WorldWideScience

Sample records for calcifuges

  1. Chemical characteristics of custom compost for highbush blueberry

    Science.gov (United States)

    Recent development of markets for blueberry (Vaccinium corymbosum L.) produced under Organic certification has stimulated interest in production of composts specifically tailored to its edaphic requirements. Blueberry is a calcifuge (acid-loving) plant that responds favorably to mulching and incorpo...

  2. Evaluation of alternative mulches for blueberry over five production seasons

    Science.gov (United States)

    Highbush blueberry (Vaccinium corymbosum L.) is a calcifuge (acid-loving) plant that responds favorably to mulching with organic matter (OM). Until recently, most blueberry plantings in our region were grown with a mulch of douglas-fir sawdust, with additional nitrogen (N) fertilizer applied to comp...

  3. Lithologic data improve plant species distribution models based on coarse-grained occurrence data

    Energy Technology Data Exchange (ETDEWEB)

    Gaston, A.; Soriano, C.; Gomez-Miguel, V.

    2009-07-01

    The aim of this study was to assess the improvement of plant species distribution models based on coarse-grained occurrence data when adding lithologic data to climatic models. The distributions of 40 woody plant species from continental Spain were modelled. A logistic regression model with climatic predictors was fitted for each species and compared to a second model with climatic and lithologic predictors. Improvements on model likelihood and prediction accuracy on validation sub samples were assessed, as well as the effect of calcicole calcifuge habit on model improvement. Climatic models had reasonable mean prediction accuracy, but adding lithologic data improved model likelihood in most cases and increased mean prediction accuracy. Therefore, we recommend utilizing lithologic data for species distribution models based on coarse-grained occurrence data. Our data did not support the hypothesis that calcicole calcifuge habit may explain model improvement when adding lithologic data to climatic models, but further research is needed. (Author) 31 refs.

  4. Phylogenetic relationships of the silver saxifrages (Saxifraga, sect. Ligulatae haworth): implications for the evolution of substrate specificity, life histories, and biogeography.

    Science.gov (United States)

    Conti, E; Soltis, D E; Hardig, T M; Schneider, J

    1999-12-01

    The silver saxifrages (Saxifraga sect. Ligulatae Haworth; Saxifragaceae) exhibit remarkable variation of substrate specialization, with strictly calcicole to calcifuge species, as well as life histories which range from semelparity to iteroparity. They occur almost exclusively in the European mountain ranges and display high levels of endemism. Sequences from chloroplast and nuclear ribosomal DNA were obtained to resolve phylogenetic relationships among the silver saxifrages and related taxa and to gain insight into the evolution of substrate specificity, life history, and biogeography. The resulting phylogenies suggested that (1) Saxifraga sect. Ligulatae, as traditionally defined, does not constitute a monophyletic group; (2) lime-secreting hydathodes in calcifuge species apparently represent a secondary nonaptation; (3) semelparity evolved independently two or three times in the silver saxifrages and allied sections, possibly in response to climatic changes that occured during the Pleistocene; and (4) narrow endemics, for example S. cochlearis, likely evolved from the fragmentation of the widespread S. paniculata into refugial populations that became isolated during the glacial maxima of the Pleistocene. Copyright 1999 Academic Press.

  5. Root iron uptake efficiency of Ulmus laevis and U. minor and their distribution in soils of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Martin eVenturas

    2014-03-01

    Full Text Available The calcifuge and calcicole character of wild plants has been related to nutrient availability shortages, including iron (Fe-deficiency. Surprisingly, just a few studies examined the relation between root Fe uptake and plant distribution in different soil types. We assessed the root Fe acquisition efficiency of two Ulmus species with calcareous (U. minor and siliceous (U. laevis soil distribution patterns in the Iberian Peninsula. Seedlings of both elm species were grown hydroponically with different Fe concentrations during six weeks. Plant physiological responses to Fe-limiting conditions were evaluated as were the ferric reductase activity and proton (H+ extrusion capacity of the roots. Iron deprived elm seedlings of both species were stunted and suffered severe Fe-chlorosis symptoms. After Fe re-supply leaf chlorophyll concentrations rose according to species-dependent patterns. While U. minor leaves and seedlings re-greened evenly, U. laevis did so along the nerves of new growing leaves. Ulmus minor had a higher root ferric reductase activity and H+-extrusion capability than U. laevis and maintained a better nutrient balance when grown under Fe-limiting conditions. The two elm species were found to have different iron acquisition efficiencies which may be related to their natural distribution in calcareous and siliceous soils of the Iberian Peninsula.

  6. Assembly Processes under Severe Abiotic Filtering: Adaptation Mechanisms of Weed Vegetation to the Gradient of Soil Constraints

    Science.gov (United States)

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations

  7. Assembly processes under severe abiotic filtering: adaptation mechanisms of weed vegetation to the gradient of soil constraints.

    Directory of Open Access Journals (Sweden)

    Nina Nikolic

    Full Text Available Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response?Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate.We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils over short distances (field scale.The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio.Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically

  8. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.

    Science.gov (United States)

    Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim

    2017-12-15

    Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Novel Root-Fungus Symbiosis in Ericaceae: Sheathed Ericoid Mycorrhiza Formed by a Hitherto Undescribed Basidiomycete with Affinities to Trechisporales

    Science.gov (United States)

    Vohník, Martin; Sadowsky, Jesse J.; Kohout, Petr; Lhotáková, Zuzana; Nestby, Rolf; Kolařík, Miroslav

    2012-01-01

    Ericaceae (the heath family) are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM) fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed ‘sheathed ericoid mycorrhiza’, discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity) to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet remain

  10. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales.

    Directory of Open Access Journals (Sweden)

    Martin Vohník

    Full Text Available Ericaceae (the heath family are widely distributed calcifuges inhabiting soils with inherently poor nutrient status. Ericaceae overcome nutrient limitation through symbiosis with ericoid mycorrhizal (ErM fungi that mobilize nutrients complexed in recalcitrant organic matter. At present, recognized ErM fungi include a narrow taxonomic range within the Ascomycota, and the Sebacinales, basal Hymenomycetes with unclamped hyphae and imperforate parenthesomes. Here we describe a novel type of basidiomycetous ErM symbiosis, termed 'sheathed ericoid mycorrhiza', discovered in two habitats in mid-Norway as a co-dominant mycorrhizal symbiosis in Vaccinium spp. The basidiomycete forming sheathed ErM possesses clamped hyphae with perforate parenthesomes, produces 1- to 3-layer sheaths around terminal parts of hair roots and colonizes their rhizodermis intracellularly forming hyphal coils typical for ErM symbiosis. Two basidiomycetous isolates were obtained from sheathed ErM and molecular and phylogenetic tools were used to determine their identity; they were also examined for the ability to form sheathed ErM and lignocellulolytic potential. Surprisingly, ITS rDNA of both conspecific isolates failed to amplify with the most commonly used primer pairs, including ITS1 and ITS1F + ITS4. Phylogenetic analysis of nuclear LSU, SSU and 5.8S rDNA indicates that the basidiomycete occupies a long branch residing in the proximity of Trechisporales and Hymenochaetales, but lacks a clear sequence relationship (>90% similarity to fungi currently placed in these orders. The basidiomycete formed the characteristic sheathed ErM symbiosis and enhanced growth of Vaccinium spp. in vitro, and degraded a recalcitrant aromatic substrate that was left unaltered by common ErM ascomycetes. Our findings provide coherent evidence that this hitherto undescribed basidiomycete forms a morphologically distinct ErM symbiosis that may occur at significant levels under natural conditions, yet

  11. Variação intraespecífica dos nutrientes em folhas de Methodorea pubescens (Rutaceae em dois tipos de mata do Distrito Federal

    Directory of Open Access Journals (Sweden)

    Marcelo Trindade Nascimento

    1990-01-01

    were higher in the mature leaves. The concentration of P decreased from mature leaves to senescent leaves. The plants from calcareous soil showed higher concentration of Ca and lower concentration of K than plants of acidic soil. The values of P, Mg and Al were similar in both forests. The differences between populations could possibly be explained by soil type, but other factors such as the physiological behavior of plants should also be considered. Plants from the acidic soil can be calcifuge and plants from the calcareous soil can be calcicole.