WorldWideScience

Sample records for calcareous soils

  1. The effect of elevated CO2 and N on decomposition of wheat straw and alfalfa residues in calcareous and non calcareous soils

    Directory of Open Access Journals (Sweden)

    S. Razavi Darbar

    2016-04-01

    Full Text Available Incorporation of plant residue in soils is considered as an important agricultural practice for maintaining soil fertility in sustainable agricultural system. CO2 levels, nitrogen fertilization and plant residues are factors which highly affect decomposition of added organic matter to soil. In this research controlled chambers were used to investigate the effects of elevated atmospheric CO2 concentrations (350 vs. 760 CO2 ppm under two N fertilization levels (0 vs. 500 kg N ha-1 and two replicates on decomposition of wheat and alfalfa residues in two calcareous (32.66 % CaCO3 and non calcareous soils (3.4 % CaCO3 at 6 times (0, 10, 20, 40, 60 and 90 under laboratory condition. Soil moistures were adjusted at 70% of field capacity. The results showed that elevated CO2 significantly increased decomposition of residues in both calcareous and non calcareous soils. In the samples that received N fertilizer, decomposition of wheat straw and alfalfa residues increased in both soils. From the obtained results, we concluded that in all treatments the amount of decomposition of wheat straw and alfalfa residues in calcareous soil were higher than non calcareous soils.

  2. The Use of AIS Data for Identifying and Mapping Calcareous Soils in Western Nebraska

    Science.gov (United States)

    Samson, S. A.

    1985-01-01

    The identification of calcareous soils, through unique spectral responses of the vegetation to the chemical nature of calcareous soils, can improve the accuracy of delineating the boundaries of soil mapping units over conventional field techniques. The objective of this experiment is to evaluate the use of the Airborne Imaging Spectrometer (AIS) in the identification and delineation of calcareous soils in the western Sandhills of Nebraska. Based upon statistical differences found in separating the spectral curves below 1.3 microns, calcareous and non-calcareous soils may be identified by differences in species of vegetation. Additional work is needed to identify biogeochemical differences between the two soils.

  3. Effect of FYM on the recovery of applied zinc in DTPA extract under upland and submerged conditions in calcareous and non-calcareous soils

    International Nuclear Information System (INIS)

    Deb, D.L.; Leelabhai, K.S.

    1988-01-01

    Studies undertaken to determine the effect of varying levels of FYM application on the recovery of applied zinc in DTPA extract under upland and sub merged conditions in calcareous and non-calcareous soils using 65 Zn under controlled conditions showed that the recovery of fertilizer Zn was reduced significantly with high level of applied Zn and 5 cm standing water over the soil. Application of FYM also tended to reduce the percent recovery of applied Zn. The recovery of applied Zn was found to increase after 60 days (period of contact) in all the tretments. The calcareous soils showed significantly lower recovery of fertilizer Zn than non-calcareous soils. The interactions of 5 cm standing water with all the other factors studied on the recovery of applied Zn were highly significant and negative. (author). 8 refs., 3 tabs

  4. Effluent and gamma-irradiated digested sludge additions on calcareous soils

    International Nuclear Information System (INIS)

    Lee-Rodriguez, V.

    1978-01-01

    The long-term use of sewage effluent and the use of gamma-irradiated treated digested sewage sludge (RDSS) were studied under field and greenhouse conditions, respectively. The purpose of this investigation was to: (1) study the effect of long and short-term application of secondary sewage effluent and RDSS, respectively, on the buildup of iron and phytotoxicity problems on calcareous soils; (2) study the potential phytotoxicity of RDSS and observe the micronutrient fertilizer value of RDSS through three successive plantings on calcareous soil; (3) evaluate RDSS as a source of iron in a soil known to be severely iron-deficient

  5. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    Science.gov (United States)

    Stietiya, Mohammed Hashem; Duqqah, Mohammad; Udeigwe, Theophilus; Zubi, Ruba; Ammari, Tarek

    2014-01-01

    Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO) amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1) soil was higher than Wadi Dhuleil (WD1) soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective. PMID:24723833

  6. Fate and Distribution of Heavy Metals in Wastewater Irrigated Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Mohammed Hashem Stietiya

    2014-01-01

    Full Text Available Accumulation of heavy metals in Jordanian soils irrigated with treated wastewater threatens agricultural sustainability. This study was carried out to investigate the environmental fate of Zn, Ni, and Cd in calcareous soils irrigated with treated wastewater and to elucidate the impact of hydrous ferric oxide (HFO amendment on metal redistribution among soil fractions. Results showed that sorption capacity for Zarqa River (ZR1 soil was higher than Wadi Dhuleil (WD1 soil for all metals. The order of sorption affinity for WD1 was in the decreasing order of Ni > Zn > Cd, consistent with electrostatic attraction and indication of weak association with soil constituents. Following metal addition, Zn and Ni were distributed among the carbonate and Fe/Mn oxide fractions, while Cd was distributed among the exchangeable and carbonate fractions in both soils. Amending soils with 3% HFO did not increase the concentration of metals associated with the Fe/Mn oxide fraction or impact metal redistribution. The study suggests that carbonates control the mobility and bioavailability of Zn, Ni, and Cd in these calcareous soils, even in presence of a strong adsorbent such as HFO. Thus, it can be inferred that in situ heavy metal remediation of these highly calcareous soils using iron oxide compounds could be ineffective.

  7. The potential of willow for remediation of heavy metal polluted calcareous urban soils

    International Nuclear Information System (INIS)

    Jensen, Julie K.; Holm, Peter E.; Nejrup, Jens; Larsen, Morten B.; Borggaard, Ole K.

    2009-01-01

    Growth performance and heavy metal uptake by willow (Salix viminalis) from strongly and moderately polluted calcareous soils were investigated in field and growth chamber trials to assess the suitability of willow for phytoremediation. Field uptakes were 2-10 times higher than growth chamber uptakes. Despite high concentrations of cadmium (≥80 mg/kg) and zinc (≥3000 mg/kg) in leaves of willow grown on strongly polluted soil with up to 18 mg Cd/kg, 1400 mg Cu/kg, 500 mg Pb/kg and 3300 mg Zn/kg, it is unsuited on strongly polluted soils because of poor growth. However, willow proved promising on moderately polluted soils (2.5 mg Cd/kg and 400 mg Zn/kg), where it extracted 0.13% of total Cd and 0.29% of the total Zn per year probably representing the most mobile fraction. Cu and Pb are strongly fixed in calcareous soils. - Willow is suited for remediation of moderately heavy metal polluted calcareous soils

  8. Endogenous and bioaugmented sulphate reduction in calcareous gypsiferous soils

    NARCIS (Netherlands)

    Alfaya, F.; Cuenca-Sanchez, M.; Garcia-Orenes, F.; Lens, P.N.L.

    2009-01-01

    Gypsiferous soils have a high agricultural value, but their utilization is limited by the presence of gypsum that can induce hardpan and vertical crusting. This paper reports on sulphate reduction in this soil type as a basis of a bioremediation technology to remove the gypsum content of calcareous

  9. Crop Yield and Soil Properties in the First 3 Years After Biochar Application to a Calcareous Soil

    Institute of Scientific and Technical Information of China (English)

    LIANG Feng; LI Gui-tong; LIN Qi-mei; ZHAO Xiao-rong

    2014-01-01

    It remains unclear whether biochar applications to calcareous soils can improve soil fertility and crop yield. A long-term ifeld experiment was established in 2009 so as to determine the effect of biochar on crop yield and soil properties in a calcareous soil. Five treatments were: 1) straw incorporation; 2) straw incorporation with inorganic fertilizer; 3), 4) and 5) straw incorporation with inorganic fertilizer, and biochar at 30, 60, and 90 t ha-1, respectively. The annual yield of either winter wheat or summer maize was not increased signiifcantly following biochar application, whereas the cumulative yield over the ifrst 4 growing seasons was signiifcantly increased. Soil pH, measured in situ, was increased by a maximum of 0.35 units after 2 yr following biochar application. After 3 yr, soil bulk density signiifcantly decreased while soil water holding capacity increased with adding biochar of 90 t ha-1. Alkaline hydrolysable N decreased but exchangeable K increased due to biochar addition. Olsen-P did not change compared to the treatment without biochar. The results suggested that biochar could be used in calcareous soils without yield loss or signiifcant impacts on nutrient availability.

  10. Reducing As availability in calcareous soils using nanoscale zero valent iron.

    Science.gov (United States)

    Azari, Prisa; Bostani, Abdol Amir

    2017-09-01

    Different methods, including the use of nanoscale zero-valent iron (NZVI), have been used to treat arsenic (As)-contaminated environments, with much less data on the use of NZVI in arsenic-calcareous-polluted soils. Accordingly, two different experiments were conducted to investigate the effects of NZVI on the removal of As from three different calcareous-polluted soils. In the first experiment, the effects of soil type (differing in the rate of clay particles and organic carbon including S1 (8.0 and 0.05%), S2 (20 and 0.2%), and S3 (20.5 and 0.8%)) and NZVI concentration (0, 50, and 100 g kg -1 of dry soil) on the removal of As extractable with distilled water were evaluated using a factorial design with three replicates. In the second experiment, the NZVI concentrations were reduced to 0, 2.5, 5.0, and 25 g kg -1 , and the NZVI contact time (0.5, 48, 96, 192, 384, and 768 h) was also tested. The analysis of variance in both experiments indicated the significant effects (P soils, with increasing NZVI concentration and contact time, the concentration of available As in the solution phase significantly decreased (P = 0.01). S3, due to a higher rate of organic matter, was less responsive to the NZVI treatments than the other soils. The effectiveness of the nanoremediation method, tested in this research work, on the stabilization of As in calcareous soils, is verified.

  11. Adsorption and desorption of Am(III) on calcareous soil and its parent material

    International Nuclear Information System (INIS)

    Li Weijuan; Zhang Fuming; Tao Zuyi

    2005-01-01

    The adsorption and desorption of Am(III) on a calcareous soil (sierozem) and its parent material (loess) were studied by batch technique. The molarities of the Am(III) aqueous solutions were less than 5 x 10 -9 mol/l. High adsorbability was found of Am(III) on the calcareous soil and its parent material. In order to decrease the adsorption and, hence, to investigate the adsorption characteristics properly, stable Eu 3+ as hold back carrier and analogue was added to the aqueous solution. The relative contributions of CaCO 3 , organic matter (OM) to the Am(III) adsorption on calcareous soil and its parent material were investigated. The adsorption and desorption isotherms of Am(III) on untreated soil and loess and the three kinds of treated soils and three kinds of treated loesses to remove CaCO 3 , OM and both CaCO 3 and OM were determined, respectively. It was found that all isotherms were linear, the average distribution coefficients (K d ) for the untreated soil and for the untreated loess were almost equal, while there was an obvious difference between the values of the average distribution coefficients (K d ) for the treated soil and the treated loess to remove CaCO 3 or OM. The adsorption-desorption hysteresis on the untreated and treated soils and loesses actually occurred and there was an obvious difference between the hysteresis coefficients on both the corresponding treated soil and loess. It can be concluded that the adsorbability of Am(III) on calcareous soil is similar to that on its parent material, and that the contributions of CaCO 3 and OM to the Am(III) adsorption by the untreated soil are different from those by the untreated parent material. (author)

  12. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.

    Science.gov (United States)

    Udovic, Metka; Lestan, Domen

    2012-07-01

    The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Kinetic behavior of Fe(o,o-EDDHA)-humic substance mixtures in several soil components and in calcareous soils.

    Science.gov (United States)

    Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores

    2007-10-31

    Ferric ethylenediamine- N, N'-bis-(o-hydroxyphenylacetic)acid chelate (Fe(o, o-EDDHA)) is one of the most effective Fe fertilizers in calcareous soils. However, humic substances are occasionally combined with iron chelates in drip irrigation systems in order to lower costs. The reactivity of iron chelate-humic substance mixtures in several soil components and in calcareous soils was investigated through interaction tests, and their behavior was compared to the application of iron chelates and humic substances separately. Two commercial humic substances and two Fe(o, o-EDDHA) chelates (one synthesized in the laboratory and one commercial) were used to prepare iron chelate-humic substance mixtures at 50% (w/w). Various soil components (calcium carbonate, gibbsite, amorphous iron oxide, hematite, tenorite, zincite, amorphous Mn oxide, and peat) and three calcareous soils were shaken for 15 days with the mixtures and with iron chelate and humic substance solutions. The kinetic behavior of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) (Fe bonded to (o,p-EDDHA) and other polycondensated ligands) and of the different nutrients solubilized after the interaction assay was determined. The results showed that the mixtures did not significantly reduce the retention of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) in the soil components and the calcareous soils compared to the iron chelate solutions, but they did produce changes in the retention rate. Moreover, the competition between humic substances and synthetic chelating agents for complexing metal cations limited the effectiveness of the mixtures to mobilize nutrients from the substrates. The presence of Fe(o, p-EDDHA) and other byproducts in the commercial iron chelate had an important effect on the evolution of Fe(o, o-EDDHA) and the nutrient solubilization process.

  14. Adsorption and co-adsorption of diclofenac and Cu(II) on calcareous soils.

    Science.gov (United States)

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2016-02-01

    Pharmaceuticals are emerging contaminants and their presence in different compartments of the environment has been detected in many countries. In this study, laboratory batch experiments were conducted to characterize the adsorption of diclofenac, a widely used non-steroidal anti-inflammatory drug, on six calcareous soils. The adsorption of diclofenac was relatively low, which may lead to a risk of groundwater contamination and plant uptake. A correlation between the soil-water distribution coefficient Kd and soil characteristics has been highlighted. Indeed, diclofenac adsorption as a function of soil organic matter content (% OM) and Rt=% CaCO3/% OM was successfully described through a simple empirical model, indicating the importance of considering the inhibiting effect of CaCO3 on OM retention properties for a better assessment of diclofenac fate in the specific case of calcareous soils. The simultaneous co-adsorption of diclofenac and copper - a ubiquitous pollutant in the environment - at the water/soil interface, was also investigated. It appeared quite unexpectedly that copper did not have a significant influence on diclofenac retention. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    Science.gov (United States)

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis.

  16. Biosuper as a phosphate fertilizer in a calcareous soil with low ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... Key words: Zea mays, phosphorus uptake, phosphorus fertilization, corn, Thiobacillus, rock phosphate. ... improve plant nutrients availability in calcareous soils and .... lus elicits the reaction of sulphur with water and oxygen, ...

  17. Isolation and identification of ferric reducing bacteria and evaluation of their roles in iron availability in two calcareous soils

    Science.gov (United States)

    Ghorbanzadeh, N.; Lakzian, A.; Haghnia, G. H.; Karimi, A. R.

    2014-12-01

    Iron is an essential element for all organisms which plays a crucial role in important biochemical processes such as respiration and photosynthesis. Iron deficiency seems to be an important problem in many calcareous soils. Biological dissimilatory Fe(III) reduction increases iron availability through reduction of Fe(III) to Fe(II). The aim of this study was to isolate, identify and evaluate some bacterial isolates for their abilities to reduce Fe(III) in two calcareous soils. Three bacterial isolates were selected and identified from paddy soils by using 16S rRNA amplification and then inoculated to sterilized and non-sterilized calcareous soils in the presence and absence of glucose. The results showed that all isolates belonged to Bacillus genus and were capable of reducing Fe(III) to Fe(II) in vitro condition. The amount of Fe(III) reduction in sterilized calcareous soils was significantly higher when inoculated with PS23 isolate and Shewanella putrefaciens ( S. putrefaciens) (as positive control) compared to PS16 and PS11 isolates. No significant difference was observed between PS11 and PS16 isolates in the presence of indigenous microbial community. The results also revealed that glucose had a significant effect on Fe(III) reduction in the examined calcareous soil samples. The amount of Fe(III) reduction increased two-fold when soil samples were treated with glucose and inoculated by S. putrefaciens and PS23 in non-sterilized soils.

  18. Dried gamma-irradiated sewage solids use on calcareous soils: crop yields and heavy metals uptake

    International Nuclear Information System (INIS)

    McCaslin, B.D.; Sivinski, J.S.

    1980-01-01

    The fertilizer values of gamma-irradiated digested sewage solids (RDSS) and gamma-irradiated undigested sewage solids (RUSS) have been examined on calcareous soils. Previously published data from Sandia Laboratories have shown that approximately 1 mega-rad of gamma-irradiation effectively destroys pathogenic bacteria, parasites and plant seeds in dried sewage solids. Greenhouse experiments directly comparing gamma-irradiated and non-irradiated undigested and digested dried sewage solids as fertilizers indicate little or no effect of 1 mega-rad gamma radiation treatment on plant yield or plant-nutrient uptake and demonstrated considerable benefit from using sewage solids on calcareous soils. Plant response to undigested sewage solids was considerably greater than to digested sewage solids when applied at levels that were isonitrogenous. The calcareous soils in New Mexico typically range in pH from 7.5 to 9.0, limiting the plant-availability of many elements, especially heavy metals. Soils irrigated with sewage-effluent for 40 years demonstrated beneficial use of supplied plant-nutrients with no apparent increase in plant-uptake of heavy metals. RDSS applied to a calcareous soil low in plant-available iron increased plant growth in the greenhouse considerably more than treatments with equal amounts of nitrogen, phosphorus and iron applied as common fertilizer materials. Plant tissue concentrations of Fe, Zn, Mn and Cu showed that RDSS was a good source of these nutrients. Results also indicated that the total soluble salt concentration of the RDSS was the factor most limiting plant growth. Chromium, Cd, Ni and Pd plant-tissue concentrations were apparently not increased by RDSS treatments. (Auth.)

  19. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    Science.gov (United States)

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. © 2014 SETAC.

  20. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  1. Physiological Responses of Some Iranian Grape Cultivars to Iron Chelate Application in Calcareous Soil

    Directory of Open Access Journals (Sweden)

    H. Doulati Baneh

    2016-07-01

    Full Text Available Introduction: Iron chlorosis is considered to be one of the most important nutritional disorders in grapevines, particularly in calcareous soils that under these conditions fruit yield and quality is depressed in the current year and fruit buds poorly develop for following year. Symptoms of iron chlorosis in orchards and vineyards are usually more frequent in spring when shoot growth is rapid and bicarbonate concentration in the soil solution buffers soil pH in the rhizosphere and root apoplast. Several native grapevine (Vitis vinifera L. genotypes, highly appreciated for their organoleptic characteristics and commercial potential, are widely cultivated in Iran. Cultivated plants differ as to their susceptibility to Fe deficiency in calcareous soils, some being poorly affected while others showing severe leaf chlorotic symptoms. Selection and the use of Fe-efficient genotypes is one of the important approaches to prevent this nutritional problem. In this research the response of three local grapevine cultivars was evaluated to iron chelate consumption in a calcareous soil (26% T.N.V. Materials and Methods: Well rooted woody cuttings of three autochthonous varieties (Rasha, Qezel uzum, Keshmeshi Qermez were cultivated in pots filled with a calcareous soil with iron chelate consumption at three rates (0, 7.5 and 15 mg Fe/ Kg soil. The study was conducted with two factors (cultivar and iron chelate and 3 replicates in a factorial arrangement based on randomized complete block design. Plant parameters including vegetative growth, chlorophyll index and leaf area were monitored during the growth period. At the end of the treatment, fresh and dry weight of shoots and roots were determined. The concentrations of macro and micro elements in the leaves were assayed using an atomic absorption and spectrophotometer. One-way-ANOVA was applied comparing the behavior of the cultivars growing. Results and Discussion: Analysis of variance showed that chlorophyll

  2. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    Science.gov (United States)

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the

  3. Relationships of 137Cs inventory with magnetic measures of calcareous soils of hilly region in Iran

    International Nuclear Information System (INIS)

    Ayoubi, Shamsollah; Ahmadi, Mohamamd; Abdi, Mohammad Reza; Abbaszadeh Afshar, Farideh

    2012-01-01

    Erosion is a natural process, but it has been dramatically increased by human activities; and this adversely influences soil productivity and environmental quality. For quantification of soil erosion, several techniques including the use of Cs-137 have been employed. This study was conducted to explore the relationships of Cs-137 inventory with magnetic properties in calcareous soils in western Iran. Ten transects were selected in the hilly region in Chelgerd district of Iran. Soil samples from 0 to 30 and 30–50 cm depths were collected from fifty points to determine Cs-137 inventory, magnetic measures and selected physico-chemical properties (in total there were 100 soil samples). The results showed that simple mass balance model (SMBM) estimated a gross erosion rate of 29.6 t ha −1 yr −1 and a net soil deposition of 21.8 t ha −1 yr −1 ; hence, a net soil loss of 9.6 t ha −1 yr −1 and a sediment delivery ratio of 31.4%. Simple linear regression and non-linear regression analysis showed that mass magnetic susceptibility (χ lf ) explained only 33.64% and 45% of variability in Cs-137 in the transects studied. The results of multiple linear regression analysis of 137 Cs with magnetic parameters and physico-chemical properties indicated that extractable potassium and χ lf explained approximately 61% of the total variability in 137 Cs in the area studied. Overall, the results suggest that further research is needed for the use of magnetic characteristics as an alternative technique in place Cs-137 methodology for calcareous soils. - Highlights: ► Simple linear regression mass magnetic susceptibility (χ L ) explained only 33.64 % of Cs-137 variability. ► Non-linear regression model explained 45% of variability in Cs-137 in the transects studied. ► Magnetic Susceptibility measures could not directly be used in calcareous soils to evaluate soil redistribution. ► Magnetic characteristics as an alternative technique instead of Cs-137 in calcareous

  4. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    Science.gov (United States)

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.

  5. Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil.

    Science.gov (United States)

    Ramzani, Pia Muhammad Adnan; Khalid, Muhammad; Naveed, Muhammad; Ahmad, Rashid; Shahid, Muhammad

    2016-07-01

    Incidence of iron (Fe) deficiency in human populations is an emerging global challenge. This study was conducted to evaluate the potential of iron sulphate combined with biochar and poultry manure for Fe biofortification of wheat grains in pH affected calcareous soil. In first two incubation studies, rates of sulfur (S) and Fe combined with various organic amendments for lowering pH and Fe availability in calcareous soil were optimized. In pot experiment, best rate of Fe along with biochar (BC) and poultry manure (PM) was evaluated for Fe biofortification of wheat in normal and S treated low pH calcareous soil. Fe applied with BC provided fair increase in root-shoot biomass and photosynthesis up to 79, 53 and 67%, respectively in S treated low pH soil than control. Grain Fe and ferritin concentration was increased up to 1.4 and 1.2 fold, respectively while phytate and polyphenol was decreased 35 and 44%, respectively than control in treatment where Fe was applied with BC and S. In conclusion, combined use of Fe and BC could be an effective approach to improve growth and grain Fe biofortification of wheat in pH affected calcareous soil. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Fractionation of applied 32P labeled TSP in calcareous soils

    International Nuclear Information System (INIS)

    Asfary, A.F.; Al-Merey, R.; Al-Hameish, M.

    2005-01-01

    Calcareous dark brown red soil (calcixerollic xerochrept) from northern Syria was used in a pot experiment to study the fate of triple super phosphate fertilizer (TSP) with and without a crop (Local durum wheat (Triticum turgidum L. group durum (Desf)) c v. Bohouth). The soil received 17μg P/g soil of 32 P labeled TSP, and samples were collected from soils and plants at successive dates. Soil inorganic P was ≅94% of total soil P, with only 50-80% being soluble. Calcium phosphate compounds were the dominant fraction (≤68%) of the soluble inorganic soil P followed by occluded iron phosphate (≤48%) and all other fractions were ≤9%. Isotopic measurements showed that ≅ 50% of fertilizer P was nonexchangeable within 2 days, and TSP values in each fraction of soil inorganic P fluctuated in relatively similar proportions to the concentrations of fractions in soil. Available P (soil and TSP) in cropped soil was more than that in the uncropped soil, and plants had no effect on the distribution of P from fertilizer amongst the different P fractions. (author)

  7. Reactivity and effectiveness of traditional and novel ligands for multi-micronutrient fertilization in a calcareous soil

    Directory of Open Access Journals (Sweden)

    Sandra eLópez-Rayo

    2015-09-01

    Full Text Available This study compares the effectiveness of multi-micronutrient formulations containing Fe, Mn, and Zn with traditional (EDTA, DTPA, HEEDTA, EDDHAm or novel chelates (o,p-EDDHA, S,S-EDDS, IDHA and natural complexing agents (gluconate and lignosulfonate. The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization.

  8. Phosphorus availability due to polyphosphates additions to alfalfa plants grown on alluvial and calcareous soils using tracer techniques

    International Nuclear Information System (INIS)

    Ismail, A.S.; Massoud, M.A.; Shalil, K.M.E.

    1985-01-01

    A pot experiment was carried out to compare the effect of different sources and levels of condensed phosphates, including ring and chain structured molecules, with orthophosphate on alfalfa plants grown on alluvial and highly calcareous soils using P-32-labelled fertilizers. Data indicate that application of different sources of P-fertilizers increased both dry matter content and total-P uptake by alfalfa plants over control in both soils. The fraction of phosphorus in plants derived from added fertilizers was higher from condensed phosphates than that derived from the other sources of phosphorus. The percentages of P-fraction derived from added fertilizers (y-values) were higher in calcareous soil than those in alluvial soil

  9. Adsorption of enrofloxacin in presence of Zn(II) on a calcareous soil.

    Science.gov (United States)

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2015-12-01

    As a result of their consumption, excretion, disposal and persistence, antibiotics enter the soil environment and may be transported to surface and ground waters. During their transfer through soils, retention processes play a key role in their mobility. Antibiotics often coexist with heavy metals in soils due to agricultural practices and other sources of inputs. In this context, this study deals with the co-adsorption of Zn(II) and enrofloxacin (ENR), a widely-used veterinary antibiotic, on a calcareous soil using batch retention experiments and X-ray Absorption Near Edge Structure (XANES) spectroscopy. To improve our understanding of the interaction of this emerging organic contaminant with metal cations at the water-soil interface, the ternary system containing ENR, Zn(II) and a selected calcareous soil was investigated over a pH range between 7 and 10, at different solid-solution contact times and ENR concentrations. The presence of Zn(II) slightly influenced the retention of the antibiotic, leading to an increase of the adsorbed ENR amounts. The distribution coefficient Kd value increased from 0.66 Lg(-1) for single ENR adsorption to 1.04 Lg(-1) in presence of Zn(II) at a 1/2 ENR/Zn(II) ratio. The combination of adsorption isotherm data, solution speciation diagrams and XANES spectra evidenced a small proportion of Zn(II)-ENR complexes at soil pH leading to the slight increase of ENR adsorption in presence of zinc. These results suggest that it is necessary to consider the interaction between ENR and metal cations when assessing the mobility of ENR in soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The potential of willow for remediation of heavy metal polluted calcareous urban soils

    DEFF Research Database (Denmark)

    Jensen, J K; Holm, P E; Nejrup, J

    2009-01-01

    Growth performance and heavy metal uptake by willow (Salix viminalis) from strongly and moderately polluted calcareous soils were investigated in field and growth chamber trials to assess the suitability of willow for phytoremediation. Field uptakes were 2-10 times higher than growth chamber...

  11. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils

    Energy Technology Data Exchange (ETDEWEB)

    Vandecasteele, Bart, E-mail: bart.vandecasteele@ilvo.vlaanderen.b [Institute for Agricultural and Fisheries Research (ILVO), Scientific Institute of the Flemish Government, Burg. Van Gansberghelaan 109, B-9820 Merelbeke (Belgium); Du Laing, Gijs [Ghent University, Department of Applied Analytical and Physical Chemistry, Coupure 653, B-9000 Ghent (Belgium); Lettens, Suzanna [Research Institute for Nature and Forest (INBO), Scientific Institute of the Flemish Government, Gaverstraat 4, B-9500 Geraardsbergen (Belgium); Jordaens, Kurt [Department of Biology, Evolutionary Biology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Tack, Filip M.G. [Ghent University, Department of Applied Analytical and Physical Chemistry, Coupure 653, B-9000 Ghent (Belgium)

    2010-06-15

    Soil amendments previously shown to be effective in reducing metal bioavailability and/or mobility in calcareous metal-polluted soils were tested on a calcareous dredged sediment-derived soil with 26 mg Cd/kg dry soil, 2200 mg Cr/kg dry soil, 220 mg Pb/kg dry soil, and 3000 mg Zn/kg dry soil. The amendments were 5% modified aluminosilicate (AS), 10% w/w lignin, 1% w/w diammonium phosphate (DAP, (NH{sub 4}){sub 2}HPO{sub 4}), 1% w/w MnO, and 5% w/w CaSO{sub 4}. In an additional treatment, the contaminated soil was submerged. Endpoints were metal uptake in Salix cinerea and Lumbricus terrestris, and effect on oxidation-reduction potential (ORP) in submerged soils. Results illustrated that the selected soil amendments were not effective in reducing ecological risk to vegetation or soil inhabiting invertebrates, as metal uptake in willows and earthworms did not significantly decrease following their application. Flooding the polluted soil resulted in metal uptake in S. cinerea comparable with concentrations for an uncontaminated soil. - Some soil amendments resulted in higher metal uptake by earthworms and willows than when the polluted soil was not amended but submersion of the polluted soil resulted in reduced Cd and Zn uptake in Salix cinerea.

  12. Reactivity and effectiveness of traditional and novel ligands for multi-micronutrient fertilization in a calcareous soil.

    Science.gov (United States)

    López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J

    2015-01-01

    This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization.

  13. Reactivity and effectiveness of traditional and novel ligands for multi-micronutrient fertilization in a calcareous soil

    Science.gov (United States)

    López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J.

    2015-01-01

    This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization. PMID:26442065

  14. A preliminary spatial-temporal study of some soil characteristics in the calcareous massif of Sicó, Portugal.

    Science.gov (United States)

    Torres, Maria Odete; Neves, Maria Manuela

    2016-04-18

    The mountainous massif of Sicó, in the centre of Portugal, is an extensive area composed of calcareous Jurassic formations. Hillside calcareous soils, with high pH, present chemical restrictions to support plant growth and are subjected to important erosion processes leading to their degradation if not protected by vegetation. In a first year of study some soil physicochemical characteristics have been measured in some geo-referenced locations of a larger design experiment and an exploratory spatial analysis has been performed. The objective of this study was to present some suggestions in order to give sustainable phosphorus fertiliser recommendations aiming to establish pastures in these soils and thus support traditional livestock activity. Ten years apart, those soil characteristics have been measured again in the same locations and comparisions have been made. The objective was to understand the variability of the soil properties under study in order to better adequate the fertiliser soil management regarding the area restoration.

  15. The Role of Organic Acids on the Release of Phosphorus and Zinc in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Sareh Nezami

    2017-02-01

    Full Text Available Introduction: Phosphorus (P and zinc (Zn fixation by soil minerals and their precipitation is one of the major constraints for crop production in calcareous soils. Recent Studies show that root exudates are effective for the extraction of the large amounts of nutrients in calcareous soils. A part of the root exudations are Low Molecular Weight Organic Acids (LMWOAs. LMWOAs are involved in the nutrients availability and uptake by plants, nutrients detoxification, minerals weathering and microbial proliferation in the soil. At nutrients deficiency conditions citric and oxalic acids are released by plants root in large quantities and increase nutrient solubility like P, Zn, Fe, Mn and Cu in the rhizosphere. These components are the large portion of the carbon source in the soil after exudations are mineralized by microorganisms, quickly. In addition, soil surface sorption can affect their half-life and other behaviors in the soil. In order to study the effect of oxalic and citric organic acids on the extraction of phosphorus and zinc from a calcareous soil, an experiment was conducted. Materials and Methods: Studied soil was calcareous and had P and Zn deficiency. Soil sample was collected from A horizon (0-30 cm of Damavand region. 3 g of dried soil sample was extracted with 30 ml of oxalic and citric acids extraction solutions at different concentrations (0.1, 1 and 10 mM and different time periods (10, 60, 180 and 360 minutes on an orbital shaker at 200 rev min-1.The soil extracts then centrifuged for 10 minutes (16000g. After filtering, the pH of the extractions was recorded and then phosphorus, calcium and zinc amounts were determined. Soil extraction with distilled water was used as control. Each treatment was performed in 3 replications. Statistical analysis was performed with ANOVA test followed by the Bonferroni method significant level adjustments due to multiple comparisons. Results and Discussion: The results of variance analysis showed

  16. Effect of Arbuscular Mycorrhizae on zinc nutrition of maize grow in calcareous soil amended with different phosphorus sources

    International Nuclear Information System (INIS)

    Aly, S.S.M.; EL-Ghandour, I. A.

    2001-01-01

    Arbuscular mycorrhizal fungi (AMF) are known to improve P nutrition of plants. The information of AMF effects on corn Zn nutrition under P fertilization in calcareous soil is limited. A greenhouse experiment was carried out using calcareous soil and two P-sources i.e single superphosphate and rock phosphate (with full and one third of recommended dose). to evaluate the ability of AMF on improving Zn nutrition in maize plants. Labelled 65 ZnSo 4 was added at rates of 0.10 and 20 mg Zn Kg -1 soil. Zinc uptake and dry mater of corn shoots were improved as a result of AMF inoculation. The maximum improvement was recorded with super-P fertilizer in combination with 10 or 20 mg Zn Kg -1 soil for non-inoculated and AMF inoculated plants. respectively. The amount of Zn in non-inoculated and AMF inoculated plants. respectively. The amount of ZnSo 4 utilized plant derived from fertilizer.(Zndff) and the percent of ZnSo 4 utilization by corn plants were increased when ZnSo 4 was added at rate of 10 mg Zn Kg -1 soil in the presence of super-P fertilizer. Inoculated plants with AMF had higher Zndff content and U% than non-inoculated ones and the greater Zndff and superphosphate fertilizer. It could be concluded that. AMF is useful method utilization by corn plants grown in calcareous soil

  17. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Jin, Cheng; Wang, Ning; Luo, Huanzhang

    2014-01-01

    To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.

  18. Effect of phosphate fertilization on the bioavailability of iron in calcareous soils

    Science.gov (United States)

    Sánchez-Rodríguez, A. R.; del Campillo, M. C.; Barrón, V.; Torrent, J.

    2012-04-01

    Iron (Fe) chlorosis is the most important nutritional problem in sensitive plant species cultivated in calcareous soils, its main symptoms being interveinal yellowing in the younger leaves due to lack of chlorophyll and reduced growth. Fe chlorosis has been related to the content of poorly crystalline Fe oxides in soil. The effect of other nutrients, especially phosphorus (P), is, however, a matter of debate. In this work we examined whether fertilization with P alters the availability of Fe to sensitive plants growing in two different Fe chlorosis-inducing calcareous soils. Phosphate at rates of 0 (control), 25, 50, 100 and 200 mg P kg-1 soil was applied to pots where six-months-old olive trees cv. Arbequina were grown. The experiment lasted three years and took place in a shaded house. Chlorophyll concentration in the young leaves was estimated with the SPAD value (using a Minolta apparatus) three-four times per year. Furthermore, shoot length, dry weight of annual pruning and mineral element concentration were measured at the end of each year. In one of the soils, SPAD and leaf Fe concentration decreased with increasing P dose. However in the other soil, SPAD was not correlated with the rate of applied P. In both soils, potassium and zinc concentrations in plants fertilized with P were lower than those in the control plants. This work was funded by the Spanish Ministry of Science and Innovation, Projects: AGL 2005-06691-C02-01 and AGL 2008-05053-C02-02, and the European Regional Development Funds. ARSR acknowledges the finnancial support from the Spanish Ministry of Education as a fellow of the program "Training of University Teachers" (Formación del Profesorado Universitario, AP2008-04716)

  19. Validation of water sorption-based clay prediction models for calcareous soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Moosavi, Ali

    2017-01-01

    on prediction accuracy. The soils had clay content ranging from 9 to 61% and CaCO3 from 24 to 97%. The three water sorption models considered showed a reasonably fair prediction of the clay content from water sorption at 28% relative humidity (RMSE and ME values ranging from 10.6 to 12.1 and −8.1 to −4......Soil particle size distribution (PSD), particularly the active clay fraction, mediates soil engineering, agronomic and environmental functions. The tedious and costly nature of traditional methods of determining PSD prompted the development of water sorption-based models for determining the clay...... fraction. The applicability of such models to semi-arid soils with significant amounts of calcium carbonate and/or gypsum is unknown. The objective of this study was to validate three water sorption-based clay prediction models for 30 calcareous soils from Iran and identify the effect of CaCO3...

  20. Field Evidence of Cadmium Phytoavailability Decreased Effectively by Rape Straw and/or Red Mud with Zinc Sulphate in a Cd-Contaminated Calcareous Soil

    Science.gov (United States)

    Li, Bo; Yang, Junxing; Wei, Dongpu; Chen, Shibao; Li, Jumei; Ma, Yibing

    2014-01-01

    To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg−1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils. PMID:25303439

  1. Field evidence of cadmium phytoavailability decreased effectively by rape straw and/or red mud with zinc sulphate in a Cd-contaminated calcareous soil.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg-1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils.

  2. LEAF MINERAL CONCENTRATION OF FIVE OLIVE CULTIVARS GROWN ON CALCAREOUS SOIL

    Directory of Open Access Journals (Sweden)

    Igor Pasković

    2013-12-01

    Full Text Available There are limited numbers of scientific publication regarding genotypic differences which exist among olive cultivars concerning nutrient uptake and translocation. For that purpose, the object of our study was to determine possible differences between leaf mineral content of five selected olive cultivars since leaf nutrient analysis is consider being the best method for diagnosing olive tree nutritional status. Plant material was obtained from an olive collection, grown on calcareous soil maintained at Institute of Adriatic Crops and Karst Reclamation, Split, Croatia. The study was conducted with two Croatian autochthonous olive cultivars (“Istarska bjelica”, “Lastovka”, two Italian cultivars (“Pendolino”, “Leccino” and one Spanish cultivar (“Hojiblanca”. Completely randomized design was applied. This study has shown questionably low Mg concentration in all olive cultivars with exception for “Hojiblanca” cultivar. Also, only Croatian cultivars “Istarska bjelica” and “Lastovka” as well as Spanish cultivar “Hojiblanca” recorded sufficient levels of iron leaf mineral content. Regarding other elements studied (P, K, Ca, Zn, Mn, Cu all cultivars were above literature cited thresholds for possible deficiencies. Selected olive cultivars in our experiment demonstrated different nutrient leaf concentration, which is of particular importance for fertilization requirements and fertilization practice in Croatian orchards grown on calcareous soil.

  3. Identification of Nutrient Deficiencies at Calcareous Soils for Maize

    Directory of Open Access Journals (Sweden)

    Dedi Nursyamsi

    2010-09-01

    Full Text Available A pot experiment was conducted to identify nutrient deficiencies at calcareous soils for maize (Zea mays, L. in green house of Indonesian Soil Research Institute using top soil (0-20 cm samples taken from Bogor (Typic Hapludalfs and Blora (Typic Haplustalfs. The experiment used Randomized Completely Block Design, minus one test with 12 treatments and three replications, as well as maize of P21 variety as plant indicator. The results showed that use of N, P, K, Zn, Cu, Fe, and Mn fertilizers increased soil macro nutrients, i.e.: soil total-N, Olsen-P, HCl-P, and HCl-K, as well as soil micro nutrients, i.e.: soil DTPA-Zn, Cu, Fe, and Mn at both tested soils. Use of maize straw compost increased soil organic-C, total-N, HCl-K, and exchangeable Ca at Typic Hapludalfs and increased only soil organic-C and total-N at Typic Haplustalfs. Use of animal manure compost increased soil organic-C, exchangeable Ca and Mg, and CEC. Use of N, P, K, S, Zn, Cu, Fe, and Mn fertilizers increased each plant nutrients uptake at the soils. Use of both organic matters increased plant N, P, K, and Fe uptake at Typic Hapludalfs as well as increased only plant N, P, and K uptake at Typic Haplustalfs. Identification result showed that maize growth suffered from N, P, and K deficiencies at Typic Hapludalfs as well as N and P deficiencies at Typic Haplustalfs. Beside the nutrients, soil organic matter was also found out as limiting factor for maize growth in the soils.

  4. Impacts of long-term nitrogen fertilization on acid buffering rates and mechanisms of a slightly calcareous clay soil

    NARCIS (Netherlands)

    Zhang, Yuting; Vries, de Wim; Thomas, Ben W.; Hao, Xiying; Shi, Xiaojun

    2017-01-01

    Acidification of cropland soils is a serious problem in China that may cause long term pH decline, which threatens the sustainability of soil fertility and crop yields. The objective of this research was to investigate those rates and mechanisms for a slightly calcareous soil. The field data were

  5. Effect of three Electron Shuttles on Bioreduction of Ferric Iron in two Acidic and Calcareous soils

    Directory of Open Access Journals (Sweden)

    Setareh Sharifi

    2017-01-01

    Full Text Available Introduction: Iron cycle is one of the most important biogeochemical processes which affect the availability of iron in soils. Ferric iron oxides are the most abundant forms of iron in soils and sediments. Ferric iron is highly insoluble at circumneutral pH. Present investigations have shown that the structural ferric iron bound in clay minerals is reduced by some microorganisms. Anaerobic bacteria reduce ferric iron which bound to soil clay minerals under anaerobic conditions. They have the ability to use ferric iron as a terminal electron acceptor. Many studies presented that dissimilatory iron reducing bacteria (DIRB mediate the transfer of electrons from small organic molecules like acetate and glucose to various humic materials (electron shuttles which then pass electrons abiotically to ferric iron oxyhydroxide and phyllosilicate minerals. Electron shuttles like AQDS, a tricyclic quinone, increase the rate of iron reduction by iron reducing bacteria on sites of iron oxides and oxyhydroxides. By increasing the rate of bioreduction of ferric iron, the solubility and availability of iron enhanced meaningfully. Royer et al. (2002 showed that bioreduction of hematite (common iron mineral in soils increased more than three times in the presence of AQDS and Shewanella putrefaciens comparedto control treatments. Previous works have mostly used synthetic minerals as electron acceptor in bioreduction process. Furthermore, the effect of quinones as electron acceptor for microorganisms were studied with poorly crystalline ferric iron oxides . The main objective of this study was to study the effect of AQS, humic acid and fulvic acid (as electron shuttle and Shewanella sp. and Pseudomonas aeruginosa, on bioreduction of native ferric iron in two acidic and calcareous soils. Materials and Methods: An experiment was conducted in a completely randomized design with factorial arrangement and three replications in vitro condition. The soil samples collected

  6. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil

    Science.gov (United States)

    Milani, Narges; Hettiarachchi, Ganga M.; Kirby, Jason K.; Beak, Douglas G.; Stacey, Samuel P.; McLaughlin, Mike J.

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ–XRF) mapping and absorption fine structure spectroscopy (μ–XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the

  7. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil.

    Directory of Open Access Journals (Sweden)

    Dali Song

    Full Text Available Biochar (BC addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass and urea (U application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC, dissolved organic carbon (DOC, total nitrogen (TN, and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC, TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility.

  8. Short-Term Responses of Soil Respiration and C-Cycle Enzyme Activities to Additions of Biochar and Urea in a Calcareous Soil

    Science.gov (United States)

    Song, Dali; Xi, Xiangyin; Huang, Shaomin; Liang, Guoqing; Sun, Jingwen; Zhou, Wei; Wang, Xiubin

    2016-01-01

    Biochar (BC) addition to soil is a proposed strategy to enhance soil fertility and crop productivity. However, there is limited knowledge regarding responses of soil respiration and C-cycle enzyme activities to BC and nitrogen (N) additions in a calcareous soil. A 56-day incubation experiment was conducted to investigate the combined effects of BC addition rates (0, 0.5, 1.0, 2.5 and 5.0% by mass) and urea (U) application on soil nutrients, soil respiration and C-cycle enzyme activities in a calcareous soil in the North China Plain. Our results showed soil pH values in both U-only and U plus BC treatments significantly decreased within the first 14 days and then stabilized, and CO2emission rate in all U plus BC soils decreased exponentially, while there was no significant difference in the contents of soil total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN), and C/N ratio in each treatment over time. At each incubation time, soil pH, electrical conductivity (EC), TOC, TN, C/N ratio, DOC and cumulative CO2 emission significantly increased with increasing BC addition rate, while soil potential activities of the four hydrolytic enzymes increased first and then decreased with increasing BC addition rate, with the largest values in the U + 1.0%BC treatment. However, phenol oxidase activity in all U plus BC soils showed a decreasing trend with the increase of BC addition rate. Our results suggest that U plus BC application at a rate of 1% promotes increases in hydrolytic enzymes, does not highly increase C/N and C mineralization, and can improve in soil fertility. PMID:27589265

  9. Inorganic Phosphorus Fractions and Their Relationships with Soil Characteristics of Selected Calcareous Soils of Fars Province

    Directory of Open Access Journals (Sweden)

    abolfazl azadi

    2017-01-01

    Full Text Available Introduction: Phosphorus (P is the second limiting nutrient in soils for crop production after nitrogen. Phosphorus is an essential nutrient in crop production. Determination of forms of soil phosphorus is important in the evaluation of soil phosphorus status. Various sequential P fractionation procedures have been used to identify the forms of P and to determine the distribution of P fractions in soils (Chang and Jackson, 1957, Williams et al., 1967; Hedley et al., 1982, but are not particularly sensitive to the various P compounds that may exist in calcareous soils. A Sequential fractionation scheme has been suggested for calcareous soils by which three types of Ca-phosphates i.e. dicalcium phosphate, octacalcium phosphate, and apatite could be identified (Jiang and Gu, 1989. These types of Ca-phosphates were described as Ca2-P (NaHCO3-extractable P, Ca8-P (NH4AC-extractable P and Ca10-P (apatite type, respectively. In this study, the amount and distribution of soil inorganic phosphorus fractions were examined in 49 soil samples of Fars province according to the method described by Jiang and Gu (1989. Materials and Methods: Based on the previous soil survey maps of Fars province and According to Soil Moisture and Temperature Regime Map of Iran (Banaei, 1998, three regions (abadeh, eghlid and noorabad with different Soil Moisture and Temperature Regimes were selected. The soils were comprised Aridic, xeric, and ustic moisture regimes along with mesic, and hyperthemic temperature regimes. 49 representative samples were selected. The soil samples were air-dried and were passed through a 2-mm sieve before analysis. Particle size distribution was determined by hydrometer method (Gee and Bauder 1996. Also, Cation exchange capacity (CEC; Sumner and Miller 1996, calcium carbonate equivalent (Loeppert and Suarez 1996, organic matter content (Nelson and Sommers 1996, and pH by saturated paste method (Thomas 1996 were determined . Inorganic phosphorus

  10. Effect of Sulfur Application on Spinach Phytoremedaiton Process of Cadmium in Contaminated Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Ali Kasraian

    2012-07-01

    Full Text Available Recently, cadmium (Cd concentration has increased in croplands through sewage sludge and phosphorous fertilizers application. On the other hand, some special methods, like phytoremedation, were introduced in order to decrease soil contamination hazard. Calcium carbonate plays an important role in Cd solubility in highly calcareous soils. Sulfurs oxidation, by dissolving Cd carbonate fraction, may improve phytoremediation efficiency. An experiment was conducted to study the effects of S application (equivalent to 0, 2, 4 and 6 Mg S ha-1 on Diethylene Triamine Pentaacetic Acid  (DTPA extractable Cd and also on Cd uptake and extraction by spinach (Spinacea oleracea L. in calcareous soils which were contaminated by 40mg Cd kg-1. To ensure biological S oxidation, all S-treated samples were inoculated by Thiobacillus spp. and incubated for 50 days. The soil pH, EC and soluble sulfate were affected by S application and it clearly showed that S oxidation process was occurred in Cd treated soils. The most significant change for pH and sulfate were observed at 4 Mg S ha-1 and for electrical conductivity (EC of soil it occurred at 6Mg S ha-1. Application of S had no effect on DTPA extractable Cd in soils whereas; its concentration increased 73.55% in average in plant tissue. Plant dry matter decreased significantly (about 63 percent following Cd application. Although the highest rate of S oxidation was observed at 4 and 6 Mg S ha-1 tٰٰٰhe maximum Cd extraction (2.5µg Cd pot-1 was observed at 2 Mg S ha-1 . This may be due to adverse effect of Cd toxicity and increase of soluble salt resulted by S oxidation in higher level of S application.

  11. Micronutrient Availability in Relation to Selected Soil Properties and landscape Position in Calcareous Soils of Golpayegan

    Directory of Open Access Journals (Sweden)

    Mojtaba Fathi

    2017-02-01

    Full Text Available Introduction: Variety of soil reactions govern the distribution of metal micronutrients that includes complexation with organic and inorganic ligands, ion exchange, adsorption and desorption processes, precipitation and dissolution of solids and acid-based equilibria. The relative importance of these reactions depends on many factors such as soil physical, chemical, and mineralogical properties and the nature of metal ions. Environmental factors such as climate, physiographic position, and soil development may affect variability of some soil properties and thereby nutrient availability. The present research was conducted to find relationships between Iron, manganese, zinc, and copper availability and some major soil properties, physiographic condition and soil development. Materials and Methods: Golpayegan region is located in northwest of Isfahan province in central Iran. The mean elevation of the studied area is 1790 above sea level. Annual precipitation was about 244mm and mean monthly temperature ranges from -6 in January to 34°C in August. The soils were developed on different physiographic conditions including piedmont plains, alluvial-fan, plateaus, and flood plains belonging to Entisols and Aridisols. Soil samples (0–60 cm were collected from 98 grid points with 2000m distance in the agricultural area of Golpayegan. Particle size distribution, calcium carbonate, organic carbon, available potassium and phosphorus of the soils were measured by SWRI standard methods. Available Zn, Cu, Mn, and Fe were determined by addition of 10 g soil to 20mL 0.005M diethylentriaminepentacetic‏. The solutions were shaken for 2 h at 25°C, centrifuged, filtered, and Fe, Mn, Zn, and Cu concentrations were measured by an atomic absorption spectrophotometer. Results Discussion: Studied soils were developed on calcareous material and about 60% of samples have more than 20% of calcium carbonate. Available Fe ranged from 1.4 to 6.5 mg kg-1 (mean 15.8 mg kg-1

  12. Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Nazif, W. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Marzouk, E.R. [Division of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Suez Canal University, North Sinai 45516 (Egypt); Perveen, S. [Department of Soil and Environmental Sciences, Khyber Pakhtunkhwa Agricultural University, Peshawar (Pakistan); Crout, N.M.J. [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.uk [Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD (United Kingdom)

    2015-06-15

    The solubility, lability and fractionation of zinc in a range of calcareous soils from Peshawar, Pakistan were studied (18 topsoils and 18 subsoils). The lability (E-value) of Zn was assessed as the fraction isotopically exchangeable with {sup 70}Zn{sup 2+}; comparative extractions included 0.005 M DTPA, 0.43 M HNO{sub 3} and a Tessier-style sequential extraction procedure (SEP). Because of the extremely low concentration of labile Zn the E-value was determined in soils suspended in 0.0001 M Na{sub 2}-EDTA which provided reliable analytical conditions in which approximately 20% of the labile Zn was dissolved. On average, only 2.4% of soil Zn was isotopically exchangeable. This corresponded closely to Zn solubilised by extraction with 0.005 DTPA and by the carbonate extraction step (F1 + F2) of the Tessier-style SEP. Crucially, although the majority of the soil CaCO{sub 3} was dissolved in F2 of the SEP, the DTPA dissolved only a very small proportion of the soil CaCO{sub 3}. This suggests a superficial carbonate-bound form of labile Zn, accessible to extraction with DTPA and to isotopic exchange. Zinc solubility from soil suspended in 0.01 M Ca(NO{sub 3}){sub 2} (PCO{sub 2} controlled at 0.03) was measured over three days. Following solution speciation using WHAM(VII) two simple solubility models were parameterised: a pH dependent ‘adsorption’ model based on the labile (isotopically exchangeable) Zn distribution coefficient (Kd) and an apparent solubility product (Ks) for ZnCO{sub 3}. The distribution coefficient showed no pH-dependence and the solubility model provided the best fit to the free ion activity (Zn{sup 2+}) data, although the apparent value of log{sub 10} Ks (5.1) was 2.8 log units lower than that of the mineral smithsonite (ZnCO{sub 3}). - Highlights: • Isotopically exchangeable Zn in the calcareous soils of Peshawar is extremely low. • There is no evidence of topsoil enrichment from the use of wastewater for irrigation. • Solubility

  13. Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater

    International Nuclear Information System (INIS)

    Nazif, W.; Marzouk, E.R.; Perveen, S.; Crout, N.M.J.; Young, S.D.

    2015-01-01

    The solubility, lability and fractionation of zinc in a range of calcareous soils from Peshawar, Pakistan were studied (18 topsoils and 18 subsoils). The lability (E-value) of Zn was assessed as the fraction isotopically exchangeable with 70 Zn 2+ ; comparative extractions included 0.005 M DTPA, 0.43 M HNO 3 and a Tessier-style sequential extraction procedure (SEP). Because of the extremely low concentration of labile Zn the E-value was determined in soils suspended in 0.0001 M Na 2 -EDTA which provided reliable analytical conditions in which approximately 20% of the labile Zn was dissolved. On average, only 2.4% of soil Zn was isotopically exchangeable. This corresponded closely to Zn solubilised by extraction with 0.005 DTPA and by the carbonate extraction step (F1 + F2) of the Tessier-style SEP. Crucially, although the majority of the soil CaCO 3 was dissolved in F2 of the SEP, the DTPA dissolved only a very small proportion of the soil CaCO 3 . This suggests a superficial carbonate-bound form of labile Zn, accessible to extraction with DTPA and to isotopic exchange. Zinc solubility from soil suspended in 0.01 M Ca(NO 3 ) 2 (PCO 2 controlled at 0.03) was measured over three days. Following solution speciation using WHAM(VII) two simple solubility models were parameterised: a pH dependent ‘adsorption’ model based on the labile (isotopically exchangeable) Zn distribution coefficient (Kd) and an apparent solubility product (Ks) for ZnCO 3 . The distribution coefficient showed no pH-dependence and the solubility model provided the best fit to the free ion activity (Zn 2+ ) data, although the apparent value of log 10 Ks (5.1) was 2.8 log units lower than that of the mineral smithsonite (ZnCO 3 ). - Highlights: • Isotopically exchangeable Zn in the calcareous soils of Peshawar is extremely low. • There is no evidence of topsoil enrichment from the use of wastewater for irrigation. • Solubility products for smithsonite and hydrozincite fail to describe Zn 2

  14. Dried gamma-irradiated sewage solids use on calcareous soils: crop yeilds and heavy metals uptake

    International Nuclear Information System (INIS)

    McCaslin, B.D.; Sivinski, J.S.

    1979-01-01

    Experiments designed to examine gamma-radiation effects on extractable and plant-available sludge elements and to examine the response of crops to sludge applications on two typical, calcareous soils in New Mexico are summarized. Information has been given indicating that the radiation process of reducing pathogens in sewage products being developed by Sandia Laboratories, does not significantly increase the chemical extractability and plant uptake of a broad range of nutrients and heavy metals. However, radiation treatment greatly facilitates handling sewage for experimentation, because pathogen contamination precautions are eliminated and weed seeds killed. Studies on the effects of sludge irradiation on plant nutrient uptake revealed no concentration increases, agreeing with results presented herein. Sewage products may have special potential for use on calcareous soils, such as in New Mexico. For instance, in New Mexico the lack of potassium in sewage products is not a problem and the naturally high pH of New Mexico soil greatly reduces plant availability of many problem heavy metals. Dramatic increases in yield are typified by the greenhouse and field results presented herein, especially for the known micronutrient deficient soils of New Mexico. Results indicate that sewage sludge is an excellent Zn and Fe fertilizer. More research needs to be done before the economics of sludge application can be calculated and more field information is needed before irradiated sewage products are used indiscriminately

  15. Dried gamma-irradiated sewage solids use on calcareous soils: crop yeilds and heavy metals uptake

    Energy Technology Data Exchange (ETDEWEB)

    McCaslin, B.D.; Sivinski, J.S.

    1979-01-01

    Experiments designed to examine gamma-radiation effects on extractable and plant-available sludge elements and to examine the response of crops to sludge applications on two typical, calcareous soils in New Mexico are summarized. Information has been given indicating that the radiation process of reducing pathogens in sewage products being developed by Sandia Laboratories, does not significantly increase the chemical extractability and plant uptake of a broad range of nutrients and heavy metals. However, radiation treatment greatly facilitates handling sewage for experimentation, because pathogen contamination precautions are eliminated and weed seeds killed. Studies on the effects of sludge irradiation on plant nutrient uptake revealed no concentration increases, agreeing with results presented herein. Sewage products may have special potential for use on calcareous soils, such as in New Mexico. For instance, in New Mexico the lack of potassium in sewage products is not a problem and the naturally high pH of New Mexico soil greatly reduces plant availability of many problem heavy metals. Dramatic increases in yield are typified by the greenhouse and field results presented herein, especially for the known micronutrient deficient soils of New Mexico. Results indicate that sewage sludge is an excellent Zn and Fe fertilizer. More research needs to be done before the economics of sludge application can be calculated and more field information is needed before irradiated sewage products are used indiscriminately. (ERB)

  16. Efficacy of Fe(o,o-EDDHA) and Fe(o,p-EDDHA) isomers in supplying Fe to strategy I plants differs in nutrient solution and calcareous soil.

    Science.gov (United States)

    Rojas, Carmen L; Romera, Francisco J; Alcántara, Esteban; Pérez-Vicente, Rafael; Sariego, Cristina; Garcaí-Alonso, J Ignacio; Boned, Javier; Marti, Gabriel

    2008-11-26

    The FeEDDHA [iron(3+) ethylenediamine di(o-hydroxyphenylacetic) acid] is one of the most efficient iron chelates employed in the correction of iron clorosis in calcareous soils. FeEDDHA presents different positional isomers: the ortho-ortho (o,o), the ortho-para (o,p), and the para-para (p,p). Of these isomers, the p,p cannot chelate Fe in soil solution in a wide range of pH values, while both o,o and o,p can. The objective of this work was to compare the efficiency of both isomers (o,o and o,p) to provide Fe to two Strategy I plants (tomato and peach) in nutrient solution (pH approximately 6.0), as well as in calcareous soil (pH approximately 8.4; CALCIXEREPT). For this, chelates of both o,o-EDDHA and o,p-EDDHA with 57Fe (a nonradioactive isotope of Fe) were used, where the 57Fe acts as a tracer. The results obtained showed that the o,o isomer is capable of providing sufficient Fe to plants in both nutrient solution and calcareous soil. However, the o,p isomer is capable of providing sufficient Fe to plants in nutrient solution but not in calcareous soil.

  17. Influence of long-term fertilization on the selenium content of calcareous chernozem soil.

    Science.gov (United States)

    Blagojević, S; Jakovljević, M; Zarković, B

    1998-01-01

    Available data on the selenium (Se) content in Yugoslavian soils indicate that the element is present in small amounts (chernozem soil. The experiment of the Maize Research Institute in Belgrade was set up in 1971 and soil samples were examined by chemical analysis after 23 years. The following important conclusions can be drawn based on the analytical data obtained. The total content of Se in the investigated experimental variants in calcareous chernozem soil ranges from 166 to 593 microg/kg. All the variants had a higher content of Se than soil samples taken before the experiment was set up. Comparison with the control (variant without fertilizers) indicated that the Se content increased in the experimental variants where farmyard manure had been applied. This effect was noticed to a depth of 80 cm. Application of farmyard manure should be considered as a means of increasing the levels of Se in Se-deficient soil. Correlation coefficients between total Se content in the soil and some important agrochemical properties of the investigated soils are presented in this paper.

  18. Soil seed-bank composition reveals the land-use history of calcareous grasslands

    Science.gov (United States)

    Karlík, Petr; Poschlod, Peter

    2014-07-01

    We compared soil seed banks and vegetation of recent (established on abandoned arable fields) and ancient (continuously managed as pastures at least since 1830) calcareous grasslands if there is any impact of former arable field use. The study was carried out in two regions of Southern Germany with well-preserved dry grassland vegetation: the western Jurassic mountains (Kaltes Feld) and the climatically drier eastern part of Southern Germany (Kallmünz). Total number of species in the seed bank was similar in both regions, but species composition partly differed, reflecting phytogeographical differences between the regions. The total number of emerged seedlings showed a large disparity (5457 compared to 2523 seedlings/m2 in Kaltes Feld and Kallmünz, respectively). Though there were differences in seed bank composition and size, we found a uniform pattern of plant traits (affiliation to phytosociological groups, Raunkiaer plant life-forms and seed longevity), which depended on the age of the grassland. The main conclusion is that seed banks in contemporary calcareous grasslands still reflect the history of former land use - in this case arable cultivation, even though it occurred a long time ago (up to 150 years). Indicators of former arable fields are germinable seeds of weeds which have persisted in the soil to the present. By contrast, weedy species are completely absent from the seed banks of ancient grasslands. Soil seed banks of recent grasslands may be of substantial conservation importance because they may store seeds of rare and endangered weed species such as Kickxia spuria, Silene noctiflora and Stachys annua, the majority of which have already gone extinct from the current vegetation of the study sites.

  19. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning

    2013-10-01

    The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.

  20. Intrinsic Problems In Determination Of Soil Texture In Calcareous Soils Of Arid Zones

    Directory of Open Access Journals (Sweden)

    Mozna A. Ahmed

    2017-08-01

    Full Text Available This study aimed at studying the effect of removal of CaCO3 on the texture of the soil profile and that of the control section in some Aridisols of the Sudan. Sixty soil profiles were sampled from Shendi area latitude1636 and longitude 33 48 River Nile State Sudan. These soils were analyzed for CaCO3 and 20 of these profiles were found to be of relatively appreciable calcareousness and were therefore selected for this study. The following three weighted soil textures were determined 1 before any removal of the CaCO3 Texture1 2 after the removal of CaCO3 Texture2 3 after amending the texture by adding the clay sized CaCO3 to the silt fraction Texture 3. Statistical analysis revealed significant differences among soil separates in the three textures except between clay of T2 and clay of T3 and among sand fractions in the three textures. That was not unexpected because the first texture included both mineral separates plus their equivalent size of CaCO3 the second texture included only the mineral separates in complete absence of CaCO3 while texture 3 was an amended texture. The change in the textural class amounted to 72 of the profiles. Statistical analysis in the weighted texture of the control section revealed that this texture was not affected except in two profiles. That could be attributed to the fact that the clay content of the soils of the study area did not fall at or near the boundary between any two major textural classes used in the Soil Taxonomy. The size of the CaCO3 was found in the order of clay size silt size sand size.

  1. Bacteria transport and retention in intact calcareous soil columns under saturated flow conditions

    Directory of Open Access Journals (Sweden)

    Farrokhian Firouzi Ahmad

    2015-06-01

    Full Text Available Study of bacterial transport and retention in soil is important for various environmental applications such as groundwater contamination and bioremediation of soil and water. The main objective of this research was to quantitatively assess bacterial transport and deposition under saturated conditions in calcareous soil. A series of leaching experiments was conducted on two undisturbed soil columns. Breakthrough curves of Pseudomonas fluorescens and Cl were measured. After the leaching experiment, spatial distribution of bacteria retention in the soil columns was determined. The HYDRUS-1D one- and two-site kinetic models were used to predict the transport and deposition of bacteria in soil. The results indicated that the two-site model fits the observed data better than one-site kinetic model. Bacteria interaction with the soil of kinetic site 1 revealed relatively fast attachment and slow detachment, whereas attachment to and detachment of bacteria from kinetic site 2 was fast. Fast attachment and slow detachment of site 1 can be attributed to soil calcium carbonate that has favorable attachment sites for bacteria. The detachment rate was less than 0.02 of the attachment rate, indicating irreversible attachment of bacteria. High reduction rate of bacteria was also attributed to soil calcium carbonate.

  2. Spatial Variability and Geostatistical Prediction of Some Soil Hydraulic Coefficients of a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi

    2017-02-01

    Full Text Available Introduction: Saturated hydraulic conductivity and the other hydraulic properties of soils are essential vital soil attributes that play role in the modeling of hydrological phenomena, designing irrigation-drainage systems, transportation of salts and chemical and biological pollutants within the soil. Measurement of these hydraulic properties needs some special instruments, expert technician, and are time consuming and expensive and due to their high temporal and spatial variability, a large number of measurements are needed. Nowadays, prediction of these attributes using the readily available soil data using pedotransfer functions or using the limited measurement with applying the geostatistical approaches has been receiving high attention. The study aimed to determine the spatial variability and prediction of saturated (Ks and near saturated (Kfs hydraulic conductivity, the power of Gardner equation (α, sorptivity (S, hydraulic diffusivity (D and matric flux potential (Фm of a calcareous soil. Material and Methods: The study was carried out on the soil series of Daneshkadeh located in the Bajgah Agricultural Experimental Station of Agricultural College, Shiraz University, Shiraz, Iran (1852 m above the mean sea level. This soil series with about 745 ha is a deep yellowish brow calcareous soil with textural classes of loam to clay. In the studied soil series 50 sampling locations with the sampling distances of 16, 8 , and 4 m were selected on the relatively regular sampling design. The saturated hydraulic conductivity (Ks, near saturated hydraulic conductivity (Kfs, the power of Gardner equation (α, sorptivity (S, hydraulic diffusivity (D and matric flux potential (Фm of the aforementioned sampling locations was determined using the Single Ring and Droplet methods. After, initial statistical processing, including a normality test of data, trend and stationary analysis of data, the semivariograms of each studied hydraulic attributes were

  3. Transformation of nitrogenous fertilizers of surface and deep application in calcareous soil

    International Nuclear Information System (INIS)

    Zuo Dongfeng

    1990-01-01

    The transformations of 15 N labelled fertilizer N in calcareous soil were studied under greennhouse conditions. The experimental results indicate that the ratio of fixed ammonium is closely related to the methods of fertilizer application to the soil. When fertilizer N applied as deep dressing the fixation of nitrogen by clay minerals and microorganisms may markedly reduce the losses of nitrogen, but the amount of nitrogen fixed by the clay minerals and that by microorganisms showed negative correlation (r = -0.9185 ** ). The more the amount of fixed nitrogen by clay minerals, the less by microorganisms. No obvious interrelation between the residual utilization of urea, ammonium bicarbonate, ammonium sulfate and the ammount of nitrogen fixed by organisms can be observed, but the residual utilization of these fertilizers by the succeeding crop has been related to the total amount of mineral nitrogen

  4. Dynamics of phosphorus fractions in the rhizosphere of fababean (Phaseolus vulgaris L.) and maize (Zea mays L.) grown in calcareous and acid soils

    NARCIS (Netherlands)

    Li, G.; Li, Haigang; Leffelaar, P.A.; Shen, J.; Zhang, F.

    2015-01-01

    The dynamics of soil phosphorus (P) fractions were investigated, in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils. Plants were grown in a mini-rhizotron with a thin (3 mm) soil layer, which was in contact with the root-mat, and considered as

  5. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran.

    Science.gov (United States)

    Shirani, H; Hosseinifard, S J; Hashemipour, H

    2018-03-01

    Cadmium (Cd) which does not have a biological role is one of the most toxic heavy metals for organisms. This metal enters environment through industrial processes and fertilizers. The main objective of this study was to determine the relationships between absorbed Cd by pistachio kernel and some of soil physical and chemical characteristics using modeling by stepwise regression and Artificial Neural Network (ANN), in calcareous soils in Rafsanjan region, southeast of Iran. For these purposes, 220 pistachio orchards were selected, and soil samples were taken from two depths of 0-40 and 40-80cm. Besides, fruit and leaf samples from branches with and without fruit were taken in each sampling point. The results showed that affecting factors on absorbed Cd by pistachio kernel which were obtained by regression method (pH and clay percent) were not interpretable, and considering unsuitable vales of determinant coefficient (R 2 ) and Root Mean Squares Error (RMSE), the model did not have sufficient validity. However, ANN modeling was highly accurate and reliable. Based on its results, soil available P and Zn and soil salinity were the most important factors affecting the concentration of Cd in pistachio kernel in pistachio growing areas of Rafsanjan. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Simulation of Zinc Release Affected by Microbial Inoculation and Salinity Levels in a non-sterile Calcareous Soil Using kinetic Models

    Directory of Open Access Journals (Sweden)

    hamidreza boostani

    2017-02-01

    Full Text Available Introduction: Zinc (Zn is an important nutrient element for humans and plants that controls many biochemical and physiological functions of living organisms. Zinc deficiency is common in high pH, low organic matter, carbonatic, saline and sodic soils. Salinity is a major abiotic environmental stresses that limits growth and production in arid and semi-arid regions of the world. Bioavailability of Zn is low in calcareous and saline soils having high levels of pH and calcium. Desorption of Zinc (Zn from soil as influenced by biological activities is one of the important factors that control Zn bioavailability. Few reports on the effects of salinity on the availability and desorption kinetics of Zn are available. Rupa et al. (2000 reported that increasing the salt concentration led to increase Zn desorption from soil due to ion competition on soil exchangeable sites. Different kinetic equations have been used to describe the release kinetics of nutrients. Reyhanitabar and Gilkes (2010 found that the power function model was the best equation to describe the release of Zn from some calcareous soil of Iran, whereas Baranimotlagh and Gholami (2013 stated that the best model for describing Zn desorption from 15 calcareous soils of Iran was the first-order equation.less attention has been paid to kinetics of Zn release by DTPA extractant over time by inoculation of plant growth promoting rhizobacteria and mycorrhizae fungi in comination with soil salinity.The objective of this study was to evaluate the effect of plant growth promoting rhizobacteria (PGPR and mycorrhizae fungi (MF inoculation on release kinetic of Zn in a calcareous soil at different salinity levels after in cornplantation Materials and Methods: A composite sample of bulk soil from the surface horizon (0-30 cm of a calcareous soil from southern part of Iran was collected, air dried, passed through 2 mm sieve, and thoroughly mixed. Routine soil analysis was performed to determine some

  7. Earthworm introduction on calcareous minesoils

    International Nuclear Information System (INIS)

    Vimmerstedt, J.P.; Kost, D.A.

    1994-01-01

    Burrowing activity of the nightcrawler, Lumbricus terrestis (L.t.), incorporates organic matter into mineral soil while creating long-lasting macropores. Thus L.t. has potential as a biological means of improving physical and chemical properties of surface mined areas. Efforts to establish L.t. population on forested acidic or calcareous minesoils have been successful, but thus far have not been able to establish L.t. in grassland ecosystems on calcareous minesoils. In May, 1989, the authors put 11 clitellate L.t. under sphagnum moss on calcareous gray cast overburden on standard graded topsoil, or on ripped and disked topsoil. All soils had cover of agronomic grasses and legumes. They found no L.t. at the 24 points of inoculation during sampling in fall of 1990 with formalin extractant, although smaller species, Lumbricus rubellus and Dendrobaena spp., were found. At another location, in May, 1990, they put 25 clitellate L.t. at 16 points in grasslands growing on gray cast overburden. Using formalin extraction, they found no L.t. in May 1992 at these locations. Working in this same area in November, 1992, they released 10 clitellate L.t. at 16 points under 10 cm of moist Alnus glutinosa leaf litter. Careful examination of the surface inoculation points in spring and fall of 1993 did not show obvious signs of earthworm activity. Their next step will be to use Earthworm Inoculation Units (earthworm-minesoil microcosms containing L.t. adults, immatures, and cocoons) as the source of the new populations

  8. Relationships between nutrient composition of flowers and fruit quality in orange trees grown in calcareous soil

    OpenAIRE

    Pestana, M.; Beja, P.; Correia, P. J.; Varennes, Amarilis de; Faria, E. A.

    2005-01-01

    A field experiment was conducted in a commercial orange orchard (Citrus sinensis (L.) Osb. cv. ‘Valencia late’ grafted on Citrange Troyer) established on a calcareous soil in the south of Portugal, to investigate if flower analysis could be used to predict fruit quality. In April 1996, during full bloom, flowers were collected from 20 trees. In March 1997 the fruits were harvested and their quality evaluated. This procedure was repeated every year during three years. Principal Compon...

  9. Distributions of carbon in calcareous soils under different land uses in western Iran

    Directory of Open Access Journals (Sweden)

    H. Sepahvand

    2016-10-01

    Full Text Available Concentrations of Natural stable and unstable carbon in ecosystems have been used extensively to help to understand a wide range of soil processes and functions. This study was conducted to explore the effects of land use changes on different carbon fractions (F1, F2, F3 and F4, permanganate oxidizable carbon (POXC, soil organic carbon (SOC and total organic carbon (TOC associated with soils in calcareous soils of western Iran. Four popular land uses in the selected site including natural forest, range land, dryland farming and irrigated farming systems were employed as the basis of soil sampling. The results showed a strong relationship between land use conversion and SOC stocks changes. The greatest mean values for carbon content and the least mean values of CaCO3 in bulk topsoil (0–15 cm in the forest land were observed. Dryland farming had the least both active and passive pools of C in comparison with the other land uses. The positive and significant correlations was observed between SOC, Total C and POXC contents and different C fractions. Taking C and POXC pools into account, a more definitive picture of the soil C is obtained than when only total C is measured. The influence of land use changes on overall soil carbon stocks could be helpful for making management decision for farmers and policy makers in the future, for enhancing the potential of C sequestration in western Iran.

  10. Phosphate solubilization and promotion of maize growth in a calcareous soil by penicillium oxalicum P4 and aspergillus niger P85

    Science.gov (United States)

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  11. Sodium hypochlorite oxidation of petroleum aliphatic contaminants in calcareous soils.

    Science.gov (United States)

    Picard, François; Chaouki, Jamal

    2016-02-01

    This research project investigated the sodium hypochlorite (NaClO) oxidation of aliphatic petroleum contaminants (C10-C50) in a calcareous soil (average 5473 ppm C10-C50, 15 wt% Ca), which had been excavated from a contaminated industrial site. The decontamination objective was to lower the C10-C50 concentration to 700 ppm. CO2 acidity was used in the project to boost the NaClO oxidation yield and seems to have played a role in desorbing the natural organic matter. The experimental conditions were a 2- to 16-h reaction time, at room temperature, with a 1 to 12.5 wt% NaClO oxidative solution and a fixed 2:1 solution-to-soil ratio. With a 3 wt% NaClO solution and with a CO2 overhead, the NaClO dosage requirement was maintained below 60 g NaClO/g of oxidized C10-C50 over the entire decontamination range. The strong chlorine smell remaining after the reaction was completed suggests that part of the NaClO requirement can be recycled. Except traces of chloroform, there were no regulation-listed organochloride contaminants detected on either the treated soil samples or leachates and the total count of chlorinated compounds in treated soil samples was below the detection limit of 250 mg/kg. The NaClO oxidation mechanism on aliphatic substrates might be triggered by transition metals, such as manganese, but no attempt has been made to investigate the oxidation mechanism. Further investigations would include a constant-fed NaClO system and other techniques to lower the required NaClO dosage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    Directory of Open Access Journals (Sweden)

    Asif Naeem

    2013-01-01

    Full Text Available In calcareous soils, phosphorus (P retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % for 15 days. Freundlich adsorption isotherms ( were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1 were calculated. It was observed that P adsorption in soil increased with . Moreover, at all the levels of , P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil contents and quantity of fertilizer to other similar textured soils needs confirmation.

  13. Evolution of the soil humus status on the calcareous Neogene clay dumps of the Sokolov quarry complex in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Abakumov, E.V.; Frouz, Jan

    2009-01-01

    Roč. 42, č. 7 (2009), s. 718-724 ISSN 1064-2293 Grant - others:Russian Foundation for Basic Research(XE) 08-04-01128 Institutional research plan: CEZ:AV0Z60660521 Keywords : soil humus status * calcareous Neogene clay dumps * Sokolov quarry complex Subject RIV: EH - Ecology, Behaviour Impact factor: 0.222, year: 2009

  14. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.

    Science.gov (United States)

    Lesage, E; Meers, E; Vervaeke, P; Lamsal, S; Hopgood, M; Tack, F M G; Verloo, M G

    2005-01-01

    High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by most high biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine tetraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0.1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0.01, 0.05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric

  15. Assessment of inceptisols soil quality following long-term cropping in a calcareous environment.

    Science.gov (United States)

    Rezapour, Salar; Samadi, A

    2012-03-01

    The combination of morphological, clay mineralogy, physicochemical, and fertilitical properties of inceptisols were compared for monitoring soil quality response following long-term agricultural activities. For this target, fifty-nine paired surface soils belonging to five subgroups of inceptisols from the major sugar beet growing area and the adjoining virgin lands were described, sampled, and analyzed. The soils were alkaline and calcareous as characterized by high pH, ranging from 7.2 to 8, and calcium carbonate equivalent, ranging from 60 to 300 g kg(-1). Following long-term sugar beet cultivation, morphological properties modifications were reflected as weakening of structure, hardening of consistency, and brightening of soil color. Although, the quantity of clay minerals did not significantly change through long-term cropping, some modifications in the XRD pattern of illite and smectite were observed in the cultivated soils compared to the adjoining virgin lands mainly as a result of potassium depletion. Without significant variation, sand content decreased by 4-55% and silt and clay increased by 3-22% and 2-15%, respectively, in the cultivated soils than to that of the virgin lands. Both negative and positive aspects of soil quality were reflected regarding soil chemical and fertilitical properties and the role of negative effects far exceeded the role of positive effects. Typic calcixerepts was known to be more degraded through a significant decrease (P ≤ 0.001) in mean value of soil organic carbon (a drop of 24%), total N (a drop of 23%), available K (a drop of 42%), exchangeable K (a drop of 45%), potassium adsorption ratio and potassium saturation ratio (a drop of 44% and 42%, respectively) and a significant increase (P ≤ 0.001) in EC (a rise of 53%). Soil quality index, calculated based on nine soil properties [coarse fragments, pH, SOC, total N, ESP, exchangeable cations (Ca, Mg, and K), and available phosphorus], indicated that 60% of the all soil

  16. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    Science.gov (United States)

    Akhtar, Muhammad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC b/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  17. Biological activity of soddy-calcareous soils and cultural layers in Alanian settlements of the Kislovodsk basin

    Science.gov (United States)

    Chernysheva, E. V.; Kashirskaya, N. N.; Korobov, D. S.; Borisov, A. V.

    2014-09-01

    Microbiological investigations of cultural layers were performed in a settlement of the Alanian culture—Podkumskoe-2 (the 2nd-4th centuries AD). The present-day soddy-calcareous soils (rendzinas) used for different purposes were also studied near this settlement. The most significant changes in the initial characteristics of the soil microbial communities occurred under the residential influence more than 1500 years ago; these changes have been preserved until the present time. In the areas subjected to the anthropogenic impact, the total microbial biomass (the weighted average of 3720 μg C/g soil) was lower than that in the background soil. The minimal values of the microbial biomass were found in the soil of the pasture—2.5 times less than in the background soil. The urease activity of the cultural layer was higher than that of the soils nearby the settlement. Elevated values of the cellulose activity were also recorded only in the cultural layers. The current plowing has led to a significant decrease in the mycelium biomass of the microscopic fungi. In the soil of the fallow, the weighted average value of the fungal hyphae biomass along the profile was twice lower than that in the background soil and cultural layers of the settlement. The pasture first affected the active microbial biomass and, to a lesser extent, the amount of microscopic fungi.

  18. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment.

    Science.gov (United States)

    Wang, Yangyang; Li, Fangfang; Song, Jian; Xiao, Ruiyang; Luo, Lin; Yang, Zhihui; Chai, Liyuan

    2018-04-12

    Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

  19. Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock

    Directory of Open Access Journals (Sweden)

    P. A. Nauer

    2012-06-01

    Full Text Available The global methane (CH4 cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB, but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize the MOB community by sequencing and terminal restriction fragment length polymorphism (T-RFLP analysis of pmoA. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ~1–2 μL L−1 with soil-atmosphere CH4 fluxes of –0.14 to –1.1 mg m−2 d−1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ~2–10 μL L−1 , most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μL L−1. Remarkably, most soils oxidized ~90 % of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m−2 d−1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 operational taxonomic units (OTUs at the species level and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ. The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. Members of Upland Soil

  20. Phosphorus status and sorption characteristics of some calcareous soils of Hamadan, western Iran

    Science.gov (United States)

    Jalali, Mohsen

    2007-10-01

    Phosphorus (P) application in excess of plant requirement may result in contamination of drinking water and eutrophication of surface water bodies. The phosphorous buffer capacity (PBC) of soil is important in plant nutrition and is an important soil property in the determination of the P release potential of soils. Phosphorus sorption greatly affects both plant nutrition and environmental pollution. For better and accurate P fertilizer recommendations, it is necessary to quantify P sorption. This study was conducted to investigate available P and P sorption by calcareous soils in a semi-arid region of Hamadan, western Iran. The soil samples were mainly from cultivated land. Olsen’s biocarbonate extractable P (Olsen P) varied among soils and ranged from 10 to 80 mg kg-1 with a mean of 36 mg kg-1. Half of the soils had an Olsen P > 40 mg kg-1 and >70% of them had a concentration >20 mg kg-1, whereas the critical concentration for most crops is potato (44 kg kg-1) fields than in dry-land wheat farming (24 mg kg-1), pasture (30 mg kg-1), and wheat (24 mg P kg-1) fields. A marked increase in fertilizer P rates applied to agricultural soils has caused P to be accumulated in the surface soil. Phosphate sorption curves were well fitted to the Freundlich equation. The standard P requirement (SPR) of soils, defined as the amount of P sorbed at an equilibrium concentration of 0.2 mg l-1 ranged from 4 to 102 mg kg-1. Phosphorus buffer capacity was relatively high and varied from 16 to 123 l kg-1 with an average of 58 l kg-1. In areas of intensive crop production, continual P applications as P fertilizer and farmyard manure have been used at levels exceeding crop requirements. Surface soil accumulations of P are high enough that loss of P in surface runoff and a high risk for P transfer into groundwater have become priority management concerns.

  1. Aspects of land application of sewage solids and gamma-irradiated dried sewage solids on calcareous soils

    International Nuclear Information System (INIS)

    McCaslin, B.D.; O'Connor, G.A.; Sivinski, J.S.

    1980-01-01

    One of the cheapest and generally most convenient methods of disposing of sewage sludge is by land application. The greatest risks of land application are potential contamination of the environment by heavy metals, other toxicants, and pathogens. Irradiation of sewage sludge has been shown to have little or no effect on sludge elements available to plants, and can remove the potential pathogen problem. Work at New Mexico State University has shown that, with little risk, gamma-irradiated sewage sludge can be used to great advantage for crop production, especially on highly calcareous soils low in heavy metals essential for plant growth

  2. Effect of four acidifying materials added to a calcareous soil on the availability of phosphorus to ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Sen Gupta, M B; Cornfield, A H

    1964-12-01

    Ryegrass was grown in a pot test using a calcareous soil (0.36% calcium carbonate) treated with sulfur, ammonium sulfate, ferrous sulfate, and aluminium sulfate at 0.1% sulfur-equivalent, with potassium nitrate added where necessary, including the control, to equalize nitrogen supply. The sulfur treatment was the only one which significantly increased dry matter yields, total phosphorus uptake and top/root ratios in dry matter yields and total phosphorus. The ammonium sulfate, ferrous sulfate, and aluminium sulfate treatments significantly reduced top/root ratios in dry-matter yields and total phosphorus. 6 references, 1 table.

  3. A study on zinc distribution in calcareous soils for cowpea (Vigna Unguiculata L.) and barely ( Hordeum Vulgare L.)

    Science.gov (United States)

    Boroomand, Naser; Maleki, Mohammad Reza

    2010-05-01

    Compared to other cereals, such as wheat and barley cultivars which have low sensitivity to Zn deficiency, cowpea is sensitive to zinc (Zn) deficiency, however it extensively grows even in soils with deficient in Zn. A 8-week greenhouse experiment was conducted to study the response of cowpea and barely to Zn in calcareous soils with different DTPA- Zn. The soil samples were taken from soil surface up to 0.3 m in which their DTPA- Zn ranged from 0.5 to 3.5 mg kg-1. Shoot dry matter, concentration and uptake of Zn were found to be significantly correlated with soil DTPA- Zn in cowpea and barely. Critical deficiency level of Zn in cowpea was 1.3 mg kg-1 in soil and 28.5 mg kg-1 in shoot dry matter, however, to barely symptoms of Zn deficiency was not observed and concentration of Zn was higher than the critical level reported in literatures. Organic carbon (OC), calcium carbonate equivalent (CCE), pH and field capacity soil moisture content(FC) were significantly correlated with plant responses to Zn which were the most influenced characteristics to Zn uptake by plants.

  4. Origin and Distribution of Methane Entrapped in Calcareous Alpine Proglacial Soil

    Science.gov (United States)

    Zhu, Biqing; Schroth, Martin H.; Henneberger, Ruth; Kübler, Manuel; Zeyer, Josef

    2017-04-01

    Methane (CH4) is an important greenhouse gas. The atmospheric methane concentration has been increasing in recent years, which is caused by imbalance between sources and sinks. Methane has been recently discovered to be entrapped in calcareous Swiss Alpine proglacial soil. This CH4 can be released upon mechanical impact and acidification. However, the amount, distribution and environmental fate of this entrapped CH4 in proglacial environment remain unknown. The entrapped CH4 in proglacial soil may be of modern or ancient origin. Modern origin includes ongoing or recent microbial CH4 production (methanogenesis) in subglacial or proglacial environments. An ancient origin mainly refers to CH4 produced thermogenically. This soil entrapped CH4 might be a common phenomenon along the entire glacial forefield, or it might only be present at few locations and depth. We present results of studies from two Swiss Alpine Glacier catchments, Wildstrubel Glacier (Canton Valais) and the Griessfirn Glacier (Canton Uri). Our main goals were 1) to assess the origin of CH4 entrapped in various glacial environments (subglacial, proglacial and supraglacial, soil and bedrocks) using geochemical and microbiological evidence; 2) to assess the spatial distribution of entrapped CH4. We performed geochemical analysis (CH4 content, gas wetness ([C1]/[C2-C3] alkane ratio), CH4 stable 13C- and 2H-isotopes, TOC) on subglacial, proglacial, and supraglacial soil samples collected from well-aerated and water-logged locations. Geochemical analysis was also selectively conducted on pore-water samples and on rock samples collected from different geological formations along the catchments. We also performed batch incubations on soil samples collected from subglacial, proglacial water-logged and supraglacial zones. In addition, for the aforementioned three types of samples, we also performed molecular analyses targeting the mcrA gene, which encodes the α-subunit of the enzyme methyl-coenzyme M reductase

  5. Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils

    Energy Technology Data Exchange (ETDEWEB)

    Ylivainio, Kari, E-mail: kari.ylivainio@mtt.f [Department of Applied Chemistry and Microbiology, FIN-00014 University of Helsinki (Finland)

    2010-10-15

    In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg{sup -1}). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. - When correcting Fe chlorosis Fe-EDDS causes lower environmental concern than Fe-EDTA.

  6. Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils

    International Nuclear Information System (INIS)

    Ylivainio, Kari

    2010-01-01

    In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg -1 ). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. - When correcting Fe chlorosis Fe-EDDS causes lower environmental concern than Fe-EDTA.

  7. Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils.

    Science.gov (United States)

    Ylivainio, Kari

    2010-10-01

    In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg(-1)). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Liquefaction resistance of calcareous sands

    International Nuclear Information System (INIS)

    Sandoval Vallejo, Eimar

    2012-01-01

    Calcareous sands are unique in terms of their origin, mineralogy, shape, fragility and intra particle porosity. This article presents results from an experimental program carried out to study the liquefaction resistance of a calcareous sand retrieved from Cabo Rojo at Puerto Rico. The experimental program included mineralogical characterization, index properties, and undrained cyclic triaxial tests on isotropically consolidated reconstituted samples. Due to the large variation in the calcareous sand properties, results are compared with previous researches carried out on other calcareous sands around the world. Results showed a wide range in the liquefaction resistance of the studied calcareous sands. Cabo Rojo sand experienced greater liquefaction resistance than most of the calcareous sands used for comparison. Important differences in the excess pore pressure generation characteristics were also found.

  9. Electrodialytic Soil Remediation. Improved conditions and acceleration of the process by addition of desorbing agents to the soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik; Hansen, Lene

    1998-01-01

    The principel of electrodialytic soil remediation was improved when ammonia was added to a calcareous copper polluted soil......The principel of electrodialytic soil remediation was improved when ammonia was added to a calcareous copper polluted soil...

  10. Zinc and Copper Release Kinetics in a Calcareous Soil amended with Manure and Vermicompost

    Directory of Open Access Journals (Sweden)

    hamid reza motaghian

    2017-02-01

    Full Text Available Introduction: Use of organic fertilizers such as vermicompost in agricultural soils with low organic matter content is almost considered as a one way for adding nutrients in these soils. However, application of these fertilizers may affect micronutrient release characteristics. Micronutrient release Kinetics in soils especially in amended soils give information about potential of amended soils to release these elements into solution. Although it is important to study kinetics of micronutrient release from soils to identify soil micronutrients buffering capacity, little attention has been paid to micronutrients desorption rate studies especially in amended soils. The rate of release micronutrients from soil solid phase by considering micronutrients as adsorbed ions or in mineral forms is an important parameter in nutrition of plants by microelements and a dynamic factor that regulates its continuous supply to growing plants; nonetheless, little attention has been paid to micronutrients kinetics inrelease studies. Material and Methods: In this study, kinetics of zinc (Zn and copper (Cu were compared in one calcareous soil amended with 0, 0.5, and 1% (w/w of manure and vermicompost in a completely randomized design and then amended and un-amended soils were incubated at field capacity, for 30 days. After incubation period, amended and un-amended soils were air-dried and were prepared to kinetics study. Kinetics of Zn and Cu release were studied by successive extraction with DTPA-TEA solution. Two grams of the amended and un-amended soils, in triplicate, suspended in 20 ml DTPA-TEA solution were equilibrated at 25±10C for 1, 8, 24, 48, 72, 96, 120, 144, 168, 336 and 504 h by shaking for 15 min. before incubation and 15 min. before the suspensions were centrifuged. Seven drops of toluene were added to each 1000 ml of extractant to inhibit microbial activity. Zinc and copper desorption with time was fitted by using different equations (Zero

  11. The impact of oscillating redox conditions: Arsenic immobilisation in contaminated calcareous floodplain soils

    International Nuclear Information System (INIS)

    Parsons, Christopher T.; Couture, Raoul-Marie; Omoregie, Enoma O.; Bardelli, Fabrizio; Greneche, Jean-Marc; Roman-Ross, Gabriela; Charlet, Laurent

    2013-01-01

    Arsenic contamination of floodplain soils is extensive and additional fresh arsenic inputs to the pedosphere from human activities are ongoing. We investigate the cumulative effects of repetitive soil redox cycles, which occur naturally during flooding and draining, on a calcareous fluvisol, the native microbial community and arsenic mobility following a simulated contamination event. We show through bioreactor experiments, spectroscopic techniques and modelling that repetitive redox cycling can decrease arsenic mobility during reducing conditions by up to 45%. Phylogenetic and functional analyses of the microbial community indicate that iron cycling is a key driver of observed changes to solution chemistry. We discuss probable mechanisms responsible for the arsenic immobilisation observed in-situ. The proposed mechanisms include, decreased heterotrophic iron reduction due to the depletion of labile particulate organic matter (POM), increases to the proportion of co-precipitated vs. aqueous or sorbed arsenic with α-FeOOH/Fe(OH) 3 and potential precipitation of amorphous ferric arsenate. Highlights: •Oscillating redox conditions and heterotrophic metabolism are implemented in PHREEQC. •Depletion of labile organic matter limits iron reduction and arsenic release. •Amorphous FeAsO 4 ∙2H 2 O precipitation potentially limits arsenic mobility during redox cycling. •Water fluctuating zones may naturally attenuate arsenic liberation during flooding. -- We demonstrate through batch experiments, spectroscopy and modelling that repetitive cycles of oxidation and reduction decrease arsenic mobility in soils during subsequent reducing conditions

  12. Efficiency of a new strategy involving a new class of natural hetero-ligand iron(III) chelates (Fe(III)-NHL) to improve fruit tree growth in alkaline/calcareous soils.

    Science.gov (United States)

    Fuentes, Marta; Ortuño, María F; Pérez-Sarmiento, Francisco; Bacaicoa, Eva; Baigorri, Roberto; Conejero, Wenceslao; Torrecillas, Arturo; García-Mina, José M

    2012-12-01

    Iron (Fe) chlorosis is a serious problem affecting the yield and quality of numerous crops and fruit trees cultivated in alkaline/calcareous soils. This paper describes the efficiency of a new class of natural hetero-ligand Fe(III) chelates (Fe-NHL) to provide available Fe for chlorotic lemon trees grown in alkaline/calcareous soils. These chelates involve the participation in the reaction system of a partially humified lignin-based natural polymer and citric acid. First results showed that Fe-NHL was adsorbed on the soil matrix while maintaining available Fe for plants in alkaline/calcareous solution. The effects of using three different sources as Fe fertilisers were also compared: two Fe-NHL formulations (NHL1, containing 100% of Fe as Fe-NHL, and NHL2, containing 80% of Fe as Fe-NHL and 20% of Fe as Fe-ethylenediamine-N,N'-bis-(o-hydroxyphenylacetic) acid (Fe-EDDHA)) and Fe-EDDHA. Both Fe-NHL formulations increased fruit yield without negative effects on fruit quality in comparison with Fe-EDDHA. In the absence of the Fe-starter fraction (NHL1), trees seemed to optimise Fe assimilation and translocation from Fe-NHL, directing it to those parts of the plant more involved in development. The field assays confirmed that Fe-NHL-based fertilisers are able to provide Fe to chlorotic trees, with results comparable to Fe-EDDHA. Besides, this would imply a more sustainable and less expensive remediation than synthetic chelates. Copyright © 2012 Society of Chemical Industry.

  13. Physical and microbiological properties of alluvial calcareous Çumra province soils (Central Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Ahmet Sami Erol

    2015-04-01

    Full Text Available Alluvial calcareous soils in Central Anatolia (Konya province, Çumra district has a heavy granulometric composition (average clay, low organic carbon content (less than 1%, but stable pore space structure and favorable agrophysical properties. Studies of the water regime in drip irrigation confirm favorable hydrological properties of these soils. It is assumed that the favorable structure of the pore space due to vigorous activity a large and diverse soil biota. Four phyla dominate in soil biota, among which predominate Actinobacteria. The higher (Streptomyces, and lower (three species Rhodococcus actinobacteria are predominant in large amounts as a part of this phyla. Large biodiversity at a sufficiently high bacteria richness formed the structure of the microbial community that contribute to the balanced production of specific metabolites, including gases (CO2, N2, which allows the soil to function actively, preventing compaction of the pore space and maintaining optimal density, porosity, hydrologic properties of the studied silty clay soils. m the uppermost soil horizons. Analyses of heavy mineral fraction show presence of metamorphic and igneous minerals which indicate participation of weathering products from other rock types in the nearby area. The types of heavy minerals in soils depend more on composition of parent rocks and geomorphic position than on climate type. Soils from Nova Lovcha show similar composition, but the quantity of goethite and hematite significantly increase in soil from plain. Typical high-metamorphic minerals as andalusite, kyanite and sillimanite present only in Nova Lovcha, while garnet dominates in Petrovo and opaque minerals - in Dobrostan. Red soils, formed on slopes, where erosion prevails over accumulation, contain more illite, smectite and vermiculite-smectite, and very few or no kaolinite, whereas the kaolinite is dominant in soils formed on plain. The mineralogical composition of clays in different

  14. Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils

    Energy Technology Data Exchange (ETDEWEB)

    Jacquat, Olivier; Voegelin, Andreas; Villard, Andre; Marcus, Matthew A.; Kretzschmar, Ruben

    2007-10-15

    Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2 to 7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322 to 30090 mg/kg Zn). Based on 12 bulk and 23 microfocused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from {approx}20% to {approx}80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn ({approx}30% to {approx}80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1 M NH{sub 4}NO{sub 3} followed by 1 M NH{sub 4}-acetate at pH 6.0. Even though the formation of Zn precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited.

  15. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  16. Phosphorus reduces the zinc concentration in cereals pot-grown on calcareous Vertisols from southern Spain.

    Science.gov (United States)

    Sánchez-Rodríguez, Antonio Rafael; Del Campillo, María Carmen; Torrent, José

    2017-08-01

    Zinc deficiency, a major problem in crops grown on soils low in available Zn, is even more important in phosphorus-rich soils. This work aimed to elucidate the effects of soil P and Zn levels, and of fertilizer application, on yield and Zn concentration in cereal grains. Wheat and barley were successively pot-grown on 20 calcareous Vertisols low in available Zn and ranging widely in available P. Grain yield in the plants grown on the native soils was positively correlated with Olsen P but not with diethylenetriaminepentaacetic acid (DTPA)-extractable Zn except for wheat on P-rich soils. Grain Zn concentration was negatively correlated with Olsen P. Grain Zn uptake differed little among soils. Application of P to the soils increased grain yield insignificantly and P concentration significantly; however, it reduced grain Zn concentration (particularly at low Olsen P values). Applying Zn alone only increased grain Zn concentration, whereas applying P and Zn in combination increased yield and grain Zn concentration at low and high Olsen P values, respectively. Applying P alone to plants grown on calcareous Vertisols low in available P and Zn may in practice reduce grain Zn concentrations while not increasing grain yield significantly. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. DRY CALCAREOUS GRASSLAND COMMUNITIES (FILIPENDULA VULGARIS-HELICTOTRICHON PRATENSE IN WESTERN AND CENTRAL LATVIA

    Directory of Open Access Journals (Sweden)

    S. RUSINA

    2003-06-01

    Full Text Available The dry calcareous grassland vegetation of Westem and Central Latvia is described based on 93 rclevés, Ali relevés could be assigned to one community type Filipendula vulgaris-Helictotrichon pratense named according to dominant species. Four variants were distinguished: typicum, Viscaria vulgaris, Astragalus danicus and Carex flacca. Ellenberg indìcator values were calculated to study the ecology of communities. Floristic differences among variants are associated mainly with soil reaction (Ellenberg indicator values for soil pH range from 6.0 to 7.6, but conditions of moisture and fertility are similar among the variants. The calcareous grassland vegetation in Latvia represents transition vegetation between the c1asses Molinio-Arrhenatheretea and Festuco-Brometea. However, ecologically and floristically, these communities are closer to the class Festuco-Brometea and could be assigned to the order Brometalia. For designation to alliance and associations, more data is required. The results are compared with similar communities in other European countries.

  18. Effects of zinc complexes on the distribution of zinc in calcareous soil and zinc uptake by maize.

    Science.gov (United States)

    Alvarez, José M; Rico, María I

    2003-09-10

    The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.

  19. Behaviour Of Saline Irrigation Water Components In Pakistani Barley And Calcareous Soil Under Scheduling Irrigation Using Neutron Scattering Technique

    International Nuclear Information System (INIS)

    RIZK, M.A.

    2010-01-01

    This study aims to investigate the behaviour of cation uptake by Pakistani barley (genotype PK-30163) as affected by saline irrigation water, as well as cation distribution within the soil profile. This experiment was carried out at Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt. The soil was transferred from Wadi Sudr (South Sinai, Egypt). It is salted affected soil (calcareous soil, EC = 4.3 dS/m) and was irrigated using ground water irrigation (12.5 dS/m). Nine used lysimeters were irrigated with three artificial saline water (0.3, 4 and 8 dS/m) using drip irrigation system. The irrigation schedule was carried out using neutron scattering technique according to the hydro physical properties of the soil. Pakistani barley (halophytic plant) was used to remove salts from the soil especially sodium cations. The cation uptake and cation distribution (Na, K, Ca, Mg) within the soil profile were studied.The data indicated that roots of barley collected within 0-15 cm layer showed high cation uptake that made the salt concentrations in this layer low. Sodium uptake ratio was 43, 37 and 47% from total cation uptake by using fresh water (0.3 dS/m), 4 and 8 dS/m, respectively. The maximum uptake for Na, K, Ca and Mg was 20.51, 19.13, 3.98 and 12.81 g/lys at 5.69, 3.05, 6.56 and 4.15 dS/m, respectively. It was found that Pakistani barley preferred Mg uptake rather than Ca uptake.

  20. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.

    Science.gov (United States)

    Jalali, Mohsen; Khanlari, Zahra V

    2007-11-01

    Effect of ethylene diamine tetraacetic acid (EDTA) on the fractionation of zinc (Zn), cadmium (Cd), nickel (Ni), copper (Cu), and lead (Pb) in contaminated calcareous soils was investigated. Soil samples containing variable levels of contamination, from 105.9 to 5803 mg/kg Zn, from 2.2 to 1361 mg/kg Cd, from 31 to 64.0 mg/kg Ni, from 24 to 84 mg/kg Cu, and from 109 to 24,850 mg/kg Pb, were subjected to EDTA treatment at different dosages of 0, 1.0, and 2.0 g/kg. Metals in the incubated soils were fractionated after 5 months by a sequential extraction procedure, in which the metal fractions were experimentally defined as exchangeable (EXCH), carbonate (CARB), Mn oxide (MNO), Fe oxide (FEO), organic matter (OM), and residual (RES) fractions. In contaminated soils without EDTA addition, Zn, Ni, Cu, and Pb were predominately present in the RES fraction, up to 60.0%, 32.3%, 41.1%, and 36.8%, respectively. In general, with the EDTA addition, the EXCH and CARB fractions of these metals increased dramatically while the OM fraction decreased. The Zn, Ni, Cu, and Pb were distributed mostly in RES, OM, FEO, and CARB fractions in contaminated soils, but Cd was found predominately in the CARB, MNO, and RES fractions. The OM fraction decreased with increasing amounts of EDTA. In the contaminated soils, EDTA removed some Pb, Zn, Cu, and Ni from MNO, FEO, and OM fractions and redistributed them into CARB and EXCH fractions. Based on the relative percent in the EXCH and CARB fractions, the order of solubility was Cd > Pb > Ni > Cu > Zn for contaminated soils, before adding of EDTA, and after adding of EDTA, the order of solubility was Pb > Cd > Zn > Ni > Cu. The risk of groundwater contamination will increase after applying EDTA and it needed to be used very carefully.

  1. Phases and rates of iron and magnetism changes during paddy soil development on calcareous marine sediment and acid Quaternary red-clay.

    Science.gov (United States)

    Huang, Laiming; Jia, Xiaoxu; Shao, Ming'an; Chen, Liumei; Han, Guangzhong; Zhang, Ganlin

    2018-01-11

    Dynamic changes in Fe oxides and magnetic properties during natural pedogenesis are well documented, but variations and controls of Fe and magnetism changes during anthropedogenesis of paddy soils strongly affected by human activities remain poorly understood. We investigated temporal changes in different Fe pools and magnetic parameters in soil profiles from two contrasting paddy soil chronosequences developed on calcareous marine sediment and acid Quaternary red clay in Southern China to understand the directions, phases and rates of Fe and magnetism evolution in Anthrosols. Results showed that paddy soil evolution under the influence of artificial submergence and drainage caused changes in soil moisture regimes and redox conditions with both time and depth that controlled Fe transport and redistribution, leading to increasing profile differentiation of Fe oxides, rapid decrease of magnetic parameters, and formation of diagnostic horizons and features, irrespective of the different parent materials. However, the initial parent material characteristics (pH, Fe content and composition, weathering degree and landscape positions) exerted a strong influence on the rates and trajectories of Fe oxides evolution as well as the phases and rates of magnetism changes. This influence diminished with time as prolonged rice cultivation drove paddy soil evolving to common pedogenic features.

  2. Leaching of radiostrontium in undisturbed columns of calcareous alluvial soil as affected by level of activity applied and rate of high calcium water of Tigris river

    International Nuclear Information System (INIS)

    Fahad, A.A.; Razaq, I.B.; Ali, A.W.

    1986-01-01

    Leaching of 85 Sr in calcareous alluvial medium textured soil was undertaken for 126 days. Radiostrontium in three levels of 4.62(L1), 9.25(L2), and 18.50(L3) MBq column -1 was applied to undisturbed soil columns, 110cm long and 12cm inner diameter. Irrigation water of Tigris river was used as a leaching solution supplied automatically in 1.4, 2.0, and 3.0cm day -1 by rain simulator systems. Gamma radiation along the soil columns was scanned periodically during the course of leaching. Leaching of Sr from the surface layer was in two stages. The first stage covered the first 22 days and the second included the following 104 days. Strontium retained (y) as a function of time (x) fitted reasonably well (r>0.96) to the equations y=a+mlnx and lny=a+mx for the first and the second stage, respectively. Tigris river irrigation water was found as effective as the dilute Ca solution (proposed by some investigators) in displacing Sr. The leaching with 3.0cm day -1 for 126 days resulted in 23, 23, and 21 per cent of total Sr remaining in the upper 5 cm of soil columns under L1, L2 and L3, respectively. However, the area under the distribution curves followed the ratio 1.0:2.4:3.7 under L1, L2, and L3, respectively. The pattern of Sr distribution in calcareous alluvial soil depended not only on the rate and amount of water application but also on the level of Sr applied. Although the soil columns were leached with 378 cm of water for 126 days, the Sr front did not pass the 30 cm depth. This finding indicates the high retention of this soil for Sr and the potential hazard of radiostrontium arising from its existence in the layer of maximum root density. (author). 18 refs., 2 figures, 2 tables

  3. AE Test of Calcareous Sands with Particle Rushing

    Directory of Open Access Journals (Sweden)

    Tan Fengyi

    2017-08-01

    Full Text Available The particle of calcareous sands was forced to crush, then the energy from the crushing was released by the form of sound waves. Therefore the AE technique was used to detect the calcareous sands AE signal when it crushed. by to study the AE characteristics, the mechanics of calcareous sands was studied. Study showed that: (1 there was the AE activities on the low confining pressure condition at the beginnig of test, (2 there was more and more AE activities with the continuing of test until to the end, (3 the calcareous sands’ AE activities was on the whole testing, (4 the calcareous sands’ particle crushing and mutual friction played different roles for its AE activities. Then the AE model based on the calcarous sands’ particle crushing was discussed.

  4. The influence of soil type at Cs-137-spreading in soil depth

    International Nuclear Information System (INIS)

    Tyrpanova, Kh.; Jordanova, I.

    1995-01-01

    The distribution of Cs-137 in soil depth up to 15 cm was examined for four types of soil - leached black earth, calcareous black earth, brown forest soil and slightly leached humus-calcareous soil. The behaviour of Cs-137 before and after Chernobyl accident depending on soil type was determined using Cs-134. Accounting for halftime effect of Cs-134 it was possible to distinguish the penetration of the Chernobyl Cs-137 from that of the older one. The same degree of penetration has been achieved: for 30 years for the old Cs-137 and only for a year for the Chernobyl one probably due to its modification. The most expressed tendency to penetrate in depth has been observed at the calcareous black earth (from Kozloduy region, with highest pH value and basis content), the least - at the brown forest soil (from Smolyan region, lowest pH value and basis content). The mineral composition and organic matter content influence the penetration process. The humus matter absorbs Cs-137. Thus it is accessible to the plants, but its penetration is limited to 2.5 cm. 9 refs., 2 tabs. (author)

  5. Effects of nitrogen and phosphorus fertilizer on crop yields in a field pea-spring wheat-potato rotation system with calcareous soil in semi-arid environments

    Directory of Open Access Journals (Sweden)

    Chang-An Liu

    2016-06-01

    Full Text Available The object of the present study was to investigate the yield-affecting mechanisms influenced by N and P applications in rainfed areas with calcareous soil. The experimental treatments were as follows: NF (no fertilizer, N (nitrogen, P (phosphorus, and NP (nitrogen plus phosphorus in a field pea-spring wheat-potato cropping system. This study was conducted over six years (2003-2008 on China’s semi-arid Loess Plateau. The fertilizer treatments were found to decrease the soil water content more than the NF treatment in each of the growing seasons. The annual average yields of the field pea crops during the entire experimental period were 635, 677, 858, and 1117 kg/ha for the NF, N, P, and NP treatments, respectively. The annual average yields were 673, 547, 966, and 1056 kg/ha for the spring wheat crops for the NF, N, P, and NP treatments, respectively. Also, the annual average yields were 1476, 2120, 1480, and 2424 kg/ha for the potato crops for the NF, N, P, and NP treatments, respectively. In the second cycle of the three-year rotation, the pea and spring wheat yields in the P treatment were 1.2 and 2.8 times higher than that in the N treatment, respectively. Meanwhile, the potato crop yield in the N treatment was 3.1 times higher than that in the P treatment. In conclusion, the P fertilizer was found to increase the yields of the field pea and wheat crops, and the N fertilizer increased the potato crop yield in rainfed areas with calcareous soil.

  6. Effects of nitrogen and phosphorus fertilizer on crop yields in a field pea-spring wheat-potato rotation system with calcareous soil in semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.A.; Zhang, S.; Hua, S.; Rao, X.

    2016-11-01

    The object of the present study was to investigate the yield-affecting mechanisms influenced by N and P applications in rainfed areas with calcareous soil. The experimental treatments were as follows: NF (no fertilizer), N (nitrogen), P (phosphorus), and NP (nitrogen plus phosphorus) in a field pea-spring wheat-potato cropping system. This study was conducted over six years (2003-2008) on China’s semi-arid Loess Plateau. The fertilizer treatments were found to decrease the soil water content more than the NF treatment in each of the growing seasons. The annual average yields of the field pea crops during the entire experimental period were 635, 677, 858, and 1117 kg/ha for the NF, N, P, and NP treatments, respectively. The annual average yields were 673, 547, 966, and 1056 kg/ha for the spring wheat crops for the NF, N, P, and NP treatments, respectively. Also, the annual average yields were 1476, 2120, 1480, and 2424 kg/ha for the potato crops for the NF, N, P, and NP treatments, respectively. In the second cycle of the three-year rotation, the pea and spring wheat yields in the P treatment were 1.2 and 2.8 times higher than that in the N treatment, respectively. Meanwhile, the potato crop yield in the N treatment was 3.1 times higher than that in the P treatment. In conclusion, the P fertilizer was found to increase the yields of the field pea and wheat crops, and the N fertilizer increased the potato crop yield in rainfed areas with calcareous soil. (Author)

  7. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    Science.gov (United States)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  8. Integrated management in calcareous soils

    International Nuclear Information System (INIS)

    Castilla, Luis A; Salive, A

    2001-01-01

    Rice growing is developed in different kinds of soils, and some of the have high bases saturation, especially calcium and magnesium, as well as medium to high carbonate contents. This causes negative effects in the development and growth of the rice plant. As a consequence, several researching actions have been under-taken, and they are aimed at becoming this problem in economically manageable. Among the strategies we have, some of them are as follows: evaluating rice varieties presenting tolerance to these soils; using inorganic fertilizers looking for a response to elements, sources, dose and application times; evaluating organic fertilizers, mainly the green ones; using amendments, and physical soil management. According to the results, we have the fertilization response with major and minor elements and with the statistical differences at a 0.05% level. A response was found with elements such as zinc, copper, boron, iron, phosphorus and potassium. However, the efficiency of these elements depends on the addition of amendments as sulfur, the use of green fertilizers and farming systems that eliminate the superficial compaction of these soils, besides the use of varieties which are more tolerant to alkalinity, just like Fedearroz-50

  9. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management.

    Science.gov (United States)

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-08

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha -1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  10. Effect of phosphorus and zinc on growth and their uptake in hybrid maize grown in a calcareous alluvial soil

    International Nuclear Information System (INIS)

    Parik, B.L.; Santikari, A.K.; Das, S.K.; Chowdhury, B.

    1977-01-01

    Hybrid maize (Zea mays L., var. Ganga 101) was grown in glasshouse at different levels of phosphorus with and without zinc, in a calcareous alluvial soil of North Bihar. Phosphorus was applied at 0, 11, 22, 44 and 88 ppm as tagged P in single superphosphats. Zinc was applied at 0 and 10 ppm as 65 ZnCl 2 . Application of phosphorus and zinc significantly increased the dry matter yield up to P 44 . Higher dose of P resulted in depressed growth accompanied by decreased zinc concentration and uptake by plants, exhibiting zinc deficiency symptoms. Higher levels of P and Zn increased their concentrations in the plant, but their total uptake was reduced at P 88 . With higher levels of P the percent utilization of fertilizer P decreased, while in zinc treated soils uptake of fertilizer P increased. Percent utilization of added zinc increased with increase in P levels upto P 44 and decreased thereafter, although at this level of P a greater percentage of zinc was derived from the fertilizer. (author)

  11. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate

    International Nuclear Information System (INIS)

    Clough, A.; Skjemstad, J.O.

    2000-01-01

    The amount of organic carbon physically protected by entrapment within aggregates and through polyvalent cation organic matter bridging was determined on non-calcareous and calcareous soils. The composition of organic carbon in whole soils and 13 C NMR analysis. High energy photo-oxidation was carried out on <53 μm fractions and results from the NMR spectra showed 17-40% of organic carbon was in a condensed aromatic form, most likely charcoal (char). The concept that organic material remaining after photo-oxidation may be physically protected within aggregates was investigated by treating soils with a mild acid prior to photo-oxidation. More organic material was protected in the calcareous than the non-calcareous soils, regardless of whether the calcium occurred naturally or was an amendment. Acid treatment indicated that the presence of exchangeable calcium reduced losses of organic material upon photo-oxidation by about 7% due to calcium bridging. These results have implications for N fertiliser recommendations based upon organic carbon content. Firstly, calcium does not impact upon degradability of organic material to an extent likely to affect N fertiliser recommendations. Secondly, standard assessment techniques overestimate active organic carbon content in soils with high char content. Copyright (2000) CSIRO Publishing

  12. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    Science.gov (United States)

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates.

    Directory of Open Access Journals (Sweden)

    Silvia Raya-Díaz

    Full Text Available Although entomopathogenic fungi (EPF are best known for their ability to protect crops against insect pests, they may have other beneficial effects on their host plants. These effects, which include promoting plant growth and conferring resistance against abiotic stresses, have been examined in recent years to acquire a better understanding of them. The primary purposes of the present study were (i to ascertain in vitro whether three different strains of EPF (viz., Metarhizium, Beauveria and Isaria would increase the Fe bioavailability in calcareous or non-calcareous media containing various Fe sources (ferrihydrite, hematite and goethite and (ii to assess the influence of the EPF inoculation method (seed dressing, soil treatment or leaf spraying on the extent of the endophytic colonization of sorghum and the improvement in the Fe nutrition of pot-grown sorghum plants on an artificial calcareous substrate. All the EPFs studied were found to increase the Fe availability during the in vitro assay. The most efficient EPF was M. brunneum EAMa 01/58-Su, which lowered the pH of the calcareous medium, suggesting that it used a different strategy (organic acid release than the other two fungi that raised the pH of the non-calcareous medium. The three methods used to inoculate sorghum plants with B. bassiana and M. brunneum in the pot experiment led to differences in re-isolation from plant tissues and in the plant height. These three inoculation methods increased the leaf chlorophyll content of young leaves when the Fe deficiency symptoms were most apparent in the control plants (without fungal inoculation as well as the Fe content of the above-ground biomass in the plants at the end of the experiment. The total root lengths and fine roots were also increased in response to fungal applications with the three inoculation methods. However, the soil treatment was the most efficient method; thus, its effect on the leaf chlorophyll content was the most

  14. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.

    Science.gov (United States)

    Meers, E; Ruttens, A; Hopgood, M; Lesage, E; Tack, F M G

    2005-10-01

    Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof.

  15. Patellar calcar: MRI appearance of a previously undescribed anatomical entity

    International Nuclear Information System (INIS)

    Collins, Mark S.; Tiegs-Heiden, Christin A.; Stuart, Michael J.

    2014-01-01

    The femoral calcar is a constant anatomical structure within the proximal femur representing a condensation of bone trabeculae. It is our impression that a similar structure is present within the patella. The purpose of this retrospective study was to define the prevalence, appearance, location, and configuration of the patellar calcar on MRI examinations. One hundred consecutive unenhanced knee MRIs were retrospectively reviewed by two readers who were blinded to the clinical indication. The patellar calcar was defined as a dark signaling, linear or curvilinear structure subjacent to the patellar articular surface. If present, the patellar calcar was assigned to a ''well seen,'' ''moderately well seen,'' or ''faintly seen'' category. Location of the calcar within the patella, orientation, configuration, and thickness were recorded. Confounding variables, such as marrow edema, patellar chondromalacia, bipartite patella, or postoperative changes were also recorded. The patellar calcar was visualized in 81 out of 100 (81 %) MRIs. When detected, the calcar was well seen in 20 out of 81 (25 %), moderately well seen in 35 out of 81 (43 %), and faintly seen in 26 out of 81 (32 %). The anteroposterior width of the calcar measured at its thickest segment was: 1 mm in 10 out of 81 (12 %). The patellar calcar was seen in the majority of knee MRIs and had a consistent imaging appearance. The calcar may be obscured by degenerative arthrosis of the patella and rarely may mimic patellar stress fracture or osteochondritis dissecans. Radiologists and clinicians should be familiar with this normal anatomical structure. (orig.)

  16. Patellar calcar: MRI appearance of a previously undescribed anatomical entity

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Mark S.; Tiegs-Heiden, Christin A. [Department of Radiology, Mayo Clinic, Rochester, Minnesota (United States); Stuart, Michael J. [Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota (United States)

    2014-02-15

    The femoral calcar is a constant anatomical structure within the proximal femur representing a condensation of bone trabeculae. It is our impression that a similar structure is present within the patella. The purpose of this retrospective study was to define the prevalence, appearance, location, and configuration of the patellar calcar on MRI examinations. One hundred consecutive unenhanced knee MRIs were retrospectively reviewed by two readers who were blinded to the clinical indication. The patellar calcar was defined as a dark signaling, linear or curvilinear structure subjacent to the patellar articular surface. If present, the patellar calcar was assigned to a ''well seen,'' ''moderately well seen,'' or ''faintly seen'' category. Location of the calcar within the patella, orientation, configuration, and thickness were recorded. Confounding variables, such as marrow edema, patellar chondromalacia, bipartite patella, or postoperative changes were also recorded. The patellar calcar was visualized in 81 out of 100 (81 %) MRIs. When detected, the calcar was well seen in 20 out of 81 (25 %), moderately well seen in 35 out of 81 (43 %), and faintly seen in 26 out of 81 (32 %). The anteroposterior width of the calcar measured at its thickest segment was: < 1 mm in 43 out of 81 (53 %), 1 mm in 28 out of 81 (35 %), and >1 mm in 10 out of 81 (12 %). The patellar calcar was seen in the majority of knee MRIs and had a consistent imaging appearance. The calcar may be obscured by degenerative arthrosis of the patella and rarely may mimic patellar stress fracture or osteochondritis dissecans. Radiologists and clinicians should be familiar with this normal anatomical structure. (orig.)

  17. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-01-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl_2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl_2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. - Highlights: • Metal availability, desorption, and speciation were tested during phytoextraction. • Metal availability showed an initial sharp decline then a slight change in acid soils. • Metal availability changed little during

  18. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil

    Science.gov (United States)

    Yang, Liuqing; Zhang, Xiaojun; Ju, Xiaotang

    2017-02-01

    The linkage between N2O emissions and the abundance of nitrifier and denitrifier genes is unclear in the intensively managed calcareous fluvo-aquic soils of the North China Plain. We investigated the abundance of bacterial amoA for nitrification and narG, nirS, nirK, and nosZ for denitrification by in situ soil sampling to determine how the abundance of these genes changes instantly during N fertilization events and is related to high N2O emission peaks. We also investigated how long-term incorporated straw and/or manure affect(s) the abundance of these genes based on a seven-year field experiment. The overall results demonstrate that the long-term application of urea-based fertilizer and/or manure significantly enhanced the number of bacterial amoA gene copies leading to high N2O emission peaks after N fertilizer applications. These peaks contributed greatly to the annual N2O emissions in the crop rotation. A significant correlation between annual N2O emissions and narG, nirS, and nirK gene numbers indicates that the abundance of these genes is related to N2O emission under conditions for denitrification, thus partly contributing to the annual N2O emissions. These findings will help to draw up appropriate measures for mitigation of N2O emissions in this ‘hotspot’ region.

  19. Soils developed from marine and moraine deposits on the Billefjord coast, West Spitsbergen

    Science.gov (United States)

    Pereverzev, V. N.

    2012-11-01

    Morphogenetic features of soils developed from noncalcareous and calcareous deposits of the marine and glacial origins on the coasts of Billefjord and Petunia Bay in West Spitsbergen are studied. Grayhumus (soddy) soils develop from noncalcareous deposits; they consist of the AO-AY-C horizons and differ from analogous soils in other locations in a higher bulk content of calcium, a close to neutral reaction, and a relatively high degree of base saturation. Gray-humus residually calcareous soils (AO-AYca-Cca) developed from calcareous deposits have a neutral or slightly alkaline reaction; their exchange complex is almost completely saturated with bases. The soils that developed from both marine and moraine deposits are generally similar in their major genetic features. The profiles of all the soils are not differentiated with respect to the contents of major elements, including oxalate-soluble forms of aluminum and iron. Gley features are also absent in the profiles of these soils.

  20. Facilitated transport of diuron and glyphosate in high copper vineyard soils.

    Science.gov (United States)

    Dousset, Sylvie; Jacobson, Astrid R; Dessogne, Jean-Baptiste; Guichard, Nathalie; Baveye, Philippe C; Andreux, Francis

    2007-12-01

    The fate of organic herbicides applied to agricultural fields may be affected by other soil amendments, such as copper applied as a fungicide. The effect of copper on the leaching of diuron and glyphosate through a granitic and a calcareous soil was studied in the laboratory using sieved-soil columns. Each soil was enriched with copper sulfate to obtain soil copper concentrations of 125, 250, 500, and 1000 mg kg(-1). Glyphosate leaching was influenced by soil pH and copper concentration, whereas diuron leaching was not. In the calcareous soil, glyphosate leaching decreased as copper levels increased from 17 mg kg(-1) (background) to 500 mg kg(-1). In the granitic soil, glyphosate leaching increased as copper levels increased from 34 mg kg(-1) (background) to 500 mg kg(-1). The shapes of the copper elution curves in presence of glyphosate were similar to shapes of the glyphosate curves, suggesting the formation of Cu-glyphosate complexes that leach through the soil. Soil copper concentration does not influence diuron leaching. In contrast, increasing copper concentrations reduces glyphosate leaching through calcareous soils, and conversely, increases glyphosate leaching through granitic soils. Our findings suggest that the risk of groundwater contamination by glyphosate increases in granitic soils with elevated copper concentrations.

  1. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area

    International Nuclear Information System (INIS)

    Chaignon, V.; Sanchez-Neira, I.; Herrmann, P.; Jaillard, B.; Hinsinger, P.

    2003-01-01

    Root Cu concentration is a good indicator of soil Cu bioavailability. - Vineyard soils have been contaminated by Cu as a consequence of the long-term use of Cu salts as fungicides against mildew. This work aimed at identifying which soil parameters were the best related to Cu bioavailability, as assessed by measuring the concentrations of Cu in shoots and roots of tomato cropped (in lab conditions) over a range of 29 (24 calcareous and five acidic) Cu-contaminated topsoils from a vine-growing area (22-398 mg Cu kg -1 ). Copper concentrations in tomato shoots remained in the adequate range and were independent of soil properties and soil Cu content. Conversely, strong, positive correlations were found between root Cu concentration, total soil Cu, EDTA- or K-pyrophosphate-extractable Cu and organic C contents in the 24 calcareous soils, suggesting a prominent role of organic matter in the retention and bioavailability of Cu. Such relations were not observed when including the five acidic soils in the investigated population, suggesting a major pH effect. Root Cu concentration appeared as a much more sensitive indicator of soil Cu bioavailability than shoot Cu concentration. Simple extractions routinely used in soil testing procedures (total and EDTA-extractable Cu) were adequate indicators of Cu bioavailability for the investigated calcareous soils, but not when different soil types were considered (e.g. acidic versus calcareous soils)

  2. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: A 15N tracer study

    International Nuclear Information System (INIS)

    Ju, X.T.; Gao, Q.; Christie, P.; Zhang, F.S.

    2007-01-01

    15 N-labeled nitrate was injected into different depths of an alluvial calcareous soil profile on the North China Plain. Subsequent movement of NO 3 - N and its recovery by deep-rooted maize (Zea mays L.) and shallow-rooted eggplant (Solanum melongena L.) were studied. Under conventional water and nutrient management the mean recoveries of 15 N-labeled nitrate from K 15 NO 3 injected at depths 15, 45, and 75 cm were 22.4, 13.8, and 7.8% by maize and 7.9, 4.9, and 2.7% by eggplant. The recovery rate by maize at each soil depth was significantly higher than by eggplant. The deeper the injection of nitrate the smaller the distance of its downward movement and this corresponded with the movement of soil water during crop growth. Deeper rooting crops with high root length density and high water consumption may therefore be grown to utilize high concentrations of residual nitrate in the subsoil from previous intensive cropping and to protect the environment. - Deep-rooted crops have a greater capacity than shallow-rooted crops to intercept residual nitrate from the subsoil and restrict its movement down to the shallow groundwater

  3. Relationships between nutrient composition of flowers and fruit quality in orange trees grown in calcareous soil.

    Science.gov (United States)

    Pestana, Maribela; Beja, Pedro; Correia, Pedro José; de Varennes, Amarilis; Faria, Eugénio Araújo

    2005-06-01

    To determine if flower nutrient composition can be used to predict fruit quality, a field experiment was conducted over three seasons (1996-1999) in a commercial orange orchard (Citrus sinensis (L.) Osbeck cv. 'Valencia Late', budded on Troyer citrange rootstock) established on a calcareous soil in southern Portugal. Flowers were collected from 20 trees during full bloom in April and their nutrient composition determined, and fruits were harvested the following March and their quality evaluated. Patterns of covariation in flower nutrient concentrations and in fruit quality variables were evaluated by principal component analysis. Regression models relating fruit quality variables to flower nutrient composition were developed by stepwise selection procedures. The predictive power of the regression models was evaluated with an independent data set. Nutrient composition of flowers at full bloom could be used to predict the fruit quality variables fresh fruit mass and maturation index in the following year. Magnesium, Ca and Zn concentrations measured in flowers were related to fruit fresh mass estimations and N, P, Mg and Fe concentrations were related to fruit maturation index. We also established reference values for the nutrient composition of flowers based on measurements made in trees that produced large (> 76 mm in diameter) fruit.

  4. Iron forms in some egyptian soils

    International Nuclear Information System (INIS)

    EL Kholi, A.F.; Massoud, M.A.; EL-Naggar, H.A.; Gadallah, A.

    1990-01-01

    The present study is an attempt to find out the available forms of iron (Fe 2+ and Fe 3+ ) in five egyptian soils samples, representing alluvial, calcareous and sandy soils. Concerning the iron content of soil either Fe 2+ or Fe 3+ , the tested soil types were relatively arranged in the order alluvial> calcareous> sandy soil. In spite of the considerable variations in the soil content of iron cations, the Fe 2+ /Fe 3+ ratio was almost kept constant around 0.83. The uniformity of the ferrous : ferric ratio in the different tested soil types indicates their similarity in their redox-potential, pH and their environmental conditions, particularly, the aeration and partial O 2 - pressure degree. Fe 2+ /Fe 3+ being less than unity suggests that the Fe 2+ Fe 3+ reaction tends towards the forward direction, i.e., to the Fe 3+ formation. As a result of the pot experiment, significant correlations have been found between the laboratory determined soil Fe 2+ and both of the plant Fe-uptake and the plant dry matter weight

  5. [Effects of different soil types on the foliar δ13C values of common local plant species in karst rocky desertification area in central Guizhou Province].

    Science.gov (United States)

    Du, Xue-lian; Wang, Shi-jie; Luo, Xu-qiang

    2014-09-01

    By measuring the foliar δ13C values of common local plant species grown in different soil types in Wangjiazhai catchments, a typical karst desertification area in Qingzhen City, Central Guizhou, we studied the impact of soil type and rocky desertification grade on the foliar δ13C values. The results showed that the foliar δ13C values were more negative in yellow soil area than those in black calcareous area and there was no obvious difference in foliar δ13C values between these two soil types. The distribution interval of foliar δ13C values in yellow soil area was narrower than those in black calcareous area and the variation coefficient of foliar δ13C values in yellow soil area were smaller than those in black calcareous area. With increasing degree of karst rocky desertification, the foliar δ13C values of plant community in black calcareous area increased, whereas those in yellow soil area first increased and then decreased. The result of multiple comparison showed that the difference in foliar δ13C values of plant community among rocky desertification grade was not obvious in yellow soil area, but it was obvious in black calcareous area. Correlation analysis between the foliar δ13C values of plant species and the main environmental factors indicated that slope and soil thickness were the main factors which affected the foliar δ13C values of plants in yellow soil area and soil water contant was the main factor in black calcareous area. The impact of soil on the foliar δ13C values was realized by adjusting the soil moisture in study area.

  6. Calcareous Fens - Source Feature Points

    Data.gov (United States)

    Minnesota Department of Natural Resources — Pursuant to the provisions of Minnesota Statutes, section 103G.223, this database contains points that represent calcareous fens as defined in Minnesota Rules, part...

  7. Urease activity in different soils of Egypt.

    Science.gov (United States)

    el-Shinnawi, M M

    1978-01-01

    Samples from two depths (0--15 and 15--30 cm) of five Egyptian soils: sandy, calcareous, fertile alluvial, saline alluvial, and alkali alluvial were tested for urease activity. Samples were treated with farmyard manure at rates of 0 and 0.5% C, and moisture at levels of 50, 65, and 80% of the water holding capacity. The studied Egyptian soils showed different activities of urease. Decreases in the values were shown by depth of sampling and varied in their intensities according to soil type, except for saline soil which revealed an opposite trend by the higher activity of its sub-surface layer. Order of activity was the following: fertile, saline, alkali, calcareous, and sandy soil. Farmyard manure slightly increased the activity of the enzyme. Incubation of moistened samples revealed that the optimum moisture content was 50% of W.H.C. for the tested soils, except for saline which showed best results at 65% of W.H.C.

  8. Distribution characteristics of Shihongtan uranium deposits calcareous sandstone and discussion on their genesis

    International Nuclear Information System (INIS)

    Zhu Huanqiao; Jia Heng; Xu Gaozhong; Li Zhanyou

    2007-12-01

    It is considered that the calcareous sandstone appear at layer along of a bunch of pear lens on and off, localled near up and down surface of sandbody or washed surface, has sandstone of more macro-grain and more gradation through statistics and analysis of calcareous sandstone in goal layer in Shihongtan uranium deposits. The calcareous sandstone accumulation thickness chorogram demonstrated that the calcareous sandstone centralized distribution in the ore body growth area, thus it can be seen, in the oxidation reduction intermediate belt the calcareous sandstone forms with the uranium mine has the certain origin relation. Choropleth map of summed thickness of calcareous sandstone deserves that it mainly appear in area of uranium body and related cause of formation of ore body of interlayer deacidizing--oxidation belt. (authors)

  9. Dark gray soils on two-layered deposits in the north of Tambov Plain: Agroecology, properties, and diagnostics

    Science.gov (United States)

    Zaidelman, F. R.; Nikiforova, A. S.; Stepantsova, L. V.; Volokhina, V. P.

    2012-05-01

    Dark gray soils in the Tambov Plain are developed from the light-textured glaciofluvial deposits underlain by the calcareous loam. Their morphology, water regime, and productivity are determined by the depth of the slightly permeable calcareous loamy layer, relief, and the degree of gleyzation. The light texture of the upper layer is responsible for its weak structure, high density, the low content of productive moisture, and the low water-holding capacity. If the calcareous loam is at a depth of 100-130 cm, dark gray soils are formed; if it lies at a depth of 40-70 cm, temporary perched water appears in the profile, and dark gray contact-gleyed soils are formed. Their characteristic pedofeatures are skeletans in the upper layers, calcareous nodules in the loamy clay layer, and iron nodules in the podzolized humus and podzolic horizons. The appearance of Fe-Mn concretions is related to gleyzation. The high yield of winter cereals is shown to be produced on the dark gray soils; the yields of spring crops are less stable. Spring cereals should not be grown on the contact-gleyed dark gray soils.

  10. Variations of the natural isotopic composition (15N) of mineral nitrogen from calcareous soils, studied during incubation experiment and on the field

    International Nuclear Information System (INIS)

    Mariotti, A.; Guillemot, J.

    1980-01-01

    This study was intended to follow the variations of isotope composition of mineral nitrogen formed during incubation of calcareous soils (rendzine), humidity and temperature conditions approximating natural ones. We compared the isotope composition with that of mineral nitrogen formed in a lysimeter cut out from a natural soil with the same pedological features. During the incubation experiments, two steps were recognized. A step with production of nitrates and nitrites depleted in 15 N and a second step where the isotope composition leans towards an equilibrium value. During the first step, the 15 N depletion for the sum NO 3 + NO 2 correlates with a 15 N enrichment for ammonium. On the whole, the total mineral nitrogen isotope composition is approximately constant. This first step corresponds also to a great speed of nitrification, to the presence of nitrite and to a large evolution (production or use) of ammonium. On the contrary, nitrites have disappeared and ammonium is in dynamic equilibrium (constant concentration) when the delta 15 N of nitrates is stabilized. In another set of experiments, with the same conditions, small quantity of a nitrogen substrate (vegetal proteins or amino acids) easily mineralizable, was added to the soil: the 15 N depletion of NO 3 + NO 2 formed during the first step is much greater than with the mere soil. It is concluded that the initial step corresponds to the fast mineralization of a very labile organic component which could be, for the mere soil, the microbial biomass destroyed during air-drying of sample before incubations: this could correspond to the 'flush effect'. On the contrary, the step when nitrates becomes constant could correspond to the mineralization (slower and more regular) of an another organic pool, perhaps part of humified organic matter [fr

  11. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: A {sup 15}N tracer study

    Energy Technology Data Exchange (ETDEWEB)

    Ju, X.T. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100094 (China)]. E-mail: juxt@cau.edu.cn; Gao, Q. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100094 (China); College of Agricultural Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118 (China); Christie, P. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom); Zhang, F.S. [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Agricultural Resources and Environmental Sciences, China Agricultural University, 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100094 (China)

    2007-03-15

    {sup 15}N-labeled nitrate was injected into different depths of an alluvial calcareous soil profile on the North China Plain. Subsequent movement of NO{sub 3} {sup -}N and its recovery by deep-rooted maize (Zea mays L.) and shallow-rooted eggplant (Solanum melongena L.) were studied. Under conventional water and nutrient management the mean recoveries of {sup 15}N-labeled nitrate from K{sup 15}NO{sub 3} injected at depths 15, 45, and 75 cm were 22.4, 13.8, and 7.8% by maize and 7.9, 4.9, and 2.7% by eggplant. The recovery rate by maize at each soil depth was significantly higher than by eggplant. The deeper the injection of nitrate the smaller the distance of its downward movement and this corresponded with the movement of soil water during crop growth. Deeper rooting crops with high root length density and high water consumption may therefore be grown to utilize high concentrations of residual nitrate in the subsoil from previous intensive cropping and to protect the environment. - Deep-rooted crops have a greater capacity than shallow-rooted crops to intercept residual nitrate from the subsoil and restrict its movement down to the shallow groundw0010at.

  12. Discussion on distribution characteristics of calcareous sandstone in Shihongtan uranium deposit and its genesis

    International Nuclear Information System (INIS)

    Zhu Huanqiao; Qiao Haiming; Jia Heng; Xu Gaozhong

    2007-01-01

    Based on the observation and statistics on the calcareous sandstone in the ore host layer in Shihongtan uranium deposit, this paper finds that the calcareous sandstone occurs on and off near the top or wash surface of the sandbody as beads-strings lens along the layer and concentrates in the area where the ore bodies are rich. In lithology, the calcareous sandstone is of coarse grain and fairly well sorted. According to the analysis on the lithogeochemical features and the carbon and oxygen isotopes of calcareous sandstones, it is realized that there some genetic relation between the formation of calcareous sandstone and uranium mineralization in the oxidation-deoxidation transitional belt, that is the precipitation and enrichment of uranium is accompanied by the deposition of carbonate and formation of calcareous sandstone. (authors)

  13. Assessment of the Hindlimb Membrane Musculature of Bats: Implications for Active Control of the Calcar.

    Science.gov (United States)

    Stanchak, Kathryn E; Santana, Sharlene E

    2018-03-01

    The striking postcranial anatomy of bats reflects their specialized ecology; they are the only mammals capable of powered flight. Bat postcranial adaptations include a series of membranes that connect highly-modified, or even novel, skeletal elements. While most studies of bat postcranial anatomy have focused on their wings, bat hindlimbs also contain many derived and functionally important, yet less studied, features. In this study, we investigate variation in the membrane and limb musculature associated with the calcar, a neomorphic skeletal structure found in the hindlimbs of most bats. We use diffusible iodine-based contrast-enhanced computed tomography and standard histological techniques to examine the calcars and hindlimb membranes of three bat species that vary ecologically (Myotis californicus, a slow-flying insectivore; Molossus molossus, a fast-flying insectivore; and Artibeus jamaicensis, a slow-flying frugivore). We also assess the level of mineralization of the calcar at muscle attachment sites to better understand how muscle contraction may enable calcar function. We found that the arrangement of the calcar musculature varies among the three bat species, as does the pattern of mineral content within the calcar. M. molossus and M. californicus exhibit more complex calcar and calcar musculature morphologies than A. jamaicensis, and the degree of calcar mineralization decreases toward the tip of the calcar in all species. These results are consistent with the idea that the calcar may have a functional role in flight maneuverability. Anat Rec, 301:441-448, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  14. Rates of calcium carbonate removal from soils.

    NARCIS (Netherlands)

    Breemen, van N.; Protz, R.

    1988-01-01

    Mean annual rates of calcium carbonate removal from soils in a subarctic climate estimated from data on two chronosequences of calcareous storm ridges, appeared to be relatively constant through time. Concentrations of dissolved calcium carbonate in the soil solution in the study sites calculated

  15. Medial Calcar Support and Radiographic Outcomes of Plate Fixation for Proximal Humeral Fractures

    Directory of Open Access Journals (Sweden)

    Shih-Jie Lin

    2015-01-01

    Full Text Available Plate fixation remains one of the most popular surgical procedures for treating proximal humeral fractures (PHFx; however, substantial rates of complications have been reported in the literature. The objectives of the study were to examine how medial calcar support (MCS affects the radiographic outcomes and to determine the prognostic factors predicting treatment failure. We performed a retrospective cohort study of 89 adult patients who had PHFx and were treated with plate fixation at our institution in 2007–2011. The enrolled patients were separated into two groups according to disruption of medial calcar. Our results revealed an increased rate of poor radiographic outcomes in patients with disrupted medial calcar. Osteonecrosis of the humeral head and redisplacement were the two radiographic outcomes which had a positive causality with disruption of medial calcar (P=0.008 and 0.050, resp.. Deficient medial calcar, inadequate reduction, diabetes mellitus, chronic kidney disease, and chronic liver disease were all significant predictors for the development of osteonecrosis in patients after PHFx surgery. Inadequate reduction was also a predictor for redisplacement. We confirmed that the restoration of medial calcar as well as comorbid conditions plays key roles in treatment of patients having PHFx with disrupted medial calcar.

  16. Effect of Calcium Levels on Strontium Uptake by Canola Plants Grown on Different Texture Soils

    International Nuclear Information System (INIS)

    El-Shazly, A.A.; Rezk, M. A.; Abdel-Sabour, M.F.; Mousa, E.A.; Mostafa, M.A.Z.; Lotfy, S.M.; Farid, I.M.; Abbas, M.H.H.; Abbas, H.H.

    2016-01-01

    Canola is considered aphytoremediator where, it can remove adequate quantities of heavy metals when grown on polluted soils.This study aimed to investigate growth performance of canola plants grown on clayey non-calcareous, sandy non-calcareous and sandy clay loam calcareous soils with different CaCO 3 contents. These soils were artificially contaminated with 100 mg Sr kg -1 and cultivated with canola plants under three levels of applied calcium i.e. 0, 60 and 85 mg Ca kg -1 in the form of CaCl 2 . The grown plants were kept under the green house conditions until (pot experiment) maturity. Afterwards, plants were harvested, separated into shoots, roots and seeds, and analyzed for their contents of calcium and strontium. Application of calcium to the sandy soil increased Ca uptake by canola plants whereas, Sr uptake, plant growth and seed yield were reduced. In the other soils, Ca and Sr uptake values were increased with minimized Ca rate. Such increases were associated with significant increases in the plant biomass and crop yield in the clayey soil; whereas, in the sandy clay loam calcareous soil, such increases were insignificant. Increasing the dose of the applied Ca (its higher rate) was associated with significant reduction in the plant growth and seed yield in these two soils. Both the biological concentration factor and the biological accumulation factors were relatively high (>1). The biological transfer factor was also high indicating high translocation of Sr from root to shoot. However, Sr translocation decreased with Ca applications. Accordingly canola plants are highly recommended for phytoextraction of Sr from polluted soils

  17. Long-term after-effects of fertilisation on restoration of calcareous grasslands

    NARCIS (Netherlands)

    Smits, N.A.C.; Bobbink, R.; Willems, J.H.

    2008-01-01

    Question: What are the long-term implications of former fertilisation for the ecological restoration of calcareous grasslands? Location: Gerendal, Limburg, The Netherlands. Methods: In 1970, ten permanent plots were established in just abandoned agricultural calcareous grassland under a regime of

  18. RESPONSE OF SOYBEANS AND WHEAT TO PHOSPHORUS FERTILIZATION ON CALCAREOUS ALLUVIAL SOIL OF SAVA VALLEY AREA IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Jurica JOVIC

    2015-08-01

    Full Text Available The stationary field experiment of increasing rates of phosphorus (P fertilization started in spring 2011 on calcareous alluvial soil of Posavian Canton in Federation of Bosnia and Herzegovina (B&H. The level of plant available P was found to be low by previous soil tests carried on with ammonium-lactate-method (7.06 pH in 1 M KCl; 4.17% organic matter; 3.79% CaCO3; 5.4 mg P2O5 in 100 g of soil. Five rates of P fertilizers (monoammonium phosphate: 13% N + 53 % P2O5 were applied as follows (kg P2O5 ha-1: a = 75 (basic fertilization, b = 225, c = 375, d = 525 and e = 975. The experiment was conducted in four replicates (basic plot 60 m2. Only basic fertilization was applied in the following years. Crop rotation was as follows: soybean (2011 - winter wheat (2012 + 2013. Soybean yield increased for 20% (2.11 and 2.53 t ha-1, respectively with P fertilization from 75 to 375 kg P2O5 ha-1, whereas further increase of P rates resulted with lower yield compared to the control level. In both years significant differences of wheat yields were found only between basic and each rate of the increased P fertilization. Wheat yields of the control group were 6.21 and 6.44 t ha-1, for the harvest of 2012 and 2013, respectively. P fertilization led to an increase in wheat yields up to 13% in 2012 and 15% in 2013. Mean values of wheat yields of four P treatments (b+c+d+e were 6.92 and 7.21 t ha-1 for 2012 and 2013, respectively.

  19. Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils

    NARCIS (Netherlands)

    Jalali, M.; Merikhpour, H.; Kaledhonkar, M.J.; Zee, van der S.E.A.T.M.

    2008-01-01

    Soil column studies were conducted with two soils to assess the effects of irrigation with wastewater on soil and groundwater quality. Upon the application of wastewater, exchange occurred between solution sodium (Na+) and exchangeable cations (Ca2+, Mg2+, K+), whereby these cations were released

  20. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    Science.gov (United States)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  1. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.

    Science.gov (United States)

    Voegelin, Andreas; Jacquat, Olivier; Pfister, Sabina; Barmettler, Kurt; Scheinost, Andreas C; Kretzschmar, Ruben

    2011-01-01

    The long-term speciation of Zn in contaminated soils is strongly influenced by soil pH, clay, and organic matter content as well as Zn loading. In addition, the type of Zn-bearing contaminant entering the soil may influence the subsequent formation of pedogenic Zn species, but systematic studies on such effects are currently lacking. We therefore conducted a soil incubation study in which four soils, ranging from strongly acidic to calcareous, were spiked with 2000 mg/kg Zn using either ZnO (zincite) or ZnS (sphalerite) as the contamination source. The soils were incubated under aerated conditions in moist state for up to four years. The extractability and speciation of Zn were assessed after one, two, and four years using extractions with 0.01 M CaCl(2) and Zn K-edge X-ray absorption fine structure (XAFS) spectroscopy, respectively. After four years, more than 90% of the added ZnO were dissolved in all soils, with the fastest dissolution occurring in the acidic soils. Contamination with ZnO favored the formation of Zn-bearing layered double hydroxides (LDH), even in acidic soils, and to a lesser degree Zn-phyllosilicates and adsorbed Zn species. This was explained by locally elevated pH and high Zn concentrations around dissolving ZnO particles. Except for the calcareous soil, ZnS dissolved more slowly than ZnO, reaching only 26 to 75% of the added ZnS after four years. ZnS dissolved more slowly in the two acidic soils than in the near-neutral and the calcareous soil. Also, the resulting Zn speciation was markedly different between these two pairs of soils: Whereas Zn bound to hydroxy-interlayered clay minerals (HIM) and octahedrally coordinated Zn sorption complexes prevailed in the two acidic soils, Zn speciation in the neutral and the calcareous soil was dominated by Zn-LDH and tetrahedrally coordinated inner-sphere Zn complexes. Our results show that the type of Zn-bearing contaminant phase can have a significant influence on the formation of pedogenic Zn

  3. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.J.; Clemente, Rafael; Roig, Asuncion; Bernal, M.P

    2003-04-01

    The effects of organic amendments on metal bioavailability were not always related to their degree of humification. - Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg{sup -1}) and Zn (2602 mg kg{sup -1}), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg{sup -1}) and Pb (190 mg kg{sup -1}). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl{sub 2} or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg{sup -1} soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.

  4. Experimental assessment of the liquefaction resistance of calcareous biogenous sands

    Directory of Open Access Journals (Sweden)

    Sandoval Eimar

    2012-10-01

    Full Text Available

    ABSTRACT

    Liquefaction is a phenomenon in which soils, typically sands, suddenly loose a substantial amount of their shear strength and stiffness, this often triggered by large-magnitude earthquakes. Most liquefaction research has focused on silicate-based sands and not on other sand types, such as calcareous biogenous sands Calcareous sands are usually composed of skeletal or non-skeletal remains of marine organisms, with unique characteristics in terms of their mineralogy surface roughness, particle shape, crushability, and intraparticle porosity. The unique characteristics of calcareous sands suggest that their geotechnical engineering behaviour can be substantially different compared to that of terrigenous sands, including their behaviour under seismic loading, which have not been very well studied

    This paper presents the results of an experimental programme aimed at studying the cyclic liquefaction resistance of uncemented calcareous biogenous sands retrieved from south-western Puerto Rico Evaluation of liquefaction potential involved a comprehensive set of isotropically consolidated undrained cyclic triaxial tests on reconstituted samples of this calcareous sand. The programme also included tests on Ottawa terrigenous silica sand samples prepared and tested in similar conditions for comparison purposes.

    In general, the experimental results showed that Cabo Rojo calcareous sands had higher liquefaction resistance compared to Ottawa silica sands tested under similar conditions. Important differences between calcareous and silica sands regarding pore pressure generation characteristics and axial strain accumulation were also observed


  5. Cardoon (Cynara cardunculus L.) biomass production in a calcareous soil amended with sewage sludge compost and irrigated with sewage water

    Science.gov (United States)

    Lag, A.; Gomez, I.; Navarro-Pedreño, J.; Melendez, I.; Perez Gimeno, A.; Soriano-Disla, J. M.

    2010-05-01

    Energy use is one of the most important current global issues. Traditional energetic resources are limited and its use generates environmental problems, i.e. Global Warming, thus it is necessary to find alternative ways to produce energy. Energy crops represent one step towards sustainability but it must be coupled with appropriate land use and management adapted to local conditions. Moreover, positive effects like soil conservation; economical improvement of rural areas and CO2 storage could be achieved. Treated sewage water and sewage sludge compost were used as low-cost inputs for nutrition and irrigation, to cultivate cardoon (Cynara cardunculus L.) a perennial Mediterranean crop. The aim of the present field experiment was to ascertain the optimum dose of compost application to obtain maximum biomass production. Four compost treatments were applied by triplicate (D1=0; D2=30; D3=50; D4=70 ton/ha) and forty eight cardoon plants were placed in each plot, 12 per treatment, in a calcareous soil (CLfv; WRB, 2006) plot, located in the South East of Spain, in semi-arid conditions. The experiment was developed for one cardoon productive cycle (one year); soil was sampled three times (October, April and July). Soil, compost and treated sewage irrigation water were analyzed (physical and chemical properties). Stalk, capitula and leave weight as well as height and total biomass production were the parameters determined for cardoon samples. Analyses of variance (ANOVA) at p=0,05 significance level were performed to detect differences among treatments for each sampling/plot and to study soil parameters evolution and biomass production for each plot/dose. Several statistical differences in soil were found between treatments for extractable zinc, magnesium and phosphorus; as well as Kjeldahl nitrogen and organic carbon due to compost application, showing a gradual increase of nutrients from D1 to D4. However, considering the evolution of soil parameters along time, pH was

  6. The Effect of Vermicompost on Reducing the Adverse Effects of Water Stress on Growth and Chemical Composition of Corn in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    leila zare

    2017-01-01

    Full Text Available Introduction: Vermicompost is one of the important bio-fertilizer which is the product of the process of composting different organic wastes such as manures and crop residues using different earthworms. Vermicomposts, especially those are derived from animal wastes,contain the large amounts of nutrients compaired with the composts prepared from crop residues. Vermicomposts contain plant available form of nutrients such as nitrate nitrogen, exchangeable phosphorus and potassium, calcium and magnesium. Nowadays, the use of vermicompost in sustainable agriculture to improve the growth and quality of fruits and crops is very common. Drought occurs when the amount of moisture in soil and water resources and rainfall is less than what plants need for normal growth and function. Two thirds of farm lands in Iran have been located in arid and semi-arid regions with annual rainfall less than150 mm that has been distributed irregularly and unpredictable during growth season imposing water stress in most crops. It indicates the importance of water management and proposing different strategies for mitigating detrimental effect of water stress in croplands. Due to the fact that crops nutrient management under drought and water stress using organic fertilizers is an effective method in reaching to high yields in sustainable agriculture, the objective of the present study was to investigate the influence of vermicompost application on reducing the adverse effects of water stress on the growth and chemical composition of corn in a calcareous soil. Materials and Methods: In order to study the influence of water stress and application of vermicompost on corn dry matter yield and nutrients concentration of corn shoot, a greenhouse factorial experiment (4×3 in completely randomized design with three replications was conducted in college of agriculture, Shiraz university, Shiraz, Iran. The factors consisted of four vermicompost levels (0, 10, 20 and30g kg-1soil

  7. Assessment of phyto-available cadmium in soils using isotopic methods

    International Nuclear Information System (INIS)

    Gerard, Emilie

    2000-01-01

    The quantification of phyto-available Cd in soils is necessary to determine the transfer risk of this toxic element to plants. Isotopic methods (isotopic exchange kinetics (IEK), isotopic dilution) were used to characterize the phyto-available Cd and, practically, to select chemical methods for determining available Cd to plants. Rye grass (Lolium perenne L.), lettuce (Lactuca saliva L.) and the Cd hyper-accumulator Thlaspi caerulescens J. Presl. and C. Presl. were selected as test plants because of their wide range of Cd uptake ability. The chosen soils had different pH and displayed a Cd-contamination gradient due the atmospheric deposition of industrial particles. In the acidic soil, plants had access to the same metal pool, the one that was isotopically exchangeable with Cd 2+ . This was also the case for rye grass on the calcareous Soils but there, lettuce and T. caerulescens accessed a bigger and non-isotopically exchangeable pool that accounted for 16 to 52 % of the plant available Cd. Most of the Cd was isotopically exchangeable in a short time in the acidic soil (87 % within 21 days). In the calcareous soils two pools were identified, one pool was isotopically exchangeable in a very short time, and the other one Was not exchangeable after 21 days (21 to 10 % of the total Cd). Actually, the quantities of labile cd in the industrial particles which had contaminated these soils were very small. IEK methods and the measurement of the isotopic composition of Cd 2+ in soil solutions allowed for the estimation of the phyto-available Cd in soils, but cannot he commonly used. Most of the chemical extractants studied such as CaCl 2 or DTP A are suitable to assess the phyto-available Cd. However, on calcareous soils, the choice of extractant needs to sometimes be modified in relation to the rate of Cd plant absorption. (author) [fr

  8. Evaluation of Phosphorus Leaching in an Agricultural Soil under Different Soil Amendments

    OpenAIRE

    ERDONA DEMIRAJ; FERDI BRAHUSHI; JAMARBËR MALLTEZI; SULEJMAN SULÇE

    2017-01-01

    The transport of Phosphorus (P) from agricultural soils to surface waters sensitive to eutrophication has long been a world-wide environmental concern. The intensive agricultural activity in the upper Shkodra fields, combined with others point source pollution, probably, intensify eutrophication of the Shkodra Lake. These Clay Loamy soils (calcaric Regosols) are characterized by low organic matter, N and P, with a high water percolation. An experiment was conducted at Greenhouse Research Stat...

  9. Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils

    Science.gov (United States)

    Schlotter, D.; Schack-Kirchner, H.

    2013-02-01

    CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1) the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.1 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.

  10. Manganese contents of soils as determined by activation analysis

    International Nuclear Information System (INIS)

    El-Kholi, A.F.; Hamdy, A.A.; Al Metwally, A.I.; El-Damaty, A.H.

    1976-01-01

    The object of this investigation is to determine total manganese by means of neutron activation analysis and evaluate this technique in comparison with the corresponding data obtained by conventional chemical analysis. Data obtained revealed that the values of total manganese in calcareous soils obtained by both chemical analysis and that by neutron activation analysis were similar. Therefore, activation analysis could be recommended as a quick laboratory, less tedious, and time consuming method for the determination of Mn content in both soils and plants than the conventional chemical techniques due to its great specificity, sensitivity and simplicity. Statistical analysis showed that there is a significant correlation at 5% probability level between manganese content in Soybean plant and total manganese determined by activation and chemical analysis giving the evidence that in the case of those highly calcareous soils of low total manganese content this fraction has to be considered as far as available soil manganese is concerned

  11. Effect of the fertilization with micro-nutriments with Phosphorous and Potassium on the biomass of rice, in different soils of the Ibague Terrace

    International Nuclear Information System (INIS)

    Salive R, Alvaro; Frye C, Alberto

    1995-01-01

    To compare the effect of Zn and Cu Chelates (EDTA) with their respective sulfates as well as to evaluate the response to the nutrients b, Cu, Zn and K, an experiment was effected with normal rice growing soils and also those with high levels of calcium or carbonates using a tray system in a net covered structure. Based on the biomass of rice, Zn and Cu Chelates were found to have a greater influence than the sulfates, reaching statistical significance in the case of the calcareous soil and improving the response of P and K. On the contrary the sulfates were associated with negative effects. On the other hand, in different soils a significant positive effect was noted for B, Cu and P, as well as for K in calcareous soils, while in normal soil the response for Zn and K was negative. Moderate response to P was seen even though content was found to be sufficient: Zn showed no such response in calcareous soils, even though poor in it probably due to antagonism with iron, another critical element in these soils

  12. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils

    International Nuclear Information System (INIS)

    Keller, Catherine; Hammer, Daniel

    2004-01-01

    Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO 3 -extractable metals), changes in metal bio/availability (0.1 M NaNO 3 -extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMETreg] biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO 3 -extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system

  13. Theoretical and experimental study of the bio-geochemical behaviour of americium 241 in simplified rhizosphere conditions. Application to a calcareous agricultural soil

    International Nuclear Information System (INIS)

    Perrier, T.

    2004-06-01

    Americium 241, is one of the most radio-toxic contaminant produced during the nuclear fuel cycle. It can be found in all environmental compartments, in particular the soils. The main goals of this study are to identify, quantify and model the effect of the main factors controlling the mobility of 241 Am in the rhizosphere and the agricultural soils. The physico-chemical parameters of the soil and of the soil solution, the potential role of microorganisms on the sorption-desorption processes, and the speciation of americium in solution have been more particularly studied. 241 Am remobilization has been studied at the laboratory using leaching experiments performed in controlled conditions on reworked calcareous soils artificially contaminated with 241 Am. The soil samples have been washed out in different hydrodynamic conditions by solutions with various compositions. The eluted solution has been analyzed (pH, conductivity, ionic composition, Fe tot , organic acids, 241 Am) and its bacterial biomass content too. The overall results indicate that 241 Am remobilization is contrasted and strongly linked with the condition under study (pH, ionic strength, glucose and/or citrate concentration). Therefore, a solution in equilibrium with the soil or containing small exudate concentrations (10 -4 M) re-mobilizes only a very small part of the americium fixed on the solid phase. The desorption of 241 Am corresponds to a solid/liquid coefficient of partition (K d ) of about 10 5 L.kg -1 . A significant addition of glucose induces an important dissolution of soil carbonates by the indirect action of microorganisms, but does not significantly favor the 241 Am remobilization. On the other hand, the presence of strong citrate concentrations (≥ 10 -2 M) allows 300 to 10000 time greater re-mobilizations by the complexing of 241 Am released after the dissolution of the carrying phases. Finally, the colloidal transport of 241 Am has been systematically observed in a limited but

  14. Evaluation of ammonium nitrate phosphate (Suphala) having different water soluble phosphorus levels on black soils

    International Nuclear Information System (INIS)

    Deo Dutt; Mutatkar, V.K.; Chapke, V.G.

    1974-01-01

    Efficiency of the laboratory prepared 32 P tagged ammonium nitrate phosphate (Suphala) varying in water soluble P was studied both on calcareous and non-calcareous soils of Maharashtra for bajra and wheat crops under greenhouse conditions. The results revealed a significant increase in dry matter production and uptake of total and fertilizer P with Suphala containing 30-32% water-soluble phosphorus. (author)

  15. Calcar femorale grafting in the hemiarthroplasty of the hip for unstable inter trochanteric fractures.

    Science.gov (United States)

    Thakkar, Chandrashekar J; Thakkar, Savyasachi; Kathalgere, Rajshekhar T; Kumar, Malhar N

    2015-01-01

    The sliding screw-plate devices and cephalo-medullary nail devices have performed well in stable inter-trochanteric fractures in patients with reasonably good quality of bone. However, their suboptimal performance in comminuted fractures in the presence of osteoporotic bone has prompted many surgeons to consider bipolar hemiarthroplasty as the primary modality of management of comminuted inter-trochanteric fractures in elderly patients. However, long term stability of the hemiarthroplasty implant also may be compromised due to the presence of postero-medial bone loss at the area of the calcar. We have presented a simple and effective technique of calcar grafting by harvesting cortical bone strut from the neck of the fractured femur. A total of 34 patients with inter-trochanteric fractures of the femur were treated with calcar grafting. The mean age was 79.2 years. The graft was harvested from the calcar region of the head and neck fragment of the femur and wedged between the medial femoral cortex and medial edge of the prosthesis. The mean followup period was 54.5 months. In 32 of 34 (94%) patients in our series, the calcar graft healed well without dislodgement. There was graft resorption in two patients associated with subsidence of the implant and loosening. Calcar grafting using this technique provides stability to the implant in the presence of comminution and incorporates well in the majority of patients. Donor site morbidity of graft harvesting is also avoided.

  16. Effect of biosolids application on soil chemical properties and uptake ...

    African Journals Online (AJOL)

    Effect of biosolids application on soil chemical properties and uptake of some heavy metals by Cercis siliquastrum. ... and municipal solid waste compost (50% CM + 50% MC) at three levels of 0, 2.5 and 5 kg/shrub and three replicates in calcareous sandy loam soil at the botanical garden of Mobarekeh steel company.

  17. Comparative uptake of plutonium from soils by Brassica juncea and Helianthus annuus

    International Nuclear Information System (INIS)

    Lee, J.H.; Hossner, L.R.; Attrep, M.; Kung, K.S.

    2002-01-01

    Extractability of Pu from soils was most affected by pH and amounts of clay, salts, and carbonates. - Plutonium uptake by Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) from soils with varying chemical composition and contaminated with Pu complexes (Pu-nitrate [ 239 Pu(NO 3 ) 4 ], Pu-citrate [ 239 Pu(C 6 H 5 O 7 ) + ], and Pu-diethylenetriaminepentaacetic acid (Pu-DTPA [ 239 Pu-C 14 H 23 O 10 N 3 ]) was investigated. Sequential extraction of soils incubated with applied Pu was used to determine the distribution of Pu in the various soil fractions. The initial Pu activity levels in soils were 44.40-231.25 Bq g -1 as Pu-nitrate , Pu-citrate, or Pu-DTPA. A difference in Pu uptake between treatments of Pu-nitrate and Pu-citrate without chelating agent was observed only with Indian mustard in acidic Crowley soil. The uptake of Pu by plants was increased with increasing DTPA rates, however, the Pu concentration of plants was not proportionally increased with increasing application rate of Pu to soil. Plutonium uptake from Pu-DTPA was significantly higher from the acid Crowley soil than from the calcareous Weswood soil. The uptake of Pu from the soils was higher in Indian mustard than in sunflower. Sequential extraction of Pu showed that the ion-exchangeable Pu fraction in soils was dramatically increased with DTPA treatment and decreased with time of incubation. Extractability of Pu in all fractions was not different when Pu-nitrate and Pu-citrate were applied to the same soil. More Pu was associated with the residual Pu fraction without DTPA application. Consistent trends with time of incubation for other fractions were not apparent. The ion-exchangeable fraction, assumed as plant-available Pu, was significantly higher in acid soil compared with calcareous soil with or without DTPA treatment. When the calcareous soil was treated with DTPA, the ion-exchangeable Pu was comparatively less influenced. This fraction in the soil was more affected with time

  18. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    Science.gov (United States)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  19. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    Science.gov (United States)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  20. Ammonium citrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process.

    Science.gov (United States)

    Dias-Ferreira, Celia; Kirkelund, Gunvor M; Ottosen, Lisbeth M

    2015-01-01

    Seven electrodialytic experiments were conducted using ammonium citrate as enhancing agent to remediate copper and chromium-contaminated soil from a wood-preservation site. The purpose was to investigate the effect of current density (0.2, 1.0 and 1.5 mA cm(-2)), concentration of enhancing agent (0.25, 0.5 and 1.0 M) and remediation times (21, 42 and 117 d) for the removal of Cu and Cr from a calcareous soil. To gain insight on metal behavior, soil solution was periodically collected using suction cups. It was seen that current densities higher than 1.0 mA cm(-2) did not increase removal and thus using too high current densities can be a waste of energy. Desorption rate is important and both remediation time and ammonium citrate concentration are relevant parameters. It was possible to collect soil solution samples following an adaptation of the experimental set-up to ensure continuous supply of ammonium citrate to the soil in order to keep it saturated during the remediation. Monitoring soil solution gives valuable information on the evolution of remediation and helps deciding when the soil is remediated. Final concentrations in the soil ranged from 220 to 360 mg Cu kg(-1) (removals: 78-86%) and 440-590 mg Cr kg(-1) (removals: 35-51%), being within the 500 mg kg(-1) limit for a clean soil only for Cu. While further optimization is still required for Cr, the removal percentages are the highest achieved so far, for a real Cu and Cr-contaminated, calcareous soil. The results highlight EDR potential to remediate metal polluted soils at neutral to alkaline pH by choosing a good enhancement solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Potential of endozoochorous seed dispersal by sheep in calcareous grasslands: correlations with seed traits.

    NARCIS (Netherlands)

    Kuiters, A.T.; Huiskes, H.P.J.

    2010-01-01

    Questions: What is the potential of sheep to serve as seed dispersers via ingestion and defecation in calcareous grasslands? Is the presence of viable seeds from dung correlated with specific seed traits? Location: Calcareous grasslands, South Limburg, the Netherlands/Belgium. Methods: Dung samples

  2. Diuron mobility through vineyard soils contaminated with copper.

    Science.gov (United States)

    Jacobson, Astrid R; Dousset, Sylvie; Guichard, Nathalie; Baveye, Philippe; Andreux, Francis

    2005-11-01

    The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17--509 mg kg(-1) total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1--0.45%) than from the bare-soil columns (0.02--0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98--1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8--1042 microg) than in the calcareous soils (9.5--63.4 microg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils.

  3. Uranium geochemistry in a calcareous peat: mineral-organic-microorganisms interactions and implications on uranium mobility in a contaminated soil

    International Nuclear Information System (INIS)

    Phrommavanh, V.; Descostes, M.; L'Orphelin, J.M.; Beaucaire, C.; Gaudet, J.P.

    2009-01-01

    The authors discuss the different approaches and techniques which have been implemented to study the behaviour of uranium in an as complex medium as a natural peat, in this case, a calcareous peat located on an old industrial site which was dedicated to uranium processing and which is now being decontaminated. They report and comment a chemical and mineralogical characterization of this peat, its hydrochemical characterization, and a microbial flora characterization

  4. Yield performance of cowpea plant introductions grown in calcareous soils

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at a soil pH of 7.5 or higher, co...

  5. studies on iron availability in Egyptian soils using tracer technique

    International Nuclear Information System (INIS)

    Gad allah, A.M.A.

    1984-01-01

    four experiments were conducted to study the available fe in some egyptian soils, representing alluvial,, calcareous, and sandy soils, including the following:1) estimation of soil available iron using different chemical methods as well as E-value and evaluated against biological method. 2) differentiation of iron as Fe 2+ and Fe 2+ in some selected egyptian soils by using the modified method (charlot,1966). 3) determination of total Fe in soil using neutron activation analysis. 4) the relative importance of Fe-diffusion in egyptian soils under different treatments

  6. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types

    International Nuclear Information System (INIS)

    Bhujbal, B.M.; Mistry, K.B.; Chapke, V.G.; Mutatkar, V.K.

    1977-01-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers. (author)

  7. TL studies of calcareous rocks of Danta area, North Gujarat

    International Nuclear Information System (INIS)

    Limaye, M.A.; Desai, S.J.; Murthy, K.V.R.; Joshi, T.R.

    1992-01-01

    The lithounits exposed around Danta in Banaskantha district of North Gujarat belong to Ajabgarh Group, the upper division of the Delhi super group. These rocks are intruded by syn to late kinematic basic rocks and by Erinpura granites of post Delhi age. The Ajabgarh group consists of pelitic and calcareous components. Mineralogically the pelitic rocks comprise cordierite, almandine garnet, k-feldspar, sillimanite, quartz and mica in variable proportions. The calcareous rocks are seen to contain dominantly calcite, scapolite, forsterite, sphene, k-feldspar. These mineral assemblages correspond to upper Amphibolite to lower Granulite facies of regional metamorphism. The chemistry of the calcareous rocks show predominance of CaO over MgO. The glow curves obtained from virgin samples (NTL) as well as artificial beta irradiated indicate glow peaks at 140 o C, 290 o C, 310 o C and 390 o C. The TL glow peak temperatures are in general agreement with those reported by Borsi and Rinaldi and Medlin. The pronounced peak at 390 o C and 290 o C are suggestive of their high irradiation sensitivity and also probably reflect variation in the Mn content of the rocks. (author). 9 refs., 16 tabs., 2 figs

  8. Calcareous nannofossil events in the pre-evaporitic Messinian

    Science.gov (United States)

    Negri, Alessandra; Lozar, Francesca

    2017-04-01

    During the Messinian (7.2 to 5.3 Ma) the Mediterranean area experienced fast and deep climatic and eustatic structural changes. The stratigraphic framework for this interval is relatively well constrained and the beginning of the Messinian salinity crisis dated at 5.97 Ma determine a duration of at least 1.2 Ma for the pre-evaporitic Messinian that is object of this study. Several sites (Faneromeni, Pissouri, Polemi Fanantello borehole, Lemme, Pollenzo, Govone, Moncalvo; Wade and Bown, 2006; Kouwenhoven et al 2006, Morigi et al 2007, Lozar et al 2010, Dela Pierre et al 2011) show similar calcareous nannofossil record behavior, with several Sphenolithus spp. peaks recognised at different quotes in each of the sections. Aim of the present work is to compare the calcareous nannofossil data achieved in the above mentioned sections: interestingly, the occurrence of strongly oligotypic assemblages related to high salinity and unstable environments, appear to correlate precisely among the investigated sites and occur immediately before the onset of the Messinian salinity crisis, then offering the possibility to use them as bioevents for regional correlation. References Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Gennari, R., Irace, A., Lozar, F., Lugli, S., Manzi, V., Natalicchio, M., Roveri, M., Violanti, D., 2011. The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): The Alba section revisited. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 238-255. Kouwenhoven, T.J., Morigi, C., Negri, A., Giunta, S., Krijgsman, W., Rouchy, J.M., 2006 Paleoenvironmental evolution of the eastern Mediterranean during the Messinian: Constraints from integrated microfossil data of the Pissouri Basin (Cyprus). Marine Micropaleontology 60, 17-44. Lozar, F., Violanti, D., Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Irace, A., Martinetto, E., Trenkwalder, S., 2010. Calcareous nannofossils and foraminifers herald the Messinian

  9. Isotopic tracer studies to evaluate relative efficiency of different forms of P for growing rice on different soil types

    Energy Technology Data Exchange (ETDEWEB)

    Dash, R N; Mohanty, S K; Patnaik, S [Central Rice Research Inst., Cuttack (India)

    1977-12-01

    The relative efficiency of different forms of P in relation to their time of application for growing rice on different soil types has been studied by using /sup 32/P tagged mono-, di-, and tri-calcium phosphate, ammonium nitrate phosphate containing all the P in the citrate-soluble form and potassium meta-phosphate. P-deficient acid laterite soil from Burdwan, red loam soil from Peramanpur and calcareous black soil from Hyderabad were used in the study. The different P forms were found to be compatible in the acid, red and laterite soils when the phosphorus forms were primed to moist acid soils 2 weeks prior to flooding. On application at flooding, fertilizers containing citrate-soluble phosphate were found to be less effective as compared to those containing water-soluble phosphate. In the calcareous black soil, however, the fertilizers, containing insoluble or citrate-soluble phosphates were not as efficient as the water-soluble forms, possibly because of lack of dissolution process. Potassium meta-phosphate was found to be effective in all the soil types whether applied at flooding or primed to the moist soil.

  10. Biostratigraphic and morphometric analyses of specimens from the calcareous nannofossil genus Tribrachiatus

    Science.gov (United States)

    Self-Trail, Jean; Seefelt, Ellen L.; Shepherd, Claire L.; Martin, Victoria A.

    2017-01-01

    Biostratigraphic and morphometric analyses of calcareous nannofossil assemblages from one outcrop and two cored sections of lower Eocene sediments reveal the presence of two new species: Tribrachiatus lunatus sp. nov., and Tribrachiatus absidatus sp. nov. Differences between the new species and Tribrachiatus orthostylus are discussed. The first occurrence of the two new species is just below the calcareous nannofossil Zone NP11/NP12 boundary, close to the Chron 24r/23n boundary, and thus they are globally useful biostratigraphic markers.

  11. Diuron mobility through vineyard soils contaminated with copper

    International Nuclear Information System (INIS)

    Jacobson, Astrid R.; Dousset, Sylvie; Guichard, Nathalie; Baveye, Philippe; Andreux, Francis

    2005-01-01

    The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17-509 mg kg -1 total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1-0.45%) than from the bare-soil columns (0.02-0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98-1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8-1042 μg) than in the calcareous soils (9.5-63.4 μg). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils. - Cu accumulation, from Bordeaux mixture, in vineyard soils may be affecting microbial activity and thus slightly increasing the persistence of diuron in the soils

  12. Diuron mobility through vineyard soils contaminated with copper

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Astrid R. [UMR INRA 1229 Microbiologie-Geochimie des Sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 Bd Gabriel, 21000 Dijon (France) and Department of Crop and Soil Sciences, Cornell University, 1002 Bradfield Hall, Ithaca, NY 14853 (United States)]. E-mail: arj5@cornell.edu; Dousset, Sylvie [UMR INRA 1229 Microbiologie-Geochimie des Sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 Bd Gabriel, 21000 Dijon (France); Guichard, Nathalie [UMR CNRS 5561 Biogeosciences, Centre des Sciences de la Terre, Universite de Bourgogne, 6 Bd Gabriel, 21000 Dijon (France); Baveye, Philippe [Department of Crop and Soil Sciences, Cornell University, 1002 Bradfield Hall, Ithaca, NY 14853 (United States); Andreux, Francis [UMR INRA 1229 Microbiologie-Geochimie des Sols, Centre des Sciences de la Terre, Universite de Bourgogne, 6 Bd Gabriel, 21000 Dijon (France)

    2005-11-15

    The herbicide diuron is frequently applied to vineyard soils in Burgundy, along with repeated treatments with Bordeaux mixture (a blend of copper sulfate and calcium hydroxide) that result in elevated copper concentrations. Cu could in principle affect the fate and transport of diuron or its metabolites in the soil either directly by complexation or indirectly by altering the populations or activity of microbes involved in their degradation. To assess the effect of high Cu concentrations on diuron transport, an experiment was designed with ten undisturbed columns of calcareous and acidic soils contaminated with 17-509 mg kg{sup -1} total Cu (field-applied). Grass was planted on three columns. Diuron was applied to the soils in early May and in-ground lysimeters were exposed to outdoor conditions until November. Less than 1.2% of the diuron applied was found in the leachates as diuron or its metabolites. Higher concentrations were found in the effluents from the grass-covered columns (0.1-0.45%) than from the bare-soil columns (0.02-0.14%), and they were correlated with increases in dissolved organic carbon. The highest amounts of herbicide were measured in acidic-soil column leachates (0.98-1.14%) due to the low clay and organic matter contents of these soils. Cu also leached more readily through the acidic soils (32.8-1042 {mu}g) than in the calcareous soils (9.5-63.4 {mu}g). Unlike in the leachates, the amount of diuron remaining in the soils at the end of the experiment was weakly related to the Cu concentrations in the soils. - Cu accumulation, from Bordeaux mixture, in vineyard soils may be affecting microbial activity and thus slightly increasing the persistence of diuron in the soils.

  13. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae.

    Science.gov (United States)

    Johnson, Maggie Dorothy; Price, Nichole N; Smith, Jennifer E

    2014-01-01

    Despite the heightened awareness of ocean acidification (OA) effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species. Growth, calcification and photophysiology were measured for each species independently and metrics were combined from each experiment using a meta-analysis to examine overall trends across functional groups categorized as fleshy, upright calcareous, and crustose coralline algae (CCA). The magnitude of the effect of OA on algal growth response varied by species, but the direction was consistent within functional groups. Exposure to OA conditions generally enhanced growth in fleshy macroalgae, reduced net calcification in upright calcareous algae, and caused net dissolution in CCA. Additionally, three of the five fleshy seaweeds tested became reproductive upon exposure to OA conditions. There was no consistent effect of OA on algal photophysiology. Our study provides experimental evidence to support the hypothesis that OA will reduce the ability of calcareous algae to biomineralize. Further, we show that CO2 enrichment either will stimulate population or somatic growth in some species of fleshy macroalgae. Thus, our results suggest that projected OA conditions may favor non-calcifying algae and influence the relative dominance of fleshy macroalgae on reefs, perpetuating or exacerbating existing shifts in reef community structure.

  14. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae

    Directory of Open Access Journals (Sweden)

    Maggie Dorothy Johnson

    2014-05-01

    Full Text Available Despite the heightened awareness of ocean acidification (OA effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species. Growth, calcification and photophysiology were measured for each species independently and metrics were combined from each experiment using a meta-analysis to examine overall trends across functional groups categorized as fleshy, upright calcareous, and crustose coralline algae (CCA. The magnitude of the effect of OA on algal growth response varied by species, but the direction was consistent within functional groups. Exposure to OA conditions generally enhanced growth in fleshy macroalgae, reduced net calcification in upright calcareous algae, and caused net dissolution in CCA. Additionally, three of the five fleshy seaweeds tested became reproductive upon exposure to OA conditions. There was no consistent effect of OA on algal photophysiology. Our study provides experimental evidence to support the hypothesis that OA will reduce the ability of calcareous algae to biomineralize. Further, we show that CO2 enrichment either will stimulate population or somatic growth in some species of fleshy macroalgae. Thus, our results suggest that projected OA conditions may favor non-calcifying algae and influence the relative dominance of fleshy macroalgae on reefs, perpetuating or exacerbating existing shifts in reef community structure.

  15. Dynamic shear stiffness and damping ratio of marine calcareous and siliceous sands

    Science.gov (United States)

    Javdanian, Hamed; Jafarian, Yaser

    2018-03-01

    Shear stiffness and damping ratio of two marine calcareous and siliceous sands were evaluated through an experimental program. Resonant column and cyclic triaxial experiments were conducted to measure the dynamic properties of the sands in small and large shear strain amplitudes. The tests were conducted under various initial stress-density conditions. The influence of effective confining pressure on the dynamic properties of the sands was assessed and compared in a preceding paper. It was shown that the calcareous sand has higher shear stiffness and lower damping ratio in comparison to the siliceous sand. In this note, the results are presented in more details and the dynamic behavior curves of the studied sands are compared with some available models, mostly developed based on the laboratory data of siliceous sands. This comparative study reveals that the previous models predict the dynamic properties of the calcareous sand in less precision than those of the siliceous sand.

  16. Influence of the soil/solution ratio, interaction time, and extractant on the evaluation of iron chelate sorption/desorption by soils.

    Science.gov (United States)

    Hernández-Apaolaza, Lourdes; Lucena, Juan J

    2011-03-23

    Synthetic Fe chelates are the most efficient agricultural practice to control Fe deficiency in crops, EDTA/Fe3+ and o,o-EDDHA/Fe3+ being the most commonly used. Their efficacy as Fe sources and carriers in soils can be severely limited by their retention on it. The aim of this work is to evaluate the possible bias introduced in the studies of the iron chelate retention by soils. For that purpose, results obtained for EDTA and EDDHA iron chelates from two batch studies with different soil/solution ratios were compared with data obtained for a leaching column experiment. Moreover, different extractants were tested to study the o,o-EDDHA/Fe3+ and o,p-EDDHA/Fe3+ desorption from a calcareous soil, and also the effect of the interaction time in their retention process has been evaluated. In summary, the mobility through a calcareous soil of the studied iron chelates differs greatly depending on the type of iron chelate and also on the procedure used to evaluate the retention and the soil/solution ratio used. In general, the leaching column method is preferred because the achieved conclusions are more representative of the natural conditions, but batch methods are very useful as a preliminary experiment, especially one with a high soil/solution ratio. The iron chelate desorption could be quantified by using a sequential extraction with water, sodium sulfate, and DTPA as extractants. Under the experimental conditions used in this study, o,o-EDDHA/Fe3+ retention increased with interaction time.

  17. The status of phosphorus in Thai soils and P evaluation using EDTA-NaF extraction method

    Directory of Open Access Journals (Sweden)

    Toru Matoh

    2003-07-01

    Full Text Available Although the available P extracted by Bray II method in tropical soil is low, most of tropical plants can grow well. The objective of this study was to study P status and to evaluate the available P extracted by EDTA-NaF method. Top soil and sub soil of 10 dominant soil series in Thailand were analyzed for some chemical properties and characterization of the forms of phosphorus using EDTA-NaF extraction and successive phosphorus extraction by the modified Sekiya method. The soil total P concentration was 38-1137 mg P2O5 kg-1. The available Bray II-P was very low to high (1-76 mg P2O5 kg-1, and it approximated 0.17-12% of the total P. Iron and aluminum phosphates were the main fraction of inorganic P in acid soil, whereas Ca phosphates were in calcareous soils. Organic P content accounted for 33-67% and most of them were bound with Fe and Al in acid soils and Ca in calcareous soils. P extracted by EDTA-NaF reagent was obviously larger than that of Bray II reagent. The EDTA-NaF extracted P [high molecular weight organic P (HMWP+ inorganic P (EDTA ext Pi] was 7-46% and 1-6% of total P in acid soils and calcareous soils respectively. The EDTA ext Pi tended to be larger than HMWP except in Tk soil. The total amount of extracted P correlated well with Al-Pi and Fe-Pi which were the main fraction of inorganic P. It also correlated with HMWP, but HMWP did not correlate with organic P determine by ignition method and Ca-Po, Fe-Po and Al-Po. The EDTA-NaF method may be suitable for P evaluation in the soils which have high amounts of Fe-Pi, Al -Pi and organic P widely distributed in Thailand.

  18. Contribution of soil-32P, fertilizer-32P and VA mycorrhizal fungi to phosphorus nutrition of corn plant

    International Nuclear Information System (INIS)

    Feng Gu; Yang Maoqiu; Bai Dengsha; Huang Quansheng

    1997-01-01

    32 P labelled fertilizer and five synthetic phosphates (dicalcium phosphate, octocalcium phosphate, iron phosphate, aluminium phosphate and apatite), which were used to simulate inorganic phosphates such as Ca 2 -P, Ca 8 -P, Fe P , Al-P and Ca 10 -P in calcareous soil, were applied to corn plants inoculating with and without vesicular-arbuscular (VA) mycorrhizal fungi in a calcareous soil. The results showed that VA mycorrhizal fungi and dicalcium phosphate, octocalcium phosphate, iron phosphate, aluminium phosphate promoted growth and increased phosphorus content of corn plant. The four synthetic phosphates except apatite had higher contributions to corn plant growth than VA mycorrhizal fungi. Contributions of fertilizer-P, soil-P and synthetic phosphates to phosphorus nutrition of corn plant were in order of synthetic phosphates (except apatite) > soil- P > fertilizer-P. Inoculating with VA mycorrhizal fungi increased the contribution of soil-P and decreased the contribution of synthetic phosphates, but did not affect the contribution of fertilizer-P

  19. Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2016-06-01

    The results obtained show that, application of the investigated hydrogels positively affects bio-chemical properties of the soil. These effects are assembled in the following: (a slightly decreasing soil pH, (b increasing cation exchange capacity (CEC of the soil indicating improvement in activating chemical reactions in the soil, (c increasing organic matter (OM, organic carbon, total nitrogen percent in the soil. Because the increase in organic nitrogen surpassed that in organic carbon, a narrower CN ratio of treated soils was obtained. This indicated the mineralization of nitrogen compounds and hence the possibility to save and provide available forms of N to growing plants, (d increasing available N, P and K in treated soil, and (e improving biological activity of the soil expressed as total count of bacteria and counts of Azotobacter sp., phosphate dissolving bacteria (PDB, fungi and actinomycetes/g soil as well as the activity of both dehydrogenase and phosphatase.

  20. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types. [/sup 32/P-labelled fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Bhujbal, B M; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.; Chapke, V G; Mutatkar, V K [Fertilizer Corp. of India Ltd., Bombay

    1977-09-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO/sub 3/ (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers.

  1. Empirical and mechanistic evaluation of NH4(+) release kinetic in calcareous soils.

    Science.gov (United States)

    Ranjbar, F; Jalali, M

    2014-05-01

    Release, fixation, and distribution of ammonium (NH4(+)) as a source of nitrogen can play an important role in soil fertility and plant nutrition. In this study, ten surface soils, after addition of 1,000 mg NH4(+) kg(-1,) were incubated for 1 week at the field capacity moisture and 25 ± 2 °C temperature, and then NH4(+) release kinetic was investigated by sequential extractions with 10 mM CaCl2. Furthermore, NH4(+) distribution among three fractions, including water-soluble, exchangeable, and non-exchangeable, was determined in all soil samples. NH4(+) release was initially rapid followed by a slower reaction, and this was described well with the Elovich equation as an empirical model. The cumulative NH4(+) concentration released in spiked soil samples had a positive significant correlation with sand content and negative ones with pH, exchangeable Ca(2+)m and K(+), cation exchange capacity (CEC), equivalent calcium carbonate (ECC), and clay content. The cation exchange model in the PHREEQC program was successful in mechanistic simulation of the release trend of native and added NH4(+) in all control and spiked soil samples. The results of fractionation experiments showed that the non-exchangeable fraction in control and spiked soil samples was greater than that in water-soluble and exchangeable fractions. Soil properties, such as pH, exchangeable Ca(2+) and K(+), CEC, ECC, and contents of sand and clay, had significant influences on the distribution of NH4(+) among three measured fractions. This study indicated that both native and recently fixed NH4(+), added to soil through the application of fertilizers, were readily available for plant roots during 1 week after exposure.

  2. INFLUENCE OF SILICEOUS AND CALCAREOUS FLY-ASHES ON PROPERTIES OF CEMENT MORTARS

    Directory of Open Access Journals (Sweden)

    Gabriela Monika Rutkowska

    2016-09-01

    Full Text Available Care of the environment in accordance with the principles of sustainable development introduces the possibility and need for waste recycling. Construction and building industries have the greatest potential for reuse of waste. The article presents the results of investigations of cement mortars – tests of compressive and tensile strength after 28 and 56 days of curing – for normative mortars and mortars containing fly ashes – calcareous and siliceous ash – in their composition. To make the samples, the Portland cement CEM I 32,5 R, 42,5R and natural aggregate with graining of 0–2 mm were used. Concrete with siliceous and calcareous admixtures was made in six lots where the ash was added in the quantity of 2%, 5%, 10% of the cement mass or the 2%, 5%, 10% of cement was replaced by ashes. After the tests, it was stated that the siliceous fly-ash admixture increases the compressive and bending strength in comparison to the mortars with the calcareous ash admixtures.

  3. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran

    Science.gov (United States)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth

    2016-11-01

    The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p soils.

  4. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Directory of Open Access Journals (Sweden)

    Guo-Liang Xu

    Full Text Available Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm increased, but the percentage of large mites (body length >0.40 mm decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  5. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  6. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  7. Isotopic tracer studies to evaluate relative efficiency of different forms of P for growing rice on different soil types

    International Nuclear Information System (INIS)

    Dash, R.N.; Mohanty, S.K.; Patnaik, S.

    1977-01-01

    The relative efficiency of different forms of P in relation to their time of application for growing rice on different soil types has been studied by using 32 P tagged mono-, di-, and tri-calcium phosphate, ammonium nitrate phosphate containing all the P in the citrate-soluble form and potassium meta-phosphate. P-deficient acid laterite soil from Burdwan, red loam soil from Peramanpur and calcareous black soil from Hyderabad were used in the study. The different P forms were found to be compatible in the acid, red and laterite soils when the phosphorus forms were primed to moist acid soils 2 weeks prior to flooding. On application at flooding, fertilizers containing citrate-soluble phosphate were found to be less effective as compared to those containing water-soluble phosphate. In the calcareous black soil, however, the fertilizers, containing insoluble or citrate-soluble phosphates were not as efficient as the water-soluble forms, possibly because of lack of dissolution process. Potassium meta-phosphate was found to be effective in all the soil types whether applied at flooding or primed to the moist soil. (M.G.B.)

  8. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    Science.gov (United States)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we

  9. The biodegradability of EDDHA chelates under calcareous soil conditions

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Hoffland, E.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2012-01-01

    FeEDDHA (iron (3 +) ethylenediamine-N,N'-bis(hydroxy phenyl acetic acid) products are commonly applied to mend or prevent Fe chlorosis in plants. In soil application, racemic and meso o,o-FeEDDHA are the effective components, while o,p-FeEDDHA tends to adsorb or react to o,p-CuEDDHA. Upon

  10. Ground cover and tree growth on calcareous minesoils: Greater influence of soil surface than nitrogen rate or seed mix

    International Nuclear Information System (INIS)

    Kost, D.A.; Vimmerstedt, J.P.

    1994-01-01

    Growth of ground cover and trees was evaluated for five growing seasons on calcareous coal minesoil surfaces (standard graded topsoil, graded and ripped topsoil, graded gray cast overburden) in southeastern Ohio. Soil surface plots were seeded in September 1987 with either a standard herbaceous seed mix [orchardgrass (Dactylis glomerata L.), timothy (Phleum pratense L.), perennial ryegrass (Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.), Ranger alfalfa (Medicago sativa L.), Mammoth red clover (Trifolium pratense L.), Empire birdsfoot trefoil (Lotus corniculatus L.), and wheat (Triticum aestivum L.)], or a modified mix using no alfalfa and half the rate of orchardgrass. Nitrogen (45, 90, or 135 kg ha/N) was applied as ammonium nitrate in September 1987 and April 1989. White ash (Fraxinus americana L.), silver maple (Acer saccharinum L.), northern red oak (Quercus rubra L.), and eastern white pine (Pinus strobus L.) were planted in spring 1989 into 0.8 m-wide strips sprayed with glyphosate herbicide at 2.24 kg/ha in October 1988. Total cover and total biomass were highest in July 1989, following the last application of nitrogen fertilizer in April 1989. Total cover ranged from 44% to 56%, and total biomass ranged from 102 to 162 g/0.5 m 2 from 1990 to 1993. Total cover and total biomass were lower at the lowest nitrogen rate in 1989 only. Type of herbaceous seed mix did not affect growth of ground cover or trees. Overall tree survival was 82.0% the first year but declined to 40.6% after 5 yr. Survival varied significantly among all tree species (3.5% for pine, 22.2% for oak, 38.5% for maple, 98.1% for ash)

  11. Effect of phosphate rate on the L-value of two soils from Bahia State, Brazil

    International Nuclear Information System (INIS)

    Cotrim Duete, Robson Rui; Alvarez Villanueva, Felipe Carlos; Muraoka, Takashi; Abreu Junior, Cassio Hamilton

    1999-01-01

    The determination of L value in low phosphate content soils has presented contradictory results in the literature. In order to evaluate the effect of P rates on L value of two representative soils of Bahia State, Brazil, an experiment was carried out in green house of CENA, USP in Piracicaba. The experiment consisted of two soils (calcareous Red-yellow latosol ''LVc'' and distrofic Red-yellow latosol ''LVd'', collected from Irec and Ribeira do Pombal, respectively) and three P rates (0; 28; and 140 kg P ha -1 ) as triple superphosphate and carried out in plastic pot with 2.5 kg of soil, using corn (Zea mays L.) ''Catetinho Sabugo Roxo'' cultivar as the test plant. The 32 P was applied as KH2PO4 solution, 3.7MBq/pot. The plants were collected 45 days after emergence, dried, weighed, ground and analised for total P content and 32 P radioactivity. The increasing fertilizer P rate increased the nutrient derived from the soil and consequentely, the L values varied with the rate of P fertilizer. The calcareous LV soil showed to have higher L value, though the greater relative increase were observed in distrofic LV soil, due to lower P adsorption values

  12. From the study of fire effects on individual soil properties to the development of soil quality indices. 1. The pioneer research

    Science.gov (United States)

    Mataix-Solera, Jorge; Zornoza, Raúl

    2013-04-01

    water repellency induced by fire in calcareous Mediterranean forest soils. Eur. J. Soil Sci. 58, 1254-1259. Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mataix-Beneyto, J., García-Orenes, F., 2008. Immediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena 74, 219-226. Mataix-Solera, J., Doerr, S.H., 2004. Hydrophobicity and aggregate stability in calcareous topsoil from fire affected pine forests in southeastern Spain. Geoderma 118, 77-88. Mataix-Solera, J., Arcenegui, V., Guerrero, C., Jordán, M., Dlapa, P., Tessler, N., Wittenberg, L. 2008. Can terra rossa become water repellent by burning? A laboratory approach. Geoderma, 147, 178-184. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., 2011. Fire effects on soil aggregation: a review. Earth-Science Reviews 109, 44-60 Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., Mayoral, A.M., Morales, J. Mataix-Beneyto, J., 2007b. Soil properties under natural forest in the Alicante Province of Spain. Geoderma. 142, 334-341. Zornoza, R., Mataix-Solera, J., Guerrero, C., Arcenegui, V., Mataix-Beneyto, J., Gómez, I., 2008. Validating the effectiveness and sensitivity of two soil quality indices based on natural forest soils under Mediterranean conditions. Soil Biology & Biochemistry. 40, 2079-2087.

  13. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000

    Science.gov (United States)

    Yu, Yanyan; Guo, Zhengtang; Wu, Haibin; Kahmann, Julia A.; Oldfield, Frank

    2009-06-01

    We address the spatial changes in organic carbon density and storage in cultivated soils in China from 1980 to 2000 on the basis of measured data from individual studies and those acquired during the second national soil survey in China. The results show a carbon gain in ˜66% of the cultivated area of China as a whole with the increase in soil organic carbon (SOC) density mostly ranging from 10% to 30%. Soil organic carbon density increased in fluvi-aquic soils (fluvisols, Food and Agriculture Organization (FAO) of the United Nations) in north China, irrigated silting soils (calcaric fluvisols) in northwest China, latosolic red earths (haplic acrisols/alisols), and paddy soils (fluvisols/cambisols) in south China. In contrast, significant decreases are observed in black soils (phaeozems) in northeast China and latosols (haplic acrisols) in southwest China. No significant changes are detected in loessial soils (calcaric regosols) and dark loessial soils (calcisols) in the loess plateau region. The total SOC storage and average density in the upper 20 cm in the late 1990s are estimated to be ˜5.37 Pg C and 2.77 kg/m2, respectively, compared with the values of ˜5.11 Pg C and 2.63 kg/m2 in the early 1980s. This reveals an increase of SOC storage of 0.26 Pg C and suggests an overall carbon sink for cultivated soils in China, which has contributed 2-3% to the global terrestrial ecosystem carbon absorption from 1980 to 2000. Statistical analyses suggest an insignificant contribution to the observed SOC increase from climate change, and we infer that it is mostly attributable to improved agricultural practices. Despite the SOC density increases over 20 years, the SOC density of the cultivated soils in China in the late 1990s is still ˜30% lower compared to their uncultivated counterparts in comparable soil types, suggesting a considerable potential for SOC restoration through improving management practices. Assuming a restoration of ˜50% of the lost SOC in the next 30

  14. Methods of pH determination in Calcareous soils of Oman: The effect of Electrolyte and soil solution ratio

    International Nuclear Information System (INIS)

    Al-Busaidi, A.; Cookson, P.

    2002-01-01

    Determination of pH assists in understanding many reactions that occur in soil. Soil pH values are highly sensitive to the procedure used for determination. In this study, pH was measured in different electrolytes [distilled water (pHw), 0.01MCaCl2 (pHCa), 1MKCl (pHk), and 0.01MBaCl2 (pHba)] with different soil: electrolyte ratios (i.e. 1:1, 1:2.5 and 1:5). The objective was to determine the effect of each electrolyte and dilution ratio on pH of saline and non-saline soils from Oman. It was found that ph values varied significantly between electrolytes and with different dilution ratios. Linear regression equations were generated between electrolytes, dilution ratios and were mostly significant. Soil pH values determined in different electrolytes were significantly interrelated. Water appeared as a highly suitable solvent for soil pH measurements because it is simple and values familiar to soil users. However, alkaline errors and electrode instabilities due to liquid junction and soluble salt effects, affected soil pH measurements, especially in water, and resulted in alkaline errors during pH measurements. Errors were minimized when pH was measured in electrolytes rather than in water. (author)

  15. Effect of land use change on soil properties and functions

    Science.gov (United States)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit

    2014-05-01

    For good base of sustainable land management and ecologically sound protection of soils are researches on soil properties and functioning. Ecosystem approach to soil properties and functioning is equally important in both natural and cultivated land use conditions. Comparative analysis of natural and agro-ecosystems formed on similar soil types enables to elucidate principal changes caused by land use change (LUC) and to elaborate the best land use practices for local pedo-ecological conditions. Taken for actual analysis mineral soils' catena - rendzina → brown soils → pseudopodzolic soils → gley-podzols - represent ca 1/3 of total area of Estonian normal mineral soils. All soils of this catena differ substantially each from other by calcareousness, acidity, nutrition conditions, fabric and humus cover type. This catena (representative to Estonian pedo-ecological conditions) starts with drought-prone calcareous soils. Brown (distributed in northern and central Estonia) and pseudopodzolic soils (in southern Estonia) are the most broadly acknowledged for agricultural use medium-textured high-quality automorphic soils. Dispersedly distributed gley-podzols are permanently wet and strongly acid, low-productivity sandy soils. In presentation four complex functions of soils are treated: (1) being a suitable soil environment for plant cover productivity (expressed by annual increment, Mg ha-1 yr-1); (2) forming adequate conditions for decomposition, transformation and conversion of fresh falling litter (characterized by humus cover type); (3) deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (4) forming (bio)chemically variegated active space for soil type specific edaphon. Capacity of soil cover as depositor (3) depends on it thickness, texture, calcareousness and moisture conditions. Biological activity of soil (4) is determined by fresh organic matter influx, quality and quantity of biochemical substances and humus

  16. Nitrogen isotope compositions and spatial distribution characteristics of soil in the process of karst rocky desertification

    International Nuclear Information System (INIS)

    Luo Xuqiang; Wang Shijie; Wang Chengyuan; Liang Yuhua; Liao Xinrong; Yang Hongyan

    2011-01-01

    Isotopic composition and spatial distribution characteristic of total nitrogen of the surficial soil in karst rocky desertification area, including different types, different grades and different disturbed modes karst rocky desertification within the same small catchment, which belong to the Wangjiazhai peak-cluster depression basin and located in Qingzhen City, Guizhou Province were discussed in this study. Results showed that δ 15 N values of total nitrogen in top soil in yellow soil area were mainly between +0.35‰ ∼ +6.82% with the average of +4.50‰, and between +2.70‰ ∼ +6.50‰ in black calcareous with the average of +4.27‰. In both yellow soil area and black calcareous area, there were no significant difference in the δ 15 N values of total nitrogen on sample lands of rocky desertification at different levels, different ways of interruption and different slope positions, and no obvious difference on the whole (P≤0.05), which is mainly due to the high habitat heterogeneity of karst area. (authors)

  17. Evaluation of the potential impact of Cu competition on the performance of o,o-FeEDDHA in soil applications

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Weng, L.P.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2015-01-01

    Ferric ethylene diamine-N,N'-bis(hydroxy phenyl acetic acid) (FeEDDHA)-based iron (Fe) fertilizers are commonly applied to plants grown on calcareous soils and comprise a mixture of FeEDDHA components. Upon application to the soil, the pore water concentrations of the active ingredients racemic

  18. A Study of Calcareous Deposits on Cathodically Protected Mild Steel in Artificial Seawater

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-03-01

    Full Text Available Calcareous deposits were formed on steel under conditions of cathodic protection in artificial seawater at applied constant current densities ranging from 50 to 400 mA·m−2. The calcareous layers were characterized using a Field Emission Gun Scanning Electron Microscope (FEG SEM in conjunction with Energy Dispersive X-Ray Analysis (EDX, and Electrochemical Impedance Spectroscopy (EIS. At cathodic current densities of 50–100 mA·m−2 where corrosion was still occurring, a clear correlation existed between the iron containing corrosion product and the overlying magnesium hydroxide layer. This revealed that the mapping of magnesium rich areas on a steel surface can be used in the identification of local corrosion sites. At current densities of 150–200 mA·m−2, a layered deposit was shown to occur consisting of an inner magnesium-containing layer and an outer calcium-containing layer. At current densities of 300–400 mA·m−2, intense hydrogen bubbling through macroscopic pores in the deposits gave rise to cracking of the deposited film. Under such conditions deposits do not have a well-defined double layer structure. There is also preferential formation of magnesium-rich compounds near the steel surface at the early stages of polarisation and within the developing pores and cracks of calcareous deposits later on. Based on SEM/EDX investigation of calcareous depositions the impedance model was proposed and used to monitor in situ variations in steel corrosion resistance, and to calculate the thickness of formed deposits using the length of oxygen diffusion paths.

  19. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    Science.gov (United States)

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Agrogenic degradation of soils in Krasnoyarsk forest-steppe

    Science.gov (United States)

    Shpedt, A. A.; Trubnikov, Yu. N.; Zharinova, N. Yu.

    2017-10-01

    Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.

  1. Community structure and palaeoecological implications of calcareous encrusters on artificial substrates across a Mexican Caribbean reef

    Science.gov (United States)

    Hepburn, L. J.; Blanchon, P.; Murphy, G.; Cousins, L.; Perry, C. T.

    2015-03-01

    Calcareous encrusters stabilize and bind reef framework and contribute significantly to reef function and biodiversity. Their calcareous skeletons have good preservation potential which, together with well-constrained habitat preferences, makes them useful indicators of past environmental conditions. However, our knowledge of environmental tolerances and spatial distribution trends of encrusters remains limited. Here, we determine the distributional trends and environmental tolerances of calcareous encrusters and delineate the relevance of particular species/genera for palaeoecological reconstructions. Artificial microhabitats were created to mimic exposed, partially cryptic, and cryptic habitats in various orientations for periods of 1 and 2 yr. Calcareous encruster coverage was high, especially in cryptic habitats (95 %), and clear successional trends were observed over time. Total encruster carbonate production was intermediate (range 72.8-476.3 g m-2 yr-1). Encruster species and growth morphology exhibited a defined zonation in response to reef sub-environment, microhabitat, and environmental factors such as light and wave exposure. Linear regression identified three coralline algae genera, as well as Homotrema rubrum, Planorbulina spp., and cemented bivalves as those most likely to occur in particular habitats. Therefore, the presence of these species may be used with greater confidence in distinguishing palaeomicroenvironments.

  2. Impact of Humic Acid on Yield and Quality of Sugar Beet (Beta vulgaris L. Grown on Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Ghorbanali RASSAM

    2015-09-01

    Full Text Available A field experiment was performed to determine the effects of using humic acid with irrigation on quantitative and qualitative yield traits of sugar beet grown on calcareous soils in Esfaraen, located in the North-East of Iran. Treatments consisted of three levels of humic acid concentration (zero or control, 2.5 and 5 L ha-1 and the number of applications (once 45 days after planting; twice, 45 and 75 days after planting; three times, respectively 45, 75 and 105 days after planting. The effect of the two experimental factors on sugar beet yield traits such as the content of sucrose, refined sugar, molasses forming substances, root yield and refined sugar yield were evaluated. The results proved the existence of a significant interaction between humic acid concentration and the number of applications on all parameters under study. The application of humic acid caused a significant increase of sucrose, refined sugar, root yield and refined sugar yield and a reduction in molasses forming substances content, compared to the control. The increased amount of sucrose and refined sugar content in all applications in concentration of 2.5 L ha-1 humic acid was more than with 5 L ha-1. Similarly, the content of molasses forming substances showed more reduction in 2.5 L ha-1 than in 5 L ha-1 treatment. However, the results revealed that the highest root yield and refined sugar yield, as the main qualitative and quantitative parameters of sugar beet yield, were achieved by three times application of 5 L ha-1 that had 24 and 37% increase compared to control.

  3. Use of calcareous algae and monensin in Nellore cattle subjected to an abrupt change in diet

    Directory of Open Access Journals (Sweden)

    Roberta Ferreira Carvalho

    2016-04-01

    Full Text Available ABSTRACT: Additives are used in high concentrate diets to prevent metabolic disorders in cattle. This study was designed to evaluate the effect of calcium sources and monensin on the control of ruminal acidosis in Nellore cattle that were abruptly shifted to a high (92.3% concentrate diet. Eight cannulated steers were randomly assigned to two contemporary 4x4 Latin square. Treatments involved the addition of a calcium source, either limestone (LI or a product derived from calcareous algae (CA, to the basic diet with or without the presence of monensin. Calcareous alga (Lithothamnium calcareum is a natural and renewable product and a source of calcium carbonate. The quantity of added limestone, calcareous algae and monensin was 7.1g kg-1, 7.4g kg-1 and 30mg kg-1 DM, respectively. There was no effect of calcium source (P=0.607 or monensin (P=0.294 on feed intake or on the concentration of short chain fatty acids. Treatments with calcareous algae resulted in a higher mean ruminal pH (P=0.039, a shorter amount of time with the ruminal pH under 5.2 (P<0.001 and a better control of blood pH (P=0.006. Treatments with monensin also resulted in a shorter amount of time with the ruminal pH below 5.2 (P=0.023. Calcareous algae were shown to be effective in controlling adverse changes in the rumen and in blood variables for Nellore cattle that were subjected to an abrupt change to a high concentrate diet.

  4. Specialist plant species harbour higher reproductive performances in recently restored calcareous grasslands than in reference habitats

    OpenAIRE

    Harzé, Mélanie; Mahy, Grégory; Bizoux, Jean-Philippe; Piqueray, Julien; Monty, Arnaud

    2015-01-01

    Background and aims_Calcareous grasslands are local biodiversity hotspots in temperate regions that suffered intensive fragmentation. Ecological restoration projects took place all over Europe. Their success has traditionally been assessed using a plant community approach. However, population ecology can also be useful to assess restoration success and to understand underlying mechanisms. Methods_We took advantage of three calcareous grassland sites in Southern Belgium, where reference p...

  5. Direct and indirect exogenous contamination by pesticides of rice-farming soils in a Mediterranean wetland.

    Science.gov (United States)

    Gamón, M; Sáez, E; Gil, J; Boluda, R

    2003-02-01

    It is known that the sources of soil contamination can be endogenous or exogenous and that exogenous contamination may be direct or indirect. In this work, an environmental pesticide fate study was conducted in soil profiles collected from 23 rice field sites in an important Mediterranean wetland (Albufera Natural Park, Valencia, Spain) from April 1996 to November 1997. Temporal and spatial distribution of 44 pesticide residues in an alluvial Mediterranean soil (gleyic-calcaric Fluvisol, Fluvaquent) were monitored. During this period, the levels of pesticide residues in different soil horizons (Ap1 0-12 cm, Ap2 12-30 cm, ApCg 30-50 cm, C1gr 50-76 cm, and C2r 76-100 cm) were investigated. In addition, information was collected on agricultural pesticide application practices and soil characteristics. Distribution throughout the soil profile showed that pesticide concentrations were always higher in the topsoil (Ap1 horizon), in the autumn season, and in the border with citrus-vegetable orchard soils (calcaric Fluvisol, Xerofluvent). Chlorpyrifos (organophosphorus), endosulfan (organochlorine), and pyridaphenthion (organophosphorus) insecticides were, respectively, the most detected of all the pesticides investigated. These results were associated with processes, such as nonleaching, transport by movement into surface waters, retention, volatilization, and chemical and biological degradation in the topsoil, as well as with direct and indirect exogenous contamination sources.

  6. Were Oceanic Plateaus Instrumental for Calcareous Nannoplankton Evolution?

    Science.gov (United States)

    Erba, E.; Casellato, C.; Bottini, C.

    2011-12-01

    The history of calcareous nannoplankton shows a general increase in species richness through the Mesozoic. Fertility and chemistry of the oceans, climate and pCO2 seem instrumental for nannoplankton abundance, diversification and adaptation, but high-resolution chronology of paleobiological and geological events is crucial for the understanding of evolutionary processes relative to ecosystem perturbations. Natural variations in atmospheric CO2 are essentially triggered by igneous activity and the role of ocean crust production in the evolution of seawater composition, nutrient cycling, climate change and, consequently, in calcareous nannoplankton biodiversity, might be more relevant than generally thought. Indeed, two major steps in nannofloral Mesozoic evolution correlate with construction of gigantic oceanic plateaus, namely the Shatsky Rise (SR) (Tithonian/Berriasian boundary interval) and the Ontong Java Plateau (OJP) (Barremian/Aptian boundary interval). During the latest Jurassic calcareous nannoplankton experienced a rapid diversification and rise in abundance of several taxa including heavily calcified nannoliths with consequent major increase in biogenic calcite production. The Tithonian origination of coccoliths and nannoliths suggests ideal paleoecological conditions for calcareous nannoplankton, presumably thriving in stable, relatively oligotrophic and cool oceans under low pCO2. Recent data indicate that this speciation and calcification episode was interrupted during magnetochron CM19r, prior to massive diversification of nannoconids. In the late Barremian-early Aptian interval, the nannoconid decline and crisis are paralleled by a major nannoplankton (mainly coccolith) speciation episode. Such calcification failure and coccolith diversification might reflect disruption of the thermocline, increased fertility and warming under excess CO2 levels. These evolutionary steps show rapid speciation, but differ because nannoliths became dominant in the late

  7. Transport of Calcareous Fragments by Reef Fishes.

    Science.gov (United States)

    Bardach, J E

    1961-01-13

    The weight of sand, coral scrapings, algal fragments, and other calcareous materials which pass through the intestines of reef fishes was calculated on a hectare-per-year basis. It was found that browsing omnivorous reef fishes which rely, in part, on a plant diet ingested and redeposited at least 2300 kg of such material on a 1-hectare study reef near Bermuda. Reasons are presented why this estimate, certainly in order of magnitude, should be applicable to coral reefs in general.

  8. Effect of humic substances on P sorption capacity of three different soils

    Science.gov (United States)

    Delgado, Antonio

    2010-05-01

    Organic matter decreases P sorption by soils. It has been demonstrated the effect of low molecular weight compounds decreasing P adsorption on active surfaces and the effect of humic and fulvic acids inhibiting the precipitation of hydroxyapatite and favouring the formation of more soluble phosphates. This contributes to increase the recovery of applied P fertilizer. The objective of this work was to study the effect of 4 different humic substances (commercially available and provided by Tradecorp Internacional S.A.) on the sorption capacity of three soils differing widely in chemical properties (two calcareous from south Spain, pH 8 and 8.5, and other acidic from Brazil, pH 5.9 and 50 % of exchangeable basic cations). To this end, sorption isotherms were performed at a soil:0.01 M CaCl2 ratio of 1:10 at 6, 30 and 90 days. 2.5 mg of humic substances per g of soil were added to the solution. Data were fitted to the best model and linearized sorption curves for each humic substance were compared with the linearized sorption curve for the control without humic substances application (intersection point and slopes). Soil from Brazil showed a much higher sorption capacity (400 mg P kg-1 soil sorbed at 1 mg L-1 of P in the solution at 1 day) than the other two soils (50 and 100 mg P kg-1). Slow reactions significantly contributed to P sorption in the three soils, amounts sorbed at 90 days being twice than those sorbed at 1 day. Two of the products increased P sorption in the soil from Brazil at 1 day. At 90 days all the products increased P sorption significantly. This increased P sorption can be only explained by metal complexation by the substances applied, which may result in organo-metallic compounds with a high P sorption capacity. This effect was independent of the proportion of humic and fulvic acids in the applied products because the amounts of metal complexed by these compouds depend on the amount of functional groups to coordinate with metals. In the Spanish

  9. Fluoride concentrations in soils, vegetation samples and soil fauna in the direct vicinity of a pollution source

    International Nuclear Information System (INIS)

    Vogel, J.; Ottow, J.C.G.; Breimer, R.F.

    1989-01-01

    Fluoride analyses CF t = total F; F w = water soluble F and F HCI HCI-extractable F) of different soils, vegetation samples and soil fauna (Helix pomatia, Lumbricus spp., arthropodes) in a locally polluted area (for nearly 65 years) clearly revealed an F-accumulation in top soil, vegetation and animals. Based on 1N HCI-extractable fluoride, two contamination zones around the emitting industry could be identified. In the calcareous soils, leaching of fluoride seems to be insignificant because of a strong immobilization as CaF 2 . A highly significant correlation between the F HCI content of soils and Lumbricus spp. (with and without gut content) or Helix pomatia shells was found. Fluoride concentrations in washed leaves of Hedera helix and in decaying grass reached levels of 306 and 997 μgF/g respectively. Saprophagous soil arthropods contained high fluoride levels, up to 732 μgF/g in Armadillidium vulgare. (orig.)

  10. Salinity management using an anionic polymer in a pecan field with calcareous-sodic soil.

    Science.gov (United States)

    Ganjegunte, Girisha K; Sheng, Zhuping; Braun, Robert J

    2011-01-01

    Soil salinity and sodicity have long been recognized as the major concerns for irrigated agriculture in the Trans-Pecos Basin, where fields are being flood irrigated with Rio Grande River water that has elevated salinity. Reclamation of these salt-affected lands is difficult due to fine-texture, high shrink-swell soils with low permeability. Conventional practice of subsoiling to improve soil permeability is expensive and has had limited success on the irrigated soils that have appreciable amounts of readily weatherable Ca minerals. If these native Ca sources can be effectively used to counter sodicity, it can improve soil permeability and reduce amelioration costs. This study evaluated the effects of 3 yr of polyacrylamide (PAM) application at 10 mg L concentration during the first irrigation of the season to evaluate soil permeability, in situ Ca mineral dissolution, and leaching of salts from the effective root zone in a pecan field of El Paso County, TX. Results indicated that PAM application improved water movement throughout the effective root zone that resulted in Na leaching. Polymer application significantly decreased CaCO (estimated based on inorganic C analysis) concentrations in the top 45 cm compared with baseline levels, indicating solubilization and redistribution of calcite. The PAM application also reduced soil electrical conductivity (EC) in the top 60 cm (4.64-2.76 dS m) and sodium adsorption ratio (SAR) from 13.1 to 5.7 mmol L in the top 75-cm depths. As evidence of improved soil conditions, pecan nut yields increased by 34% in PAM-treated fields over the control. Results suggested that PAM application helped in effective use of native Ca sources present in soils of the study site and reduced Na by improving soil permeability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Arsenic content and forms in some tropical soils

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, H W

    1975-01-01

    Some Latin American soils were analyzed for total arsenic and its various forms. For the volcanic ash soils from Colombia and Costa Rica an average of 5.1 and 7.0 ppm As was found. Some oxisols and ultisols from Puerto Rico reached an average of 10.0 ppm As. The distribution of arsenic with soil depth does not show any trend; consequently unlike P, it does not undergo biogenic accumulation on soil surfaces. Two soils of Puerto Rico reached exceptional high As values (over 100 ppm); it is believed that As of sea water precipitates with carbonate in calcareous sediments. In these soils Ca-bound As predominates over Fe - and Al-arsenate. In a Costa Rican soil, where arsenic compounds are used to control coffee diseases, a great accumulation of As in the upper soils depths was registered (for 0 to 5 cm from 10.6 to 49.0 ppm As). In the soil profile represents the most important transformation form applied arsenate.

  12. Late Palaeozoic calcareous algae in the Pisuerga basin (N-Palencia, Spain)

    NARCIS (Netherlands)

    Rácz, L.

    1965-01-01

    The calcareous algae were important rock-builders in the deposition of the many limestone members of the Pisuerga Basin. Systematic descriptions are given of 12 species. The following species are new: Clavaporella reinae, Clavaphysoporella endoi, Epimastopora camasobresensis, Psuedoepimastopora?

  13. Biostratigraphy of the Lower Cretaceous Schrambach Formation on the classical locality of Schrambachgraben (Northern Calcareous Alps, Salzburg Area)

    Czech Academy of Sciences Publication Activity Database

    Boorová, D.; Skupien, P.; Vašíček, Zdeněk

    2014-01-01

    Roč. 90, č. 1 (2014), s. 89-131 ISSN 1214-1119 Institutional support: RVO:68145535 Keywords : biostratigraphy * Schrambach and Rossfeld formations * Berriasian, Valanginian * calcareous and non-calcareous dinoflagellata * ammonites Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.515, year: 2014 http://www.geology.cz/bulletin/fulltext/1479_Boorova_in_press.pdf

  14. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Eashwar, M.; SathishKumar, P.; Ravishankar, R.; Subramanian, G.

    In replicate series of experiments in natural seawater, one in full darkness and the other in a 1:1 diurnal cycle with as little as 5 percent of natural solar illumination, sunlight promoted calcareous deposition on cathodic stainless steel surfaces...

  15. Erodibility of calcareous soils as influenced by land use and intrinsic soil properties in a semiarid region of central Iran.

    Science.gov (United States)

    Ayoubi, Shamsollah; Mokhtari, Javad; Mosaddeghi, Mohammad Reza; Zeraatpisheh, Mojtaba

    2018-03-06

    The most important properties affecting the soil loss and runoff were investigated, and the effects of land use on the soil properties, together with the erodibility indices in a semiarid zone, central Iran, were evaluated. The locations of 100 positions were acquired by cLHS and 0-5-cm surface soil layer samples were used for laboratory analyses from the Borujen Region, Chaharmahal-Va-Bakhtiari Province, central Iran. To measure in situ runoff and soil erodibility of three different land uses comprising dryland, irrigated farming, and rangeland, a portable rainfall simulator was used. The results showed that the high variations (coefficient of variation, CV) were obtained for electrical conductivity (EC), mean weight diameter (MWD), soil organic carbon (SOC), and soil erodibility indices including runoff volume, soil loss, and sediment concentration (CV ~ 43.6-77.4%). Soil erodibility indices showed positive and significant correlations with bulk density and negative correlations with SOC, MWD, clay content, and soil shear strength in the area under investigation. The values of runoff in the dryland, irrigated farming, and rangeland were found 1.5, 28.9, and 58.7 cm 3 ; soil loss in the dryland, irrigated farming, and rangeland were observed 0.25, 2.96, and 76.8 g; and the amount of sediment concentration in the dryland, irrigated farming, and rangeland were found 0.01, 0.11, and 0.15 g cm -3 . It is suggested that further investigations should be carried out on soil erodibility and the potential of sediment yield in various land uses with varying topography and soil properties in semiarid regions of Iran facing the high risk of soil loss.

  16. Degradation of 14C-lindane in soils of planting ginseng

    International Nuclear Information System (INIS)

    Wang Zhengguo; Zhao Jing; Yao Jianren

    1992-01-01

    14 C-Lindane was used to study degradation of Lindane (γ-BHC) in different types of soil of planting ginseng. Results indicated that Lindane was very slowly mineralized after a 228 day's incubation period in closed system. It took about 9 years to completely mineralize Lindane in the chernozem, and 11 years in the brown calcareous at 20 ppm in the soils. In addition, the rate of Lindane mineralized depended on population and number of microorganism. In this test the fungi played more important role than the bacteria in the Lindane mineralization. 14 C-Lindane residues extracted from the soils were 77.43%-80.54%, and Lindane residues associated with the soils were 13.11%-20.77%

  17. The small-scale species mobility in calcareous grasslands - example from southern Poland

    Directory of Open Access Journals (Sweden)

    Wojciech Bąba

    2011-01-01

    Full Text Available In this paper I use the different measures of species mobility to describe the fine small-scale dynamics of calcareous grassland built mainly by perennial species and developed in the highly heterogeneous habitat of calcareous rocks. The community showed the low dynamics on a plot-scale (100 m2 and a high one on the scale of 1 m2. However, the studied species differed greatly in calculated indices: turnover rate, (T; 6-64, residence time (RT; 0.5-21.8 y and carousel time (CT; 4-420 y as well as the observed tendency to persistence on the spots (PERSIST and their re-colonisation (AGAIN. This allowed to distinguish the three groups of species: (1 "core species" characterized by high frequency and low T and high CT and RT values, which determine the low dynamics of a community on the plot scale, (2 species with intermediate mobility rate and (3 the group with high mobility rate. The observed cumulative frequencies of all the studied species (CFobs were much lower than expected under the random re-assignation model (CFRR. Moreover, they were also lower than those predicted by random immigration model (CFRI. The results showed that the "complex carousel" model rather than "single carousel" one explained better the small-scale dynamics of calcareous grasslands.

  18. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines.

    Science.gov (United States)

    García G, Mariandrea; Márquez G, Marco Antonio; Moreno H, Claudia Ximena

    2016-01-01

    Bacterial carbonate precipitation has implications in geological processes and important biotechnological applications. Bacteria capable of precipitating carbonates have been isolated from different calcium carbonate deposits (speleothems) in caves, soil, freshwater and seawater around the world. However, the diversity of bacteria from calcareous deposits in Colombia, and their ability to precipitate carbonates, remains unknown. In this study, conventional microbiological methods and molecular tools, such as temporal temperature gradient electrophoresis (TTGE), were used to assess the composition of bacterial communities associated with carbonate deposits and drip-waters from two Colombian mines. A genetic analysis of these bacterial communities revealed a similar level of diversity, based on the number of bands detected using TTGE. The dominant phylogenetic affiliations of the bacteria, determined using 16S rRNA gene sequencing, were grouped into two phyla: Proteobacteria and Firmicutes. Within these phyla, seven genera were capable of precipitating calcium carbonates: Lysinibacillus, Bacillus, Strenotophomonas, Brevibacillus, Methylobacterium, Aeromicrobium and Acinetobacter. FTIR and SEM/EDX were used to analyze calcium carbonate crystals produced by isolated Acinetobacter gyllenbergii. The results showed that rhombohedral and angular calcite crystals with sizes of 90μm were precipitated. This research provides information regarding the presence of complex bacterial communities in secondary carbonate deposits from mines and their ability to precipitate calcium carbonate from calcareous deposits of Colombian mines. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. The impact of wildland fires on calcareous Mediterranean pedosystems (Sardinia, Italy) - An integrated multiple approach.

    Science.gov (United States)

    Capra, Gian Franco; Tidu, Simona; Lovreglio, Raffaella; Certini, Giacomo; Salis, Michele; Bacciu, Valentina; Ganga, Antonio; Filzmoser, Peter

    2018-05-15

    Sardinia (Italy), the second largest island of the Mediterranean Sea, is a fire-prone land. Most Sardinian environments over time were shaped by fire, but some of them are too intrinsically fragile to withstand the currently increasing fire frequency. Calcareous pedoenvironments represent a significant part of Mediterranean areas, and require important efforts to prevent long-lasting degradation from fire. The aim of this study was to assess through an integrated multiple approach the impact of a single and highly severe wildland fire on limestone-derived soils. For this purpose, we selected two recently burned sites, Sant'Antioco and Laconi. Soil was sampled from 80 points on a 100×100m grid - 40 in the burned area and 40 in unburned one - and analyzed for particle size fractions, pH, electrical conductivity, organic carbon, total N, total P, and water repellency (WR). Fire behavior (surface rate of spread (ROS), fireline intensity (FLI), flame length (FL)) was simulated by BehavePlus 5.0.5 software. Comparisons between burned and unburned areas were done through ANOVA as well as deterministic and stochastic interpolation techniques; multiple correlations among parameters were evaluated by principal factor analysis (PFA) and differences/similarities between areas by principal component analysis (PCA). In both sites, fires were characterized by high severity and determined significant changes to some soil properties. The PFA confirmed the key ecological role played by fire in both sites, with the variability of a four-modeled components mainly explained by fire parameters, although the induced changes on soils were mainly site-specific. The PCA revealed the presence of two main "driving factors": slope (in Sant'Antioco), which increased the magnitude of ROS and FLI; and soil properties (in Laconi), which mostly affected FL. In both sites, such factors played a direct role in differentiating fire behavior and sites, while they played an indirect role in determining

  20. Is succession in wet calcareous dune slacks affected by free sulfide?

    NARCIS (Netherlands)

    Adema, EB; van Gemerden, H; Grootjans, AP; Adema, Erwin B.; Grootjans, Ab P.; Rapson, G.

    Consequences of sulfide toxicity on succession in wet calcareous dune slacks were investigated. Sulfide may exert an inhibitory effect on dune slack plants, but several pioneer species exhibit ROL (Radial Oxygen Loss) and thereby protect themselves against free sulfide. Under oxic conditions free

  1. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    Science.gov (United States)

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  2. Influence of the form and rate of 15N-labelled nitrogen fertilizers on nitrogen uptake by maize grown on two different soils

    International Nuclear Information System (INIS)

    Balabanova-Georgieva, R.; Ikonomova, E.

    1996-01-01

    The influence of 15 N-labelled urea and ammonium sulfate on the yield and uptake of fertilizer nitrogen and soil nitrogen by maize was studied under the conditions of pot experiments on calcareous black earth and leached black earth. The nitrogen fertilizers were applied in rates: N 1 =250 mg, N 2 =500 mg, N 3 =750 mg and N 4 =1000 mg/1 kg of soil, on phosphorus(P)-potassium(K) background (P=200 and K=600 mg/kg soil). When treating with N 3 and N 4 , the application of the whole nitrogen rate was compared with its split application. It was found that the form of the nitrogen fertilizer played no important role for the formation of the yield of biomass and the uptake of nitrogen with the yield when it is applied in low nitrogen rates and maize was grown on calcareous black earth. The yield of biomass and the uptake of nitrogen with the yield of maize reach their maximum under the conditions of calcareous black earth and high nitrogen rates applied as urea depressed the plants which proves the statement that in case of calcareous black earth application of ammonium sulfate should be preferred rather that urea, fertilization with which should be avoided. No depression of plants was observed under the conditions of leached black earth and application of high urea rates. The amount of nitrogen taken up is growing with the increasing of the nitrogen rate (excluding the N-treatment). The split application of high nitrogen rates increased notably the yield of maize-vegetation mass which proved the great ability of this crop for effective utilization of the nitrogen fertilizers when applied in portions and at suitable phases of plant vegetation. The role of the fertilizer nitrogen on the formation of the plant mass yield is much greater compared to that of the soil nitrogen; in the split application of urea the soil nitrogen plays a much bigger role than in its single application. The additional mobilization of the soil nitrogen under the influence of the applied nitrogen

  3. Evaluation of Chemical and Mineralogical Transformation of Iron in Different Soils in Saturated and Field Capacity Conditions

    Directory of Open Access Journals (Sweden)

    M. Saadatpour Mogaddam

    2016-09-01

    Full Text Available Introduction: Redox potential is one of the most important factors affecting on the solubility of iron minerals in soil. Decreasing redox potential in soil reduces Fe3+ to Fe2+, thereby affecting on solubility of Fe minerals. Application of organic matter to soil under waterlogging condition, decrease redox potential and as a consequence, accelerate the transformation of Fe minerals. The objectives of this study were: 1- The effect of waterlogging on the soluble total Fe concentration and transformation of Fe minerals in different soil pH values. 2- The indirect effects of organic matter on solubility of Fe minerals by changing the redox potential of the soils. Materials and Methods: A study was conducted to determine the effects of redox potential on solubility of Fe and transformation of Fe minerals during the time. Four agricultural soils were selected from different regions of Iran. The soil samples were treated with 0 (Cand 2% (O alfalfa powder and then incubated for 12 weeks under 60% Field capacity (F and waterlogged conditions (S. Subsamples were taken after 1and 12 weeks of incubation and the redox potential, pH value, electrical conductivity (EC, soluble cations (such as Ca2+, Mg2+, K+ and Na+ and anions (such as Cl-, SO42-, PO43- and NO3- and soluble Fe concentrations in the subsamples were measured. Concentrations of Fe2+ and Fe3+ species in soil solution were also predicted using Visual MINTEQ speciation program. Mineralogical transformation of Fe minerals was also determined by X-ray diffraction (XRD technique. Results and Discussion: The results in 60% Field capacity condition showed that pH value by organic matter (alfalfa powder application (OF increased significantly (p≤ 0.05 in acid and neutral soils and decreased in calcareous soils when compared to the control (CF. Organic matter is usually capable of lowering pH of alkaline soils by releasing hydrogen ions associated with organic anions or by nitrification in an open

  4. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.

    Science.gov (United States)

    Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P

    2009-01-01

    Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE).

  5. Endolithic fungi from deep sea calcareous substrata: isolation and laboratory studies

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Raghukumar, S.; Sharma, S.; Chandramohan, D.

    substrata at 100 atm. in 25 days. This fungus was not capable of acid production on nutrient media in the presence of various carbon sources, nor did it produce proteases. The role of fungi in calcareous substrata in the sea is discussed with reference...

  6. Calcareous nannofossils from the Boreal upper Campanian-Maastrichtian Chalk of Denmark

    DEFF Research Database (Denmark)

    Thibault, Nicolas Rudolph

    2010-01-01

    Boreal calcareous nannofossil assemblages have been documented from three sections in Denmark. from the Upper Campanian to Upper Maastrichtian (nannofossil zones UC16a(BP) to UC20d(BP)): the Stevns-1 borehole, next to the Cretaceous/Palaeogene boundary section of Stevns Klint, eastern Sjaelland...

  7. Effects of microelements on soil nematode assemblages seven years after contaminating an agricultural field

    NARCIS (Netherlands)

    Nagy, P.; Bakonyi, G.; Bongers, A.M.T.; Kádár, I.; Fábián, M.; Kiss, I.

    2004-01-01

    Long-term effects of Cd, Cr, Cu, Se and Zn were studied 7 years after artificially contaminating plots of an agricultural field on a calcareous chernozem soil. Effects of three to four different contamination levels (originally 10, 30, 90 and 270 mg kg(-1)) were studied. Nematode density was

  8. Medial calcar of proximal humeral fracture as landmark in restoration of humeral length in case of hemiarthroplasty

    Czech Academy of Sciences Publication Activity Database

    Hromádka, R.; Kuběna, Aleš Antonín; Šmíd, Martin; Popelka, S.

    2014-01-01

    Roč. 35, č. 5 (2014), s. 473-479 ISSN 0930-1038 Institutional support: RVO:67985556 Keywords : Fracture of proximal humerus * Calcar of humeral fracture * Reconstruction of proximal humerus * Reconstruction of humeral length * Shoulder arthroplasty * Shoulder hemiarthroplasty Subject RIV: FJ - Surgery incl. Transplants Impact factor: 1.047, year: 2014 http://library.utia.cas.cz/separaty/2013/E/smid-medial calcar of proximal humeral fracture as landmark in restoration of humeral length in case of hemiarthroplasty.pdf

  9. Vegetation-induced spatial variability of soil redox properties in wetlands

    Science.gov (United States)

    Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin

    2016-04-01

    Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in

  10. Consolidation and strength properties of calcareous sediments from Kaneohe and Kailua Bays, Hawaii

    Digital Repository Service at National Institute of Oceanography (India)

    Brandes, H.G.; Khadge, N.H.; Nakayama, D.D.

    behavior of marine calcareous sediments of biogenic origin. Consolidation and drained triaxial tests indicate that mixed sediments have higher compressibilities and lower strengths compared to high-carbonate sediments. Differences in gradation among high...

  11. Distribution of cadmium among geochemical fractions in floodplain soils of progressing development

    International Nuclear Information System (INIS)

    Lair, G.J.; Graf, M.; Zehetner, F.; Gerzabek, M.H.

    2008-01-01

    Initial soil development in river floodplains influences soil properties and processes. In this study, suites of young floodplain soils sampled at three European rivers (Danube/Austria, Ebro/Spain and Elbe/Germany) were used to link soil development to the soils' retention capacity for cadmium. Geochemichal fractionation of original and metal-spiked soils was conducted. Cadmium remained in weakly bound fractions in both original and spiked soils, representing an entirely different behaviour than observed for copper in an earlier study. The tendency of incorporation into more stable forms over time was only slightly expressed. Correlation analysis revealed the involvement of different sorption surfaces in soil, with no single soil constituent determining cadmium retention behaviour. Nevertheless, in the calcareous soils of the Danube floodplain, we found increased cadmium retention and decreased portions of desorbable cadmium with progressing soil development. - Distribution of cadmium among geochemical fractions in floodplain soils reveals high mobility but increased retention capacity with increasing soil age and development

  12. Irradiated sewage sludge for increased crop production - III. Macronutrient availability

    International Nuclear Information System (INIS)

    El-Motaium, R.; Badawy, S.H.

    2002-01-01

    Irradiated and non-irradiated sewage sludge, from El-Gabal El-Asfar Farm near Cairo, were applied to tomato (Lycopersicon esculentum cv. GS) grown in a calcareous and a sandy soil at rates of 20, 40, 60, and 80 t/ha. Unfertilized controls and basal-fertilizer treatments were included. Total concentrations of micronutrients (Cu, Zn, Fe, Mn) in sludge-treated calcareous soil were higher than those in the sandy soil, although DTPA-extractable micronutrient concentrations were lower. There were no significant differences between irradiated and non-irradiated sludge treatments in DTPA-extractable and total micronutrient concentrations for the calcareous or the sandy soil. The total micronutrient concentrations for the highest sludge application rate (80 t/ha) were 5,108, 125, 68.2, and 207 μg/g in the calcareous soil and 2,200, 74.8, 43.2, and 139 μg/g in the sandy soil for Fe, Mn, Cu, and Zn, respectively, whereas the DTPA-extractable micronutrient concentrations were 25.0, 6.2, 5.5 and 6.6 μg/g in the calcareous soil and 53.3, 10.1, 7.3 and 9.83 μg/g in the sandy soil, respectively. Highly significant differences were observed in total and available micronutrient concentrations in calcareous and sandy soils among the sludge-application rates. Micronutrient concentrations of tomato leaves and fruits increased with increasing application rates of irradiated and non-irradiated sludge, and were higher in the sandy than in the calcareous soil for the same treatment. Highly significant differences were observed among the sludge-application rates in terms of the concentrations of micronutrients in both leaves and fruits. However, there were no significant differences between the irradiated and non-irradiated sludge treatments in the micronutrient concentrations of leaves and fruits in either soil. Micronutrient uptake increased with increasing rates of application of sludge to the soil, more so in the sandy than in the calcareous soil. The amounts of Fe, Mn, Cu, and Zn

  13. Irradiated sewage sludge for increased crop production - III. Macronutrient availability

    International Nuclear Information System (INIS)

    El-Motaium, R.; Badawy, S.H.

    2002-01-01

    Irradiated and non-irradiated sewage sludge, from El-Gabal El-Asfar Farm near Cairo, were applied to tomato (Lycopersicon esculentum cv. GS) grown in a calcareous and a sandy soil at rates of 20, 40, 60, and 80 t/ha. Unfertilized controls and basal-fertilizer treatments were included. Total concentrations of micronutrients (Cu, Zn, Fe, Mn) in sludge-treated calcareous soil were higher than those in the sandy soil, although DTPAextractable micronutrient concentrations were lower. There were no significant differences between irradiated and non-irradiated sludge treatments in DTPA-extractable and total micronutrient concentrations for the calcareous or the sandy soil. The total micronutrient concentrations for the highest sludge application rate (80 t/ha) were 5,108, 125, 68.2, and 207 μg/g in the calcareous soil and 2,200, 74.8, 43.2, and 139 μg/g in the sandy soil for Fe, Mn, Cu, and Zn, respectively, whereas the DTPA-extractable micronutrient concentrations were 25.0, 6.2, 5.5 and 6.6 μg/g in the calcareous soil and 53.3, 10.1, 7.3 and 9.83 μg/g in the sandy soil, respectively. Highly significant differences were observed in total and available micronutrient concentrations in calcareous and sandy soils among the sludge-application rates. Micronutrient concentrations of tomato leaves and fruits increased with increasing application rates of irradiated and non-irradiated sludge, and were higher in the sandy than in the calcareous soil for the same treatment. Highly significant differences were observed among the sludge-application rates in terms of the concentrations of micronutrients in both leaves and fruits. However, there were no significant differences between the irradiated and non-irradiated sludge treatments in the micronutrient concentrations of leaves and fruits in either soil. Micronutrient uptake increased with increasing rates of application of sludge to the soil, more so in the sandy than in the calcareous soil. The amounts of Fe, Mn, Cu, and Zn

  14. Iron fertilization with FeEDDHA : the fate and effectiveness of FeEDDHA chelates in soil-plant systems

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.

    2010-01-01

    Iron deficiency chlorosis is a nutritional disorder in plants which reduces crop yields both quantitatively and qualitatively, and causes large economic losses. It occurs world-wide, predominantly in plants grown on calcareous soils, as a result of a limited bioavailability of iron related to the

  15. Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.

    Science.gov (United States)

    de Santiago-Martín, Ana; Cheviron, Natalie; Quintana, Jose R; González, Concepción; Lafuente, Antonio L; Mougin, Christian

    2013-04-01

    Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, β-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals.

  16. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    Science.gov (United States)

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Evaluation of the potential impact of Cu competition on the performance of o,o-FeEDDHA in soil applications

    OpenAIRE

    Schenkeveld, W.D.C.; Weng, L.P.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van, W.H.

    2015-01-01

    Ferric ethylene diamine-N,N'-bis(hydroxy phenyl acetic acid) (FeEDDHA)-based iron (Fe) fertilizers are commonly applied to plants grown on calcareous soils and comprise a mixture of FeEDDHA components. Upon application to the soil, the pore water concentrations of the active ingredients racemic and meso o,o-FeEDDHA show a gradual decline unrelated to plant uptake or biodegradation. In the present study, the potential of soil copper (Cu) to reduce the effectiveness of FeEDDHA-based fertilizers...

  18. Evaluation of the assimilation of As by vegetables in contaminated soils submitted to a remediation process

    Science.gov (United States)

    Pérez-Sirvent, Carmen; Martinez Sanchez, Maria Jose; Agudo, Ines; Belen Martinez, Lucia; Bech, Jaume

    2016-04-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of plants (lettuce, onion and broccoli), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). The experiments were carried out to check the validity of the use of calcareous materials to recover soils contaminated with heavy metals. The aim of this work was to apply a technology for decontamination to ensure that As do not enter into the trophic chain at risky levels and analyze and to assess the risk pre and post operational of the different treatments proposed. The materials used was a soils to be remediated (mining soils) and the materials used for remediation were lime filler and Construction and Demolition Waste (CDW). The plants were cultivated in greenhouse with several types of soil. Five experiments were used, namely, Tc (contaminated soil), T1 (uncontaminated soil (blank soil)), T2 (50% T1 + 50% Tc), T3 (Tc + (25%) lime residues coming from quarries) and T4 (Tc + (25%) residues coming from demolition and construction activities). The entire project involves twenty experiments which were prepared from soils highly contaminated mixed with two types of calcareous materials. The total As content of the soils samples, rhizosphere and vegetable samples, were measured and the translocation factor (TF), which is defined as the ratio of metal concentration in the leaves or shoots to the roots, and the Bioconcentration factor (BCF), which is defined as the ratio of metal concentration in the roots to that in soil were calculated. The use of CDR is shown to be a suitable way for remediating soils contaminated by metals. The methodology permits a revalorization of CDW.

  19. Specific Features of Profile Distribution and Crystallochemistry of Phyllosilicates in Soils of the Cisbaikal Forest-Steppe

    Science.gov (United States)

    Chizhikova, N. P.; Gamzikov, G. P.; Chechetko, E. S.

    2018-01-01

    The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational-mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite-vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica-smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun-Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.

  20. Zanclean/Piacenzian transition on Cyprus (SE Mediterranean): calcareous nannofossil and Sea Surface Temperatures evidence of sapropel formation

    Science.gov (United States)

    Athanasiou, Maria; Triantaphyllou, Maria; Bouloubassi, Ioanna; Dimiza, Margarita; Gogou, Alexandra; Klein, Vincent; Parinos, Constantine; Theodoroyu, George

    2016-04-01

    Quantitative analyses of calcareous nannofossils in the sediments of Pissouri South section on the island of Cyprus have produced a paleoceanographic record reflecting the paleoclimatic conditions during Zanclean/Piacenzian transition. According to the performed calcareous nannofossil biostratigraphy the studied section is correlated with MNN14/15 and MNN16 calcareous nannofossil biozones and is astronomically dated between 4.065 and 3.217 Ma. Intervals of increased organic carbon content along with the positive values of Florisphaera profunda, Helicosphaera sellii, Discoaster spp. and the subsequent increase of stratification S-index correspond to the sapropel deposition during periods of wetter climate and intense continental runoff especially from the river Nile. These layers are alternating with grey marly intervals, featured by the increased values of small placoliths of Reticulofenestra and Gephyrocapsa species, which are indicative of eutrophic conditions during intense surface waters mixing. Pissouri South section comprises a SSTs sequence using alkenone unsaturation index (Uk 37) providing with the first continuous record from SE Mediterranean covering the Zanclean/Piacenzian (Pliocene) transition (~ 4.1-3.2 Ma). Correlation of the total alkenone concentration to the calcareous nannofossil assemblage and especially representatives among Noelaerhabdaceae family revealed that Pseudoemiliania lacunosa probably had similar temperature sensitivity to that of Emiliania huxleyi, currently producing alkenones in present day oceans.Our data support the prevalence of a generally warm phase characterized by the absence of high-frequency climate variations in the southeastern Mediterranean during the Zanclean/Piacenzian (Early/Late Pliocene) transition.

  1. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Suthar, Vishandas; Ahmad, Rizwan; Yousra, Munazza

    2017-10-30

    The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala-silty loam and Pacca-clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg -1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg -1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.

  2. Acidification of forest soil in Russia: From 1893 to present

    Science.gov (United States)

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  3. Calcareous nannoplankton and benthic foraminiferal assemblages from the Nazare Canyon (Portuguese continental margin): Preliminary results

    International Nuclear Information System (INIS)

    Guerreiro, C; Oliveira, A; Rodrigues, A; Rosa, F; Cachao, M; Fatela, F

    2009-01-01

    Submarine canyons are assumed to play an important role in oceanic/neritic circulation, marine productivity and sedimentary processes, acting as preferential conduits between the littoral and deep oceanic domain. Here we present first results of a comparative micropalaeontological study on calcareous nannoplankton and benthic foraminifera from surface sediments from the surroundings of the upper Nazare Canyon (Portuguese continental margin) and from the shelf north of the canyon. Regardless of the difficulty to distinguish taphonomical from (palaeo)ecological effects in such a complex and still poorly known marine system, the first results suggest that the canyon's hydro-sedimentary dynamic regime act as a prolongation of the shore/inner shelf hydrodynamic conditions towards west, preventing deposition and/or preservation of the smaller and fragile species of calcareous nannoplankton (e.g. E. huxleyi and G. ericsonii) and enhancing the record of the larger and more opportunistic ones (e.g. G. oceanica); and disturbing benthic foraminiferal productivity and/or diversity, or their preservation in the fossil record. Both calcareous nannoplankton and benthic foraminifera are more abundant off the canyon's domain, suggesting that its highly energetic thalweg conditions are probably filtering the fossil record in the sediment. Still, preliminary results suggest that the occurrence of persistent physical phenomena related with the canyon's morphology and proximity to the coast (e.g. solitary internal waves) may be locally promoting favourable conditions for calcareous nannoplankton, as shown by high values of nannoliths, chlorophyll a and 19' hexanoyloxyfucoxantine (unpublished data) north of the canyon's head. It is our goal to test this hypothesis in the near future by (a) studying multicore and surficial sediments from more recent surveys, and (b) calibrating the sediment results with water column data presently in process at the Institute of Oceanography (IO).

  4. Calcareous nannoplankton and benthic foraminiferal assemblages from the Nazare Canyon (Portuguese continental margin): Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, C; Oliveira, A; Rodrigues, A [Division of Marine Geology, Portuguese Hydrographic Institute (IH), Rua das Trinas 49, 1249-093 Lisboa (Portugal); Rosa, F [CIACOMAR, Algarve University, Av. 16 de Julho s/n 8700-311 Olhao (Portugal); Cachao, M; Fatela, F [Geology Center and Geology Department, FCUL, Bloco C6, 3o Piso, sala 6.3.57 Campo Grande 1749-016 Lisboa (Portugal)], E-mail: catarina.guerreiro@hidrografico.pt

    2009-01-01

    Submarine canyons are assumed to play an important role in oceanic/neritic circulation, marine productivity and sedimentary processes, acting as preferential conduits between the littoral and deep oceanic domain. Here we present first results of a comparative micropalaeontological study on calcareous nannoplankton and benthic foraminifera from surface sediments from the surroundings of the upper Nazare Canyon (Portuguese continental margin) and from the shelf north of the canyon. Regardless of the difficulty to distinguish taphonomical from (palaeo)ecological effects in such a complex and still poorly known marine system, the first results suggest that the canyon's hydro-sedimentary dynamic regime act as a prolongation of the shore/inner shelf hydrodynamic conditions towards west, preventing deposition and/or preservation of the smaller and fragile species of calcareous nannoplankton (e.g. E. huxleyi and G. ericsonii) and enhancing the record of the larger and more opportunistic ones (e.g. G. oceanica); and disturbing benthic foraminiferal productivity and/or diversity, or their preservation in the fossil record. Both calcareous nannoplankton and benthic foraminifera are more abundant off the canyon's domain, suggesting that its highly energetic thalweg conditions are probably filtering the fossil record in the sediment. Still, preliminary results suggest that the occurrence of persistent physical phenomena related with the canyon's morphology and proximity to the coast (e.g. solitary internal waves) may be locally promoting favourable conditions for calcareous nannoplankton, as shown by high values of nannoliths, chlorophyll a and 19' hexanoyloxyfucoxantine (unpublished data) north of the canyon's head. It is our goal to test this hypothesis in the near future by (a) studying multicore and surficial sediments from more recent surveys, and (b) calibrating the sediment results with water column data presently in process at the Institute of

  5. Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA

    Science.gov (United States)

    Komor, S.C.

    1994-01-01

    Savage Fen is a wetlands complex at the base of north-facing bluffs in the Minnesota River Valley. The complex includes 27.8 hectares of calcareous fen that host rare calciphile plants whose populations are declining in Minnesota. Water and sediment compositions in the calcareous fen were studied to gain a better understanding of the hydrologie System that sustains the rare vegetation. Groundwater in the fen is a calcium-magnesium-bicarbonate type with circumneutral pH values. The groundwater composition is the resuit of interactions among water, dissolved and gaseous carbon species, carbonates, and ion exchangers. Shallow groundwater is distinguished from deep groundwater by smaller concentrations of chloride, sulfate, magnesium, and sodium, and larger concentrations of calcium, bicarbonate, hydrogen sulfide, and ammonium. Magnesian calcite is the prevalent carbonate in unconsolidated sedimentary fill beneath the fen and is an important source and sink for dissolved calcium, magnesium, and inorganic carbon. Calcite concentrations just below the water table are small because aerobic and anaerobic oxidation of organic matter increase the partial pressure of carbon dioxide (PCO2), decrease pH, and cause calcite to dissolve. Thick calcite accumulations just above the water table, in the root zone of calciphile plants, result from water table fluctuations and attendant changes in PCO2. Groundwater beneath Savage Fen recharges in lakes and ponds south of the fen and upwells to the surface within the fen. Water at the water table is a mixture of upwelling groundwater and water near the surface that flows downslope from higher elevations in the fen. Changes in oxygen and hydrogen isotope compositions of shallow groundwater indicate that the proportion of upwelling groundwater in shallow groundwater decreases downgradient in the calcareous fen. Encroachment of reed grasses into the calcareous fen may reflect human-caused disturbances in the recharge area.

  6. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    Science.gov (United States)

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  7. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    Directory of Open Access Journals (Sweden)

    Michał A. Glinicki

    2016-01-01

    Full Text Available The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  8. Soil solid-phase controls lead activity in soil solution.

    Science.gov (United States)

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  9. Behaviour of oxyfluorfen in soils amended with edaphic biostimulants/biofertilizers obtained from sewage sludge and chicken feathers. Effects on soil biological properties.

    Science.gov (United States)

    Rodríguez-Morgado, Bruno; Gómez, Isidoro; Parrado, Juan; Tejada, Manuel

    2014-09-01

    We studied the behaviour of oxyfluorfen herbicide at a rate of 4 l ha(-1) on biological properties of a Calcaric Regosol amended with two edaphic biostimulants/biofertilizers (SS, derived from sewage sludge; and CF, derived from chicken feathers). Oxyfluorfen was surface broadcast on 11 March 2013. Two days after application of oxyfluorfen to soil, both biostimulants/biofertilizers (BS) were also applied to the soil. An unamended soil without oxyfluorfen was used as control. For 2, 4, 7, 9, 20, 30, 60, 90 and 120 days of the application of herbicide to the soil and for each treatment, the soil dehydrogenase, urease, β-glucosidase and phosphatase activities were measured. For 2, 7, 30 and 120 days of the application of herbicide to the soil and for each treatment, soil microbial community was determined. The application of both BS to soil without the herbicide increased the enzymatic activities and soil biodiversity, mainly at 7 days of beginning the experiment. However, this stimulation was higher in the soil amended with SS than for CF. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly, the low-molecular-weight protein content easily assimilated by soil microorganisms is responsible for less inhibition of these soil biological properties.

  10. Effect of different treatments on 85Sr plant uptake in various soil types

    International Nuclear Information System (INIS)

    Koblinger-Bokori, E.; Szerbin, P.

    2000-01-01

    In the recent years radioecological studies are concentrated on the investigation of restoration possibilities of contaminated ecosystems. These studies are aimed to develop methods for decreasing the bioavailability of the radionuclides released to the environment. Radionuclides of long half-lives, such as 90 Sr and 137 Cs, are of special importance from the point of human health, since these nuclides can enter the human body via the food-chain and increase the radiation burden for many years. 90 Sr and 137 Cs contamination of the environment may occur as a result of atmospheric releases during nuclear accidents. For instance, considerable amounts were released to the atmosphere during the Chernobyl reactor accident. In the presented study strontium plant uptake from different types of soil was investigated. To avoid the difficulties related to 90 Sr determination, the gamma-emitting strontium isotope 85 Sr is used at the experiments (no isotopic effect takes place). The plant selected is yellow leguminous bean. Most typical Hungarian soils (leached Ramann brown forest soil, alluvial soil, chernozem-light sandy soil and calcareous chernozem soil) were selected for the experiments carried out under laboratory conditions. Results are presented in relation to major soil characteristics. Effects of two different treatments: lime and organic matter fertilizations on plant uptake are given. The highest uptake was found in bean grown on leached Ramann brown forest soil, whereas the lowest value was measured in the plant grown in calcareous chernozem soil. Organic fertilization significantly reduced the uptake of radiostrontium in all investigated types of soil. The largest factor of reduction was found to be as high as 3.5. Lime fertilization was less effective. Our study clearly demonstrates that carefully selected post-accident treatments (e.g. organic fertilization following strontium contamination) can significantly reduce the environmental consequences of

  11. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa Tolic, Ljiljana; Koppenaal, David W.; Jansson, Janet K.

    2018-05-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences

  12. Two new species of calcareous sponges (Porifera: Calcarea) from the deep Antarctic Eckström Shelf and a revised list of species found in Antarctic waters

    DEFF Research Database (Denmark)

    Rapp, Hans Tore; Göcke, Christian; Tendal, Ole Secher

    2013-01-01

    The paper reports on two new species of calcareous sponges (Porifera, Calcarea) from the Antarctic Weddell Sea, Clathrina brandtae sp. nov. and Leucetta delicata sp. nov., collected at 600 m depth during the ANT XXIV/2-SYSTCO expedition in January 2008. The new species are described based...... on a combination of morphological and molecular data. With these new additions the number of species of calcareous sponges reported from south of 50 degrees S (similar to south of the Polar Front) reaches 50 species. We report an exceptionally high degree of endemism within the group, and as many as 44 out...... of the 50 species of calcareous sponges are solely confined to Antarctic waters. An updated list of species of calcareous sponges from the area is provided....

  13. Derivation of Soil Ecological Criteria for Copper in Chinese Soils.

    Science.gov (United States)

    Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J

    2015-01-01

    Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models--that took into account the effect of soil organic carbon--were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for

  14. Effect of different treatments on {sup 85}Sr plant uptake in various soil types

    Energy Technology Data Exchange (ETDEWEB)

    Koblinger-Bokori, E.; Szerbin, P. [' Frederic Joliot-Curie' National Research Institute for Radiobiology and Radiohygiene, Budapest (Hungary)

    2000-05-01

    In the recent years radioecological studies are concentrated on the investigation of restoration possibilities of contaminated ecosystems. These studies are aimed to develop methods for decreasing the bioavailability of the radionuclides released to the environment. Radionuclides of long half-lives, such as {sup 90}Sr and {sup 137}Cs, are of special importance from the point of human health, since these nuclides can enter the human body via the food-chain and increase the radiation burden for many years. {sup 90}Sr and {sup 137}Cs contamination of the environment may occur as a result of atmospheric releases during nuclear accidents. For instance, considerable amounts were released to the atmosphere during the Chernobyl reactor accident. In the presented study strontium plant uptake from different types of soil was investigated. To avoid the difficulties related to {sup 90}Sr determination, the gamma-emitting strontium isotope {sup 85}Sr is used at the experiments (no isotopic effect takes place). The plant selected is yellow leguminous bean. Most typical Hungarian soils (leached Ramann brown forest soil, alluvial soil, chernozem-light sandy soil and calcareous chernozem soil) were selected for the experiments carried out under laboratory conditions. Results are presented in relation to major soil characteristics. Effects of two different treatments: lime and organic matter fertilizations on plant uptake are given. The highest uptake was found in bean grown on leached Ramann brown forest soil, whereas the lowest value was measured in the plant grown in calcareous chernozem soil. Organic fertilization significantly reduced the uptake of radiostrontium in all investigated types of soil. The largest factor of reduction was found to be as high as 3.5. Lime fertilization was less effective. Our study clearly demonstrates that carefully selected post-accident treatments (e.g. organic fertilization following strontium contamination) can significantly reduce the

  15. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    Paralic carbonaceous series intercalated among calcareous shelf sediments have seldom been investigated. During the early Eocene, calcareous and siliciclastic sediments were deposited on a wide shelf in front of low-reliefed hinterland in the Al Khawd region in NE Oman. The siliciclastic-calcareous sediments originated from strongly reworked debris of the Arabic Shield. The underlying Semail Ophiolite did not act as a direct source of debris but provided some heat to increase the maturity of carbonaceous rocks and modify the isotope signal of the calcareous minerals in the Rusayl Formation. A multidisciplinary approach involving sedimentology, mineralogy, chemistry, coal petrography and paleontology resulted in the establishment of nine stratigraphic lithofacies units and provides the reader with a full picture from deposition of the mixed carbonaceous-calcareous-siliciclastic rocks to the most recent stages of post-depositional alteration of the Paleogene formations. The calcareous Jafnayn Formation (lithofacies unit I) developed in a subtidal to intertidal regime, influenced episodically by storms. Deepening of the calcareous shelf towards younger series was ground to a halt by paleosols developing on a disconformity (lithofacies unit II) and heralding the onset of the Rusayl Formation. The stratigraphic lithofacies units III and IV reflect mangrove swamps which from time to time were flooded through washover fans from the open sea. The presence of Spinozonocolpites and the taxon Avicennia, which today belong to a coastal marsh vegetational community, furnish palynological evidence to the idea of extensive mangrove swamps in the Rusayl Formation [El Beialy, S.Y., 1998. Stratigraphic and palaeonenvironmental significance of Eocene palynomorphs from the Rusayl Shale Formation, Al Khawd, northern Oman. Review of Palaeobotany and Palynology 102, 249-258]. During the upper Rusayl Formation (lithofacies units V through VII) algal mats episodically flooded by marine

  16. The first marine record of the Bartonian Nummulites and Calcareous nannofossils at the Tihoiyeh section of the Jiroft area (Central Iran)

    Science.gov (United States)

    Hadi, Mehdi; Parandavar, Mohammad; Kiani-Shahvandi, Madineh; Dabaghi Sadr, Fatemeh

    2016-04-01

    The studied shallow marine sediments are situated south and southwest of Jiroft town, 180 km south of Keman, from the Tihoiyeh section (near Tihoiyeh village). These deposits at the top of the section include marly limestones with index Nummulites species such as N. perforatus (De Montfort), N. lyelli (D'Archiac and Haime). According to Schaub's nummulitic time scale (1981) and shallow benthic zonation of Serra-Kiel et al. (1998), this interval referred to Bartonian age and SBZ17 zone, respectively. Also, the calcareous nannofossil study on this interval led to identification of 19 well-preserved species belonging to 11 genera of this plankton group. Based on determined index calcareous nannofossiltaxa such as Reticulofenestra bisecta, Sphenolithus obtusus, Sphenolithus intercalaris, Cribrocentrum erbae and associated species such as Sphenolithus pseudoradians, Reticulofenestra wadeae, Cribrocentrum reticulatum and Blackites spinosus this interval assigned to the CNE15 zone of Agnini et al. (2014) that corresponds to upper part of NP16 and lower part of NP17 zones of Martini (1971). It is resulted that, the detected shallow benthic foraminifera zone, corresponds to the calcareous nannofossil zones both indicating Bartonian age. Keywords: Bartonian, Calcareous nannofossil, Nummulites, Central Iran, Tihoiyeh section. References: Agnini, C., Fornaciari, E., Raffi, I, Rita Catanzariti, R., Palike, H., Backman, J. and Rio, D., 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy, Vol. 47 (2), Pp. 131-181. Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Farinacci, A. (Ed.), Proceedings 2nd International Conference Planktonic Microfossils Roma: Rome (Ed. Tecnosci.), 2, Pp. 739-785. Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Fernandez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., Samso, J.M., Schaub, H., Sirel, E., Strougo, A

  17. Iron fertilization with FeEDDHA : the fate and effectiveness of FeEDDHA chelates in soil-plant systems

    OpenAIRE

    Schenkeveld, W.D.C.

    2010-01-01

    Iron deficiency chlorosis is a nutritional disorder in plants which reduces crop yields both quantitatively and qualitatively, and causes large economic losses. It occurs world-wide, predominantly in plants grown on calcareous soils, as a result of a limited bioavailability of iron related to the poor solubility of iron at high soil-pH (7.5-8.5). Iron fertilizers based on FeEDDHA (iron ethylene diamine-N,N'-bis(hydroxy phenyl acetic acid)) chelates are among the most efficient in preventing a...

  18. Soil micronutrients and its uptake by rice plant. Part of a coordinated programme on isotope-aided micronutrient studies in rice production with special reference to zinc deficiencies

    International Nuclear Information System (INIS)

    Kim, T.S.

    1980-02-01

    A series of field and greenhouse experiments with flooded rice was carried out on contrasting soil types of Korea to study the zinc status of soils, evaluate the chemical methods for extracting zinc from soils in terms of ability to identify zinc deficiency, perform 65 Zn-aided experiments including the residual effects of zinc fertilizers to evaluate the efficiency of zinc sources and methods of zinc application to rice, and associated studies on factors affecting zinc nutrition in rice such as effect of organic matter and chelates. The results show that i) 0.05 N HCl solution for extracting available zinc in soil was effective to separating the soils which require zinc fertilizer application. The proposed zinc value to identify is 2.4 ppm. Among rice soils surveyed, the red-yellow podsolic soil derived from basalt, the reddish-brown lateritic soil of calcareous material and newly reclaimed saline soils were shown to be below this limit; ii) 5 kg Zn/ha as zinc sulphate introduced the highest response in terms of % Zndff, total zinc yield in rice plant, and the fertilizer zinc use efficiency. Applying higher zinc amounts, in case of 20 kg Zn/ha, retarded nitrogen uptake by the plant and as a result the rice grain yield was decreased; iii) Significant yields increases due to the residual effects of zinc fertilizers were obtained on the second and third crops; iv) On the zinc-deficient calcareous soil the use of chelated zinc sources is recommended

  19. Transfer of heavy metals to biota after remediation of contaminated soils with calcareous residues.

    Science.gov (United States)

    Pérez-Sirvent, Carmen; Martínez-Sánchez, Maria Jose; Agudo, Ines; Gonzalez, Eva; Perez-Espinosa, Victor; Belen Martínez, Lucia; Hernández, Carmen; García-Fernandez, Antonio Juan; Bech, Jaime

    2013-04-01

    A study was carried out to evaluate the assimilation of heavy metals by three types of horticultural plants (broccoli, lettuce and leek), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). Five consecutive crops of each vegetable were obtained in greenhouse. In a second stage, experiments were carried out with rabbits fed with such vegetables. The plants were cultivated in four types of soil. The first one was contaminated by heavy metals (S1), the second was a uncontaminated soil (blank soil) (S2), the third was the material obtained by mixing S1 with residues coming from demolition and construction activities (S3); while the fourth was the result of remediating S1 with lime residues coming from quarries (S4). The total metal content (As, Pb, Cd and Zn) of the soil samples, rizosphere, leached water and vegetable samples, were measured, and both the translocation and bioconcentration factors (TF and BCF, respectively) were calculated. In the second stage, the effect caused in rabbits fed with the vegetables was monitorized using both external observation and the analysis of blood, urine, and the levels of metals in muscles, liver and kidney. The statistical analysis of the results obtained showed that there were no significant differences in the heavy metal levels for the vegetables cultivated in S2, S3 and S4. The results for soil sample S1 did not have a normal distribution since the growing of the vegetables were not homogeneous and also strongly dependent on the type of vegetal. As regards the effect caused in rabbits, significant differences were observed for the animals fed with plants cultivated in S1 compared with the others.

  20. 137Cs concentration distribution in among feeds and various soil types

    International Nuclear Information System (INIS)

    Csupka, S.

    1980-01-01

    The distribution of 137 Cs in four types of arable land and soil with grass cover (chernozem, serozem, gely soddy soil and meadow calcareous soil) is different. In arable land the penetration of 137 Cs into greater depths is higher than under the grasscover, where the main proportion of 137 Cs is retained by the upper layers in the depth of 0 to 5 cm. The only exception is gley soddy soil, where the upper layers allow the passage of radionuclides into greater depths. In the soil horizon to a depth of 50 cm out or the total content of 137 Cs from 16 to 47% is bound in exchangeable form and from 53 to 84% in a form available to plants according to the soil type. The relationship between exchangeable 137 Cs and that available to plants in soils is given by the coefficient of desorption and the relation between the 137 Cs content in the plant and in the soil is given by the coefficient of concentration. Their value varies within the range of 0.1 to 2.6. (author)

  1. Effects of long-term application of municipal solid waste compost on speciation and availability of heavy metals in soil

    International Nuclear Information System (INIS)

    Ben Achiba, W.; Lakdar, A.; Verloo, M. G.; Gabteni, N.; Jedidi, N.; Gallali, T.

    2009-01-01

    The application of municipal solid waste compost in agriculture provides a valuable source of plant nutrients and soil fertility. Nevertheless, heavy metals accumulation may be a problem. A seven-year field study was carried out to investigate the effects of farmyard manure (40 and 120 t/ha) and municipal solid waste compost (40, 80 and 120 t/ha) application on the total content, speciation and availability of heavy metals in a calcareous Tunisian soil without vegetation. (Author)

  2. Foliar applications of iron promote flavonoids accumulation in grape berry of Vitis vinifera cv. Merlot grown in the iron deficiency soil.

    Science.gov (United States)

    Shi, Pengbao; Song, Changzheng; Chen, Haiju; Duan, Bingbing; Zhang, Zhenwen; Meng, Jiangfei

    2018-07-01

    Flavonoids are important compounds for grape and wine quality. Foliar fertilization with iron compounds has been reported to have a substantial impact on grape composition in the grapevines growing in calcareous soil. However, much less is known about its real impact on flavonoid composition. In the present study, Ferric ethylenediamine di (O-hydroxyphenylacetic) acid (Fe-EDDHA) was foliar applied to Merlot (Vitis vinifera L.) grapevines growing in calcareous soil over two consecutive vintages in order to study its effect on grape flavonoid composition. Fe-EDDHA foliar supply tended to increase grape sugar, anthocyanin and flavonol content, decrease acid content and enhance the juice pH when compared to the control. Principal component analysis showed that the vintage also had influence on grape quality. The results suggested that Fe-EDDHA foliar application had an enhancement effect on grape secondary metabolism, and the effect increased the nutritional value of the consequent grapes and wines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The neutronic method for measuring soil moisture

    International Nuclear Information System (INIS)

    Couchat, Ph.

    1967-01-01

    The three group diffusion theory being chosen as the most adequate method for determining the response of the neutron soil moisture probe, a mathematical model is worked out using a numerical calculation programme with Fortran IV coding. This model is fitted to the experimental conditions by determining the effect of different parameters of measuring device: channel, fast neutron source, detector, as also the soil behaviour under neutron irradiation: absorbers, chemical binding of elements. The adequacy of the model is tested by fitting a line through the image points corresponding to the couples of experimental and theoretical values, for seven media having different chemical composition: sand, alumina, line stone, dolomite, kaolin, sandy loam, calcareous clay. The model chosen gives a good expression of the dry density influence and allows α, β, γ and δ constants to be calculated for a definite soil according to the following relation which gives the count rate of the soil moisture probe: N = (α ρ s +β) H v +γ ρ s + δ. (author) [fr

  4. Potential use of calcareous mudstones in low hydraulic conductivity earthen barriers for environmental applications.

    Science.gov (United States)

    Musso, T B; Francisca, F M; Musso, T B; Musso, T B

    2013-01-01

    Earthen layers play a significant role in isolating contaminants in the subsurface, controlling the migration of contaminant plumes, and as landfill liners and covers. The physical, chemical and mineralogical properties of three calcareous mudstones from the Jagüel and Roca formations in North Patagonia, Argentina, are evaluated to determine their potential for the construction of liners. These mudstones were deposited in a marine environment in the Upper Cretaceous-Paleocene. The tested specimens mainly comprise silt and clay-sized particles, and their mineralogy is dominated by a smectite/illite mixed layer (70-90% Sm) and calcite in smaller proportion. Powdered mudstone samples have little viscosity and swelling potential when suspended in water. The hydraulic conductivity of compacted mudstones and sand-mudstone mixtures is very low (around 1-3 x 10(-10) m/s) and in good agreement with the expected hydraulic behaviour of compacted earthen layers. This behaviour can be attributed to the large amount of fine particles, high specific surface and the close packing of particles as confirmed by scanning electron microscope analysis. The tested materials also show a high cation exchange capacity (50-70 cmol/kg), indicating a high contaminant retardation capability. The calcareous mudstones show satisfactory mineralogical and chemical properties as well as an adequate hydraulic behaviour, demonstrating the potential use of these materials for the construction of compacted liners for the containment of leachate or as covers in landfills. These findings confirm the potential usage of marine calcareous mudstones as a low-cost geomaterial in environmental engineering projects.

  5. Fragmentation, Fusion, and Genetic Homogeneity in a Calcareous Sponge (Porifera, Calcarea).

    Science.gov (United States)

    Padua, André; Leocorny, Pedro; Custódio, Márcio Reis; Klautau, Michelle

    2016-06-01

    Sessile marine invertebrates living on hard substrata usually present strategies such as size variations, longer life spans, fragmentation and fusion to occupy and compete for space. Calcareous sponges are usually small and short-lived, and some species are known to undergo frequent fragmentation and fusion events. However, whether fusion occurs only between genetically identical individuals remains unclear. We investigated the occurrence of chimaeras in the calcareous sponge Clathrina aurea by following the dynamics of fragmentation and fusion of 66 individuals in the field for up to 18 months and determined size variations and the life span of each individual. Microsatellites were used to determine whether fusion events occur among genetically different individuals. Growth and shrinkage of individuals were frequently observed, showing that size cannot be associated with age in C. aurea. The life span of the species ranged from 1 to 16 months (mean: 4.7 months). Short life spans and variable growth rates have been observed in other species of the class Calcarea. Fragmentation and fusion events were observed, but fusion events always occurred between genetically identical individuals, as has been suggested by graft experiments in adult Demospongiae and other Calcarea. These results suggest that at least C. aurea adults may have some mechanism to avoid chimaerism. © 2016 Wiley Periodicals, Inc.

  6. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    International Nuclear Information System (INIS)

    Thevenot, M.; Dousset, S.; Rousseaux, S.; Andreux, F.

    2008-01-01

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil

  7. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Thevenot, M. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)], E-mail: mathieu.thevenot@u-bourgogne.fr; Dousset, S. [UMR 5561 Biogeosciences, CNRS - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France); Rousseaux, S. [EA 4149 Laboratoire de Recherche en Vigne et Vin, Institut Universitaire de la Vigne et du Vin, rue Claude Ladrey, 21000 Dijon (France); Andreux, F. [UMR 1229 Microbiologie et Geochimie des Sols, CMSE, INRA - Universite de Bourgogne, UFR des Sciences de la Terre et de l' Environnement, 6 Boulevard Gabriel, 21000 Dijon (France)

    2008-05-15

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron + metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching. - The application of organic amendments increased diuron leaching through a sandy-loam soil, in contrast to a clay-loam soil.

  8. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  9. Foraminiferans as food for Cephalaspideans (Gastropoda: Opisthobranchia), with notes on secondary tests around calcareous foraminiferans

    DEFF Research Database (Denmark)

    Cedhagen, Tomas

    1996-01-01

    species, Ammonia batavus and two agglutinating species, Ammoscalaria pseudospiralis and Ammotium cassis. The test (shell) material of the latter two species was sand grains (quartz). It was inferred that the gastropods avoid agglutinating foraminiferans as food. Many calcareous but not agglutinating......The food of four species of Cephalaspidea (Philine aperta, Philine denticulata, Philine scabra and Cylichna cylindracea) was studied in animals collected on silty clay bottoms at 20-35 m depth on the west coast of Sweden. The specimens were dissected. Only calcareous foraminiferans were found...... foraminiferans surround themselves with a “secondary test”, a cyst or covering of foreign particles around the test. This structure has earlier been called a “reproductive cyst” or “feeding cyst” in some species. “Secondary tests” are primarily connected with feeding, but might also be a preadaptation for other...

  10. The relative importance of fertilization and soil erosion on C-dynamics in agricultural landscapes of NE Germany

    Science.gov (United States)

    Pohl, Madlen; Hoffmann, Mathias; Hagemann, Ulrike; Jurisch, Nicole; Remus, Rainer; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    The hummocky ground moraine landscape of north-east Germany is characterized by distinct small-scale soil heterogeneity on the one hand, and intensive energy crop cultivation on the other. Both factors are assumed to significantly influence gaseous C exchange, and thus driving the dynamics of soil organic carbon stocks in terrestrial, agricultural ecosystems. However, it is not yet clear to which extent fertilization and soil erosional status influence soil C dynamics and whether one of these factors is more relevant than the other. We present seasonal and dynamic soil C balances of biogas maize for the growing season 2011, recorded at different sites located within the CarboZALF experimental area. The sites differ regarding soils (non-eroded Albic Luvisols (Cutanic), extremely eroded Calcaric Regosol and depositional Endogleyic Colluvic Regosol,) and applied fertilizer (100% mineral N fertilizer, 50% mineral and 50% N organic fertilizer, 100% organic N fertilizer). Fertilization treatments were established on the Albic Luvisol (Cutanic). Net-CO2-exchange (NEE) and ecosystem respiration (Reco) were measured every four weeks using a dynamic flow-through non-steady-state closed manual chamber system. Gap filling was performed based on empirical temperature and PAR dependency functions to derive daily NEE values. At the same time, daily above-ground biomass production (NPP) was estimated based on biomass samples and final harvest, using a sigmoidal growth function. In a next step, dynamic soil C balances were generated as the balance of daily NEE and NPP considering the initial C input due to N fertilizers. The resulted seasonal soil C balances varied from strong C losses at the Endogleyic Colluvic Regosol (602 g C m-2) to C gains at the Calcaric Regosol (-132 g C m-2). In general, soils exerted a stronger impact on seasonal and dynamic C balances compared to differences in applied N fertilizer. There are indications that inter-annual variations in climate conditions

  11. Calcareous forest seepages acting as biodiversity hotspots and refugia for woodland snail faunas

    Science.gov (United States)

    Horsák, Michal; Tajovská, Eva; Horsáková, Veronika

    2017-07-01

    Land-snail species richness has repeatedly been found to increase with the increasing site calcium content and humidity. These two factors, reported as the main drivers of land-snail assemblage diversity, are also among the main habitat characteristics of calcareous seepages. Here we explore local species richness and compositional variation of forest spring-fed patches (i.e. seepages), to test the hypothesis that these habitats might act as biodiversity hotspots and refugia of regional snail faunas. In contrast to treeless spring fens, only little is known about land snail faunas inhabiting forest seepages. Studying 25 isolated calcareous forest seepages, evenly distributed across the White Carpathians Protected Landscape Area (SE Czech Republic), we found that these sites, albeit spatially very limited, can harbour up to 66% of the shelled land-snail species known to occur in this well-explored protected area (in total 83 species). By comparing land snail assemblages of the studied seepages with those occurring in the woodland surroundings of each site as well as those previously sampled in 28 preserved forest sites within the study area, we found the seepages to be among the most species rich sites. Although the numbers of species did not statistically differ among these three systems, we found highly significant differences in species composition. Seepage faunas were composed of many species significantly associated with spring sites, in contrast to the assemblages of both surrounding and preserved forest sites. Our results highly support the hypothesis that calcareous forest seepages might serve as refugia and biodiversity hotspots of regional land snail faunas. Protection of these unique habitats challenges both conservation plans and forest management guidelines as they might act as sources for the recolonization and restoration of forest snail assemblages particularly in areas impoverished by harvesting and clearcutting.

  12. Soil factors involved in the diversity and structure of soil bacterial communities in commercial organic olive orchards in Southern Spain.

    Science.gov (United States)

    Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A

    2014-04-01

    Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Towards prediction of soil erodibility using hyperspectral information: a case study in a semi-arid region of Iran

    DEFF Research Database (Denmark)

    Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali

    2018-01-01

    and develop Spectrotransfer Function (STF) using spectral reflectance information and Pedotransfer Function (PTF) to predict the K-factor, respectively. The derived STF was compared with developed PTF using measurable soil properties by Ostovari et al. (2016) and the Universal Soil Loss Equation (USLE......Soil Visible–Near-Infrared (Vis-NIR) spectroscopy has become an applicable and interesting technique to evaluate a number of soil properties because it is a fast, cost-effective, and non-invasive measurement technique. The main objective of the study to predict soil erodibility (K-factor), soil...... organic matter (SOM), and calcium carbonate equivalent (CaCO3) in calcareous soils of semi-arid regions located in south of Iran using spectral reflectance information in the Vis-NIR range. The K-factor was measured in 40 erosion plots under natural rainfall and the spectral reflectance of soil samples...

  14. Evolution of Calcareous Deposits and Passive Film on 304 Stainless Steel with Cathodic Polarization in Sea Water

    Directory of Open Access Journals (Sweden)

    Tianxiang Sun

    2018-05-01

    Full Text Available The change of protective current density, the formation and growth of calcareous deposits, and the evolution of passive film on 304 stainless steel (SS were investigated at different potentials of cathodic polarization in sea water. Potentiostatic polarization, electrochemical impedance spectroscopy (EIS, and surface analysis techniques of scanning electron microscopy (SEM, energy dispersive X-ray (EDX microanalysis and X-ray diffraction (XRD were used to characterize the surface conditions. It was found that the protective current density was smaller for keeping polarization at −0.80 V (vs. saturated calomel electrode (SCE, same as below than that at −0.65 V. The calcareous deposits could not be formed on 304 SS with polarization at −0.50 V while it was well protected. The formation rate, the morphology, and the constituent of the calcareous deposits depended on the applied potential. The resistance of passive film on 304 SS decreased at the first stage and then increased when polarized at −0.80 V and −0.65 V, which was related to the reduction and the repair of passive film. For the stainless steel polarized at −0.50 V, the film resistance increased with polarization time, indicating that the growth of oxide film was promoted.

  15. Amelioration of soils contaminated with industrial exhalations in the Chvaletice region

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, J

    1966-01-01

    In the area of the Chvaletice manganese and pyrite works, the pyrite fly dust decomposing into sulfuric acid causes considerable damage to agricultural production. Sulfuric acid is also formed from the escaping sulfur dioxide. The reaction of the affected soils is extremely acid and reaches from 4.5 to 6.5 pH, and in some cases it decreases to 2.5 pH. Soil devastation spreads to distant land in the direction of the predominating winds. Damage is caused to agricultural crops which decreases yields. It was decided to ameliorate the affected soils with high doses of calcareous composts of material obtained from fish-ponds and of marl. The purpose of the experiment, the partial results of which are described, was an operational checking of the suitability of the composts for the amelioration of contaminated soils and an estimation of the doses to be applied.

  16. Influence of Soil Organic Matter Content on Abundance and Biomass of Earthworm (Oligochaeta: Lumbricidae Populations

    Directory of Open Access Journals (Sweden)

    Hristo Valchovski

    2016-06-01

    Full Text Available The current study explores the influence of soil organic matter content on abundance and biomass of earthworm communities. The observation was carried out on three type of soils: PellicVertisols (very fine texture, Cromi-Vertic Luvisols (fine texture and Calcaric Fluvisols (mediumtexture from the Balkan Peninsula (Bulgaria. The field experiment was provided on uncultivatedplots. In the studied area earthworm fauna comprises of four species: Aporrectodea rosea,Aporrectodea caliginosa, Lumbricus terrestris and Octolasion lacteum. We found peregrine lumbricidtaxa, which are widely distributed in European soils. Our study demonstrated that soil organicmatter has a positive effect on lumbricid populations. It was revealed that augmentation of soilorganic matter favours characteristics of earthworm communities. The soil organic matter contentand earthworm abundance are in strong positive correlation (r > 0.981. The same relationship wasrevealed between the biomass of lumbricid fauna and amount of soil organic matter (r > 0.987. Insum, the soil organic matter could be used as an indicator for earthworm communities inuncultivated soils.

  17. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition

    International Nuclear Information System (INIS)

    Turner, B.L.; Baxter, Robert; Whitton, B.A.

    2002-01-01

    High soil phosphatase activities confirm strong biological phosphorus limitations due to nitrogen deposition. - Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (μmol para-nitrophenol g -1 soil dry wt. h -1 ) ranged between 83.9 and 307 in a blanket peat (total carbon 318 mg g -1 , pH 3.9), 45.2-86.4 in an acid organic grassland soil (total carbon 354 mg g -1 , pH 3.7) and 10.4-21.1 in a calcareous grassland soil (total carbon 140 mg g -1 , pH 7.3). These are amongst the highest reported soil phosphomonoesterase activities and confirm the strong biological phosphorus limitation in this environment

  18. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    Science.gov (United States)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    Deep earthwork activities carried out before vineyard plantation completely upset soil profile and characteristics. The resulting soil features are often much more similar to the underlying substratum than original soil profile. The time needed to recover soil functions is ecologically relevant and affects vine phenology and grape yield, particularly in organic viticulture. The general aim of this research work was to investigate the time needed to recover soil functions after the earthworks made before vine plantation. This study compared for a four years period physical and chemical properties, microbial and mesofauna communities, in new and old vineyards, cultivated on the same soil type. The experiment was conducted in a farm of the Chianti Classico district (Central Italy), on hills of high altitude (400-500 m a.s.l.) on clayey-calcareous flysches, with stony and calcareous soils (Haplic Cambisol (Calcaric, Skeletic)). The reference vine cultivar was Sangiovese. The older vineyard was planted in 2000, after slope reshaping by bulldozing and back hoe ploughing down to about 0.8-1.0 m. The new vineyard was planted in 2011 after an equivalent earthwork carried out in the summer of 2009. Both vineyards were organically managed and only compost at the rate of 1,000 kg ha-1 -a was added every year. The new vineyard was periodically cultivated by mechanical tillage, while the older only at alternate rows. Soil samples from the first 15 cm depth were collected in 4 replicates in the younger as well as in the older vineyard during the springtime of 2010-2013; in the older vineyard, two samples were from the periodically cultivated swaths and two under permanent grass cover. Samples were analysed for physical (particle size, field capacity, wilting point), chemical (pH, electrical conductivity, lime, active lime, organic carbon, total nitrogen), microbiological (soil respiration, microbial biomass, DGGE), and mesofauna features (abundance, taxa richness, BSQ index and

  19. Interrelationships between soil cover and plant cover depending on land use

    Directory of Open Access Journals (Sweden)

    Tiina Köster

    2013-05-01

    Full Text Available Interrelationships between soil cover and plant cover of normally developed (or postlithogenic mineral soils are analysed on the basis of four sampling soil groups. The four-link pedo-ecological sequence of analysed soils, rendzinas → brown soils → pseudopodzolic soils → gley-podzols, forms a representative cross section in relation to the normal mineral soils of Estonia. All groups differ substantially from each other in terms of soil properties (calcareousness, acidity, nutrition conditions, profile fabric and humus cover. The primary tasks of the research were (1 to elucidate the main pedo-ecological characteristics of the four soil groups and their suitability for plant cover, (2 to evaluate comparatively soils in terms of productivity, sustainability, biodiversity and environmental protection ability and (3 to analyse possibilities for ecologically sound matching of soil cover with suitable plant cover. On the basis of the same material, the influence of land-use change on humus cover (epipedon fabric, properties of the entire soil cover and soil–plant interrelationship were also analysed. An ecosystem approach enables us to observe particularities caused by specific properties of a soil type (species, variety in biological turnover and in the formation of biodiversity.

  20. Physical behaviour of Cretaceous calcareous nannofossil ooze

    DEFF Research Database (Denmark)

    Buls, Toms; Anderskouv, Kresten; Friend, Patrick L.

    2017-01-01

    Geomorphic features such as drifts, sediment waves and channels have been documented in the Upper Cretaceous of north-west Europe. These features are interpreted to result from bottom currents and have been used to refine chalk depositional models and quantify palaeocirculation patterns. Chalk...... was first deposited as calcareous nannofossil ooze and geomorphic features are the result of sediment reworking after deposition. There is limited knowledge on the processes that govern nannofossil ooze mobility, thus forcing uncertainty onto numerical models based on sedimentological observations...... of deposition thresholds (τcd) from ca 0·04 to 0·13 Pa reflects the influence of variable suspended sediment concentration and τ0 on settling particle size due to the identified potential for chalk ooze aggregation and flocculation. Additionally, deposition thresholds seem to be affected by the size of eroded...

  1. Interactions between 59Fe(14C)EDTA and soils containing calcium carbonate

    International Nuclear Information System (INIS)

    Hargitai-Toth, A.; Konya, J.

    1991-01-01

    Interaction between FeEDTA and calcareous soils was followed over a period of four weeks using a radiotracer technique, and a kinetic evaluation of the results was performed. 59 Fe served to determine the quantity of iron, 14 C to assay for EDTA and 45 Ca to measure calcium. During the experiment, i.e. within four weeks in case of the chernozem soil 61% and in case of the clayey meadow soil 51% of the iron chelate disappeared from the solution. The loss in soluble iron was partly due to a rapid sorption process of about an hour and partly due to the slow decomposition of FeEDTA to Fe(OH) 3 . The two processes could be separated using the Christiansen equation. (author) 9 refs.; 1 figs.; 2 tabs

  2. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Amezketa, E.; Aragues, R.; Gazol, R. [Gobierno Navarra, Pamplona (Spain). Agricultural Resources Evaluation Center

    2005-06-01

    We evaluated the efficiency of four amendments (sulfuric acid, mined-gypsum, and the by-products coal-gypsum and lacto-gypsum) in crusting prevention of two calcareous nonsodic and sodic soils and in sodic soil reclamation. Treatments for crust prevention consisted of surface-applied amendments at equivalent rates of 5 Mg pure-gypsum ha{sup -1}. Treatments for sodic soil reclamation consisted of surface-applied acid and soil-incorporated gypsums at rates of 1 pure-gypsum requirement. The efficiency of these amendments was evaluated by comparing the final infiltration rates (FIR) of the amended vs. the nonamended soils measured in disturbed-soil columns pounded with low-salinity irrigation water. Electrical conductivity (EC) and Na in the leachates of the sodic soil were measured. In the crusting prevention experiment, FIRs (mm h{sup -1) of the nonsodic soil were 21 (nonamended), 33 to 35 (gypsum materials), and 53 (sulfuric acid), whereas those for the sodic soil were 0 (nonamended), 9 (lacto-gypsum), 15 to 17 (coal- and mined-gypsum), and 21 (sulfuric acid). In the sodic-soil reclamation experiment, FIRs were 0 (nonamended), 8 to 9 (gypsum-materials), and 17 (sulfuric acid) mm h{sup -1}. All amendments were effective in crusting prevention and soil reclamation, but sulfuric acid was the most efficient due to the fastest EC and Na reductions in the leachates. The three gypsum-materials were equally effective in the reclamation process and in the nonsodic soil crusting-prevention, whereas lacto-gypsum was less efficient in the sodic-soil crusting-prevention.

  3. Phytoavailability of Cadmium (Cd) to Pak Choi (Brassica chinensis L.) Grown in Chinese Soils: A Model to Evaluate the Impact of Soil Cd Pollution on Potential Dietary Toxicity

    Science.gov (United States)

    Yang, Xiaoe; Xiao, Wendan; Stoffella, Peter J.; Saghir, Aamir; Azam, Muhammad; Li, Tingqiang

    2014-01-01

    Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg−1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg−1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production. PMID:25386790

  4. Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity.

    Science.gov (United States)

    Rafiq, Muhammad Tariq; Aziz, Rukhsanda; Yang, Xiaoe; Xiao, Wendan; Stoffella, Peter J; Saghir, Aamir; Azam, Muhammad; Li, Tingqiang

    2014-01-01

    Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg-1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg-1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.

  5. Phytoavailability of cadmium (Cd to Pak choi (Brassica chinensis L. grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity.

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq Rafiq

    Full Text Available Food chain contamination by soil cadmium (Cd through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L. based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg-1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg-1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.

  6. Pleistocene calcareous nannofossil biochronology at IODP Site U1385 (Expedition 339)

    Science.gov (United States)

    Balestra, B.; Flores, J.-A.; Hodell, D. A.; Hernández-Molina, F. J.; Stow, D. A. V.

    2015-12-01

    During Integrated Ocean Drilling Program (IODP) Expedition 339, Site U1385 (37°34‧N, 10°7‧W, 2578 m below sea level) was drilled in the lower slope of the Portuguese margin, to provide a marine reference section of Pleistocene millennial-scale climate variability. Five holes were cored using the Advanced Piston Corer (APC) to a depth of ~ 151 m below sea floor (mbsf) recovering a continuous stratigraphic record covering the past 1.4 Ma. Here we present results of the succession of standard and unconventional calcareous nannofossil biostratigraphic events. The quantitative study of calcareous nannofossils showed well-preserved and abundant assemblages throughout the core. Most conventional Pleistocene events were recognized and the timing of bioevents were calibrated using correlation to the new oxygen isotope stratigraphy record developed for the Site U1385. The analyses provide further data on the stratigraphic distribution of selected species and genera, such as the large Emiliania huxleyi (> 4 μm), Gephyrocapsa caribbeanica, Helicosphaera inversa, Gephyrocapsa omega and Reticulofenestra asanoi (> 6 μm) and other circular-subcircular small reticulofenestrids, resulting in new insights into the environmental control of their stratigraphic patterns. Finally, the comparison between nannofossil datums and oxygen isotope stratigraphy on the same samples has resulted in an accurate revision of timing of the events, providing valuable biochronologic information.

  7. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    Directory of Open Access Journals (Sweden)

    shahrzad karami

    2017-02-01

    Full Text Available Introduction: Heavy metals such as cadmium (Cd are found naturally in soils, but their amount can be changed by human activities. The study of the uptake and accumulation of heavy metals by plants is done in order to prevent their threats on human and animal’s health.Cadmium is a toxic element for living organisms. Cadmium competes with many of nutrients to be absorbed by the plant and interferes with their biological roles. Water stress affects the cell structure and the food is diverted from its normal metabolic pathway. It also reduces the availability and uptake of nutrients by the plant. One reason for the reduction of plant growth under drought stress is the accumulation of ethylene in plants. There are ways to mitigate the negative effects of drought stress that one of which is the use of Plant Growth Promoting Rhizobacteria(PGPRs to increasing the availability of nutrients. Soil beneficial bacteria play an important role in the biological cycles and have been used to increase plant health and soil fertility over the past few decades.The aim of this study was to investigate theeffect of PGPRson the concentration and uptake of macro nutrients by corn in a Cd-contaminated calcareous soil under drought stress. Materials and Methods: A greenhouse factorial experiment was conducted in a completely randomized design with three replications. The treatments were two levels of bacteria (with and without bacteria, four levels of Cd (5, 10, 20, and 40 mg kg-1, and three levels of drought stress (without stress, 80, and 65% of field capacity. The pots were filled with 3 kg of treated soil. Cd was treated as its sulfate salt in amounts of 5, 10, 20, and 40 mg kg-1. The soil was mixed uniformly with 150 mg N kg-1 as urea, 20 mg P kg-1 as Ca (H2PO42, 5 mg Fe kg-1 as Fe-EDDHA and 10, 10 and 2.5 mg Zn, Mn and Cu kg-1, respectively as their sulfate salt in order to meet plant needs for these nutrients. Six seeds of Zea mays (var. HIDO were planted at

  8. Efficiency of zinc incorporated urea on wheat in two Bihar soils

    International Nuclear Information System (INIS)

    Mutatkar, V.K.; Parik, B.L.; Sahay, R.N.; Dhua, S.P.

    1977-01-01

    The effect of zinc application as zinc sulphate alone and incorporated with urea (granulated zincated urea) on wheat was compared in pot culture study using 62 Zn as tracer. Two typical alluvial calcareous soils from Samastipur and Dholi, Bihar were used for the study. The crop responded to zinc application and the increase in dry matter yield was significant. Total uptake and concentration of zinc in plant, zinc percent derived from fertilizer source and its utilization, were non-significant between the two sources, although there was a significant differences in all the parameters because of the higher dose of zinc application. Relative efficiency of zincated urea was slightly higher in Samastipur soil having low available zinc and similar to zinc sulphate in Dholi soil containing medium amount of available zinc. The field experiment carried out at Sindri (Bihar) confirmed the above finding. (author)

  9. Methodology for the elaboration of Natura 2000 sites designation acts in the Walloon Region (Belgium: calcareous grasslands in the Lesse-and-Lomme area

    Directory of Open Access Journals (Sweden)

    Mahy G.

    2005-01-01

    Full Text Available In the Walloon Region (Belgium, 239 sites have been selected to be included in the Natura 2000 network. The next step is to write designation acts in order to legally protect these 221,000 ha. In this pilot study, a designation act was elaborated for a Natura 2000 site of 2,569 ha and located in the Lesse-and-Lomme area within the Calestienne region. Although the site includes 40 ha of calcareous grasslands, characterised by an exceptional flora and fauna, this habitat is very threatened by abandonment and fragmentation.The methodology used to elaborate the designation act is presented with respect to calcareous grassland. Firstly, in spring and summer 2003, an accurate map of natural habitats was produced, with every single patch of calcareous grassland being mapped. Information was also collected in order to evaluate conservation status. Based on this information, conservation status was then assessed with respect to three different criteria: (1 integrity of the cortege species, (2 habitat structure and (3 degradations. Thirdly, the site was divided into objective zones according to the different habitats and species of Community interest found in the site. Hence, an objective zone was delineated for calcareous grasslands. This objective zone was then divided in several management units. Finally, at these different spatial levels (site, objective zone, management unit, management measures were suggested. As a result, in the draft designation act, the target is to maintain or restore 230 ha of calcareous grassland, instead of the existing 40 ha. This ambitious target requires large-scale restoration and an efficient grazing scheme. These will need important resources for their successful implementation

  10. Effect of the complementary anions on the balance of calcium and boron in soil and plant

    Energy Technology Data Exchange (ETDEWEB)

    El-Damaty, A; El-Hamid, W A; El-Sherbeni, A E; El-Mowelhi,; Hossein, M A

    1974-05-01

    Different calcium salts and varying levels of boron were used in pot experiments with broad beans. High solubility Ca salts produced relatively lower soil pH than very low solubility Ca salts. Low solubility Ca salts slightly promote B retention as long as they increased soil pH. High Ca content in beans and high Ca/B ratios in soil are produced by very soluble Ca salts. B content of the plants depends on the amount of Ca absorbed and the B level in the soil, irrespective of any other factors studied. The presence of some Ca salts masked Boron toxicity symptoms. CO/sub 3/ anions in calcareous soils may play a role in boron deficiency or toxicity. Application of nitrogenous fertilizers may reduce injurious effect of excessive B content in soil, unlike phosphate fertilizers which may accentuate the boron toxicity problem. 14 references, 1 table.

  11. Comparative uptake of trace elements in vines and olive trees over calcareous soils in western La Mancha

    Science.gov (United States)

    Ángel Amorós, José; Higueras, Pablo; Pérez-de-los-Reyes, Caridad; Jesús García, Francisco; Villaseñor, Begoña; Bravo, Sandra; Losilla, María Luisa; María Moreno, Marta

    2014-05-01

    Grapevine (Vitis vinifera L.) and olive-tree (Olea europea L.) are very important cultures in Castilla-La Mancha for its extension and contribution to the regional economy. This study was carried out in the municipality of Carrión de Calatrava (Ciudad Real) where the variability of soils of different geological origin, with different evolutions giving a great diversity of soils. The metabolism of trace elements in plants has been extensively studied although each soil-plant system must be investigated, especially since small variations in composition can lead to marked differences. It can be stated that the composition of the plant reflects the environment where it is cultivated and the products of the plant (leaves, fruits, juices, etc…) will be influenced by the composition of the soil. The main aim of the work was to compare the uptake of 24 trace elements in grapevine and olive-tree cultivated in the same soil. Samples from surface soils and plant material (leaf) have been analyzed by X-ray fluorescence, obtaining trace elements in mg/kg. It can be concluded that the leaves of grapevines in the studied plots have shown content in elements: -Similar to the olive-tree in case of: Co, Ga, Y, Ta, Th, U y Nd. -Over to the olive-tree in: Sc, V, Cr, Ni, Rb, Sr, Zr, Nb, Ba, La, Ce, Hf y W. -Below to the olive-tree in: Cu, Zn, Cs y Pb. Keywords: woody culture soils, mineral nutrition, X-ray fluorescence.

  12. Soil quality evaluation following the implementation of permanent cover crops in semi-arid vineyards. Organic matter, physical and biological soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Virto, I.; Imaz, M. J.; Fernandez-Ugalde, O.; Urrutia, I.; Enrique, A.; Bescansa, P.

    2012-07-01

    Changing from conventional vineyard soil management, which includes keeping bare soil through intense tilling and herbicides, to permanent grass cover (PGC) is controversial in semi-arid land because it has agronomic and environmental advantages but it can also induce negative changes in the soil physical status. The objectives of this work were (i) gaining knowledge on the effect of PGC on the soil physical and biological quality, and (ii) identifying the most suitable soil quality indicators for vineyard calcareous soils in semi-arid land. Key soil physical, organic and biological characteristics were determined in a Cambic Calcisol with different time under PGC (1 and 5 years), and in a conventionally managed control. Correlation analysis showed a direct positive relationship between greater aggregate stability (WSA), soil-available water capacity (AWC), microbial biomass and enzymatic activity in the topsoil under PGC. Total and labile organic C concentrations (SOC and POM-C) were also correlated to microbial parameters. Factor analysis of the studied soil attributes using principal component analysis (PCA) was done to identify the most sensitive soil quality indicators. Earthworm activity, AWC, WSA, SOC and POM-C were the soil attributes with greater loadings in the two factors determined by PCA, which means that these properties can be considered adequate soil quality indicators in this agrosystem. These results indicate that both soil physical and biological attributes are different under PGC than in conventionally-managed soils, and need therefore to be evaluated when assessing the consequences of PGC on vineyard soil quality. (Author) 65 refs.

  13. Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation.

    Science.gov (United States)

    Lacalle, Rafael G; Gómez-Sagasti, María T; Artetxe, Unai; Garbisu, Carlos; Becerril, José M

    2018-03-15

    Contaminated soils are frequently characterized by the simultaneous presence of organic and inorganic contaminants, as well as a poor biological and nutritional status. Rhizoremediation, the combined use of phytoremediation and bioremediation, has been proposed as a Gentle Remediation Option to rehabilitate multi-contaminated soils. Recently, newer techniques, such as the application of metallic nanoparticles, are being deployed in an attempt to improve traditional remediation options. In order to implement a phytomanagement strategy on calcareous alkaline peri-urban soils simultaneously contaminated with several metals and diesel, we evaluated the effectiveness of Brassica napus L., a profitable crop species, assisted with organic amendment and zero-valent iron nanoparticles (nZVI). A two-month phytotron experiment was carried out using two soils, i.e. amended and unamended with organic matter. Soils were artificially contaminated with Zn, Cu and Cd (1500, 500 and 50mgkg -1 , respectively) and diesel (6000mgkg -1 ). After one month of stabilization, soils were treated with nZVI and/or planted with B. napus. The experiment was conducted with 16 treatments resulting from the combination of the following factors: amended/unamended, contaminated/non-contaminated, planted/unplanted and nZVI/no-nZVI. Soil physicochemical characteristics and biological indicators (plant performance and soil microbial properties) were determined at several time points along the experiment. Carbonate content of soils was the crucial factor for metal immobilization and, concomitantly, reduction of metal toxicity. Organic amendment was essential to promote diesel degradation and to improve the health and biomass of B. napus. Soil microorganisms degraded preferably diesel hydrocarbons of biological origin (biodiesel). Plants had a remarkable positive impact on the activity and functional diversity of soil microbial communities. The nZVI were ineffective as soil remediation tools, but did not

  14. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    International Nuclear Information System (INIS)

    Cao Qing; Hu Qinhong; Khan, Sardan; Wang Zijian; Lin Aijun; Du Xin; Zhu Yongguan

    2007-01-01

    The toxicity of two toxic elements, arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC 50 ) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC 50 for As was 0.97 μM in hydroponics and 196 mg kg -1 in soil, and 4.32 μM and 449 mg kg -1 for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC 50mix = 0.36TU mix and AI: 1.76) and antagonism in soil experiments (EC 50mix = 1.49TU mix and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd cannot explain the discrepancy between the results derived from soil and hydroponics experiments

  15. Variation of the distribution coefficient (Kd) of selenium in soils under various microbial states

    International Nuclear Information System (INIS)

    Fevrier, L.; Martin-Garin, A.; Leclerc, E.

    2007-01-01

    This study aimed to (i) evaluate whether the K d value of selenium is dependent upon the soil microbial activity and (ii) define the limitation of the use of the K d concept to describe selenium behaviour in soils when assessing the long-term radiological waste disposal risk. K d coefficients, as well as information on selenite speciation in the soil-solution, were derived from short- and long-term batch experiments with a calcareous silty clay soil in various microbial states. Soil microbial activity induced (i) an increase of the K d value from 16 l kg -1 in sterile conditions to 130 l kg -1 when the soil was amended with glucose and nitrate, and (ii) changes in selenium speciation both in the solution (presence of seleno-species other than free Se(IV)) and in the solid phase (Se linked to microorganisms). Although the K d coefficient adequately reflects the initial fractionation between soil-solid and soil-solution, it does not allow for speciation and microbial processes, which could affect reversibility, mobility and the long-term accumulation and uptake into crops

  16. Sinemurian–Pliensbachian calcareous nannofossil biostratigraphy and organic carbon isotope stratigraphy in the Paris Basin

    DEFF Research Database (Denmark)

    Peti, Leonie; Thibault, Nicolas Rudolph; Clemence, Marie-Emilie

    2017-01-01

    The biostratigraphy of Sinemurian to lower Toarcian calcareous nannofossils has been investigated in the Sancerre-Couy core (Paris Basin), which contains a mixed assemblage of species with affinities to the northern and southern areas of the peri-tethyan realm, thus allowing for the use and calib......The biostratigraphy of Sinemurian to lower Toarcian calcareous nannofossils has been investigated in the Sancerre-Couy core (Paris Basin), which contains a mixed assemblage of species with affinities to the northern and southern areas of the peri-tethyan realm, thus allowing for the use...... organic carbon isotope curve based on 385 data points. The main bioevents, i.e. the first occurrences of Parhabdolithus liasicus, Crepidolithus pliensbachensis, Crepidolithus crassus, Mitrolithus lenticularis, Similiscutum cruciulus sensu lato, Lotharingius hauffii, Crepidolithus cavus and Lotharingius...... between the different domains. In addition to the nine main bioevents used for the biozonation of the core, we document an additional 50 distinct bioevents, evaluate their reliability and discuss their potential significance by comparison to previous studies. A total of five significant negative organic...

  17. The effectiveness of soil-applied FeEDDHA treatments in preventing iron chlorosis in soybean as a function of the 0,0-FeEDDHA content

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Dijcker, R.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2008-01-01

    The application of FeEDDHA products is the most common practice to prevent or to remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of EDDHA components chelated to Fe. In this study such mixtures have been divided into four (groups of) components: racemic

  18. Geochemistry of calcareous sediments from the SW Carlsberg Ridge: Evidence for deeper carbonate compensation depth

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.; Ambre, N.V.

    Concentration of Mn, Fe, Ni, Co, Zn, Ca, Mg, K, Al, Si, Ti, P and CaCO sub(3) show wide range for the calcareous sediments from SW Carlsberg Ridge (CR). Compared with the average pelagic clays, the CR sediments are enriched by Mg, Ni, Co, and Zn...

  19. Coniacian-maastrichtian calcareous nannofossil biostratigraphy and carbon-isotope stratigraphy in the Zagros Basin (Iran)

    DEFF Research Database (Denmark)

    Razmjooei, Mohammad Javad; Thibault, Nicolas; Kani, Anoshiravan

    2014-01-01

    , White Fall, Kingsdown, Michel Dean, Haven Brow, Horseshoe Bay, Buckle, Hawks Brow, Santonian/Campanian boundary (SCBE) and Campanian/Maastrichtian boundary (CMBE) events. Correlation to a recently proposed global δ13C stack for the Late Cretaceous points to a major mismatch of this compilation...... and calcareous nannofossil bio-horizons, and (2) their correlation between the Tethyan and Boreal realms....

  20. EARLY TO LATE OLIGOCENE CALCAREOUS NANNOFOSSIL BIOEVENTS IN THE MEDITERRANEAN (UMBRIA-MARCHE BASIN, CENTRAL ITALY

    Directory of Open Access Journals (Sweden)

    PATRIZIA MAIORANO

    2006-07-01

    Full Text Available Calcareous nannofossil assemblages have been investigated by means of quantitative analyses in three Oligocene pelagic sections located in the Umbria-Marche Apennines (Central Italy. The studied sections mainly consist of marly limestones and marls belonging to the Scaglia Cinerea Formation, and include the interval between NP23 and NP25 representing a time interval of about 3.5 Ma. Biostratigraphic resolution is extremely low and only two standard bioevents are known, which are the FO of Sphenolithus ciperoensis and the LO of Sphenolithus distentus. The distribution patterns of poorly known or recently described calcareous nannofossils provided a valuable tool for improving the current biostratigraphic framework. The studied interval is characterized by significant changes in the calcareous nannofossil assemblages and by several extinction events. The last occurrence (LO and/or the last common occurrence (LCO here proposed are: the LO of Sphenolithus akropodus, the LO of Reticulofenestra circus, the LCO of Helicosphaera ethologa, the LCO of Helicosphaera compactathe LO of Discoaster tanii nodifer. The reversal in abundance between Sphenolithus predistentus and S. distentus provided an additional biostratigraphic constraint at the NP23-NP24 transition. In addition biometric criteria enabled the recognition of the first common occurrence (FCO of Cyclicargolithus abisectus > 12 mm as potential bioevent within NP24. The quantitative distribution of Sphenolithus distentus suggests to rely on the LCO of the species rather than on the LO, for the identification of NP24-NP25 boundary. The identified bioevents is a first step towards the improvement of the present Mediterranean biostratigraphic framework of the Oligocene geological record. A preliminary correlation of the bioevents to the Geomagnetic Polarity Time Scale is presented.

  1. Role of water repellency in aggregate stability of cultivated soils under simulated raindrop impact

    Science.gov (United States)

    Kořenková, Lucia; Matúš, Peter

    2015-07-01

    Soil aggregate stability (AS) is an important indicator of soil physical quality. For the purpose of this research it was hypothesized that particular properties such as water repellency (WR) influence soil aggregation and AS. Directly after sampling, WR was detected for three soils, after a week of air-drying two of these soils still showed some resistance to penetration by a water drop placed on the surface (WDPT test). The study examines AS of air-dried texturally different aggregates of size 0.25-0.5 mm taken from surface layers (5-15 cm depth) of six agriculturally used soils. The procedure involves exposure of soil aggregates to direct impact of water drops. Results showed that soil AS increases in order: cutanic Luvisol (siltic) Chernozem < calcic mollic Fluvisol < mollic grumic Vertisol (pellic) < mollic Fluvisol (calcaric) < gleyic Fluvisol (eutric). Gradual increase in AS can be explained by the increase in soil organic matter content and its hydrophobic properties. Although WR has been most commonly observed in soils under forests and grass cover, the results confirmed that cultivated soils may also create water-stable aggregates, especially in the case when their organic matter induces WR under particular moisture conditions.

  2. Ophiolitic detritus in Kimmeridgian resedimented limestones and its provenance from an eroded obducted ophiolitic nappe stack south of the Northern Calcareous Alps (Austria

    Directory of Open Access Journals (Sweden)

    Gawlick Hans-Jürgen

    2015-12-01

    Full Text Available The causes for the Middle to Late Jurassic tectonic processes in the Northern Calcareous Alps are still controversially discussed. There are several contrasting models for these processes, formerly designated “Jurassic gravitational tectonics”. Whereas in the Dinarides or the Western Carpathians Jurassic ophiolite obduction and a Jurassic mountain building process with nappe thrusting is widely accepted, equivalent processes are still questioned for the Eastern Alps. For the Northern Calcareous Alps, an Early Cretaceous nappe thrusting process is widely favoured instead of a Jurassic one, obviously all other Jurassic features are nearly identical in the Northern Calcareous Alps, the Western Carpathians and the Dinarides. In contrast, the Jurassic basin evolutionary processes, as best documented in the Northern Calcareous Alps, were in recent times adopted to explain the Jurassic tectonic processes in the Carpathians and Dinarides. Whereas in the Western Carpathians Neotethys oceanic material is incorporated in the mélanges and in the Dinarides huge ophiolite nappes are preserved above the Jurassic basin fills and mélanges, Jurassic ophiolites or ophiolitic remains are not clearly documented in the Northern Calcareous Alps. Here we present chrome spinel analyses of ophiolitic detritic material from Kimmeridgian allodapic limestones in the central Northern Calcareous Alps. The Kimmeridgian age is proven by the occurrence of the benthic foraminifera Protopeneroplis striata and Labyrinthina mirabilis, the dasycladalean algae Salpingoporella pygmea, and the alga incertae sedis Pseudolithocodium carpathicum. From the geochemical composition the analysed spinels are pleonastes and show a dominance of Al-chromites (Fe3+–Cr3+–Al3+ diagram. In the Mg/(Mg+ Fe2+ vs. Cr/(Cr+ Al diagram they can be classified as type II ophiolites and in the TiO2 vs. Al2O3 diagram they plot into the SSZ peridotite field. All together this points to a harzburgite

  3. Production of Calcareous Nannofossil Ooze for Sedimentological Experiments

    DEFF Research Database (Denmark)

    Buls, Toms; Anderskouv, Kresten; Fabricius, Ida Lykke

    2015-01-01

    by an abundance of sedimentary structures, such as drifts, moats, sediment waves, and channels documented in the Upper Cretaceous Chalk Group of NW Europe. Despite chalk being a major hydrocarbon reservoir rock of the North Sea, surprisingly little is known about the physical behavior of the pelagic carbonate......The notion of fine-grained pelagic carbonates as uniform, monotonous sequences of sediments settled in a quiescent environment has been challenged over the past few decades. Fine-grained pelagic carbonates can undergo substantial reworking after their first deposition, as illustrated...... sediment from which the chalk formed-calcareous nannofossil ooze. This poses a serious challenge to the understanding of the depositional system and the properties of facies distribution. Experimental tests, such as those performed in laboratory flumes, are necessary to provide empirical data...

  4. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    Energy Technology Data Exchange (ETDEWEB)

    Cao Qing [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu Qinhong [Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 (United States); Khan, Sardan [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Department of Environmental Sciences, University of Peshawar, 25120 Peshawar (Pakistan); Wang Zijian [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Lin Aijun [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Du Xin [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Yongguan [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)], E-mail: ygzhu@rcees.ac.cn

    2007-09-05

    The toxicity of two toxic elements, arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg kg{sup -1} in soil, and 4.32 {mu}M and 449 mg kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd cannot explain the discrepancy between the results derived from soil and hydroponics experiments.

  5. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Hu, Q; Khan, S; Wang, Z; Lin, A; Du, X; Zhu, Y

    2007-03-05

    The toxicity effect of two deleterious elements of arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg {center_dot} kg{sup -1} in soil, and 4.32 {mu}M and 449 mg {center_dot} kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36 TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49 TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd can not explain the discrepancy between the results derived from soil and hydroponics experiments.

  6. The effect of ascorbic acid-stabilized zero valent iron nanoparticles on the distribution of different forms of cadmium in three spiked soils

    Directory of Open Access Journals (Sweden)

    Mohaddese Savasari

    2017-01-01

    Full Text Available Introduction: Increases in pollution of water resources due to the contaminants have made researchers to develop the various methods in the remediation and the reuses of polluted resources contamination of soils with heavy metals is one of great environmental concerns for the human beings. Cadmium (Cd as a toxic heavy metal is of significant environmental and occupational concern. Contamination of soils with heavy metals is one of great environmental concerns for the human beings. The numbers of sorbents that have been used for Cd (II reductive removal are biopolymers, fly ash, activated carbon, metal oxides, clays, zeolites, dried plant parts, microorganisms, and sewage sludge. However, most of the mentioned sorbents had limitations of cost and durability that call a needed approach by cost effective remediation technique with high efficiency. Application of zero valent iron nanoparticles (ZVINs as a promising technique for remediation of heavy metals are being increasingly considered by researchers. This study was conducted to synthesis and characterize the ZVINs stabilized with ascorbic acid (AAS - ZVIN in aerobic conditions and to assess their ability for removal efficiency of cadmium (Cd from the soils and changes in different fraction of Cd in three spiked soils including sandy, acidity and calcareous soils were also studied. Materials and Methods: The stabilized ZVINs were prepared in cold distilled water by reducing Fe (III to Fe0 using sodium borohydride in the presence of ascorbic acid as stabilizer and reducing agent. The freshly synthesized AAS-ZVIN washed three times and then used for the subsequent analysis. Characterization of the synthesized AAS-ZVIN was carried out by scanning electron microscope (SEM. X-ray diffraction (XRD was performed using a Philips D500 diffract meter with Ni-filtered Cu ka radiation. To determine the availability of Cd, the DTPA-extractable amounts of Cd in the spiked soils so sandy, acid and calcareous

  7. Paleocene calcareous nannofossils biostratigraphy from the Sergipe Sub-basin, northeastern Brazil: Implications for this depositional environment

    Science.gov (United States)

    Andrade Oliveira, Geize Carolinne Correia; de Oliveira, Rick Souza; Monte Guerra, Rodrigo; de Lima Filho, Mario Ferreira

    2018-03-01

    This study reports on the biostratigraphy of Paleocene calcareous nannofossils and paleoenvironmental inferences based on five wells drilled on the offshore portion of the Sergipe Sub-basin. Five biostratigraphic zones were defined for the Paleocene in zones of Brazilian continental margin basins N-305, N-307, N-330, N-340 and N-350, and four hiatuses were identified based on the absence of marker species. These hiatuses were interpreted as excavations originated by turbulent to hyperpycnal flows, revealing an important application of biostratigraphy to better understand depositional environments that are often limited by little variation in lithology or low variation in the well log patterns. In Paleoecological terms, the Sergipe Sub-basin, in the Paleocene, experienced geological and environmental events similar to those of other sedimentary basins on the eastern passive continental margin of Brazil, but has a more complete biostratigraphic record of calcareous nannofossils.

  8. Soil erosion in Iran: Issues and solutions

    Science.gov (United States)

    Hamidreza Sadeghi, Seyed; Cerdà, Artemi

    2015-04-01

    Iran currently faces many soil erosion-related problems (see citations below). These issues are resulted from some inherent characteristic and anthropogenic triggering forces. Nowadays, the latter plays more important rule to accelerate the erosion with further emphasis on soil erosion-prone arid and semi arid regions of the country. This contribution attempts to identify and describe the existing main reasons behind accelerated soil erosion in Iran. Appropriate solutions viz. structural and non-structural approaches will be then advised to combat or minimise the problems. Iran can be used as a pilot research site to understand the soil erosion processes in semiarid, arid and mountainous terrain and our research will review the scientific literature and will give an insight of the soil erosion rates in the main factors of the soil erosion in Iran. Key words: Anthropogenic Erosion, Land Degradation; Sediment Management; Sediment Problems Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7-ENV-2013- supported this research. References Aghili Nategh, N., Hemmat, A., & Sadeghi, M. (2014). Assessing confined and semi-confined compression curves of highly calcareous remolded soil amended with farmyard manure. Journal of Terramechanics, 53, 75-82. Arekhi, S., Bolourani, A. D., Shabani, A., Fathizad, H., Ahamdy-Asbchin, S. 2012. Mapping Soil Erosion and Sediment Yield Susceptibility using RUSLE, Remote Sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Advances in Environmental Biology, 6(1), 109-124. Arekhi, S., Shabani, A., Rostamizad, G. 2012. Application of the modified universal soil loss equation (MUSLE) in prediction of sediment yield (Case study: Kengir Watershed, Iran). Arabian Journal of Geosciences, 5(6), 1259-1267.Sadeghi, S. H., Moosavi, V., Karami, A., Behnia, N. 2012. Soil erosion assessment and prioritization of affecting factors at plot

  9. Ca (OH)2Nanoparticles Based on Acrylic Copolymers for the consolidation and protection of Ancient Egypt Calcareous Stone Monuments

    Science.gov (United States)

    Al-Dosari, Mohammad A.; Darwish, Sawsan S.; Adam, Mahmoud A.; Elmarzugi, Nagib A.; Al-Mouallimi, Nadia; Ahmed, Sayed M.

    2017-04-01

    The deterioration of calcareous stones materials used in artistic/architectural field is one of the most serious problems facing conservation today. The aim of this study was to evaluate the effectiveness of nanosized particles of calcium hydroxide (slaked lime) as a consolidation and protection material dispersed in acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly (EMA/MA), for calcareous stone monuments and painted surfaces affected by different kinds of decay. The synthesis process of Ca (OH)2 nanoparticles/polymer nanocomposites have been prepared by in situ emulsion polymerization system. The prepared nanocomposite containing 5% of Ca (OH)2 nanoparticles showed obvious transparency features and represent nanocomposites coating technology with hydrophobic, consolidating and well protection properties.

  10. Ca (OH)2Nanoparticles Based on Acrylic Copolymers for the consolidation and protection of Ancient Egypt Calcareous Stone Monuments

    International Nuclear Information System (INIS)

    Al-Dosari, Mohammad A.; Ahmed, Sayed M.; Darwish, Sawsan S.; Adam, Mahmoud A.; Elmarzugi, Nagib A.; Al-Mouallimi, Nadia

    2017-01-01

    The deterioration of calcareous stones materials used in artistic/architectural field is one of the most serious problems facing conservation today. The aim of this study was to evaluate the effectiveness of nanosized particles of calcium hydroxide (slaked lime) as a consolidation and protection material dispersed in acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly (EMA/MA), for calcareous stone monuments and painted surfaces affected by different kinds of decay. The synthesis process of Ca (OH) 2 nanoparticles/polymer nanocomposites have been prepared by in situ emulsion polymerization system. The prepared nanocomposite containing 5% of Ca (OH) 2 nanoparticles showed obvious transparency features and represent nanocomposites coating technology with hydrophobic, consolidating and well protection properties. (paper)

  11. Effect of Sewage Sludge on Some Macronutrients Concentration and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Sakine Vaseghi

    2005-03-01

    Full Text Available Sewage sludge as an organic fertilizer has economic benefits. Land application of sewage sludge improves some soil chemical and physical properties. The objective of this study was to evaluate the effect of sewage sludge on soil chemical properties and macronutrient concentration in acid and calcareous soils. The study was carried out in a greenhouse using factorial experiment design as completely randomized with three replications. Treatments included : four levels of 0 or control, 50, and 100, 200 ton ha-1 sludge and one level of chemical fertilizer (F consisting of 250 kg ha-1 diammonium phosphate and 250 kg ha-1 urea, and soil including soils of Langroud, Lahijan, Rasht, and Isfahan. As a major vegetable , crop spinach (Spinacea oleracea was grown in the treated soils. Soils samples were analyzed for their chemical properties after crop narvesting. Application of sewage sludge significantly increased plant available k, P, total N, organic matter, electrical conductivity and cation exchange in the soils. Soils pH significantly decreased as a result sewage sludge application. The effect of sewage sludge on plant yield was significant. Overall, the results indicated that sewage sludge is potentially a valuable fertilizer. However, the sludge effect on soil EC and heavy metals should be taken into consideration before its widespread use on cropland.

  12. Vulnerability of soil resources to heavy metals contamination in Central Bekaa-Lebanon

    International Nuclear Information System (INIS)

    Darwish, T.; Jomaa, I.; Sukarieh, W.; Chihny, R.

    2000-01-01

    the plain, after the waste effluents in the open canal nourishing the rivers, showed some accumulation of Ni and Cr in the Litany, Pb in the Berdawni reached the value of intervention. The results of soil chemical analysis showed that the soil of the area are calcareous with a high p H value. The land form and lithological material underlying the soil implements a restricted drainage i.e there is very low or actually no leaching of heavy metals within the soil profile. Important active clay content and relatively high organic matter content might result in a high retention capacity of the soil. While ISO standard are set for Europe with non-calcareous soil nature. Additional research is needed to adapt these criteria to the Lebanese soil condition. This, however, should be verified by following the fate of these metals in the plants

  13. PRIMARY CEMENTED BIPOLAR HEMIARTHROPLASTY WITH TROCHANTERIC AND CALCAR RECONSTRUCTION IN UNSTABLE INTERTROCHANTERIC FRACTURES IN ELDERLY: A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Pandu Ranga Vital

    2015-09-01

    Full Text Available INTRODUCTION : To avoid the complications and morbidity associated with attempted Osteosynthesis of the so called Unstable inter - trochanteric fractures in the elderly population, Primary Cemented Bipolar hemiarthroplasty been around for over three decades now. But, hardly any emphasis been given over the technical aspects to i mprove the functional outcome. Present study is one such, following reconstructive attempts ( O f primary cemented bipolar hemiarthroplasty with trochanter and calcar reconstruction in the elderly population to reduce the risk of unstable Hemiarthroplasty. MATERIALS AND METHODS: This prospective study included 20 cases of elderly patients with mean age of 73.5 years (Age range 66 to 82 yr who sustained multifragmentary/communited inter - trochanteric femur fracture treated with Primary cemented bipolar hemiar throplasty with trochanteric and calcar reconstruction to emphasize the importance of restoration soft tissue tension to reduce the risk of unstable Hemiarthroplasty. Essential Technical steps include Figure of eight / multiple wire loop technique of recons truction ( with or without K ‘wires of greater trochanter/ abductor mechanism and calcar reconstruction either by wiring Lesser trochanteric fragment and or insertion of cortical piece of bone graft (medially under the collar of the prosthesis harvested f rom head and neck fragment. The patients were followed up at six week, three month, six month and one year postoperatively and assessed using Harris Hip Score (HHS. RESULTS: The mean HHS score was 85 (range 69 to 91 at the end of one year. The main clini cal measures were early post - operative full weight bearing, post - operative complication & functional outcome. The time to full weight bearing, the rate of post - operative complications & functional outcome was significantly better in cemented bipolar arthro plasty group. CONCLUSION: The authors strongly believe that primary cemented bipolar

  14. Nitrogen deposition and grass encroachment in calcareous and acidic Grey dunes (H2130) in NW-Europe

    NARCIS (Netherlands)

    Kooijman, A.M.; van Til, M.; Noordijk, E.; Remke, E.; Kalbitz, K.

    We present an overview of high nitrogen deposition effects on coastal dune grasslands in NW-Europe (H2130), especially concerning grass encroachment in calcareous and acidic Grey Dunes. The problem is larger than previously assumed, because critical loads are still too high, and extra N-input from

  15. The siliceous-calcareous-argillaceous rock type uranium deposit in south subzone of Western Qinling

    International Nuclear Information System (INIS)

    Qian Farong; Zhou Dean; Ji Hongfang

    1995-11-01

    The siliceous-calcareous-argillaceous rock type uranium deposit in south subzone of western Qinling is an inland found type deposit with specific mineralization and good potentiality. The mineralization distributes along definite horizons and occurs in siliceous layer and lenses of siliceous-calcareous rocks. Orebody presents in forms of stratoid, lenticular and irregular veins and controlled by factorial structures. Ore is identified as massive and sandy and each characterized by various mineral compositions and element associations. The study shows that the mineralizing materials are mainly derived from ore-bearing strata. The metallogenic environment has characteristics of middle-low temperature and supergene The metallogenesis underwent three stages: (1) Sedimentation-diagenesis of the ore-bearing strata led to preliminary concentration of uranium; (2) Polytectonic activities accompanied by underground hydrothermal process resulted in the industrial concentration of uranium; and (3) Orebody reworked by oxidation-denudation and leaching, locally has taken place secondary concentration. The deposit in origin attributes to polygenesis dominated by underground hydrothermal metallogenesis. Main metallogenic epoch happens during the periods of Late Yanshan and Himalayan. According to the geological-tectonic conditions the further prospecting direction in study area is proposed. (3 refs., 5 figs., 9 tabs.)

  16. Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils.

    Science.gov (United States)

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar; Nguyen, Thi Thu Nhan; Che, Rongxiao; Phan, Thuc D; Hosseini Bai, Shahla

    2017-12-01

    Ethylenediaminetetraacetic acid (EDTA) used with electrokinetic (EK) to remediate heavy metal-polluted soils is a toxic chelate for soil microorganisms. Therefore, this study aimed to evaluate the effects of alternative organic chelates to EDTA on improving the microbial properties of a heavy metal-polluted soil subjected to EK. Cow manure extract (CME), poultry manure extract (PME) and EDTA were applied to a lead (Pb) and zinc (Zn)-polluted calcareous soil which were subjected to two electric intensities (1.1 and 3.3 v/cm). Soil carbon pools, microbial activity, microbial abundance (e.g., fungal, actinomycetes and bacterial abundances) and diethylenetriaminepentaacetic acid (DTPA)-extractable Pb and Zn (available forms) were assessed in both cathodic and anodic soils. Applying the EK to soil decreased all the microbial variables in the cathodic and anodic soils in the absence or presence of chelates. Both CME and PME applied with two electric intensities decreased the negative effect of EK on soil microbial variables. The lowest values of soil microbial variables were observed when EK was combined with EDTA. The following order was observed in values of soil microbial variables after treating with EK and chelates: EK + CME or EK + PME > EK > EK + EDTA. The CME and PME could increase the concentrations of available Pb and Zn, although the increase was less than that of EDTA. Overall, despite increasing soil available Pb and Zn, the combination of EK with manures (CME or PME) mitigated the negative effects of using EK on soil microbial properties. This study suggested that the synthetic chelates such as EDTA could be replaced with manures to alleviate the environmental risks of EK application.

  17. Elucidating key factors affecting radionuclide aging in soils

    Energy Technology Data Exchange (ETDEWEB)

    Roig, M. [Universitat Politecnica Catalunya, Institut de Tecniques Energetiques, Barcelona (Spain); Rigola, A.; Vidal, M.; Rauret, G. [Barcelona Univ., Dept. de Quimica Analitica (Spain)

    2004-07-01

    Mechanistic studies allow at present to describe the processes governing the short-term interaction of radiostrontium and radiocaesium in soils. The initial sorption step can be described through the estimation of the soil-soil solution distribution coefficient from soil parameters, as cationic exchange capacity, radiocaesium interception potential and concentration of competing ions in the soil solution. After the initial soil-radionuclide interaction, a fraction of radionuclide is no longer available for exchange with the solution, and it remains fixed in the solid fraction. At present, the initial fixed fraction of a radionuclide in a given soil cannot be predicted from soil properties. Besides, little is known about soil and environmental factors (e.g., temperature; hydric regime) provoking the increase in the fixed fraction with time, the so-called aging process. This process is considered to control the reduction of food contamination with time at contaminated scenarios. Therefore, it is crucial to be able to predict the radionuclide aging in the medium and long term for a better risk assessment, especially when a decision has to be made between relying on natural attenuation versus implementing intervention actions. Here we study radiostrontium and radiocaesium aging in a set of soils, covering a wide range of soil types of contrasting properties (e.g., loamy calcareous; podzol; chernozem, organic). Three factors are separately and simultaneously tested: time elapsed since contamination, temperature and hydric regime. Changes in the radionuclide fixed fraction are estimated with a leaching test based on the use of a mild extractant solution. In addition to this, secondary effects on the radiocaesium interception potential in various soils are also considered. (author)

  18. Biochar application reduce ammonia volatilization in a soil-plant system: A closed chamber experiment

    Science.gov (United States)

    Mandal, Sanchita; Donner, Erica; Smith, Euan; Lombi, Enzo

    2017-04-01

    Ammonia (NH3) volatilization is considered as one of the major mechanisms responsible for the loss of nitrogen (N) from soil-plant systems worldwide. About 10-30% of N can be lost as NH3 volatilization, which constitutes a significant economic loss. In recent years carbon-based materials such as biochar have created a great research interest because of their ability to increase soil fertility by reducing nutrient loss and pollutants bioavailability in soil. Most of the studies so far have investigated how biochar addition can reduce NH3 volatilization from soils but less information is available for soil-plant systems. In this research, wheat plants (Triticum aestivum, variety: Calingiri) were grown in a calcareous soil (pH 8, calcarosol) inside a closed chamber system to assess both ammonia volatilization and plant N uptake. In this specialized glass chamber air was passed through an inlet where the flow rate was maintained using an air pump (3.5 L min-1). The air outlet was passed through a sulphuric acid trap which was used to capture the volatilized NH3 from the chamber. Plants were watered using the inlet to maintain 50% field capacity throughout the incubation. Two different biochar samples were used in this study: a poultry manure biochar (PM-BC) and a green waste compost biochar (GW-BC) produced at 250 ˚C. Five different application rates were tested (0, 0.5, 1, 1.5, and 2%). The soil was mixed with biochar samples, water, N, P, K, Ca, Mg, and S for one week before sowing. After one week of germination, plants were transferred to the chamber for further three weeks incubation for NH3 volatilization measurement. The study identified that biochar application reduced the NH3 volatilization and increase the plant biomass. Biochar application at 0.5 and 2% decreased the NH3 volatilization by 36 and 48% respectively. The N uptake of the plants also increased from 2.9 to 28% at 0.5 and 2% application rates respectively. The dry biomass of the plant also increased

  19. Changes in the dynamics of foliar N metabolites in oak saplings by drought and air warming depend on species and soil type.

    Directory of Open Access Journals (Sweden)

    Bin Hu

    Full Text Available Climate change poses direct or indirect influences on physiological mechanisms in plants. In particular, long living plants like trees have to cope with the predicted climate changes (i.e. drought and air warming during their life span. The present study aimed to quantify the consequences of simulated climate change for foliar N metabolites over a drought-rewetting-drought course. Saplings of three Central European oak species (i.e. Quercus robur, Q. petraea, Q. pubescens were tested on two different soil types (i.e. acidic and calcareous. Consecutive drought periods increased foliar amino acid-N and soluble protein-N concentrations at the expense of structural N in all three oak species. In addition, transient effects on foliar metabolite dynamics were observed over the drought-rewetting-drought course. The lowest levels of foliar soluble protein-N, amino acid-N and potassium cation with a minor response to drought and air warming were found in the oak species originating from the driest/warmest habitat (Q. pubescens compared to Q. robur and Q. petraea. Higher foliar osmolyte-N and potassium under drought and air warming were observed in all oak species when grown on calcareous versus acidic soil. These results indicate that species-specific differences in physiological mechanisms to compensate drought and elevated temperature are modified by soil acidity.

  20. Palaeoenvironmental changes in the Late Triassic (Rhaetian) of the Northern Calcareous Alps

    DEFF Research Database (Denmark)

    Mette, Wolfgang; Elsler, Armin; Korte, Christoph

    2012-01-01

    in the Kössen Formation and determine their significance for environmental and climatic conditions in the Rhaetian sea of the Eiberg Basin (Northern Calcareous Alps). For this purpose 60 δ 18O measurements on 43 articulate brachiopods samples from 8 different horizons were carried out. The results indicate...... to the lowest unit 3 of the Eiberg Member that parallels oxygen isotopes. This positive δ 13C trend is interrupted by a sudden ~1.5‰ negative excursion in the late Rhaetian (Late Rhaetian Event), a time span when the oxygen isotopes remain heavy....

  1. Characterization and Molecular Interpretation of the Photosynthetic Traits of Lonicera confusa in Karst Environment

    Science.gov (United States)

    Gan, Lu; Fu, Chunhua; Zhang, Libin; Yu, Longjiang; Li, Maoteng

    2014-01-01

    Lonicera confusa was a medical plant which could adapt to the Ca-rich environment in the karst area of China. The photosynthesis, relative chlorophyll content,differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) of L. confusa that cultivated in calcareous and sandstone soils were investigated. The results showed that the relative chlorophyll content and net photosynthesis rate of L. confusa in calcareous soil are much higher than that planted in sandstone soil, the higher content of calcium might play a role in keeping the chloroplast from harm and showed higher photosynthesis rate. The transpiration and stomata conductance were decreased in calcareous soil, which might result from the closure of stomata. The GeneFishing and proteomic results showed that the expression of DEGs and DEPs were critical for photosynthesis and stomata closure, such as RuBisCO, photosynthetic electron transfer c and malate dehydrogenase varied in the leaves of L. confusa that cultivated in different soils. These DEGs or DEPs were further found to be directly or indirectly regulated by calcium sensor proteins. This study enriched our knowledge of the molecular mechanism of high net photosynthesis rate and lower transpiration of L. confusa that cultivated in the calcareous soil in some degree. PMID:24959829

  2. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    Science.gov (United States)

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-05-17

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing.

  3. FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil-plant system as a function of time and dosage.

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Temminghoff, E.J.M.; Reichwein, A.M.; Riemsdijk, van W.H.

    2010-01-01

    FeEDDHA products are widely used to prevent and remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of FeEDDHA components: racemic o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The FeEDDHA components differ in physical and chemical properties,

  4. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    Science.gov (United States)

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  5. Movement of 59Fe in Egyptian soils as affected by chelated agents

    International Nuclear Information System (INIS)

    Massoud, M.A.; Omar, M.A.; Abd-El-Sapour, M.F.

    1983-01-01

    An investigation was undertaken to study the mobility of Fe from different Fe carries; i.e. Fe 2 (So 4 ) 3 , Fe-EDDHA and Fe-DTPA, the results revealed that almost the total mobilization of Fe 2 (So 4 ) 3 beyond the top layer (1-2 cm) ranged from 35.3, 10.4 and 1.9% of added 59Fe to three investigated soils, i.e. Anshas, Sakha and Burg El-Arab. The corresponding values for Fe-EDDHA ranged from 29.9, 20.4 and 14.9%, while for Fe-DTPA it ranged from 46.9, 16.5 and 11.1 when Fe was added as EDDHA and DTPA. It was noticed that the immobilization of Fe was higher in the calcareous than in the alluvial and sandy soils

  6. Root exudation of phytosiderophores from soil-grown wheat

    Science.gov (United States)

    Oburger, Eva; Gruber, Barbara; Schindlegger, Yvonne; Schenkeveld, Walter D C; Hann, Stephan; Kraemer, Stephan M; Wenzel, Walter W; Puschenreiter, Markus

    2014-01-01

    For the first time, phytosiderophore (PS) release of wheat (Triticum aestivum cv Tamaro) grown on a calcareous soil was repeatedly and nondestructively sampled using rhizoboxes combined with a recently developed root exudate collecting tool. As in nutrient solution culture, we observed a distinct diurnal release rhythm; however, the measured PS efflux was c. 50 times lower than PS exudation from the same cultivar grown in zero iron (Fe)-hydroponic culture. Phytosiderophore rhizosphere soil solution concentrations and PS release of the Tamaro cultivar were soil-dependent, suggesting complex interactions of soil characteristics (salinity, trace metal availability) and the physiological status of the plant and the related regulation (amount and timing) of PS release. Our results demonstrate that carbon and energy investment into Fe acquisition under natural growth conditions is significantly smaller than previously derived from zero Fe-hydroponic studies. Based on experimental data, we calculated that during the investigated period (21–47 d after germination), PS release initially exceeded Fe plant uptake 10-fold, but significantly declined after c. 5 wk after germination. Phytosiderophore exudation observed under natural growth conditions is a prerequisite for a more accurate and realistic assessment of Fe mobilization processes in the rhizosphere using both experimental and modeling approaches. PMID:24890330

  7. The study of mechanical behavior on the interface between calcar-defect femur and restorations by means of finite element analysis

    International Nuclear Information System (INIS)

    Shi, X.H.; Jiang, W.; Chen, H.Z.; Zou, W.; Wang, W.D.; Guo, Z.; Luo, J.M.; Gu, Z.W.; Zhang, X.D.

    2008-01-01

    The mechanical behaviors of calcar-defected femur and restorations under physiological load are the key factors that will greatly influence the success of femur calcar defect repairing, especially the stress distribution on the bone-restoration interface. 3D finite elements analysis (FEA) was used to analyze the mechanical characters on the interfaces between femoral calcar defects and bone cement or HA restorations. Under the load of two times of a human weight (1436.03 N) and with the increase of the defect dimension from 6 mm to 12 mm, the maximal stresses on the surface of restorations are from 7.06 MPa to 11.89 MPa for bone cement and 2.97-9 MPa for HA separately. In this condition, HA restoration will probably be broken on the bone-restoration interface when the defect diameter is beyond 8 mm. Furthermore, under the load of 1.5 times of a human weight, HA restoration would not be safe unless the defect dimension is smaller than 10 mm, because the maximal stress (4.62 MPa) on the restoration is only a little lower than compressive strength of HA, otherwise the bone fixation device should be applied to ensure the safety. It is relatively safe for all restorations under all the tested defect sizes when the load is just the weight of a human body

  8. Soil survey of Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Lietzke, D.A.; Lee, S.Y.

    1986-06-01

    An intensive soil survey was made of Solid Waste Storage Area (SWSA) 6 (Oak Ridge National Laboratory) at a scale of 1:1200. The amount of chemical weathering, the thickness of upland soils, and the depth to unoxidized rock are dependent on slope gradient, water-flow pathways, degree of rock fracturing, and the extent of soil and rock erosion by late Pleistocene and Holocene geomorphic processes. Foot-slope landforms have generally concave slope shapes where sediment accumulates. Colluvium stratigraphy exhibits at least one lithologic discontinuity, but there may be two discontinuities preserved in some thicker colluvia. One or more paleosols, either complete or partially truncated, are preserved in these concave landforms. Alluvial soils were not examined in detail but were separated from colluvial soils because of their wetness. A small area of ancient alluvium was located on a stable upland summit that formed the highest elevation in SWSA-6. On the nearly level summit, a thin loess cap was preserved on the older alluvial soil. Upland and colluvial soils are all highly leached and strongly acid even though they are formed from a calcareous parent rock. The highly fractured rock, being relatively permeable, has been leached free of carbonates in the upper levels so that there is a wide pH gradient from the surface downward. Most of the soils were classified as Ultisols, with minimal areas of Alfisols, Inceptisols, and Entisols. Based on the soil survey, representative landforms and soils will be selected to study physical, chemical, and mineralogical properties of the soil and weathered rock. Those properties will be used to predict both the amount and duration of leachate filtration and purification in downward migration to the water table or lateral migration through colluvial and alluvial soils to ground-water seeps

  9. Effect of soil-rock system on speleothems weathering in Bailong Cave, Yunnan Province, China*

    Science.gov (United States)

    Wang, Jing; Song, Lin-hua

    2005-01-01

    Bailong Cave with its well-developed Middle Triassic calcareous dolomite’s system was opened as a show cave for visitors in 1988. The speleothem scenery has been strongly weathered as white powder on the outer layers. Study of the cave winds, permeability of soil-rock system and the chemical compositions of the dripping water indicated: (1) The cave dimension structure distinctively affects the cave winds, which were stronger at narrow places. (2) Based on the different soil grain size distribution, clay was the highest in composition in the soil. The response sense of dripping water to the rainwater percolation was slow. The density of joints and other openings in dolomite make the dolomite as mesh seepage body forming piles of thin and high columns and stalactites. (3) Study of 9 dripping water samples by HYDROWIN computer program showed that the major mineral in the water was dolomite. PMID:15682505

  10. Phosphorus and greenhouse gas dynamics in a drained calcareous wetland soil in Minnesota.

    Science.gov (United States)

    Berryman, Erin M; Venterea, Rodney T; Baker, John M; Bloom, Paul R; Elf, Brandy

    2009-01-01

    Restoration of wetland hydrology can produce ecological benefits but may have unintended consequences. We examined effects of altered water level on release of dissolved reactive phosphorus (DRP) and greenhouse gases (GHG) in soil cores from a marsh being evaluated for restoration. We also measured field concentrations of DRP and other constituents in wetland porewater. Intact cores from a sampling location with higher Fe and lower calcium carbonate (CaCO(3)) contents released more DRP than another location, and displayed higher DRP under completely saturated compared to partly drained conditions. Porewater samples collected from the high-Fe location also contained higher DRP levels. Chemical data suggest that redox-driven reactions largely controlled DRP levels at the high-Fe site, while CaCO(3) adsorption was more important at the low-Fe site. Over the long term, water table elevation may attenuate P draining from the wetland due to decreased mineralization. However, such measures may increase P release in the short term. Raising the water level in soil cores resulted in decreased nitrous oxide (N(2)O) emissions, increased methane (CH(4)) emissions, and an overall increase in total global warming potential (GWP). The proportion of total GWP contributed by N(2)O decreased from 14% to < or = 1% as water level was raised, while the proportion contributed by CH(4) increased from 10 to 20% to 60 to 80%. Restoration of hydrology in the Rice Lake wetland has the potential to affect both local water quality and global air quality. These combined effects complicate the cost-to-benefit analysis of such wetland restoration efforts.

  11. Movement of /sup 59/Fe in Egyptian soils as affected by chelated agents

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M.A.; Omar, M.A.; Abd-El-Sapour, M.F. (Agriculture Department for Soil and Water, Nuclear Research Centre, A.E.A., Cairo (Egypt))

    1983-01-01

    An investigation was undertaken to study the mobility of Fe from different Fe carries; i.e. Fe/sub 2/(So/sub 4/)/sub 3/, Fe-EDDHA and Fe-DTPA, the results revealed that almost the total mobilization of Fe/sub 2/(So/sub 4/)/sub 3/ beyond the top layer (1-2 cm) ranged from 35.3, 10.4 and 1.9% of added 59Fe to three investigated soils, i.e. Anshas, Sakha and Burg El-Arab. The corresponding values for Fe-EDDHA ranged from 29.9, 20.4 and 14.9%, while for Fe-DTPA it ranged from 46.9, 16.5 and 11.1 when Fe was added as EDDHA and DTPA. It was noticed that the immobilization of Fe was higher in the calcareous than in the alluvial and sandy soils.

  12. Moessbauer study of the transformations occurring in egyptian alluvial and calcareous clays during firing

    International Nuclear Information System (INIS)

    Sallam, H.A.; Gomma, N.S.; El Meligy, W.M.; Eissa, N.A.

    1994-01-01

    Egyptian alluvial and calcareous clay samples, which are used in pottery production, were heated at different temperatures in air up to 1100 degree C. The physicochemical transformations were followed up and could be separated in two main stages; i) the dehydroxilation, of the clay mineral, stage for firing up to 700 degree C, ii) the second stage for firing at 900 degree C and higher. In the later stage the effect of calcium content was very pronounced. 2 figs

  13. Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions.

    Science.gov (United States)

    García-Gómez, Concepción; Obrador, Ana; González, Demetrio; Babín, Mar; Fernández, María Dolores

    2017-07-01

    The present study has investigated the toxicity of ZnO NPs to bean (Phaseolus vulgaris) and tomato (Solanum lycopersicon) crops grown to maturity under greenhouse conditions using an acidic (soil pH5.4) and a calcareous soil (soil pH8.3). The potentially available Zn in the soils and the Zn accumulation in the leaves from NPs applied to the soil (3, 20 and 225mgZnkg -1 ) and changes in the chlorophylls, carotenoids and oxidative stress biomarkers were measured at 15, 30, 60 and 90days and compared with those caused by bulk ZnO and ZnSO 4 . The available Zn in the soil and the leaf Zn content did not differ among the Zn chemical species, except in the acidic soil at the highest concentration of Zn applied as Zn ions, where the highest values of the two variables were found. The ZnO NPs showed comparable Zn toxicity or biostimulation to their bulk counterparts and Zn salts, irrespective of certain significant differences suggesting a higher activity of the Zn ion. The treatments altered the photosynthetic pigment concentration and induced oxidative stress in plants. ROS formation was observed at Zn plant concentrations ranging from 590 to 760mgkg -1 , but the effects on the rest of the parameters were highly dependent on the plant species, exposure time and especially soil type. In general, the effects were higher in the acidic soil than in the calcareous soil for the bean and the opposite for the tomato. The similar uptakes and toxicities of the different Zn forms suggest that the Zn ions derived from the ZnO NPs exerted a preferential toxicity in plants. However, several results obtained in soils treated with NPs at 3mgZnkg -1 soil indicated that may exist other underlying mechanisms related to the intrinsic nanoparticle properties, especially at low NP concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ectomycorrhizal Communities Associated with the Legume Acacia spirorbis Growing on Contrasted Edaphic Constraints in New Caledonia.

    Science.gov (United States)

    Houles, Anne; Vincent, Bryan; David, Magali; Ducousso, Marc; Galiana, Antoine; Juillot, Farid; Hannibal, Laure; Carriconde, Fabian; Fritsch, Emmanuel; Jourand, Philippe

    2018-05-01

    This study aims to characterize the ectomycorrhizal (ECM) communities associated with Acacia spirorbis, a legume tree widely spread in New Caledonia that spontaneously grows on contrasted edaphic constraints, i.e. calcareous, ferralitic and volcano-sedimentary soils. Soil geochemical parameters and diversity of ECM communities were assessed in 12 sites representative of the three mains categories of soils. The ectomycorrhizal status of Acacia spirorbis was confirmed in all studied soils, with a fungal community dominated at 92% by Basidiomycota, mostly represented by/tomentella-thelephora (27.6%), /boletus (15.8%), /sebacina (10.5%), /russula-lactarius (10.5%) and /pisolithus-scleroderma (7.9%) lineages. The diversity and the proportion of the ECM lineages were similar for the ferralitic and volcano-sedimentary soils but significantly different for the calcareous soils. These differences in the distribution of the ECM communities were statistically correlated with pH, Ca, P and Al in the calcareous soils and with Co in the ferralitic soils. Altogether, these data suggest a high capacity of A. spirorbis to form ECM symbioses with a large spectrum of fungi regardless the soil categories with contrasted edaphic parameters.

  15. Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians

    Czech Academy of Sciences Publication Activity Database

    Hájková, Petra; Horsák, M.; Hájek, Michal; Jankovská, Vlasta; Jamrichová, Eva; Moutelíková, J.

    2015-01-01

    Roč. 25, č. 4 (2015), s. 702-715 ISSN 0959-6836 Institutional support: RVO:67985939 Keywords : biodiversity * calcareous fen * fossil record * Holocene extinction * Western Carpathians Subject RIV: EF - Botanics Impact factor: 2.135, year: 2015

  16. Calcareous nannoplankton assemblages across the Pliocene-Pleistocene transition in the southwestern Indian Ocean, IODP Site U1475

    Science.gov (United States)

    Cares, Z.; Farr, C. L.; LeVay, L.; Tangunan, D.; Brentegani, L.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 361 cored six sites along the greater Agulhas Current System to track its intensity through time and to better understand its role in global oceanic circulation and climate. One of the main scientific objectives of this expedition was to determine the dynamics of the Indian-Atlantic Ocean Gateway circulation during Pliocene-Pleistocene climate changes in association with changing wind fields and migrating ocean fronts. The Indian-Atlantic Ocean Gateway contains a pronounced oceanic frontal system, the position of which has the potential to influence global climate on millennial scales. Owing to the physical differences between the frontal zones, this region has complex biogeochemistry, changes in phytoplankton distribution, and variations in primary productivity. Site U1475 was cored on the Agulhas Plateau in the Southwestern Indian Ocean and recovered a complete sequence of calcareous ooze spanning the last 7 Ma. Previous studies at this locality have shown latitudinal migrations of the frontal zones over the past 350 kyr that resulted in prominent millennial shifts in primary production, biological pump efficiency, and microfossil assemblages that coincide with Antarctic climate variability. Here we present initial results comprised of calcareous nannoplankton assemblages in order to test if similar latitudinal frontal migrations occurred during the Pliocene-Pleistocene transition (PPT; 2.7 Ma). The calcareous nannoplankton assemblage shows an abundance increase of taxa associated with cooler water and higher primary production across the PPT interval. In addition to a change in species abudance, the Shannon diversity index drops notably across the transition, which is typical of nannoplankton communities in more productive regions. These data suggest that a long-term change in sea surface temperature and nutrient availability took place across the PPT, potentially linked to the northward migration of

  17. Physiographic soil map delineation for the Nile alluvium and desert outskirts in middle Egypt using remote sensing data of EgyptSat-1

    Directory of Open Access Journals (Sweden)

    A.A. Afify

    2010-12-01

    Full Text Available The objectives of this study are to produce a physiographic soil map with correlated attributes to be a base for extra modifiers within the land information system. This integrated data will serve the purposes of land use planning, precision farming practices and to be applied in other areas using the extrapolation approach. The Satellite data of EgyptSat-1 were projected on an area of Middle Egypt that represents unique physiographic features over portions of Beni Suef, El Fayoum, Helwan, and October Provinces. The spectral signatures of the land patterns were delineated by the visual interpretation using the physiographic approach, while soil taxa were categorized according to the key of Soil Taxonomy (USDA, 2010, resulting in two landscape categories. The first category includes older and developed parent materials, covering the following units: (a Pediplains of residual soils over limestone parent rock, having soils of Lithic Haplocalcids, loamy skeletal. (b Terraced old alluvial plains represent the formerly deposited alluvium that preceded the recent one of the River Nile alluvium. They includes soils of Typic Calcigypsids, loamy skeletal and old alluvial plain but are currently managed under cultivation. The soils are dominated by Typic Haplocalcids, loamy skeletal. (c Wadis that were shaped by the paleodrainage erosion, are currently subjected to the seasonal flush flooding and are sparsely vegetated including soils of Typic Torrifluvents, lamy skeletal (calcareous; Typic Torriorthents, sandy skeletal, and Typic Torriorthents, sandy. (d Aeolian plain “partly cultivated” includes soils of Typic Torripsamments (calcareous. The second category is a recent River Nile alluvium that formed the following units: (a Terraced recent alluvial plain “cultivated” includes soils of Entic Calcitorrerts, fine and Typic Haplotorrerts fine. (b Recent flat alluvial plain includes soils of Typic Haplotorrerts, fine. (c Meandering belt is aligning

  18. Mining and geologic characterization of calcareous resources for the cement industry in Uruguay

    International Nuclear Information System (INIS)

    De Santana, H.; Veroslavsky, G.; Sanchez, L.; Rossini, C.; Aubet, N.; Loureiro, J.; Gutierrez, L.

    2000-01-01

    The main objective of this work was the study of geological and mining potential that Uruguay has on limestone rocks rich in calcium and poor in magnesium and silica, which are considered primary requirements suitable for the manufacture of cement. The results obtained allow defining four major regions of the country that although do not include all occurrences of calcareous rocks, they do not constitute the most important areas concerning: rock quality, higher volumes and improved extraction possibilities. The areas are: Queguay, Minas, Carape and Treinta y tres

  19. Origin, distribution and transformation of authigenic carbonates in loessic soils

    Directory of Open Access Journals (Sweden)

    Martin Kolesár

    2015-01-01

    Full Text Available Processes of authigenic carbonates formation are component part of terrestrial biogeochemical cycle of carbon, which starts with co-accumulation of oxalic acid and Ca in Ca- oxalates. After plant decay are these biominerals slowly transformed under the influence of microbial processes into authigenic carbonates (calcites, depending on soil condition. The formation of authigenic calcites runs over in soil system where is rather high Ca and Mg concentration, presence of oxalomorphic plants and sufficient oxalotrophic stability of microorganisms. In addition to Ca-oxalates, Ca and Mg ions necessary for carbonate formation comes also from air (precipitation, dust, mineral weathering, subsurface water flow and decaying organic matter. The distribution pattern of authigenic calcites with depth, the size and shape of individual forms of calcites on loessic soils of SW Slovakia, as it is resulted from micromorphological study indicate that through the historical development of that soils as landscape units, soil water regime has played decisive role at vertical redistribution of forms (size, shape of authigenic calcites. To this witness the depth of variation of needle calcite zones and horizons of micritic calcites occurrence depending on soil types (leaching. Needle shape calcite zones which approach closest to the soil surface, gradually coalescence to the horizons of micritic calcites with the depth. Micritic calcites are without, or with microsparitic domains. Our study concurrently support the ideas of their inorganic origin depending on evaporitic soil regime. This formations have its own historic dynamics on which depends also the preservation of calcaric nature of soils.

  20. Ozone pollution affects flower numbers and timing in a simulated BAP priority calcareous grassland community

    International Nuclear Information System (INIS)

    Hayes, Felicity; Williamson, Jennifer; Mills, Gina

    2012-01-01

    Mesocosms representing the BAP Priority habitat ‘Calcareous Grassland’ were exposed to eight ozone profiles for twelve-weeks in two consecutive years. Half of the mesocosms received a reduced watering regime during the exposure periods. Numbers and timing of flowering in the second exposure period were related to ozone concentration and phytotoxic ozone dose (accumulated stomatal flux). For Lotus corniculatus, ozone accelerated the timing of the maximum number of flowers. An increase in mean ozone concentration from 30 ppb to 70 ppb corresponded with an advance in the timing of maximum flowering by six days. A significant reduction in flower numbers with increasing ozone was found for Campanula rotundifolia and Scabiosa columbaria and the relationship with ozone was stronger for those that were well-watered than for those with reduced watering. These changes in flowering timing and numbers could have large ecological impacts, affecting plant pollination and the food supply of nectar feeding insects. - Highlights: ► An increase in ozone accelerated timing of maximum flowering in Lotus corniculatus. ► Ozone reduced flower numbers in Campanula rotundifolia and Scabiosa columbaria. ► Reduced water availability did not protect most species from the effects of ozone. - Increased tropospheric ozone affected timing of flowering and maximum flower numbers in calcareous grassland mesocosms.

  1. Seasonal calcareous nannoplankton and other biogenic particle fluxes for 1990-2009: twenty-year long records from the central subarctic Pacific Ocean and the Bering Sea

    Science.gov (United States)

    Takahashi, Kozo; Tsutsui, Hideto

    2017-04-01

    Time-series sediment traps were deployed for nearly 20 years (1990-2009) at two long-term locations: Station SA (49°N, 174°W, trap depth 4,800 m, water depth 5,400 m) in the central subarctic Pacific, and Station AB (53.5°N, 177°W, trap depth 3,200 m, water depth 3,800 m) in the southern Bering Sea. Among many biogenic particles, calcareous nannoplankton represented nearly half or more of the entire calcium carbonate fluxes of the regions. Dominant taxa include Coccolithus pelagicus and Emiliania huxleyi. The flux maxima of the former taxon occurred twice a year during June and October-November, whereas that of the latter taxon only occurred primarily once a year in November at both stations, indicating environmental preferences of the taxa. Among many environmental conditions, the fluxes of Emiliania huxleyi showed strong correlations with both water temperatures above 45 m depth and air temperatures (these parameters taken with one-month lag [earlier values] considering sinking time of ca. a month to the respective trap depths). Coccolithus pelagicus, on the other hand, showed lower values in the correlation with temperatures (Tsutsui et al., 2016), indicating that this taxon is somewhat more dependent on other factors such as nutrients compared to those of E. huxleyi. The timings of the seasonal flux maxima of calcareous nannoplankton are quite different from and later than those of other taxonomic groups such as diatoms and silicoflagellates. The primary seasonal flux maxima of diatoms and silicoflagellates, for example, occurred in May, a month earlier than the June maximum of C. pelagicus, and secondary seasonal flux maxima occurred in August, 2-3 months earlier than those of calcareous nannoplankton at both stations, based on 8 year flux records for diatoms (Onodera and Takahashi, 2009) and 4 year records for silicoflagellates (Onodera and Takahashi, 2012). By examining seasonal changes of nitrate and phosphate concentrations above 50 m depth from ERDDAP

  2. Calcareous nannofossils of the Jurassic/Cretaceous boundary strata in the Puerto Escaňo section (southern Spain) - biostratigraphy and palaeoecology

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Andrea; Košťák, M.

    2016-01-01

    Roč. 67, č. 3 (2016), s. 223-238 ISSN 1335-0552 Institutional support: RVO:67985831 Keywords : Jurasic/Cretaceous boundary * southern Spain * Tethys * biostratigraphy * calcareous nannofossils * palaeoecology Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.358, year: 2016

  3. RELATIONSHIPS BETWEEN SOIL MICROBIAL BIOMASS, AGGREGATE STABILITY AND AGGREGATE ASSOCIATED-C: A MECHANISTIC APPROACH

    Directory of Open Access Journals (Sweden)

    Patrizia Guidi

    2014-01-01

    Full Text Available For the identification of C pools involved in soil aggregation, a physically-based aggregate fractionation was proposed, and  additional pretreatments were used in the measurement of the 1-2 mm aggregate stability in order to elucidate the relevance of the role of soil microorganisms with respect to the different aggregate breakdown mechanisms. The study was carried out on three clay loam Regosols, developed on calcareous shales, known history of organic cultivation.Our results showed that the soil C pool controlling the process of stabilisation of aggregates was related to the microbial community. We identified the resistance to fast wetting as the major mechanism of aggregate stability driven by microorganims. The plausible hypothesis is that organic farming promotes fungi growth, improving water repellency of soil aggregates by fungal hydrophobic substances. By contrast, we failed in the identification of C pools controlling the formation of aggregates, probably because of the disturbance of mechanical tillage which contributes to the breakdown of soil aggregates.The physically-based aggregate fractionation proposed in this study resulted useful in the  mechanistically understanding of the role of microorganisms in soil aggregation and it might be suggested for studying the impact of management on C pools, aggregates properties and their relationships in agricultural soils.

  4. Is it real or apparent increased aggregate stability sometimes found in burned soils?

    Directory of Open Access Journals (Sweden)

    V. Arcenegui

    2013-05-01

    Full Text Available The increase in soil aggregate stability observed in many cases after burning is discussed in this paper. Soil samples under pine forest from two Mediterranean areas were collected for this experiment: acid soils from El Algibe Range (Los Alcornocales Natural Park, Cádiz, Southern Spain and calcareous soils of Sierra de la Grana (Alicante, Eastern Spain. In each case, soil aggregates (2 to 0.25 mm were selected and exposed to temperatures of 200, 250, 300, 500 and 700 oC during a 20-minutes period. In both cases weight loss after volatilization of substances and a significant destruction of aggregates with increasing temperature were observed. For acid soils, where organic matter is the main cementing agent, destruction of aggregates with temperature was more intense. Water repellency induced by combustion increased between 200 and 250 oC, also the remaining aggregates remaining increased within the initial size fraction after heating, increasing its stability. For temperatures above 300 oC, water repellency disappeared, although an increase in aggregate stability was observed, possibly due to changes in the mineral soil fraction. Therefore, it is concluded that burning may destroy part of the aggregates by combustion of organic matter, so selecting stable aggregates. Water repellency and transformations of soil minerals contribute to increased stability in selected aggregates.

  5. Cation exchange and CaCO 3 dissolution during artificial recharge of effluent to a calcareous sandstone aquifer

    Science.gov (United States)

    Goren, Orly; Gavrieli, Ittai; Burg, Avihu; Lazar, Boaz

    2011-03-01

    SummaryThis research describes a field study and laboratory simulations of the geochemical evolution of groundwater following a recharge of effluent into aquifers. The study was conducted in the soil aquifer treatment (SAT) system of the Shafdan sewage reclamation plant, Israel. The SAT system recharges secondary effluent into the calcareous sandstone sediments of the Israeli Coastal Aquifer as a tertiary treatment. The reclaimed effluent is recovered ca. 500 m off the recharge basin and is used for unlimited irrigation. The laboratory simulations in which effluent was pumped through experimental columns packed with pristine Shafdan sediment showed that the chemical composition of the outflowing water was controlled mainly by cation exchange and CaCO 3 dissolution. Na +, K + and Mg 2+ were adsorbed and Ca 2+ was desorbed during the initial stage of recharge. The equilibrium distribution of the adsorbed cations was: Ca 2+ ˜ 60%, Mg 2+ ˜ 20%, and Na + and K + ˜ 10% each. The Ca 2+ in the Shafdan production wells and in the experimental columns outflow (˜5 meq L -1) was always higher than the Ca 2+ in the recharged effluent (˜3.5 meq L -1), indicating continuous CaCO 3 dissolution. This study demonstrates that besides mixing, a suite of geochemical processes should be considered when assessing groundwater quality following artificial recharge of aquifers.

  6. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    Science.gov (United States)

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  7. Soil-landscape development and late Quaternary environmental change in coastal Estremadura, Portugal

    Science.gov (United States)

    Daniels, Michael; Haws, Jonathan; Benedetti, Michael; Bicho, Nuno

    2015-04-01

    This poster integrates soil-landscape analysis with archaeological survey and paleoenvironmental reconstruction. Soils in surface and buried contexts in Estremadura, Portugal, provide evidence of landscape stability and instability, relative age relationships between landforms, and general paleoenvironmental conditions during the late Quaternary. These factors provide insight into the distribution and condition of Paleolithic archaeological sites and help understand the record of human settlement in the region. Late Pleistocene and Holocene dunes extend inland approximately 10 km from coastal source regions. Surface soils in Holocene dunes under maritime pine (Pinus pinaster) forest exhibit A, E, C/Bh and A, C horizon sequences and classify as Quartzipsamments. Surface soils in late Pleistocene dunes exhibit A, E, Bh, Bhs, Bs horizon sequences and classify as Haplorthods. Both Pleistocene and Holocene dunes commonly bury a heavily weathered soil formed in calcareous sandstone. The boundary between underlying buried soils and overlying surface soils is characterized by a lag deposit of medium to coarse, moderately-rounded gravels, underlain immediately by subsurface Bt and Bss horizons. The lag deposit and absence of buried A horizons both indicate intense and/or prolonged surface erosion prior to burial by late Quaternary dunes. Soil-geomorphic relationships therefore suggest at least two distinct episodes of dune emplacement and subsequent landscape stability following an extensive episode late Pleistocene landscape instability and soil erosion. A conceptual model of soil-landscape evolution through the late Quaternary and Holocene results from the integration of soil profile data, proxy paleoenvironmental data, and the partial record of human settled as revealed in the archaeological record.

  8. Applications of some non destructive testing techniques to the characterization of calcareous rocks: ultrasounds, X and gamma-ray radiography, tomography, neutron radiography

    International Nuclear Information System (INIS)

    Sicardy, O.

    1986-02-01

    NUCLEART Laboratory has been developping various techniques of conservation of art objects made of wood or stone. It has, among others, achieved a technique of strengthening porous stone objects, by resin impregnation followed by polymerization under gamma rays. The good conduct of such operations implies the existence of characterization means, before and after treatment of the objects. Two means of rocks characterization have been studied: - ultrasound techniques, - radiography techniques. The first part consists in a general description of the calcareous rocks morphology and a presentation of the studied specimens. The second part deals with the application of ultrasound techniques to rocks. Experimentally, one pays particular attention to the specific aspects of ultrasounds propagation inside materials like porous rocks, and especially diffusion phenomena. Results were interpreted in terms of propagation medium structure. Practical interest for rocks control through such techniques has been underligned. The third part concerns the application of radiographic techniques to calcareous rocks. Experimental work consists in establishing exposure curves for a wide range of energy, and the images quality determination. Through a statistics approach, and using digitalization techniques, one has done an exhaustive study of the radiographic noise. Moreover two techniques close to conventional radiography were explored: neutron radiography and X-ray tomography. Their specificity and interest in the case of calcareous rocks have been shown [fr

  9. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    Science.gov (United States)

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  10. Cosorption study of organic pollutants and dissolved organic matter in a soil

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Cespedes, F. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Fernandez-Perez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)]. E-mail: mfernand@ual.es; Villafranca-Sanchez, M. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain); Gonzalez-Pradas, E. [Department of Inorganic Chemistry, University of Almeria, La Canada de San Urbano s/n, 04120 Almeria (Spain)

    2006-08-15

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl{sub 2} aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L{sup -1}, produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K {sub doc}, has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM.

  11. Cosorption study of organic pollutants and dissolved organic matter in a soil

    International Nuclear Information System (INIS)

    Flores-Cespedes, F.; Fernandez-Perez, M.; Villafranca-Sanchez, M.; Gonzalez-Pradas, E.

    2006-01-01

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl 2 aqueous medium at 25 deg. C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L -1 , produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K doc , has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment. - Cosorption of organic pollutants and DOM

  12. Cosorption study of organic pollutants and dissolved organic matter in a soil.

    Science.gov (United States)

    Flores-Céspedes, F; Fernández-Pérez, M; Villafranca-Sánchez, M; González-Pradas, E

    2006-08-01

    In this study we have evaluated the effects of dissolved organic matter (DOM) on sorption of imidacloprid, 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on a typical calcareous soil (Luvic Xerosol) from south-eastern Spain. Two different types of DOM were used, that is to say, dissolved natural organic matter extracts from a commercial peat (DNOM) and a high-purity tannic acid (TA) solution. The experiments were carried out in a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results indicated that the presence of both DNOM and TA, over a concentration range of 15-100 mg L(-1), produced an increase in the amount of 3,4-DCA and 4-BA sorbed and a decrease in the amount of imidacloprid retained on the soil studied. A modified distribution coefficient, K(doc), has been proposed as a safer parameter for soil sorption predictions of organic pollutants and it could be of help to model the fate of these in the environment.

  13. New biostratigraphic evidence (texanitid ammonites, inoceramids and calcareous nannofossils) for the Upper and the uppermost Coniacian in the Bohemian Cretaceous Basin

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Andrea; Košťák, M.; Čech, S.; Švábenická, L.

    2014-01-01

    Roč. 165, č. 4 (2014), s. 577-589 ISSN 1860-1804 Institutional support: RVO:67985831 Keywords : Bohemian Cretaceous Basin * Upper Coniacian * biostratigraphy * ammonites * inoceramids * calcareous nannofossils Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.569, year: 2014

  14. A Simple and Rapid Method to Evaluate Potentially Mineralizable Nitrogen in Sewage Sludge Amended Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Yazdan Lotfi

    2005-06-01

    Full Text Available Potentially mineralizable nitrogen (PMN can be usually considered as labile nitrogen. Measurement of PMN is expensive and time consuming; therefore, a simpler and more rapid alternative may facilitate routine laboratory analysis. The objective of this study was to determine the relationship between PMN and biological index of nitrogen availability (BINA. The studied soil was previously treated with 0, 25, and 100 tons ha-1 of sewage sludge with 0, 1, 2 and 3 consecutive years of application. Soil samples were taken 6 months after the latest application. PMN was measured according to Stanford and Smith procedure (20 weeks of aerobic incubation with 2 weeks leaching intervals and BINA measured as described by Bundy and Meisinger (7 days of anaerobic incubation at 40˚ C followed by extraction of NH4+. Results showed that PMN was significantly correlated with BINA (r = 0.938, P

  15. Histochemical and ultrastructural studies on the calcareous corpuscles and eggs of Taenia taeniaeformis and Dipylidium caninum.

    Science.gov (United States)

    Khalifa, Refaat M A; Mazen, Nawal A M; Marawan, Aziza M A; Thabit, Hasnaa T M

    2011-08-01

    Calcareous corpuscles were noticed by several previous workers to be present in larval and adult cestodes without knowing their function. However, nothing was mentioned in the available literature about distribution of these corpuscles and their density, structure and composition in different parts of the body of different cestodes. Hence, in the present work, a comparative study of their distribution, density, histochemical and ultrastructural characters in different parts of the body was performed in Taenia taeniaeformis and Dipylidium caninum. Due to the presence of the eggs in their gravid segments, their histochemical and ultrastructural characteristics were also studied. It was found that the size, location and density of the calcareous bodies were different in different body parts of the same and the other cestode. Histochemically, the main component of these corpuscles was calcium; while other constituents as polysaccharides, lipids, protrins and mucopolysaccharides were found in their outer rim. Ultrastructurally, they were quite similar in the two studied cestodes and different stages of their development were exhibited. Histochemically, the eggs of both cestodes were similar in their contents. However, some ultrastructural differences have been demonstrated particularly in relation to the size and shape of the rods in the embryophore and the structures in between the embryophore and onchosphere.

  16. Effect of gamma irradaition on growth and nutrients uptake of sorghum plants

    International Nuclear Information System (INIS)

    Eleiwa, M.E.; Rabie, M.H.

    1994-01-01

    A pot experiment was carried out using sandy calcareous soils to study the effects of gamma irradiating doses for sorghum seeds on dry matter yield and elemental uptake. Three cuttings were taken during the experiment every 40 days. Results showed that 4 Kr. dose was the best dose that caused significant higher increase of dry matter yield and nutrients uptake for three cuttings under both types of soil. Gamma irradiation doses at 8 Kr. and above all had an adverse affect on dry matter yield and nutrients uptake, especially under calcareous soil. (author)

  17. On the nature of the calcareous substrate of a ferromanganese crust from the Vityaz Fracture Zone, Central Indian Ridge: Inferences on palaeoceanography

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Banerjee, R.; Mergulhao, L.

    A 15-cm-thick carbonate substrate encrusted with ferromanganese oxides from the Vityaz Fracture Zone, Central Indian Ridge was analysed to reconstruct the palaeoceanography of the region. Based on the calcareous nannoplankton assemblage, an early...

  18. Main features of anthropogenic inner-urban soils in Szeged, Hungary

    Science.gov (United States)

    Puskás, Irén.; Farsang, Andrea

    2010-05-01

    At the beginning of the 21st century, due to the intensive urbanization it is necessary to gather more and more information on altered physical, chemical and biological parameters of urban soils in order to ensure their suitable management and protection for appropriate living conditions. Nowadays, these measures are very relevant since negative environmental effects can modify the soil forming factors in cities. Szeged, the 4th largest city of Hungary, proved to be an ideal sampling area for the research of urban soils since its original surface has been altered by intensive anthropogenic activities. The main objectives of my research are the investigation, description and evaluation of the altered soils in Szeged. For the physical and chemical analysis (humus, nitrogen, carbonate content, heavy metals, pH, artefacts etc.) of soils 124 samples were taken from the horizons of 25 profiles in Szeged and its peripherals (as control samples). The profiles were sampled at sites affected by different extent of artificial infill according to infill maps (1. profiles fully made up of infill; 2. so-called mixed profiles consisting of considerable amount of infill material and buried soil horizons; 3. natural profiles located in the peripherals of the city). With the help of the above-mentioned parameters, the studied soils of Szeged were assigned into the classification system of WRB(2006), which classifies the soils of urban and industrial areas as an individual soil group (under the term Technosols) for the first time. In accordance with the WRB(2006) nomenclature three main soil types can be identified in Szeged with respect to the degree of human influence: profiles slightly influenced, strongly modified, completely altered by human activities. During this poster, we present the peculiarities of typical urban profiles strongly and completely altered by human influence. Most profiles were placed into the group of Technosols due to the considerable transformation of their

  19. Green manure addition to soil increases grain zinc concentration in bread wheat.

    Directory of Open Access Journals (Sweden)

    Forough Aghili

    Full Text Available Zinc (Zn deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower, ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF, and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs.

  20. Two fern species new to New Hampshire, with comments on the generation of calcareous-like habitat by base-poor rocks

    Science.gov (United States)

    Scott W. Bailey

    2013-01-01

    Incidental to other field investigations, I happened upon small populations of two fern species not previously reported from New Hampshire: Pellaea atropurpurea (L.) Link and Dryopteris filix-mas (L.) Schott. Both species are typically associated with calcareous habitats, although limestone and marble are nearly absent from New...

  1. Overview of the Plio-Pleistocene geology of Rhodes, Greece. Lithology, calcareous nannofossil biostratigraphy, and sampling of the Kallithea Bay section

    DEFF Research Database (Denmark)

    Thomsen, Erik; Rasmussen, Tine Lander; Hastrup, Annette

    2005-01-01

    -water deposits are assigned to the Lindos Bay clay. Calcareous nannofossil biostratigraphy shows that the age of the marine sequence is early Pleistocene. The brackish water sediments are difficult to date, but they are probably of late Pliocene age. Sixty-nine samples representing all environments were...

  2. Effects of synthetic Zn chelates on flax response and soil Zn status

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, D.; Almendros, P.; Alvarez, J.M.

    2016-11-01

    Throughout the world, flax (Linum usitatissimum L.) is often grown in Zn-deficient soils, but appropriate fertilizer management can optimize both crop yield and micronutrient content. A greenhouse experiment was conducted on Typic Haploxeralf (pH 6.1) and Typic Calcixerept (pH 8.1) soils to study the relative efficiency of chelated Zn using two application rates of three different Zn sources [Zn-EDDHSA, ethylenediamine-di-(2-hydroxy-5-sulfophenylacetate of Zn); Zn-HEDTA, N-2-hydroxyethyl-ethylenediaminetriacetate of Zn; and Zn-EDTA, ethylenediaminetetraacetate of Zn]. Dry matter /DM) yield, Zn concentration, chlorophyll content, crude fiber and tensile properties were monitored and the soil-Zn status (available-Zn, Zn-fractions and total-Zn) was assessed. Zinc chelate applications increased the most labile forms of Zn in soils and Zn concentrations in plants. The low rate of Zn generally had a beneficial effect on DM yield and tensile properties. The exception was Zn-EDTA in the weakly acidic soil, where the highest Zn concentrations were observed in leaves and whole shoots; this coincided with the largest concentrations of labile Zn in soil. The most efficient fertilizers were Zn-EDDHSA (in both soils) and Zn-EDTA (in the calcareous soil). The relatively large amounts of labile and available Zn present in both of the soils fertilized with Zn-EDTA points to the applying this chelate at lower rate than 5 mg Zn/kg; this should, in turn, reduce the cost of Zn fertilization and minimize environmental pollution risk. (Author)

  3. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  4. Changes in the persistence of two phenylurea herbicides in two Mediterranean soils under irrigation with low- and high-quality water: A laboratory approach.

    Science.gov (United States)

    ElGouzi, Siham; Draoui, Khalid; Chtoun, E H; Dolores Mingorance, M; Peña, Aránzazu

    2015-12-15

    The disappearance of two phenylurea herbicides, chlorotoluron (CHL) and isoproturon (IPU), in two Mediterranean soils, an agricultural calcareous soil (S5) and an organic forest soil (S2), was assessed under irrigation with high- and low-quality water. Irrigation with wastewater, as opposed to irrigation with high-quality water, increased the degradation rate of both herbicides in both soils. For each soil, the decay rate of IPU was always higher than that of CHL, and both pesticides disappeared more rapidly from S5 with lower clay and organic carbon content than from S2. The degradation rate was inversely related with pesticide sorption on soil, because increased sorption would reduce pesticide bioavailability for decomposition. In most cases the residual concentration in soil of both phenylurea herbicides was better fitted to a bi-exponential decay model than to first-order or first-order with plateau models. Dehydrogenase activity, used as an indication of microbial activity, was very high in S2 in comparison with S5, but was not related to pesticide disappearance. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.

    Science.gov (United States)

    Romero, F M; Núñez, L; Gutiérrez, M E; Armienta, M A; Ceniceros-Gómez, A E

    2011-02-01

    In the Taxco mining area, sulfide mineral oxidation from inactive tailings impoundments and abandoned underground mines has produced acid mine drainage (AMD; pH 2.2-2.9) enriched in dissolved concentrations (mg l⁻¹) sulfate, heavy metals, and arsenic (As): SO₄²⁻ (pH 1470-5454), zinc (Zn; 3.0-859), iron (Fe; pH 5.5-504), copper (Cu; pH 0.7-16.3), cadmium (Cd; pH 0.3-6.7), lead (Pb; pH acid-neutralizing potential of limestone decreases when surfaces of the calcite particles become less reactive as they are progressively coated by metal precipitates. This study constitutes first-stage development of passive-treatment systems for treating AMD in the Taxco mine area using indigenous calcareous shale. This geologic material consists of a mixture of calcite, quartz, muscovite, albite, and montmorillonite. Results of batch leaching test indicate that calcareous shale significantly increased the pH (to values of 6.6-7.4) and decreased heavy metal and As concentrations in treated mine leachates. Calcareous shale had maximum removal efficiency (100%) for As, Pb, Cu, and Fe. The most mobile metals ions were Cd and Zn, and their average percentage removal was 87% and 89%, respectively. In this natural system (calcareous shale), calcite provides a source of alkalinity, whereas the surfaces of quartz and aluminosilicate minerals possibly serve as a preferred locus of deposition for metals, resulting in the neutralizing agent (calcite) beings less rapidly coated with the precipitating metals and therefore able to continue its neutralizing function for a longer time.

  6. Astronomical calibration of upper Campanian–Maastrichtian carbon isotope events and calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole 762C)

    DEFF Research Database (Denmark)

    Thibault, Nicolas Rudolph; Husson, Dorothée; Harlou, Rikke

    2012-01-01

    An integrated framework of magnetostratigraphy, calcareous microfossil bio-events, cyclostratigraphy and d13C stratigraphy is established for the upper Campanian–Maastrichtian of ODP Hole 762C (Exmouth Plateau, Northwestern Australian margin). Bulk-carbonate d13C events and nannofossil bio-events...

  7. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources.

    Science.gov (United States)

    Adnan, Muhammad; Shah, Zahir; Sharif, Muhammad; Rahman, Hidayatur

    2018-04-01

    Agricultural land is a major sink of global organic carbon (C). Its suitable management is crucial for improving C sequestration and reducing soil CO 2 emission. Incubation experiments were performed to assess the impact of phosphate solubilizing bacterial (PSB) inoculation (inoculated and uninoculated) and soil calcification (4.78, 10, 15, and 20% crushed CaCO 3 ) with phosphorus (P) sources [single superphosphate (SSP), rock phosphate (RP), farm yard manure (FYM), and poultry manure (PM)] in experiment 1 and with various rates of PM (4, 8, and 12 kg ha -1 ) in experiment 2 on cumulative soil respiration. These experiments were arranged in three factorial, complete randomize design (CRD) with three replications. Interactively, lime with P sources (at day 1 and 3) and lime with PSB (at day 1) significantly expedited soil respiration. Mainly, PSB inoculation, liming, PM fertilization, and its various rates significantly enhanced soil respiration with time over control/minimum in alkaline soil at all incubation periods. Higher CO 2 emission was detected in soil supplemented with organic P sources (PM and FYM) than mineral sources (SSP and RP). CO 2 emission was noted to increase with increasing PM content. Since liming intensified CO 2 discharge from soil, therefore addition of lime to an alkaline soil should be avoided; instead, integrated approaches must be adopted for P management in alkaline calcareous soils for climate-smart agriculture.

  8. Differences on nitrogen availability in a soil amended with fresh, composted and thermally-dried sewage sludge.

    Science.gov (United States)

    Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M

    2008-01-01

    Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.

  9. Effect of soil type and application method on nutrients absorption and utilization by grape plants 1-Absorption and utilization of manganese using Mn-54

    International Nuclear Information System (INIS)

    Mohamed, F.A.; Sharaf, A.N.M.; Khamis, M.A.; Sharaf, M.M.

    2000-01-01

    This work was conducted to study effect of soil type and application method on absorption, translocation and utilization of Mn by grape plants. One year old rooted cuttings of grape (Cv. Ruby seedless) were transplanted in plastic containers filled with 15 kg of three different soils, i.e. clay loam soil, sandy soil and calcareous soil. Fertilization treatments were as follows: Tap water (control) (T1); soil application of N, P,K and Mg (T2); T2 plus soil application of Fe, Mn and Zn (T4). Also, pot experiment was carried out using Mn SO4 at 5ppm for soil application and at 0.5% for foliar application and Mn-54 was used for labelling both solutions. Manganese contents in different organs of grape plant were significantly increased by the three fertilization treatments as compared to those of control. Moreover, highest Mn level was obtained due to foliar application of micro elements and soil application of macro elements T 4 . followed by soil application of both macro-and micro elements T 3 , soil application of macro elements only T2 and control T1

  10. Is geology or soil which produces the terroir effect? An experimental study in representative Chianti Classico terroirs during three contrasting vintages

    Science.gov (United States)

    Priori, Simone; Valboa, Giuseppe; Pellegrini, Sergio; Mocali, Stefano; Storchi, Paolo; Costantini, Edoardo A. C.

    2017-04-01

    The influence of terroir on the style of wine obtained an international acknowledgement in the context of the International Organisation of Vine and Wine (OIV) in 2010. Although it is known that geology, morphology and microclimate influence and diversify the wine characters, it is not studied in detail the real effect of soil features, namely soil hydrology, limiting horizons, secondary precipitation of salts and carbonates, etc. Aim of this work was to demonstrate and quantify the effect of geology-morphology-climate (macro-terroirs) and of the soil features (Basic Terroir Units, BTUs) on wine quality. The study was conducted during three different vintages (2012, '13 and '14) in vineyards belonging to one of the biggest farm of Chianti Classico and characterized by four different macro-terroirs, which are representative of the most common viticultural environments of the Chianti Classico wine district. In particular, the macro-terroirs were : - Agresto: developed on clayey-calcareous rocks situated in slopes between 400 and 450 m a.s.l. and characterized by clay-loamy, calcareous, and stony soils. - Fattoio: developed on feldspathic sandstone, situated at elevated altitude for vineyard (430-500 m a.s.l.). The soil was characterized by sandy or loamy-sandy texture, high stoniness and very low content of calcium carbonate (about 1.5-2 hectares, for each terroir. BTUs were harvested separately and the grapes were wine-made in separated tanks and then aged for 6 months in separated barrels, using the same methodology. The three vintages had very different climate during growing season, which was very dry and hot in 2012, moderately wet and warm in 2013 and chilly and very wet in 2014. Taking into account all the three vintages, discriminant analysis demonstrated that the wines produced in the four macro-terroirs were significantly different (pwine sensory analysis was also performed by 10 wine tasters for all the three vintages. Fisher LSD test showed several

  11. Influence of Irrigation Rate and Soil Type on the Vertical Migration of Iron and Manganese in the Soils of South-East Spain; Influencia de la Cantidad de Riego y Tipo de Suelo sobre la Emigracion Vertical de Hierro y Manganeso en Suelos del Sureste Espanol

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.; Carpena, O. [Instituto Nacional de Edafologia y Agrobiologia, Centro de Edafologia y Biologia Aplicada del Segura, Murcia (Spain); Esparraguera, I.; Ortin, N.; Del Val, M.; La Cruz, F. de; Cellini, R. F. [Junta de Energia Nuclear, Madrid (Spain)

    1967-11-15

    The citrus plantations in south-east Spain, situated largely on calcareous soils which are submitted to intensive cultivation, are investigating nutritional changes caused mainly by deficiencies of trace elements, especially iron and manganese, which result in a lower yield and premature exhaustion of the trees. The paper deals with a radioactive tracer study of the behaviour of these ions in soils and with the factors influencing their migration to the root zone; the object of the work is to develop a rational and economic fertilization policy. The work has been based on two types of soil, representing extreme situations encountered in practice; one soil is calcareous and the other non-calcareous. A set of columnsiwas assembled, each column having a length of 1 m and a cross-section of 32 cm{sup 2} ; solutions of {sup 59}Fe and {sup 54}Mn were added to these columns both in sulphate and chelate form. A definite amount of water, proportional to the requirements .of citrus plantations, was intermittently passed through these columns. Soil samples were taken periodically and the total activity and the activity of the assimilable and non-assimilable fractions of the elements being studied were measured. At the same time an apparatus involving a collimated scintillation detector was developed to follow the vertical migration of these ions in soils; the water drained from the columns after each irrigation was analysed radiochemically for the same purpose. (author) [Spanish] Las plantaciones citrfcolas del sureste espanol, radicadas en gran parte sobre suelos calizos y sometidos a cultivos intensivos, experimentan con el tiempo alteraciones de orden nutritivo debido principalmente a deficiencias de oligoelementos, especialmente hierro y manganeso, que se traduce en una menor produccion y en un agotamiento prematuro de los arboles. En la presente comunicacion se estudia, mediante trazadores radiactivos, el comportamiento de estos iones en los suelos, asi como los factores

  12. The influence of vegetation structure on spider species richness, diversity and community organization in the Apšuciems calcareous fen, Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Štokmane, M.; Spuņģis, V.

    2016-07-01

    Calcareous fens are considered to be among the most threatened ecosystems of Europe. They are also one of the most diverse habitats as they support an incredibly rich and diverse range of plant and animal species. However, in spite of their diversity, calcareous fens are still poorly investigated, especially when referring to fen invertebrates, such as spiders. Because spiders are good bioindicators, knowledge of their ecology in rare and threatened habitats is of interest. The aim of this study was to document the composition and diversity of spider species, families and foraging guilds in the ground– and grass–layers of the Apšuciems calcareous fen, and to evaluate the influence of vegetation structure on spider community organization. In summer 2012, we collected ground–dwelling spiders using pitfall traps and grass–dwelling spiders using sweep–netting. A total of 2,937 spider individuals belonging to 19 families and 80 species was collected in the Apšuciems fen. Our results indicate that spider species and families tend to be stratified across the vertical structure of the habitat; the spider composition in the ground stratum differed from that in the grass stratum. On the contrary, however, the spider foraging guild structure between the ground–layer and the grass–layer was similar. Each of the two studied strata presented similar guilds in similar proportions. Our results also showed that spider composition differed considerably between fen parts and that much of this variability could be explained by the architectural properties of the habitat. More diverse vegetation generally supported a higher number of spider species. (Author)

  13. Carboniferous calcareous algae and their associations in the San Emiliano and Lois-Ciguera Formations (Prov. León, NW Spain)

    NARCIS (Netherlands)

    Rácz, L.

    1965-01-01

    This study of the calcareous algae in the limestone deposits of the two formations (San Emiliano and Lois-Ciguera) in NW Spain is based on field observations and microscopical study. It was possible in the field to divide almost all the limestone members into smaller units on the basis of physical,

  14. Miocene oceanographic changes of the western equatorial Atlantic (Ceara Rise) based on calcareous dinoflagellate cysts

    Science.gov (United States)

    Heinrich, S.; Zonneveld, K. A. F.; Willems, H.

    2010-09-01

    The middle- and upper Miocene represent a time-interval of major changes in palaeoceanography that favoured the cooling of the climate and culminated in the Northern Hemisphere Glaciation (NHG). The basis for the development of the modern deepwater circulation pattern, e.g. thermohaline circulation, was hereby established. Tectonic events played a key role in the progressing Miocene oceanography, such as the narrowing of the Panama gateway (e.g. Duque-Caro 1990) and the possible linked changes in North Atlantic Deep Water formation (Lear et al. 2003). However, the complex interaction between the closing of the Panama Gateway, the development of NADW, and thus the oceanographic progression towards our present day circulation is far from being fully understood. We want to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the western equatorial Atlantic Ocean on the basis of calcareous dinoflagellate cyst (dinocyst) associations. Within this study, we investigated sediment samples from ODP Site 926A by defining the calcareous dinocyst assemblage. Site 926A is located at the southwestern flank of the Ceara Rise, an area of highest sensitivity to global deep water circulation changes. At about 12 Ma, when NADW production increased (e.g. Wright et al. 1992), we see a distinct increase in the absolute abundances of the calcareous dinocysts. This might be related to enhanced productivity or to better carbonate preservation. At 11.3 Ma, Leonella granifera, a species known to be strongly related to terrestrial input occurs. This could be a signal for the initiation of the Amazon River as a transcontinental river with the development of the Amazon fan (11.8 - 11.3 Ma; Figueiredo et al. 2009) in relation to Andean tectonism. References: Duque-Caro, H. (1990): Neogene stratigraphy, paleoceanography and palebiology in Northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology

  15. The calcareous mires in South-East Poland are home to two rare Anthracoidea species

    Directory of Open Access Journals (Sweden)

    Marcin Piątek

    2013-12-01

    Full Text Available The new collections of Anthracoidea buxbaumii Kukkonen on Carex buxbaumii Wahlenb. and Anthracoidea hostianae B.Lindeb. ex Nannf. on Carex lepidocarpa Tausch recorded in the calcareous mires in South-East Poland are described, illustrated and discussed. The holotype of the latter smut is also re-examined, described and illustrated in detail. Anthracoidea buxbaumii is reported for the second time from Poland on a new host plant. Anthracoidea hostianae is new to Poland. The variability of spore sizes of both species is discussed. The conspecificity of Anthracoidea buxbaumii and A. hostianae suggested in the literature is analyzed.

  16. Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean

    Science.gov (United States)

    Marzen, Rachel; DeNinno, Lauren H.; Cronin, Thomas M.

    2016-01-01

    Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital-scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere-productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and constructed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ∼20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice-volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations.

  17. Biot's coefficient as an indicator of strength and porosity reduction: Calcareous sediments from Kerguelen Plateau

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Borre, Mai Kirstine; Fabricius, Ida Lykke

    2010-01-01

    β to fall, even when porosity remains constant. Biot's coefficient correlates with strength-indicating properties: compressional and shear modulus, oedometer modulus, yield strength, strain from direct loading and creep strain. Our data indicate that β may be used for predicting the diagenetic...... Biot's coefficient, β. In calcareous ooze, β is one. Mechanical compaction reduces porosity, but only leads to a minor decrease in β. Recrystallization renders particles smoother, but does not lead to reduction in β unless it gives rise to pore stiffening cementation. Pore stiffening cementation causes...

  18. Soil to plant transfer of 134Cs for olive and orange trees: preliminary results

    International Nuclear Information System (INIS)

    Skarlou, V.; Nobeli, C.; Anoussis, J.; Papanicolaou, E.; Haidouti, C.

    1995-01-01

    The objective of this research programme was to calculate values of transfer parameters of 134 Cs from soil to tree crops (olive and orange trees) in a long term glasshouse pot experiment, started in 1994. Radiocaesium contamination in the different tree parts as well as the importance of the storage or cycling of 134 Cs will also be examined. The experiment was conducted in large pots filled with a calcareous, heavy soil (115 kg/pot) where olive and orange trees, two years after grafting were transplanted. The soil was added to the pot in layers ca. 2 cm thick on the top of which the radioactive solution was added in small drops. Caesium-134 as CsCl (0.5 mCi) was added to each pot. The soil in the pots was watered to field capacity and left to stand for eight weeks for the 134 Cs to reach equilibrium. Plant samples were taken at fruit maturity, eight months after transplanting. It is noticed that the length of experimentation is rather short for tree crops and the data should be considered as preliminary ones with indicative tendencies. Under these conditions plant contamination was generally very low in both plant species studied. The concentration ratios (CR) of 134 Cs for the studied crops did not differ much and they ranged from 0.0007 to 0.002 for olive trees and from 0.0006 to 0.001 for orange trees. Leaves compared to other plant parts showed the highest CR value in both crops. Furthermore new leaves and branches of the olive trees showed higher CR values than the old ones by approximately a factor of two. Potassium content of the different plant parts showed significant differences and they were higher in leaves and fruits. There is no correlation between K content and transfer factors of Cs in the different plant parts of both crops. To study the effect of soil type on CRs of 134 Cs for olive and orange trees a similar experiment was established two months later, using a sandy and acid soil. Based on first results, higher values of transfer factors of 134

  19. Calcareous nannofossil and ammonite integrated biostratigraphy across the Jurassic - Cretaceous boundary strata of the Kopanitsa composite section (West Srednogorie Unit, southwest Bulgaria)

    Science.gov (United States)

    Stoykova, Kristalina; Idakieva, Vyara; Ivanov, Marin; Reháková, Daniela

    2018-04-01

    Calcareous nannofossil, calpionellid and ammonite occurrences have been directly constrained across the Jurassic-Cretaceous boundary interval in the section of Kopanitsa, SW Bulgaria. This section reveals a continuous and expanded sedimentary record through the Upper Tithonian and Lower Berriasian, besides an excellent calcareous nannofossil and ammonite record. The topmost part of the NJT 16b and the base of NJT 17a nannofossil Subzones correspond to the ammonite Microcanthum / Transitorius Subzone. The major part of the NJT 17a Subzone equates to the Durangites spp. ammonite Zone, whereas the NJT 17b Subzone correlates to the lower part of the B. jacobi ammonite Zone. The NKT nannofossil Zone approximately corresponds to the upper part of the B. jacobi Zone and the NK-1 nannofossil Zone correlates at least to the lowest part of the T. occitanica Zone. The FOs of Nannoconus globulus minor, N. wintereri, N. kamptneri minor, N. steinmannii minor, N. kamptneri kamptneri and N. steinmannii steinmannii are confirmed as reliable bio-horizons for correlations in the Mediterranean Tethys area. The first occurrence of Nannoconus wintereri is regarded as an almost concomitant event with the first occurrence of Berriasella jacobi. We suggest it could be the most useful nannofossil proxy for approximating the base of the B. jacobi Zone. Rare, but relatively well preserved calpionellids and calcareous dinoflagellates together with microfacies analysis were used additionally for stratigraphical and palaeoenvironmental interpretations. The investigated sediments are typical for the steep slope of a steepened ramp, with accumulation of hemipelagic and gravitational deposits.

  20. The influence of vegetation structure on spider species richness, diversity and community organization in the Apšuciems calcareous fen, Latvia

    Directory of Open Access Journals (Sweden)

    Štokmane, M.

    2016-07-01

    Full Text Available Calcareous fens are considered to be among the most threatened ecosystems of Europe. They are also one of the most diverse habitats as they support an incredibly rich and diverse range of plant and animal species. However, in spite of their diversity, calcareous fens are still poorly investigated, especially when referring to fen invertebrates, such as spiders. Because spiders are good bioindicators, knowledge of their ecology in rare and threatened habitats is of interest. The aim of this study was to document the composition and diversity of spider species, families and foraging guilds in the ground– and grass–layers of the Apšuciems calcareous fen, and to evaluate the influence of vegetation structure on spider community organization. In summer 2012, we collected ground–dwelling spiders using pitfall traps and grass–dwelling spiders using sweep–netting. A total of 2,937 spider individuals belonging to 19 families and 80 species was collected in the Apšuciems fen. Our results indicate that spider species and families tend to be stratified across the vertical structure of the habitat; the spider composition in the ground stratum differed from that in the grass stratum. On the contrary, however, the spider foraging guild structure between the ground–layer and the grass–layer was similar. Each of the two studied strata presented similar guilds in similar proportions. Our results also showed that spider composition differed considerably between fen parts and that much of this variability could be explained by the architectural properties of the habitat. More diverse vegetation generally supported a higher number of spider species.

  1. Preoperative digital planning versus postoperative outcomes in total hip arthroplasty using a calcar-guided short stem: frequent valgization can be avoided.

    Science.gov (United States)

    Kutzner, Karl Philipp; Pfeil, Joachim; Kovacevic, Mark Predrag

    2017-07-01

    Modern total hip arthroplasty is largely dependent on the successful preservation of hip geometry. Thus, a successful implementation of the preoperative planning is of great importance. The present study evaluates the accuracy of anatomic hip reconstruction predicted by 2D digital planning using a calcar-guided short stem of the newest generation. A calcar-guided short stem was implanted in 109 patients in combination with a cementless cup using the modified anterolateral approach. Preoperative digital planning was performed including implant size, caput-collum-diaphyseal angle, offset, and leg length using mediCAD II software. A coordinate system and individual scale factors were implemented. Postoperative outcome was evaluated accordingly and was compared to the planning. Intraoperatively used stem sizes were within one unit of the planned stem sizes. The postoperative stem alignment showed a minor and insignificant (p = 0.159) mean valgization of 0.5° (SD 3.79°) compared to the planned caput-collum-diaphyseal angles. Compared to the planning, mean femoral offset gained 2.18 (SD 4.24) mm, while acetabular offset was reduced by 0.78 (SD 4.36) mm during implantation resulting in an increased global offset of 1.40 (SD 5.51) mm (p = 0.0094). Postoperative femoroacetabular height increased by a mean of 5.00 (SD 5.98) mm (p planning in calcar-guided short-stem total hip arthroplasty assures a satisfying implementation of the intended anatomy. Valgization, which has been frequently observed in previous short-stem designs, negatively affecting offset, can be avoided. However, surgeons have to be aware of a possible leg lengthening.

  2. Soil to plant transfer of 134Cs for olive and orange trees after four years' experimentation

    International Nuclear Information System (INIS)

    Skarlou, V.; Nobeli, C.; Anoussis, J.; Haidouti, C.

    1998-01-01

    The transfer parameters of 134 Cs from soil to tree crops (olive and orange trees) were calculated within a long-term glass-house pot experiment which was started in 1994. The effect of the soil characteristics on 134 Cs uptake was also studied using two soils with different physical and chemical properties. Both evergreen trees exhibited a similar behavior in the two soils, showing that a higher or lower uptake is not crop specific. The capacity of the trees for 134 Cs absorption through the roots seems to be significantly influenced by the soil type. The transfer factors were very low in the calcareous heavy soil and much higher in the acid light soil (up to 10 times for olives and 40 for the edible part of oranges). The difference in the TFs is higher between the two soils than between the two tree species. 134 Cs concentration kept increasing in the orange trees up to the 4th year of growth, while it seems to reach an equilibrium, with no further increase, in the olive trees. Although the behavior of the two tree species is similar, the difference in the final processed product is extreme. A significant amount of 134 Cs was observed in olives grown in the light-acid soil whereas no transfer to the olive oil was detected. On the other hand, the edible part of the oranges showed the highest 134 Cs of nearly all the plant parts

  3. Recovery of MSWI and soil washing residues as concrete aggregates.

    Science.gov (United States)

    Sorlini, Sabrina; Abbà, Alessandro; Collivignarelli, Carlo

    2011-02-01

    The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production. Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes. Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m(3) of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  5. The influence of organic amendment and nickel pollution on tomato fruit yield and quality.

    Science.gov (United States)

    Palacios, G; Carbonell-Barrachina, A; Gómez, I; Mataix, J

    1999-01-01

    The effects of organic fertilization (sludge application) and/or different levels of Ni pollution on tomato fruit yield, quality, nutrition, and Ni accumulation were investigated. The mass loading of sewage sludge solids used in this study for the amendment of a calcareous soil with low organic matter content was 2% (w/w). A control with no sewage sludge amendment was also included (S). Nickel was added to the sludge amended soil at 0, 60, 120 and 240 mg kg-1 concentrations. Sewage sludge addition to the calcareous soil significantly increased fruit yield but did not adversely affect the quality and nutritional status of the tomato fruit. The results demonstrated that sewage sludge could be successfully used as a horticultural fertilizer. Only the highest addition rate of Ni (240 mg kg-1) to an organic amended calcareous soil had negative effects on fruit yield and quality, and caused a Ni accumulation in fruit that could be considered as a hazard for human health. Thus, no toxic problems will be encountered in tomato fruit due to Ni pollution provided the total Ni (soil Ni plus Ni incorporated with sludge amendment) concentration is kept below the maximum concentration of Ni allowed for agricultural alkaline soils in Spain (112 mg Ni kg-1).

  6. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    Science.gov (United States)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  7. Short-Term Effect of Vermicompost Application on Biological Properties of an Alkaline Soil with High Lime Content from Mediterranean Region of Turkey

    Science.gov (United States)

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils. PMID:25254238

  8. CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY OF UPPER CALLOVIAN-LOWER BERRIASIAN SUCCESSIONS FROM THE SOUTHERN ALPS, NORTH ITALY

    Directory of Open Access Journals (Sweden)

    CRISTINA EMANUELA CASELLATO

    2010-11-01

    Full Text Available Calcareous nannofossil biostratigraphy was investigated in uppermost Callovian-lower Berriasian sections from Southern Alps, previously detected through magnetostratigraphy, in order to achieve an integrated stratigraphic framework valid at low latitudes. Nannofossil investigations were carried out on smear slides and ultra-thin sections, revealing generally scarce to common abundances and poor-moderate preservation of nannofloras. An exhaustive taxonomic revision was performed to unambiguously separate forms which are transitional between two species and better delineate rapidly evolving groups. Four new species have been described: Zeugrhabdotus fluxus, Nannoconus puer, Nannoconus erbae, Hexalithus geometricus. Particular attention was paid to taxonomical aspects of primitive nannoconids, appearing and evolving across the early-late Tithonian transition and the Tithonian/Berriasian boundary intervals; the revision was also verified at DSDP Site 534A from Atlantic Ocean. Fourty-eight nannofossil bioevents were detected and the results help to increase potential stratigraphic resolution in this interval. Thirty-seven nannofossil bioevents in the upper Kimmeridgian-lower Berriasian interval have been directly correlated to magnetostratigraphy (CM22-CM17 revealing a systematically older stratigraphic occurrence of these taxa than previously reported. A revised and partly new Tethyan calcareous nannofossil zonation scheme is here proposed for the uppermost Callovian-lower Berriasian interval. It consists of seven bio-zones and eight subzones based on thirty-one bioevents, thirteen of them related to dissolution resistant taxa assuring highest reproducibility even in sections with high diagenetic overprint. The proposed biostratigraphic scheme gives higher resolution than previous zonations, especially for the Callovian-Kimmeridgian interval, where no biozonation was available for the Tethyan Realm. 

  9. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  10. Effects of elemental sulfur and sulfur-containing waste on nutrient ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... grown twice on the same soils to determine initial and residual effects of applied S. Results showed that applications of ... Key words: Calcareous soil, plant growth, plant nutrition, sulfur application. ...... Colombia. Can. J. Soil ...

  11. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    Science.gov (United States)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and

  12. Calcareous nannofossil and ammonite integrated biostratigraphy across the Jurassic – Cretaceous boundary strata of the Kopanitsa composite section (West Srednogorie Unit, southwest Bulgaria

    Directory of Open Access Journals (Sweden)

    Stoykova Kristalina

    2018-04-01

    Full Text Available Calcareous nannofossil, calpionellid and ammonite occurrences have been directly constrained across the Jurassic–Cretaceous boundary interval in the section of Kopanitsa, SW Bulgaria. This section reveals a continuous and expanded sedimentary record through the Upper Tithonian and Lower Berriasian, besides an excellent calcareous nannofossil and ammonite record. The topmost part of the NJT 16b and the base of NJT 17a nannofossil Subzones correspond to the ammonite Microcanthum / Transitorius Subzone. The major part of the NJT 17a Subzone equates to the Durangites spp. ammonite Zone, whereas the NJT 17b Subzone correlates to the lower part of the B. jacobi ammonite Zone. The NKT nannofossil Zone approximately corresponds to the upper part of the B. jacobi Zone and the NK-1 nannofossil Zone correlates at least to the lowest part of the T. occitanica Zone. The FOs of Nannoconus globulus minor, N. wintereri, N. kamptneri minor, N. steinmannii minor, N. kamptneri kamptneri and N. steinmannii steinmannii are confirmed as reliable bio-horizons for correlations in the Mediterranean Tethys area. The first occurrence of Nannoconus wintereri is regarded as an almost concomitant event with the first occurrence of Berriasella jacobi. We suggest it could be the most useful nannofossil proxy for approximating the base of the B. jacobi Zone. Rare, but relatively well preserved calpionellids and calcareous dinoflagellates together with microfacies analysis were used additionally for stratigraphical and palaeoenvironmental interpretations. The investigated sediments are typical for the steep slope of a steepened ramp, with accumulation of hemipelagic and gravitational deposits.

  13. SAR-aided method for rural soil evaluation

    Science.gov (United States)

    Lay-Ekuakille, Aime; Dellisanti, Carmelo; Pelillo, Vincenza; Tralli, Francesco

    2003-03-01

    The principal land characteristics that can be estimated by means of airphoto interpretation are bedrock type, landform, soil texture, site drainage conditions, susceptibility to flooding, and depth of unconsolidated materials over bedrock. In addition, the slope of the land surface can be estimated by airphoto interpretation and measured by phptpgrammetric methods. The aim of this paper is to show an experimental use of satellite images in determining soil quality affected by anthropic activities as rock crushing, or scarifying. Scarifying activities began, in Murgia area, Apulia Region, Italy), as land improvement for agriculture uses. Scarifying is defined as loosening (the surface of soil) by using an agricultural tool or a machine with prongs. This kind of activity is facilitated by the availability, on the market, of scarifying machines and the objective is to get a stratum of agriculture-useful loose material on the soil surface. Apulia Region Government has permitted calcareous stone scarifying with Regional Law n.54 (August 31, 1981) according to National Law n.984 (Dicember 27,1977), that provides for encouraging to transform grazing in sown land in order to create new possibility of forage production to increase zootecnical facilities. We have used ERS-2/SAR images as contribution in the process of soil characterization.The area we have considered is in Puglia Region and is subject to soil transformation due to rocks crushed on land for agricultural facilities. European Union, through the same Apulia Region Government, has renewed funds for the improvement of meadow and grazing for an overall surface of 2000 hectares. In this way it is clear to understand the importance of qualitative and quantitative evaluation of rock crushing or scarifying by using airphoto interpretation. We have evaluated the soil quality by introducing a multicriteria, analysis by using a qualitative and quantitative methodology, so that it will be possible to prevent damages on

  14. Effect of organic ligands on the soil behavior of technetium-99

    International Nuclear Information System (INIS)

    Martin, L.Y.; Franz, J.A.

    1980-06-01

    Results of studies on the effects of organics on 99 Tc mobility are reported. The effects of organics (EDTA,DTPA and citrate) on the sorption/migration of Tc is examined from two aspects, first by desorption techniques where reduced, sorbed Tc is exposed to organic ligands; and second, by exposure of synthetic Tc-organic complexes to soils. A calcareous, sandy, loam Hanford soil (pH approx. 8.2) was used. Very little desorption of the reduced Tc has occurred both in the 10 day study (95-87% remains sorbed for 10 -6 to 10 -8 M levels even at cit/Tc - 10,000= and even less desorption is observed in the extended 45 day study (95-90% remains sorbed for 10 -6 to 10 -9 M levels). Similar results were also observed when a stronger chelating agent such as EDTA was used. Approximately 95% of the reduced Tc remains sorbed for the 10 -5 to 10 -6 M levels and approx. 70 remains sorbed at 10 -7 M

  15. Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    El Haddad, J.; Bruyère, D.; Ismaël, A.; Gallou, G.; Laperche, V.; Michel, K.; Canioni, L.; Bousquet, B.

    2014-01-01

    Artificial neural networks were applied to process data from on-site LIBS analysis of soil samples. A first artificial neural network allowed retrieving the relative amounts of silicate, calcareous and ores matrices into soils. As a consequence, each soil sample was correctly located inside the ternary diagram characterized by these three matrices, as verified by ICP-AES. Then a series of artificial neural networks were applied to quantify lead into soil samples. More precisely, two models were designed for classification purpose according to both the type of matrix and the range of lead concentrations. Then, three quantitative models were locally applied to three data subsets. This complete approach allowed reaching a relative error of prediction close to 20%, considered as satisfying in the case of on-site analysis. - Highlights: • Application of a series of artificial neural networks (ANN) to quantitative LIBS • Matrix-based classification of the soil samples by ANN • Concentration-based classification of the soil samples by ANN • Series of quantitative ANN models dedicated to the analysis of data subsets • Relative error of prediction lower than 20% for LIBS analysis of soil samples

  16. Phytoremediation of Polycyclic Aromatic Hydrocarbons in Soils Artificially Polluted Using Plant-Associated-Endophytic Bacteria and Dactylis glomerata as the Bioremediation Plant.

    Science.gov (United States)

    Gałązka, Ann; Gałązka, Rafał

    2015-01-01

    The reaction of soil microorganisms to the contamination of soil artificially polluted with polycyclic aromatic hydrocarbons (PAHs) was evaluated in pot experiments. The plant used in the tests was cock's foot (Dactylis glomerata). Three different soils artificially contaminated with PAHs were applied in the studies. Three selected PAHs (anthracene, phenanthrene, and pyrene) were used at the doses of 100, 500, and 1000 mg/kg d.m. of soil and diesel fuel at the doses of 100, 500, and 1000 mg/kg d.m. of soil. For evaluation of the synergistic effect of nitrogen fixing bacteria, the following strains were selected: associative Azospirillum spp. and Pseudomonas stutzerii. Additionally, in the bioremediation process, the inoculation of plants with a mixture of the bacterial strains in the amount of 1 ml suspension per 500 g of soil was used. Chamber pot-tests were carried out in controlled conditions during four weeks of plant growth period. The basic physical, microbiological and biochemical properties in contaminated soils were determined. The obtained results showed a statistically important increase in the physical properties of soils polluted with PAHs and diesel fuel compared with the control and also an important decrease in the content of PAHs and heavy metals in soils inoculated with Azospirillum spp. and P. stutzeri after cock's foot grass growth. The bioremediation processes were especially intensive in calcareous rendzina soil artificially polluted with PAHs.

  17. Regulating mineralization rates of Tithonia diversifolia and Lantana camara prunings to improve phosphorus availability in calcareous soils

    Directory of Open Access Journals (Sweden)

    Y. Nuraini

    2014-01-01

    Full Text Available The effect of mixing of Tithonia diversifolia and Lantana camara prunings to improve synchronization between P released from the prunings with crop demand for P was studied in a laboratory and in a glasshouse. Tithonia diversifolia prunings (Td, Lantana camara prunings (Lc, and farmyard manure (Pk were thoroughly mixed with the proportion (% of dry weight of; 25Td +75 Lc ; 50Td +50 Lc ; 75Td +25 Lc ; 90Lc +10 Pk ; 45Td +45 +10 Lc Pk ; 100Td and 100Lc, and then mixed with 100 g of air-dried soil with a rate equivalent to 100 kg P / ha. Results of the study showed that the pruning mixtures decomposed and mineralized faster than that of Lantana camara pruning only, but slower than that of Tithonia diversifolia pruning only. The amount of P released from the pruning mixtures increased with increasing proportion of Tithonia diversifolia pruning in the mixtures. Increasing proportion of Tithonia diversifolia pruning in the mixture applied to the soil increased the amount of P taken up by maize.

  18. DISSECTING QUANTITATIVE TRAIT LOCI FOR AGRONOMIC TRAITS RESPONDING TO IRON DEFICEINCY IN MUNGBEAN [Vigna radiata (L. Wilczek

    Directory of Open Access Journals (Sweden)

    Prakit Somta

    2014-06-01

    Full Text Available Calcareous soil is prevalent in many areas of the world agricultural land causing substantial yield loss of crops. We previously identified two quantitative trait locus (QTL qIDC3.1 and qIDC2.1 controlling leaf chlorosis in mungbean grown in calcareous soil in two years (2010 and 2011 using visual score and SPAD measurement in a RIL population derived from KPS2 (susceptible and NM10-12-1 (resistant. The two QTLs together accounted for 50% of the total leaf chlorosis variation and only qIDC3.1 was confirmed, although heritability estimated for the traits was as high as 91.96%. In this study, we detected QTLs associated with days to flowering , plant height, number of pods per plants, number of seeds per pods, and seed yield per plants in the same population grown under the same environment with the aim to identify additional QTLs controlling resistance to calcareous soil in mungbean. Single marker analysis revealed 18 simple sequence repeat markers, while composite interval mapping identified 33 QTLs on six linkage groups (1A, 2, 3, 4, 5 and 9 controlling the five agronomic traits. QTL cluster on LG 3 coincided with the position of qIDC3.1, while QTL cluster on LG 2 was not far from qIDC2.1. The results confirmed the importance of qIDC3.1 and qIDC2.1 and revealed four new QTLs for the resistance to calcareous soil.

  19. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    Science.gov (United States)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  20. Provenance of Holocene calcareous beach-dune sediments, Western Eyre Peninsula, Great Australian Bight, Australia

    Science.gov (United States)

    James, Noel P.; Bone, Yvonne

    2017-07-01

    Much of western Eyre Peninsula adjacent to the Great Australian Bight is veneered with siliceous and calcareous Quaternary aeolian dunes. The lengthy coastline adjacent to this cool-water carbonate factory is a series of Precambrian crystalline bedrock-Pleistocene aeolianite headlands that separate many long, sweeping, Holocene carbonate sand beaches and their backbeach dunes. Incessant SW waves, rolling swells, and onshore winds have resulted in > 350 km of semi-continuous calcareous strandline aeolian sands. The sediment is composed of quartz grains, Cenozoic limestone clasts, and relict particles (extraclasts) but the deposits are overwhelmingly dominated by contemporaneous biofragments from offshore. These skeletal grains are, in order of relative abundance, molluscs > benthic foraminifers > coralline algae > bryozoans, and echinoids. Benthic foraminifers are mostly small (especially rotaliids and miliolids) but the large relict symbiont-bearing protistMarginopora vertebralis, which grew in the latter stages of MIS 2, is present locally. There are no significant onshore-offshore trends within individual beach-dune complexes. There is, however, a prominent spatial partitioning, with extraclast-rich sediments in the north and biofragment-rich deposits in the south. This areal trend is interpreted to result from more active seafloor carbonate production in the south, an area of conspicuous seasonal nutrient upwelling and profound nektic and benthic biological productivity. The overall system is strikingly similar to Holocene and Pleistocene aeolianites along the inboard margin of the Lacepede Shelf and Bonney Coast some 500 km to the southeast, implying a potential universality to the nature of cool-water carbonate aeolianite deposition. The composition of these cool-water aeolianites is more multifaceted than those formed on warm-water, shallow flat-topped platforms, largely because of the comparatively deep, temperate shelf, the high-energy wave and swell

  1. Multivariate soil fertility relationships for predicting the environmental persistence of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-tricyclohexane (RDX) among taxonomically distinct soils.

    Science.gov (United States)

    Katseanes, Chelsea K; Chappell, Mark A; Hopkins, Bryan G; Durham, Brian D; Price, Cynthia L; Porter, Beth E; Miller, Lesley F

    2017-12-01

    After nearly a century of use in numerous munition platforms, TNT and RDX contamination has turned up largely in the environment due to ammunition manufacturing or as part of releases from low-order detonations during training activities. Although the basic knowledge governing the environmental fate of TNT and RDX are known, accurate predictions of TNT and RDX persistence in soil remain elusive, particularly given the universal heterogeneity of pedomorphic soil types. In this work, we proposed overcoming this problem by considering the environmental persistence of these munition constituents (MC) as multivariate mathematical functions over a variety of taxonomically distinct soil types, instead of a single constant or parameter of a specific absolute value. To test this idea, we conducted experiments where the disappearance kinetics of TNT and RDX were measured over a >300 h period in taxonomically distinct soils. Classical fertility-based soil measurements were log-transformed, statistically decomposed, and correlated to TNT and RDX disappearance rates (k -TNT and k -RDX ) using multivariate dimension-reduction and correlation techniques. From these efforts, we generated multivariate linear functions for k parameters across different soil types based on a statistically reduced set of their chemical and physical properties: Calculations showed that the soil properties exhibited strong covariance, with a prominent latent structure emerging as the basis for relative comparisons of the samples in reduced space. Loadings describing TNT degradation were largely driven by properties associated with alkaline/calcareous soil characteristics, while the degradation of RDX was attributed to the soil organic matter content - reflective of an important soil fertility characteristic. In spite of the differing responses to the munitions, batch data suggested that the overall nutrient dynamics were consistent for each soil type, as well as readily distinguishable from the other

  2. The effectiveness of soil-applied FeEDDHA treatments in preventing iron chlorosis in soybean as a function of the 0,0-FeEDDHA content

    OpenAIRE

    Schenkeveld, W.D.C.; Dijcker, R.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van, W.H.

    2008-01-01

    The application of FeEDDHA products is the most common practice to prevent or to remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of EDDHA components chelated to Fe. In this study such mixtures have been divided into four (groups of) components: racemic o,o-EDDHA, meso o,o-EDDHA, o,p-EDDHA and rest-EDDHA. Because the physical and chemical properties of these components differ, so does their effectiveness in delivering Fe to the plant. This effectiven...

  3. SUSTAINABILITY EFFECTS OF Crotalaria juncea L. AND Crotalaria spectabilis ROTH ON SOIL FERTILITY AND SOIL CONSERVATION

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    Sustainable agriculture is defined as the successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of the environment and conserving natural resources. A sustained increase of agricultural production becomes a great possibility for international community. In this process a green manure crops application for example crotalaria get a new chance for improvement process on soil fertility and soil conservation. Field experiment was carried out on a calcareous chernozem soil (Experiment station Nagyhörcsök of RISSAC-HAS) in partly of experiment series (3 years) at Hungary in 1998. The soil with about 20% clay, 3% humus, 5% CaCO3 in its ploughed layer. To ensure a sufficient macro and micronutrient supply in the whole experiment, 100 kg N, 100 kg P2O5 and 100 kg K2O were given hectare. The Crotalaria juncea L. and Crotalaria spectabilis ROTH were applied with 2 replications. Each plot has an area of 45 m2 with 230-230 individual plants. In vegetation grown period were measured green and dry matter yield. The soil and plant samples were analysed for the macro and microelements contents. The main results achieved in 1998 are summarized as follows: 1. The green matter yield at before flowering reached 63.8 t ha-1 in case of Crotalaria juncea L. 2. Total dry matter yield at harvest (without roots) fluctuated between 9.6 and 17.0 t ha-1, depending on the crotalaria species. 3. The average of element concentration (including stems, leaves of Crotalaria juncea L. and Crotalaria spectabilis ROTH) before flowering reached to 3.2 % N, 2.3 % Ca, 1.3 % K, 0.39 % Mg, 0.22 % P and 0.24 % S. The content of Al and Fe total 14 - 25, while that of Sr, Mn, Na, B and Ba 2 - 6 ppm in dry matter. The Zn, Cu, Mo, Cr, Se, Ni, As, Pb, Cd and Co concentration did not reach here the value of 1 ppm. 4. The average of biological activated element uptake (including stems, leaves of Crotalaria juncea L. and Crotalaria spectabilis

  4. Soils and cultural layers of ancient cities in the south of European Russia

    Science.gov (United States)

    Aleksandrovskii, A. L.; Aleksandrovskaya, E. I.; Dolgikh, A. V.; Zamotaev, I. V.; Kurbatova, A. N.

    2015-11-01

    Antique cities in the south of European Russia are characterized by a considerable thickness of their cultural layers (urbosediments) accumulated as construction debris and household wastes. Under the impact of pedogenesis and weathering in dry climate of the steppe zone, these sediments have acquired the features of loesslike low-humus calcareous and alkaline deposits. They are also enriched in many elements (P, Zn, Ca, Cu, Pb, As) related to the diverse anthropogenic activities. The soils developed from such urbosediments can be classified as urbanozems (Urban Technosols), whereas chernozems close to their zonal analogues have developed in the surface layer of sediments covering long-abandoned ancient cities. Similar characteristics have been found for the soils of the medieval and more recent cities in the studied region. Maximum concentrations of the pollutants are locally found in the antique and medieval urbosediments enriched in dyes, handicrafts from nonferrous metals, and other artifacts. Surface soils of ancient cities inherit the properties and composition of the cultural layer. Even in chernozems that developed under steppe vegetation on the surface of the abandoned antique cities of Phanagoria and Tanais for about 1000—1500 years, the concentrations of copper, zinc, and calcium carbonates remain high. Extremely high phosphorus concentrations in these soils should be noted. This is related to the stability of calcium phosphates from animal bones that are abundant in the cultural layer acting as parent material for surface soils.

  5. SPRINGS WITH CALCAREOUS TUFA IN THE VALLEY OF THE JAMNE CREEK IN GORCE

    Directory of Open Access Journals (Sweden)

    Roksana Krause

    2015-01-01

    Full Text Available The study gives a detail characteristic of a hard water springs habitat with the communities of Cratoneurion commutati (habitat code of Nature 2000: 7220, localized within Nature 2000 protected area Ostoja Gorczańska PLH120018, in an upper part of the valley of Jamne creek. The plants are described along with the main habitat parameters, namely: altitude, exposition, slope gradient, insolation, type of bedrock, water flow regime and the spring outflow efficiency. The temperature, pH, electrical conductivity were measured in the field, the concentrations of Ca and Mg in spring water were measured by Atomic Absorption Spectroscopy (AAS. The investigated headwater areas are small (0.7–80 m2 and highly differentiated by the intensity of calcareous tufa precipitation and the degree of plant cover development.

  6. Transfer factors of 134Cs for olive and orange trees grown on different soils

    International Nuclear Information System (INIS)

    Skarlou, V.; Nobeli, C.; Anoussis, J.; Haidouti, C.; Papanicolaou, E.

    1999-01-01

    Transfer factors (TF) of 134 Cs to olive and citrus trees grown on two different soils, were determined for a 3-year greenhouse experiment. Two-year-old trees were transplanted with their entire rootball into large pots containing the contaminated soil (110 kg pot -1 ). The soil was transferred to each pot in layers on the top of which 134 Cs as CsCl was dripped (18.5 MBq pot -1 ). For both evergreen trees, soil type significantly influenced radiocaesium transfer. 134 Cs concentration was lower for the calcareous-heavy soil than for the acid-light soil. Transfer factors of orange trees were higher than those of olive trees in the acid-light soil. Although a significant amount of 134 Cs was measured in olives grown on the acid-light soil, no 134 Cs was detected in the unprocessed olive oil when an oil fraction (5% f.w.) was extracted. On the contrary the edible part of the oranges showed the highest 134 Cs concentration of all plant parts. The relationship between 134 Cs uptake and potassium content in the different plant compartments was also studied when selected trees were cut down. The potassium concentration in the plants was not significantly different between the trees growing in the two types of soil in spite of the big differences in the 134 Cs uptake in the two soils. TF values and potassium content in the different plant compartments of each tree were highly correlated. For both crops transfer factors as well as potassium content were the highest in the developing plant parts (new leaves and branches, flowers). The transfer factors of 134 Cs for the studied trees are in the same order of magnitude as the values of annual crops grown under similar conditions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Fertilization with liquid digestate in organic farming - effects on humus balance, soil potassium contents and soil physical properties

    Science.gov (United States)

    Erhart, Eva; Siegl, Thomas; Bonell, Marion; Unterfrauner, Hans; Peticzka, Robert; Ableidinger, Christoph; Haas, Dieter; Hartl, Wilfried

    2014-05-01

    Biogas production and use of liquid digestate are subject of controversial discussion in organic farming. Using biomass from intercrops as feedstock for biogas production makes it possible to produce renewable energy without compromising food production. With liquid digestate, crops can be fertilized in a more targeted way than by incorporating intercrop biomass into the soil. For long-term sustainability in organic farming, however, this practice must not have adverse effects on soil fertility. In order to assess the effects of fertilization with liquid digestate on soil fertility, two randomised field experiments were conducted for two years on different soil types near Bruck/Leitha (Lower Austria). One experiment was set up on a calcareous chernozem with 4 % humus content, the other on a parachernozem with pH 5.9 and 2.1 % humus. Soil potassium content, both in the water-soluble fraction and in the exchangeable fraction, increased significantly at both sites. As fertilization with liquid digestate exceeded the potassium requirements of the crops by far, the proportion of potassium of the exchangeable cations increased rapidly. Soil physical properties were not influenced by digestate fertilization on the chernozem site. On the parachernozem, aggregate stability was increased by the organic matter applied via digestate. On this acidic site low in humus content, the supply of 4 t/ha organic matter, which featured a lignin content of 37 % and was relatively resistant to decomposition, had a clearly positive impact on soil physical properties. Humus balances were computed both with the 'Humuseinheiten'-method and with the site-adapted method STAND. They were calculated on the basis of equal amounts of intercrop biomass either left on the field as green manure or used for biogas production and the resulting amount of liquid digestate brought back to the field. The humus balances indicated that the humus-efficacy of the liquid digestate was equal to slightly higher

  8. Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: A Pb isotopic approach

    International Nuclear Information System (INIS)

    Li, Fei-Li; Liu, Cong-Qiang; Yang, Yuan-Gen; Bi, Xiang-Yang; Liu, Tao-Ze; Zhao, Zhi-Qi

    2012-01-01

    Soils, vegetables and rainwaters from three vegetable production bases in the Guiyang area, southwest China, were analyzed for Pb concentrations and isotope compositions to trace its sources in the vegetables and soils. Lead isotopic compositions were not distinguishable between yellow soils and calcareous soils, but distinguishable among sampling sites. The highest 207 Pb/ 206 Pb and 208 Pb/ 206 Pb ratios were found for rainwaters (0.8547–0.8593 and 2.098–2.109, respectively), and the lowest for soils (0.7173–0.8246 and 1.766–2.048, respectively). The 207 Pb/ 206 Pb and 208 Pb/ 206 Pb ratios increased in vegetables in the order of roots 207 Pb/ 206 Pb ratios versus the 208 Pb/ 206 Pb ratios from all samples formed a straight line and supported a binary end-member mixing model for Pb in vegetables. Using deep soils and rainwaters as geogenic and anthropogenic end members in the mixing model, it was estimated that atmospheric Pb contributed 30–77% to total Pb for vegetable roots, 43–71% for stems, 72–85% for leaves, and 90% for capsicum fruits, whereas 10–70% of Pb in all vegetable parts was derived from soils. This research supports that heavy metal contamination in vegetables can result mainly from atmospheric deposition, and Pb isotope technique is useful for tracing the sources of Pb contamination in vegetables.

  9. Availability of rock phosphate with low P content in some Albanian soil: use of 32PO4

    International Nuclear Information System (INIS)

    Fardeau, J.C.; Migadel, F.; Gjermani, A.; Malja, S.

    1983-10-01

    The availability of a calcareous low P content rock phosphate (4,3% P) was measured. This Albanian ore was used, in pot experiments, on various local soils whose the pH is situated between 4,9 to 7,5. This phosphate was labelled with 32 P and 45 Ca in a reactor. The residual effect of this fertilizer was deduced from the results of isotopic dilution kinetic of phosphate ions realized in soil-solution systemes. The main results can be summarized as follow: 1. When the soil-water pH was higher than 6,1, the utilization coefficient of phosphorus was minus than 1%, even with 5,5 mounths. 2. The ratio of P and Ca derived from fertilizer and taken up by the crop is most generally different of those measured in the fertilizer. It depends of the soil constitution. 3. The analysis of isotopic dilution kinetic of phosphate ions shows that in the major part of these soils, whose the fixing capacity is very high, the rock phosphate and also superphosphate at 230 kg P 2 O 5 .ha -1 rate does not increase available soil phosphorus; it is only with rates over 800 kg P 2 O 5 .ha -1 that this objective can be reached. These results explain again that the fixing capacity of soil for phosphorus is a characteristic more useful for fertilization technique than the available phosphorus quantity [fr

  10. Natural and anthropogenic lead in soils and vegetables around Guiyang city, southwest China: A Pb isotopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei-Li [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Liu, Cong-Qiang, E-mail: liucongqiang@vip.skleg.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Yang, Yuan-Gen [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China); Bi, Xiang-Yang [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Liu, Tao-Ze; Zhao, Zhi-Qi [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2012-08-01

    Soils, vegetables and rainwaters from three vegetable production bases in the Guiyang area, southwest China, were analyzed for Pb concentrations and isotope compositions to trace its sources in the vegetables and soils. Lead isotopic compositions were not distinguishable between yellow soils and calcareous soils, but distinguishable among sampling sites. The highest {sup 207}Pb/{sup 206}Pb and {sup 208}Pb/{sup 206}Pb ratios were found for rainwaters (0.8547-0.8593 and 2.098-2.109, respectively), and the lowest for soils (0.7173-0.8246 and 1.766-2.048, respectively). The {sup 207}Pb/{sup 206}Pb and {sup 208}Pb/{sup 206}Pb ratios increased in vegetables in the order of roots < stems < leaves < fruits. Plots of the {sup 207}Pb/{sup 206}Pb ratios versus the {sup 208}Pb/{sup 206}Pb ratios from all samples formed a straight line and supported a binary end-member mixing model for Pb in vegetables. Using deep soils and rainwaters as geogenic and anthropogenic end members in the mixing model, it was estimated that atmospheric Pb contributed 30-77% to total Pb for vegetable roots, 43-71% for stems, 72-85% for leaves, and 90% for capsicum fruits, whereas 10-70% of Pb in all vegetable parts was derived from soils. This research supports that heavy metal contamination in vegetables can result mainly from atmospheric deposition, and Pb isotope technique is useful for tracing the sources of Pb contamination in vegetables.

  11. In Vitro Assessment of Cadmium Bioavailability in Chinese Cabbage Grown on Different Soils and Its Toxic Effects on Human Health

    Directory of Open Access Journals (Sweden)

    Rukhsanda Aziz

    2015-01-01

    Full Text Available The minimum concentration of cadmium (Cd, by Chinese cabbage grown on Cd contaminated soils that can initiate toxicity in human liver cells using in vitro digestion coupled with Caco-2/HL-7702 cell models was studied. Cadmium bioaccessibility in the gastric phase for yellow soil (YS cabbage (40.84% and calcareous soil (CS cabbage (21.54% was significantly higher than small intestinal phase with the corresponding values of 21.2% and 11.11%, respectively. Cadmium bioavailability was higher in YS cabbage (5.27%–14.66% than in CS cabbage (1.12%–9.64%. Cadmium concentrations (>0.74 μg transported from YS and CS cabbage were able to induce oxidative (MDA, H2O2 stress by inhibiting antioxidant (SOD, GPx enzyme activities in human liver cells (HL-7702. Additionally the study revealed that the ingestion of Cd contaminated Chinese cabbage grown in acidic soil (yellow soil weakened the antioxidant defense system under all levels of contamination (2, 6, and 9 mg·kg−1 which ultimately escalated the oxidative stress in liver cells; however, in case of CS cabbage, a marked oxidative stress was observed only at 9 mg kg−1 Cd level of soil. Therefore, it is necessary to monitor Cd concentrations in leafy vegetables grown on acidic soils to minimize human health risk.

  12. In Vitro Assessment of Cadmium Bioavailability in Chinese Cabbage Grown on Different Soils and Its Toxic Effects on Human Health

    Science.gov (United States)

    Rafiq, Muhammad Tariq; He, Zhenli; Sun, Kewang; Xiaoe, Yang

    2015-01-01

    The minimum concentration of cadmium (Cd), by Chinese cabbage grown on Cd contaminated soils that can initiate toxicity in human liver cells using in vitro digestion coupled with Caco-2/HL-7702 cell models was studied. Cadmium bioaccessibility in the gastric phase for yellow soil (YS) cabbage (40.84%) and calcareous soil (CS) cabbage (21.54%) was significantly higher than small intestinal phase with the corresponding values of 21.2% and 11.11%, respectively. Cadmium bioavailability was higher in YS cabbage (5.27%–14.66%) than in CS cabbage (1.12%–9.64%). Cadmium concentrations (>0.74 μg) transported from YS and CS cabbage were able to induce oxidative (MDA, H2O2) stress by inhibiting antioxidant (SOD, GPx) enzyme activities in human liver cells (HL-7702). Additionally the study revealed that the ingestion of Cd contaminated Chinese cabbage grown in acidic soil (yellow soil) weakened the antioxidant defense system under all levels of contamination (2, 6, and 9 mg·kg−1) which ultimately escalated the oxidative stress in liver cells; however, in case of CS cabbage, a marked oxidative stress was observed only at 9 mg kg−1 Cd level of soil. Therefore, it is necessary to monitor Cd concentrations in leafy vegetables grown on acidic soils to minimize human health risk. PMID:26167479

  13. Calcareous nannofossil assemblages across the Pliensbachian/Toarcian boundary at the Peniche section (Ponta do Trovão, Lusitanian Basin)

    OpenAIRE

    Mailliot, S.; Elmi, S.; Mattioli, E.; Pittet, B.

    2007-01-01

    The Peniche section has revealed moderately-to-well preserved calcareous nannofossil assemblages across the Pliensbachian/Toarcian boundary. This good record has allowed the proposition of a refined biostratigraphic scheme. The stage boundary, as defined by ammonites, is comprised within the NJ5b C. impontus (NW Europe; BOWN & COOPER, 1998) or the NJT5b L. sigillatus (Mediterranean Tethys; MATTIOLI & ERBA, 1999) nannofossil subzones. Since in the Lusitanian Basin a mixing of N- and S-Te...

  14. Derivation of ecological criteria for copper in land-applied biosolids and biosolid-amended agricultural soils.

    Science.gov (United States)

    Lu, Tao; Li, Jumei; Wang, Xiaoqing; Ma, Yibing; Smolders, Erik; Zhu, Nanwen

    2016-12-01

    The difference in availability between soil metals added via biosolids and soluble salts was not taken into account in deriving the current land-applied biosolids standards. In the present study, a biosolids availability factor (BAF) approach was adopted to investigate the ecological thresholds for copper (Cu) in land-applied biosolids and biosolid-amended agricultural soils. First, the soil property-specific values of HC5 add (the added hazardous concentration for 5% of species) for Cu 2+ salt amended were collected with due attention to data for organisms and soils relevant to China. Second, a BAF representing the difference in availability between soil Cu added via biosolids and soluble salts was estimated based on long-term biosolid-amended soils, including soils from China. Third, biosolids Cu HC5 input values (the input hazardous concentration for 5% of species of Cu from biosolids to soil) as a function of soil properties were derived using the BAF approach. The average potential availability of Cu in agricultural soils amended with biosolids accounted for 53% of that for the same soils spiked with same amount of soluble Cu salts and with a similar aging time. The cation exchange capacity was the main factor affecting the biosolids Cu HC5 input values, while soil pH and organic carbon only explained 24.2 and 1.5% of the variation, respectively. The biosolids Cu HC5 input values can be accurately predicted by regression models developed based on 2-3 soil properties with coefficients of determination (R 2 ) of 0.889 and 0.945. Compared with model predicted biosolids Cu HC5 input values, current standards (GB4284-84) are most likely to be less protective in acidic and neutral soil, but conservative in alkaline non-calcareous soil. Recommendations on ecological criteria for Cu in land-applied biosolids and biosolid-amended agriculture soils may be helpful to fill the gaps existing between science and regulations, and can be useful for Cu risk assessments in

  15. Enhancing the Durability of Calcareous Stone Monuments of Ancient Egypt Using CaCO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aldoasri

    2017-08-01

    Full Text Available The unwanted changes in valuable historic calcareous stone monuments due to exposure to many physical and chemical effects may lead to its deterioration. The growing interest in the field of conservation of stone monuments encourages the development of consolidation and water-repellent materials. The aim of this study is to evaluate the effectiveness of CaCO3 nanoparticles as a consolidation and protection material for calcareous stone monuments, when those nanoparticles used are dispersed in acrylic copolymer; polyethylmethacrylate (EMA/methylacrylate (MA (70/30, respectively. Samples were subjected to artificial aging by relative humidity/temperature to show the optimum conditions of durability and the effectiveness of the nano-mixture in improving the physical and mechanical properties of the stone material. The synthesis process of CaCO3 nanoparticles/polymer nanocomposite has been prepared by in situ emulsion polymerization system. The prepared nanocomposites with 0.15 g CaCO3 nanoparticles showed obvious transparency features and represent nanocomposites coating technology with hydrophobic, consolidating and good protection properties. Some tests were performed in order to estimate the superficial consolidating and protective effect of the treatment. The obtained nanocomposites have been characterized by TEM, while the surface morphology before and after treatment and homogeneous distribution of used consolidation materials on stone surface were examined by SEM. Improvement of stone mechanical properties was evaluated by compressive strength tests. Change in water-interaction properties was evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Taken together, the results indicate that CaCO3/polymer nanocomposite is a completely compatible, efficient material for the consolidation of artistic and architectural limestone monuments capable of enhancing the

  16. Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea

    KAUST Repository

    Roik, Anna Krystyna; Roder, Cornelia; Rö thig, Till; Voolstra, Christian R.

    2015-01-01

    The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.

  17. Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea

    KAUST Repository

    Roik, Anna Krystyna

    2015-12-14

    The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.

  18. Assessment of using a double rotor neutron monochromator system in studying the dynamics of solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Gwaily, S.E.; Hamouda, I. (Atomic Energy Establishment, Inshas (Egypt). Reactor and Neutron Physics Dept.)

    1981-01-01

    Two soil samples were subjected to comprehensive study of the self-diffusion coefficient of Zn in soils previously treated with ZnSO/sub 4/, EDTA and Zn-EDTA. The effect of chelating compounds on the ratio between solid phase fraction of the labile Zn and its concentration in the soil solution (capacity factor) was also studied. The data revealed the following items of more interest: (1) The use of chelating agents, i.e. EDTA and Zn-EDTA, increased the amount of Zn in soil solution hence, the capacity factors was different according to the type of soil, i.e. calcareous and alluviel. (2) The increasing of Zn-concentration in the soil solution, due to the use of chelating agents, increased the self-diffusion coefficent of Zn in the investigated soils. The self-diffusion coefficient for Zn in the alluvial soils was more than that of calcareous one. (3) The practical implication of the present study is that organic ameniments and chelated Zn fertilizers are expected to be more effective than soluble Zn salts in alleviating its deficiency in such soils.

  19. Oxygen and carbon isotopes of Recent calcareous nannofossils as paleoceanographic indicators

    International Nuclear Information System (INIS)

    Goodney, D.E.; Margolis, S.V.; Dudley, W.C.; Kroopnick, P.; Williams, D.F.

    1980-01-01

    Delta 18 O and delta 13 C values for several species of planktonic foraminifera and calcareous nannofossils from Recent deep-sea sediments have been studied in order to evaluate their paleoceanographic and paleotemperature potential. Nannofossils from Indian Ocean core-tops reflect isotopic temperatures as warm as, or warmer than, the temperatures reported for shallow-dwelling planktonic forminifera from the same samples. In general, deep-sea sediment samples from the world's major oceans indicate that nannofossil delta 18 O values are from 0.5 to 1 per thousand heavier than shallow-dwelling planktonic foraminifera. Although nannofossil delta 18 O values depart from thermodynamic equilibrium with oceanic surface water temperatures, the delta 18 O temperature trend parallels that of surface-dwelling planktonic foraminifera. Nannofossil delta 13 C values also depart equilibrium with surface water delta 13 C-ΣCO 2 values. A comparison of nannofossil delta 13 C data with that from planktonic foraminifera suggests that the rate of primary productivity in different water masses may be influencing the delta 13 C carbonate-secreting phytoplankton and zooplankton. (Auth.)

  20. Evidence of compositional and ultrastructural shifts during the development of calcareous tubes in the biofouling tubeworm, Hydroides elegans.

    Science.gov (United States)

    Chan, Vera Bin San; Vinn, Olev; Li, Chaoyi; Lu, Xingwen; Kudryavtsev, Anatoliy B; Schopf, J William; Shih, Kaimin; Zhang, Tong; Thiyagarajan, Vengatesen

    2015-03-01

    The serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H. elegans was examined in the three early calcifying juvenile stages and in the adult using XRD, FTIR, ICP-OES, SEM and Raman spectroscopy. Ontogenetic shifts in carbonate mineralogy were observed, for example, juvenile tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas adult tubes were bimineralic with considerably more calcite. The mineral composition gradually shifted during the tube development as shown by a decrease in Sr/Ca and an increase of Mg/Ca ratios with the tubeworm's age. The inner tube layer contained calcite, whereas the outer layer contained aragonite. Similarly, the tube complexity in terms of ultrastructure was associated with development. The sequential appearance of unoriented ultrastructures followed by oriented ultrastructures may reflect the evolutionary history of serpulid tube biominerals. As aragonitic structures are more susceptible to dissolution under ocean acidification (OA) conditions but are more difficult to be removed by anti-fouling treatments, the early developmental stages of the tubeworms may be vulnerable to OA but act as the important target for biofouling control. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Urban waste compost: Effects on physical, chemical, and biochemical soil properties

    Energy Technology Data Exchange (ETDEWEB)

    Giusquiani, P.L.; Gigliotti, G.; Businelli, D. [Istituto di Chimica Agraria dell`Universita, Perugia (Italy)] [and others

    1995-01-01

    A long-term field experiment was conducted to determine the effect of the additions of urban waste compost on the physical and chemical properties and enzymatic activities in a calcareous soil (Fluventic Xerochrept). Total Porosity (pores >50 pm measured on thin soil sections from undisturbed samples by image analysis) was greater in the plots treated with compost than the control plots due to a larger amount of elongated pores. In the amended plots total and humified organic C, Pb, Cu, and Zn showed a significant increase compared with nonamended plots. Enzymatic activities (L-asparaginase, arylsulphatase, dehydrogenase, phosphodiesterase, and alkaline phosphomonoesterase) were significantly enhanced by the compost addition thus indicating no inhibiting influence of the heavy metals present. The increased levels of the arylsulphatase, dehydrogenase, phosphodiesterase, and phosphomonoesterase activities were significantly correlated with total porosity: the first three with pores ranging from 50 to 1000 {mu}m, mainly with pores 50 to 200 {mu}m in size and phosphomonoesterase only with pores whose size was <500 {mu}m. L-asparaginase activity was not correlated with porosity. Only arylsulphatase, dehydrogenase, and phosphodiesterase were negatively correlated with bulk density. 44 refs., 4 figs., 6 tabs.

  2. FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil-plant system as a function of time and dosage.

    OpenAIRE

    Schenkeveld, W.D.C.; Temminghoff, E.J.M.; Reichwein, A.M.; Riemsdijk, van, W.H.

    2010-01-01

    FeEDDHA products are widely used to prevent and remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of FeEDDHA components: racemic o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The FeEDDHA components differ in physical and chemical properties, and as a consequence also in effectiveness as Fe fertilizer. In order to efficiently match dose, frequency and moment of FeEDDHA application with the Fe requirements of plants, it is important to un...

  3. Al 3+ - Ca2+ INTERACTION IN PLANTS GROWING IN ACID SOILS: AL-PHYTOTOXICITY RESPONSE TO CALCAREOUS AMENDMENTS

    OpenAIRE

    Meriño-Gergichevich, C; Alberdi, M; Ivanov, A.G; Reyes-Diaz, M

    2010-01-01

    High aluminum (Al) concentrations as Al3+ represent an important growth and yield limiting factor for crops in acid soils (pH ≤5.5). The most recognized effect of Al-toxicity in plants is observed in roots. However, damages in the upper parts (including stem, leaves and fruits) may also be present. In addition, Al-toxicity triggers an increase in reactive oxygen species (ROS), causing oxidative stress that can damage the roots and chloroplasts, decreasing normal functioning of photo synthetic...

  4. Influence of NaCl-Induced Salinity and Cd Toxicity on Respiration Activity and Cd Availability to Barley Plants in Farmyard Manure-Amended Soil

    Directory of Open Access Journals (Sweden)

    Adel R. A. Usman

    2015-01-01

    Full Text Available The objective of this study was to evaluate the Cd availability and toxicity as affected by NaCl-induced salinity and farmyard manure addition. The Cd availability and toxicity were investigated in greenhouse pot and incubation experiments were conducted on a calcareous loamy sand soil contaminated with Cd (0.5, 1.5, 3, 6, 12, and 24 mg kg−1 of soil and amended with two rates of 0.0 and 30 g farmyard manure (FYM kg−1. Barley seeds (Hordeum vulgare L. were sown in pots and irrigated with water containing different levels of salinity (0, 30, 60, and 120 mM NaCl. The results revealed that the DTPA-extractable Cd and its content in barley plant shoots tended to increase in line as Cd was applied and salt levels increased. Elevated decreases in the soil basal respiration with increased Cd applied and NaCl-induced salinity were found. However, applying FYM significantly reduced Cd availability and increased plant growth and soil respiration activity. The results clearly showed that adding farmyard manure as soil organic amendment decreased the availability of Cd to barley plants and mitigated the toxicity of both Cd and salinity to soil microbial activity.

  5. Study on rhizobium interaction with osmoprotectant rhizobacteria for improving mung bean yield

    Science.gov (United States)

    Maryani, Y.; Sudadi; Dewi, W. S.; Yunus, A.

    2018-03-01

    Gunungkidul has calcareous soil with limitations including calcareous stone, mostly hilly terrain, and shallow cultivated layer. Furthermore, nowadays we face the disadvantages climates such as long dry seasons, a short rainy season and high temperatures caused by climate change. Climate change leads to irregular rainwater availability for microbes and crops. Research in this field is currently needed as climate change affected directly on crop production, while we need to find the strategy to keep high productivity of the plant. This research aimed to determine the ability of osmoprotectant rhizobacteria and rhizobium to support mung bean yield. Osmoprotectant rhizobacteria were isolated and screened from the calcareous soil in Gunungkidul with disadvantageous climates such as a long dry season, a short rainy season and high temperature. This research was arranged in Completely Randomized Design. The result showed that osmoprotectant rhizobacteria isolate of strain Al24-k and Ver5-k can produce 9.6306 mg g‑1 cell of glycine betaine in a soil density 1.7667 x 107 CFU g‑1 and 11.4870 mg g‑1 cell of glycine betaine in a soil density 1.9667 x 107 CFU g‑1. Inoculation of isolates osmoprotectant rhizobacteria can support mung bean yield. Osmoprotectant rhizobacteria isolate did not effect rhizobium in mung bean rhizosphere.

  6. The Quaternary Environmental Change in the Northeast of Quintana Roo, Mexico:The Paleopedological Proxies

    Science.gov (United States)

    Cabadas Báez, H. V.; Sedov, S.; Solleiro Rebolledo, E.

    2010-03-01

    The Yucatán Peninsula, located in the southeast part of Mexico, is characterized to be an extended and low altitude platform constituted by calcareous rocks. These rocks are mainly limestones formed since Cretaceous under a marine shelf environment. In the northeast coast, the youngest sediments are found, as products of Quaternary sea level changes. We studied various profiles in quarries, following north-south transect in the Yucatan coast, near Cancún. In such profiles a sequence consisting of different kind of calcareous sediments and a soil in the surface were analyzed. The base of the sequence is constituted by a petrocalcic horizon (calcrete) that was formed during the last interglacial, 125,000 yrs. ago. Under the calcrete, a transgressive sequence appears with calcareous sediments of lagoon and reef facies. The uppermost part consists of dune-like sediments with crossed stratification overlied by another petrocalcic horizon, maybe formed during the Pleistocene-Holocene transition. Soils of the Yucatan Peninsula are very thin, rich in organic matter, neutral and well structured, and their image do not correspond to that found in tropical soils (deep, strongly weathered, leached). They are directly associated with the dune sediment dissolution because are infilling the "space" generated by rock dissolution. Calcrete is always in the uppermost part, but is broken and crossed by soil. This sequence reveals some aspects of the environmental dynamic during Late Pleistocene-Holocene. First, a dryer environment is assumed due to the presence of the calcrete in the base. During the glacial period, a transgressive environment prevailed and marine calcareous sedimentation started. During Last Glacial Maximum a regression occurred, the climate was drier and the formation of dune sediments and another calcrete occurred. In the Holocene climate changed shifting toward more humid conditions that produced the modern soil cover, under tropical conditions.

  7. Assessing the Effect of Cement Dust Emission on the Physicochemical Nature of Soil around Messebo area, Tigray, North Ethopia

    Directory of Open Access Journals (Sweden)

    SAMUEL ESTIFANOS

    2012-12-01

    Full Text Available Twenty six soil samples were collected around the vicinity of Messebo cement factory in Mekelle, Ethiopia from 0-5 and 5-15 cm depths and determined their physicochemical properties and heavy metals contents. The results indicated that the soils are calcareous having sandy loam to loamy sand texture. The top and lower parts of the soil are found to be alkaline with mean pH 8.97 and 8.93; EC 223.06 and 88.22 µS/cm respectively. The cation exchange capacity of the top soil (0-5cm range from 9 to 27 mmolc kg-1, while the exchangeable Ca and Mg range from 6.4 to 16 and 2.2 to 5.0 mmolc kg- 1 respectively. The average Ca concentration values for the upper and lower soil depths are 418ppm and 404.36ppm respectively. Water extractable analysis results verify the degree of leaching of the metals from anthropogenic source. Geoaccumulation index confirms that the two soil depths are similarly categorized as very heavily contaminated with (As, Cr, Co and Ni and moderately to heavily contaminated with (Cu, Pb and Mo whereas the top part is moderately contaminated with Zn. Based on Enrichment Factor (EF, both soil depths have moderate enrichment with Pb ( 2 EF >20, very high enrichment with Cr (2040. The severe contamination is evident to the east western direction towards which the wind blow predominantly.

  8. Availability of rock phosphate with low P content in some Albanian soil: use of /sup 32/PO/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J C; Migadel, F; Gjermani, A; Malja, S

    1983-10-01

    The availability of a calcareous low P content rock phosphate (4,3% P) was measured. This Albanian ore was used, in pot experiments, on various local soils whose pH is situated between 4,9 to 7,5. This phosphate was labelled with /sup 32/P and /sup 45/Ca in a reactor. The residual effect of this fertilizer was deduced from the results of isotopic dilution kinetics of phosphate ions realized in soil-solution systems. The main results can be summarized as follows: 1. When the soil-water pH was higher than 6,1, the utilization coefficient of phosphorus was minus than 1%, even with 5,5 months. 2. The ratio of P and Ca derived from fertilizer and taken up by the crop is most generally different of those measured in the fertilizer. It depends on the soil constitution. 3. The analysis of isotopic dilution kinetics of phosphate ions shows that in the major part of these soils, whose fixing capacity is very high, the rock phosphate and also superphosphate at 230 kg P/sub 2/O/sub 5/.ha/sup -1/ rate does not increase available soil phosphorus; it is only with rates over 800 kg P/sub 2/O/sub 5/.ha/sup -1/ that this objective can be reached. These results explain again that the fixing capacity of soil for phosphorus is a characteristic more useful for fertilization technique than the available phosphorus quantity.

  9. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    Science.gov (United States)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We

  10. Extreme diagenesis displayed by Pliocene-Pleistocene Calcareous Nannofossils in IODP Hole 1396A, adjacent to Montserrat Island in the Lesser Antilles

    Science.gov (United States)

    Aljahdali, M. H.; Behzad, A.; Missimer, T. M.; Wise, S. W.; Scientists, E.

    2013-12-01

    Adjacent to Montserrat Island in the Lesser Antilles of the Caribbean Sea, Integrated Ocean Drilling Program (IODP) Site 1396 recovered lower Pliocene to Pleistocene calcareous nannofossil assemblages (CN11 to CN15) that range between common to abundant and display a variety of preservations. High-resolution Scanning Electron Microscopy (SEM) observation of calcareous nannofossil assemblages in selected samples from Hole 1396A, shows severe diagenesis (overgrowth and/or dissolution) even near the top of the sequence. The nannofossil assemblages in this relatively shallow basin (e.g., 800 m) reveal abnormal diagenesis for such young specimens that are quite similar to the heavy overgrowths and dissolution generally seen only in older deposits (e.g., Cretaceous). Our hypothesis is that volcanic activity in the region probably induced this extreme diagenesis. A more detailed examination of these samples should provide a better understanding of the progression of carbonate diagenesis in this basin. The nannofossil biostratigraphy and magnetostratigraphy at Site 1396 also suggest lower sedimentation rates in the Pleistocene than in the Pliocene. A comparison site (ODP Leg 165 Site 1000) in the Caribbean Sea also shows a similar sedimentation-rate pattern. This we interpret as a regional event caused by the closure of the Central American Seaway.

  11. Firing transformations of an argentinean calcareous commercial clay

    Directory of Open Access Journals (Sweden)

    M. F. Serra

    2013-06-01

    Full Text Available Mineralogical transformations caused by firing are usually studied by XRD methods only semi-quantitatively. In this work the original mineral disappearance and the neo-mineralization were evaluated quantitatively. Furthermore an indirect non crystalline phase quantification was performed under 1100 ºC was also carried out using the quartz content as internal standard. This study specifically discusses the behavior of an Argentinean white calcareous earthenware commercial when subjected to traditional ceramic firing, besides the technological importance of this particular material, it acts as a model for other clay based ceramic materials. Materials were subjected to thermal treatments between 700 ºC and 1100 ºC. A preliminary sintering characterization was carried out by contraction and porosity evolution. Simultaneous thermogravimetric and differential thermal analysis (TG-DTA was carried out to elucidate the actual temperature at which the chemical changes occur. Finally, a quantitative analysis based on the Rietveld refinement of the X-ray diffraction patterns was performed to characterize the crystalline phases present in both the clay and in the materials obtained after different thermal treatments. The actual chemical reactions are proposed. The phases identified after firing at traditional working temperature (1040 ºC are quartz, plagioclase, and the Spinel type alumino-silicate, accompanied by the non-diffracting un-reacted metakaolin and some amount of amorphous glassy phase. At intermediate temperatures (900 ºC the presence of gehlenite was also detected. The carbonates (calcite and dolomite presence and decomposition were also evaluated and demonstrated to determine the sintering characteristics of this material.

  12. The ecological effects of different loading rates of metalaxyl on microbial biomass in unplanted and planted soils under field conditions

    Directory of Open Access Journals (Sweden)

    M. Mansourzadeh

    2016-05-01

    Full Text Available Fungicides are most widely used pesticides in Iran and the world. Application of fungicides may affect the populations and activity of soil microorganisms, particularly fungi, with a consequence for soil fertility and crop growth. In the current study, the effects of different levels of metalaxyl on soil microbial biomass carbon (C and nitrogen (N, microbial biomass C/N ratio and metabolic quotient under field conditions were assessed. Two levels of metalaxyl (30 and 60 kg.ha-1 were applied in planted soils with corn and unplanted calcareous soils, using a split-plots experiment in a completely randomized design with three replications. The C and N contents in soil microbial biomass as well as metabolic quotient were measured at 30 and 90 days after the onset of the experiment. Results showed that in cultivated soils metalaxyl application at 30 kg.ha-1 increased (15-80% significantly (p≤0.01 the amounts of microbial biomass C and N at both intervals (except microbial biomass C at 90 days compared to the control soil (0 kg.ha-1, while in uncultivated soils both microbial biomass C and N reduced by almost 1-34%. Microbial biomass C/N ratios in unplanted soils decreased (15 and 53% with increasing loading rates of metalaxyl, without a clear effect in cultivated soils. On the other hand, metabolic quotient values reduced (48% at 30 and 60 kg.ha-1 metalaxyl in corn-cultivated soils when compared to untreated soils while in uncultivated soils metalaxyl rate at 30 kg.a-1 had the greatest values at 30 days, and increased with increasing the levels of metalaxyl at 90 days. In summary, application of metalaxyl can either reduce or increase soil biological indices, and the direction and changes are depended upon the application rate of metalaxyl, time elapsed since metalaxyl application and the presence or absence of plant.

  13. Weathering of a Roman Mosaic-A Biological and Quantitative Study on In Vitro Colonization of Calcareous Tesserae by Phototrophic Microorganisms.

    Directory of Open Access Journals (Sweden)

    Addolorata Marasco

    Full Text Available The potential impact of cyanobacteria and microalgae on the weathering of calcareous tesserae from a Roman mosaic of the II Century CE has been followed through in vitro experiments. Laboratory tests were carried out by inoculating mosaic tiles with single strains of Cyanobacteria or Chlorophyta to evaluate the roles of pioneer phototrophic microrganism on the resulting architecture of biofilms. The interaction between tesserae and strains was assessed at the whole substratum and micrometer scales, by image analysis and Confocal Laser Scanning (CLS microscopy, respectively. The biofilm surface coverage on each tessera varied from 19% (Fischerella ambigua to 97% (Microcoleus autumnalis. Cyanobacteria showed a better growth on calcareous tesserae, whereas the only green alga attaining a superficial coverage higher than 50% was Coelastrella rubescens. CLS microscopy evidenced two different types of spatial arrangement of the phototrophic organisms on the tesserae, that were defined as compact or porous, respectively. In the first one was measured a reduced number of empty spaces between cells or filaments, whereas in the second type, a reticulate texture allowed the presence of numerous empty volumes. The colonization processes observed are an intrinsic characteristic of each strain. We have proposed a colonization index IC as a sensible tool to describe, in a quantitative way, the pioneering attitude of each photosynthetic microorganism to colonize lithic substrates under laboratory conditions.

  14. Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.

    Science.gov (United States)

    Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.

    2017-12-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.

  15. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field.

    Science.gov (United States)

    Liu, Tao; Liang, Yongchao; Chu, Guixin

    2017-01-01

    Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6-21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (Puse efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition.

  16. Impact of equilibrating time on phosphate adsorption and desorption behaviour in some selected saline sodic soils

    International Nuclear Information System (INIS)

    Khan, Q.U.; HAN; Khan, M.J.; Rehman, S.; Khan, S.U.

    2012-01-01

    To investigate the effect of equilibrating time on phosphate adsorption and desorption on saline sodic soils a study was carried using three soil series from Dera Ismail Khan (Pakistan) district, namely Zindani, Tikken and Gishkori. These soils are alkaline calcareous in nature with greater Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) values which classify them as saline sodic soils. The equilibrating time for the adsorption study was 8, 12, 16, 20, 24, 48 and 72 hours for two levels (5 mg L/sup -1/ and 100 mg L/sup -1/). For desorption study 1, 2, 3, 4 and 5 hours after 24 hours for low and high dilution. Adsorption and desorption isotherms of phosphate were developed for these soils. The Gishkori soil showed the greatest rate of adsorption as compared with the other two soils. Applying Langmuir and Freundlich models to P adsorption data revealed that Freundlich equation (R2 = 0.99) showed a better fit over the Langmuir equation (R2 =0. 97) in the three soils. The desorption curves varied similarly from each other. The amount of P adsorbed was different from that released back to the soil solution. The amount of adsorption increased with the time. Statistical analysis showed that the rate of adsorption for both 5 and 100 mg P L/sup -1/ was significantly different at P<0.05 at 16 and 20 hours and at P<0.01 beyond 20 hours. However, the rate of desorption was not significantly influenced by the equilibrating time as compared with the theoretical values of the three series. As the P - desorption curve did not coincide the P - adsorption curve, hence the availability of P to plant was adversely affected on its application. (author)

  17. Stable isotopic information on calcareous pelitic rocks in the Tizapa volcanogenic massive sulfide deposit area, the United Mexican States

    International Nuclear Information System (INIS)

    Morozumi, Haruhisa; Metsugi, Hideya; Kita, Yoshiyuki; Suzuki, Toru

    1999-01-01

    Tizapa volcanogenic massive sulfide (VMS) deposit is hosted in greenschist facies metamorphic rocks; footwall is green schist of felsic to mafic metavolcanic rocks and hanging wall is graphite schist of metasedimentary pelitic rock. Pb-Pb dating of ore samples indicates 103.4Ma to 156.3Ma for the age of mineralization (JICA/MMAJ, 1991). Hanging wall graphite schist is partially calcareous and overlaid by upper formations consisting of calcareous shake and limestone. δ 13 C(per mille) PDB values were measured for carbonate and organic material in the graphite schist, and δ 18 O(per mille) SMOW values were also measured for same carbonate. Although carbonate and organic material were affected by the metamorphism after mineralization, δ 18 O of carbonate decreases from +22.1 per mille to +17.9 per mille, δ 13 C of carbonate decreases from +0.8 per mille to -4.3 per mille and δ 13 C of organic material decreases from -10.0 per mille to -15.6 per mille with the decrease of vertical distances to ore deposit from 54.20 m to 10.28 m. This phenomenon might indicate the change of sedimentary environment of the reduced condition where the sulfides were precipitated, with the change of temperature. If this assumption is adequate, the method applied in this study is useful for semi-quantitative evaluation to distinguish the favorable condition for the precipitation of sulfides of VMS. (author)

  18. Approach to study of Cu, Ni and Zn content in soil for ecotoxicological risk assessment

    Science.gov (United States)

    Boluda, R.; Marimon, L.; Gil, C.; Roca-Pérez, L.

    2009-04-01

    Current Spanish legislation on contaminated soils defines contaminated soil as "that whose characteristics have been negatively altered by the presence of dangerous human-derived chemical components whose concentration is such that it is an unacceptable risk for human health or the environment and has been expressly declared as such by legal ruling". Regarding heavy metals, the Spanish Autonomous Communities will promote measures to obtain generic reference values to declare a soil to be contaminated. In the Valencian Community, these reference values still do not exist. So if the protection of ecosystems is considered a priority to declare a soil to be contaminated and to assess the level of risk, emergency toxicity tests and seed growth in land plants are resorted to, or tests with aquatic organisms or other experiments with leached soils obtained by standard procedures are carried out. We studied the toxic effects of calcareous contaminated soils by Cu, Ni and Zn on marine bacterium Vibrio fisheri (MicrotoxR test assay) (1) and on barley (Hordeum vulgare L.) in plate (germination index) (2) and pot (UNE 77301) (3) experiments for the purpose of establishing the Cu, Ni and Zn concentrations in soil which may lead to toxicity in order to observe, therefore, whether there is any likelihood of these pollutants coming into contact with any receptor and if adverse effects exist for living beings and the environment. The results showed significant differences among the three types of tests done but, in all cases, the concentrations needed to reflect toxicity effect on organisms were around 20 -70 (Cu and Ni) to 1000 (Zn) times higher than the levels of the control soils. The sensitivity order of the bio-assay was: (1) < (3) < (2). We would like to thank Spanish government-MICINN for partial funding and support (MICINN, project CGL2006-09776).

  19. Seismic Response to Sonic Boom-Coupled Rayleigh Waves

    Science.gov (United States)

    1990-06-28

    side slopes and moderately deep well-drained, gently sloping to moderately steep soils on terraces; Ann. Rainfall--10" to 16") Cath-Timpahute- Jarab ...slopes less than 15%, and Alluvial land) Jarab Series (cobbley loam, gravelly loam, gravelly clay loam, pan fragments, hardpan with silica laminae...weakly and strongly cemented with lime, soft, calcareous gravelly loam: al!-aline, calcareous) Jarab cobbley loam, 2 to 15% slopes, (JCD) (moderately

  20. Automatic control unit for neutron transmission measurements

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Eid, Y.; Ashry, A.; Mostafa, M.; Hamouda, I.

    1981-01-01

    Two soil samples were subjected to comprehensive study of the self-diffusion coefficient of Zn in soils previously treated with ZnSO 4 , EDTA and Zn-EDTA. The effect of chelating compounds on the ratio between solid phase fraction of the labile Zn and its concentration in the soil solution (capacity factor) was also studied. The data revealed the following items of more interest: (1) The use of chelating agents, i.e. EDTA and Zn-EDTA, increased the amount of Zn in soil solution hence, the capacity factor was decreased when these compounds were used. The effect of EDTA and Zn-EDTA on the capacity factors was different according to the type of soil, i.e. calcareous and alluvial. (2) The increasing of Zn-concentration in the soil solution, due to the use of chelating agents, increased the self-diffusion coefficient of Zn in the investigated soils. The self-diffusion coefficient for Zn in the alluvial soils was more than that of calcareous one. (3) The practical implication of the present study is that organic ameniments and chelated Zn fertilizers are expected to be more effective than soluble Zn salts in alleviating its deficiency in such soils. (author)

  1. Effect of Carbonates and Bivalent Cations and Their Relationships with Soil Organic Matter from the View Point of Aggregate Formation

    Directory of Open Access Journals (Sweden)

    Vladimír Šimanský

    2014-12-01

    Full Text Available The effect of carbonates on soil structure has not been sufficiently studied yet, despite the fact that in the literature their positive impact is mentioned mostly. Carbonates are the source of bivalent cations in soil solution and may be involved in stabilization of the aggregates, because negatively charged organic materials can be adsorbed onto the surface of clay by bivalent or polyvalent cations. We studied the effect of carbonates and bivalent cations and their relationships with soil organic matter (SOM from the point of view of aggregate formation. The studies were carried out in several fields located on loamy Calcaric Chernozem, loamy Haplic and Mollic Fluvisols. The results showed that between exchangeable Mg2+ and water-stable macro-aggregates (WSAma in size fractions >2 mm, positive correlations were found; however, the content of Mg2+ negative correlated with the contents of WSAma in 2 mm; however, between SBC as well as CEC and smaller size fractions of WSAma >1 mm and WSAmi negative correlations were observed. Statistically significant negative correlations were observed between SOM content in WSA and carbonate content, and this effect was stronger in relation to the labile carbon. There were also positive correlations between SOM in WSA and SBC and CEC found if all loamy soils were assessed together.

  2. Evaluation of the Effect of Sulfur Application and Thiobacillus on Some Soil Chemical Characteristics and Yield of Canola in Wheat-Canola Rotation System

    Directory of Open Access Journals (Sweden)

    H. Besharati

    2016-09-01

    Full Text Available Introduction: After soybean and palm oil, canola is third important oil seed in the world which belongs to the genus Brassicaceae, that its seeds contain about 40% oil. The per capita consumption of oil in Iran is about 14 kg, so approximately 900 thousand tons of oil will be required for each year. However, only less than 10% of this oil is produced in the country. In recent years, special attention has been paid to canola cultivation in order to increase oil production, so during recent years an apparent increase in canola cultivated lands is significant. In most of these canola cultivated lands, the soil is calcareous therefore; some available nutrients such as phosphorus, iron and zinc are less than the amounts required by plants. Increasing qualitative and quantitative yield of canola in calcareous soils is a priority to canola cultivation improvement. Sulfur plays an important role in oil content of oily seed crops. On the other hands sulfur oxidation in calcareous soils can improve some nutrients availability. The present study was designed to investigate the effect of sulfur on yield, oil content and nutrients uptake and also its impact on soil chemical properties with 8 treatments, in 3 replications. Materials and Methods: This study was conducted in Ekbatan research station in Hamedan province for 2 years as completely randomized block design with 8 treatments and 3 repetitions. The treatments were: T1: Control (Without sulfur and Thiobacillus, T2: Application of 150 kg sulfur per ha, T3: T2+ Thiobacillus inoculums (2% of applied sulfur, T4: Application of 300 kg sulfur per ha, T5: T4+ Thiobacillus inoculums (2% of applied sulfur, T6: Application of 600 kg sulfur per ha, T7: T6+ Thiobacillus inoculums (2% of applied sulfur T8: Fertilizing based on soil test without sulfur and Thiobacillus. Thiobacillus inoculant containing about 107 cells of Thiobacillus bacteria which belonged to neutrophile Thiobacilli were prepared at soil biology

  3. Effect of elemental sulphur and compost on pH, electrical ...

    African Journals Online (AJOL)

    Safir

    2012-01-19

    Jan 19, 2012 ... 42/34. T.N.V. 4.5. P (mg kg-1) ... and extracted with 2.0 M HCl) were measured with similar methods ... react with carbonate in calcareous soil and neutralize it. Neilson ... oxidation in soil, the sulphuric acid formed reacted with.

  4. Environmental assessment of water-salt regime of irrigated soils in the Central-Chernozem Region of Russia

    Science.gov (United States)

    Alaeva, Liliia; Negrobova, Elena; Jablonskikh, Lidiia; Rumyantseva, Irina

    2016-04-01

    A large part of Central Chernozem Region is located in the zone of risky agriculture. This led to intensive use of soil in the irrigation system. Therefore, a detailed analysis of water-salt regime of irrigated soils required for ecological state assessment of soils for irrigation. In the investigated area the fone component of the soil cover on the levelled plateau are chernozems. On the slopes formed a meadow-chernozem soils. Parent material is a cover loess-like calcareous non-saline clay. In these soils, our studies found component-quantitative composition of the aqueous extract, the chemism of salinity, which allowed us to make conclusions about the direction of the salinisation process in soils when used in the system of irrigated agriculture. By quantity water extract chernozems are non-saline, the ratio of anions and cations are chloride-sulphate magnesium-calcium salinization. In the composition of easily soluble salts dominated by Ca(HCO3)2. On sum of toxic salts in the soils are non-saline. This type and chemism of salinity deep brackish groundwater (more than 5 m) can be actively used in the system of rational irrigation. The meadow-chernozem soils formed under conditions of increased surface and soil moisture in the shallow brackish water at a depth of 3-5 m. These soils by quantity water extract are non-saline, anionic-cationic ratio - chloride-sulphate magnesium-calcium salinization. Permanent components of salt associations are Ca(HCO3)2, MgCl2, Na2SO4. On sum of toxic salts in the soil is not saline throughout the profile. The chemism of salinity and the proximity of groundwater at irregular watering can lead to the rise of groundwater level, the development of gleyed and sodium alkalinization. Thus, the introduction of intensive irrigated agriculture on chernozems and hydromorphic analogues may lead to the development in them of negative consequences. The most dynamic indicator is the water-salt regime, the systematic monitoring and control which

  5. Assessing earthworm and sewage sludge impacts on microbiological and biochemical soil quality using multivariate analysis

    Directory of Open Access Journals (Sweden)

    Hanye Jafari Vafa

    2017-06-01

    Full Text Available Introduction: Land application of organic wastes and biosolids such as municipal sewage sludge has been an important and attractive practice for improving different properties of agricultural soils with low organic matter content in semi-arid regions, due to an increase of soil organic matter level and fertility. However, application of this organic waste may directly or indirectly affect soil bio-indicators such as microbial and enzymatic activities through a change in the activity of other soil organisms such as earthworms. Earthworms are the most important soil saprophagous fauna and much of the faunal biomass is attributed to the presence of these organisms in the soil. Therefore, it is crucial to evaluate the effect of earthworm activity on soil microbial and biochemical attributes, in particularly when soils are amended with urban sewage sludge. The purpose of this study was to evaluate the earthworm effects on biochemical and microbiological properties of a calcareous soil amended with municipal sewage sludge using Factor Analysis (FA. Materials and Methods: In the present study, the experimental treatments were sewage sludge (without and with 1.5% sewage sludge as the first factor and earthworm (no earthworm, Eiseniafoetida from epigeic group, Allolobophracaliginosa from endogeic group and a mixture of the two species as the second factor. The study was setup as 2×4 full factorial experiment arranged in a completely randomized design with three replications for each treatment under greenhouse conditions over 90 days. A calcareous soil from the 0-30 cm layer with clay loam texture was obtained from a farmland field under fallow without cultivation history for ten years. The soil was air-dried and passed through a 2-mm sieve for the experiment. Sewage sludge as the soil organic amendment was collected from Wastewater Treatment Plant in Shahrekord. Sewage sludge was air-dried and grounded to pass through a 1-mm sieve for a uniform mixture

  6. Multiple assessment of the soil cover in the area of natural monuments Tra-Tau and Yurak-Tau monadnocks under conditions of technogenic loads

    Science.gov (United States)

    Gabbasova, I. M.; Suleymanov, R. R.; Khabirov, I. K.; Komissarov, M. A.; Garipov, T. T.; Sidorova, L. V.; Nazyrova, F. I.

    2014-02-01

    The soil cover of Tra-Tau and Yurak-Tau shikhans (monadnocks) has been examined. Leached and typical medium-deep chernozems are developed on colluvial fans on the footslopes and on the lower parts of slopes, whereas typical calcareous thin slightly and moderately gravelly chernozems are developed on the upper and medium parts of slopes. The leached and typical chernozems of the footslopes correspond to zonal soils of the adjacent plain areas, though they have some specific features related to the local topographic conditions. These soils are somewhat thinner than plain chernozems and are characterized by the perfect granular water-stable structure, the high content of humus of the humate type, the high content of exchangeable cations, strong acid-base buffering, and high enzymatic activity. These features predetermine their high tolerance towards technogenic impacts. The concentrations of highly hazardous substances of the first toxicity class (mercury, arsenic, lead, and cadmium) and of moderately hazardous substances of the second toxicity class (copper, zinc, and nickel), as well as the concentrations of low-hazardous elements (manganese and iron) in these soils do not exceed provisional maximum permissible concentrations of these substances in soils irrespectively of the slope aspect. No changes in the physicochemical and biological properties of the soils under the impact of technogenic loads from Sterlitamak industrial center have been identified.

  7. Raw or incubated olive-mill wastes and its biotransformed products as agricultural soil amendments-effect on sorption-desorption of triazine herbicides.

    Science.gov (United States)

    Delgado-Moreno, Laura; Almendros, Gonzalo; Peña, Aránzazu

    2007-02-07

    Raw olive-mill waste and soil amendments obtained from their traditional composting or vermicomposting were added, at rates equivalent to 200 Mg ha-1, to a calcareous silty clay loam soil in a laboratory test, in order to improve its fertility and physicochemical characteristics. In particular, the effects on the sorption-desorption processes of four triazine herbicides have been examined. We found that comparatively hydrophobic herbicides terbuthylazine and prometryn increased their retention on amended soil whereas the more polar herbicides simazine and cyanazine were less affected. Soil application of olive cake, without transformation, resulted in the highest herbicide retention. Its relatively high content in aliphatic fractions and lipids could explain the increased herbicide retention through hydrophobic bonding and herbicide diffusion favored by poorly condensed macromolecular structures. On the other hand, the condensed aromatic structure of the compost and vermicompost from olive cake could hinder diffusion processes, resulting in lower herbicide sorption. In fact, the progressive humification in soil of olive-mill solid waste led to a decrease of sorption capacity, which suggested important changes in organic matter quality and interactions during the mineralization process. When soil amended with vermicompost was incubated for different periods of time, the enhanced herbicide sorption capacity persisted for 2 months. Pesticide desorption was reduced by the addition of fresh amendments but was enhanced during the transformation process of amendments in soil. Our results indicate the potential of soil amendments based on olive-mill wastes in the controlled, selective release of triazine herbicides, which varies depending on the maturity achieved by their biological transformation.

  8. Calcareous nannofossils and sedimentary facies in the Upper Cretaceous Bozeş Formation (Southern Apuseni Mountains, Romania

    Directory of Open Access Journals (Sweden)

    Ramona Balc

    2012-02-01

    Full Text Available The lithology, sedimentology and biostratigraphy of the Bozes Formation, which crop out in the SE Metaliferi Mountains (Apuseni Mts. have been investigated in order to establish the age of the deposits and the depositional environment. The sedimentary structures and facies are interpreted as indicating a deep-water depositional environment, representing part of a submarine fan lobe. Three facies assemblages have been identified and described. Calcareous nannofossils were used to determine the age of the investigated deposits. The presence of Lucianorhabdus cayeuxii and Calculites obscurus indicates the CC17 biozone, while UC13 Zone is pointed out by the continuous occurrence of Arkhangelskiella cymbiformis and the absence of Broinsonia parca parca. Thus, the age of the studied deposits is Late Santonian -?Early Campanian.

  9. Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2

    Directory of Open Access Journals (Sweden)

    M. Dedert

    2012-05-01

    Full Text Available The Early Eocene Thermal Maximum 2 (ETM2 at ~53.7 Ma is one of multiple hyperthermal events that followed the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma. The negative carbon excursion and deep ocean carbonate dissolution which occurred during the event imply that a substantial amount (103 Gt of carbon (C was added to the ocean-atmosphere system, consequently increasing atmospheric CO2(pCO2. This makes the event relevant to the current scenario of anthropogenic CO2 additions and global change. Resulting changes in ocean stratification and pH, as well as changes in exogenic cycles which supply nutrients to the ocean, may have affected the productivity of marine phytoplankton, especially calcifying phytoplankton. Changes in productivity, in turn, may affect the rate of sequestration of excess CO2 in the deep ocean and sediments. In order to reconstruct the productivity response by calcareous nannoplankton to ETM2 in the South Atlantic (Site 1265 and North Pacific (Site 1209, we employ the coccolith Sr/Ca productivity proxy with analysis of well-preserved picked monogeneric populations by ion probe supplemented by analysis of various size fractions of nannofossil sediments by ICP-AES. The former technique of measuring Sr/Ca in selected nannofossil populations using the ion probe circumvents possible contamination with secondary calcite. Avoiding such contamination is important for an accurate interpretation of the nannoplankton productivity record, since diagenetic processes can bias the productivity signal, as we demonstrate for Sr/Ca measurements in the fine (<20 μm and other size fractions obtained from bulk sediments from Site 1265. At this site, the paleoproductivity signal as reconstructed from the Sr/Ca appears to be governed by cyclic changes, possibly orbital forcing, resulting in a 20–30% variability in Sr/Ca in dominant genera as obtained by ion probe. The ~13 to 21

  10. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  11. Effects of soil amendments on germination and emergence of downy brome (Bromus tectorum) and Hilaria jamesii

    Science.gov (United States)

    Belnap, J.; Sherrod, S.K.; Miller, M.E.

    2003-01-01

    Downy brome is an introduced Mediterranean annual grass that now dominates millions of hectares of western U.S. rangelands. The presence of this grass has eliminated many native species and accelerated wildfire cycles. The objective of this study was to identify soil additives that allowed germination but inhibited emergence of downy brome, while not affecting germination or emergence of the native perennial grass Hilaria jamesii. On the basis of data from previous studies, we focused on additives that altered the availability of soil nitrogen (N), phosphorus (P), and potassium (K). Most water-soluble treatments inhibited downy brome germination and emergence. We attribute the inhibitory effects of these treatments to excessive salinity and ion-specific effects of the additives themselves. An exception to this was oxalic acid, which showed no effect. Most water-insoluble treatments had no effect in soils with high P but did have an effect in soils with low P. Zeolite was effective regardless of P level, probably due to the high amounts of Na+ it added to the soil solution. Most treatments at higher concentrations resulted in lower downy brome emergence rates in soils currently dominated by downy brome than in uninvaded (but theoretically invadable) Hilaria soils. This difference is possibly attributable to inherent differences in labile soil P. In Stipa soils, where Stipa spp. grow, but which are generally considered to be uninvadable by downy brome, additions of high amounts of N resulted in lower emergence. This may have been an effect of NH4 + interference with uptake of K or other cations or toxicity of high N. We also saw a positive relationship between downy brome emergence and pH in Stipa soils. Hilaria development parameters were not as susceptible to the treatments, regardless of concentration, as downy brome. Our results suggest that there are additions that may be effective management tools for inhibiting downy brome in calcareous soils, including (1

  12. Research Article

    African Journals Online (AJOL)

    2016-06-05

    Jun 5, 2016 ... The treated wastewater in irrigation water volume ... municipal wastewater treatment plant, which since 1386 has started to collect and ..... of the soil, MA Thesis, Department of Water Engineering University of Kerman Islamic .... municipal solid waste compost on trace metal leaching in calcareous soils.

  13. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    Science.gov (United States)

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  14. The effect of soil pH and the fungicide 'Captan' on 134Cs transfer factors for cucumber and radish plants

    International Nuclear Information System (INIS)

    Skarlou, V.; Massas, I.; Anoussis, J.; Haidouti, C.; Arapis, G.

    1999-01-01

    The effect of soil pH and the fungicide 'Captan' on 134 Cs transfer factors (TFs) was studied in a greenhouse pot experiment with cucumber and radish plants. A soil with a low pH (4.2) was selected and its pH value has increased to 5.7, 6.5 and 7.6 by the addition of different amounts of Ca(OH) 2 . Liming of the soil and the subsequent increase in pH values resulted in a reduction of 134 Cs TFs which was not always significant. TFs were the highest in the very acid soil (pH 4.2) and were practically the same above the pH 5.7 although they were the lowest in the calcareous soil. The ratio highest / lowest TF of each crop or plant part ranged between ∼ 2.0 for radish and 4.5 for cucumber plants and it was much lower than that previously reported and attributed to pH differences. Edible to other plant material TF ratio indicates that cucumber plant accumulates considerably more of the totally absorbed 134 CS in the edible part than radish crops. When biomass production was used for excluding dilution effects, 134 CS total activity (Bq/pot) was higher for both plants when grown in the intermediate soil pH (5.7 - 6.5), due to the higher yield at these pH values. The application of the fungicide 'Captan' gave no significant differences in 134 Cs TFs for both plant species and in all studied soil pH. Refs. 4 (author)

  15. WSA index as an indicator of soil degradation due to erosion

    Science.gov (United States)

    Jaksik, Ondrej; Kodesova, Radka; Schmidtova, Zuzana; Kubis, Adam; Fer, Miroslav; Klement, Ales; Nikodem, Antonin

    2014-05-01

    Knowledge of spatial distribution of soil aggregate stability as an indicator of soil degradation vulnerability is required for many scientific and practical environmental studies. The goal of our study was to assess predisposition of different soil types to change aggregate stability due to erosion. Five agriculture arable lands with different soil types were chosen. The common feature of these sites is relatively large slope and thus soils are impacted by water erosion. The first studied area was in Brumovice. The original soil type was Haplic Chernozem on loess, which was due to erosion changed into Regosol (steep parts) and Colluvial soil (base slope and the tributary valley). A similar process has been described at other four locations Vidim, Sedlcany, Zelezna and Hostoun, where the original soil types were Haplic Luvisol on loess and Haplic Cambisol on gneiss, Haplic Cambisol on shales, and Calcaric Cambisol on marlstone, respectively. The regular and semi-regular soil sampling grids were set at all five sites. The basic soil properties were measured and stability of soil aggregates (WSA index) was evaluated. In all cases, the higher aggregates stability was observed in soils, which were not (or only slightly) affected by water erosion and at base slope and the tributary valley (eroded soil particle accumulation). The lowest aggregate stability was measured at the steepest parts. When comparing individual sites, the highest WSA index, e.g. aggregate stability, was found in Sedlcany (Cambisol). Lower WSA indexes were measured on aggregates from Hostoun (Cambisol), Zelezna (Cambisol), Vidim (Luvisol) and the lowest values were obtained in Brumovice (Chernozem). The largest WSA indexes for Cambisols in comparison to Luvisols and Chernozem could be attributed to higher organic matter content and presence of iron oxides. Slightly higher aggregate stability of Luvisols in comparison to Chernozem, could be explained by the positive influence of clay (especially in

  16. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    Science.gov (United States)

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  17. Influence of soil erosion on CO2 exchange within the CarboZALF manipulation experiment

    Science.gov (United States)

    Hoffmann, Mathias; Augustin, Jürgen; Sommer, Michael

    2014-05-01

    Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of the time limited land cover and the vigorous crop growth. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore we established the interdisciplinary project 'CarboZALF' in 2009. In our field experiment CarboZALF-D we are monitoring CO2 fluxes for soil-plant systems, which cover all landscape relevant soil states in respect to erosion and deposition, like Albic Cutanic Luvisol, Calcic Cutanic Luvisol, Calcaric Regosol and Endogleyic Colluvic Regosol. Furthermore, we induced erosion / deposition in a manipulation experiment. Automated chamber systems (2.5 m, basal area 1 m2, transparent) are placed at the manipulated sites as well as at one site neither influenced by erosion, nor by deposition. CO2 flux modelling of high temporal resolution includes ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Modelling includes gap filling which is needed in case of chamber malfunctions and abrupt disturbances by farming practice. In our presentation we would like to show results of the CO2 exchange measurements for one year. Differences are most pronounced between the non-eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco and NEE compared to the Albic Cutanic Luvisol. The eroded soil (Calcic Cutanic Luvisol) demonstrated CO2fluxes intermediate between the non-affected and depositional site. Site-specific consequences for the soil C stocks will be also discussed in the presentation.

  18. A unified CPT–SPT correlation for non-crushable and crushable cohesionless soils

    Directory of Open Access Journals (Sweden)

    Sayed M. Ahmed

    2014-03-01

    Full Text Available Despite the continuous developments in the Cone Penetration Test (CPT, the Standard Penetration Test (SPT is still used extensively in site investigations. Hence, there is a constant need to update the CPT–SPT correlations to make use of the growing experience with the CPT. Many CPT–SPT correlations have been proposed based on case histories of predominantly quartzitic/non-crushable sands; yet, more efforts are needed to enhance their reliability. Additionally, recent studies were carried out on calcareous/crushable sands have shown that the common CPT–SPT correlations for these sands are even less reliable than they are for quartzitic sands. In this study, a proposed approach is presented to define the related soil compressibility parameters of the CPT–SPT correlations. The presented methodology enhances the reliability of the CPT–SPT correlations and provides a unified approach encompassing both crushable and non-crushable sands.

  19. What do results of common sequential fractionation and single-step extractions tell us about P binding with Fe and Al compounds in non-calcareous sediments?

    Czech Academy of Sciences Publication Activity Database

    Jan, Jiří; Borovec, Jakub; Kopáček, Jiří; Hejzlar, Josef

    2013-01-01

    Roč. 47, č. 2 (2013), s. 547-557 ISSN 0043-1354 R&D Projects: GA ČR(CZ) GA206/09/1764; GA MZe(CZ) QH81012; GA MZe(CZ) QI102A265 Institutional support: RVO:60077344 Keywords : sequential fractionation * ascorbate and oxalate extration * non-calcareous sediments Subject RIV: DA - Hydrology ; Limnology Impact factor: 5.323, year: 2013

  20. Do rock fragments participate to plant water and mineral nutrition?

    Science.gov (United States)

    Korboulewsky, Nathalie; Tétégan, Marion; Besnault, Adeline; Cousin, Isabelle

    2010-05-01

    Rock fragments modify soil properties, and can be a potential reservoir of water. Besides, recent studies showed that this coarse soil fraction is chemically active, release nutrients, and could therefore be involved in biogeochemical nutrient cycles. However, these studies carried out on rock fragments, crushed pebbles or mineral particles do not answer the question whether the coarse soil fraction has significant nutritive functions. Only a couple of studies were conducted on plants, one on grass and the other on coniferous seedlings. This present work attempted to assess if pebbles may act as water and nutrient sources for poplar saplings, a deciduous species. Remoulded soils were set up in 5 L-pots with three percentages of pebbles: 0, 20, and 40% in volume. We used, as substrate either fine earth or sand (quartz), and as rock fragments either calcareous or inert pebbles (quartz). Additional modalities were settled with sand mixed with 20 and 40% pebbles enriched with nutrients. Both fine earth and calcareous pebbles were collected from the Ap horizon of a calcareous lacustrine limestone silty soil located in the central region of France. After cleaning, all pebbles were mixed to reach a bulk density in pots of 1.1 g/cm3 for the fine earth and 1.5 g/cm3 for the sand. Ten replicates were settled per modality, and one cutting of Populus robusta was planted in each. The experiment was conducted under controlled conditions. All pots were saturated at the beginning of the experiment, then irrigated by capillarity and controlled to maintain a moderate water stress. Growth and evapotranspiration were followed regularly, while water stress status was measured by stomatal conductivity every day during two drying periods of 10 days. After three months, plants were collected, separated in below- and above-ground parts for biomass and cation analysis (Ca, Mg, K). Results showed that pebbles can participate to plant nutrition, but no reduction of water stress was observed

  1. Various rates of k and Na influence growth, seed cotton yield and ionic ratio of two cotton varieties in soil culture

    International Nuclear Information System (INIS)

    Ali, L.; Maqsood, M.A.; Ashraf, M.

    2009-01-01

    Cotton is generally grown on alkaline calcareous soils in arid and semi-arid areas of the country. Sodium can interact with other earth cations like K, Ca and Mg. Therefore, a pot study was conducted to investigate the growth, yield and ionic response of two cotton varieties. Four levels of K and Na were developed after considering indigenous K, Na status in soil. The treatments of K+Na in mg/kg were adjusted as, 105+37.5, 135+30 135+37.5 and 105+30 (control). Control treatment represented indigenous K, Na status of soil. The experiment continued until maturity. Application of K and Na increased seed cotton yield and boll weight significantly (p<0.01). Both varieties varied non-significantly with respect to K:Na ratio in leaf. The beneficial effects of Na with K application over control on seed cotton yield and boll weight were greater in NIBGE-2 than in MNH-786. Increase in seed cotton yield was attributed to maximum boll weight of both varieties. Significant negative correlation (r= -0.89, - 0.76, n= 4) was found between K:Na ratio and K use efficiency in shoot of NIBGE-2 and MNH-786, respectively. (author)

  2. Evaluation of the quality of results obtained in institutions participating in interlaboratory experiments and of the reliability characteristics of the analytical methods used on the basis of certification of standard soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Parshin, A.K.; Obol' yaninova, V.G.; Sul' dina, N.P.

    1986-08-20

    Rapid monitoring of the level of pollution of the environment and, especially, of soils necessitates preparation of standard samples (SS) close in properties and material composition to the objects to be analyzed. During 1978-1982 four sets (three types of samples in each) of State Standard Samples of different soils were developed: soddy-podzolic sandy-loamy, typical chernozem, krasnozem, and calcareous sierozem. The certification studies of the SS of the soils were carried out in accordance with the classical scheme of interlab experiment (ILE). More than 100 institutions were involved in the ILE and the total number of independent analytical results was of the order of 10/sup 4/. With such a volume of analytical information at their disposal they were able to find some general characteristics intrinsic to certification studies, to assess the quality of work of the ILE participants with due regard for their specialization, and the reliability characteristics of the analytical methods used.

  3. Self-diffusion coefficient of iron as affected by chelating agents using tracer technique

    International Nuclear Information System (INIS)

    Massoud, M.A.; Abd-El-Sabour, M.F.; Omar, M.A.

    1983-01-01

    The effect of Fe 2 (So 4 ) 3 , Fe-DTPA, and Fe-EDDHA on the self-diffusion coefficient of Fe in some soils of Egypt was studied. The effect of chelating compounds on the ratio between solid phase fraction of the labile Fe and its concentration in the soil solution (capacity factor) was also studied. The data reveals the following items of more interesting: 1) The use of chelating agents, i.e., DTPA and EDDHA increased the amount of Fe in soil solution, hence the capacity factor was decreased using these compounds. It seems that as the addition of Fe was in the chelated form in soil solution, the slight loss of 59Fe from solution when 59Fe - chelate was used could be attributed to the isotopic exchange with soil Fe. 2) It was found that the addition of either Fe-DTPA or Fe-EDDHA significantly increased the self-diffusion of Fe in soil as compared with Fe 2 (So 4 ) 3 . It was also noticed that the self-diffusion for Fe in the alluvial soil was greater than in the calcareous one due to the instance competition between Ca and Fe for the chelating ligands in the calcareous soil. It was also seen that soil texture affects Fe self-diffusion

  4. Heavy metal contamination in the environs of the Zn-pB Mine in North-West of Tunisia

    International Nuclear Information System (INIS)

    Ben Guirat, S.; Ben Aissa, N.; Mhiri, A.

    2009-01-01

    The impact of industrial heavy metals (HM) pollution on soil quality and plant growth has become a public concern. To evaluate heavy metals concentration a Zn-Pb mine site was selected, as source of pollution, localized in BouGrine (BG) region at 120 km North-west of Tunis characterized by calcareous soils. Soils of the imine site are occupied by forest pine. (Author)

  5. Effect of amendments on chemical immobilization of heavy metals in sugar mill contaminated soils

    Directory of Open Access Journals (Sweden)

    Mohammad Jamal Khan, Muhammad Tahir Azeem and Sajida Perveen1

    2012-05-01

    Full Text Available A bulk soil sample collected from the vicinity of PSM (Premier Sugar Mill Mardan was amended with diammonium phosphate (DAP, triple super phosphate (TSP, Farm Yard Manure (FYM and poultry manure (PM in 1.5 kg soil in a 2 L plastic pot. Both DAP and TSP were added at 230 mg kg 1 (460 kg ha 1 soil whereas the organic amendments (FYM and PM were added at the rate of 10% by weight of soil. The air dried samples in pots were brought to field moisture content (0.33 bar water content by the addition of either HIE (Hayatabad Industrial Estate or PSM in two separate sets of experiments. The experimental pots were arranged in randomized complete design with three replicates under laboratory conditions during March to May (Temperature varying between 25 to 30 °C. Treated and control pots were incubated for 90 days al 0.33 bar ca 25% moisture and the moisture deficit during the incubation time was adjusted by adding PSM and HIE effluents in their respective set of experimental pots. Soil samples were collected after 15, 30, 45 and 90 d to determine the effect of amendments on AB-DTPA extractable metals. The results showed that AB-DTPA extractable Cd, Or, Cu, Ni and Cd increased significantly with lime and the maximum values were noted after 90 days incubation whereas the Fe, Mn and Zn content in soil increased with time but the increase was not significant. It was further noted that the increase over time in metal was not pronounced when supplied with amendments indicating their ability to chemically stabilize it compared to unamended soils. Higher values of all the heavy metals were noted in unamended soil. By comparing the different amendments, it was observed that FYM was effective in reducing the extractability/phytoavailability of all the metals under study except Pb whereby DAP was most effective as a stabilizing agent in the soil. It was concluded that in calcareous soil, FYM and DAP can be used to reduce the risk of phytotoxicity of heavy metals in

  6. Soil Compressibility under Irrigated Perennial and Annual Crops in a Semi-Arid Environment

    Directory of Open Access Journals (Sweden)

    Rafaela Watanabe

    Full Text Available ABSTRACT In irrigated soils, a continuous state of high moisture reduces resistance of the soil to applied external forces, favouring compaction. The aim of this study was to evaluate the susceptibility to compaction of developed calcareous soils in irrigated annual and perennial cropping systems of the Apodi Plateau, located in the Brazilian semi-arid region. Four areas of irrigated crops were evaluated: banana after two (B2 and 15 (B15 years cultivation, pasture (P, and a corn and beans succession (MB, as well as the reference areas for soil quality and corresponding natural vegetation (NVB2, NVB15, NVP and NVMB. Samples were collected at layers of 0.00-0.10 and 0.20-0.30 m; and for B2 and B15, samples were collected in the row and inter-row spaces. The following properties were determined: degree of compactness (DC, preconsolidation pressure (σp, compression index (Cc, maximum density (ρmax, critical water content (WCcrit, total organic carbon (TOC and carbon of light organic matter (Clom. Mean values were compared by the t-test at 5, 10, 15 and 20 % probability. An increase was seen in DC at a layer of 0.20-0.30 m in MB (p<0.15, showing the deleterious effects of preparing the soil by ploughing and chiselling, together with the cumulative traffic of heavy machinery. The TOC had a greater influence on ρmax than the stocks of Clom. Irrigation caused a reduction in Cc, and there was no effect on σp at field capacity. The planting rows showed different behaviour for Cc, ρmax, and WCcrit,, and in general the physical properties displayed better conditions than the inter-row spaces. Values for σp and Cc showed that agricultural soils display greater load-bearing capacity and are less susceptible to compaction in relation to soils under natural vegetation.

  7. A transgressive Santonian-Campanian boundary sequence revisited - High resolution planktonic and benthic foraminifera stratigraphy of the Schattau section, Northern Calcareous Alps.

    Science.gov (United States)

    Wolfgring, Erik; Wagreich, Michael; Summesberger, Herbert; Kroh, Andreas

    2016-04-01

    The Schattau section is part of the Austrian Gosau Group, Northern Calcareous Alps. We record a Santonian to early Campanian transgressive sequence. Previous investigations already provide a biostratigraphic framework; a multidisciplinary study to reveal the local stratigraphy and palaeoenvironmental properties: Planktonic foraminifera, calcareous nannoplankton, ammonite, echinoid and crinoid biostratigraphy data suggest a Santonian to earliest Campanian age for this section (see Wagreich et al., 2009). This work aims at a high resolution assessment of foraminiferal assemblages recorded from a time interval that has undergone significant palaeoenvironmental changes. The Santonian Hochmoos Formation, with the Sandkalkbank Member representing it's topmost subunit, is overlain by the Santonian to Campanian Bibereck Formation. While The Hochmoos Formation records a shallowing succession that finds the Sandkalkbank Member (representing very shallow conditions, sometimes sub aerial exposure) at its top. The overlying Bibereck Formation records a distinct deepening trend displaying increasingly marine, neritic to outer neritic conditions. The stratigraphically older subunits of the Schattau sections are characterised by abundant larger benthic foraminifera (Nummofallotia cretacea), miliolid foraminifera (Quinqueloculina spp, Spiroloculina fassistomata) as well as rotaliid foraminifera (Hoeglundia spp., Gavellina spp.). The Sandkalkbank member marks the end of the shallow water sequence recorded from foraminifera assemblages at the Schattau section. Up section communities are characterised by increasing share of planktonic foraminifera. Biostratigraphic marker fossils like Dicarinella asymetrica and Sigalia sp. (decoratissima?) were identified and indicate a Santonian age for the Bibereck Formation. The appearance of Globotruncanita elevata and disappearance of D. asymetrica and Sigalia sp. Suggests an early Campanian age for the topmost part of the Schattau section

  8. Pleistocene to Miocene Calcareous Nannofossil Biostratigraphy from IODP Expedition 334 Hole U1381A and Expedition 352 Hole U1439A

    Science.gov (United States)

    Power, M.; Scientists, I. E.; Avery, A. J.

    2015-12-01

    Samples for this study were collected from drill cores taken during the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 352 at Sites U1381 and U1439, respectively. Both of these expeditions were focused around subduction zones and, therefore, had priorities to determine time frames for the initiation of subduction. There are two main objectives for this study, the first being to age-date Pleistocene to Miocene sediments from the western offshore continental margin of Costa Rica (IODP Expedition 334) via calcareous nannofossils. The second objective is to age-date the Miocene sediments from the fore-arc of the Izu-Bonin-Mariana system, east of Japan (IODP Expedition 352), using calcareous nannofossils. Shore-based analysis allows for high-resolution study to determine exact biostratigraphic zonations. These zonations reflect specific time frames based on the occurrence or non-occurrence of certain nannofossil species. Once these zonations are determined, scientists can use the data to identify the initiation of seismic processes that often occur in these regions. Calcareous nannofossil biostratigraphy has now provided zonations for the samples taken from IODP Expedition 334 cores. Samples from core 6R are assigned to the Pleistocene nannofossil Zone NN19 due to the presence ofPseudoemiliania lacunosa and the absence of Emiliania huxleyi. Using the zonal scheme by de Kaenel (1999), this can further be broken down into Event 18 due to the presence of Gephyrocapsa oceanica larger than 4 μm but less than 5 μm, the presence of Calcidiscus macintyrei smaller than 11 μm, and the absence ofGephyrocapsa caribbeanica larger than 4 μm. De Kaenel (1999) has assigned this event datum an age of 1.718 Ma using orbital time scales and oxygen isotope data. Below these samples, an extensive hiatus ranges from the Pleistocene to the early Miocene. Samples from cores 7R through 10R are assigned to nannofossil zone NN5; however, it is impossible to constrain the top of

  9. Effect of rainfall intensity and slope steepness on the development of soil erosion in the Southern Cis-Ural region (A model experiment)

    Science.gov (United States)

    Sobol, N. V.; Gabbasova, I. M.; Komissarov, M. A.

    2017-09-01

    The effect of rainfall intensity on the erosion of residual calcareous agrogray soils and clay-illuvial agrochernozems in the Southern Cis-Ural region on slopes of different inclination and vegetation type has been studied by simulating with a small-size sprinkler. It has been shown that soil loss linearly depends on rainfall intensity (2, 4, and 6 mm/min) and slope inclination (3° and 7°). When the rainfall intensity and duration, and the slope inclination increase, soil loss by erosion from agrogray soils increases higher than from agrochernozems. On the plowland with a slope of 3°, runoff begins 12, 10, and 5 min, on the average, after the beginning of rains at these intensities. When the slope increases to 7°, runoff begins earlier by 7, 6, and 4 min, respectively. After the beginning of runoff and with its increase by 1 mm, the soil loss from slopes of 3° and 7° reaches 4.2 and 25.7 t/ha on agrogray soils and 1.4 and 4.7 t/ha on agrochernozems, respectively. Fallow soils have higher erosion resistance, and the soil loss little depends on the slope gradient: it gradually increases to 0.3-1.0 t/ha per 1 mm of runoff with increasing rainfall intensity and duration. The content of physical clay in eroded material is higher than in the original soils. Fine fractions prevail in this material, which increases their humus content. The increase in rainfall intensity and duration to 4 and 6 mm/min results in the entrapment of coarse silt and sand by runoff.

  10. Predicting the yield and quality of winter wheat grown on calcareous chernozem in the lower Don Region

    Directory of Open Access Journals (Sweden)

    Olga Biryukova

    2015-07-01

    Full Text Available Long-term studies have revealed a system of indicators for predicting the yield of winter wheat grown on a calcareous chernozem. It has been established that the prediction and integrated assessment of the yield and quality of grain should be performed with consideration for the balance of macro- and micronutrients in the grain and the above-ground biomass of plants. It has been shown that the contents of protein and gluten in winter wheat grain are mainly determined by the supply of plants with nitrogen and its balance with Mn, Р, Fe, Zn, and K. Possibility of predicting the contents of macro- and micronutrients in wheat grain from the chemical composition of plants at the shooting stage has been revealed.

  11. Effects of sulfur and nitrogen on nutrients uptake of corn using ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... Sulfur uptake efficiency increases, and the deficiency symptom disappears, upon application of N fertilizer in the form of urea in S deficient soil (Murphy, 1999). Sulfur is considered one of the major essential plant nutrients and an amendment used for reclaiming alkaline and calcareous soils (Marschner ...

  12. Two confused Boletes in the Benelux, Boletus impolitus Fries and Boletus depilatus Redeuilh

    NARCIS (Netherlands)

    Heinemann, P.; Rammeloo, J.

    1992-01-01

    Boletus impolitus and B. depilatus are known from the Benelux; up to now the latter is found only in Belgium. Both species occur on calcareous soils; B. depilatus, however, seems to prefer soils with a higher calcium content than B. impolitus. The most reliable diagnostic characters are found in the

  13. Rock-Eval analysis of French forest soils: the influence of depth, soil and vegetation types on SOC thermal stability and bulk chemistry

    Science.gov (United States)

    Soucemarianadin, Laure; Cécillon, Lauric; Baudin, François; Cecchini, Sébastien; Chenu, Claire; Mériguet, Jacques; Nicolas, Manuel; Savignac, Florence; Barré, Pierre

    2017-04-01

    50 CO2 oxidation with, for instance, entic Podzols and dystric Cambisols containing relatively more thermally stable SOC in the deepest layer than hypereutric/calcaric Cambisols. Moreover, soils in deciduous plots contained a higher proportion of thermally stable SOC than soils in coniferous plots. This study shows that RE6 analysis constitutes a fast and cost effective way to qualitatively estimate SOM turnover and to discuss its ecosystem drivers. It offers promising prospects towards a quantitative estimation of SOC turnover and the development of RE6-based indicators related to the size of the different SOC kinetic pools.

  14. Calcareous nannoplankton dating of the Late Quaternary deposits in Greece and the eastern Mediterranean: Case studies from terrestrial and marine sites

    Directory of Open Access Journals (Sweden)

    Maria V. Triantaphyllou

    2015-10-01

    Full Text Available The distribution and abundance of Emiliania huxleyi (E. huxleyi assemblages in the marine sediments of the Aravonitsa Plateau, Greece, and from the eastern Mediterranean are used (1 to evaluate the calcareous nannoplankton NN21a and NN21b biozones and the NN21a/NN21b boundary, and (2 to analyze the palaeoenvironmental and palaeoclimatic conditions prevailing in this interval. The sediment succession displays varied E. huxleyi assemblages and these are interpreted as reflecting climatic variability during marine isotope stages MIS 1–8.

  15. The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps

    International Nuclear Information System (INIS)

    Ewald, Joerg

    2000-01-01

    Compositional and edaphic gradients were studied in montane forests of the Bavarian Alps (Germany), in which natural mixed deciduous-coniferous tree layers have been altered by past management in favour of Picea abies. Data on species composition and ecological factors were collected in a stratified random sample of 84 quadrats comprising a gradient from pure Picea to pure Fagus sylvatica stands. Data about the understorey composition were subjected to indirect (DCA) and direct gradient analysis (RDA) with the proportion of Picea in the canopy as a constraining variable. Three principal components of a matrix containing seven descriptors of mineral soil, relief and tree layer cover were included as covariables describing the variability of primary ecological factors. Gradients of organic topsoil morphology and chemistry were extracted correspondingly. Responses of individual species, species group and topsoil attributes were studied by simple and partial correlation analysis. Mosses were significantly more abundant and diverse under Picea stands. Few graminoid and herb species were partially associated with Picea, and total understorey richness and cover did not differ systematically by stand type. No relationship between tree layer and understorey diversity was detected at the studied scale. Juvenile Fagus sylvatica was the only woody species significantly less abundant under Picea. In the topsoil lower base saturation, lower pH and larger C/N ratios in the litter layer were partially attributable to the proportion of Picea, only for base saturation a relationship was detected in greater soil depth also. The frequency of broad humus form types did not differ by tree species, nor was overall depth of organic forest floor attributable to canopy composition

  16. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    International Nuclear Information System (INIS)

    Tipping, E.; Rothwell, J.J.; Shotbolt, L.; Lawlor, A.J.

    2010-01-01

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  17. Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England)

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.u [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Rothwell, J.J. [Upland Environments Research Unit, School of Environment and Development, University of Manchester, Manchester M13 9PL (United Kingdom); Shotbolt, L. [Geography Department, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Lawlor, A.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2010-05-15

    Simulation modelling with CHUM-AM was carried out to investigate the accumulation and release of atmospherically-deposited heavy metals (Ni, Cu, Zn, Cd and Pb) in six moorland catchments, five with organic-rich soils, one with calcareous brown earths, in the Pennine chain of northern England. The model considers two soil layers and a third layer of weathering mineral matter, and operates on a yearly timestep, driven by deposition scenarios covering the period 1400-2010. The principal processes controlling heavy metals are competitive solid-solution partitioning of solutes, chemical interactions in solution, and chemical weathering. Agreement between observed and simulated soil metal pools and surface water concentrations for recent years was generally satisfactory, the results confirming that most contemporary soil metal is from atmospheric pollution. Metals in catchments with organic-rich soils show some mobility, especially under more acid conditions, but the calcareous mineral soils have retained nearly all anthropogenic metal inputs. Complexation by dissolved organic matter and co-transport accounts for up to 80% of the Cu in surface waters. - CHUM-AM is applied to six differing moorland catchments to account for the accumulation and leaching of atmospherically-deposited trace metals over the past several centuries.

  18. Physical behaviour of calcareous nannofossil ooze and effects of clay and organic matter on pelagic sediment stability: experimental approach using laboratory flumes

    DEFF Research Database (Denmark)

    Buls, Toms

    This thesis explores the subject of physical behaviour of ancient calcareous nannofossil ooze that eventually formed kilometre-thick Upper Cretaceous chalk succession over vast areas of NW Europe and more than 65 Ma years later forms valuable hydrocarbon and ground-water reservoirs. This thesis...... porosity range (85–60 %). A transition from simple to complex erosional behaviour has been identified mostly when bed porosity decreases below 80 %. This complex erosion required definition of multiple erosion thresholds. Typically, erosion thresholds were increasing with decreasing bed porosity...

  19. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  20. Estonian soil classification as a tool for recording information on soil cover and its matching with local site types, plant covers and humus forms classifications

    Science.gov (United States)

    Kõlli, Raimo; Tõnutare, Tõnu; Rannik, Kaire; Krebstein, Kadri

    2015-04-01

    Estonian soil classification (ESC) has been used successfully during more than half of century in soil survey, teaching of soil science, generalization of soil databases, arrangement of soils sustainable management and others. The Estonian normally developed (postlithogenic) mineral soils (form 72.4% from total area) are characterized by mean of genetic-functional schema, where the pedo-ecological position of soils (ie. location among other soils) is given by means of three scalars: (i) 8 stage lithic-genetic scalar (from rendzina to podzols) separates soils each from other by parent material, lithic properties, calcareousness, character of soil processes and others, (ii) 6 stage moisture and aeration conditions scalar (from aridic or well aerated to permanently wet or reductic conditions), and (iii) 2-3 stage soil development scalar, which characterizes the intensity of soil forming processes (accumulation of humus, podzolization). The organic soils pedo-ecological schema, which links with histic postlithogenic soils, is elaborated for characterizing of peatlands superficial mantle (form 23.7% from whole soil cover). The position each peat soil species among others on this organic (peat) soil matrix schema is determined by mean of 3 scalars: (i) peat thickness, (ii) type of paludification or peat forming peculiarities, and (iii) stage of peat decomposition or peat type. On the matrix of abnormally developed (synlithogenic) soils (all together 3.9%) the soil species are positioned (i) by proceeding in actual time geological processes as erosion, fluvial processes (at vicinity of rivers, lakes or sea) or transforming by anthropogenic and technological processes, and (ii) by 7 stage moisture conditions (from aridic to subaqual) of soils. The most important functions of soil cover are: (i) being a suitable environment for plant productivity; (ii) forming adequate conditions for decomposition, transformation and conversion of falling litter (characterized by humus

  1. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorous content for wheat and succeeding maize crop on different soil types

    International Nuclear Information System (INIS)

    Chapke, V.G.; Bhujbal, B.M.; Mistry, K.B.

    1988-01-01

    Efficiency of 32 P labelled ammonium nitrate phosphate (ANP) containding 30, 50 and 90 per cent of water-soluble phosphorus (WSP) vis-a-vis that of entirely water soluble monoammonium orthophosphate (MAP) for wheat and succeeding maize crop on deep black (vertisol), calcareous black (vertisol), alluvial-Tarai (mollisol) and grey brown alluvial (aridisol) soils was examined in greenhouse experiments. Data on wheat indicated that ANP (50 per cent WSP) was, in general, equally efficient to MAP and ANP (90 per cent WSP) in terms of drymatter yield and total uptake of phosphorus in all soils examined, however, the per cent utilization of applied fertilizer was significantly higher for MAP and ANP (90 per cent WSP) than those for ANP (50 per cent WSP) in all soils. In general, ANP (30 per cent WSP) was significantly inferior to MAP and ANP (90 per cent WSP) in all soils. Data on the succeeding maize crop grown to flowering indicated that residual value of ANP (30 per cent WSP) was equal to that of MAP and ANP (90 per cent WSP) in terms of drymatter yield and phosphorus uptake by the four soils examined. Complementary incubation studies conducted upto 60 days on the above four soils at field capacity moisture status indicated highest 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus levels in MAP treatments followed by ANP (50 per cent WSP) and least in ANP (30 per cent WSP) treatments. (author). 4 tables, 4 figures, 19 refs

  2. Remobilization of americium in soil columns under experimental rhizo-spheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Perrier, T.; Martin-Garin, A.; Morello, M. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    The biogeochemical behaviour of americium in subsurface soils plays a dominant role on the potential migration of this actinide, but is currently poorly known. The identification and understanding of these processes is of major concern for this highly (radio)toxic element and can allow the determination of its impact on the natural media. This research investigates the relevant processes controlling americium biogeochemical speciation in the rhizosphere of an agricultural soil. Lixiviation tests were performed on columns packed with a 2 mm-sieved calcareous soil contaminated with {sup 241}Am (500 Bq.g{sup -1}), under steady-state unsaturated or saturated hydric flow conditions. The columns were percolated with soil solution of varied compositions, containing citrate and/or glucose simulating root exudates in non-sterile conditions. The physico-chemical parameters of the outlet solution (pH, conductivity, major ions, organic acids) were monitored, as well as the microbial activity. Inorganic and organic speciation of {sup 241}Am is supported by geochemical modeling with JChess, using a thermodynamic database based on NEA database and the latest PSI recommendations. The percolation of a solution in equilibrium with the soil released small amount of americium (<5 mBq/cm{sup 3}), as predicted by the high {sup 241}Am K{sub d} values. 10{sup -4} M concentrations of citrate, glucose or both combined did not enhance remobilization either. Poor remobilization was also observed at high glucose concentrations (10{sup -2} M), despite an effective glucose microbial degradation, the production of ligands such as acetate, and important changes in the chemistry of the solution. On the contrary, high concentrations of citrate (10{sup -2} M) released 1000 times more americium, which is in accordance with previous studies. Even greater releases (10000 times) were observed when 10{sup -2} M glucose was added to 10{sup -2} M citrate. The remobilization of americium resulting from the

  3. Growth and Chemical Composition of Pistachio Seedlings under Different Levels of Manganese in Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    T. Poorbafrani

    2016-09-01

    Full Text Available Introduction: Pistachio is one of the most important crops in many regions of Iran with respect of production and export. There are more than 470000 ha of nonbearing and bearing pistachio trees mainly in Kerman province. Despite the economic importance of this crop, very little information is available on its nutritional requirements. Pistachio trees like other crops need to macro and micro nutrients. one of these elements is manganese (Mn. Manganese is an essential mineral nutrient, playing a key role in several physiological processes, particularly photosynthesis, respiration and nitrogen assimilation. This element is normally supplied to the plants by soil. Therefore, soil conditions affect its availability to plants. Soils with high pH, calcareous soils, especially those with poor drainage and high organic matter, are among the soils which produce Mn-deficient plants. Calcium carbonate is the major inactivation factor of Mn in calcareous soils. The soils of Iran are predominantly calcareous in which micronutrients deficiency, including Mn, is observed due to the high pH and nutrient fixation. The objective of this research was to examine the effect of manganese application on growth and chemical composition of pistachio seedlings in some calcareous soils with different chemical and physical properties. Materials and Methods: For this purpose a greenhouse experiment was carried out as factorial (two factors including soil type and Mn levels experiment in completely randomized design with three replications. Treatments were consisted of three levels of Mn (0, 10 and 20 mg Mn Kg-1 soil as Manganese sulfate and 12 different soils from Rafsanjan region in Southern Iran. Soil samples were air dried and crushed to pass through a 2-mm sieve, and some physical and chemical properties of soils such as texture, electrical conductivity, pH, organic matter content, calcium carbonate equivalent, cation exchange capacity and iron, manganese, copper and

  4. African Journal of Biotechnology - Vol 11, No 21 (2012)

    African Journals Online (AJOL)

    Genetic diversity among four Eucalyptus species (myrtaceae) based on random ... biomass and enzyme activities in some alkaline calcareous subtropical soils .... Growth characteristics and productivity of tall fescue new variety 'Purumi' in ...

  5. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses.

    Science.gov (United States)

    Andre, Jane; Charnock, John; Stürzenbaum, Stephen R; Kille, Peter; Morgan, A John; Hodson, Mark E

    2009-09-01

    Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27,000 mg kg(-1) and 200 to 34,000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect theirinnate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.

  6. Increased Phosphorus Uptake by Wheat and Field Beans Inoculated with a Phosphorus-Solubilizing Penicillium bilaji Strain and with Vesicular-Arbuscular Mycorrhizal Fungi.

    Science.gov (United States)

    Kucey, R M

    1987-12-01

    Greenhouse and field experiments were conducted to test the effect of a P-solubilizing isolate of Penicillium bilaji on the availability of Idaho rock phosphate (RP) in a calcareous soil. Under controlled greenhouse conditions, inoculation of soils with P. bilaji along with RP at 45 mug of P per g of soil resulted in plant dry matter production and P uptake by wheat (Triticum aestivum) and beans (Phaseolus vulgaris) that were not significantly different from the increases in dry matter production and P uptake caused by the addition of 15 mug of P per g of soil as triple superphosphate. Addition of RP alone had no effect on plant growth. Addition of vesicular-arbuscular mycorrhizal fungi was necessary for maximum effect in the sterilized soil in the greenhouse experiment. Under field conditions, a treatment consisting of RP (20 kg of P per ha of soil) plus P. bilaji plus straw resulted in wheat yields and P uptake equivalent to increases due to the addition of monoammonium phosphate added at an equivalent rate of P. RP added alone had no effect on wheat growth or P uptake. The results indicate that a biological system of RP solubilization can be used to increase the availability of RP added to calcareous soils.

  7. The effect of the soil pH on 134Cs transfer factors for soybean and sunflower plants; 134Cs fate in the extracted seed-oil

    International Nuclear Information System (INIS)

    Massas, I.; Skarlou, C.; Anoussis, J.; Haidouti, C.; Arapis, G.

    1999-01-01

    The effect of soil pH on 134 Cs TFs as well as the fate of 134 Cs in the extracted oil was studied in a greenhouse experiment with soybean and sunflower plants. A soil with pH 4.2 was used as a basis and its pH value has increased to 5.7, 6.5 and 7.6 (by the addition of different amounts of Ca(OH) 2 ). The lowest TF value was observed in the calcareous soil (pH 7.6), while the highest in the lowest pH (4.2) for the vegetative part and in the pH 6.5 for the edible part for both studied plants. TFs were practically the same for soya plants grown on the three lowest soil pH and reduced significantly only at pH 7.6 for either pods or other plant material. However, the lowest/highest TF was ∼ 4 for pods and ∼ 6 for the other plant material. For the sunflower plants while TFs for other plant material reduced from lowest to highest soil pH by only a factor of 2, for the seeds TFs remained rather constant. The difference in TF between the two studied species in each soil pH was in some cases higher than the difference due to pH effect. When an oil fraction (∼ 20 %) was extracted from seeds of both plants, no 134 Cs was detected. Refs. 4 (author)

  8. Isotopic-tracer-aided studies on undesirable effects of heavy metals in the soil-plant system. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Oberlaender, H.E.

    1982-07-01

    Uptake of isotopically labelled mercury (Hg-203), cadmium (Cd-115m) and zinc (Zn-65) from a calcareous chernozem and a podzolized brown earth by spring and winter varieties of wheat, rye and barley was investigated in pot experiments carried out until maturity of the plants. The labelled heavy metals, applied at concentrations innocuous to plant growth (0.5 ppm Hg or Cd, 50 ppm Zn) were determined radiometrically in the straw and in the grains of the harvested plants, as well as in the milling products (bran, semolina and flour) obtained by standard procedures of grain processing. Uptake of mercury was several hundred times smaller than the uptake of cadmium, if both metals were applied to the soil in equal amounts. Whereas the uptake of mercury from the acid soil was insignificant or not detectable, cadmium was taken up from this soil at a much higher rate than from the alkaline soil. Thus, not mercury, but cadmium imposes the greatest hazard on the food chain. Winter varieties of cereals took up more mercury and cadmium than did spring varieties. The content of heavy metals in the plants decreased considerably when plants approached maturity. During translocation through the plants the metals were gradually retained when passing from the stalks (''straw'') into the grains, and from the seed-cover (''bran'') into the endosperm (''flour''). The heavy metal contents of the grain fractions decreased in the order: bran > semolina > flour. Concentrations of heavy metals in flour were 3-8 times smaller than in straw, showing that flour is least affected by heavy metal pollution of cereals via the soil. The metal content of the various flour types was correlated with their percentage of bran and with their ash content. By adding an ion-exchanger to the soil the pattern of relative distribution of heavy metals in mature plants was not changed, but the cadmium content of all cereal products was considerably lowered

  9. Determination of inositol phosphate ester in lake sediments

    International Nuclear Information System (INIS)

    Weimer, W.C.; Armstrong, D.E.

    1977-01-01

    A procedure for the determination of the total inositol polyphosphate content of lake sediments is presented and evaluated. This technique involves extraction with NaOH, cleanup of the extract, and isolation and identification of two groups of inositol phosphate esters by ion-exchange chromatography. Radioisotope dilution is employed to correct for losses during the extraction, cleanup and isolation steps. Recoveries of the radiotracer inositol phosphates have averaged 85% during the analysis of approximately 40 calcareous and non-calcareous sediment samples and more than 20 soil samples

  10. Self-diffusion coefficient of iron as affected by chelating agents using tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M.A.; Abd-El-Sabour, M.F. (Agriculture Dept. for Soil and Water Research, Nuclear Research Centre, A.E.A., Cairo (Egypt)); Omar, M.A. (Ain Shams Univ., Cairo (Egypt). Faculty of Agriculture)

    1983-01-01

    The effect of Fe/sub 2/(So/sub 4/)/sub 3/, Fe-DTPA, and Fe-EDDHA on the self-diffusion coefficient of Fe in some soils of Egypt was studied. The effect of chelating compounds on the ratio between solid phase fraction of the labile Fe and its concentration in the soil solution (capacity factor) was also studied. The data reveals the following items of more interesting: 1) The use of chelating agents, i.e., DTPA and EDDHA increased the amount of Fe in soil solution, hence the capacity factor was decreased using these compounds. It seems that as the addition of Fe was in the chelated form in soil solution, the slight loss of 59Fe from solution when 59Fe - chelate was used could be attributed to the isotopic exchange with soil Fe. 2) It was found that the addition of either Fe-DTPA or Fe-EDDHA significantly increased the self-diffusion of Fe in soil as compared with Fe/sub 2/(So/sub 4/)/sub 3/. It was also noticed that the self-diffusion for Fe in the alluvial soil was greater than in the calcareous one due to the instance competition between Ca and Fe for the chelating ligands in the calcareous soil. It was also seen that soil texture affects Fe self-diffusion.

  11. Climate Change Impairs Nitrogen Cycling in European Beech Forests.

    Science.gov (United States)

    Dannenmann, Michael; Bimüller, Carolin; Gschwendtner, Silvia; Leberecht, Martin; Tejedor, Javier; Bilela, Silvija; Gasche, Rainer; Hanewinkel, Marc; Baltensweiler, Andri; Kögel-Knabner, Ingrid; Polle, Andrea; Schloter, Michael; Simon, Judy; Rennenberg, Heinz

    2016-01-01

    European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N) limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability) on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this ecosystem and here

  12. Climate Change Impairs Nitrogen Cycling in European Beech Forests.

    Directory of Open Access Journals (Sweden)

    Michael Dannenmann

    Full Text Available European beech forests growing on marginal calcareous soils have been proposed to be vulnerable to decreased soil water availability. This could result in a large-scale loss of ecological services and economical value in a changing climate. In order to evaluate the potential consequences of this drought-sensitivity, we investigated potential species range shifts for European beech forests on calcareous soil in the 21st century by statistical species range distribution modelling for present day and projected future climate conditions. We found a dramatic decline by 78% until 2080. Still the physiological or biogeochemical mechanisms underlying the drought sensitivity of European beech are largely unknown. Drought sensitivity of beech is commonly attributed to plant physiological constraints. Furthermore, it has also been proposed that reduced soil water availability could promote nitrogen (N limitation of European beech due to impaired microbial N cycling in soil, but this hypothesis has not yet been tested. Hence we investigated the influence of simulated climate change (increased temperatures, reduced soil water availability on soil gross microbial N turnover and plant N uptake in the beech-soil interface of a typical mountainous beech forest stocking on calcareous soil in SW Germany. For this purpose, triple 15N isotope labelling of intact beech seedling-soil-microbe systems was combined with a space-for-time climate change experiment. We found that nitrate was the dominant N source for beech natural regeneration. Reduced soil water content caused a persistent decline of ammonia oxidizing bacteria and therefore, a massive attenuation of gross nitrification rates and nitrate availability in the soil. Consequently, nitrate and total N uptake of beech seedlings were strongly reduced so that impaired growth of beech seedlings was observed already after one year of exposure to simulated climatic change. We conclude that the N cycle in this

  13. Paleoclimate and paleoecology of the mid Cretaceous traced by calcareous nannofossils

    Science.gov (United States)

    Bottini, Cinzia; Erba, Elisabetta

    2016-04-01

    The Aptian - early Turonian time interval was marked by major environmental changes at regional to global scale. Specifically, it was a time of super-greenhouse conditions and the climate-ocean system experienced phases of stability perturbed by transient, sometimes prolonged, anomalies of the global carbon cycle. Several regional to global episodes occurred over this time interval: the early Aptian Oceanic Anoxic Event (OAE) 1a, the early Albian OAE 1b, the latest Albian OAE 1d, the Mid-Cenomanian Event (MCE I) and the Cenomanian - Turonian OAE 2. Decades of multidisciplinary research focused on OAEs since they constitute ideal case-histories for the understanding of our planet functioning during perturbations of the C cycle. They were, in fact, characterized by excess CO2, intense volcanism, and altered climate and oceanic chemistry. A useful tool for reconstructing the marine ecosystem dynamics of the past, is calcareous nannoplankton, since it is extremely sensitive to changes in surface waters parameters like temperature and nutrient content and interacts with the C cycle through biological processes and production of calcareous oozes. Here, we gathered new quantitative nannofossil data for the Tethys Ocean (Umbria Marche Basin, Italy) to derive climatic fluctuations and changes in ocean fertility during the late Albian - early Turonian. Over this time interval, the Tethys Ocean was characterized by phases of rhythmic black shale deposition controlled by orbital forcing. The Pialli Level is the Tethyan sedimentary expression of the latest Albian OAE 1d, characterized by large-scale occurrence of black shales and a δ13C positive excursion recognized in several deep-marine settings. The other prominent δ13C anomaly coincides with the OAE 2 represented, in Italy, by the Bonarelli Level. Between these two main C-isotopic excursions, a double-spiked minor anomaly identifies the MCE I, lithologically represented by a shift to black shales and black chert bands

  14. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers.

    Science.gov (United States)

    Fernández, José M; Nieto, M Aurora; López-de-Sá, Esther G; Gascó, Gabriel; Méndez, Ana; Plaza, César

    2014-06-01

    Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Lysimeter experiments to determine the ability of soil to reduce concentrations of BOD, available P and inorganic N in dirty water.

    Science.gov (United States)

    Brookman, S K E; Chadwick; Retter, A R

    2005-11-01

    Lysimeter experiments were conducted to determine the ability of different soils to reduce levels of biochemical oxygen demand (BOD) and concentrations of molybdate reactive phosphorus (MRP) and ammonium-N (NH4(+)-N) in dirty water and the impact of applications on nitrate leaching. An additional experiment investigated the effect of dirty water components on leaching quality. This information is required to assess the potential risk of dirty water applications on polluting groundwater and to assess the use of such soils in the development of treatment systems for dirty water. Intact and disturbed soil lysimeters, 0.5 and 1m deep were constructed from four soils; a coarse free-draining sandy loam, a sandy loam over soft sandstone, a calcareous silty clay over chalk and a sandy loam over granite. For the coarse free-draining sandy loam, lysimeters were also constructed from disturbed soil with and without the addition of lime, to assess if this could increase phosphorus immobilisation. Levels of BOD and concentrations of MRP, NH4(+)-N and nitrate (NO3(-)-N) of leachates were measured following dirty water applications at 2 and 8 mm day(-1) under laboratory conditions. Under the daily 2mm application, all soils were effective at treating dirty water, reducing concentrations of BOD, MRP and NH4(+)- N by > or = 98% but NO3(-)-N concentrations increased up to 80 mg l(-1) from the 0.5 m deep lysimeters of the sandy loam over granite. Soils were less effective at reducing levels of BOD, MRP and NH4(+)- N at the 8 mm daily rate of application, with maximum NO3(-)-N concentrations of leachates of 200 mg l(-1) from disturbed soils.

  16. Uptake of 15N-labelled urea and 32P-labelled phosphate from acid-based urea phosphate and granular fertilizers

    International Nuclear Information System (INIS)

    Bole, J.B.

    1986-01-01

    The availability of nitrogen and phosphorus in fertilizer products labelled with both 32 P and 15 N was measured in a growth chamber experiment. The uptake of N and P by soft white spring wheat (Triticum aestivum L.) from a solution of acid urea phosphate fertilizer did not differ significantly from that of a mixture of granular urea and monammonium phosphate fertilizer. The fertilizer-P uptake efficiency of both sources was higher in a neutral soil than in acid or calcareous soils. Banding either fertilizer increased the uptake of fertilizer P compared with sources mixed with the soil, but did not significantly affect fertilizer-N uptake. The increase in fertilizer-P efficiency due to banding was significantly greater for the urea-monammonium phosphate than for the acid urea phosphate solution. Banding fertilizer did not increase the uptake of fertilizer P in the calcareous soil, and decreased the uptake of fertilizer N in that soil compared with mixed treatments. It is suggested that soluble Ca formed from the reaction of acid with naturally occurring lime may have reduced the availability of fertilizer P in the band

  17. The Fractionation of Some Heavy Metals in Calcareous Soils Affected by Land Uses of Central Area of Zanjan Provine (Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Ali Afshari

    2017-01-01

    Full Text Available Introduction: Heavy metals are found to be one of the major environmental hazardous contaminants, for human health, animal life, air quality and other components of environment. They can affect geochemical cycles and accumulate in animal tissues since physical processes are not able to remove them, so they are consistent in long term. The analysis of the total concentration of heavy metals in soil may provide information about soils enrichment but in general, it is widely used to determine the potential mobility of heavy metals in environmental behavior under chemical forms of metals in soils. Heavy metals existat several phases including water-soluble, exchangeable, bounded to organic matter, bounded to carbonates, bounded to Fe-Mn oxides, secondary clay minerals and residual fraction within primary minerals network. There is a dynamic equilibrium between different fractions of elements in soil. The main objectives of the present study were a The analysis of the total concentration of heavy metals such as Fe, Mn, Ni, Cr, Co, Pb, Zn, Cd and Cu and b The fractionations of heavy metals and identification of controlling factors to distribution and behavior of heavy metals in soils at different land uses. Materials and Methods: The study was performed at central area of Zanjan province (Iran. The study area was over 2000 km2 in coordinates 20´ 36° to 41´ 36° E and 19´ 48° to 53´ 48° N. The average altitudes were over 1500 meters above sea level. The major land uses of the study area included agriculture (AG, rangeland (RA and urban (UR. Sample collection was done based on the random grid method in August 2011. Surface soil samples (0-10 cm depth were taken from grid centers included 137, 77 and 27 samples from AG, RA and UR land uses, respectively. The samples were digested in Nitric acid 5 normal (Sposito et al., 1982 and total concentration of Pb, Zn, Ni, Mn, Cu, Cr, Fe and Co were measured by Perkin-Elmer: AA 200 atomic absorption

  18. Calcareous nannofossil biostratigraphy of Sarcheshmeh and Sanganeh formations at Qaleh Jegh and Yazdan Abad sections (West of Kopet-Dagh Basin

    Directory of Open Access Journals (Sweden)

    Azam Gholami Fard

    2017-03-01

    Full Text Available 1-    Introduction Kopet Dagh Basin is located on the northeast of Iran, extending over Iran, Turkmenistan and Afghanistan with a west-northwest to east-southeast trend. The Iranian part of the basin is located between 61°14ˊ and 54°00ˊE and 38°15ˊ and 35°38ˊ N. It constitutes the second most important hydrocarbon province of Iran after Zagros Basin. Cretaceous sediments are well developed and extensively exposed in this basin. In order to study the Biostratigraphy of Sarcheshme and Sanganeh Formations, the calcareous nannofossil assemblages have been investigated in two stratigraphic sections. Shokri (2000, Hadavi and Shokri (2000, Hadavi and Bodaghi (2000 & 2009, Dehghan (2002, Mahanipour et al. (2011a,b & 2012 and Mahanipour and Kani (2015 studied the calcareous nannofossil biostratigraphy of Sarcheshme or Sanganeh Formation.   2-    Material & Methods The studied sections, the Qaleh Jegh section (located at a distance of 35 km to the northeast of Bojnord, on the Baba Boland mountain; N37°47ˊ57˝ and E57°16ˊ53˝ and Yazdan Abad section (located at north of Yazdan Abad village; N37°55ˊ34˝ and E57°35ˊ10˝. Sarcheshmeh Formation conformably overlies the Tirgan Formation and is in turn overlain by the Sanganeh Formation in both sections and Atamir Formation conformably overlies the Sanganeh Formation. Sarcheshmeh Formation measures 2660 m in Qaleh Jegh section and comprises argillaceous limestone (with limestone intercalations in lower part and shale (with limestone intercalation in upper part. A  fossiliferous limestone separates the Sarcheshmeh and Sanganeh. Sanganeh Formation measures 1400 m and consists of siltstones (with sandstone, shale or limestone intercalation in lower part and shale containing chert nodules (with siltstone intercalation in upper part. At Yazadn Abad section the 655 m thick succession of Sarcheshmeh Formation consists of alternating argillaceous limestone and limestone in lower part and

  19. Response of common bean ( Phaseolus vulgaris L.) cultivars to ...

    African Journals Online (AJOL)

    Yield losses in common bean (Phaseolus vulgaris L.) may occur due to boron (B) deficiency when the susceptible cultivars are grown in calcareous boron deficient soils. The study was therefore aimed at investigating the effects of three B doses: control (0.0 kg ha-1), soil application (3.0 kg ha-1) and foliar fertilization (0.3 kg ...

  20. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil.

    Science.gov (United States)

    Hockmann, Kerstin; Tandy, Susan; Studer, Björn; Evangelou, Michael W H; Schulin, Rainer

    2018-03-19

    Shooting ranges polluted by antimony (Sb), lead (Pb), copper (Cu) and zinc (Zn) are used for animal grazing, thus pose a risk of contaminants entering the food chain. Many of these sites are subject to waterlogging of poorly drained soils. Using field lysimeter experiments, we compared Sb, Pb, Cu and Zn uptake by four common pasture plant species (Lolium perenne, Trifolium repens, Plantago lanceolata and Rumex obtusifolius) growing on a calcareous shooting range soil under waterlogged and drained conditions. To monitor seasonal trends, the same plants were collected at three times over the growing season. Additionally, variations in soil solution concentrations were monitored at three depths over the experiment. Under reducing conditions, soluble Sb concentrations dropped from ∼50 μg L -1 to ∼10 μg L -1 , which was attributed to the reduction of Sb(V) to Sb(III) and the higher retention of the trivalent species by the soil matrix. Shoot Sb concentrations differed by a factor of 60 between plant species, but remained at levels <0.3 μg g -1 . Despite the difference in soil solution concentrations between treatments, total Sb accumulation in shoots for plants collected on the waterlogged soil did not change, suggesting that Sb(III) was much more available for plant uptake than Sb(V), as only 10% of the total Sb was present as Sb(III). In contrast to Sb, Pb, Cu and Zn soil solution concentrations remained unaffected by waterlogging, and shoot concentrations were significantly higher in the drained treatment for many plant species. Although showing an increasing trend over the season, shoot metal concentrations generally remained below regulatory values for fodder plants (40 μg g -1  Pb, 150 μg g -1 Zn, 15-35 μg g -1 Cu), indicating a low risk of contaminant transfer into the food chain under both oxic and anoxic conditions for the type of shooting range soil investigated in this study. Copyright © 2018 Elsevier Ltd. All rights