 2 was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO 2 particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S max ). Contrarily, the fill of Enano-TiO 2 particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . Enano-TiO 2 would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO 2 and/or similar ENPs.

  12. Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.

    Science.gov (United States)

    Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J

    2017-09-06

    Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

  13. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  14. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    Science.gov (United States)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  15. Direct measurements of surface scattering in Si nanosheets using a microscale phonon spectrometer: implications for Casimir-limit predicted by Ziman theory.

    Science.gov (United States)

    Hertzberg, Jared B; Aksit, Mahmut; Otelaja, Obafemi O; Stewart, Derek A; Robinson, Richard D

    2014-02-12

    Thermal transport in nanostructures is strongly affected by phonon-surface interactions, which are expected to depend on the phonon's wavelength and the surface roughness. Here we fabricate silicon nanosheets, measure their surface roughness (∼ 1 nm) using atomic force microscopy (AFM), and assess the phonon scattering rate in the sheets with a novel technique: a microscale phonon spectrometer. The spectrometer employs superconducting tunnel junctions (STJs) to produce and detect controllable nonthermal distributions of phonons from ∼ 90 to ∼ 870 GHz. This technique offers spectral resolution nearly 10 times better than a thermal conductance measurement. We compare measured phonon transmission rates to rates predicted by a Monte Carlo model of phonon trajectories, assuming that these trajectories are dominated by phonon-surface interactions and using the Ziman theory to predict phonon-surface scattering rates based on surface topology. Whereas theory predicts a diffuse surface scattering probability of less than 40%, our measurements are consistent with a 100% probability. Our nanosheets therefore exhibit the so-called "Casimir limit" at a much lower frequency than expected if the phonon scattering rates follow the Ziman theory for a 1 nm surface roughness. Such a result holds implications for thermal management in nanoscale electronics and the design of nanostructured thermoelectrics.

  16. Calcite veins of the Stripa granite (Sweden) as records of the origin of the ground waters and their interactions with the granitic body

    International Nuclear Information System (INIS)

    Clauer, N.; Fritz, B.; Frape, S.K.

    1989-01-01

    A Sr isotopic study combined with stable isotope determinations (δ 18 O and δ 13 C), petrographic observations and speciation calculations suggests that the Stripa granite (Sweden) contains at least three different types of calcite veins. One type with δ 18 O = -18 to -24 per-thousand (PDB) and 87 Sr/ 86 Sr = 0.7814 to 1.0696 probably formed at temperatures above 200 degree C, together with chlorite and epidote, during one or two metamorphic events which are recorded in the Rb-Sr systematics of some minerals of the granite at 1.4 and 0.8 Ga. Another type with δ 18 O = -12 to -18 per-thousand (PDB) and 87 Sr/ 86 Sr = 0.7406 to 0.7536 and mainly associated with chlorite, is most likely in equilibrium with the present day ground waters, which probably have reacted with the fracture minerals of the granitic body for a long time without any supply of external fluids. The third type of calcite with δ 18 C = -12 to -18 per-thousand (PDB), δ 13 C = -5 to -45 per-thousand (PDB) and 87 Sr/ 86 Sr = 0.7266 to 0.7406, could have formed from reactions involving methane oxidation or sulfate reduction in the presence of bacteria

  17. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  18. Hydrodynamic-driven stability analysis of morphological patterns on stalactites and implications for cave paleoflow reconstructions.

    Science.gov (United States)

    Camporeale, Carlo; Ridolfi, Luca

    2012-06-08

    A novel hydrodynamic-driven stability analysis is presented for surface patterns on speleothems, i.e., secondary sedimentary cave deposits, by coupling fluid dynamics to the geochemistry of calcite precipitation or dissolution. Falling film theory provides the solution for the flow-field and depth perturbations, the latter being crucial to triggering patterns known as crenulations. In a wide range of Reynolds numbers, the model provides the dominant wavelengths and pattern celerities, in fair agreement with field data. The analysis of the phase velocity of ridges on speleothems has a potential as a proxy of past film flow rates, thus suggesting a new support for paleoclimate analyses.

  19. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  20. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    Science.gov (United States)

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  1. In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90

    Science.gov (United States)

    Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

    2014-01-01

    Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

  2. Fluids along the North Anatolian Fault, Niksar basin, north central Turkey: Insight from stable isotopic and geochemical analysis of calcite veins

    Science.gov (United States)

    Sturrock, Colin P.; Catlos, Elizabeth J.; Miller, Nathan R.; Akgun, Aykut; Fall, András; Gabitov, Rinat I.; Yilmaz, Ismail Omer; Larson, Toti; Black, Karen N.

    2017-08-01

    Six limestone assemblages along the North Anatolian Fault (NAF) Niksar pull-apart basin in northern Turkey were analyzed for δ18OPDB and δ13CPDB using bulk isotope ratio mass spectrometry (IRMS). Matrix-vein differences in δ18OPDB (-2.1 to 6.3‰) and δ13CPDB (-0.9 to 4.6‰) suggest a closed fluid system and rock buffering. Veins in one travertine and two limestone assemblages were further subjected to cathodoluminescence, trace element (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and δ18OPDB (Secondary Ion Mass Spectrometry, SIMS) analyses. Fluid inclusions in one limestone sample yield Th of 83.8 ± 7.3 °C (±1σ, mean average). SIMS δ18OPDB values across veins show fine-scale variations interpreted as evolving thermal conditions during growth and limited rock buffering seen at a higher-resolution than IRMS. Rare earth element data suggest calcite veins precipitated from seawater, whereas the travertine has a hydrothermal source. The δ18OSMOW-fluid for the mineralizing fluid that reproduces Th is +2‰, in range of Cretaceous brines, as opposed to negative δ18OSMOW-fluid from meteoric, groundwater, and geothermal sites in the region and highly positive δ18OSMOW-fluid expected for mantle-derived fluids. Calcite veins at this location do not record evidence for deeply-sourced metamorphic and magmatic fluids, an observation that differs from what is reported for the NAF elsewhere along strike.

  3. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhuanxi [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Wang, Zhenhong [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhangzhou Normal University, Department of Chemistry and Environment Sciences, Zhangzhou 363000 (China); Wei, QunShan [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Yan, Changzhou, E-mail: czyan@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Feng [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2011-09-15

    Highlights: {yields} The attachment of Enano-TiO{sub 2} to surface enhanced markedly sediment BET surface area and t-Plot external surface area. {yields} The fill of Enano-TiO{sub 2} into the micropores reduced significantly the sediment t-Plot micropore surface area. {yields} Enano-TiO{sub 2} could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. {yields} P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO{sub 2}. - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO{sub 2} (Enano-TiO{sub 2}) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO{sub 2}. In this study, Enano-TiO{sub 2} was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO{sub 2} particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S{sub max}). Contrarily, the fill of Enano-TiO{sub 2} particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO{sub 2}. Enano-TiO{sub 2} would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO{sub 2} and/or similar ENPs.

  4. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.

    Science.gov (United States)

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S

    2011-01-01

    Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of

  5. Chronology of fluid paleo-circulations in mesozoic formations on the site of Bure by U/Pb dating of secondary calcites

    International Nuclear Information System (INIS)

    Pisapia, C.; Deschamps, P.; Hamelin, B.; Pisapia, C.; Buschaert, S.

    2009-01-01

    The French national agency for the management of radioactive wastes (ANDRA, Agence nationale pour la gestion des dechets radioactifs) has developed an underground research laboratory in mesozoic formations of the eastern Parisian Basin in order to test the design of radioactive waste storage site in sedimentary formations. The authors report an investigation which aims at understanding the site paleo-hydrology. This investigation is based on the disintegration chain of uranium and on U/Th and U/Pb dating methods, and aims at giving a precise chronology of the different phases of precipitation of centimetric and millimetric secondary calcites sampled on this site

  6. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  7. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater

    DEFF Research Database (Denmark)

    Turner, B.D.; Binning, Philip John; Sloan, S.W.

    2008-01-01

    The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process...... leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal...... diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model...

  8. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  9. Tear clearance implications for ocular surface health.

    Science.gov (United States)

    de Paiva, Cintia Sade; Pflugfelder, Stephen C

    2004-03-01

    Tear clearance/turnover provides a global assessment of the function of the lacrimal functional unit and of tear exchange on the ocular surface. It is an indirect measure of dry eye induced inflammation on the ocular surface. It shows better correlation with the severity of ocular irritation symptoms and corneal epithelial disease in dry eye than the Schirmer 1 test. Delayed tear clearance may prove to be the best measure for identifying patients with tear film disorders who may respond to anti-inflammatory therapy.

  10. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    Science.gov (United States)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  11. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    Science.gov (United States)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  12. Fathoms Below: Propagation of Deep Water-driven Fractures and Implications for Surface Expression and Temporally-varying Activity at Europa

    Science.gov (United States)

    Walker, C. C.; Craft, K.; Schmidt, B. E.

    2015-12-01

    The fracture and failure of Europa's icy shell are not only observable scars of variable stress and activity throughout its evolution, they also serve key as mechanisms in the interaction of surface and subsurface material, and thus crucial aspects of the study of crustal overturn and ice shell habitability. Galileo images, our best and only reasonable-resolution views of Europa until the Europa Multiple Flyby Mission arrives in the coming decades, illustrates a single snapshot in time in Europa's history from which we deduce many temporally-based hypotheses. One of those hypotheses, which we investigate here, is that sub-surface water-both in the form of Great Lake-sized perched water pockets in the near-surface and the larger global ocean below-drives the deformation, fracture, and failure of the surface. Using Galileo's snapshot in time, we use a 2D/3D hydraulic fracturing model to investigate the propagation of vertical fractures upward into the ice shell, motion of water within and between fractures, and the subsequent break-up of ice over shallow water, forming the chaos regions and other smaller surface features. We will present results from a cohesive fragmentation model to determine the time over which chaos formation occurs, and use a fracking model to determine the time interval required to allow water to escape from basal fractures in the ice shell. In determining the style, energy, and timescale of these processes, we constrain temporal variability in observable activity and topography at the surface. Finally, we compare these results to similar settings on Earth-Antarctica-where we have much higher resolution imagery and observations to better understand how sub-surface water can affect ice surface morphology, which most certainly have implications for future flyby and surface lander exploration.

  13. Orientation with a Viking sun-compass, a shadow-stick, and two calcite sunstones under various weather conditions.

    Science.gov (United States)

    Bernáth, Balázs; Blahó, Miklós; Egri, Adám; Barta, András; Kriska, György; Horváth, Gábor

    2013-09-01

    It is widely accepted that Vikings used sun-compasses to derive true directions from the cast shadow of a gnomon. It has been hypothesized that when a cast shadow was not formed, Viking navigators relied on crude skylight polarimetry with the aid of dichroic or birefringent crystals, called "sunstones." We demonstrate here that a simple tool, that we call "shadow-stick," could have allowed orientation by a sun-compass with satisfying accuracy when shadows were not formed, but the sun position could have reliably been estimated. In field tests, we performed orientation trials with a set composed of a sun-compass, two calcite sunstones, and a shadow-stick. We show here that such a set could have been an effective orientation tool for Vikings only when clear, blue patches of the sky were visible.

  14. Effects of increased pCO2 and geographic origin on purple sea urchin (Strongylocentrotus purpuratus) calcite elemental composition

    Science.gov (United States)

    LaVigne, M.; Hill, T. M.; Sanford, E.; Gaylord, B.; Russell, A. D.; Lenz, E. A.; Hosfelt, J. D.; Young, M. K.

    2012-12-01

    Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (such as Mg and Sr) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore the effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low to high magnesium calcites. Mg/Ca and Sr/Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions along the US west coast (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg/Ca and Sr/Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg/Ca or Sr/Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 ppm; pH = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD). However, when reared under elevated CO2 (900 ppm; pH = 7.72 ± 0.03; Ωcalcite = 1.8 ± 0.1), skeletal Sr/Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr incorporation under elevated CO2 (Sr/Ca = 2

  15. Permian-Triassic boundary microbialites at Zuodeng Section, Guangxi Province, South China: Geobiology and palaeoceanographic implications

    Science.gov (United States)

    Fang, Yuheng; Chen, Zhong-Qiang; Kershaw, Stephen; Yang, Hao; Luo, Mao

    2017-05-01

    spheroid without outer sheaths, (2) a large sparry calcite nucleus coated with a thin sparry calcite sheath, (3) a large nucleus of micrite framboid aggregates rimmed by a thin sparry calcite sheath (bacterial clump-like spheroids), (4) a large nucleus of micrite framboid aggregates coated with a thin micritic sheath, and (5) a small sparry nuclei rimmed by coarse-grained, radiated euhedral rays. The irregular contact beneath the Zuodeng microbialites is interpreted as a subaerial exposure surface due to regional regression in South China. The demise of the Zuodeng microbialites may have been due to rapid rise in sea-level because they grew in relatively shallow marine conditions and are overlain by muddy limestones containing pelagic conodonts. Also siliciclastic content increases above the microbialite, suggesting a possible climate-related increase in weathering as the transgression progressed.

  16. Reconstructing water level in Hoyo Negro, Quintana Roo, Mexico, implications for early Paleoamerican and faunal access

    Science.gov (United States)

    Collins, S. V.; Reinhardt, E. G.; Rissolo, D.; Chatters, J. C.; Nava Blank, A.; Luna Erreguerena, P.

    2015-09-01

    The skeletal remains of a Paleoamerican (Naia; HN5/48) and extinct megafauna were found at -40 to -43 mbsl in a submerged dissolution chamber named Hoyo Negro (HN) in the Sac Actun Cave System, Yucatan Peninsula, Mexico. The human remains were dated to between 12 and 13 Ka, making these remains the oldest securely dated in the Yucatan. Twelve sediment cores were used to reconstruct the Holocene flooding history of the now phreatic cave passages and cenotes (Ich Balam, Oasis) that connect to HN. Four facies were found: 1. bat guano and Seed (SF), 2. lime Mud (MF), 3. Calcite Rafts (CRF) and 4. Organic Matter/Calcite Rafts (OM/CRF) which were defined by their lithologic characteristics and ostracod, foraminifera and testate amoebae content. Basal radiocarbon ages (AMS) of aquatic sediments (SF) combined with cave bottom and ceiling height profiles determined the history of flooding in HN and when access was restricted for human and animal entry. Our results show that the bottom of HN was flooded at least by 9850 cal yr BP but likely earlier. We also found, that the pit became inaccessible for human and animal entry at ≈8100 cal yr BP, when water reaching the cave ceiling effectively prevented entry. Water level continued to rise between ≈6000 and 8100 cal yr BP, filling the cave passages and entry points to HN (Cenotes Ich Balam and Oasis). Analysis of cave facies revealed that both Holocene sea-level rise and cave ceiling height determined the configuration of airways and the deposition of floating and bat derived OM (guano and seeds). Calcite rafts, which form on the water surface, are also dependent on the presence of airways but can also form in isolated air domes in the cave ceiling that affect their loci of deposition on the cave bottom. These results indicated that aquatic cave sedimentation is transient in time and space, necessitating extraction of multiple cores to determine a limit after which flooding occurred.

  17. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction

    Science.gov (United States)

    Wu, Ya; Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    Understanding uranium (U) mobility is vital to minimizing its concentrations in potential drinking water sources. In this study, we report spatial-seasonal variations in U speciation and concentrations in a multi-aquifer system under the impact of Sanggan River in Datong basin, northern China. Hydrochemical and H, O, Sr isotopic data, thermodynamic calculations, and geochemical modeling are used to investigate the mechanisms of surface water-groundwater mixing-induced mobilization and natural attenuation of U. In the study site, groundwater U concentrations are up to 30.2 μg/L, and exhibit strong spatial-seasonal variations that are related to pH and Eh values, as well as dissolved Ca2+, HCO3-, and Fe(III) concentrations. For the alkaline aquifers of this site (pH 7.02-8.44), U mobilization is due to the formation and desorption of Ca2UO2(CO3)30 and CaUO2(CO3)32- caused by groundwater Ca2+ elevation via mineral weathering and Na-Ca exchange, incorporated U(VI) release from calcite, and U(IV) oxidation by Fe(OH)3. U immobilization is linked to the adsorption of CaUO2(CO3)32- and UO2(CO3)34- shifted from Ca2UO2(CO3)30 because of HCO3- elevation and Ca2+ depletion, U(VI) co-precipitation with calcite, and U(VI) reduction by adsorbed Fe2+ and FeS. Those results are of great significance for the groundwater resource management of this and similar other surface water-groundwater interaction zones.

  18. Study of the sorption of actinide analogues on calcite and smectite as a model to predict the evolution of radioactive waste disposal in geological sites

    International Nuclear Information System (INIS)

    Budiman Sastrowardoyo, Pratomo

    1991-01-01

    In the framework of the problem of the radioactive waste disposal in deep geological sites, the purpose of this study is to predict the sorption of radionuclides on minerals within the geological barrier, after the rupture of the containers and the release of the radionuclides into underground water. Neodymium labelled by 147 Nd was used as an analogue of trivalent actinides. Calcite and smectite were used as examples of altered minerals of granitic sites. In simple media, neodymium is retained with a high affinity on both minerals. Fast kinetics of fixation, high distribution coefficients and sorption capacities are favorable factors for the slowing down of radionuclide migration in underground water. Fixation on calcite is quasi irreversible. A second kinetic step was observed, leading to an increase of the retention capacity. In the first step, this is probably a superficial sorption, but with a non-homogeneous affinity for sorption sites. An exchange mechanism of Nd 3+ with Na + et Ca 2+ ions of smectite occurs. The Freundlich isotherm observed for both minerals can be used for predicting the retention of radioelements as a function of their concentration and introducing these data in a migration model after comparison with the results of dynamic and field experiments. (author) [fr

  19. Long distance electron transport in marine sediments: Microbial and geochemical implications

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Larsen, Steffen; Pfeffer, Christian

    and promotes the formation of Mg-calcite and iron oxides in the oxic zone. Oxygen seems to be the major electron acceptor, and more than 40% of the oxygen consumption in sediments can be driven by long distance electron transfer from distant electron donors. The major e-donor is sulfide, which is oxidized......Anaerobic oxidation of organic matter in marine sediment is traditionally considered to be coupled to oxygen reduction via a cascade of redox processes and transport of intermittent electron donors and acceptors. Electric currents have been found to shortcut this cascade and directly couple...... oxidation of sulphide centimeters down in marine sediment to the reduction of oxygen at the very surface1 . This electric coupling of spatially separated redox half-reactions seems to be mediated by centimeter long filamentous Desulfubulbus affiliated bacteria with morphological and ultra...

  20. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.

    Science.gov (United States)

    Liu, Sheng; Zhong, Hong; Liu, Guangyi; Xu, Zhenghe

    2018-02-15

    Hydroxamate and sulfhydryl surfactants are effective collectors for flotation of copper minerals. The combination application of hydroxamate and sulfhydryl collectors has been proved to be an effective approach for improving the flotation recovery of non-sulfide copper minerals. A surfactant owing both hydroxamate and dithiocarbamate groups might exhibit strong affinity to non-sulfide copper minerals through double sites adsorption, rendering an enhanced hydrophobization to non-sulfide copper minerals flotation. The flotation performance of S-[(2-hydroxyamino)-2-oxoethyl]- N,N-dibutyldithiocarbamate (HABTC) to malachite, calcite and quartz were first evaluated through systematic micro-flotation experiments. HABTC's hydrophobic mechanism to malachite was further investigated and analyzed by zeta potential, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The micro-flotation results demonstrated HABTC was an excellent collector for malachite flotation and exhibited favorable selectivity for flotation separation of malachite from quartz or calcite under pH 8.5-10.3. Zeta potential and FTIR implied that HABTC might bond with the surface copper atoms of malachite, with releasing the H + ions of its hydroxamate group into pulp. ToF-SIMS provided clear evidences that the Cu-hydroxamate and Cu-dithiocarbamate groups were formed on malachite surfaces after HABTC adsorption. XPS revealed that Cu(I)/Cu(II) mixed-valence surface complexes of HABTC anchored on malachite through formation of Cu(I)S and Cu(II)O bonds, accompanying with reduction of partial surface Cu(II) to Cu(I). The Cu(I)/Cu(II) mixed-valence double chelating character and "chair"-shape N,N-dibutyldithiocarbamate hydrophobic group, resulting in an enhanced affinity and hydrophobization of HABTC to malachite flotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effect of softening precipitate composition and surface characteristics on natural organic matter adsorption.

    Science.gov (United States)

    Russell, Caroline G; Lawler, Desmond F; Speitel, Gerald E; Katz, Lynn E

    2009-10-15

    Natural organic matter (NOM) removal during water softening is thought to occur through adsorption onto or coprecipitation with calcium and magnesium solids. However, details of precipitate composition and surface chemistry and subsequent interactions with NOM are relatively unknown. In this study, zeta potentiometry analyses of precipitates formed from inorganic solutions under varying conditions (e.g., Ca-only, Mg-only, Ca + Mg, increasing lime or NaOH dose) indicated that both CaCO3 and Mg(OH)2 were positively charged at higher lime (Ca(OH)2) and NaOH doses (associated with pH values above 11.5), potentially yielding a greater affinity for adsorbing negatively charged organic molecules. Environmental scanning electron microscopy (ESEM) images of CaCO3 solids illustrated the rhombohedral shape characteristic of calcite. In the presence of increasing concentrations of magnesium, the CaCO3 rhombs shifted to more elongated crystals. The CaCO3 solids also exhibited increasingly positive surface charge from Mg incorporation into the crystal lattice, potentially creating more favorable conditions for adsorption of organic matter. NOM adsorption experiments using humic substances extracted from Lake Austin and Missouri River water elucidated the role of surface charge and surface area on adsorption.

  2. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia shell calcite precipitated at constant temperature

    Directory of Open Access Journals (Sweden)

    P. S. Freitas

    2009-07-01

    Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.

  3. Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments.

    Science.gov (United States)

    Cappitelli, Francesca; Toniolo, Lucia; Sansonetti, Antonio; Gulotta, Davide; Ranalli, Giancarlo; Zanardini, Elisabetta; Sorlini, Claudia

    2007-09-01

    This study compares two cleaning methods, one involving an ammonium carbonate-EDTA mixture and the other involving the sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, for the removal of black crust (containing gypsum) on marble of the Milan Cathedral (Italy). In contrast to the chemical cleaning method, the biological procedure resulted in more homogeneous removal of the surface deposits and preserved the patina noble under the black crust. Whereas both of the treatments converted gypsum to calcite, allowing consolidation, the chemical treatment also formed undesirable sodium sulfate.

  4. Advantages of Using Microbial Technology over Traditional Chemical Technology in Removal of Black Crusts from Stone Surfaces of Historical Monuments▿

    Science.gov (United States)

    Cappitelli, Francesca; Toniolo, Lucia; Sansonetti, Antonio; Gulotta, Davide; Ranalli, Giancarlo; Zanardini, Elisabetta; Sorlini, Claudia

    2007-01-01

    This study compares two cleaning methods, one involving an ammonium carbonate-EDTA mixture and the other involving the sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, for the removal of black crust (containing gypsum) on marble of the Milan Cathedral (Italy). In contrast to the chemical cleaning method, the biological procedure resulted in more homogeneous removal of the surface deposits and preserved the patina noble under the black crust. Whereas both of the treatments converted gypsum to calcite, allowing consolidation, the chemical treatment also formed undesirable sodium sulfate. PMID:17601804

  5. Induced calcite precipitation for the restoration of stratified hardwater lakes: The case of Lake Schmaler Luzin (North-East Germany); Induzierte Calcitfaellung zur Restaurierung eutropher Seen am Beispiel des Schmalen Luzins (Nord-Ost-Deutschland)

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, M.; Heiser, A.; Koschel, R. [Inst. fuer Gewaesseroekologie und Binnenfischerei, Neuglobsow (Germany). Abt. fuer Limnologie Geschichteter Seen

    1997-11-01

    Artificially induced calcite precipitation combined with deep water aeration has been tested as a possible technology for lake restoration. A pilot equipment for whole lake experiments has been developed for the restoration of the Lake Schmaler Luzin on the basis of enclosure experiments. The hypolimnetic calcite precipitation was induced by hypolimnetic addition of Ca(OH){sub 2}. In 1996 the first experiments were aimed at checking the conditions for artificially induced hypolimnetic calcite precipitation and their effectiveness on phosphorus elimination. 140 t Ca(OH){sub 2} and 416 000 m{sup 3} air were added in the hypolimnion during two cycles of these experiments, each lasting one month. This led to an increase of the pH value in the hypolimnion from 7.2 to 9.1, above the sediment (2-3 cm) from 7.2 to 8.2 and in the upper layers of sediments from 7.4 to 8.6. The chemical equilibrium was shifted towards the calcite and we observed hypolimnetic calcite precipitations. In 1996 the hypolimnetic aeration was performed with the aim of homogenisation of the hypolimnion. As expected the amount of added air was not enough to make the whole hypolimnion aerobic during the summer stagnation. The reduction of the total and dissolved phosphorus concentration in the hypolimnion and at the sediment-water interface in comparison to the values of the year before indicated the occurence of phosphorus coprecipitation with calcite. The concentration of the soluble reactive phosphorus above the sediment decreased from 0.31 mgl{sup -1} in 1995 (26.07.) to 0.04 mgl{sup -1} in 1996 (01.08.). (orig.) [Deutsch] Basirend auf den Ergebnissen von Enclosureversuchen wurde 1995/96 eine Pilotanlage zur Restaurierung geschichteter eutrophierter und kalkreicher Seen entwickelt. Die Pilotanlage kombiniert die hypolimnische Ca(OH){sub 2}-Zugabe mit einer Tiefenwasserbelueftung. Die Anlage hat 1996 ihren Betrieb aufgenommen und wird zur Restaurierung des ehemals oligotrophen, jetzt eutrophen

  6. Inversion of calcite twin data for paleostress (1) : improved Etchecopar technique tested on numerically-generated and natural data

    Science.gov (United States)

    Parlangeau, Camille; Lacombe, Olivier; Daniel, Jean-Marc; Schueller, Sylvie

    2015-04-01

    Inversion of calcite twin data are known to be a powerful tool to reconstruct the past-state of stress in carbonate rocks of the crust, especially in fold-and-thrust belts and sedimentary basins. This is of key importance to constrain results of geomechanical modelling. Without proposing a new inversion scheme, this contribution reports some recent improvements of the most efficient stress inversion technique to date (Etchecopar, 1984) that allows to reconstruct the 5 parameters of the deviatoric paleostress tensors (principal stress orientations and differential stress magnitudes) from monophase and polyphase twin data sets. The improvements consist in the search of the possible tensors that account for the twin data (twinned and untwinned planes) and the aid to the user to define the best stress tensor solution, among others. We perform a systematic exploration of an hypersphere in 4 dimensions by varying different parameters, Euler's angles and the stress ratio. We first record all tensors with a minimum penalization function accounting for 20% of the twinned planes. We then define clusters of tensors following a dissimilarity criterion based on the stress distance between the 4 parameters of the reduced stress tensors and a degree of disjunction of the related sets of twinned planes. The percentage of twinned data to be explained by each tensor is then progressively increased and tested using the standard Etchecopar procedure until the best solution that explains the maximum number of twinned planes and the whole set of untwinned planes is reached. This new inversion procedure is tested on monophase and polyphase numerically-generated as well as natural calcite twin data in order to more accurately define the ability of the technique to separate more or less similar deviatoric stress tensors applied in sequence on the samples, to test the impact of strain hardening through the change of the critical resolved shear stress for twinning as well as to evaluate the

  7. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Stronthium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.; Fujita, Yoshiko

    2007-11-07

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers’ exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  8. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    International Nuclear Information System (INIS)

    Smith, Robert W.; Fujita, Yoshiko

    2007-01-01

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  9. Role of the carbonate impurities on the surface state of pyrite and arsenopyrite under treatment by high power electromagnetic pulses (HPEMP): oxidation of 50-100 μm size particles

    International Nuclear Information System (INIS)

    Filippova, I; Filippov, L; Ryazantseva, M; Chanturiya, V; Bunin, I

    2013-01-01

    Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Transmission Electron Microscopy (TEM) have shown the variation of surface phase compositions of carbonate bearing pyrite and arsenopyrite as a result of the combined action of chemical oxidation and thermal processes after the treatment by high power electromagnetic pulses (HPEMP). The monitoring of the surface phase composition allowed to determine the correlation between the treatment conditions, the surface phase composition, and the flotation yield. Thus, HPEMP treatment may be regarded as a tool controlling the surface composition and the sorption ability of flotation collector onto minerals surface, and therefore, allowing to control the hydrophobic-hydrophilic surface balance. It was confirmed in this study that the flotation of pyrite with xanthate as a result of the influence HPEMP may vary depending on the presence of impurities such as calcite.

  10. Inversion of calcite twin data for paleostress orientations and magnitudes: A new technique tested and calibrated on numerically-generated and natural data

    Science.gov (United States)

    Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc

    2018-01-01

    The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique for the inversion of calcite twin data that reconstructs the 5 parameters of the deviatoric stress tensors from both monophase and polyphase twin datasets. The uncertainties in the parameters of the stress tensors reconstructed by this new technique are evaluated on numerically-generated datasets. The technique not only reliably defines the 5 parameters of the deviatoric stress tensor, but also reliably separates very close superimposed stress tensors (30° of difference in maximum principal stress orientation or switch between σ3 and σ2 axes). The technique is further shown to be robust to sampling bias and to slight variability in the critical resolved shear stress. Due to our still incomplete knowledge of the evolution of the critical resolved shear stress with grain size, our results show that it is recommended to analyze twin data subsets of homogeneous grain size to minimize possible errors, mainly those concerning differential stress values. The methodological uncertainty in principal stress orientations is about ± 10°; it is about ± 0.1 for the stress ratio. For differential stresses, the uncertainty is lower than ± 30%. Applying the technique to vein samples within Mesozoic limestones from the Monte Nero anticline (northern Apennines, Italy) demonstrates its ability to reliably detect and separate tectonically significant paleostress orientations and magnitudes from naturally deformed polyphase samples, hence to fingerprint the regional paleostresses of interest in tectonic studies.

  11. Reconstruction of drip-water δ18O based on calcite oxygen and clumped isotopes of speleothems from Bunker Cave (Germany

    Directory of Open Access Journals (Sweden)

    T. Kluge

    2013-02-01

    Full Text Available The geochemical signature of many speleothems used for reconstruction of past continental climates is affected by kinetic isotope fractionation. This limits quantitative paleoclimate reconstruction and, in cases where the kinetic fractionation varies with time, also affects relative paleoclimate interpretations. In carbonate archive research, clumped isotope thermometry is typically used as proxy for absolute temperatures. In the case of speleothems, however, clumped isotopes provide a sensitive indicator for disequilibrium effects. The extent of kinetic fractionation co-varies in Δ47 and δ18O so that it can be used to account for disequilibrium in δ18O and to extract the past drip-water composition. Here we apply this approach to stalagmites from Bunker Cave (Germany and calculate drip-water δ18Ow values for the Eemian, MIS3, and the Holocene, relying on independent temperature estimates and accounting for disequilibrium. Applying the co-variation method to modern calcite precipitates yields drip-water δ18Ow values in agreement with modern cave drip-water δ18Ow of −7.9 ± 0.3‰, despite large and variable disequilibrium effects in both calcite δ18Oc and Δ47. Reconstructed paleo-drip-water δ18Ow values are lower during colder periods (e.g., MIS3: −8.6 ± 0.4‰ and the early Holocene at 11 ka: −9.7 ± 0.2‰ and show higher values during warmer climatic periods (e.g., the Eemian: −7.6 ± 0.2‰ and the Holocene Climatic Optimum: −7.2 ± 0.3‰. This new approach offers a unique possibility for quantitative climate reconstruction including the assessment of past hydrological conditions while accounting for disequilibrium effects.

  12. Facet personality and surface-level diversity as team mental model antecedents: implications for implicit coordination.

    Science.gov (United States)

    Fisher, David M; Bell, Suzanne T; Dierdorff, Erich C; Belohlav, James A

    2012-07-01

    Team mental models (TMMs) have received much attention as important drivers of effective team processes and performance. Less is known about the factors that give rise to these shared cognitive structures. We examined potential antecedents of TMMs, with a specific focus on team composition variables, including various facets of personality and surface-level diversity. Further, we examined implicit coordination as an important outcome of TMMs. Results suggest that team composition in terms of the cooperation facet of agreeableness and racial diversity were significantly related to team-focused TMM similarity. TMM similarity was also positively predictive of implicit coordination, which mediated the relationship between TMM similarity and team performance. Post hoc analyses revealed a significant interaction between the trust facet of agreeableness and racial diversity in predicting TMM similarity. Results are discussed in terms of facilitating the emergence of TMMs and corresponding implications for team-related human resource practices. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  13. The nature of unusual luminescence in natural calcite, CaCO3

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Panczer, G.; Waychunas, G.; Porat, N.

    2008-11-01

    The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms, accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.

  14. Mg and Sr in Arctic echinoderm calcite: Nature or nurture?

    Science.gov (United States)

    Iglikowska, A.; Borszcz, T.; Drewnik, A.; Grabowska, M.; Humphreys-Williams, E.; Kędra, M.; Krzemińska, M.; Piwoni-Piórewicz, A.; Kukliński, P.

    2018-04-01

    The Mg/Ca and Sr/Ca ratios in echinoderm skeletal calcite are used as a proxy for Phanerozoic seawater changes, since the skeletal concentrations are, to some extent, controlled by environmental factors. However, it remains unclear how the influence of environmental factors is modified by vital effects, especially in polar waters. Therefore, the goal of this study was to compare the ratios of Mg/Ca and Sr/Ca among the skeletal parts of 10 common Arctic echinoderm species belonging to three classes Echinoidea, Asteroidea and Ophiuroidea that contribute substantially to the carbon cycle in the Arctic benthic system. Significant differences were recorded in echinoid skeletal element concentrations among specific skeletal parts. The lowest Mg/Ca and Sr/Ca ratios were detected in the spines (mean Mg/Ca 37.5 ± 8.8 SD; Sr/Ca 1.8 ± 0.1). The components of the Aristotle's lantern (epiphyses, pyramids and rotulas) were characterised by the highest Mg levels (Mg/Ca 79.9 ± 6.0; 75.2 ± 9.1; 60.1 ± 3.8, respectively). It is likely that mouth parts experience greater mechanical pressure compared to other body parts, and the higher content of Mg in the Aristotle's lantern contributes to its robustness. We did not find any distinctive trends in the distribution of skeletal elements in the asteroid and ophiuroid skeletal parts. The heterogeneous concentrations of Mg and Sr in different skeleton parts of the echinoids suggest possible physiological regulation of the chemical composition rather than the composition only being influenced by the environment. We cannot recommend echinoderm skeletons as reliable indicators in palaeoenvironmental reconstructions due to the possible biological control of skeletal chemistry, which may interfere with the effect of environmental variables.

  15. Study on long-term stability of geochemical environments at deep underground

    International Nuclear Information System (INIS)

    Mizuno, Takashi; Iwatsuki, Teruki

    2005-01-01

    Observation and fluid inclusion analysis of fracture filling calcites in granite at the Tono area were conducted to assess long-term stability of geochemical environment at deep underground. The result of observation using SEM and luminoscope shows that precipitation processes of calcite can be divided into four phases (1 to 4) based on their occurrence. (1) Phase 1: indistinct morphology and includes the wall rock fragments. (2) Phase 2: rhombohedral and hexagonal form. (3) Phase 3: elongate rhombohedral form, growth over the layer of phase 2 calcite. (4) Phase 4: small rhombohedral form crystals growth from surface of phase 3 calcite. On Phase 1 calcite, it seems to be hydrothermal origin related to fracture activation. Previous study shows the correlation between the salinity of fluid from which calcite precipitated and morphology of calcite. According to previous studies, the groundwater from which phase 3 calcite precipitated would be the highest salinity such as seawater. Phase 2 and 4 calcite may be precipitated from groundwater with low salinity. On the other hand, fluid inclusions were recognized in phase 2 and 3 calcite. All inclusions indicated mono-phase (liquid phase). These suggest that phase 2 and 3 calcites were precipitated in low-temperature condition. Result of salinity analysis indicates that two groundwaters having different chemical properties had existed during phase 2 and 3 calcite precipitation. Based on these results, geochemical environment had changed by input of high salinity groundwater during Phase 2 and 3 calcite precipitation. It is required to identify the origin of each groundwater in consideration of historical geology for further understanding of long-term hydrochemical condition. (author)

  16. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir

    Science.gov (United States)

    Chafetz, Henry; Barth, Jennifer; Cook, Megan; Guo, Xuan; Zhou, Jie

    2018-03-01

    Spherulites, spherical to elliptical allochems composed of crystals radiating from a common core, investigated from a variety of depositional settings, e.g., hot springs, ambient water temperature geyser, tufa, and caliche, are all composed of a fine-grained nucleus made-up of carbonate encrusted bacterial bodies, biofilms, and/or EPS and surrounded by a cortex of radiating crystals of either aragonite or calcite. The microbes and their by-products in the nucleus induced the precipitation of carbonate, overcoming the inhibition to initiate crystal formation. The enveloping radiating crystals comprising aragonitic cortices tended to grow abiotically producing well-formed euhedral crystals with a paucity of included bacterial fossils. Whereas those cortical crystals made-up of calcite commonly contained bacterial fossils, indicating that the bacterial colonies contributed to the calcitic cortical crystal precipitation. Similar spherulites form a thick, widespread accumulation in the Aptian Pre-Salt lacustrine deposits in the Campos Basin, offshore Brazil. As with the travertine, tufa, and caliche spherulites, the Pre-Salt spherulites most likely initiated carbonate precipitation around bacterial colonies and/or their bioproducts, probably while afloat in a lacustrine water column before settling to the water-sediment interface. Absence of inter-spherulite sediment and the spherulite-to-spherulite compaction indicate that cortical crystal growth continued while the spherulites were at the sediment-water interface rather than displacively within a sediment.

  17. Cigarette smoke toxins deposited on surfaces: implications for human health.

    Directory of Open Access Journals (Sweden)

    Manuela Martins-Green

    Full Text Available Cigarette smoking remains a significant health threat for smokers and nonsmokers alike. Secondhand smoke (SHS is intrinsically more toxic than directly inhaled smoke. Recently, a new threat has been discovered - Thirdhand smoke (THS - the accumulation of SHS on surfaces that ages with time, becoming progressively more toxic. THS is a potential health threat to children, spouses of smokers and workers in environments where smoking is or has been allowed. The goal of this study is to investigate the effects of THS on liver, lung, skin healing, and behavior, using an animal model exposed to THS under conditions that mimic exposure of humans. THS-exposed mice show alterations in multiple organ systems and excrete levels of NNAL (a tobacco-specific carcinogen biomarker similar to those found in children exposed to SHS (and consequently to THS. In liver, THS leads to increased lipid levels and non-alcoholic fatty liver disease, a precursor to cirrhosis and cancer and a potential contributor to cardiovascular disease. In lung, THS stimulates excess collagen production and high levels of inflammatory cytokines, suggesting propensity for fibrosis with implications for inflammation-induced diseases such as chronic obstructive pulmonary disease and asthma. In wounded skin, healing in THS-exposed mice has many characteristics of the poor healing of surgical incisions observed in human smokers. Lastly, behavioral tests show that THS-exposed mice become hyperactive. The latter data, combined with emerging associated behavioral problems in children exposed to SHS/THS, suggest that, with prolonged exposure, they may be at significant risk for developing more severe neurological disorders. These results provide a basis for studies on the toxic effects of THS in humans and inform potential regulatory policies to prevent involuntary exposure to THS.

  18. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  19. Sorption and diffusion of cobalt, strontium, cesium and americium in natural fissure surfaces and drill core cups studied by autoradiography, 1

    International Nuclear Information System (INIS)

    Pinnioja, S.; Kaemaeraeinen, E.L.; Jaakkola, T.; Siitari, M.; Muuronen, S.; Lindberg, A.

    1985-06-01

    A method based on autoradiography was developed to determine the diffusion of radionuclides into the rock matrix. To investigate the diffusion the samples, which has been in contact with radioactive tracer solution up to 6 months, were splitted by sawing. From the autoradiograms of the cross sections the penetration depths of radionuclides were determined and the apparent diffusion coefficient Dsup(a) calculated. The filled and unfilled natural fissure surfaces chosen to this study were bars of drilling cores and drill core cups of tonalite, mica gneiss and rapakivi granite. After contact time of 3 months the highest penetration depths of cesium were observed for natural fissure surface sample of rapakivi granite up to 2.5 mm and of mica gneiss up to 3.7 mm. For strontium the penetration depths of 6 mm and 11 mm for unfilled and filled natural fissure samples of rapakivi granite were found. Dsup(a)-values for cesium varied between 1.5 x 10 -15 and 3.2 x 10 -14 , for strontium between 3.5 x 10 -14 and 2.1 x 10 -13 m 2 /s. D-value obtained for cobalt (drill core cup sample, tonalite) was 5.4 x 10 -17 m 2 /s. 241 Am was only sorbed on the surface of the sample and thus no apparent diffusion coefficient could be calculated. Filling materials, chlorite and secondary minerals in tonalite and rapakivi granite increased diffusion into the mother rock. Radionuclides were sorbed both into the filling material and through fillers into the rock matrix. Cs and Sr penetrated though calcite filling material in mica gneiss into the mother rock. Calcite didn't influence on diffusion of radionuclides. Penetration depths of Cs and Sr were about the same for filled and unfilled samples

  20. δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the Last Glacial in western Europe

    Science.gov (United States)

    Prud'homme, Charlotte; Lécuyer, Christophe; Antoine, Pierre; Hatté, Christine; Moine, Olivier; Fourel, François; Amiot, Romain; Martineau, François; Rousseau, Denis-Didier

    2018-01-01

    Quantification of paleoprecipitation during the Last Glacial is a key element to reconstruct palaeoclimates. Recently, fossil calcite granules have been identified in loess sequences with high contents in specific horizons. In this study, we explored for the first time the potential of this new bio-indicator as a climatic proxy for precipitation in western Europe during the Last Glacial. We extracted 30 granules from eleven samples belonging to three tundra gleys and two brown soils from the Nussloch loess sequence previously dated between 50 and 20 ka. Stable carbon isotope measurements were performed on each granule and duplicated. Throughout the studied section, δ13C values range from -15.4 to -10.3‰ for tundra gleys and from -14.9 to -9.5‰ for brown soils. By taking into account the fractionation factor between the carbon ingested by the earthworm and the carbon output of the granules, the δ13C values of these granules reflect the composition of the C3 plant vegetation cover. Thus, we estimated the δ13C of the plants with a mean value of -24.3 ± 0.9‰ for tundra gleys and -24.1 ± 0.9‰ for brown soils, which are in agreement with values obtained from organic matter preserved in sediments. Palaeoprecipitation range over both tundra gley horizons and brown soils were estimated at about 333[159-574] mm/yr by using an empirical relationship determined between present-day plant leaf isotopic discrimination and the mean annual precipitation. This original preliminary study highlights the potential of earthworm calcite granule δ13C measurements as a new proxy for paleoprecipitation during the Last Glacial interstadials in continental environments.

  1. Salt-enhanced chemical weathering of building materials and bacterial mineralization of calcium carbonate as a treatment

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Jroundi, F.; Gonzalez-Muñoz, M. T.; Rodriguez-Navarro, C.

    2012-04-01

    Salt weathering is an important mechanism contributing to the degradation and loss of stone building materials. In addition to the physical weathering resulting from crystallization pressure, the presence of salts in solution greatly enhances the chemical weathering potential of pore waters. Flow through experiments quantify the dissolution rates of calcite and quartz grains (63-125 micrometer diameter) when subjected to 1.0 ionic strength solutions of MgSO4, MgCl, Na2SO4 or NaCl. Results indicate that the identity of the cation is the primary control over the dissolution rate of both calcite and quartz substrates, with salt-enhanced dissolution occurring most rapidly in Mg2+ bearing solutions. It has been observed that weathering rates of rocks in nature, as well as building stones, are slowed down by naturally occurring or artificially produced patinas. These tend to be bacterially produced, durable mineralized coatings that lend some degree of protection to the underlying stone surface [1]. Our research shows that bacterially produced carbonate coatings can be quite effective at reducing chemical weathering of stone by soluble salts. The calcite-producing-bacteria used in this study were isolated from stone monuments in Granada, Spain [2] and cultivated in an organic-rich culture medium on a variety of artificial and natural substrates (including limestone, marble, sandstone, quartz, calcite single crystals, glass cover-slips, and sintered porous glass). Scanning electron microscopy (FESEM) was used to image bacterial calcite growth and biofilm formation. In-situ atomic force microscopy (AFM) enabled calculation of dissolution rates of untreated and bacterially treated surfaces. 2D-XRD showed the mineralogy and crystallographic orientation of bacterial calcium carbonate. Results indicate that bacterially produced calcite crystals form a coherent, mechanically resistant surface layer in perfect crystallographic continuity with the calcite substrate (self

  2. The promotion effect of coexisting hygroscopic composition on the reaction between oxalic acid and calcite during humidifying process

    Science.gov (United States)

    Ma, Q.; He, H.

    2012-12-01

    Internally mixed oxalic acid with mineral dust has been frequently detected in field measurements (Sullivan and Prather, 2007; Wang et al., 2012; Yang et al., 2009). Meanwhile, Furukawa and Takahashi (Furukawa and Takahashi, 2011) found that most of the oxalic acid in mineral mixture is present as metal oxalate complexes in the aerosols, however, the formation mechanism of these complexes is not well known. It was reported that cloud process of H2C2O4/CaCO3 mixture could lead to the formation of calcium oxalate (Gierlus et al., 2012). Recently, we used Raman spectroscopy to investigate the hygroscopic behavior of H2C2O4/CaCO3 mixture below saturation condition as well as the effect of coexisting hygroscopic compositions, e.g. Ca(NO3)2, NaCl, NH4NO3, and (NH4)2SO4. It was found that there was no interaction between H2C2O4 and calcite without third component during humidifying process under ambient condition. In contrast, the presence of coexisting Ca(NO)3, NaCl, or NH4NO3 could promote the reaction between H2C2O4 and calcite by providing an aqueous circumstance after deliquescence, resulting in the formation of calcium oxalate hydrates. Moreover, substitution of strong acid (HNO3) by medium acid (H2C2O4) occurred when water vapor was absorbed in Ca(NO3)2/H2C2O4 mixture (Ma and He, 2012). As for (NH4)2SO4, there existed a competition effect between (NH4)2SO4 and H2C2O4 for the reaction with CaCO3. CaCO3 was preferentially reacted with (NH4)2SO4 to form gypsum in the solution, while the residual NH4+ and C2O42- ions were bonded to (NH4)2C2O4 after efflorescence. These results implies a potential formation pathway of metal oxalate complexes in the atmosphere and also suggests that synergistic effect between different constituents in humidifying process of mixed particles should be considered in future hygroscopic behavior studies.

  3. The Influence Of Calcite On The Ash Flow Temperature For Semi-Anthracite Coal From Donbas District

    Directory of Open Access Journals (Sweden)

    Čarnogurská Mária

    2014-12-01

    Full Text Available This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite dosing. Ash fusion temperatures were set for two coal samples (A, B and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489 °C to 1280 °C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450 °C to 1308 °C. Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.

  4. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing

    International Nuclear Information System (INIS)

    Rocha, Adrian V; Loranty, Michael M; Higuera, Phil E; Mack, Michelle C; Hu Fengsheng; Jones, Benjamin M; Breen, Amy L; Rastetter, Edward B; Shaver, Gus R; Goetz, Scott J

    2012-01-01

    Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required. (letter)

  5. Spatial and temporal patterns of airflow across a foredune and beach surface under offshore winds: implications for aeolian sediment transport

    Science.gov (United States)

    Jackson, D.; Delgado-Fernandez, I.; Lynch, K.; Baas, A. C.; Cooper, J. A.; Beyers, M.

    2010-12-01

    The input of aeolian sediment into foredune systems from beaches represents a key component of sediment budget analysis along many soft sedimentary coastlines. Where there are significant offshore wind components in local wind regimes this is normally excluded from analysis. However, recent work has shown that if the topography of the foredune is favourable then this offshore component is steered or undergoes flow reversal through leeside eddying to give onshore transport events at the back beach under offshore flow conditions. At particular distances from the foredune crest flow reattaches to the surface to continue its incident offshore direction. The location of this reattachment point has important implications for aeolian transport of sand on the back beach and foredune toe locations. This study reports initial results where the positioning of the reattachment point is mobile and is driven by incident wind velocity (at the foredune crest) and the actual undulations of the foredune crest’s topography, dictating heterogeneous flow behaviour at the beach. Using detailed field measurements (25 Hz, three-dimensional sonic anemometry) and computational fluid dynamic modelling, a temporal and spatial pattern of reattachment positions are described. Implications for aeolian transport and dune evolution are also examined.

  6. Low-temperature aqueous alteration on the CR chondrite parent body: Implications from in situ oxygen-isotope analyses

    Science.gov (United States)

    Jilly-Rehak, Christine E.; Huss, Gary R.; Nagashima, Kazu; Schrader, Devin L.

    2018-02-01

    The presence of hydrated minerals in chondrites indicates that water played an important role in the geologic evolution of the early Solar System; however, the process of aqueous alteration is still poorly understood. Renazzo-like carbonaceous (CR) chondrites are particularly well-suited for the study of aqueous alteration. Samples range from being nearly anhydrous to fully altered, essentially representing snapshots of the alteration process through time. We studied oxygen isotopes in secondary-minerals from six CR chondrites of varying hydration states to determine how aqueous fluid conditions (including composition and temperature) evolved on the parent body. Secondary minerals analyzed included calcite, dolomite, and magnetite. The O-isotope composition of calcites ranged from δ18O ≈ 9 to 35‰, dolomites from δ18O ≈ 23 to 27‰, and magnetites from δ18O ≈ -18 to 5‰. Calcite in less-altered samples showed more evidence of fluid evolution compared to heavily altered samples, likely reflecting lower water/rock ratios. Most magnetite plotted on a single trend, with the exception of grains from the extensively hydrated chondrite MIL 090292. The MIL 090292 magnetite diverges from this trend, possibly indicating an anomalous origin for the meteorite. If magnetite and calcite formed in equilibrium, then the relative 18O fractionation between them can be used to extract the temperature of co-precipitation. Isotopic fractionation in Al Rais carbonate-magnetite assemblages revealed low precipitation temperatures (∼60 °C). Assuming that the CR parent body experienced closed-system alteration, a similar exercise for parallel calcite and magnetite O-isotope arrays yields "global" alteration temperatures of ∼55 to 88 °C. These secondary mineral arrays indicate that the O-isotopic composition of the altering fluid evolved upon progressive alteration, beginning near the Al Rais water composition of Δ17O ∼ 1‰ and δ18O ∼ 10‰, and becoming increasingly

  7. Calcite raft geochemistry as a hydrological proxy for Holocene aquifer conditions in Hoyo Negro and Ich Balam (Sac Actun Cave System), Quintana Roo, Mexico

    Science.gov (United States)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Chatters, James C.; Rissolo, Dominique; Schwarcz, Henry P.; Collins, Shawn V.; Kim, Sang-Tae; Nava Blank, Alberto; Luna Erreguerena, Pilar

    2017-11-01

    Two cores from calcite rafts deposits located in Cenote Ich Balam and Hoyo Negro were dated and analyzed for 87Sr/86Sr, δ18O, δ13C, Sr/Ca and Cl/Ca. The geochemical records show changing aquifer salinity spanning the last ∼ 8.5 cal kyrs BP and interrelationships with Holocene climate trends (wet and dry periods). During the wet mid-Holocene, the salinity of the meteoric Water Mass (WM; at 7.8-8.3 cal kyrs BP) was relatively high at 1.5-2.7 ppt and then became less saline (1.0-1.5 ppt) during the last ∼ 7000 yrs as climate became progressively drier. High salinity of the meteoric WM during the wet mid-Holocene is attributed to increased turbulent mixing between the meteoric and underlying marine WM. Increased precipitation, in terms of amount, frequency, and intensity (e.g. hurricanes) causes higher flow of meteoric water towards the coast and mixing at the halocline, a phenomenon recorded with recent instrumental monitoring of the aquifer. Conversely, during dry periods reduced precipitation and flow in the meteoric WM would result in lower salinity. Karst properties and Holocene sea-level rise also seem to have an effect on the aquifer. When the regionally extensive network of shallow cave passages (∼ 10-12 m water depth) are flooded at ∼ 8000 cal yrs BP, there is a rapid shift in salinity. This study demonstrates that calcite raft deposits can be used as paleo-environmental recorders documenting the effects of sea level and climate change on aquifer condition.

  8. Surface activity, lipid profiles and their implications in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Preetha A

    2005-01-01

    Full Text Available Background: The profiles of lipids in normal and cancerous tissues may differ revealing information about cancer development and progression. Lipids being surface active, changes in lipid profiles can manifest as altered surface activity profiles. Langmuir monolayers offer a convenient model for evaluating surface activity of biological membranes. Aims: The aims of this study were to quantify phospholipids and their effects on surface activity of normal and cancerous human cervical tissues as well as to evaluate the role of phosphatidylcholine (PC and sphingomyelin (SM in cervical cancer using Langmuir monolayers. Methods and Materials: Lipid quantification was done using thin layer chromatography and phosphorus assay. Surface activity was evaluated using Langmuir monolayers. Monolayers were formed on the surface of deionized water by spreading tissue organic phase corresponding to 1 mg of tissue and studying their surface pressure-area isotherms at body temperature. The PC and SM contents of cancerous human cervical tissues were higher than those of the normal human cervical tissues. Role of PC and SM were evaluated by adding varying amounts of these lipids to normal cervical pooled organic phase. Statistical analysis: Student′s t-test (p < 0.05 and one-way analysis of variance (ANOVA was used. Results: Our results reveals that the phosphatidylglycerol level in cancerous cervical tissue was nearly five folds higher than that in normal cervical tissue. Also PC and sphingomyelin SM were found to be the major phospholipid components in cancerous and normal cervical tissues respectively. The addition of either 1.5 µg DPPC or 0.5 µg SM /mg of tissue to the normal organic phase changed its surface activity profile to that of the cancerous tissues. Statistically significant surface activity parameters showed that PC and SM have remarkable roles in shifting the normal cervical lipophilic surface activity towards that of cancerous lipophilic

  9. Spectral characterization of surface emissivities in the thermal infrared

    Science.gov (United States)

    Niclòs, Raquel; Mira, Maria; Valor, Enric; Caselles, Diego; García-Santos, Vicente; Caselles, Vicente; Sánchez, Juan M.

    2015-04-01

    Thermal infrared (TIR) remote sensing trends to hyperspectral sensors on board satellites in the last decades, e.g., the current EOS-MODIS and EOS-ASTER and future missions like HyspIRI, ECOSTRESS, THIRSTY and MISTIGRI. This study aims to characterize spectrally the emissive properties of several surfaces, mostly soils. A spectrometer ranging from 2 to 16 μm, D&P Model 102, has been used to measure samples with singular spectral features, e.g. a sandy soil rich in gypsum sampled in White Sands (New Mexico, USA), salt samples, powdered quartz, and powdered calcite. These samples were chosen for their role in the assessment of thermal emissivity of soils, e.g., the calcite and quartz contents are key variables for modeling TIR emissivities of bare soils, along with soil moisture and organic matter. Additionally, the existence of large areas in the world with abundance of these materials, some of them used for calibration/validation activities of satellite sensors and products, makes the chosen samples interesting. White Sands is the world's largest gypsum dune field encompassing 400 km^2; the salt samples characterize the Salar of Uyuni (Bolivia), the largest salt flat in the world (up to 10,000 km^2), as well as the Jordanian and Israeli salt evaporation ponds at the south end of the Dead Sea, or the evaporation lagoons in Aigües-Mortes (France); and quartz is omnipresent in most of the arid regions of the world such as the Algodones Dunes or Kelso Dunes (California, USA), with areas around 700 km2 and 120 km^2, respectively. Measurements of target leaving radiance, hemispherical radiance reflected by a diffuse reflectance panel, and the radiance from a black body at different temperatures were taken to obtain thermal spectra with the D&P spectrometer. The good consistency observed between our measurements and laboratory spectra of similar samples (ASTER and MODIS spectral libraries) indicated the validity of the measurement protocol. Further, our study showed the

  10. Origin, distribution and transformation of authigenic carbonates in loessic soils

    Directory of Open Access Journals (Sweden)

    Martin Kolesár

    2015-01-01

    Full Text Available Processes of authigenic carbonates formation are component part of terrestrial biogeochemical cycle of carbon, which starts with co-accumulation of oxalic acid and Ca in Ca- oxalates. After plant decay are these biominerals slowly transformed under the influence of microbial processes into authigenic carbonates (calcites, depending on soil condition. The formation of authigenic calcites runs over in soil system where is rather high Ca and Mg concentration, presence of oxalomorphic plants and sufficient oxalotrophic stability of microorganisms. In addition to Ca-oxalates, Ca and Mg ions necessary for carbonate formation comes also from air (precipitation, dust, mineral weathering, subsurface water flow and decaying organic matter. The distribution pattern of authigenic calcites with depth, the size and shape of individual forms of calcites on loessic soils of SW Slovakia, as it is resulted from micromorphological study indicate that through the historical development of that soils as landscape units, soil water regime has played decisive role at vertical redistribution of forms (size, shape of authigenic calcites. To this witness the depth of variation of needle calcite zones and horizons of micritic calcites occurrence depending on soil types (leaching. Needle shape calcite zones which approach closest to the soil surface, gradually coalescence to the horizons of micritic calcites with the depth. Micritic calcites are without, or with microsparitic domains. Our study concurrently support the ideas of their inorganic origin depending on evaporitic soil regime. This formations have its own historic dynamics on which depends also the preservation of calcaric nature of soils.

  11. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  12. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  13. Improvement of calcium mineral separation contrast using anionic reagents: electrokinetics properties and flotation

    Science.gov (United States)

    Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.

    2017-07-01

    The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.

  14. Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments

    Science.gov (United States)

    Rybacki, E.; Evans, B.; Janssen, C.; Wirth, R.; Dresen, G.

    2013-08-01

    A series of low-strain triaxial compression and high-strain torsion experiments were performed on marble and limestone samples to examine the influence of stress, temperature, and strain on the evolution of twin density, the percentage of grains with 1, 2, or 3 twin sets, and the twin width—all parameters that have been suggested as either paleopiezometers or paleothermometers. Cylindrical and dog-bone-shaped samples were deformed in the semibrittle regime between 20 °C and 350 °C, under confining pressures of 50-400 MPa, and at strain rates of 10- 4-10- 6 s- 1. The samples sustained shear stresses, τ, up to 280 MPa, failing when deformed to shear strains γ > 1. The mean width of calcite twins increased with both temperature and strain, and thus, measurement of twin width provides only a rough estimation of peak temperature, unless additional constraints on deformation are known. In Carrara marble, the twin density, NL (no of twins/mm), increased as the rock hardened with strain and was approximately related to the peak differential stress, σ (MPa), by the relation σ=19.5±9.8√{N}. Dislocation tangles occurred along twin boundaries, resulting in a complicated cell structure, which also evolved with stress. As previously established, the square root of dislocation density, observed after quench, also correlated with peak stress. Apparently, both twin density and dislocation cell structure are important state variables for describing the strength of these rocks.

  15. Biocontainment of polychlorinated biphenyls (PCBs) on flat concrete surfaces by microbial carbonate precipitation.

    Science.gov (United States)

    Okwadha, George D O; Li, Jin

    2011-10-01

    In this study, a biosealant obtained from microbial carbonate precipitation (MCP) was evaluated as an alternative to an epoxy-coating system. A bacterium Sporosarcina pasteurii strain ATCC 11859, which metabolizes urea and precipitates calcite in a calcium-rich environment, was used in this study to generate the biosealant on a PCB-contaminated concrete surface. Concrete cylinders measuring 3 in (76.2 mm) by 6 in (152.4 mm) were made in accordance with ASTM C33 and C192 and used for this purpose. The PCB, urea, Ca(2+), and bacterial cell concentrations were set at 10 ppm, 666 mM, 250 mM, and about 2.1 × 10(8) cells mL(-1), respectively. The results indicate that the biosealed surfaces reduced water permeability by 1-5 orders of magnitude, and had a high resistance to carbonation. Since the MCP biosealant is thermally stable under temperatures of up to 840 °C, the high temperatures that normally exist in the surrounding equipment, which may contain PCB-based fluids, have no effect on the biosealed surfaces. Consequently, there is greater potential to obtain a stronger, coherent, and durable surface by MCP. No measurable amount of PCBs was detected in the permeating water, indicating that the leaching water, if any, will have a minimum impact on the surrounding environment. Published by Elsevier Ltd.

  16. Influence of clay and silica on permeability and capillary entry pressure of chalk reservoirs in the North Sea

    DEFF Research Database (Denmark)

    Røgen, Birte; Fabricius, Ida Lykke

    2002-01-01

    specific surface area. Fifty-nine Tor and Ekofisk Formation chalk samples from five North Sea chalk reservoirs were investigated. All contain quartz and clay minerals, most commonly kaolinite and smectite, with trace amounts of illite. The contents of calcite and quartz are inversely correlated and both......)): calcite between 0.5 and 3.5, quartz about 5, kaolinite about 15, and smectite about 60....

  17. Ecological and taphonomical influences on coccoliths in surface sediments in the shelf of the Yellow and East China Seas

    Science.gov (United States)

    Jin, Xiaobo; Liu, Chuanlian

    2017-05-01

    Coccoliths, combined with sediment grain size, carbonate calcium and organic matters content, were analyzed to assess the ecological and taphonomical influences on coccolith distribution patterns in surface sediments in the continental shelf of the Yellow and East China Seas. Coccolith abundances ranged from 0 to 2.08×109 coccoliths g-1 sediment. The increasing abundance from the coastal inner shelf to the seaward middle shelf generally reflects the ecological fact that living coccolithophores are more abundant in the mesotrophic shelf waters than in the eutrophic coastal waters, although their deposits are still controlled by taphonomical effects, such as bottom (tidal) currents and calcite preservation conditions. Most abundant coccoliths are found in the fine-grained sediments of southwestern Cheju Island, where both ecology and taphonomy favor coccolith preservation. Still, large densities of coccoliths (>108 coccoliths g-1 sediment) are also found in coarse-grained relict sediments in the middle shelf. Coccolith assemblages were predominated by Gephyrocapsa oceanica and Emiliania huxleyi. The relative abundance of E. huxleyi, in addition to ecological reasons, may relate to selective post-mortem dissolution, since small E. huxleyi coccoliths are more susceptible to dissolution. Coccolith calcite has minor contributions (<1% to 12%) to total sediment CaCO3, and the main parts are attributed to terrigenous CaCO3 debris and relict shell fragments.

  18. Water-rock interaction under peri-glacial conditions: example of the secondary carbonates of the Broegger Peninsula (Spitzbergen)

    International Nuclear Information System (INIS)

    Marlin, C.; Dever, L.

    1998-01-01

    Measurements of the isotopic and chemical contents of soil water and carbonates at different field sites in Spitzbergen were undertaken to study the precipitation conditions of soil secondary calcites under the current peri-glacial climate. A main experimental site ('cote 80') has been established located on a fluvio-glacial terrasse at 80 m.a.s.l. near Ny Alesund (79 deg N, 12 deg. E). The active layer is at around 1.2 m depth on a continuous permafrost. The soil temperatures measured every 5 cm from the surface to the permafrost show that the freezing fronts move both the surface and permafrost, converging at around 0.6 m depth where the system is closed. During the beginning of the freezing period, the solute content increases in the residual water according to the distribution coefficient between water and ice. Calcite precipitation occurs in a second stage as indicated by the simultaneous decrease of the calcite saturation index and increase of the concentration of non-interactive elements. Chemical and isotopic ( 18 O, 2 H, 13 C et 14 C) analyses have been made on the different samples with a mineralogical description of the carbonate coatings obtained by SEM and microprobe analyses. The isotopic values result from a mixing between recent calcites and 'old' calcites. The recent calcites are probably in isotopic equilibrium with the present day solutions. The 'old calcites' have precipitated under colder conditions than today. The low radiocarbon activities (10.2 to 24.8 pcm) of the 'cote 80' site indicate that the 'old calcites' have precipitated during the last interglacial period or an inter-stadial period of the Pleistocene. The good relationship between the carbon- 14 activity and the carbon- 13 content indicates that the beginning of the pedogenesis is not identical at all sites and is dependent on the timing of deglaciation and vulnerability of rocks to frost-weathering. (authors)

  19. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  20. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    Science.gov (United States)

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.