WorldWideScience

Sample records for cai-like vacuum evaporation

  1. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  2. Experimental Investigation of Surface Color Changes in Vacuum Evaporation Process for Gold-like Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yang Baojian

    2016-01-01

    Full Text Available In order to reduce the environmental pollution caused by the three wastes during the process of electroplating of gold-like film on stainless steel, in this paper, the "vacuum evaporation and annealing" composite technologies were adopted to evaporate gold-like film in 16 stainless steel 304 substrates, and electronic color cards and color software were also used for analyzing the color and luster of the gold-like film. Experiments shows that the negative pressure, annealing temperature and mass fraction of the double copper alloys have influence on preparation of imitation in assaying the fineness of gold film, the annealing temperature has significant effects on imitation in assaying the fineness of gold film.

  3. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  4. CFD Analysis of Evaporation-Condensation Phenomenon In an Evaporation Chamber of Natural Vacuum Solar Desalination

    Science.gov (United States)

    Ambarita, H.; Ronowikarto, A. D.; Siregar, R. E. T.; Setyawan, E. Y.

    2018-01-01

    Desalination technologies is one of solutions for water scarcity. With using renewable energy, like solar energy, wind energy, and geothermal energy, expected will reduce the energy demand. This required study on the modeling and transport parameters determination of natural vacuum solar desalination by using computational fluid dynamics (CFD) method to simulate the model. A three-dimensional case, two-phase model was developed for evaporation-condensation phenomenon in natural vacuum solar desalination. The CFD simulation results were compared with the avalaible experimental data. The simulation results shows inthat there is a phenomenon of evaporation-condensation in an evaporation chamber. From the simulation, the fresh water productivity is 2.21 litre, and from the experimental is 2.1 litre. This study shows there’s an error of magnitude 0.4%. The CFD results also show that, vacuum pressure will degrade the saturation temperature of sea water.

  5. 242-A evaporator vacuum condenser system

    International Nuclear Information System (INIS)

    Smith, V.A.

    1994-01-01

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation

  6. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  7. Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II - Laboratory evaporation of potential CMS-1 precursor material

    Science.gov (United States)

    Mendybaev, Ruslan A.; Williams, Curtis D.; Spicuzza, Michael J.; Richter, Frank M.; Valley, John W.; Fedkin, Alexei V.; Wadhwa, Meenakshi

    2017-03-01

    We present the results of laboratory experiments in which a forsterite-rich melt estimated to be a potential precursor of Allende CMS-1 FUN CAI was evaporated into vacuum for different lengths of time at 1900 °C. The evaporation of this melt resulted in residues that define trajectories in chemical as well as magnesium, silicon and oxygen isotopic composition space and come very close to the measured properties of CMS-1. The isotopic composition of the evaporation residues was also used to determine the kinetic isotopic fractionation factors [α2,1 (vapor-melt) defined as the ratio of isotopes 2 and 1 of a given element in the evaporating gas divided by their ratio in the evaporating source] for evaporation of magnesium (α25,24 for 25Mg/24Mg), silicon (α29,28 for 29Si/28Si) and oxygen (α18,16 for 18O/16O) from the forsterite-rich melt at 1900 °C. The values of α25,24 = 0.98383 ± 0.00033 and α29,28 = 0.99010 ± 0.00038 are essentially independent of change in the melt composition as evaporation proceeds. In contrast, α18,16 changes from 0.9815 ± 0.0016 to ∼0.9911 when the residual melt composition changes from forsteritic to melilitic. Using the determined values of α25,24 and α29,28 and present-day bulk chemical composition of the CMS-1, the composition of the precursor of the inclusion was estimated to be close to the clinopyroxene + spinel + forsterite assemblage condensed from a solar composition gas. The correspondence between the chemical composition and isotopic fractionation of experimental evaporation residues and the present-day bulk chemical and isotopic compositions of CMS-1 is evidence that evaporation played a major role in the chemical evolution of CMS-1.

  8. Vacuum-evaporated ferroelectric films and heterostructures of vinylidene fluoride/trifluoroethylene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Draginda, Yu. A., E-mail: lbf@ns.crys.ras.ru; Yudin, S G; Lazarev, V V; Yablonskii, S V; Palto, S P [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    The potential of the vacuum method for preparing ferroelectric films and photonic heterostructures from organic materials is studied. Vacuum-evaporated films of fluoropolymers and heterostructures on their basis are obtained and their ferroelectric and spectral properties are studied. In particular, homogeneous films of the well-known piezoelectric polymer polyvinylidene fluoride and ferroelectric material vinylidene fluoride/trifluoroethylene copolymer (P(VDF/TFE)) are produced. Experimental studies of vacuum-evaporated P(VDF/TFE) films confirmed their ferroelectric properties. The heterostructures composed of alternating layers of P(VDF/TFE) copolymer molecules and azodye molecules are fabricated by vacuum evaporation. Owing to the controlled layer thickness and a significant difference in the refractive indices of the P(VDF/TFE) copolymer and azodyes, these heterostructures exhibit properties of photonic crystals. This finding is confirmed by the occurrence of a photonic band in the absorption spectra of the heterostructures.

  9. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  10. Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System

    Science.gov (United States)

    Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.

    2018-01-01

    The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.

  11. Processing of radioactive waste solutions in a vacuum evaporator-crystallizer

    International Nuclear Information System (INIS)

    Petrie, J.C.; Donovan, R.I.; Van der Cook, R.E.; Christensen, W.R.

    1975-01-01

    Results of the first 18 months' operation of Hanford's vacuum evaporator-crystallizer are reported. This process reduces the volume of radioactive waste solutions and simultaneously converts the waste to a less mobile salt cake. The evaporator-crystallizer is operating at better than design production rates and has reduced the volume of radioactive wastes by more than 15 million gallons. A process description, plant performance data, mechanical difficulties, and future operating plans are discussed. Also discussed is a computer model of the evaporator-crystallizer process

  12. Kinetic and diffusion evaporation of substances on sublimation in vacuum

    International Nuclear Information System (INIS)

    Martinson, I.G.

    2006-01-01

    Diffusion-kinetic model of sublimation of substances in vacuum determining fields of the evaporation according to temperature - kinetic and diffusion is performed. The model is experimentally confirmed in the tests with benzoic acid and naphthalene, by calculation of the rate of Zn, Co, V, W sublimation and the value of coefficient of evaporation α. The model provides an explanation for derivation of low values of evaporation coefficient α, to 10 -10 , for easy to fusible substances, and α=1 for substances with high temperature of fusion [ru

  13. Obtention of thin depositions by the vacuum evaporation technique

    International Nuclear Information System (INIS)

    Gonzalez Mateu, D.; Labrada, A.; Voronin, A.

    1991-01-01

    The vacuum evaporating technique used to prepare thin depositions, and the technical characteristics of the constructed installation are described. 235 U y 238 U nuclear target for the fission researches were obtained. Aluminium and gold self-supporting foils were obtained too

  14. Evaporation of tungsten in vacuum at low hydrogen and water vapor pressures

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Galkin, E.A.; Khromonozhkin, V.V.

    1981-01-01

    The results of experimental investigations of tungsten evaporation rates in the temperature range 1650-2500 K, partial hydrogen and water vapours pressures 1x10 -5 -10 Pa are presented. Experi-- mental plant, equipment employed and radiometric technique of tungsten evaporation study are described. The dependences of evaporation rate and probabilities of tungsten oxidation by residual vacuum water vapours and dependences of tungsten evaporation rate on partial hydrogen and water vapours pressures are determined [ru

  15. Vacuum drying plant for evaporator concentrates

    International Nuclear Information System (INIS)

    Benavides, E.

    2001-01-01

    Volume reduction systems applied to evaporator concentrates in PWR and BWR save a significant amount of drums. The concentration to dry product is a technique that reaches the maximum volume reduction, compared to conventional techniques (cementation, polymerisation). Four Spanish N.P.P. (3 PWR and 1 BWR) have selected ENSA's process by means of fixed ''in drum vacuum drying system''. A 130-litre steel drum is used for drying without any additional requirement except vacuum resistance. This steel drum is introduced into a standard 200-litre drum. Five centimeters concrete shielding cylinder exists between both drums. Final package is classified as 19 GO according to ENRESA's acceptance code (dry waste with 5 cm concrete between 130-l and 200-l drum). The generation of cemented waste in five N.P.P. versus dried waste will be reduced 83%. This reduction will save a considerable amount in disposal costs. (authors)

  16. Thermal and chemical evolution in the early solar system as recorded by FUN CAIs: Part I - Petrology, mineral chemistry, and isotopic composition of Allende FUN CAI CMS-1

    Science.gov (United States)

    Williams, C. D.; Ushikubo, T.; Bullock, E. S.; Janney, P. E.; Hines, R. R.; Kita, N. T.; Hervig, R. L.; MacPherson, G. J.; Mendybaev, R. A.; Richter, F. M.; Wadhwa, M.

    2017-03-01

    Detailed petrologic, geochemical and isotopic analyses of a new FUN CAI from the Allende CV3 meteorite (designated CMS-1) indicate that it formed by extensive melting and evaporation of primitive precursor material(s). The precursor material(s) condensed in a 16O-rich region (δ17O and δ18O ∼ -49‰) of the inner solar nebula dominated by gas of solar composition at total pressures of ∼10-3-10-6 bar. Subsequent melting of the precursor material(s) was accompanied by evaporative loss of magnesium, silicon and oxygen resulting in large mass-dependent isotope fractionations in these elements (δ25Mg = 30.71-39.26‰, δ29Si = 14.98-16.65‰, and δ18O = -41.57 to -15.50‰). This evaporative loss resulted in a bulk composition similar to that of compact Type A and Type B CAIs, but very distinct from the composition of the original precursor condensate(s). Kinetic fractionation factors and the measured mass-dependent fractionation of silicon and magnesium in CMS-1 suggest that ∼80% of the silicon and ∼85% of the magnesium were lost from its precursor material(s) through evaporative processes. These results suggest that the precursor material(s) of normal and FUN CAIs condensed in similar environments, but subsequently evolved under vastly different conditions such as total gas pressure. The chemical and isotopic differences between normal and FUN CAIs could be explained by sorting of early solar system materials into distinct physical and chemical regimes, in conjunction with discrete heating events, within the protoplanetary disk.

  17. Vacuum-thermal-evaporation: the route for roll-to-roll production of large-area organic electronic circuits

    International Nuclear Information System (INIS)

    Taylor, D M

    2015-01-01

    Surprisingly little consideration is apparently being given to vacuum-evaporation as the route for the roll-to-roll (R2R) production of large-area organic electronic circuits. While considerable progress has been made by combining silicon lithographic approaches with solution processing, it is not obvious that these will be compatible with a low-cost, high-speed R2R process. Most efforts at achieving this ambition are directed at conventional solution printing approaches such as inkjet and gravure. This is surprising considering that vacuum-evaporation of organic semiconductors (OSCs) is already used commercially in the production of organic light emitting diode displays. Beginning from a discussion of the materials and geometrical parameters determining transistor performance and drawing on results from numerous publications, this review makes a case for vacuum-evaporation as an enabler of R2R organic circuit production. The potential of the vacuum route is benchmarked against solution approaches and found to be highly competitive. For example, evaporated small molecules tend to have higher mobility than printed OSCs. High resolution metal patterning on plastic films is already a low-cost commercial process for high-volume packaging applications. Similarly, solvent-free flash-evaporation and polymerization of thin films on plastic substrates is also a high-volume commercial process and has been shown capable of producing robust gate dielectrics. Reports of basic logic circuit elements produced in a vacuum R2R environment are reviewed and shown to be superior to all-solution printing approaches. Finally, the main issues that need to be resolved in order to fully develop the vacuum route to R2R circuit production are highlighted. (paper)

  18. Evaporation regularities for the components of alloys during vacuum melting

    International Nuclear Information System (INIS)

    Anoshkin, N.F.

    1977-01-01

    The peculiarities of changes in the content of alloying components in vacuum melting (exemplified by Ti and Mo alloys) and the formation of the ingot composition in the bottom, central, and peripheral portions are considered. For the purposes of the investigation a process model was adopted, which is characterized by negligibly small evaporation of the alloy base, complete smoothing-out of the composition in the liquid bath volume, the constancy of the temperature over the entire evaporation surface, and a number of other assumptions, whose correctness was confirmed by the experiment. It is shown that the best possibilities for suppression of evaporation of components with a high vapour pressure are offered by a vacuum arc or electric slag melting, because they make it possible to conduct the process at high pressures with minimum overheating. A method of refining by overheating was developed. A method for refining alloys with volatile components was found; it consists of the first remelting ro remove volatile impurities and their deposition in the peripheral layers of the ingot, and the second remelting, which ensures the averaging of the ingot composition. Typical versions of distribution of the volatile components or the impurity across the ingot are singled out

  19. Numerical study on the performance of vacuum cooler and evaporation-boiling phenomena during vacuum cooling of cooked meat

    International Nuclear Information System (INIS)

    Jin, T.X.; Xu, L.

    2006-01-01

    The vacuum cooling of cooked meats is described in this paper. Based on the energy and mass balance, a modified mathematical model based on a previous model is developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of cooked meat. Validation experimentation is performed in the designed vacuum cooler. Boiling occurs inside the cooked meat. There is a boiling front, and the boiling front moves toward the center of the cooked meat as the vacuum cooling proceeds. The experimental data are compared with the simulation results. It is found that the differences of the temperature between the simulation and the experimentation are within 5 deg. C, and the deviation of weight loss between the simulation and the experimentation is within 4%. The simulation results agree with the experimental data well. The modified model can be used to predict the variation of the vacuum pressure in the chamber, the temperature and pressure distributions and the weight loss profiles of cylindrical cooked meats

  20. A multielement isotopic study of refractory FUN and F CAIs: Mass-dependent and mass-independent isotope effects

    Science.gov (United States)

    Kööp, Levke; Nakashima, Daisuke; Heck, Philipp R.; Kita, Noriko T.; Tenner, Travis J.; Krot, Alexander N.; Nagashima, Kazuhide; Park, Changkun; Davis, Andrew M.

    2018-01-01

    Calcium-aluminum-rich inclusions (CAIs) are the oldest dated objects that formed inside the Solar System. Among these are rare, enigmatic objects with large mass-dependent fractionation effects (F CAIs), which sometimes also have large nucleosynthetic anomalies and a low initial abundance of the short-lived radionuclide 26Al (FUN CAIs). We have studied seven refractory hibonite-rich CAIs and one grossite-rich CAI from the Murchison (CM2) meteorite for their oxygen, calcium, and titanium isotopic compositions. The 26Al-26Mg system was also studied in seven of these CAIs. We found mass-dependent heavy isotope enrichment in all measured elements, but never simultaneously in the same CAI. The data are hard to reconcile with a single-stage melt evaporation origin and may require reintroduction or reequilibration for magnesium, oxygen and titanium after evaporation for some of the studied CAIs. The initial 26Al/27Al ratios inferred from model isochrons span a range from <1 × 10-6 to canonical (∼5 × 10-5). The CAIs show a mutual exclusivity relationship between inferred incorporation of live 26Al and the presence of resolvable anomalies in 48Ca and 50Ti. Furthermore, a relationship exists between 26Al incorporation and Δ17O in the hibonite-rich CAIs (i.e., 26Al-free CAIs have resolved variations in Δ17O, while CAIs with resolved 26Mg excesses have Δ17O values close to -23‰). Only the grossite-rich CAI has a relatively enhanced Δ17O value (∼-17‰) in spite of a near-canonical 26Al/27Al. We interpret these data as indicating that fractionated hibonite-rich CAIs formed over an extended time period and sampled multiple stages in the isotopic evolution of the solar nebula, including: (1) an 26Al-poor nebula with large positive and negative anomalies in 48Ca and 50Ti and variable Δ17O; (2) a stage of 26Al-admixture, during which anomalies in 48Ca and 50Ti had been largely diluted and a Δ17O value of ∼-23‰ had been achieved in the CAI formation region; and (3

  1. Mean-field kinetic theory approach to evaporation of a binary liquid into vacuum

    Science.gov (United States)

    Frezzotti, A.; Gibelli, L.; Lockerby, D. A.; Sprittles, J. E.

    2018-05-01

    Evaporation of a binary liquid into near-vacuum conditions has been studied using numerical solutions of a system of two coupled Enskog-Vlasov equations. Liquid-vapor coexistence curves have been mapped out for different liquid compositions. The evaporation process has been investigated at a range of liquid temperatures sufficiently lower than the critical one for the vapor not to significantly deviate from the ideal behavior. It is found that the shape of the distribution functions of evaporating atoms is well approximated by an anisotropic Maxwellian distribution with different characteristic temperatures for velocity components normal and parallel to the liquid-vapor interface. The anisotropy reduces as the evaporation temperature decreases. Evaporation coefficients are computed based on the separation temperature and the maximum concentration of the less volatile component close to the liquid-vapor interface. This choice leads to values which are almost constant in the simulation conditions.

  2. Influence of Sn incorporation on the properties of CuInS2 thin films grown by vacuum evaporation method

    International Nuclear Information System (INIS)

    Zribi, M.; Rabeh, M. Ben; Brini, R.; Kanzari, M.; Rezig, B.

    2006-01-01

    Structural, morphological and optical properties of Sn-doped CuInS 2 thin films grown by double source thermal evaporation method were studied. Firstly, the films were annealed in vacuum after evaporation from 250 to 500 deg. C for Sn deposition time equal to 3 min. Secondly, the films deposited for several Sn evaporation times were annealed in vacuum after evaporation at 500 deg. C. The X-ray diffraction spectra indicated that polycrystalline Sn-doped CuInS 2 films were obtained and no Sn binary or ternary phases are observed for the Sn evaporation times equal to 5 min. Scanning electron microscopy observation revealed the decrease of the surface crystallinity with increasing the Sn evaporation times and the annealing temperatures. The Sn-doped samples after annealing have bandgap energy of 1.42-1.50 eV. Furthermore, we found that the Sn-doped CuInS 2 thin films exhibit N-type conductivity after annealing

  3. Vapor pressure and evaporation rate of certain heat-resistant compounds in a vacuum at high temperatures

    Science.gov (United States)

    Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.

    1985-01-01

    The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.

  4. Friction, Wear, and Evaporation Rates of Various Materials in Vacuum to 10(exp -7) mm Hg

    Science.gov (United States)

    Buckley, Donald H.; Swikert, Max; Johnson, Robert L.

    1961-01-01

    The requirements for bearings and seals to operate in the environment of space dictate a new area for lubrication research. The low ambient pressures encountered in space can be expected to influence the behavior of oil, grease, and solid-film lubricants. The property of these materials most significantly affected by low ambient pressures is the evaporation rate. Various investigators have therefore measured the evaporation rates of oils and greases in vacuum as one method of establishing their relative merit for space applications (1-3). The results of this work have given some indication as to the oils and greases with the greatest stability at reduced ambient pressures. Only limited experimental work, however, has been reported in the literature for inorganic solids and soft metals which have potential use as solid lubricant films or coatings for hard alloy substrates [e.g. Reference ( 4 )]. In general, the evaporation rates of these materials would be lower than those of oils and greases. These films might therefore be very attractive as lubricants for high vacuum service.

  5. Removing the by-products acetic acid and NH4+ from the l-tryptophan broth by vacuum thin film evaporation during l-tryptophan production

    Directory of Open Access Journals (Sweden)

    Qingyang Xu

    2018-05-01

    Full Text Available Background: During l-tryptophan production by Escherichia coli, the by-products, acetic acid and NH4+, accumulate in the fermentation broth, resulting in inhibited cell growth and activity and decreased l-tryptophan production. To improve the l-tryptophan yield and glucose conversion rate, acetic acid and NH4+ were removed under low-temperature vacuum conditions by vacuum scraper concentrator evaporation; the fermentation broth after evaporation was pressed into another fermenter to continue fermentation. To increase the volatilisation rate of acetic acid and NH4+ and reduce damage to bacteria during evaporation, different vacuum evaporation conditions were studied. Results: The optimum operating conditions were as follows: vacuum degree, 720 mm Hg; concentration ratio, 10%; temperature, 60°C; and feeding rate, 300 mL/min. The biomass yield of the control fermentation (CF and fermentation by vacuum evaporation (VEF broths was 55.1 g/L and 58.3 g/L at 38 h, respectively, (an increase of 5.8%; the living biomass yield increased from 8.9 (CF to 10.2 pF (VEF; an increase of 14.6%. l-tryptophan production increased from 50.2 g/L (CF to 60.2 g/L (VEF (an increase of 19.9%, and glucose conversion increased from 18.2% (CF to 19.5% (VEF; an increase of 7.1%. The acetic acid concentrations were 2.74 g/L and 6.70 g/L, and the NH4+ concentrations were 85.3 mmol/L and 130.9 mmol/L in VEF and CF broths, respectively. Conclusions: The acetic acid and NH4+ in the fermentation broth were quickly removed using the vacuum scraper concentrator, which reduced bacterial inhibition, enhanced bacterial activity, and improved the production of l-tryptophan and glucose conversion rate.How to cite: Xu Q, Bai F, Chen N, et al. Removing the by-products acetic acid and NH4+ from the l-tryptophan broth by vacuum thin film evaporation during l-tryptophan production. Electron J Biotechnol 2018; 33. https://doi.org/10.1016/j.ejbt.2018.04.003. Keywords: Acetic acid

  6. CAIs in Semarkona (LL3.0)

    Science.gov (United States)

    Mishra, R. K.; Simon, J. I.; Ross, D. K.; Marhas, K. K.

    2016-01-01

    Calcium, Aluminum-rich inclusions (CAIs) are the first forming solids of the Solar system. Their observed abundance, mean size, and mineralogy vary quite significantly between different groups of chondrites. These differences may reflect the dynamics and distinct cosmochemical conditions present in the region(s) of the protoplanetary disk from which each type likely accreted. Only about 11 such objects have been found in L and LL type while another 57 have been found in H type ordinary chondrites, compared to thousands in carbonaceous chondrites. At issue is whether the rare CAIs contained in ordinary chondrites truly reflect a distinct population from the inclusions commonly found in other chondrite types. Semarkona (LL3.00) (fall, 691 g) is the most pristine chondrite available in our meteorite collection. Here we report petrography and mineralogy of 3 CAIs from Semarkona

  7. Vacuum evaporation of KCl-NaCl salts. Part 2: Vaporization-rate model and experimental results

    International Nuclear Information System (INIS)

    Wang, L.L.; Wallace, T.C. Sr.; Hampel, F.G.; Steele, J.H.

    1996-01-01

    Separation of chloride salts from the actinide residue by vacuum evaporation is a promising method of treating wastes from the pyrochemical plutonium processes. A model based on the Hertz-Langmuir relation is used to describe how evaporation rates of the binary KCl-NaCl system change with time. The effective evaporation coefficient (α), which is a ratio of the actual evaporation rate to the theoretical maximum, was obtained for the KCl-NaCl system using this model. In the temperature range of 640 C to 760 C, the effective evaporation coefficient ranges from ∼0.4 to 0.1 for evaporation experiments conducted at 0.13 Pa. At temperatures below the melting point, the lower evaporation coefficients are suggested to result from the more complex path that a molecule needs to follow before escaping to the gas phase. At the higher liquid temperatures, the decreasing evaporation coefficients result from a combination of the increasing vapor-flow resistances and the heat-transfer effects at the evaporation surface and the condensate layer. The microanalysis of the condensate verified that composition of the condensate changes with time, consistent with the model calculation. The microstructural examination revealed that the vaporate may have condensed as a single solution phase, which upon cooling forms fine lamellar structures of the equilibrium KCl and NaCl phases. In conclusion, the optimum design of the evaporation process and equipment must take the mass and heat transfer factors and equipment materials issues into consideration

  8. The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation

    Directory of Open Access Journals (Sweden)

    R.C.L.B. Rodrigues

    2001-09-01

    Full Text Available This paper analyzes the influence of pH, temperature and degree of hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after the vacuum evaporation process. Furfural and 5-Hydroxymethylfurfural were almost totally removed in all the experiments, irrespective of pH and temperature and whether the charcoal was added before or after the vacuum evaporation process. Adding activated charcoal before the vacuum evaporation process favored the removal of phenolic compounds for all values of pH. Acetic acid, on the contrary, was most effectively removed when the activated charcoal was added after the vacuum evaporation process at an acid pH (0.92 and at the highest degree of hydrolyzate concentration (f=4. However, addition of activated charcoal before or after vacuum evaporation at an acid pH (0.92 and at the highest degree of hydrolyzate concentration (f=4 favored the removal of both acetic acid and phenolic compounds.

  9. E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI

    Directory of Open Access Journals (Sweden)

    Garcia-Vallvé Santiago

    2008-01-01

    Full Text Available Abstract Background The Codon Adaptation Index (CAI is a measure of the synonymous codon usage bias for a DNA or RNA sequence. It quantifies the similarity between the synonymous codon usage of a gene and the synonymous codon frequency of a reference set. Extreme values in the nucleotide or in the amino acid composition have a large impact on differential preference for synonymous codons. It is thence essential to define the limits for the expected value of CAI on the basis of sequence composition in order to properly interpret the CAI and provide statistical support to CAI analyses. Though several freely available programs calculate the CAI for a given DNA sequence, none of them corrects for compositional biases or provides confidence intervals for CAI values. Results The E-CAI server, available at http://genomes.urv.es/CAIcal/E-CAI, is a web-application that calculates an expected value of CAI for a set of query sequences by generating random sequences with G+C and amino acid content similar to those of the input. An executable file, a tutorial, a Frequently Asked Questions (FAQ section and several examples are also available. To exemplify the use of the E-CAI server, we have analysed the codon adaptation of human mitochondrial genes that codify a subunit of the mitochondrial respiratory chain (excluding those genes that lack a prokaryotic orthologue and are encoded in the nuclear genome. It is assumed that these genes were transferred from the proto-mitochondrial to the nuclear genome and that its codon usage was then ameliorated. Conclusion The E-CAI server provides a direct threshold value for discerning whether the differences in CAI are statistically significant or whether they are merely artifacts that arise from internal biases in the G+C composition and/or amino acid composition of the query sequences.

  10. Calcium-aluminum-rich inclusions with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early Solar System inferred from in situ high-precision magnesium-isotope measurements

    Science.gov (United States)

    Park, Changkun; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Davis, Andrew M.; Bizzarro, Martin

    2017-03-01

    Calcium-aluminum-rich inclusions with isotopic mass fractionation effects and unidentified nuclear isotopic anomalies (FUN CAIs) have been studied for more than 40 years, but their origins remain enigmatic. Here we report in situ high precision measurements of aluminum-magnesium isotope systematics of FUN CAIs by secondary ion mass spectrometry (SIMS). Individual minerals were analyzed in six FUN CAIs from the oxidized CV3 carbonaceous chondrites Axtell (compact Type A CAI Axtell 2271) and Allende (Type B CAIs C1 and EK1-4-1, and forsterite-bearing Type B CAIs BG82DH8, CG-14, and TE). Most of these CAIs show evidence for excess 26Mg due to the decay of 26Al. The inferred initial 26Al/27Al ratios [(26Al/27Al)0] and the initial magnesium isotopic compositions (δ26Mg0) calculated using an exponential law with an exponent β of 0.5128 are (3.1 ± 1.6) × 10-6 and 0.60 ± 0.10‰ (Axtell 2271), (3.7 ± 1.5) × 10-6 and -0.20 ± 0.05‰ (BG82DH8), (2.2 ± 1.1) × 10-6 and -0.18 ± 0.05‰ (C1), (2.3 ± 2.4) × 10-5 and -2.23 ± 0.37‰ (EK1-4-1), (1.5 ± 1.1) × 10-5 and -0.42 ± 0.08‰ (CG-14), and (5.3 ± 0.9) × 10-5 and -0.05 ± 0.08‰ (TE) with 2σ uncertainties. We infer that FUN CAIs recorded heterogeneities of magnesium isotopes and 26Al in the CAI-forming region(s). Comparison of 26Al-26Mg systematics, stable isotope (oxygen, magnesium, calcium, and titanium) and trace element studies of FUN and non-FUN igneous CAIs indicates that there is a continuum among these CAI types. Based on these observations and evaporation experiments on CAI-like melts, we propose a generic scenario for the origin of igneous (FUN and non-FUN) CAIs: (i) condensation of isotopically normal solids in an 16O-rich gas of approximately solar composition; (ii) formation of CAI precursors by aggregation of these solids together with variable abundances of isotopically anomalous grains-possible carriers of unidentified nuclear (UN) effects; and (iii) melt evaporation of these precursors

  11. Particulated articular cartilage: CAIS and DeNovo NT.

    Science.gov (United States)

    Farr, Jack; Cole, Brian J; Sherman, Seth; Karas, Vasili

    2012-03-01

    Cartilage Autograft Implantation System (CAIS; DePuy/Mitek, Raynham, MA) and DeNovo Natural Tissue (NT; ISTO, St. Louis, MO) are novel treatment options for focal articular cartilage defects in the knee. These methods involve the implantation of particulated articular cartilage from either autograft or juvenile allograft donor, respectively. In the laboratory and in animal models, both CAIS and DeNovo NT have demonstrated the ability of the transplanted cartilage cells to "escape" from the extracellular matrix, migrate, multiply, and form a new hyaline-like cartilage tissue matrix that integrates with the surrounding host tissue. In clinical practice, the technique for both CAIS and DeNovo NT is straightforward, requiring only a single surgery to affect cartilage repair. Clinical experience is limited, with short-term studies demonstrating both procedures to be safe, feasible, and effective, with improvements in subjective patient scores, and with magnetic resonance imaging evidence of good defect fill. While these treatment options appear promising, prospective randomized controlled studies are necessary to refine the indications and contraindications for both CAIS and DeNovo NT.

  12. Deposition and characterization of ZnS/Si heterojunctions produced by vacuum evaporation

    Science.gov (United States)

    Landis, Geoffrey A.; Loferski, Joseph J.; Beaulieu, Roland

    1988-01-01

    Isotype heterojunctions of ZnS (lattice constant 5.41 A) were grown on silicon (lattice constant 5.43 A) p-n junctions to form a minority-carrier mirror. The deposition process was vacuum evaporation from a ZnS powder source onto a heated (450 C) substrate. Both planar (100) and textured (111) surfaces were used. A reduction of the minority-carrier recombination at the surface was seen from increased short-wavelength quantum response and increased illuminated open-circuit voltage. The minority-carrier diffusion length was not degraded by the process.

  13. Microstructures of Hibonite From an ALH A77307 (CO3.0) CAI: Evidence for Evaporative Loss of Calcium

    Science.gov (United States)

    Han, Jangmi; Brearley, Adrian J.; Keller, Lindsay P.

    2014-01-01

    Hibonite is a comparatively rare, primary phase found in some CAIs from different chondrite groups and is also common in Wark-Lovering rims [1]. Hibonite is predicted to be one of the earliest refractory phases to form by equilibrium condensation from a cooling gas of solar composition [2] and, therefore, can be a potential recorder of very early solar system processes. In this study, we describe the microstructures of hibonite from one CAI in ALH A77307 (CO3.0) using FIB/TEM techniques in order to reconstruct its formational history.

  14. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  15. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  16. Magnetic anisotropy in iron thin films evaporated under ultra-high vacuum

    International Nuclear Information System (INIS)

    Dinhut, J.F.; Eymery, J.P.; Krishnan, R.

    1992-01-01

    α-iron thin films with thickness ranging between 20 and 1500 nm have been evaporated using an electron gun under ultra-high vacuum conditions (5.10 -7 P). The columnar structure observed in cross-sectional TEM is related to the large surface diffusion. From Moessbauer spectra the spin orientation is deduced and found to be influenced by the column axis. Spins can be obtained perpendicularly to the film plane by rotating the substrte during the deposition. The magnetization of the samples is reduced by about 30% and the reduction attributed to the interstitial space which increases with the incident angle. The substrate rotation also decreases Ku( parallel ) by a factor 2 and increases Ku( perpendicular to ). (orig.)

  17. Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula.

    Science.gov (United States)

    Simon, Justin I; Hutcheon, Ian D; Simon, Steven B; Matzel, Jennifer E P; Ramon, Erick C; Weber, Peter K; Grossman, Lawrence; DePaolo, Donald J

    2011-03-04

    Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of (16)O first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely (16)O-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun.

  18. Effects of Sulfurization Temperature on Properties of CZTS Films by Vacuum Evaporation and Sulfurization Method

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2013-01-01

    Full Text Available Copper zinc tin sulfur (CZTS thin films have been extensively studied in recent years for their advantages of low cost, high absorption coefficient (≥104 cm−1, appropriate band gap (~1.5 eV, and nontoxicity. CZTS thin films are promising materials of solar cells like copper indium gallium selenide (CIGS. In this work, CZTS thin films were prepared on glass substrates by vacuum evaporation and sulfurization method. Sn/Cu/ZnS (CZT precursors were deposited by thermal evaporation and then sulfurized in N2 + H2S atmosphere at temperatures of 360–560°C to produce polycrystalline CZTS thin films. It is found that there are some impurity phases in the thin films with the sulfurization temperature less than 500°C, and the crystallite size of CZTS is quite small. With the further increase of the sulfurization temperature, the obtained thin films exhibit preferred (112 orientation with larger crystallite size and higher density. When the sulfurization temperature is 500°C, the band gap energy, resistivity, carrier concentration, and mobility of the CZTS thin films are 1.49 eV, 9.37 Ω · cm, 1.714×1017 cm−3, and 3.89 cm2/(V · s, respectively. Therefore, the prepared CZTS thin films are suitable for absorbers of solar cells.

  19. Ultra-high vacuum technology for accelerators

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Hilleret, Noël; Strubin, Pierre M

    2002-01-01

    The lectures will start with a review of the basics of vacuum physics required to build Ultra High Vacuum (UHV) systems, such as static and dynamic outgassing. Before reviewing the various pumping and measurement devices, including the most modern one like Non Evaporable Getter (NEG) coatings, an overview of adequate materials to be used in UHV systems will be given together with their treatment (e.g. cleaning procedures and bake out). Practical examples based on existing or future accelerators will be used to illustrate the topics. Finally, a short overview of modern vacuum controls and interlocks will be given.

  20. Calcium and Titanium Isotope Fractionation in CAIS: Tracers of Condensation and Inheritance in the Early Solar Protoplanetary Disk

    Science.gov (United States)

    Simon, J. I.; Jordan, M. K.; Tappa, M. J.; Kohl, I. E.; Young, E. D.

    2016-01-01

    The chemical and isotopic compositions of calcium-aluminum-rich inclusions (CAIs) can be used to understand the conditions present in the protoplantary disk where they formed. The isotopic compositions of these early-formed nebular materials are largely controlled by chemical volatility. The isotopic effects of evaporation/sublimation, which are well explained by both theory and experimental work, lead to enrichments of the heavy isotopes that are often exhibited by the moderately refractory elements Mg and Si. Less well understood are the isotopic effects of condensation, which limits our ability to determine whether a CAI is a primary condensate and/or retains any evidence of its primordial formation history.

  1. Non-Evaporable Getter Thin Film Coatings for Vacuum Applications

    CERN Document Server

    Prodromides, A E

    2002-01-01

    Getters are solid materials capable of chemisorbing gas molecules on their surface: getters are chemical pumps. They are widely used for a variety of applications such as in particle accelerators, vacuum tubes, field-emission display (FED), inert gas purification systems, H2 plasma purification, hydrogen species recycling as in the Tokamak Fusion Test Reactor. Among the different Non-Evaporable Getter (NEG) materials tested, the TiZrV alloys have the lowest activation temperature. For this reason, the TiZrV coatings were the object of this work. In particular, the aim of this investigation was to understand how to optimise three important properties of TiZrV coatings: to achieve the lowest possible activation temperature (Ta), and to obtain the highest pumping speed and surface pumping capacity. This objective is important in the context of the Large Hadron Collider (LHC) accelerator, since, before this work, the understanding and the knowledge of the TiZrV coatings properties were insufficient to adopt it fo...

  2. Vacuum Pumping Performance Comparison of Non-Evaporable Getter Thin Films Deposited Using Argon and Krypton as Sputtering Gases

    CERN Document Server

    Liu, Xianghong; He, Yun; Li, Yulin

    2005-01-01

    Owing to the outstanding vacuum performance and the low secondary electron yield, non-evaporable getter (NEG) thin film deposited onto interior walls has gained widespread acceptance and has been incorporated into many accelerator vacuum system designs. The titanium-zirconium-vanadium (T-Zr-V) NEG thin films were deposited onto the interior wall of stainless steel pipes via DC magnetron sputtering method using either argon or krypton gas as sputtering gas. Vacuum pumping evaluation tests were carried out to compare vacuum pumping performances of the Ti-Zr-V NEG thin films deposited using argon or krypton. The results showed much higher initial pumping speed for the Kr-sputtered NEG film than the Ar-sputtered film, though both films have similar activation behavior. The compositions and textures of both thin films were measured to correlate to the pumping performances.

  3. Coordinated Oxygen Isotopic and Petrologic Studies of CAIS Record Varying Composition of Protosolar

    Science.gov (United States)

    Simon, Justin I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2012-01-01

    Ca-, Al-rich inclusions (CAIs) record the O-isotope composition of Solar nebular gas from which they grew [1]. High spatial resolution O-isotope measurements afforded by ion microprobe analysis across the rims and margin of CAIs reveal systematic variations in (Delta)O-17 and suggest formation from a diversity of nebular environments [2-4]. This heterogeneity has been explained by isotopic mixing between the O-16-rich Solar reservoir [6] and a second O-16-poor reservoir (probably nebular gas) with a "planetary-like" isotopic composition [e.g., 1, 6-7], but the mechanism and location(s) where these events occur within the protoplanetary disk remain uncertain. The orientation of large and systematic variations in (Delta)O-17 reported by [3] for a compact Type A CAI from the Efremovka reduced CV3 chondrite differs dramatically from reports by [4] of a similar CAI, A37 from the Allende oxidized CV3 chondrite. Both studies conclude that CAIs were exposed to distinct, nebular O-isotope reservoirs, implying the transfer of CAIs among different settings within the protoplanetary disk [4]. To test this hypothesis further and the extent of intra-CAI O-isotopic variation, a pristine compact Type A CAI, Ef-1 from Efremovka, and a Type B2 CAI, TS4 from Allende were studied. Our new results are equally intriguing because, collectively, O-isotopic zoning patterns in the CAIs indicate a progressive and cyclic record. The results imply that CAIs were commonly exposed to multiple environments of distinct gas during their formation. Numerical models help constrain conditions and duration of these events.

  4. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    Science.gov (United States)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  5. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum

    Science.gov (United States)

    Chao, P.J.

    1974-01-01

    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  6. Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, S. [SoloPower, Inc., 5981 Optical Ct., San Jose, CA 95138 (United States); Bacaksiz, E., E-mail: eminb@ktu.edu.tr [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Parlak, M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Yilmaz, S.; Polat, I.; Altunbas, M. [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuerksoy, M.; Topkaya, R. [Department of Physics, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey); Ozdogan, K. [Department of Physics, Yildiz Technical University, 34210 Istanbul (Turkey)

    2011-10-17

    Highlights: {yields} Cadmium sulphide thin films were deposited by vacuum evaporation. {yields} Elemental Mn was deposited onto CdS thin films by using electron beam evaporation and annealed under vacuum at different temperatures. {yields} Structural, optical and magnetic studies of Mn-doped CdS have been investigated. {yields} X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. {yields} Magnetic measurements show that Mn-doped CdS thin films exhibit a ferromagnetism behavior at room temperature. - Abstract: The effect of Mn-doping on the vacuum deposited CdS thin films has been investigated by studying the changes in the structural, optical and magnetic properties of the films. A thin Mn layer evaporated on the CdS film surface served as the source layer for the diffusion doping. Doping was accomplished by annealing the CdS/Mn stack layers at the temperature range from 300 deg. C to 400 deg. C in step of 50 deg. C for 30 min under vacuum. The X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. The incorporation of Mn did not cause any change in the texture but reduced the peak intensity and lead to a smaller crystallite size. Investigation of surface morphology using atomic force microscopy confirmed the decrease in the grain size with the Mn diffusion. In addition, a more uniform grain size distribution was observed in the doped films. X-ray photoelectron spectroscopy analysis showed that Mn atoms on the surface of the films were bounded to either sulphur or oxygen atoms. Auger electron spectroscopy of the diffusion-doped CdS sample at 350 deg. C indicated that the atomic Mn concentration was higher close to the surface region and Mn was distributed with a steadily decreasing profile through the bulk of the film with an average atomic concentration value around few

  7. A risk management approach to CAIS development

    Science.gov (United States)

    Hart, Hal; Kerner, Judy; Alden, Tony; Belz, Frank; Tadman, Frank

    1986-01-01

    The proposed DoD standard Common APSE Interface Set (CAIS) was developed as a framework set of interfaces that will support the transportability and interoperability of tools in the support environments of the future. While the current CAIS version is a promising start toward fulfilling those goals and current prototypes provide adequate testbeds for investigations in support of completing specifications for a full CAIS, there are many reasons why the proposed CAIS might fail to become a usable product and the foundation of next-generation (1990'S) project support environments such as NASA's Space Station software support environment. The most critical threats to the viability and acceptance of the CAIS include performance issues (especially in piggybacked implementations), transportability, and security requirements. To make the situation worse, the solution to some of these threats appears to be at conflict with the solutions to others.

  8. OPTIMASI DENGAN ALGORITMA RSM-CCD PADA EVAPORATOR VAKUM WATERJET DENGAN PENGENDALI SUHU FUZZY PADA PEMBUATAN PERMEN SUSU (RSM-CCD Algorithm for Optimizing Waterjet Vacuum Evaporator Using Fuzzy Temperature Control in The Milk Candy Production

    Directory of Open Access Journals (Sweden)

    Yusuf Hendrawan

    2016-10-01

    Full Text Available Milk candy is a product which has to be produced under a high temperature to achieve the caramelization process. The use of vacuum system during a food processing is one of the alternatives to engineer the value of a material’s boiling point. The temperature control system and the mixing speed in machine that produce the milk candy were expected to be able to prevent the formation of off-flavour in the final product. A smart control system based on fuzzy logic was applied in the temperature control within the double jacket vacuum evaporator machine that needs stable temperature in the cooking process. The objective of this research is developing vacuum evaporator for milk candy production using fuzzy temperature control. The result in machine and system planning showed that the process of milk candy production was going on well. The parameter optimization of water content and ash content purposed to acquire the temperature point parameter and mixing speed in milk candy production. The optimization method was response surface methodology (RSM, by using the model of central composite design (CCD. The optimization resulted 90.18oC for the temperature parameter and 512 RPM for the mixing speed, with the prediction about 4.69% of water content and 1.57% of ash content. Keywords: Optimization, vacuum evaporator, fuzzy, milk candy, response surface methodology ABSTRAK Permen susu merupakan salah satu produk yang diolah dengan suhu tinggi untuk mencapai proses karamelisasi. Pengolahan pangan dengan sistem vakum merupakan salah satu alternatif untuk merekayasa nilai titik didih suatu bahan. Sistem pengendalian suhu serta kecepatan pengadukan pada mesin produksi permen susu diharapkan dapat mencegah terbentuknya partikel hitam (off-flavour pada produk akhir. Sistem kontrol cerdas logika fuzzy diaplikasikan dalam pengendalian suhu pada mesin evaporator vakum double jacket yang membutuhkan tingkat stabilitas suhu pemasakan permen susu. Tujuan dari

  9. Pentacene Active Channel Layers Prepared by Spin-Coating and Vacuum Evaporation Using Soluble Precursors for OFET Applications

    OpenAIRE

    Ochiai, Shizuyasu; Palanisamy, Kumar; Kannappan, Santhakumar; Shin, Paik-Kyun

    2012-01-01

    Pentacene OFETs of bottom-gate/bottom-contact were fabricated with three types of pentacene organic semiconductors and cross linked Poly(4-vinylphenol) or polycarbonate as gate dielectric layer. Two different processes were used to prepare the pentacene active channel layers: (1) spin-coating on dielectric layer using two different soluble pentacene precursors of SAP and DMP; (2) vacuum evaporation on PC insulator. X-ray diffraction studies revealed coexistence of thin film and bulk phase of ...

  10. Behavior of pressure rise and condensation caused by water evaporation under vacuum at high temperature

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Kunugi, Tomoaki; Yamazaki, Seiichiro; Fujii, Sadao

    1998-01-01

    Pressure rise and condensation characteristics during the ingress-of-coolant event (ICE) in fusion reactors were investigated using the preliminary ICE apparatus with a vacuum vessel (VV), an additional tank (AT) and an isolation valve (IV). A surface of the AT was cooled by water at RT. The high temperature and pressure water was injected into the VV which was heated up to 250degC and pressure and temperature transients in the VV were measured. The pressure increased rapidly with an injection time of the water because of the water evaporation. After the IV was opened and the VV was connected with the AT, the pressure in the VV decreased suddenly. From a series of the experiments, it was confirmed that control factors on the pressure rise were the flushing evaporation and boiling heat transfer in the VV, and then, condensation of the vapor after was effective to the depressurization in the VV. (author)

  11. Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

    Directory of Open Access Journals (Sweden)

    Jose Alberto Alvarado

    2015-04-01

    Full Text Available This work presents a novel technique to deposit ZnO thin films through a metal vacuum evaporation technique using colloidal nanoparticles (average size of 30 nm, which were synthesized by our research group, as source. These thin films had a thickness between 45 and 123 nm as measured by profilometry. XRD patterns of the deposited thin films were obtained. According to the HRSEM micrographs worm-shaped nanostructures are observed in samples annealed at 600 °C and this characteristic disappears as the annealing temperature increases. The films obtained were annealed from 25 to 1000 °C, showing a gradual increase in transmittance spectra up to 85%. The optical band gaps obtained for these films are about 3.22 eV. The PL measurement shows an emission in the red and in the violet region and there is a correlation with the annealing process.

  12. NALDA (Naval Aviation Logistics Data Analysis) CAI (computer aided instruction)

    Energy Technology Data Exchange (ETDEWEB)

    Handler, B.H. (Oak Ridge K-25 Site, TN (USA)); France, P.A.; Frey, S.C.; Gaubas, N.F.; Hyland, K.J.; Lindsey, A.M.; Manley, D.O. (Oak Ridge Associated Universities, Inc., TN (USA)); Hunnum, W.H. (North Carolina Univ., Chapel Hill, NC (USA)); Smith, D.L. (Memphis State Univ., TN (USA))

    1990-07-01

    Data Systems Engineering Organization (DSEO) personnel developed a prototype computer aided instruction CAI system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project was to provide a CAI prototype that could be used as an enhancement to existing NALDA training. The CAI prototype project was performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. The findings from Phase I are documented in Recommended CAI Approach for the NALDA System (Duncan et al., 1987). In Phase II, a structured design and specifications were developed, and a prototype CAI system was created. A report, NALDA CAI Prototype: Phase II Final Report, was written to record the findings and results of Phase II. NALDA CAI: Recommendations for an Advanced Instructional Model, is comprised of related papers encompassing research on computer aided instruction CAI, newly developing training technologies, instructional systems development, and an Advanced Instructional Model. These topics were selected because of their relevancy to the CAI needs of NALDA. These papers provide general background information on various aspects of CAI and give a broad overview of new technologies and their impact on the future design and development of training programs. The paper within have been index separately elsewhere.

  13. NWA10758: A New CV3 Chondrite Bearing a Giant CAI with Hibonite-Rich Wark-Lovering Rim

    Science.gov (United States)

    Ross, D. K.; Simon, J. I.; Zolensky, M.

    2017-01-01

    Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx. 20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.

  14. Effect of ambient hydrogen sulfide on the physical properties of vacuum evaporated thin films of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Beer Pal [Department of Physics, C.C.S. University, Meerut 250004 (India)], E-mail: drbeerpal@gmail.com; Singh, Virendra [Forensic Science Laboratory, Malviya Nagar, New Delhi 110017 (India); Tyagi, R.C.; Sharma, T.P. [Department of Physics, C.C.S. University, Meerut 250004 (India)

    2008-02-15

    Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H{sub 2}S {approx}10{sup -4} Torr). The H{sub 2}S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH{sub 2}){sub 2}] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 deg. C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H{sub 2}S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.

  15. Northwest Africa 10758: A New CV3 Chondrite Bearing a Giant CAI with Hibonite-Rich Wark-Lovering Rim

    Science.gov (United States)

    Ross, D. K.; Simon, J. I.; Zolensky, M.

    2017-01-01

    Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx.20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.

  16. Computers for Your Classroom: CAI and CMI.

    Science.gov (United States)

    Thomas, David B.; Bozeman, William C.

    1981-01-01

    The availability of compact, low-cost computer systems provides a means of assisting classroom teachers in the performance of their duties. Computer-assisted instruction (CAI) and computer-managed instruction (CMI) are two applications of computer technology with which school administrators should become familiar. CAI is a teaching medium in which…

  17. Influence of the evaporation rate and the evaporation mode on the hydrogen sorption kinetics of air-exposed magnesium films

    International Nuclear Information System (INIS)

    Leon, A.; Knystautas, E.J.; Huot, J.; Schulz, R.

    2006-01-01

    It has been shown that the hydrogen sorption properties of air-exposed magnesium films are influenced by the deposition parameters such as the evaporation rate or the evaporation mode used during their preparation. As the evaporation rate increases, the structure of the film tends to be highly oriented along the [002] direction and the kinetics of hydrogen absorption and desorption are faster. Moreover, the hydrogen sorption kinetics of magnesium films prepared with an electron beam source under a high vacuum are faster by almost a factor of two compared to those prepared using resistive heating under low vacuum. These two parameters reduce drastically the activation and the incubation period during hydrogen absorption and desorption, respectively

  18. 242-A evaporator hazards assessment

    International Nuclear Information System (INIS)

    Johnson, T.L.

    1998-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 242-A Evaporator, on the Hanford Site. Through this document the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated. The evaporator sues a conventional, forced-circulation, vacuum evaporation system to concentrate radioactive waste solutions. This concentration results in the reduction in waste volume and reduces the number of double-shelled tanks required to store the waste

  19. Heteroepitaxial Growth of Vacuum-Evaporated Si-Ge Films on Nano structured Silicon Substrates

    International Nuclear Information System (INIS)

    Ayu Wazira Azhari; Ayu Wazira Azhari; Kamaruzzaman Sopian; Saleem Hussain Zaidi

    2015-01-01

    In this study, a low-cost vacuum-evaporated technique is used in the heteroepitaxial growth of Si-Ge films. Three different surface variations are employed: for example polished Si, Si micro pyramids and Si nano pillars profiles. A simple metal-assisted chemical etching method is used to fabricate the Si nano pillars, with Ag acting as a catalyst. Following deposition, substrates are subjected to post-deposition thermal annealing at 1000 degree Celsius to improve the crystallinity of the Ge layer. Optical and morphological studies of surface area are conducted using field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray (EDX), Raman spectroscopy and infrared spectroscopy. From the infrared spectroscopy analysis, the energy bandgap for Si-Ge films is estimated to be around 0.94 eV. This high-quality Si-Ge film is most favourable for optics, optoelectronics and high-efficiency solar cell applications. (author)

  20. Salt evaporation behaviors of uranium deposits from an electrorefiner

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Gyu Hwan Oh; Sung Chan Hwang; Young Ho Kang; Hansoo Lee; Eung Ho Kim; Seong-Won Park; Jong Hyeon Lee

    2010-01-01

    From an electrorefining process, uranium deposits were recovered at the solid cathode of an electrorefining system. The uranium deposits from the electrorefiner contained about 30-40 wt% salts. In order to recover pure uranium and transform it into metal ingots, these salts have to be removed. A salt distiller was adapted for a salt evaporation. A batch operation for the salt removal was carried out by a heating and a vacuum evaporation. The operational conditions were a 700-1,000 deg C hold temperature and less than a 1 Torr under Argon atmosphere, respectively. The behaviors of the salt evaporations were investigated by focusing on the effects of the pressure and the holding temperature for the salt distillation. The removal efficiencies of the salts were obtained with regard to the operational conditions. The experimental results of the salt evaporations were evaluated by using the Hertz-Langmuir relation. The effective evaporation coefficients of this relation were obtained with regards to the vacuum pressures and the hold temperatures. The higher the vacuum pressure and the higher the holding temperature were, the higher the removal efficiencies of the salts were. (author)

  1. Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation.

    Science.gov (United States)

    Zhu, Xuejie; Yang, Dong; Yang, Ruixia; Yang, Bin; Yang, Zhou; Ren, Xiaodong; Zhang, Jian; Niu, Jinzhi; Feng, Jiangshan; Liu, Shengzhong Frank

    2017-08-31

    Chemical composition and film quality are two key figures of merit for large-area high-efficiency perovskite solar cells. To date, all studies on mixed perovskites have used solution-processing, which results in imperfect surface coverage and pin-holes generated during solvent evaporation, execrably influencing the stability and efficiency of perovskite solar cells. Herein, we report our development using a vacuum co-evaporation deposition method to fabricate pin-hole-free cesium (Cs)-substituted perovskite films with complete surface coverage. Apart from the simplified procedure, the present method also promises tunable band gap, reduced trap-state density and longer carrier lifetime, leading to solar cell efficiency as high as 20.13%, which is among the highest reported for planar perovskite solar cells. The splendid performance is attributed to superior merits of the Cs-substituted perovskite film including tunable band gap, reduced trap-state density and longer carrier lifetime. Moreover, the Cs-substituted perovskite device without encapsulation exhibits significantly higher stability in ambient air compared with the single-component counterpart. When the Cs-substituted perovskite solar cells are stored in dark for one year, the PCE remains at 19.25%, degrading only 4.37% of the initial efficiency. The excellent stability originates from reduced lattice constant and relaxed strain in perovskite lattice by incorporating Cs cations into the crystal lattice, as demonstrated by the positive peak shifts and reduced peak width in X-ray diffraction analysis.

  2. An ion microprobe study of CAIs from CO3 meteorites. [Abstract only

    Science.gov (United States)

    Russell, S. S.; Greenwood, R. C.; Fahey, A. J.; Huss, G. R.; Wasserburg, G. J.

    1994-01-01

    When attempting to interpret the history of Ca, Al-rich inclusions (CAIs) it is often difficult to distinguish between primary features inherited from the nebula and those produced during secondary processing on the parent body. We have undertaken a systematic study of CAIs from 10 CO chondrites, believed to represent a metamorphic sequence with the goal of distinguishing primary and secondary features. ALHA 77307 (3.0), Colony (3.0), Kainsaz (3.1), Felix (3.2), ALH 82101 (3.3), Ornans (3.3), Lance (3.4), ALHA 77003 (3.5), Warrenton (3.6), and Isna (3.7) were examined by Scanning Electron Microscopy (SEM) and optical microscopy. We have identified 141 CAIs within these samples, and studied in detail the petrology of 34 inclusions. The primary phases in the lower petrologic types are spinel, melilite, and hibonite. Perovskite, FeS, ilmenite, anorthite, kirschsteinite, and metallic Fe are present as minor phases. Melilite becomes less abundant in higher petrologic types and was not detected in chondrites of type 3.5 and above, confirming previous reports that this mineral easily breaks down during heating. Iron, an element that would not be expected to condense at high temperatures, has a lower abundance in spinel from low-petrologic-type meteorites than those of higher grade, and CaTiO3 is replaced by FeTiO3 in meteorites of higher petrologic type. The abundance of CAIs is similar in each meteorite. Eight inclusions have been analyzed by ion probe. The results are summarized. The results obtained to date show that CAIs in CO meteorites, like those from other meteorite classes, contain Mg* and that Mg in some inclusions has been redistributed.

  3. COMPARISON OF VACUUM AND HIGH PRESSURE EVAPORATED WOOD HYDROLYZATE FOR ETHANOL PRODUCTION BY REPEATED FED-BATCH USING FLOCCULATING SACCHAROMYCES CEREVISIAE

    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda

    2009-02-01

    Full Text Available With the aim of increasing the sugars concentration in dilute-acid ligno-cellulosic hydrolyzate to more than 100 g/l for industrial applications, the hydrolyzate from spruce was concentrated about threefold by high-pressure or vacuum evaporations. It was then fermented by repeated fed-batch cultivation using flocculating Saccharomyces cerevisiae with no prior detoxification. The sugars and inhibitors concentrations in the hydrolyzates were compared after the evaporations and also fermenta-tion. The evaporations were carried out either under vacuum (VEH at 0.5 bar and 80°C or with 1.3 bar pressure (HPEH at 107.5°C, which resulted in 153.3 and 164.6 g/l total sugars, respectively. No sugar decomposition occurred during either of the evaporations, while more than 96% of furfural and to a lesser extent formic and acetic acids disappeared from the hydrolyzates. However, HMF and levulinic acid remained in the hydrolyzates and were concentrated proportionally. The concentrated hydrolyzates were then fermented in a 4 l bioreactor with 12-22 g/l yeast and 0.14-0.22 h-1 initial dilute rates (ID. More than 84% of the fermentable sugars present in the VEH were fermented by fed-batch cultivation using 12 g/l yeast and initial dilution rate (ID of 0.22 h-1, and resulted in 0.40±0.01 g/g ethanol from the fermentable sugars in one cycle of fermentation. Fermentation of HPEH was as successful as VEH and resulted in more than 86% of the sugar consumption under the corresponding conditions. By lowering the initial dilution rate to 0.14 h-1, more than 97% of the total fermentable sugars were consumed, and ethanol yield was 0.44±0.01 g/g in one cycle of fermentation. The yeast was able to convert or assimilate HMF, levulinic, acetic, and formic acids by 96, 30, 43, and 74%, respectively.

  4. Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Miyata, Toshihiro; Tsukada, Satoshi; Minami, Tadatsugu

    2006-01-01

    Anatase titanium dioxide (TiO 2 ) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO 2 pellets as the source material. Highly transparent TiO 2 thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O 2 ) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO 2 thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO 2 thin film with a resistivity of 2.6 x 10 -1 Ω cm was prepared at a substrate temperature of 400 deg. C without the introduction of O 2 gas

  5. Analysis of an innovative solar water desalination system using gravity induced vacuum

    International Nuclear Information System (INIS)

    Ayhan, T.; Al-Madani, H.

    2007-01-01

    This study presents the theoretical analysis, design and appropriate models of a new desalination system using gravity induced vacuum. The system utilizes natural means (gravity and atmospheric pressure) to create a vacuum under which water can be rapidly evaporated at much lower temperatures with less energy than conventional techniques. This technique is developed to overcome water storage, in the areas where good solar radiation (or waste heat sources) and sea water (or waste water sources). The developed system consists of an evaporator connected to condenser by means of a vacuum tank. The vapour produced in the evaporator is driven to condenser through the vacuum tank, where it condenses and collected as a product. Vacuum equivalent to 7 kPa (abs) or less can be created depending on ambient temperature of Bahrain climatic conditions. The effect of various operating conditions, namely water levels in condensation and evaporating columns on the system performance were studied. The theoretical analysis and preliminary experimental results show that the performance of this system depends on the condensation temperature

  6. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  7. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.; Bolitho, M; Higgins, D; Lu, W; Ng, W; Jeffrey, P; Rabinowitz, J; Semmelhack, M; Hughson, F; Bassler, B

    2009-01-01

    Vibrio cholerae, the bacterium that causes the disease cholera, controls virulence factor production and biofilm development in response to two extracellular quorum-sensing molecules, called autoinducers. The strongest autoinducer, called CAI-1 (for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-one. Biosynthesis of CAI-1 requires the enzyme CqsA. Here, we determine the CqsA reaction mechanism, identify the CqsA substrates as (S)-2-aminobutyrate and decanoyl coenzyme A, and demonstrate that the product of the reaction is 3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produces amino-CAI-1 by a pyridoxal phosphate-dependent acyl-CoA transferase reaction. Amino-CAI-1 is converted to CAI-1 in a subsequent step via a CqsA-independent mechanism. Consistent with this, we find cells release {ge}100 times more CAI-1 than amino-CAI-1. Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 and amino-CAI-1 have potential as lead molecules in the development of an anticholera treatment.

  8. WTP Pilot-Scale Evaporation Tests

    International Nuclear Information System (INIS)

    QURESHI, ZAFAR

    2004-01-01

    This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any

  9. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  10. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  11. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    Energy Technology Data Exchange (ETDEWEB)

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    Based on the mineralogy and petrography, coarse-grained, igneous, anorthite-rich (Type C) calcium-aluminum-rich inclusions (CAIs) in the CV3 carbonaceous chondrite Allende have been recently divided into three groups: (i) CAIs with melilite and Al,Ti-diopside of massive and lacy textures (coarse grains with numerous rounded inclusions of anorthite) in a fine-grained anorthite groundmass (6-1-72, 100, 160), (ii) CAI CG5 with massive melilite, Al,Ti-diopside and anorthite, and (iii) CAIs associated with chondrule material: either containing chondrule fragments in their peripheries (ABC, TS26) or surrounded by chondrule-like, igneous rims (93) (Krot et al., 2007a,b). Here, we report in situ oxygen isotopic measurements of primary (melilite, spinel, Al,Ti-diopside, anorthite) and secondary (grossular, monticellite, forsterite) minerals in these CAIs. Spinel ({Delta}{sup 17}O = -25{per_thousand} to -20{per_thousand}), massive and lacy Al,Ti-diopside ({Delta}{sup 17}O = -20{per_thousand} to -5{per_thousand}) and fine-grained anorthite ({Delta}{sup 17}O = -15{per_thousand} to -2{per_thousand}) in 100, 160 and 6-1-72 are {sup 16}O-enriched relative spinel and coarse-grained Al,Ti-diopside and anorthite in ABC, 93 and TS26 ({Delta}{sup 17}O ranges from -20{per_thousand} to -15{per_thousand}, from -15{per_thousand} to -5{per_thousand}, and from -5{per_thousand} to 0{per_thousand}, respectively). In 6-1-72, massive and lacy Al,Ti-diopside grains are {sup 16}O-depleted ({Delta}{sup 17}O {approx} -13{per_thousand}) relative to spinel ({Delta}{sup 17}O = -23{per_thousand}). Melilite is the most {sup 16}O-depleted mineral in all Allende Type C CAIs. In CAI 100, melilite and secondary grossular, monticellite and forsterite (minerals replacing melilite) are similarly {sup 16}O-depleted, whereas grossular in CAI 160 is {sup 16}O-enriched ({Delta}{sup 17}O = -10{per_thousand} to -6{per_thousand}) relative to melilite ({Delta}{sup 17}O = -5{per_thousand} to -3{per_thousand}). We infer

  12. Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation.

    Science.gov (United States)

    Díaz, Víctor Hugo Grisales; Tost, Gerard Olivar

    2016-10-01

    Techno-economic study of acetone, butanol and ethanol (ABE) fermentation from lignocellulose was performed. Simultaneous saccharification, fermentation and vacuum evaporation (SFS-V) or pervaporation (SFS-P) were proposed. A kinetic model of metabolic pathways for ABE fermentation with the effect of phenolics and furans in the growth was proposed based on published laboratory results. The processes were optimized in Matlab®. The end ABE purification was carried out by heat-integrated distillation. The objective function of the minimization was the total annualized cost (TAC). Fuel consumption of SFS-P using poly[1-(trimethylsilyl)-1-propyne] membrane was between 13.8 and 19.6% lower than SFS-V. Recovery of furans and phenolics for the hybrid reactors was difficult for its high boiling point. TAC of SFS-P was increased 1.9 times with supplementation of phenolics and furans to 3g/l each one for its high toxicity. Therefore, an additional detoxification method or an efficient pretreatment process will be necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-01-01

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10 -4 and 2.3x10 -4 Ω·cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10 -4 Ω·cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates

  14. Preparation of anatase TiO{sub 2} thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Toshihiro [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)]. E-mail: tmiyata@neptune.kanazawa-it.ac.jp; Tsukada, Satoshi [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan); Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2006-02-01

    Anatase titanium dioxide (TiO{sub 2}) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO{sub 2} pellets as the source material. Highly transparent TiO{sub 2} thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O{sub 2}) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO{sub 2} thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO{sub 2} thin film with a resistivity of 2.6 x 10{sup -1} {omega} cm was prepared at a substrate temperature of 400 deg. C without the introduction of O{sub 2} gas.

  15. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-09-02

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10{sup -4} and 2.3x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates.

  16. CAI: Overcoming Attitude Barriers.

    Science.gov (United States)

    Netusil, Anton J.; Kockler, Lois H.

    During each of two school quarters, approximately 60 college students enrolled in a mathematics course were randomly assigned to an experimental group or a control group. The control group received instruction by the lecture method only; the experimental group received the same instruction, except that six computer-assisted instruction (CAI) units…

  17. The Safe and Efficient Evaporation of a Solvent from Solution

    Science.gov (United States)

    Mahon, Andrew R.

    1997-02-01

    The process of evaporating a solvent from a solution can cause problems for many students. By using a water-vacuum aspirator, backflashes of water can flood the sample tube and be detrimental to the experiment. This type of apparatus can also cause problems by drawing the solution it is evaporating back into the vacuum hose, causing the student to lose part or all of the products of their experiment. Macroscale and Microscale Organic Experiments, 2nd edition (1), suggested two techniques to dissolve solvents from a mixture. It suggested blowing a stream of air over the solution from a Pasteur pipet, or attaching a Pasteur pipet to an aspirator and drawing air over the surface of the liquid. Again, the danger of blowing air over the solution leaves the risk of splattering the solution, and drawing air over the surface of the liquid as described further endangers the products of the experiment through the risk of sucking the products up into the pipet aspirator. In an effort to eliminate these problems, a new technique has been developed. By inverting an ordinary 200-mL vacuum flask and pulling a steady current of air from the vacuum apparatus through it, any type of small container can be placed under it, allowing the solvent to be evaporated in a steady, mistake-free manner . By evaporating the solvent from the container that the products will be submitted in, no sample is lost through the process of transferring it from a vacuum flask or beaker to the final container.

  18. Study on a Salt Evaporation of the Uranium Deposits from an Electro-refiner

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Gyu Hwan Oh; Jong Hyeon Lee; Sung Chan Hwang; Young Ho Kang; Han Soo Lee; Eung Ho Kim; Seong Won Park

    2008-01-01

    Uranium metal is electrodeposited onto a solid cathode during the electrorefining process. Uranium deposits from an electro-refiner contain about 30∼40 wt% salts. In order to recover pure uranium and transform it into metal ingots, the salts have to be removed. A salt distiller is adapted for a salt evaporation. A batch operation for the salt removal is carried out by a heating and vacuum evaporation. It is operated at 700 ∼ 1000 deg. C and less than 1 Torr, respectively. The behaviors of the salt evaporations were investigated by focusing on the effects of the vacuum pressure and the holding temperature on the salt distillation. The salt removal efficiencies were obtained with regards to the operational conditions. The Hertz-Langmuir relation was applied to the experimental results of the salt evaporations. The effective evaporation coefficients of the relation were obtained with regards to the operational conditions. The lower the vacuum pressure and the higher the holding temperature were, the higher the removal efficiencies of the salts were. (authors)

  19. The Instructional Use of CAI in the Education of the Mentally Retarded.

    Science.gov (United States)

    Winters, John J., Jr.; And Others

    Computer assisted instruction (CAI) studies with the mentally retarded in the United States and Canada reveal that the retarded benefit from CAI in academic and social skills. Their learning is enhanced to the same extent as that of the nonretarded. CAI can be cost-effective, especially with the reduced costs of mini and micro-computers; however,…

  20. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-01-01

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm 2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm 2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm 2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the 197 Au − (∼9MeV, ∼1μA) and 63 Cu − (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp 3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (I D /I G ) measured by the Raman spectroscopy is 0.78

  1. Electrospray ionization deposition of BSA under vacuum conditions

    Science.gov (United States)

    Hecker, Dominic; Gloess, Daniel; Frach, Peter; Gerlach, Gerald

    2015-05-01

    Vacuum deposition techniques like thermal evaporation and CVD with their precise layer control and high layer purity often cannot be applied for the deposition of chemical or biological molecules. The molecules are usually decomposed by heat. To overcome this problem, the Electrospray ionization (ESI) process known from mass spectroscopy is employed to transfer molecules into vacuum and to deposit them on a substrate. In this work, a homemade ESI tool was used to deposit BSA (Bovine serum albumin) layers with high deposition rates. Solutions with different concentrations of BSA were prepared using a methanol:water (MeOH:H2O) mixture (1:1) as solvent. The influence of the substrate distance on the deposition rate and on the transmission current was analyzed. Furthermore, the layer thickness distribution and layer adhesion were investigated.

  2. Safety Analysis in Large Volume Vacuum Systems Like Tokamak: Experiments and Numerical Simulation to Analyze Vacuum Ruptures Consequences

    Directory of Open Access Journals (Sweden)

    A. Malizia

    2014-01-01

    Full Text Available The large volume vacuum systems are used in many industrial operations and research laboratories. Accidents in these systems should have a relevant economical and safety impact. A loss of vacuum accident (LOVA due to a failure of the main vacuum vessel can result in a fast pressurization of the vessel and consequent mobilization dispersion of hazardous internal material through the braches. It is clear that the influence of flow fields, consequence of accidents like LOVA, on dust resuspension is a key safety issue. In order to develop this analysis an experimental facility is been developed: STARDUST. This last facility has been used to improve the knowledge about LOVA to replicate a condition more similar to appropriate operative condition like to kamaks. By the experimental data the boundary conditions have been extrapolated to give the proper input for the 2D thermofluid-dynamics numerical simulations, developed by the commercial CFD numerical code. The benchmark of numerical simulation results with the experimental ones has been used to validate and tune the 2D thermofluid-dynamics numerical model that has been developed by the authors to replicate the LOVA conditions inside STARDUST. In present work, the facility, materials, numerical model, and relevant results will be presented.

  3. The Impact of Different Support Vectors on GOSAT-2 CAI-2 L2 Cloud Discrimination

    Directory of Open Access Journals (Sweden)

    Yu Oishi

    2017-11-01

    Full Text Available Greenhouse gases Observing SATellite-2 (GOSAT-2 will be launched in fiscal year 2018. GOSAT-2 will be equipped with two sensors: the Thermal and Near-infrared Sensor for Carbon Observation (TANSO-Fourier Transform Spectrometer 2 (FTS-2 and the TANSO-Cloud and Aerosol Imager 2 (CAI-2. CAI-2 is a push-broom imaging sensor that has forward- and backward-looking bands to observe the optical properties of aerosols and clouds and to monitor the status of urban air pollution and transboundary air pollution over oceans, such as PM2.5 (particles less than 2.5 micrometers in diameter. CAI-2 has important applications for cloud discrimination in each direction. The Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1, which applies sequential threshold tests to features is used for GOSAT CAI L2 cloud flag processing. If CLAUDIA1 is used with CAI-2, it is necessary to optimize the thresholds in accordance with CAI-2. However, CLAUDIA3 with support vector machines (SVM, a supervised pattern recognition method, was developed, and then we applied CLAUDIA3 for GOSAT-2 CAI-2 L2 cloud discrimination processing. Thus, CLAUDIA3 can automatically find the optimized boundary between clear and cloudy areas. Improvements in CLAUDIA3 using CAI (CLAUDIA3-CAI continue to be made. In this study, we examined the impact of various support vectors (SV on GOSAT-2 CAI-2 L2 cloud discrimination by analyzing (1 the impact of the choice of different time periods for the training data and (2 the impact of different generation procedures for SV on the cloud discrimination efficiency. To generate SV for CLAUDIA3-CAI from MODIS data, there are two times at which features are extracted, corresponding to CAI bands. One procedure is equivalent to generating SV using CAI data. Another procedure generates SV for MODIS cloud discrimination at the beginning, and then extracts decision function, thresholds, and SV corresponding to CAI bands. Our results indicated the following

  4. Control of the Thermal Evaporation of Organic Semiconductors via Exact Linearization

    OpenAIRE

    Martin Steinberger; Martin Horn

    2011-01-01

    In this article, a high vacuum system for the evaporation of organic semiconductors is introduced and a mathematical model is given. Based on the exact input output linearization a deposition rate controller is designed and tested with different evaporation materials.

  5. An Object-Oriented Architecture for a Web-Based CAI System.

    Science.gov (United States)

    Nakabayashi, Kiyoshi; Hoshide, Takahide; Seshimo, Hitoshi; Fukuhara, Yoshimi

    This paper describes the design and implementation of an object-oriented World Wide Web-based CAI (Computer-Assisted Instruction) system. The goal of the design is to provide a flexible CAI/ITS (Intelligent Tutoring System) framework with full extendibility and reusability, as well as to exploit Web-based software technologies such as JAVA, ASP (a…

  6. Preparation by thermal evaporation under vacuum of thin nickel films without support

    International Nuclear Information System (INIS)

    Prugne, P.; Garin, P.; Lechauguette, G.

    1959-01-01

    This note deals with the preparation of nickel films without support by means of the technique described but using a new evaporation apparatus. In effect it was necessary, in order to obtain these nickel films, to modify the thermal evaporation conditions. An attempt to obtain a film without support after evaporation in a conventional apparatus led almost invariably to defeat. This appeared to be due to the high concentration of oxygen and of various vapors (diffusion pumps, degassing, etc.) present in the residual atmosphere of the conventional evaporation system. Reprint of a paper published in 'Le Vide, N. 74, March-April 1958, p. 82-83

  7. NONCHEMICAL DEHYDRATION OF FIXED TISSUE COMBINING MICROWAVES AND VACUUM

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin and plastic sections is presented in which dehydration of fixed tissue blocks is achieved within 5 minutes by microwaving under vacuum. Exploiting the decrease in boiling temperature under vacuum, we succeed in evaporating liquid molecules in the tissues

  8. Simple flash evaporator for making thin films of compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  9. Simulation of Diffusive Lithium Evaporation Onto the NSTX Vessel Walls

    International Nuclear Information System (INIS)

    Stotler, D.P.; Skinner, C.H.; Blanchard, W.R.; Krstic, P.S.; Kugel, H.W.; Schneider, H.; Zakharov, L.E.

    2010-01-01

    A model for simulating the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against an initial set of deposition experiments. The DEGAS 2 based model consists of a three-dimensional representation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated atoms. Additional assumptions are required to account for deuterium out-gassing during the validation experiments. The model agrees with the data over a range of pressures to within the estimated uncertainties. Suggestions are made for more discriminating experiments that will lead to an improved model.

  10. New mechanism of cluster-field evaporation in rf breakdown

    Directory of Open Access Journals (Sweden)

    Z. Insepov

    2004-12-01

    Full Text Available Using a simple field evaporation model and molecular dynamics simulations of nanoscale copper tip evolution in a high electric field gradient typical for linacs, we have studied a new mechanism for rf-field evaporation. The mechanism consists of simultaneous (collective field evaporation of a large group of tip atoms in high-gradient fields. Thus, evaporation of large clusters is energetically more favorable when compared with the conventional, “one-by-one” mechanism. The studied mechanism could also be considered a new mechanism for the triggering of rf-vacuum breakdown. This paper discusses the mechanism and the experimental data available for electric field evaporation of field-emission microscopy tips.

  11. FABRICATION OF ZNS THIN FILM FOR INORGANIC EL BY THE VACCUUM EVAPORATION

    OpenAIRE

    龍見, 雅美; 島谷, 圭市; 小西, 信行; 元木, 健作

    2008-01-01

    "Zinc sulfide is a typical material for inorganic electroluminescent(EL) device. Recently very high luminance and life time e has been reported on an inorganic EL device based on thin film zinc sulfide material. The present study tries to realize high quality zinc sulfide thin film for EL device. The thin film was grown by the vacuum evaporation method. In order to obtain stoichiometric thin film, the vacuum evaporation was carried out in a quasi-closed vessel under a condition of sulfur atmo...

  12. Perancangan Perangkat Lunak Media Pembelajaran Menggunakan Computer Assisted Instruction (CAI untuk Pembelajaran Ilmu Tajwid Berbasis Web

    Directory of Open Access Journals (Sweden)

    Fenny Purwani

    2016-03-01

    Full Text Available Strategi penggunaan Computer Assisted Instruction (CAI sebagai media pembelajaran dibutuhkan untuk mengatasi permasalahan yang muncul dalam proses pembelajaran. Pembelajaran yang dikemas dengan baik memberikan dampak yang positif dalam memajukan potensi pada diri manusia. CAI sebagai media pembelajaran berbasis computer dibangun sebagai pelengkap dan pendukung metode pembelajaran yang selama ini hanya menggunakan metode ceramah, diskusi informasi dan demonstrasi. Tujuan penelitian ini adalah merancang dan membangun media pembelajaran CAI yang interaktif dengan berbasis Web. Kemudian hasilnya berupa rancangan CAI dengan model tutorial, serta dilengkapi dengan latihan soal-soal dari materi yang diberikan. Perancangan CAI ini kemudian digunakan untuk media pembelajaran ilmu Tajwid dengan komputer. Strategic use of Computer Assisted Instruction (CAI as a learning media needed to overcome the problems that appeared in the learning process. Learning that was packaged well gave a positive impact in advancing the potential in human beings. CAI as a computer-based learning media was built to complement and support the learning method which as long as only used the speech, discussions, information and demonstrations method. The purpose of this study was to design and build learning media of CAI which was interactive with Web-based. Then the result was a design of CAI with tutorial model and completed with practicing questions from the material provided. This CAI design was then used for learning media of Tajwid with computer.

  13. Vacuum Acceptance Tests for the UHV Room Temperature Vacuum System of the LHC during LS1

    CERN Document Server

    Cattenoz, G; Bregliozzi, G; Calegari, D; Gallagher, J; Marraffa, A; Chiggiato, P

    2014-01-01

    During the CERN Large Hadron Collider (LHC) first long shut down (LS1), a large number of vacuum tests are carried out on consolidated or newly fabricated devices. In such a way, the vacuum compatibility is assessed before installation in the UHV system of the LHC. According to the equipment’s nature, the vacuum acceptance tests consist in functional checks, leak test, outgassing rate measurements, evaluation of contaminants by Residual Gas Analysis (RGA), pumping speed measurements and qualification of the H2 sticking probability of Non-Evaporable-Getter (NEG) coating. In this paper, the methods used for the tests and the acceptance criteria are described. A summary of the measured vacuum characteristics for the tested components is also given.

  14. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  15. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Science.gov (United States)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The

  16. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Prodyut R., E-mail: pchakraborty@iitj.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, 342011 (India); Hiremath, Kirankumar R., E-mail: k.r.hiremath@iitj.ac.in [Department of Mathematics, Indian Institute of Technology Jodhpur, 342011 (India); Sharma, Manvendra, E-mail: PG201283003@iitj.ac.in [Defence Laboratory Jodhpur, Defence Research & Development Organisation, 342011 (India)

    2017-02-05

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  17. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    International Nuclear Information System (INIS)

    Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra

    2017-01-01

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  18. Generative Computer Assisted Instruction: An Application of Artificial Intelligence to CAI.

    Science.gov (United States)

    Koffman, Elliot B.

    Frame-oriented computer-assisted instruction (CAI) systems dominate the field, but these mechanized programed texts utilize the computational power of the computer to a minimal degree and are difficult to modify. Newer, generative CAI systems which are supplied with a knowledge of subject matter can generate their own problems and solutions, can…

  19. A highly miniaturized vacuum package for a trapped ion atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kellogg, James R.; Prestage, John D. [Jet Propulsion Laboratory, Pasadena, California 91109 (United States)

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.

  20. Domino Platform: PVD Coaters for Arc Evaporation and High Current Pulsed Magnetron Sputtering

    International Nuclear Information System (INIS)

    Vetter, J; Müller, J; Erkens, G

    2012-01-01

    AlTiN and CrN coatings were deposited in hybrid DOMINO platforms by magnetron sputtering (DC-MS, DC-MS+HCP-MS, HCP-MS) and vacuum arc evaporation. The ion cleaning was done by the AEGD process. The coating rates and the energy efficiency of both deposition processes were compared. The roughness effects of the different coating types were discussed. Preliminary results of the change of pulse characteristics during simultaneously running of HCP-MS plus vacuum arc evaporation are shown.

  1. Desalination of salty water using vacuum spray dryer driven by solar energy

    KAUST Repository

    Hamawand, Ihsan

    2016-11-18

    This paper addresses evaporation under vacuum condition with the aid from solar energy and the recovered waste heat from the vacuum pump. It is a preliminary attempt to design an innovative solar-based evaporation system under vacuum. The design details, equipment required, theoretical background and work methodology are covered in this article. Theoretically, based on the energy provided by the sun during the day, the production rate of pure water can be around 15 kg/m2/day. Assumptions were made for the worst case scenario where only 30% of the latent heat of evaporation is recycled and the ability of the dark droplet to absorb sun energy is around 50%. Both the waste heat from the pump and the heat collected from the photovoltaic (PV) panels are proposed to raise the temperature of the inlet water to the system to its boiling point at the selected reduced pressure.

  2. Desalination of salty water using vacuum spray dryer driven by solar energy

    KAUST Repository

    Hamawand, Ihsan; Lewis, Larry; Ghaffour, NorEddine; Bundschuh, Jochen

    2016-01-01

    This paper addresses evaporation under vacuum condition with the aid from solar energy and the recovered waste heat from the vacuum pump. It is a preliminary attempt to design an innovative solar-based evaporation system under vacuum. The design details, equipment required, theoretical background and work methodology are covered in this article. Theoretically, based on the energy provided by the sun during the day, the production rate of pure water can be around 15 kg/m2/day. Assumptions were made for the worst case scenario where only 30% of the latent heat of evaporation is recycled and the ability of the dark droplet to absorb sun energy is around 50%. Both the waste heat from the pump and the heat collected from the photovoltaic (PV) panels are proposed to raise the temperature of the inlet water to the system to its boiling point at the selected reduced pressure.

  3. Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets

    International Nuclear Information System (INIS)

    Smith, Jared D.; Cappa, Christopher D.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2006-01-01

    Recent theoretical and experimental studies of evaporation have suggested that on average, molecules in the higher-energy tail of the Boltzmann distribution are more readily transferred into the vapor during evaporation. To test these conclusions, the evaporative cooling rates of a droplet train of liquid water injected into vacuum have been studied via Raman thermometry. The resulting cooling rates are fit to an evaporative cooling model based on Knudsen's maximum rate of evaporation, in which we explicitly account for surface cooling. We have determined that the value of the evaporation coefficient (γ e ) of liquid water is 0.62 ± 0.09, confirming that a rate-limiting barrier impedes the evaporation rate. Such insight will facilitate the formulation of a microscopic mechanism for the evaporation of liquid water

  4. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  5. Determination of the evaporation coefficient of D2O

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2008-11-01

    Full Text Available The evaporation rate of D2O has been determined by Raman thermometry of a droplet train (12–15 μm diameter injected into vacuum (~10-5 torr. The cooling rate measured as a function of time in vacuum was fit to a model that accounts for temperature gradients between the surface and the core of the droplets, yielding an evaporation coefficient (γe of 0.57±0.06. This is nearly identical to that found for H2O (0.62±0.09 using the same experimental method and model, and indicates the existence of a kinetic barrier to evaporation. The application of a recently developed transition-state theory (TST model suggests that the kinetic barrier is due to librational and hindered translational motions at the liquid surface, and that the lack of an isotope effect is due to competing energetic and entropic factors. The implications of these results for cloud and aerosol particles in the atmosphere are discussed.

  6. Experiments on high power EB evaporation of niobium

    International Nuclear Information System (INIS)

    Kandaswamy, E.; Bhardwaj, R.L.; Ram Gopal; Ray, A.K.; Kulgod, S.V.

    2002-01-01

    Full text: The versatility of electron beam evaporation makes the deposition of many new and unusual materials possible. This technique offers freedom from contamination and precise control. High power electron guns are especially used for obtaining high evaporation rates for large area coatings. This paper deals with the coating experiments carried out on an indigenously developed high power strip electron gun with niobium as evaporant at 40 kW on S.S. substrate. The practical problems of conditioning the gun and venting the vacuum system after the high power operation are also discussed. The coating rate was calculated by weight difference method

  7. Cognitive Assessment Interview (CAI): Validity as a co-primary measure of cognition across phases of schizophrenia.

    Science.gov (United States)

    Ventura, Joseph; Subotnik, Kenneth L; Ered, Arielle; Hellemann, Gerhard S; Nuechterlein, Keith H

    2016-04-01

    Progress has been made in developing interview-based measures for the assessment of cognitive functioning, such as the Cognitive Assessment Interview (CAI), as co-primary measures that compliment objective neurocognitive assessments and daily functioning. However, a few questions remain, including whether the relationships with objective cognitive measures and daily functioning are high enough to justify the CAI as an co-primary measure and whether patient-only assessments are valid. Participants were first-episode schizophrenia patients (n=60) and demographically-similar healthy controls (n=35), chronic schizophrenia patients (n=38) and demographically similar healthy controls (n=19). Participants were assessed at baseline with an interview-based measure of cognitive functioning (CAI), a test of objective cognitive functioning, functional capacity, and role functioning at baseline, and in the first episode patients again 6 months later (n=28). CAI ratings were correlated with objective cognitive functioning, functional capacity, and functional outcomes in first-episode schizophrenia patients at similar magnitudes as in chronic patients. Comparisons of first-episode and chronic patients with healthy controls indicated that the CAI sensitively detected deficits in schizophrenia. The relationship of CAI Patient-Only ratings with objective cognitive functioning, functional capacity, and daily functioning were comparable to CAI Rater scores that included informant information. These results confirm in an independent sample the relationship of the CAI ratings with objectively measured cognition, functional capacity, and role functioning. Comparison of schizophrenia patients with healthy controls further validates the CAI as an co-primary measure of cognitive deficits. Also, CAI change scores were strongly related to objective cognitive change indicating sensitivity to change. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  9. Rate Control in Dual Source Evaporation

    NARCIS (Netherlands)

    Wielinga, T.; Gruisinga, W.; Leeuwis, H.; Lodder, J.C.; van Weers, J.F.; Wilmans, J.C.

    1980-01-01

    Two-component thin films are deposited in a high-vacuum system from two close sources, heated by an electron beam which is deflected between them. By using quartz-crystal monitors the evaporation rates are measured seperately, which is usually considered to be problematical. One rate signal is used

  10. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    International Nuclear Information System (INIS)

    He Suyan; Li Yunfei

    2008-01-01

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1 deg. C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data

  11. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    Energy Technology Data Exchange (ETDEWEB)

    He, Su-Yan [School of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071 (China); Li, Yun-Fei [Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University (China)

    2008-10-15

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1{sup o}C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data. (author)

  12. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce

    Energy Technology Data Exchange (ETDEWEB)

    He Suyan [School of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071 (China)], E-mail: hesuyan67829@sina.com; Li Yunfei [Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University (China)

    2008-10-15

    The vacuum cooling of iceberg lettuce was described in this paper. Based on the energy and mass balance, a mathematical model was developed to analyze the performance of the vacuum cooler and the evaporation-boiling phenomena during vacuum cooling of iceberg lettuce. The temporal trends of total system pressure, produce temperature such as surface temperature, center temperature, mass-average temperature, the weight loss of iceberg lettuce during vacuum cooling were predicted. Validation experimentation is achieved in the designed vacuum cooler. The experimental data were compared with the simulation results. It was found that the differences of the temperature between the simulation and the experiments were within 1 deg. C. The amount of water evaporated from the iceberg lettuce by simulation was 3.32% during the whole vacuum cooling, while the tested water loss rate was 2.97%, the maximal deviation of weight loss was within 0.59%. The simulation results agreed well with the experimental data.

  13. Electronic and optical properties of CdS films deposited by evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L.; Wei, Z.L.; Zhang, F.M.; Wu, X.S., E-mail: xswu@nju.edu.cn

    2015-11-05

    CdS films grown by thermal evaporation on glass substrate under ultra-high vacuum are prepared with varying the growth temperature and atmosphere environment. The minimum resistivity of the films is as low as 2.0 Ω·cm, and the carrier density even reaches 1.6 × 10{sup 18} cm{sup −3}, which is much less than that prepared by the chemical bath deposition (CBD) method. The transmittance and band gap increase with the set the argon atmosphere and the growth temperature in the optimum value. Our results indicate the CdS films grown by evaporation at high vacuum may be more suitable for the application in optoelectronic devices, such as the solar cell materials. - Highlights: • CdS films are grown by the ultra-high vacuum evaporation. • CdS film here with the high carrier density reaches to 10{sup 18} cm{sup −3} is obtained. • The film has low resistivity, which is as low as 2 Ω∙ cm. • The optical band gap become wider from 2.42 eV to 2.54 eV.

  14. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Amiotti, M [SAES Getters S.p.A., Viale Italia 77, 20020 Lainate, Milano (Italy)], E-mail: Marco_Amiotti@saes-group.com

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl{sub 4} powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H{sub 2} poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H{sub 2} per unit of

  15. CAI System with Multi-Media Text Through Web Browser for NC Lathe Programming

    Science.gov (United States)

    Mizugaki, Yoshio; Kikkawa, Koichi; Mizui, Masahiko; Kamijo, Keisuke

    A new Computer Aided Instruction (CAI) system for NC lathe programming has been developed with use of multi-media texts including movies, animations, pictures, sound and texts through Web browser. Although many CAI systems developed previously for NC programming consist of text-based instructions, it is difficult for beginners to learn NC programming with use of them. In the developed CAI system, multi-media texts are adopted for the help of users' understanding, and it is available through Web browser anytime and anywhere. Also the error log is automatically recorded for the future references. According to the NC programming coded by a user, the movement of the NC lathe is animated and shown in the monitor screen in front of the user. If its movement causes the collision between a cutting tool and the lathe, some sound and the caution remark are generated. If the user makes mistakes some times at a certain stage in learning NC, the corresponding suggestion is shown in the form of movies, animations, and so forth. By using the multimedia texts, users' attention is kept concentrated during a training course. In this paper, the configuration of the CAI system is explained and the actual procedures for users to learn the NC programming are also explained too. Some beginners tested this CAI system and their results are illustrated and discussed from the viewpoint of the efficiency and usefulness of this CAI system. A brief conclusion is also mentioned.

  16. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  17. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  18. INAA of CAIs from the Maralinga CK4 chondrite: Effects of parent body thermal metamorphism

    Science.gov (United States)

    Lindstrom, D. J.; Keller, L. P.; Martinez, R. R.

    1993-01-01

    Maralinga is an anomalous CK4 carbonaceous chondrite which contains numerous Ca-, Al-rich inclusions (CAI's) unlike the other members of the CK group. These CAI's are characterized by abundant green hercynitic spinel intergrown with plagioclase and high-Ca clinopyroxene, and a total lack of melilite. Instrumental Neutron Activation Analysis (INAA) was used to further characterize the meteorite, with special focus on the CAI's. High sensitivity INAA was done on eight sample disks about 100-150 microns in diameter obtained from a normal 30 micron thin section with a diamond microcoring device. The CAI's are enriched by 60-70X bulk meteorite values in Zn, suggesting that the substantial exchange of Fe for Mg that made the spinel in the CAI's hercynitic also allowed efficient scavenging of Zn from the rest of the meteorite during parent body thermal metamorphism. Less mobile elements appear to have maintained their initial heterogeneity.

  19. An aluminium evaporation source for ion plating

    International Nuclear Information System (INIS)

    Walley, P.A.; Cross, K.B.

    1977-01-01

    Ion plating with aluminium is becoming increasingly accepted as a method of anti-corrosion surface passivation, the usual requirements being for a layer between 12 and 50 microns in thickness, (0.0005 to 0.002). The evaporation system described here offers a number of advantages over high power electron beam sources when used for aluminium ion plating. The source consists of a resistively heated, specially shaped, boron nitride-titanium diboride boat and a metering feed system. Its main features are small physical size, soft vacuum compatibility, low power consumption and metered evaporation output. (author)

  20. Effect of vacuum energy on evolution of primordial black holes in Einstein gravity

    International Nuclear Information System (INIS)

    Nayak, Bibekananda; Jamil, Mubasher

    2012-01-01

    We study the evolution of primordial black holes by considering present universe is no more matter dominated rather vacuum energy dominated. We also consider the accretion of radiation, matter and vacuum energy during respective dominance period. In this scenario, we found that radiation accretion efficiency should be less than 0.366 and accretion rate is much larger than previous analysis by Nayak et al. (2009) . Thus here primordial black holes live longer than previous works Nayak and Singh (2011). Again matter accretion slightly increases the mass and lifetime of primordial black holes. However, the vacuum energy accretion is slightly complicated one, where accretion is possible only up to a critical time. If a primordial black hole lives beyond critical time, then its' lifespan increases due to vacuum energy accretion. But for presently evaporating primordial black holes, critical time comes much later than their evaporating time and thus vacuum energy could not affect those primordial black holes.

  1. Evaporation of Lennard-Jones fluids.

    Science.gov (United States)

    Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S

    2011-06-14

    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.

  2. Advanced performance of small diaphragm vacuum pumps through the use of mechatronics

    Science.gov (United States)

    Lachenmann, R.; Dirscherl, J.

    Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .

  3. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  4. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  5. Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT

    NARCIS (Netherlands)

    Schulze, Sabrina; Köster, Stefan; Geldmacher, Ulrike; Terwisscha van Scheltinga, Anke C.; Kühlbrandt, Werner

    2010-01-01

    Transport of solutes across biological membranes is performed by specialized secondary transport proteins in the lipid bilayer, and is essential for life. Here we report the structures of the sodium-independent carnitine/butyrobetaine antiporter CaiT from Proteus mirabilis (PmCaiT) at 2.3-Å and from

  6. Role of vacuum in food preservation

    International Nuclear Information System (INIS)

    Bongirwar, D.R.

    1997-01-01

    Considerable progress has been made in the processing of foods using operations viz. drying, evaporation, distillation, concentration, centrifugation, filtration, irradiation, freeze drying, osmotic drying etc. to get ready to eat food, convenience food, pre cooked dried food. Vacuum technology in direct or indirect way has played a vital role in carrying out these food processing operations. The role of vacuum in getting these processes developed and its use in the development of these high quality products with respect to colour, flavour, texture and other attributes has been highlighted along with process details. (author)

  7. Internal motion in high vacuum systems

    Science.gov (United States)

    Frank, J. M.

    Three transfer and positioning mechanisms have been developed for the non-air exposed, multistep processing of components in vacuum chambers. The functions to be performed in all of the systems include ultraviolet/ozone cleaning, vacuum baking, deposition of thin films, and thermocompression sealing of the enclosures. Precise positioning of the components is required during the evaporation and sealing processes. The three methods of transporting and positioning the components were developed to accommodate the design criteria and goals of each individual system. The design philosophy, goals, and operation of the three mechanisms are discussed.

  8. On native Danish learners' challenges in distinguishing /tai/, /cai/ and /zai/

    DEFF Research Database (Denmark)

    Sloos, Marjoleine; Zhang, Chun

    2015-01-01

    University participated in an ABX experiment. They were auditorily presented pairs of the critical stimuli tai-cai-zai, te-ce-ze and tuo-cuo-zuo combined with all four tones and alternated with fillers. The subjects indicated for each pair which of the two words matched the pinyin description. The expected...... results show that beginner learners perform on chance level regarding the distinction between t and z and between c and z. The reason is that in Danish, which has an aspiration contrast between plosives (like Chinese) /th/ is variably pronounced as affricated /ts/ and many speakers are unaware...

  9. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    Science.gov (United States)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  10. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  11. The Relevance of AI Research to CAI.

    Science.gov (United States)

    Kearsley, Greg P.

    This article provides a tutorial introduction to Artificial Intelligence (AI) research for those involved in Computer Assisted Instruction (CAI). The general theme is that much of the current work in AI, particularly in the areas of natural language understanding systems, rule induction, programming languages, and socratic systems, has important…

  12. Entropy of localized states and black hole evaporation

    International Nuclear Information System (INIS)

    Olum, K.D.

    1997-01-01

    We call a state 'vacuum bounded' if every measurement performed outside a specified interior region gives the same result as in the vacuum. We compute the maximum entropy of a vacuum-bounded state with a given energy for a one-dimensional model, with the aid of numerical calculations on a lattice. The maximum entropy is larger than it would be for rigid wall boundary conditions by an amount δS, which for large energies is approx-lt(1)/(6)ln(L in T), where L in is the length of the interior region. Assuming that the state resulting from the evaporation of a black hole is similar to a vacuum-bounded state, and that the similarity between vacuum-bounded and rigid-wall-bounded problems extends from 1 to 3 dimensions, we apply these results to the black hole information paradox. Under these assumptions we conclude that large amounts of information cannot be emitted in the final explosion of a black hole. copyright 1997 The American Physical Society

  13. Magnetic studies in evaporated Ni/Pd multilayers

    International Nuclear Information System (INIS)

    Chafai, K.; Salhi, H.; Lassri, H.; Yamkane, Z.; Lassri, M.; Abid, M.; Hlil, E.K.; Krishnan, R.

    2011-01-01

    The magnetic properties of Ni/Pd multilayers, prepared by sequential evaporation in ultrahigh vacuum, have been studied. The Ni thickness dependence of the magnetization and magnetic anisotropy is discussed. The temperature dependence of the spontaneous magnetization is well described by a T 3/2 law in all multilayers. A spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization, and the approximate values for the exchange interactions for various Ni layer thicknesses have been obtained. - Research highlights: → The magnetic properties of Ni/Pd multilayers, prepared by sequential evaporation in ultrahigh vacuum, have been studied. → The temperature dependence of the spontaneous magnetization is well described by a T 3/2 law in Ni/Pd multilayers. → The spin-wave constant B was observed to depend on t Ni nonmonotonically. → A spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization. → The approximate values for the exchange interactions for various Ni layer thicknesses have been obtained.

  14. Study on low pressure evaporation of fresh water generation system model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Han Shik; Wibowo, Supriyanto; Shin, Yong Han; Jeong, Hyo Min [Gyeongsang National University, Tongyeong (Korea, Republic of); Fajar, Berkah [University of Diponegoro, Semarang (Indonesia)

    2012-02-15

    A low pressure evaporation fresh water generation system is designed for converting brackish water or seawater into fresh water by distillation in low pressure and temperature. Distillation through evaporation of feed water and subsequent vapor condensation as evaporation produced fresh water were studied; tap water was employed as feed water. The system uses the ejector as a vacuum creator of the evaporator, which is one of the most important parts in the distillation process. Hence liquid can be evaporated at a lower temperature than at normal or atmospheric conditions. Various operating conditions, i.e. temperature of feed water and different orifice diameters, were applied in the experiment to investigate the characteristics of the system. It was found that these parameters have a significant effect on the performance of fresh water generation systems with low pressure evaporation.

  15. Gender Role, Gender Identity and Sexual Orientation in CAIS ("XY-Women") Compared With Subfertile and Infertile 46,XX Women.

    Science.gov (United States)

    Brunner, Franziska; Fliegner, Maike; Krupp, Kerstin; Rall, Katharina; Brucker, Sara; Richter-Appelt, Hertha

    2016-01-01

    The perception of gender development of individuals with complete androgen insensitivity syndrome (CAIS) as unambiguously female has recently been challenged in both qualitative data and case reports of male gender identity. The aim of the mixed-method study presented was to examine the self-perception of CAIS individuals regarding different aspects of gender and to identify commonalities and differences in comparison with subfertile and infertile XX-chromosomal women with diagnoses of Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) and polycystic ovary syndrome (PCOS). The study sample comprised 11 participants with CAIS, 49 with MRKHS, and 55 with PCOS. Gender identity was assessed by means of a multidimensional instrument, which showed significant differences between the CAIS group and the XX-chromosomal women. Other-than-female gender roles and neither-female-nor-male sexes/genders were reported only by individuals with CAIS. The percentage with a not exclusively androphile sexual orientation was unexceptionally high in the CAIS group compared to the prevalence in "normative" women and the clinical groups. The findings support the assumption made by Meyer-Bahlburg ( 2010 ) that gender outcome in people with CAIS is more variable than generally stated. Parents and professionals should thus be open to courses of gender development other than typically female in individuals with CAIS.

  16. Bake-Out Mobile Controls for Large Vacuum Systems

    CERN Document Server

    Blanchard, S; Gomes, P; Pereira, H; Kopylov, L; Merker, S; Mikheev, M

    2014-01-01

    Large vacuum systems at CERN (Large Hadron Collider - LHC, Low Energy Ion Rings - LEIR...) require bake-out to achieve ultra-high vacuum specifications. The bake-out cycle is used to decrease the outgassing rate of the vacuum vessel and to activate the Non-Evaporable Getter (NEG) thin film. Bake-out control is a Proportional-Integral-Derivative (PID) regulation with complex recipes, interlocks and troubleshooting management and remote control. It is based on mobile Programmable Logic Controller (PLC) cabinets, fieldbus network and Supervisory Control and Data Acquisition (SCADA) application. The CERN vacuum installations include more than 7 km of baked vessels; using mobile cabinets reduces considerably the cost of the control system. The cabinets are installed close to the vacuum vessels during the time of the bake-out cycle. Mobile cabinets can be used in any of the CERN vacuum facilities. Remote control is provided through a fieldbus network and a SCADA application

  17. Congruent evaporation temperature of GaAs(001) controlled by As flux

    International Nuclear Information System (INIS)

    Zhou, Z. Y.; Zheng, C. X.; Tang, W. X.; Jesson, D. E.; Tersoff, J.

    2010-01-01

    The congruent evaporation temperature T c is a fundamental surface characteristic of GaAs and similar compounds. Above T c the rate of As evaporation exceeds that of Ga during Langmuir (free) evaporation into a vacuum. However, during molecular beam epitaxy (MBE) there is generally an external As flux F incident on the surface. Here we show that this flux directly controls T c . We introduce a sensitive approach to measure T c based on Ga droplet stability, and determine the dependence of T c on F. This dependence is explained by a simple model for evaporation in the presence of external flux. The capability of manipulating T c via changing F offers a means of controlling congruent evaporation with relevance to MBE, surface preparation methods, and droplet epitaxy.

  18. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  19. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  20. Optimization of Edwards vacuum coating unit model E12E for the production of thin films

    International Nuclear Information System (INIS)

    Ruiz P, H.S.

    1995-01-01

    This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author)

  1. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, Noreddine

    2016-06-30

    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  2. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo

    2016-01-01

    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  3. ELETTRA vacuum system

    International Nuclear Information System (INIS)

    Bernardini, M.; Daclon, F.; Giacuzzo, F.; Miertusova, J.; Pradal, F.; Kersevan, R.

    1993-01-01

    Elettra is a third-generation synchrotron light source which is being built especially for the use of high brilliance radiation from insertion devices and bending magnets. The UHV conditions in a storage ring lead to a longer beam lifetime - one of the most important criterion. The Elettra vacuum system presents some pecularities which cannot be found in any already existing machine. The final version of bending magnet vacuum chamber is presented. After chemical and thermal conditioning the specific outgassing rate of about 1.5e-12 Torr. liters sec -1 cm -2 was obtained. A microprocessor-controlled system has been developed to perform bake-out at the uniform temperature. The etched-foil type heaters are glued to the chamber and Microtherm insulation is used. UHV pumps based on standard triode sputter-ion pumps were modified with ST 707 NEG (Non Evaporable Getter) modules. A special installation enables the resistive activation of getters and significantly increases pumping speed for hydrogen and other residual gases (except methane and argon). All these technological innovations improve vacuum conditions in Elettra storage ring and consequently also the other parameters of the light source

  4. Vacuum evaporation, a technology for re-using water and reducing waste; La evaporacion al vacio una tecnologia para la reduccion de residuos y reutilizacion del agua

    Energy Technology Data Exchange (ETDEWEB)

    Casas, O.; Sabate, E.; Casas, F.; Lopez, J.

    2009-07-01

    In order to improve companies sustain ability and environmental commitment, we have developed a concentration technology for reducing the volume of industrial waste water at low energy cost and recovering the water for various applications. The advantages of this system are recovery of the water, minimum maintenance without reagents and compactness with any type of waste water. Industrials Titan represents and example of the recycling of water by means of vacuum evaporation to solve a double problem: the conductivity of the water from the decalcified and the COD of the water from the painting process. (Author)

  5. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source

    Energy Technology Data Exchange (ETDEWEB)

    Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Zainal, Zulkarnain [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Hilal, Hikmat S. [SSERL, Department of Chemistry An-Najah N. University, PO Box 7, Nablus, West Bank (Country Unknown); Fujii, Masatoshi [Department of Molecular Science, School of Medicine, Shimane University, Izumo, Shimane, 693-8501 (Japan)

    2014-03-05

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

  6. Operational experience with the JET beryllium evaporators in the J1W test bed

    International Nuclear Information System (INIS)

    Peacock, A.T.; Dietz, K.J.; Israel, G.; Jensen, H.S.; Johnson, A.; Pick, M.A.; Saibene, G.; Sartori, R.

    1989-01-01

    Four beryllium evaporators were fitted onto the JET vessel during March 1989. These evaporators are planned to give the first introduction of beryllium into the JET machine to study the effect of using beryllium as a first wall material. Over 200 hours operational experience with such an evaporator had been gained on a test bed facility in which the evaporation rate, radial evaporant distribution and head operating temperature had been determined. The results obtained on this facility with two different heat materials, sintered S-65B and vacuum cast beryllium are described. The test vessel has also been used to conduct beryllium wall pumping experiments using the ''Langmuir effect''. The initial results of these experiments will be described. (author)

  7. Influence of boat material on the structure, stoichiometry and optical properties of gallium sulphide films prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Rao, Pritty; Kumar, Sanjiv; Sahoo, N.K.

    2015-01-01

    The paper describes the deposition of thin films of gallium sulphide on soda-lime glass substrates by thermal evaporation of chemically synthesized powders consisting of gallium sulphide and gallium oxyhydroxide from a Mo or Ta boat and the evolution of their compositional, structural and optical properties on vacuum annealing. The films deposited from Mo or Ta boats possessed distinctly different properties. The Mo-boat evaporated pristine films were amorphous, transparent (α ∼ 10 3  cm −1 ) in visible region and had a direct band gap of about 3.2 eV. Vacuum annealing at 723 K brought about their crystallization predominantly into cubic γ-Ga 2 S 3 and a blue shift by about 0.2 eV. The Ta-boat evaporated pristine films were also amorphous but were absorbing (α ∼ 10 4  cm −1 ) and had a direct band gap of about 2.1 eV. These crystallized into hexagonal GaS and experienced a blue shift by more than 1.0 eV on vacuum annealing at 723 K. The dissimilar properties of the two kinds of films arose mainly from their different atomic compositions. The Mo-boat evaporated pristine films contained Ga and S in ∼1:1 atomic proportions while those prepared using Ta-boat were Ga rich which impaired their transmission characteristics. The former composition favoured the stabilization of S rich gallium sulphide (Ga 2 S 3 ) phase while the latter stabilised S deficient species, GaS. Besides inducing crystallization, vacuum annealing at 723 K also caused the diffusion of Ga in excess of atomic composition of the phase formed, into soda-lime glass which improved the optical transmission of the films. Gallium oxyhydroxide, an inevitable co-product of the chemical synthetic process, in the evaporant introduced oxygen and hydrogen impurities in the films which do not seem to significantly influence their optical properties. - Highlights: • Gallium sulphide films are prepared by thermal evaporation from a Mo or Ta boat. • Mo-boat prepared pristine film has Ga

  8. The Cognitive Assessment Interview (CAI): development and validation of an empirically derived, brief interview-based measure of cognition.

    Science.gov (United States)

    Ventura, Joseph; Reise, Steven P; Keefe, Richard S E; Baade, Lyle E; Gold, James M; Green, Michael F; Kern, Robert S; Mesholam-Gately, Raquelle; Nuechterlein, Keith H; Seidman, Larry J; Bilder, Robert M

    2010-08-01

    Practical, reliable "real world" measures of cognition are needed to supplement neurocognitive performance data to evaluate possible efficacy of new drugs targeting cognitive deficits associated with schizophrenia. Because interview-based measures of cognition offer one possible approach, data from the MATRICS initiative (n=176) were used to examine the psychometric properties of the Schizophrenia Cognition Rating Scale (SCoRS) and the Clinical Global Impression of Cognition in Schizophrenia (CGI-CogS). We used classical test theory methods and item response theory to derive the 10-item Cognitive Assessment Interview (CAI) from the SCoRS and CGI-CogS ("parent instruments"). Sources of information for CAI ratings included the patient and an informant. Validity analyses examined the relationship between the CAI and objective measures of cognitive functioning, intermediate measures of cognition, and functional outcome. The rater's score from the newly derived CAI (10 items) correlate highly (r=.87) with those from the combined set of the SCoRS and CGI-CogS (41 items). Both the patient (r=.82) and the informant (r=.95) data were highly correlated with the rater's score. The CAI was modestly correlated with objectively measured neurocognition (r=-.32), functional capacity (r=-.44), and functional outcome (r=-.32), which was comparable to the parent instruments. The CAI allows for expert judgment in evaluating a patient's cognitive functioning and was modestly correlated with neurocognitive functioning, functional capacity, and functional outcome. The CAI is a brief, repeatable, and potentially valuable tool for rating cognition in schizophrenia patients who are participating in clinical trials. Copyright 2010 Elsevier B.V. All rights reserved.

  9. LHC : The World's Largest Vacuum Systems being commissioned at CERN

    CERN Document Server

    Jiménez, J M

    2008-01-01

    When it switches on in 2008, the 26.7 km Large Hadron Collider (LHC) at CERN, will have the world's largest vacuum system operating over a wide range of pressures and employing an impressive array of vacuum technologies. This system is composed by 54 km of UHV vacuum for the circulating beams and 50 km of insulation vacuum around the cryogenic magnets and the liquid helium transfer lines. Over the 54 km of UHV beam vacuum, 48 km of this are at cryogenic temperature (1.9 K). The remaining 6 km of beam vacuum containing the insertions for "cleaning" the proton beams, radiofrequency cavities for accelerating the protons as well as beam-monitoring equipment is at ambient temperature and uses non-evaporable getter (NEG) coatings - a vacuum technology that was born and industrialized at CERN. The pumping scheme is completed using 780 ion pumps to remove noble gases and to provide pressure interlocks to the 303 vacuum safety valves. Pressure readings are provided by 170 Bayard-Alpert gauges and 1084 gauges (Pirani a...

  10. Rancangan Perangkat Lunak Computer Assisted Instruction (CAI Untuk Ilmu Tajwid Berbasis Web

    Directory of Open Access Journals (Sweden)

    Fenny Purwani

    2015-08-01

    Full Text Available The development of information technology and science refer to the need of teching-learning concept and mechanism wich are based on information technology, undoubtedly. Regarding the development, it needs qualified human resources and flexible material changing and it should be appropriate with technology and science development. Additionaly, this combines between education based on religious and techology (IMTAK and IPTEK. Internet techology can be used as teaching tool which is known as Computer Assisted Intruction (CAI. CAI software might be one of media or tool in learnig tajwid and it can help people to learn Tajwid easier.

  11. Thermoelectric integrated membrane evaporation water recovery technology

    Science.gov (United States)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  12. Development of an intelligent CAI system for a distributed processing environment

    International Nuclear Information System (INIS)

    Fujii, M.; Sasaki, K.; Ohi, T.; Itoh, T.

    1993-01-01

    In order to operate a nuclear power plant optimally in both normal and abnormal situations, the operators are trained using an operator training simulator in addition to classroom instruction. Individual instruction using a CAI (Computer-Assisted Instruction) system has become popular as a method of learning plant information, such as plant dynamics, operational procedures, plant systems, plant facilities, etc. The outline is described of a proposed network-based intelligent CAI system (ICAI) incorporating multi-medial PWR plant dynamics simulation, teaching aids and educational record management using the following environment: existing standard workstations and graphic workstations with a live video processing function, TCP/IP protocol of Unix through Ethernet and X window system. (Z.S.) 3 figs., 2 refs

  13. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano

    2007-01-01

    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...

  14. A Braça da Rede, uma Técnica Caiçara de Medir

    Directory of Open Access Journals (Sweden)

    Gilberto Chieus Jr.

    2009-08-01

    Full Text Available Este artigo relata como os caiçaras da cidade de Ubatuba litoral norte paulista medem suas redes de pesca.Mas antes de estar analisando sua técnica de medir estaremos fazendo uma pequena abordagem da cultura caiçara e suas transformações. Em seguida mostraremos alguns momentos históricos da construção do metro. Depois como os caiçaras medem suas redes e o problema ocorrido no Brasil na implantação do sistema métrico decimal e a resistência de determinadas civilizações que se utiliza de outros padrões para realizar suas medidas, ignorando o atual sistema métrico, devidos o seu contexto cultural. Toda esta discussão está enfocada numa perspectiva histórica da Etnomatemática.

  15. A simple, high-yield, apparatus for NEG coating of vacuum beamline elements

    International Nuclear Information System (INIS)

    Ron, G; Oort, R; Lee, D

    2010-01-01

    Non-Evaporable Getter (NEG) materials are extremely useful in vacuum systems for achieving Ultra High Vacuum. Recently, these materials have been used to coat the inner surfaces of vacuum components, acting as an internal, passive, vacuum pump. We have constructed a low cost apparatus, which allows coating of very small diameter vacuum tubes, used as differential pumping stages. Despite the relative ease of construction, we are routinely able to achieve high coating yields. We further describe an improvement to our system, which is able to achieve the same yield, at an even lower complexity by using an easily manufactured permanent magnet arrangement. The designs described are extendible to virtually any combination of length and diameter of the components to be coated.

  16. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method

    International Nuclear Information System (INIS)

    Zheng, J.H.; Jiang, Q.; Lian, J.S.

    2011-01-01

    Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.

  17. Continuous vacuum processing system for quartz crystal resonators

    International Nuclear Information System (INIS)

    Ney, R.J.; Hafner, E.

    1979-01-01

    An ultrahigh vacuum continuous cycle quartz crystal fabrication facility has been developed that assures an essentially contamination-free environment throughout the final manufacturing steps of the crystal unit. The system consists of five essentially tubular vacuum chambers that are interconnected through gate valves. The unplated crystal resonators, mounted in ceramic flatback frames and loaded on carrier trays, enter the vacuum system through an entrance air lock, are UV/ozone cleaned, baked at 300 0 C, plated to frequency, thermocompression sealed, and exit as completed crystal units through an exit air lock, while the bake, plate and seal chambers remain under continuous vacuum permanently. In-line conveyor belts are used, in conjunction with balanced vacuum manipulators, to move the resonator components to the various work stations. Unique high density, highly directional nozzle beam evaporation sources, capable of long term operation without reloading, are used for electroding the resonators simultaneously on both sides. The design goal for the system is a production rate of 200 units per 8 hour day; it is adaptable to automatic operation

  18. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  19. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    Science.gov (United States)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  20. Installation for vacuum vapour deposition of nickel, more particularly for manufacturing neutron guides

    International Nuclear Information System (INIS)

    Samuel, F.

    1986-01-01

    The present invention proposes an installation for vacuum vapour deposition of Ni of the type including in a vacuum chamber a device for heating a mass of at least one Ni isotope to be evaporated, and a surface to be covered with deposited Ni facing the heater, is claimed, in which the heater includes a ribbon of W conformed in a middle part into a container in which is placed a refractory crucible in which is placed the Ni to be evaporated, and adapted to be connected at two terminal zones to an electrical circuit. The crucible is Al203. The invention finds an application in neutron guide fabrication, more particularly for Ni58 vapour deposition on the surfaces of the neutron guide [fr

  1. Evaporation of lead and lithium from molten Pb-17Li - transport of aerosols

    International Nuclear Information System (INIS)

    Feuerstein, H.; Graebner, H.; Oschinski, J.; Horn, S.; Bender, S.

    1991-01-01

    Evaporation of Pb and Li from molten Pb-17Li was investigated between 350 and 800deg C in vacuum, argon and helium covergas. Results were also obtained from other experimental facilities. Similarities were found to observations from sodium cooled reactors. The results show that Pb and Li evaporate independent on each other. The two elements show different behavior along the transport pathway. Deposits of the evaporated metals contained between 0.2 and 98 at% Li. As in the reactor RAPSODIE for sodium, evaporation rates for lithium were smaller in helium than in argon, however evaporation rates of lead were the same in both gases. No aerosol problems will exist with normal blanket operation. Under experimental conditions, aerosol concentrations were in the range of 10 -9 to 10 -6 g/m 3 . Aerosols can easily be trapped with sintered metal filters. (orig.)

  2. Nondegradative Dielectric Coating of Graphene using Thermal Evaporation of SiO

    Science.gov (United States)

    Suzuki, Seiya; Lee, Chien-Chung; Nagamori, Takashi; Schibli, Thomas; Yoshimura, Masamichi

    2013-03-01

    Deposition of dielectrics onto graphene is a challenging technique due to the difficulties of fabricating high quality oxide on pristine graphene without introducing atomic defects. Here we report on a novel method to fabricate silicon oxide layer on graphene by vacuum thermal evaporation of silicon monoxide (SiO). Raman spectroscopy and mapping showed the present method did not degrade graphene, in contrast to the e-beam evaporated SiO2 coating method previously reported. We fabricated graphene field effect transistor devices with four metal electrodes to measure gate voltage dependence of sheet resistance of the graphene, and deposited a top coating of SiO on the graphene channel. The electrical measurements before and after the top-coating revealed that the top coating suppressed chemical shift of the graphene from strong p-dope to nearly undoped. Since SiO is transparent for visible and infrared light, the coating can be available as a protection layer for optical devices of graphene such as photodetectors and electro-optic modulators. Since the SiO top coating is a simple vacuum evaporation, it is much easier than atomic-layer-deposition which requires additional functionalization of graphene, and compatible with industrial use. This research was supported in part by Toyoaki Scholarship Foundation

  3. Stable Magnesium Isotope Variation in Melilite Mantle of Allende Type B1 CAI EK 459-5-1

    Science.gov (United States)

    Kerekgyarto, A. G.; Jeffcoat, C. R.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.

    2014-01-01

    Ca-Al-rich inclusions (CAIs) are the earliest formed crystalline material in our solar system and they record early Solar System processes. Here we present petrographic and delta Mg-25 data of melilite mantles in a Type B1 CAI that records early solar nebular processes.

  4. Effect of pressure on the vacuum cooling of iceberg lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Hande Mutlu [Pamukkale University, Food Engineering Department, Faculty of Engineering, Denizli (Turkey); Ozturk, Harun Kemal [Pamukkale University, Mechanical Engineering Department, Faculty of Engineering, 20070 Kinikli, Denizli (Turkey)

    2009-05-15

    Vacuum cooling is known as a rapid evaporative cooling technique for any porous product which has free water. The aim of this paper is to apply vacuum cooling technique to the cooling of the iceberg lettuce and show the pressure effect on the cooling time and temperature decrease. The results of vacuum cooling are also compared with conventional cooling (cooling in refrigerator) for different temperatures. Vacuum cooling of iceberg lettuce at 0.7 kPa is about 13 times faster than conventional cooling of iceberg lettuce at 6 C. It has been also found that it is not possible to decrease the iceberg lettuce temperature below 10 C if vacuum cooling method is used and vacuum pressure is set to 1.5 kPa. (author) [French] Le refroidissement sous vide est connu comme une technique evaporative rapide refroidissant pour n'importe quel produit poreux qui a de l'eau libre. Le but de ce papier est d'appliquer le refroidissement sous vide pour le refroidissement de la laitue et examiner l'effet de la pression sur le temps de refroidissement et la diminution de temperature. Les resultats de refroidissement sous vide sont aussi compares avec le refroidissement conventionnel (refroidissement dans le refrigerateur) pour les differentes temperatures. Le refroidissement a vide de laitue a 0.7 kPa est environ 13 fois plus vite que le refroidissement conventionnel de laitue croquante a 6 C. Il a ete aussi constate qu'il n'est pas possible de diminuer la temperature de laitue ci-dessous 10 C si le refroidissement sous vide est utilise comme methode et la pression a vide est montree a 1.5 kPa. (orig.)

  5. Multiple Nebular Gas Reservoirs Recorded by Oxygen Isotope Variation in a Spinel-rich CAI in CO3 MIL 090019

    Science.gov (United States)

    Simon, J. I.; Simon, S. B.; Nguyen, A. N.; Ross, D. K.; Messenger, S.

    2017-01-01

    We conducted NanoSIMS O-isotopic imaging of a primitive spinel-rich CAI spherule (27-2) from the MIL 090019 CO3 chondrite. Inclusions such as 27-2 are proposed to record inner nebula processes during an epoch of rapid solar nebula evolution. Mineralogical and textural analyses suggest that this CAI formed by high temperature reactions, partial melting, and condensation. This CAI exhibits radial O-isotopic heterogeneity among multiple occurrences of the same mineral, reflecting interactions with distinct nebular O-isotopic reservoirs.

  6. Performance test of twised-wired titanium evaporators for in-situ Tic deposition

    International Nuclear Information System (INIS)

    Inagawa, Konosuke; Abe, Tetsuya; Hiroki, Seiji; Obara, Kenjiro; Murakami, Yoshio

    1984-06-01

    In order to establish the titanium evaporation source for in-situ TiC deposition, performance test has been made for several types of twisted-wired, ohmic-heating titanium evaporators. The evaporator which exhibited the best performance consists of three tungsten wires twisted as the core of the composite, three titanium wires and a molybdenum wire densely wound around the core, and a thin tungsten wire coarsely wound at the outermost side of the composite. The molybdenum wire around the core plays an important role in wetting the core surface uniformly with the melt of titanium. The tungsten wire at the outermost side prevents the molten titanium from dropping to the inside wall of the vacuum vessel. A typical size of the evaporator is 4 mm in diameter and 140 mm in length. In this case 2--2.5g of titanium, which corresponds to 70 - 80 % of charged amount (3.2g), can be evaporated at a rate of about 0.14 g/min. On the basis of the experimental results, the applicability of the evaporator to JT-60 is discussed. (author)

  7. The enhancement of students’ mathematical representation in junior high school using cognitive apprenticeship instruction (CAI)

    Science.gov (United States)

    Yusepa, B. G. P.; Kusumah, Y. S.; Kartasasmita, B. G.

    2018-03-01

    This study aims to get an in-depth understanding of the enhancement of students’ mathematical representation. This study is experimental research with pretest-posttest control group design. The subject of this study is the students’ of the eighth grade from junior high schools in Bandung: high-level and middle-level. In each school, two parallel groups were chosen as a control group and an experimental group. The experimental group was given cognitive apprenticeship instruction (CAI) treatment while the control group was given conventional learning. The results show that the enhancement of students’ mathematical representation who obtained CAI treatment was better than the conventional one, viewed which can be observed from the overall, mathematical prior knowledge (MPK), and school level. It can be concluded that CAI can be used as a good alternative learning model to enhance students’ mathematical representation.

  8. Entropy evaporated by a black hole

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1982-01-01

    It is shown that the entropy of the radiation evaporated by an uncharged, nonrotating black hole into vacuum in the course of its lifetime is approximately (4/3) times the initial entropy of this black hole. Also considered is a thermodynamically reversible process in which an increase of black-hole entropy is equal to the decrease of the entropy of its surroundings. Implications of these results for the generalized second law of thermodynamics and for the interpretation of black-hole entropy are pointed out

  9. Heat and Mass Transfer of Vacuum Cooling for Porous Foods-Parameter Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2014-01-01

    Full Text Available Based on the theory of heat and mass transfer, a coupled model for the porous food vacuum cooling process is constructed. Sensitivity analyses of the process to food density, thermal conductivity, specific heat, latent heat of evaporation, diameter of pores, mass transfer coefficient, viscosity of gas, and porosity were examined. The simulation results show that the food density would affect the vacuum cooling process but not the vacuum cooling end temperature. The surface temperature of food was slightly affected and the core temperature is not affected by the changed thermal conductivity. The core temperature and surface temperature are affected by the changed specific heat. The core temperature and surface temperature are affected by the changed latent heat of evaporation. The core temperature is affected by the diameter of pores. But the surface temperature is not affected obviously. The core temperature and surface temperature are not affected by the changed gas viscosity. The parameter sensitivity of mass transfer coefficient is obvious. The core temperature and surface temperature are affected by the changed mass transfer coefficient. In all the simulations, the end temperature of core and surface is not affected. The vacuum cooling process of porous medium is a process controlled by outside process.

  10. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice.

    Science.gov (United States)

    Elik, Aysel; Yanık, Derya Koçak; Maskan, Medeni; Göğüş, Fahrettin

    2016-05-01

    The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content.

  11. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  12. CAIS/ACSI 2001: Beyond the Web: Technologies, Knowledge and People.

    Science.gov (United States)

    Canadian Journal of Information and Library Science, 2000

    2000-01-01

    Presents abstracts of papers presented at the 29th Annual Conference of the Canadian Association for Information Science (CAIS) held in Quebec on May 27-29, 2001. Topics include: professional development; librarian/library roles; information technology uses; virtual libraries; information seeking behavior; literacy; information retrieval;…

  13. CAI多媒體教學軟體之開發模式 Using an Instructional Design Model for Developing a Multimedia CAI Courseware

    Directory of Open Access Journals (Sweden)

    Hsin-Yih Shyu

    1995-09-01

    Full Text Available 無This article outlined a systematic instructional design model for developing a multimedia computer-aided instruction (CAI courseware. The model illustrated roles and tasks as two dimensions necessary in a CAI production teamwork. Four major components (Analysis, Design, Development, and Revise/Evaluation following by totally 25 steps are provided. Eight roles with each competent skills were identified. The model will be useful in serving as a framework for developing a mulrimedia CAI courseware for educators, instructional designers and CAI industry developers.

  14. Vacuum system for the Argonne 6 GeV synchrotron light source

    International Nuclear Information System (INIS)

    Wehrle, R.; Moenich, J.

    1985-01-01

    The ANL vacuum system for the 6 GeV light source storage ring features non-evaporable strip getter pumps for uniform pumping around the ring within a gas desorption antechamber, and it also features lumped getter pumping directly under and above crotch radiation absorbers that are positioned after each bending magnet. Based on experiments at ANL in 1980 and by others, the technical and economical advantages have been established for the use of the distributed NeG pumps of non-magnetic strips coated with a non-evaporable Zr Al getter matrix. The NeG strip pump lifetime approaches ten years. The antechamber improves the isolation of the gas desorption process from the main beam chamber and beam. The combination of these vacuum techniques; the NeG strip getter pumps, the gas desorption antechambers, and the lumped ion and lumped getter pumping provide a unique and reliable system for maintaining long beam lifetime

  15. Development of Aluminium Vacuum Chambers for the LHC Experiments at CERN

    CERN Document Server

    Gallilee, M; Costa-Pinto, P; Lepeule, P; Perez-Espinos, J; Marques Antunes Ferreira, L; Prever-Loiri, L; Sapountzis, A

    2014-01-01

    Beam losses may cause activation of vacuum chamber walls, in particular those of the Large Hadron Collider (LHC) experiments. For the High Luminosity (HL-LHC), the activation of such vacuum chambers will increase. It is therefore necessary to use a vacuum chamber material which interacts less with the circulating beam. While beryllium is reserved for the collision point, a good compromise between cost, availability and transparency is obtained with aluminium alloys; such materials are a preferred choice with respect to austenitic stainless steel. Manufacturing a thin-wall aluminium vacuum chamber presents several challenges as the material grade needs to be machinable, weldable, leak-tight for small thicknesses, and able to withstand heating to 250°C for extended periods of time. This paper presents some of the technical challenges during the manufacture of these vacuum chambers and the methods for overcoming production difficulties, including surface treatments and Non-Evaporable Getter (NEG) thin-film coat...

  16. Ion evaporation from the surface of a Taylor cone.

    Science.gov (United States)

    Higuera, F J

    2003-07-01

    An analysis is carried out of the electric field-induced evaporation of ions from the surface of a polar liquid that is being electrosprayed in a vacuum. The high-field cone-to-jet transition region of the electrospray, where ion evaporation occurs, is studied taking advantage of its small size and neglecting the inertia of the liquid and the space charge around the liquid. Evaporated ions and charged drops coexist in a range of flow rates, which is investigated numerically. The structure of the cone-to-jet transition comprises: a hydrodynamic region where the nearly equipotential surface of the liquid departs from a Taylor cone and becomes a jet; a slender region where the radius of the jet decreases and the electric field increases while the pressure and the viscous stress balance the electric stress at the surface; the ion evaporation region of high, nearly constant field; and a charged, continuously strained jet that will eventually break into drops. Estimates of the ion and drop contributions to the total, conduction-limited current show that the first of these contributions dominates for small flow rates, while most of the mass is still carried by the drops.

  17. Heat enhancement of radiation resistivity of evaporated CsI, KI and KBr photocathodes

    CERN Document Server

    Tremsin, A S

    2000-01-01

    The photoemissive stability of as-deposited and heat-treated CsI, KI and KBr evaporated thin films under UV radiation is examined in this paper. After the deposition, some photocathodes were annealed for several hours at 90 deg. C in vacuum and their performance was then compared to the performance of non-heated samples. We observed that the post-evaporation thermal treatment not only increases the photoyield of CsI and KI photocathodes in the spectral range of 115-190 nm, but also reduces CsI, KI and KBr photocurrent degradation that occurs after UV irradiation. KBr evaporated layers appeared to be more radiation-resistant than CsI and KI layers. Post-deposition heat treatment did not result in any significant variation of KBr UV sensitivity.

  18. Consumption of fa cai Nostoc soup: a potential for BMAA exposure from Nostoc cyanobacteria in China?

    Science.gov (United States)

    Roney, Britton R; Renhui, Li; Banack, Sandra Anne; Murch, Susan; Honegger, Rosmarie; Cox, Paul Alan

    2009-01-01

    Grown in arid regions of western China the cyanobacterium Nostoc flagelliforme--called fa cai in Mandarin and fat choy in Cantonese--is wild-harvested and used to make soup consumed during New Year's celebrations. High prices, up to $125 USD/kg, led to overharvesting in Inner Mongolia, Ningxia, Gansu, Qinghai, and Xinjiang. Degradation of arid ecosystems, desertification, and conflicts between Nostoc harvesters and Mongol herdsmen concerned the Chinese environmental authorities, leading to a government ban of Nostoc commerce. This ban stimulated increased marketing of a substitute made from starch. We analysed samples purchased throughout China as well as in Chinese markets in the United States and the United Kingdom. Some were counterfeits consisting of dyed starch noodles. A few samples from California contained Nostoc flagelliforme but were adulterated with starch noodles. Other samples, including those from the United Kingdom, consisted of pure Nostoc flagelliforme. A recent survey of markets in Cheng Du showed no real Nostoc flagelliforme to be marketed. Real and artificial fa cai differ in the presence of beta-N-methylamino-L-alanine (BMAA). Given its status as a high-priced luxury food, the government ban on collection and marketing, and the replacement of real fa cai with starch substitutes consumed only on special occasions, it is anticipated that dietary exposure to BMAA from fa cai will be reduced in the future in China.

  19. Vacuum properties of TiZrV non-evaporable getter films [for LHC vacuum system

    CERN Document Server

    Benvenuti, Cristoforo; Costa-Pinto, P; Escudeiro-Santana, A; Hedley, T; Mongelluzzo, A; Ruzinov, V; Wevers, I

    2001-01-01

    Sputter-deposited thin films of TiZrV are fully activated after 24 h "in situ" heating at 180 degrees C. This activation temperature is the lowest of some 18 different getter coatings studied so far, and it allows the use of the getter thin film technology with aluminium alloy vacuum chambers, which cannot be baked at temperatures higher than 200 degrees C. An updated review is given of the most recent results obtained on TiZrV coatings, covering the following topics: influence of the elemental composition and crystal structure on activation temperature, discharge gas trapping and degassing, dependence of pumping speed and surface saturation capacity on film morphology, ageing consequent to activation-air-venting cycles and ultimate pressures. Furthermore, the results obtained when exposing a coated particle beam chamber to synchrotron radiation in a real accelerator environment (ESRF Grenoble) are presented and discussed. (13 refs).

  20. Hunting and use of terrestrial fauna used by Caiçaras from the Atlantic Forest coast (Brazil

    Directory of Open Access Journals (Sweden)

    Alves Rômulo RN

    2009-11-01

    Full Text Available Abstract Background The Brazilian Atlantic Forest is considered one of the hotspots for conservation, comprising remnants of rain forest along the eastern Brazilian coast. Its native inhabitants in the Southeastern coast include the Caiçaras (descendants from Amerindians and European colonizers, with a deep knowledge on the natural resources used for their livelihood. Methods We studied the use of the terrestrial fauna in three Caiçara communities, through open-ended interviews with 116 native residents. Data were checked through systematic observations and collection of zoological material. Results The dependence on the terrestrial fauna by Caiçaras is especially for food and medicine. The main species used are Didelphis spp., Dasyprocta azarae, Dasypus novemcinctus, and small birds (several species of Turdidae. Contrasting with a high dependency on terrestrial fauna resources by native Amazonians, the Caiçaras do not show a constant dependency on these resources. Nevertheless, the occasional hunting of native animals represents a complimentary source of animal protein. Conclusion Indigenous or local knowledge on native resources is important in order to promote local development in a sustainable way, and can help to conserve biodiversity, particularly if the resource is sporadically used and not commercially exploited.

  1. X-shape oligo(thiophene)s as donor materials for vacuum-deposited organic photovoltaic cells

    Institute of Scientific and Technical Information of China (English)

    Wang Ya-Nan; Zhou Yin-Hua; Xu Yue; Sun Xiao-Bo; Wu Wei-Cai; Tian Wen-Jing; Liu Yun-Qi

    2008-01-01

    The films of two x-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (TT) and 2, 5-dibithienyl-3, 4-ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated as novel electron donor layers in two-layer photovoltaic cells. UV-Vis absorptions show red-shifted and broadened absorptions of the vacuumevaporated films as compared with those of the corresponding solutions and spin-coating films, which is beneficial for photovoltaic properties. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements show that the vacuum-evaporated films are almost amorphous. Two-layer photovoltaic cells have been realized by the thermal evaporation of 7T and 11T as donors and N, N'-bis(1-ethylpropyl)-3, 4:9,10-perylene bis(tetracarboxyl diimide) (EPPTC) as an acceptor. An energy conversion efficiency (ECE) of 0.18% of the cell based on 7T with an irradiation of white light at 100 mw/cm2 has been demonstrated by the measurements of current (Ⅰ)- voltage (Ⅴ) curves of the cells to be higher than the ECE of the reference system based on donor dihexylterthienyl (H3T) that is linear and without á, a linkage.

  2. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    Science.gov (United States)

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  3. Repeating pulsed magnet system for axion-like particle searches and vacuum birefringence experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T., E-mail: yamazaki@icepp.s.u-tokyo.ac.jp [International Center for Elementary Particle Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inada, T.; Namba, T. [International Center for Elementary Particle Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Asai, S. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kobayashi, T. [International Center for Elementary Particle Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsuo, A.; Kindo, K. [The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8581 (Japan); Nojiri, H. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2016-10-11

    We have developed a repeating pulsed magnet system which generates magnetic fields of about 10 T in a direction transverse to an incident beam over a length of 0.8 m with a repetition rate of 0.2 Hz. Its repetition rate is by two orders of magnitude higher than usual pulsed magnets. It is composed of four low resistance racetrack coils and a 30 kJ transportable capacitor bank as a power supply. The system aims at axion-like particle searches with a pulsed light source and vacuum birefringence measurements. We report on the details of the system and its performances.

  4. Experimental and Numerical Study of the Evaporation of Water at Low Pressures.

    Science.gov (United States)

    Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W

    2017-05-09

    Although evaporation is considered to be a surface phenomenon, the rate of molecular transport across a liquid-vapor boundary is strongly dependent on the coupled fluid dynamics and heat transfer in the bulk fluids. Recent experimental thermocouple measurements of the temperature field near the interface of evaporating water into its vapor have begun to show the role of heat transfer in evaporation. However, the role of fluid dynamics has not been explored sufficiently. Here, we have developed a mathematical model to describe the coupling of the heat, mass, and momentum transfer in the fluids with the transport phenomena at the interface. The model was used to understand the experimentally obtained velocity field in the liquid and temperature profiles in the liquid and vapor, in evaporation from a concave meniscus for various vacuum pressures. By using the model, we have shown that an opposing buoyancy flow suppressed the thermocapillary flow in the liquid during evaporation at low pressures in our experiments. As such, in the absence of thermocapillary convection, the evaporation is controlled by heat transfer to the interface, and the predicted behavior of the system is independent of choosing between the existing theoretical expressions for evaporation flux. Furthermore, we investigated the temperature discontinuity at the interface and confirmed that the discontinuity strongly depends on the heat flux from the vapor side, which depends on the geometrical shape of the interface.

  5. Modifications in the vacuum loop of the distillation system - Annex 7; Prilog 7 - Izmene u vakuumskoj grani destilacionog sistema

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, D [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    The heavy water distillation system is foreseen to operate in a continuous regime during reactor operation. The vacuum loop is designed to achieve absolute pressure of 70 mmHg in the evaporator. Modifications in the vacuum loop of the distillation system were necessary in order to attain good efficiency of the distillation, i.e clean heavy water coolant.

  6. New evaporator station for the center for accelerator target science

    Science.gov (United States)

    Greene, John P.; Labib, Mina

    2018-05-01

    As part of an equipment grant provided by DOE-NP for the Center for Accelerator Target Science (CATS) initiative, the procurement of a new, electron beam, high-vacuum deposition system was identified as a priority to insure reliable and continued availability of high-purity targets. The apparatus is designed to contain TWO electron beam guns; a standard 4-pocket 270° geometry source as well as an electron bombardment source. The acquisition of this new system allows for the replacement of TWO outdated and aging vacuum evaporators. Also included is an additional thermal boat source, enhancing our capability within this deposition unit. Recommended specifications for this system included an automated, high-vacuum pumping station, a deposition chamber with a rotating and heated substrate holder for uniform coating capabilities and incorporating computer-controlled state-of-the-art thin film technologies. Design specifications, enhanced capabilities and the necessary mechanical modifications for our target work are discussed.

  7. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    Science.gov (United States)

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  8. Construction of vacuum system for Tristan accumulation ring

    International Nuclear Information System (INIS)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.; Kubo, T.; Mizuno, H.; Momose, T.; Narushima, K.; Watanabe, H.; Yamaguchi, H.

    1983-01-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole and quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described

  9. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The present paper reports the first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  10. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity is reported. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  11. Supramolecular structure of a perylene derivative in thin films made by vacuum thermal evaporation

    International Nuclear Information System (INIS)

    Fernandes, Jose Diego

    2015-01-01

    The supramolecular arrangement of organic thin films is a factor that influences both optical and electrical properties of these films and, consequently, the technological applications involving organic electronics. In this dissertation, thin films of a perylene derivative (bis butylimido perylene, acronym BuPTCD) were produced by physical vapor deposition (PVD) using vacuum thermal evaporation. The aim of this work was to investigate the supramolecular arrangement of BuPTCD films, which implies to control the thickness at nanometer scale and to determine the molecular organization, the morphology (at nano and micrometer scales) and the crystallinity, besides the stability of this arrangement as a function of the temperature. Optical properties (such as absorption and emission) and electrical properties (such as conductivity and photoconductivity) were also determined. The UV-Vis absorption spectra revealed a controlled growth (uniform) of the BuPTCD films. Atomic force and optical microscopy images showed a homogeneous surface of the film at nano and micrometer scales, respectively. The X-ray diffraction showed that the BuPTCD powder and PVD film have different crystalline structures, with the BuPTCD molecules head-on oriented in the PVD films, supported on the substrate surface by the side group (FTIR). This structure favors the light emission (photoluminescence) by the formation of excimers. The thermal treatment (200°C for 10 min) does not affect the molecular organization of the PVD films, showing a thermal stability of the BuPTCD supramolecular arrangement under these circumstances. The electrical measurements (DC) showed a linear increase of the current as a function of the tension, which is characteristic of ohmic behavior. Also, the films exhibited an increase of current by 2 orders of magnitude when exposed to light (photoconductive properties). Finally, BuPTCD films were exposed to vapor of trifluoroacetic acid (TFA) to verify the sensitivity of the Bu

  12. Evaporation and alignment of 1-undecene functionalised nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Astuti, Y.; Poolton, N.R.J.; Butenko, Y.V.; Šiller, L., E-mail: lidija.siller@ncl.ac.uk

    2014-12-15

    The possibility to align diamond nanoparticles has a number of potential technological applications, but there are few methods by which this can be achieved, and research in this field can be considered to be in its infancy. Hitherto, two methods which have been commonly used are lithography and chemical vapour deposition (CVD), but these methods are both complex and have poor effectiveness. In this paper, we present a new technique for particle alignment, which is simpler and avoids particle structural damage. The method works by functionalising the nanodiamonds of size 5 nm by attaching 1-undecene onto the nanodiamond surfaces; the particles are then evaporated using UHV and deposited onto TEM grids and mica surfaces at 200 °C. XPS, SERS, HRTEM, luminescence spectroscopy and luminescence micro-imaging have been applied to characterise samples both before and after evaporation. Deposition of nanodiamond onto a mica surface resulted in particle alignment with length scales of 500 µm. The XPS and Raman spectra confirmed the absence of non-diamond carbon (sp{sup 2}-hybridized carbon). Moreover, photoluminescence (emitting in the range of 2.48–1.55 eV; 500–800 nm) which is characteristic for nanodiamond with size of 5 nm was also observed, both before and after evaporation of the functionalised nanodiamonds. - Highlights: • 1-Undecene funcionalised nanodiamonds can be evaporated in vacuum. • When evaporated on mica surface the particles form line ∼500 μm in length. • Their luminescence emission is observed at 2.48–1.55 eV (500–800 nm)

  13. Evaporation and alignment of 1-undecene functionalised nanodiamonds

    International Nuclear Information System (INIS)

    Astuti, Y.; Poolton, N.R.J.; Butenko, Y.V.; Šiller, L.

    2014-01-01

    The possibility to align diamond nanoparticles has a number of potential technological applications, but there are few methods by which this can be achieved, and research in this field can be considered to be in its infancy. Hitherto, two methods which have been commonly used are lithography and chemical vapour deposition (CVD), but these methods are both complex and have poor effectiveness. In this paper, we present a new technique for particle alignment, which is simpler and avoids particle structural damage. The method works by functionalising the nanodiamonds of size 5 nm by attaching 1-undecene onto the nanodiamond surfaces; the particles are then evaporated using UHV and deposited onto TEM grids and mica surfaces at 200 °C. XPS, SERS, HRTEM, luminescence spectroscopy and luminescence micro-imaging have been applied to characterise samples both before and after evaporation. Deposition of nanodiamond onto a mica surface resulted in particle alignment with length scales of 500 µm. The XPS and Raman spectra confirmed the absence of non-diamond carbon (sp 2 -hybridized carbon). Moreover, photoluminescence (emitting in the range of 2.48–1.55 eV; 500–800 nm) which is characteristic for nanodiamond with size of 5 nm was also observed, both before and after evaporation of the functionalised nanodiamonds. - Highlights: • 1-Undecene funcionalised nanodiamonds can be evaporated in vacuum. • When evaporated on mica surface the particles form line ∼500 μm in length. • Their luminescence emission is observed at 2.48–1.55 eV (500–800 nm)

  14. New method for the simultaneous condensation of complete ternary alloy systems under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Mehrtens, A.; Moske, M.; Samwer, K.

    1988-01-01

    An ultrahigh vacuum apparatus is described for the simultaneous condensation of complete ternary alloy systems. Three singly controlled electron beam evaporation sources provide a constant evaporation rate of the different elements. A specially designed rotating mask guarantees a concentration gradient on the substrate according to a ternary phase diagram. The conversion of the actual concentration profile into a standard ternary phase diagram is done by simple computer calculations. They involve corrections for the beam characteristics of the evaporation sources and for the rotating mask. As an example, measurements for the Zr--Cu--Co system are given. The concentration range for the amorphous phase is compared with thermodynamic predictions using Miedema's parameter

  15. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  16. Growth of BaSi2 film on Ge(100) by vacuum evaporation and its photoresponse properties

    Science.gov (United States)

    Trinh, Cham Thi; Nakagawa, Yoshihiko; Hara, Kosuke O.; Kurokawa, Yasuyoshi; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2017-05-01

    We have successfully grown a polycrystalline orthorhombic BaSi2 film on a Ge(100) substrate by an evaporation method. Deposition of an amorphous Si (a-Si) film on the Ge substrate prior to BaSi2 evaporation plays a critical role in obtaining a high-quality BaSi2 film. By controlling substrate temperature and the thickness of the a-Si film, a crack-free and single-phase polycrystalline orthorhombic BaSi2 film with a long carrier lifetime of 1.5 µs was obtained on Ge substrates. The photoresponse property of the ITO/BaSi2/Ge/Al structure was clearly observed, and photoresponsivity was found to increase with increasing substrate temperature during deposition of a-Si. Furthermore, the BaSi2 film grown on Ge showed a higher photoresponsivity than that grown on Si, indicating the potential application of evaporated BaSi2 on Ge to thin-film solar cells.

  17. From field evaporation to focused ion beams

    International Nuclear Information System (INIS)

    Forbes, R.G.

    2004-01-01

    Full text: This paper report various items of recent progress in the theory of field evaporation and the theory of the liquid-metal ion source. The research has, in part, been driven by a desire to find out how to reduce the beam-spot size in a focused ion beam machine, which is developing as a significant tool of nanotechnology. A major factor in determining beam spot size seems to be the behavior of the liquid-metal ion source (LMIS), and one route might be to reduce the minimum emission current of a LMIS, if this is possible. Theories of LMIS minimum emission current have been re-examined. Some progress has been made, but development of more accurate theory has been constrained by several factors, include the long-known limitations of the present theory of field evaporation (FEV). This, in turn, has stimulated a wider re-examination of FEV theory. As part of some general theoretical remarks, the following items of recent progress will be covered. Various results concerning the prediction of the field F e at which the activation energy Q for field evaporation is zero, including calculations in which vacuum electrostatic energy changes are taken into account, and another look at the views of Kingham and Tsong concerning escape charge-state. Some years ago, the following approximate formula was derived for the dependence of FEV activation energy on field F: Q=B(F e /F - 1) 2 . It has recently been possible to show that the parameter B can be estimated as B= βYΩ/8, where Y is Young's modulus, Ω is the atomic volume, and β is a correction factor of order. In the framework of the charge-draining mechanism, another look at how the activation-energy hump can be modelled, in order to predict/explain the conditions under which FEV becomes dominated by ion tunnelling rather than field evaporation. A review of the changes in LMIS theory that result from applying the equation of continuity to the metal/vacuum interface, including modifications to the theory of minimum

  18. Changes in flavour and microbial diversity during natural fermentation of suan-cai, a traditional food made in Northeast China.

    Science.gov (United States)

    Wu, Rina; Yu, Meiling; Liu, Xiaoyu; Meng, Lingshuai; Wang, Qianqian; Xue, Yating; Wu, Junrui; Yue, Xiqing

    2015-10-15

    We measured changes in the main physical and chemical properties, flavour compounds and microbial diversity in suan-cai during natural fermentation. The results showed that the pH and concentration of soluble protein initially decreased but were then maintained at a stable level; the concentration of nitrite increased in the initial fermentation stage and after reaching a peak it decreased significantly to a low level by the end of fermentation. Suan-cai was rich in 17 free amino acids. All of the free amino acids increased in concentration to different degrees, except histidine. Total free amino acids reached their highest levels in the mid-fermentation stage. The 17 volatile flavour components identified at the start of fermentation increased to 57 by the mid-fermentation stage; esters and aldehydes were in the greatest diversity and abundance, contributing most to the aroma of suan-cai. Bacteria were more abundant and diverse than fungi in suan-cai; 14 bacterial species were identified from the genera Leuconostoc, Bacillus, Pseudomonas and Lactobacillus. The predominant fungal species identified were Debaryomyces hansenii, Candida tropicalis and Penicillium expansum. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A laboratory scale approach to polymer solar cells using one coating/printing machine, flexible substrates, no ITO, no vacuum and no spincoating

    DEFF Research Database (Denmark)

    Carlé, Jon Eggert; Andersen, Thomas Rieks; Helgesen, Martin

    2013-01-01

    Printing of the silver back electrode under ambient conditions using simple laboratory equipment has been the missing link to fully replace evaporated metal electrodes. Here we demonstrate how a recently developed roll coater is further developed into a single machine that enables processing of a......–tin-oxide (ITO) or vacuum evaporation steps making it a significant step beyond the traditional laboratory polymer solar cell processing methods involving spin coating and metal evaporation....

  20. Evaporation

    International Nuclear Information System (INIS)

    Delaney, B.T.; Turner, R.J.

    1989-01-01

    Evaporation has long been used as a unit operation in the manufacture of various products in the chemical-process industries. In addition, it is currently being used for the treatment of hazardous wastes such as radioactive liquids and sludges, metal-plating wastes, and other organic and inorganic wastes. Design choice is dependent on the liquid to be evaporated. The three most common types of evaporation equipment are the rising-film, falling-film, and forced-circulation evaporators. The first two rely on boiling heat transfer and the latter relies on flash vaporization. Heat exchangers, flash tanks, and ejectors are common auxiliary equipment items incorporated with evaporator bodies to complete an evaporator system. Properties of the liquid to be evaporated are critical in final selection of an appropriate evaporator system. Since operating costs are a significant factor in overall cost, heat-transfer characteristics and energy requirements are important considerations. Properties of liquids which are critical to the determination of final design include: heat capacity, heat of vaporization, density, thermal conductivity, boiling point rise, and heat-transfer coefficient. Evaporation is an expensive technology, both in terms of capital costs and operating costs. Additionally, mechanical evaporation produces a condensate and a bottoms stream, one or both of which may require further processing or disposal. 3 figs

  1. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    Smith, A.F.; Hales, R.

    1977-01-01

    During selective chromium oxidation of stainless steels the changes in chromium concentration at the metal surface and in the metal have an important bearing on the overall oxidation performance. It has been proposed that an analogue of chromium behaviour during selective oxidation is obtained from volatilisation of chromium during high temperature vacuum annealing. In the present report the evaporation of chromium from 316 type of steel, vacuum annealed at 1,000 0 C, has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that chromium loss from austenitic stainless steels is rate controlled by interdiffusion in the alloy. As predicted the chromium concentration at the metal surface decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in good agreement with the previously derived model apart from an anomalous region near the surface. Here the higher resolution of the neutron activation technique indicated a zone within approximately 2μm of the surface where the chromium concentration decreased more steeply than expected. (orig.) [de

  2. LEP vacuum chamber, cross-section

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.

  3. Calcium-aluminum-rich inclusions with fractionation and unknown nuclear effects (FUN CAIs)

    DEFF Research Database (Denmark)

    Krot, Alexander N.; Nagashima, Kazuhide; Wasserburg, Gerald J.

    2014-01-01

    We present a detailed characterization of the mineralogy, petrology, and oxygen isotopic compositions of twelve FUN CAIs, including C1 and EK1-4-1 from Allende (CV), that were previously shown to have large isotopic fractionation patterns for magnesium and oxygen, and large isotopic anomalies...

  4. Modification of Ultra-High Vacuum Surfaces Using Free Radicals

    CERN Document Server

    Vorlaufer, G

    2002-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption of surface adsorbates are usually the factors which determine pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchrotron radiation and bombardment by energetic ions and electrons, surface properties like the molecular desorption yield or secondary electron yield can strongly influence the performance of the accelerator. Well-established treatment methods like vacuum bake-out or glow-discharge cleaning have been successfully applied in the past to condition ultra-high vacuum surfaces, but these methods are sometimes difficult to carry out, for example if the vacuum chambers are not accessible. In this work, an alternative treatment method is investigated. This method is based on the strong chemical reactivity of free radicals, electrically neutral fragments of molecules. Free radicals (in the case of this work, nitrogen and oxygen radi...

  5. Adaptation of an aerosol retrieval algorithm using multi-wavelength and multi-pixel information of satellites (MWPM) to GOSAT/TANSO-CAI

    Science.gov (United States)

    Hashimoto, M.; Takenaka, H.; Higurashi, A.; Nakajima, T.

    2017-12-01

    Aerosol in the atmosphere is an important constituent for determining the earth's radiation budget, so the accurate aerosol retrievals from satellite is useful. We have developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using multi-wavelength and multi-pixel information of satellite imagers (MWPM). The method simultaneously derives aerosol optical properties, such as aerosol optical thickness (AOT), single scattering albedo (SSA) and aerosol size information, by using spatial difference of wavelegths (multi-wavelength) and surface reflectances (multi-pixel). The method is useful for aerosol retrieval over spatially heterogeneous surface like an urban region. In this algorithm, the inversion method is a combination of an optimal method and smoothing constraint for the state vector. Furthermore, this method has been combined with the direct radiation transfer calculation (RTM) numerically solved by each iteration step of the non-linear inverse problem, without using look up table (LUT) with several constraints. However, it takes too much computation time. To accelerate the calculation time, we replaced the RTM with an accelerated RTM solver learned by neural network-based method, EXAM (Takenaka et al., 2011), using Rster code. And then, the calculation time was shorternd to about one thouthandth. We applyed MWPM combined with EXAM to GOSAT/TANSO-CAI (Cloud and Aerosol Imager). CAI is a supplement sensor of TANSO-FTS, dedicated to measure cloud and aerosol properties. CAI has four bands, 380, 674, 870 and 1600 nm, and observes in 500 meters resolution for band1, band2 and band3, and 1.5 km for band4. Retrieved parameters are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles at a wavelenth of 500nm, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength by combining a minimum reflectance method and Fukuda et al. (2013). We will show

  6. EVIDENCE FOR MULTIPLE SOURCES OF 10Be IN THE EARLY SOLAR SYSTEM

    International Nuclear Information System (INIS)

    Wielandt, Daniel; Krot, Alexander N.; Bizzarro, Martin; Nagashima, Kazuhide; Huss, Gary R.; Ivanova, Marina A.

    2012-01-01

    Beryllium-10 is a short-lived radionuclide (t 1/2 = 1.4 Myr) uniquely synthesized by spallation reactions and inferred to have been present when the solar system's oldest solids (calcium-aluminum-rich inclusions, CAIs) formed. Yet, the astrophysical site of 10 Be nucleosynthesis is uncertain. We report Li-Be-B isotope measurements of CAIs from CV chondrites, including CAIs that formed with the canonical 26 Al/ 27 Al ratio of ∼5 × 10 –5 (canonical CAIs) and CAIs with Fractionation and Unidentified Nuclear isotope effects (FUN-CAIs) characterized by 26 Al/ 27 Al ratios much lower than the canonical value. Our measurements demonstrate the presence of four distinct fossil 10 Be/ 9 Be isochrons, lower in the FUN-CAIs than in the canonical CAIs, and variable within these classes. Given that FUN-CAI precursors escaped evaporation-recondensation prior to evaporative melting, we suggest that the 10 Be/ 9 Be ratio recorded by FUN-CAIs represents a baseline level present in presolar material inherited from the protosolar molecular cloud, generated via enhanced trapping of galactic cosmic rays. The higher and possibly variable apparent 10 Be/ 9 Be ratios of canonical CAIs reflect additional spallogenesis, either in the gaseous CAI-forming reservoir, or in the inclusions themselves: this indicates at least two nucleosynthetic sources of 10 Be in the early solar system. The most promising locale for 10 Be synthesis is close to the proto-Sun during its early mass-accreting stages, as these are thought to coincide with periods of intense particle irradiation occurring on timescales significantly shorter than the formation interval of canonical CAIs.

  7. Niobium tunnel junction fabrication using e-gun evaporation and SNAP

    Science.gov (United States)

    Kortlandt, J.; van der Zant, H. S. J.; Schellingerhout, A. J. G.; Mooij, J. E.

    1990-11-01

    We have fabricated high quality small area Nb-Al-Al 2O 3-Nb junctions with SNAP, making use of e-beam evaporation in a 10 -5 Pa diffusion pumped vacuum system. Nominal dimensions of the junctions are 8x8, 4x4 and 2x2 μm 2. We obtain typical current densities of 5-6 × 10 +2A/cm 2 and (critical current) x (subgap resistance) products of 40 mV.

  8. The Range of Initial 10Be/9Be Ratios in the Early Solar System: A Re-Assessment Based on Analyses of New CAIs and Melilite Composition Glass Standards

    Science.gov (United States)

    Dunham, E.; Wadhwa, M.; Liu, M.-C.

    2017-07-01

    We report a more accurate range of initial 10Be/9Be in CAIs including FUN CAI CMS-1 from Allende (CV3) and a new CAI from NWA 5508 (CV3) using melilite composition glass standards; we suggest 10Be is largely produced by irradiation in the nebula.

  9. Method and apparatus for scientific analysis under low temperature vacuum conditions

    Science.gov (United States)

    Winefordner, James D.; Jones, Bradley T.

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  10. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  11. Numerical investigation of CAI Combustion in the Opposed- Piston Engine with Direct and Indirect Water Injection

    Science.gov (United States)

    Pyszczek, R.; Mazuro, P.; Teodorczyk, A.

    2016-09-01

    This paper is focused on the CAI combustion control in a turbocharged 2-stroke Opposed-Piston (OP) engine. The barrel type OP engine arrangement is of particular interest for the authors because of its robust design, high mechanical efficiency and relatively easy incorporation of a Variable Compression Ratio (VCR). The other advantage of such design is that combustion chamber is formed between two moving pistons - there is no additional cylinder head to be cooled which directly results in an increased thermal efficiency. Furthermore, engine operation in a Controlled Auto-Ignition (CAI) mode at high compression ratios (CR) raises a possibility of reaching even higher efficiencies and very low emissions. In order to control CAI combustion such measures as VCR and water injection were considered for indirect ignition timing control. Numerical simulations of the scavenging and combustion processes were performed with the 3D CFD multipurpose AVL Fire solver. Numerous cases were calculated with different engine compression ratios and different amounts of directly and indirectly injected water. The influence of the VCR and water injection on the ignition timing and engine performance was determined and their application in the real engine was discussed.

  12. [Interlaboratory Study on Evaporation Residue Test for Food Contact Products (Report 2)].

    Science.gov (United States)

    Ohno, Hiroyuki; Mutsuga, Motoh; Abe, Tomoyuki; Abe, Yutaka; Amano, Homare; Ishihara, Kinuyo; Ohsaka, Ikue; Ohno, Haruka; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Sakuragi, Hiroshi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Takasaka, Noriko; Takenaka, Yu; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Miura, Toshihiko; Yamaguchi, Miku; Yamada, Kyohei; Watanabe, Kazunari; Sato, Kyoko

    2018-01-01

    An interlaboratory study was performed to evaluate the equivalence between an official method and a modified method of evaporation residue test using heptane as a food-simulating solvent for oily or fatty foods, based on the Japanese Food Sanitation Law for food contact products. Twenty-three laboratories participated, and tested the evaporation residues of nine test solutions as blind duplicates. In the official method, heating for evaporation was done with a water bath. In the modified method, a hot plate was used for evaporation, and/or a vacuum concentration procedure was skipped. In most laboratories, the test solutions were heated until just prior to dryness, and then allowed to dry under residual heat. Statistical analysis revealed that there was no significant difference between the two methods. Accordingly, the modified method provides performance equal to the official method, and is available as an alternative method. Furthermore, an interlaboratory study was performed to evaluate and compare two leaching solutions (95% ethanol and isooctane) used as food-simulating solvents for oily or fatty foods in the EU. The results demonstrated that there was no significant difference between heptane and these two leaching solutions.

  13. Morphological analysis of co-evaporated blend films based on initial growth for organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yosei, E-mail: yosei.shibata@aist.go.jp [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Taima, Tetsuya [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Zhou, Ying; Ohashi, Noboru; Kono, Takahiro [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Yoshida, Yuji, E-mail: yuji.yoshida@aist.go.jp [Research Center for Photovoltaic Technologies, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • Initial growth mode of co-evaporated films was observed. • Balanced crystal growth leads to improvement of photovoltaic performance. • Crystal growth of fullerene during co-evaporation process was restricted. • The power conversion efficiency of 3% was obtained without electron blocking layer. - Abstract: Bulk heterojunction structures composed of electron donor and acceptor molecules for application in high-performance organic photovoltaics studied. To fabricate these structures, the co-evaporation method in vacuum is commonly applied; however, the details of the crystal growth process during co-evaporation have not yet been established. Here, we focused on structural analysis of blend films composed of phthalocyanine and fullerene based on initial growth stage. Similar crystal growth behavior to that typically observed in single-component molecules is obtained for the films. These results suggest that the competitive crystal growth between donors and acceptors occurs during co-evaporation process. The balance of thin film growth among donor and acceptor molecules can be related to improved photovoltaic performance. The homogeneous blend structure leads to improvement of the power conversion efficiency from 1.2% to 3.0%.

  14. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    Science.gov (United States)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  15. Mapping energetics of atom probe evaporation events through first principles calculations.

    Science.gov (United States)

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Conformational studies of self-organized regioregular poly(3-dodecylthiophene)s using non-contact atomic force microscopy in ultra high vacuum condition

    International Nuclear Information System (INIS)

    Tanaka, Shukichi; Grevin, Benjamin; Rannou, Patrice; Suzuki, Hitoshi; Mashiko, Shinro

    2006-01-01

    Conformations of one of the variations of π-conjugated poly-alkylthiophene, poly(3-dodecylthiophene)s (P3DDT)s on the surface in ultra high vacuum (UHV) were investigated by non-contact atomic force microscopy (NC-AFM) operated by frequency-modulation mode (FM-mode). From individual molecules to several multi-layered ones, polymer chains on the surface were clearly resolved on conducting highly oriented pyrolytic graphite (HOPG) substrates and insulating mica ones, respectively. Solvent evaporation was found to have two stages, which influenced the diffusion, ordering, and adhesion processes of polymer chains on the substrate. To keep the ordered conformations of deposited polymer chains when they are transferred from ambient condition to UHV, these evaporation processes should be carefully considered. The initial conformation of polymers on the substrate was found to depend strongly on the lattice matching conditions and interactions between polymers and substrates. Formations of stripe-like structures of P3DDT polymers were found on the mica substrates, which is promising for device application

  17. Photoluminescence of polycrystalline CuIn 0.5 Ga 0.5 Te 2 thin films grown by flash evaporation

    KAUST Repository

    Yandjah, L.; Bechiri, L.; Benabdeslem, M.; Benslim, N.; Amara, A.; Portier, X.; Bououdina, M.; Ziani, Ahmed

    2018-01-01

    Polycrystalline CuIn0.5Ga0.5Te2 films were deposited by flash evaporation from ingot prepared by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te elements in vacuum sealed quartz . The as-obtained films were characterized by X

  18. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  19. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    Science.gov (United States)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  20. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.

    Science.gov (United States)

    Ratzloff, Michael W; Artz, Jacob H; Mulder, David W; Collins, Reuben T; Furtak, Thomas E; King, Paul W

    2018-06-20

    The [FeFe]-hydrogenases ([FeFe] H 2 ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H ) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2 ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox led to formation of H red H + ([4Fe-4S] H 2+ -Fe I -Fe I ) and H red ' ([4Fe-4S] H 1+ -Fe II -Fe I ), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H . Similar μ-CO IR modes were also identified for H red H + of the [FeFe] H 2 ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd . Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H red H + was converted to H hyd . Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of H hyd and appearance of H ox , consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the "H red " states and that H red H + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. These results provide a blueprint for designing small molecule catalytic analogs.

  1. Optimization of Edwards vacuum coating unit model E12E for the production of thin films.; Optimizacion de la evaporadora Edwards modelo E12E para la fabricacion de peliculas delgadas.

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz P, H S

    1995-10-01

    This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author).

  2. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    Science.gov (United States)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  3. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate.

    Science.gov (United States)

    Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian

    2017-03-21

    When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.

  4. Pick up screens for x-ray image intensifier tubes employing evaporated activated scintillator layer

    International Nuclear Information System (INIS)

    Spicer, W.E.

    1976-01-01

    The present invention relates in general to methods for making pick-up screens for x-ray image intensifier tubes and, more particularly, to an improved method wherein the x-ray fluorescent phosphor screen element is formed by evaporation of an alkali metal halide material in vacuum and condensing the evaporated material on an x-ray transparent portion of the x-ray intensifier tube, whereby a curved x-ray image pick-up screen is formed which has improved quantum efficiency and resolution. Such improved x-ray image intensifier tubes are especially useful for, but not limited in use to x-ray systems and for intensifying gamma ray images obtained in applications of nuclear medicine. 7 claims, 5 drawing figures

  5. Starobinsky-Like Inflation and Running Vacuum in the Context of Supergravity

    Directory of Open Access Journals (Sweden)

    Spyros Basilakos

    2016-07-01

    Full Text Available We describe the primeval inflationary phase of the early Universe within a quantum field theoretical (QFT framework that can be viewed as the effective action of vacuum decay in the early times. Interestingly enough, the model accounts for the “graceful exit” of the inflationary phase into the standard radiation regime. The underlying QFT framework considered here is supergravity (SUGRA, more specifically an existing formulation in which the Starobinsky-type inflation (de Sitter background emerges from the quantum corrections to the effective action after integrating out the gravitino fields in their (dynamically induced massive phase. We also demonstrate that the structure of the effective action in this model is consistent with the generic idea of re-normalization group (RG running of the cosmological parameters; specifically, it follows from the corresponding RG equation for the vacuum energy density as a function of the Hubble rate, ρ Λ ( H . Overall, our combined approach amounts to a concrete-model realization of inflation triggered by vacuum decay in a fundamental physics context, which, as it turns out, can also be extended for the remaining epochs of the cosmological evolution until the current dark energy era.

  6. The vacuum system for insertion devices at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Trakhtenberg, E.; Gluskin, E.; Den Hartog, P.; Klippert, T.; Wiemerslage, G.; Xu, S.

    1995-01-01

    A vacuum system for the insertion devices at the Advanced Photon Source was designed, and chambers of this design were successfully manufactured and tested. Three different versions of the vacuum chamber have been developed with vertical apertures of 12 mm, 8mm, and 5 mm, respectively. The chambers are fabricated by extruding 6063 aluminum alloy to form a tube with the desired internal shaped and machining the exterior to finish dimensions. The wall thickness of the completed chamber at the beam orbit position is 1 mm. The design utilizes a rigid strongback that limits deflection of the chamber under vacuum despite the thin wall. Chambers with lengths of 2.2m and 5.2 m have been fabricated. Pumping is accomplished by a combination of lumped and distributed non-evaporable getters and ion pumps. An ultimate pressure of 5.1· -11 torr was achieved with the 12-mm vertical aperture prototype. Alignment of the vacuum chamber on its support can be made with a precision of ± 25 μm in the vertical plane, which allows minimum insertion device pole gaps of 14.5 mm, 10.5 mm, and 7.5 mm

  7. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation coefficient and temperature gradient inside droplets. It is pointed out that for the parameters typical for Diesel engine-like conditions, the heat flux in the kinetic region is a linear function of the vapour temperature at the outer boundary of this region, but practically does not depend on vapour density at this boundary for all models, including and not including the effects of inelastic collisions, and including and not including the effects of a non-unity evaporation coefficient. For any given temperature at the outer boundary of the kinetic region the values of the heat flux are shown to decrease with increasing numbers of internal degrees of freedom of the molecules. The rate of this decrease is strong for small numbers of these degrees of freedom but negligible when the number of these degrees exceeds 20. This allows us to restrict the analysis to the first 20 arbitrarily chosen degrees of freedom of n-dodecane molecules when considering the effects of inelastic collisions. The mass flux at this boundary decreases almost linearly with increasing vapour density at the same location for all above-mentioned models. For any given vapour density at the outer boundary of the kinetic region the values of the mass flux are smaller for the model, taking into account the contribution of internal degrees of freedom, than for the model ignoring these degrees of freedom. It is shown that the effects of inelastic collisions lead to stronger increase in the predicted droplet evaporation time in Diesel engine-like conditions relative to the hydrodynamic model, compared with the similar increase predicted by the kinetic model considering only elastic collisions. The effects of a non-unity evaporation coefficient are shown to be

  8. Thermal evolution of the morphology, structure, and optical properties of multilayer nanoperiodic systems produced by the vacuum evaporation of SiO and SiO2

    International Nuclear Information System (INIS)

    Ershov, A. V.; Chugrov, I. A.; Tetelbaum, D. I.; Mashin, A. I.; Pavlov, D. A.; Nezhdanov, A. V.; Bobrov, A. I.; Grachev, D. A.

    2013-01-01

    The alternate vacuum evaporation of SiO and SiO 2 from separate sources is used to produce amorphous a-SiO x /SiO 2 multilayer nanoperiodic structures with periods of 5–10 nm and a number of layers of up to 64. The effect of annealing at temperatures T a = 500–1100°C on the structural and optical properties of the nanostructures is studied. The results of transmission electron microscopy of the samples annealed at 1100°C indicate the annealing-induced formation of vertically ordered quasiperiodic arrays of Si nanocrystals, whose dimensions are comparable to the a-SiO x -layer thickness in the initial nanostructures. The nanostructures annealed at 1100°C exhibit size-dependent photoluminescence in the wavelength range 750–830 nm corresponding to Si nanocrystals. The data on infrared absorption and Raman scattering show that the thermal evolution of structural and phase state of the SiO x layers with increasing annealing temperature proceeds through the formation of amorphous Si nanoinclusions with the subsequent formation and growth of Si nanocrystals.

  9. Effect of vacuum annealing on evaporated pentacene thin films for memory device applications

    International Nuclear Information System (INIS)

    Gayathri, A.G.; Joseph, C.M.

    2016-01-01

    Graphical abstract: Switching of ITO/pentacene/Al thin films for different annealing temperatures. - Highlights: • Memory device performance in pentacene improved considerably with annealing. • ON/OFF ratio of the pentacene device increases due to annealing. • Threshold voltage reduces from 2.55 V to 1.35 V due to annealing. • Structure of pentacene thin films is also dependent on annealing temperature. - Abstract: Thin films of pentacene were deposited thermally onto glass substrates and annealed at 323 K, 373 K, 423 K, 473 K and 523 K in high vacuum. Effect of annealing on the morphological and structural properties of these films was studied. X-ray diffraction patterns confirmed the crystalline nature of the films. Electrical studies for the use as write once read many (WORM) memory devices were done for the vacuum deposited pentacene thin films on indium tin oxide coated glass. Due to annealing, a sharp increase in the ON/OFF ratio of current and a decrease in threshold voltage were observed at around 373 K. This device showed a stable switching with an ON/OFF current ratio as high as 10 9 and a switching threshold voltage of 1.35 V. The performance of the device degraded above 423 K due to the changes in the crystallinity of the film.

  10. Effect of vacuum annealing on evaporated pentacene thin films for memory device applications

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, A.G., E-mail: gaythri305@yahoo.com; Joseph, C.M., E-mail: cmjoseph@rediffmail.com

    2016-09-15

    Graphical abstract: Switching of ITO/pentacene/Al thin films for different annealing temperatures. - Highlights: • Memory device performance in pentacene improved considerably with annealing. • ON/OFF ratio of the pentacene device increases due to annealing. • Threshold voltage reduces from 2.55 V to 1.35 V due to annealing. • Structure of pentacene thin films is also dependent on annealing temperature. - Abstract: Thin films of pentacene were deposited thermally onto glass substrates and annealed at 323 K, 373 K, 423 K, 473 K and 523 K in high vacuum. Effect of annealing on the morphological and structural properties of these films was studied. X-ray diffraction patterns confirmed the crystalline nature of the films. Electrical studies for the use as write once read many (WORM) memory devices were done for the vacuum deposited pentacene thin films on indium tin oxide coated glass. Due to annealing, a sharp increase in the ON/OFF ratio of current and a decrease in threshold voltage were observed at around 373 K. This device showed a stable switching with an ON/OFF current ratio as high as 10{sup 9} and a switching threshold voltage of 1.35 V. The performance of the device degraded above 423 K due to the changes in the crystallinity of the film.

  11. LINAC 3 experiment: This experiment is used to study some scenarios of the future LEIR (low-energy ion ring) vacuum design.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 1 316LN stainless steel sheet 0.7 m thick sheet metal, with water-jet cut holes; before (sheet metal) and after rolling (tube). Photo 2 316LN stainless steel tube with water-jet cut holes. Photo 3 Inner tube is fitted with NEG (non-evaporable getter) strips, creating a kind of total NEG pump. Photo 4 Inner tube is fitted with NEG (non-evaporable getter) strips, creating a kind of total NEG pump. Photo 5 Same tubes but compiled on top of each other. Photo 6 The stack of tubes is put into a vacuum chamber that will be used in the LINAC 3 experiment during summer 2002 (lead-ion beam will be used for this experiment). The holes allow all-round pumping, i.e. close to the vacuum chamber walls.

  12. INFLUENCE OF VACUUM ARC PLASMA EVAPORATOR CATHODE GEOMETRY OF ON VALUE OF ADMISSIBLE ARC DISCHARGE CURRENT

    Directory of Open Access Journals (Sweden)

    I. A. Ivanou

    2015-01-01

    Full Text Available An analysis of main design parameters that determine a level of droplet formation intensity at the generating stage of plasma flow has been given in the paper. The paper considers the most widely used designs of water cooled consumable cathodes. Ti or Ti–Si and Fe–Cr alloys have been taken as a material for cathodes. The following calculated data: average ionic charge Zi for titanium plasma +1.6; for «titanium–silicon plasma» +1.2, an electronic discharge 1.6022 ⋅ 10–19 C, an ion velocity vi = 2 ⋅ 104 m/s, an effective volt energy equivalent of heat flow diverted in the cathode Uк = 12 V, temperature of erosion cathode surface Тп = 550 К; temperature of the cooled cathode surface То = 350 К have been accepted in order to determine dependence of a maximum admissible arc discharge current on cathode height. The calculations have been carried out for various values of the cathode heights hк (from 0.02 to 0.05 m. Diameter of a target cathode is equal to 0.08 m for a majority of technological plasma devices, therefore, the area of the erosion surface is S = 0.005 m2.A thickness selection for a consumable target cathode part in the vacuum arc plasma source has been justified in the paper. The thickness ensures formation of minimum drop phase in the plasma flow during arc cathode material evaporation. It has been shown that a maximum admissible current of an arc discharge is practically equal to the minimum current of stable arcing when thickness of the consumable cathode part is equal to 0.05 m. The admissible discharge current can be rather significant and ensure high productivity during coating process with formation of relatively low amount of droplet phase in the coating at small values of hк.

  13. Interelectrode plasma evolution in a hot refractory anode vacuum arc: Theory and comparison with experiment

    International Nuclear Information System (INIS)

    Beilis, I.I.; Goldsmith, S.; Boxman, R.L.

    2002-01-01

    In this paper a theoretical study of a hot refractory anode vacuum arc, which was previously investigated experimentally [Phys. Plasmas 7, 3068 (2000)], is presented. The arc was sustained between a thermally isolated refractory anode and a water-cooled copper cathode. The arc started as a multicathode-spot (MCS) vacuum arc and then switched to the hot refractory anode vacuum arc (HRAVA) mode. In the MCS mode, the cathodic plasma jet deposits a film of the cathode material on the anode. Simultaneously, the temperature of the thermally isolated anode begins to rise, reaching eventually a sufficiently high temperature to re-evaporate the deposited material, which is subsequently ionized in the interelectrode gap. The transition to the HRAVA mode is completed when the density of the interelectrode plasma consists mostly of ionized re-evaporated atoms--the anode plasma. The evolution of the HRAVA mode is characterized by the propagation of a luminous plasma plume from the anode to the cathode. The time dependent model of the various physical processes taking place during the transition to the HRAVA mode is represented by a system of equations describing atom re-evaporation, atom ionization through the interaction of the cathode jet and the interelectrode plasma with the anode vapor, plasma plume propagation, plasma radial expansion, plasma energy, and heavy particle density balance. The time dependence of the anode heat flux and the effective anode voltage were obtained by solving these equations. In addition, the time dependent plasma electron temperature, plasma density, anode potential drop, arc voltage, and anode temperature distribution were calculated and compared with previous measurements. It was shown that the observed decrease of the effective anode voltage with time during the mode transition is due to decrease of the heat flux incident on the anode surface from the cathode spot jets

  14. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  15. Conhecimento e uso de plantas em uma comunidade caiçara do litoral sul do Estado do Rio de Janeiro, Brasil Knowledge and use of plants in a Caiçara community located on the southern coast of Rio de Janeiro State, Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo Borges

    2009-09-01

    Full Text Available A Área de Proteção Ambiental de Cairuçu (APA localiza-se no município de Paraty, RJ. É uma unidade de conservação de uso sustentável e dispõe-se a proteger o ambiente natural e as comunidades caiçaras da região. O objetivo deste estudo foi realizar um inventário etnobotânico das plantas conhecidas e utilizadas pela comunidade caiçara que habita a praia de Martim de Sá. Moram no local 30 pessoas das quais 10 foram entrevistadas. As informações etnobotânicas foram obtidas através da observação participante e entrevistas semi-estruturadas. O material botânico coletado foi depositado no Herbário do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (RB. Foram identificadas 76 espécies pertencentes a 59 gêneros e 30 famílias botânicas consideradas úteis pelos caiçaras. As três espécies mais citadas foram: Sloanea obtusifolia (Sapopema, Scherolobium denudatum (Ingá-ferro e Balizia pedicelaris (Timbuíba. Utilizou-se o Índice de Shannon (H' = 1,81 - base 10 para a análise da diversidade de espécies. O registro sobre o uso dos recursos vegetais na comunidade estudada fornece informações que podem ser utilizadas para programas de conservação baseados no conhecimento local do ambiente.The Cairuçu Environmental Protection Area (APA was created to help assure the protection of the natural environment and its sustainable use by the caiçara communities in the region. This work presents an ethnobotanical inventory of the plants known and used by the caiçara community living on Martim de Sá beach in Paraty municipality, RJ. Thirty people live in the locality and ten of them were interviewed. Ethnobotanical information was obtained through participatory observations and semi-structured interviews with the local residents. All botanical material collected was deposited in the herbarium of the Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (RB. A total of 76 species belonging to 59 genera and 30

  16. Feasibilty study of renewable energy powered seawater desalination technology using natural vacuum technique

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Teoman; Al Madani, Hussain [Mechanical Engineering Department, College of Engineering, University of Bahrain, P.O. box 32038, Isatown 32036 (Bahrain)

    2010-02-15

    With an ever-increasing population and rapid growth of industrialization, there is great demand for fresh water. Desalination has been a key proponent to meet the future challenges due to decreasing availability of fresh water. However, desalination uses significant amount of energy, today mostly from fossil fuels. It is, therefore, reasonable to rely on renewable energy sources such as solar energy, wind energy, ocean thermal energy, waste heat from the industry and other renewable sources. The present study deals with the energy-efficient seawater desalination system utilizing renewable energy sources and natural vacuum technique. A new desalination technology named Natural Vacuum Desalination is proposed. The novel desalination technique achieve remarkable energy efficiency through the evaporation of seawater under vacuum and will be described in sufficient detail to demonstrate that it requires much less electric energy compared to any conventional desalination plant of fresh water production of similar capacity. The discussion will highlight the main operative and maintenance features of the proposed natural vacuum seawater desalination technology which seems to have promising techno-economic potential providing also advantageous coupling with renewable energy sources. (author)

  17. High-vacuum pumping out of hydrogen isotopes by compressed and electrophysical pumps

    International Nuclear Information System (INIS)

    Bychkova, A.D.; Ershova, Z.V.; Saksaganskij, G.L.; Serebrennikov, D.V.

    1982-01-01

    To explain the selection of parameters of vacuum systems of projected thermonuclear devices, experiments are performed on the pumping-out of deuterium and tritium by high-vacuum pumps of different types. The values of the fast response of turbomolecular, diffusion vapour-mercury, magneto-discharge and titanium getter pumps in the operation pressure range are determined. The rate of sorption of hydrogen isotopes by non-spraying gas absorber of cial alloy depending on the amount of the gas absorbed and temperature, is measured. Gas current is determined by the pressure drop on the diagram of the known conductivity. Individual calibration of manometric converters for different gases using a mercury burette is performed preliminarily. The means of high-vacuum pumping-out that have been studied have the following values of fast response for tritium (relatively to protium): turbomolecular pump-0.95; evaporation getter pump-0.25; magneto-discharge pumps-0.65-0.9; cial alloy-0.1...0.5

  18. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    Science.gov (United States)

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Computing the hadronic vacuum polarization function by analytic continuation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Hashimoto, Shoji [KEK National High Energy Physics, Tsukuba (Japan); The Graduate Univ. for Advanced Studies, Tsukuba (Japan). School of High Energy Accelerator Science; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-07-15

    We propose a method to compute the hadronic vacuum polarization function on the lattice at continuous values of photon momenta bridging between the space-like and time-like regions. We provide two independent derivations of this method showing that it leads to the desired hadronic vacuum polarization function in Minkowski space-time. We show with the example of the leading- order QCD correction to the muon anomalous magnetic moment that this approach can provide a valuable alternative method for calculations of physical quantities where the hadronic vacuum polarization function enters.

  20. Vacuum system of the compact Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.; Takai, R.; Obina, T.; Asaoka, S.; Uchiyama, T.; Nakamura, N. [High Energy Accelerator Research Organization (KEK) (1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan) (Japan)

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gas interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.

  1. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    Science.gov (United States)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur

    2015-06-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

  2. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Satterley, Christopher J; Perdigao, LuIs M A; Saywell, Alex; Magnano, Graziano; Rienzo, Anna; Mayor, Louise C; Dhanak, Vinod R; Beton, Peter H; O'Shea, James N

    2007-01-01

    Electrospray deposition of fullerenes on gold has been successfully observed by in situ room temperature scanning tunneling microscopy and photoemission spectroscopy. Step-edge decoration and hexagonal close-packed islands with a periodicity of 1 nm are observed at low and multilayer coverages respectively, in agreement with thermal evaporation studies. Photoemission spectroscopy shows that fullerenes are being deposited in high purity and are coupling to the gold surface as for thermal evaporation. These results open a new route for the deposition of thermally labile molecules under ultra-high vacuum conditions for a range of high resolution surface science techniques

  3. Novel Vacuum System for In-Situ Characterization of Fluorescence Properties of Thin Films

    Science.gov (United States)

    Onozuka, Kohei; Iwata, Nobuyuki; Yamamoto, Hiroshi

    We constructed a novel vacuum system in which the cathode luminescence properties of as-prepared films can be measured in-situ. It has been observed that the Zn-Ga-O films deposited on 500°C ITO by sputtering emits light with wavelength of about 500 nm from an ultra thin Zn-rich layer formed near film surface. The luminescence induced by irradiation of electrons has also been observed for the first time in the organic bilayered TPD/Alq3 films prepared in thermal evaporation. Its wavelength blue-shifts by about 120 nm in comparison with the electroluminescence of the same materials. The developed vacuum system is useful to characterize various thin films.

  4. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    Science.gov (United States)

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  5. Cosmic R-string, R-tube and vacuum instability

    International Nuclear Information System (INIS)

    Eto, Minoru; Ohashi, Keisuke; Ookouchi, Yutaka; Kyoto Univ.

    2012-11-01

    We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a ''bamboo''-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.

  6. Peculiarities of fullerenes condensation from molecular beam in vacuum

    Directory of Open Access Journals (Sweden)

    Neluba P. L.

    2011-12-01

    Full Text Available There was investigated С60 fullerenes condensation in vacuum on unheated Si, GaAs, isinglass stone substrates. There were used atomic-force microscopy, Raman scattering and measurement of mechanical stresses in films. It is established that the С60 molecule can decay on the substrates with the formation of other carbon structures in the condensate without supplementary physical effects on the sublimated beam in «evaporator — substrate» space. The possibility was found to increase the grain size and reduce the mechanical stresses in the condensate.

  7. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schretzmann, K.

    1976-11-01

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO 2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO 2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO 2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR) [de

  8. Developing the Coach Analysis and Intervention System (CAIS): establishing validity and reliability of a computerised systematic observation instrument.

    Science.gov (United States)

    Cushion, Christopher; Harvey, Stephen; Muir, Bob; Nelson, Lee

    2012-01-01

    We outline the evolution of a computerised systematic observation tool and describe the process for establishing the validity and reliability of this new instrument. The Coach Analysis and Interventions System (CAIS) has 23 primary behaviours related to physical behaviour, feedback/reinforcement, instruction, verbal/non-verbal, questioning and management. The instrument also analyses secondary coach behaviour related to performance states, recipient, timing, content and questioning/silence. The CAIS is a multi-dimensional and multi-level mechanism able to provide detailed and contextualised data about specific coaching behaviours occurring in complex and nuanced coaching interventions and environments that can be applied to both practice sessions and competition.

  9. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.......5 J/cm2 the dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. For high fluences high-resolution SEM images of MAPLE deposited films reveal large circular features on the surface with high amount of material concentrated at edges. These features......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films...

  10. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  11. XPS analysis of the activation process in non-evaporable getter thin films

    CERN Document Server

    Lozano, M

    2000-01-01

    The surface activation process of sputter-coated non-evaporable getter (NEG) thin films based on Ti-Zr and Ti-Zr-V alloys has been studied in situ by means of X-ray photoelectron spectroscopy. After exposure of the NEG thin films to ambient air they become reactivated after a thermal treatment in an ultrahigh vacuum. In our case the films are heated up to ~250 degrees C for 2 h in a base pressure of ~10/sup -9/ Torr. (18 refs).

  12. An experimental study of fuel injection strategies in CAI gasoline engine

    Energy Technology Data Exchange (ETDEWEB)

    Hunicz, J.; Kordos, P. [Department of Combustion Engines and Transport, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2011-01-15

    Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

  13. Uranium sandwich targets of 0.1 to 100 mg.cm-2 prepared by electron beam gun evaporation

    International Nuclear Information System (INIS)

    Folger, H.; Klemm, J.

    1978-01-01

    Metallic uranium layers of 0.1 to 100 mg.cm -2 between different backings and protecting layers were prepared for bombardments with heavy ions such as argon, krypton, xenon, lead, or uranium at energies of up to 8 MeV/u at the UNILAC of the GSI. An experimental set-up for the preparation of thick and oxygen-free sandwich targets using a 6 kVA electron beam gun was installed in a high vacuum apparatus. Then deposition and evaporation rates for uranium were investigated as a function of the electron beam gun power. It turned out that reproducible evaporation rates of up to 7 mg.s -1 were achieved when uranium pieces of 20 to 40 grams were used. Specific evaporation rates and vapor pressures for different temperatures were calculated. Some of these data are compared to measured values, especially evaporation rates at the evaporation point. The preparation, composition, and usage of uranium sandwich targets is described in detail. It concerns uranium layers of 0.1 to 100 mg.cm -2 deposited onto backings of carbon, titanium, nickel, gold, or glass. Evaporated films of carbon, titanium, nickel, or gold of 0.01 to 0.2 mg.cm -2 are used to protect the uranium layers from oxidation

  14. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    Science.gov (United States)

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cosmic R-string, R-tube and vacuum instability

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Minoru [Yamagata Univ. (Japan). Dept. of Physics; Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ohashi, Keisuke [Osaka City Univ. (Japan). Dept. of Mathematics and Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2012-11-15

    We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a ''bamboo''-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.

  16. Magnetic field and temperature dependent measurements of hall coefficient in thermal evaporated Tin-Doped Cadmium Oxide Thin films

    International Nuclear Information System (INIS)

    Hamadi, O.; Shakir, N.; Mohammed, F.

    2010-01-01

    CdO:Sn thin films are deposited onto glass substrates by thermal evaporation under vacuum. The studied films are polycrystalline and have an NaCl structure. The Hall effect is studied for films with different thickness as substrates are maintained at different temperatures. The temperature dependence of the Hall mobility is also investigated. (authors)

  17. Effect of Deposition Rate on Structure and Surface Morphology of Thin Evaporated Al Films on Dielectrics and Semiconductors

    DEFF Research Database (Denmark)

    Bordo, K.; Rubahn, H. G.

    2012-01-01

    Aluminum (Al) films with thickness of 100 nm were grown on unheated glass, silicon and mica substrates by electron beam evaporation. The deposition rates were adjusted in the range between 0.1 nm/s and 2 nm/s, the pressure in the vacuum chamber during deposition was lower than 1.10(-3) Pa. The st...

  18. Application Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At Hanford

    International Nuclear Information System (INIS)

    Tedeschi, A.R.; Wilson, R.A.

    2010-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  19. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  20. Likely values of the Higgs vacuum expectation value

    International Nuclear Information System (INIS)

    Donoghue, John F.; Dutta, Koushik; Ross, Andreas; Tegmark, Max

    2010-01-01

    We make an estimate of the likelihood function for the Higgs vacuum expectation value (vev) by imposing anthropic constraints on the existence of atoms while allowing the other parameters of the standard model to also be variable. We argue that the most important extra ingredients are the Yukawa couplings, and for the intrinsic distribution of Yukawa couplings we use the scale-invariant distribution which is favored phenomenologically. The result is successful phenomenologically, favoring values close to the observed vev. We also discuss modifications that can change these conclusions. Our work supports the hypothesis that the anthropic constraints could be the origin of the small Higgs vev.

  1. Non-static vacuum strings: exterior and interior solutions

    International Nuclear Information System (INIS)

    Stein-Schabes, J.A.

    1986-01-01

    New non-static cylindrically symmetric solutions of Einsteins's equations are presented. Some of these solutions represent string-like objects. An exterior vacuum solution is matched to a non-vacuum interior solution for different forms of the energy-momentum tensor. They generalize the standard static string. 12 refs

  2. A New Type of Foreign Clast in A Polymict Ureilite: A CAI or AL-Rich Chondrule

    Science.gov (United States)

    Goodrich, C. A.; Ross, D. K.; Treiman, A. H.

    2017-01-01

    inclusions in chondrites [21,24-31]. However, the clast 8 pyroxene matches only the most Al-Ca-rich of these, e.g., pyroxenes in type B CAIs in CV3 chondrites [25,30,31], a pyroxene-hibonite spherule and a pyroxene-anorthitespinel fragment from unique CC Acfer 094 [29], and one Al-rich chondrule from Chainpur (LL3.4) [21]. The mineralogy of clast 8 is not consistent with the mineral assemblages of any of these objects (since it lacks hibonite, spinel and/or anorthite), which suggests that it is unrepresentatively sectioned or is a fragment of a more mineralogically diverse object. Its bulk composition (Table 1; Fig. 3) is similar to bulk compositions of some Al-rich chondrules, as well as those of Type C CAIs (which plot in the sp+An+L field in Fig. 3), although it is enriched in silica relative to type C CAIs [e.g., 31]. This suggests a more likely affinity to Al-rich chondrules, although most Al-rich chondrules have less Al-Ca-rich pyroxene [21,26,27]. These bulk compositional comparisons may not be definitive, however, if the clast is unrepresentatively sampled. One of eleven Al-rich chondrules from UOCs described by [21] has textural and compositional characteristics that make it a possible progenitor type for clast 8. This chondrule (Chainpur 1251-14-2) is anorthiteporphyritic, with an interstitial dendritic intergrowth of pyroxene (similar in composition to that in clast 8) and plagioclase [21]. Clast 8 is conceivably a fragment from the interstitial area of such an object. The occurrence of glassy mesostasis (in clast 8) rather than plagioclase may not be a significant difference; it could result from a difference only in cooling rate. Al-rich chondrules with glassy mesostasis are rare, and known occurrences are Ca-poor [26], unlike clast 8. Polymict ureilites are known to contain xenoliths of various chondrites (including OC, R and CC) as well as individual ferromagnesian and silica-pyroxene chondrules probably derived from OC or RC [6,9,15,16,18]. This is the first

  3. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fraction of the film molecules are C60 transferred to the substrate without any fragmentation. Highresolution SEM images of MAPLE deposited films reveal large circular droplets on the surface with high amount of material concentrated at edges (Fig. 1A). These features, observed over a wide range of laser...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  4. Flash evaporator

    OpenAIRE

    1997-01-01

    A device and method for flash evaporating a reagent includes an evaporation chamber that houses a dome on which evaporation occurs. The dome is solid and of high thermal conductivity and mass, and may be heated to a temperature sufficient to vaporize a specific reagent. The reagent is supplied from an external source to the dome through a nozzle, and may be supplied as a continuous stream, as a shower, and as discrete drops. A carrier gas may be introduced into the evaporation chamber and cre...

  5. Present status of rarefied gas dynamics approach to the structure of a laser-induced evaporating jet

    International Nuclear Information System (INIS)

    Cercignani, C.

    1980-01-01

    With reference to the relation between the state of the surface and the measurements downstream in the dynamic laser pulse technique, the problems arising in connection with the study of the structure of a jet evaporating into a vacuum are investigated. Particular attention is paid to the following aspects gas surface interaction, internal degrees of freedom, presence of more than one species, chemical reactions

  6. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    Science.gov (United States)

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  7. Stable and self-adaptive performance of mechanically pumped CO2 two-phase loops for AMS-02 tracker thermal control in vacuum

    International Nuclear Information System (INIS)

    Zhang, Z.; Sun, X.-H.; Tong, G.-N.; Huang, Z.-C.; He, Z.-H.; Pauw, A.; Es, J. van; Battiston, R.; Borsini, S.; Laudi, E.; Verlaat, B.; Gargiulo, C.

    2011-01-01

    A mechanically pumped CO 2 two-phase loop cooling system was developed for the temperature control of the silicon tracker of AMS-02, a cosmic particle detector to work in the International Space Station. The cooling system (called TTCS, or Tracker Thermal Control System), consists of two evaporators in parallel to collect heat from the tracker's front-end electronics, two radiators in parallel to emit the heat into space, and a centrifugal pump that circulates the CO 2 fluid that carries the heat to the radiators, and an accumulator that controls the pressure, and thus the temperature of the evaporators. Thermal vacuum tests were performed to check and qualify the system operation in simulated space thermal environment. In this paper, we reported the test results which show that the TTCS exhibited excellent temperature control ability, including temperature homogeneity and stability, and self-adaptive ability to the various external heat flux to the radiators. Highlights: → The active-pumped CO 2 two-phase cooling loop passed the thermal vacuum test. → It provides high temperature homogeneity and stability thermal boundaries. → Its working temperature is controllable in vacuum environment. → It possesses self-adaptive ability to imbalanced external heat fluxes.

  8. 電腦輔助教學與個別教學結合: 電腦輔助教學課堂應用初探 Computer-Assisted Instruction Under the Management of Individualized Instruction: A Classroom Management Approach of CAI

    Directory of Open Access Journals (Sweden)

    Sunny S. J. Lin

    1988-03-01

    Full Text Available 無First reviews the development of Computer. Assisted Instruction (CAI in Taiwan. This study describes the training of teachers from different levels of schools to design CAI coursewares, and the planning of CAI courseware bank possesses 2,000 supplemental coursewares. Some CAI's c1assroom application system should be carefully established to prevent the easy abuse of a CAI courseware as an instructional plan. The study also claims to steer CAI in our elemantary and secondary education could rely on the mastery learning as the instructional plan. In this case, CAI must limit its role as the formative test and remedial material only. In the higher education , the Keller's Personalized System of Instruction could be an effective c1assroom management system. Therefore, CAI will offer study guide and formative test only. Using these 2 instructional system may enhance student's achievement , and speed up the learning rate at the same time. Combining with individualized instruction and CAI will be one of the most workable approach in current c1assroom . The author sets up an experiment 10 varify their effectiveness and efficiency in the near future.

  9. Applications of vacuum technology to novel accelerator problems

    International Nuclear Information System (INIS)

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10 -9 torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed

  10. The evaporation of oil spills: prediction of equations using distillation data

    International Nuclear Information System (INIS)

    Fingas, M.

    1997-01-01

    The evaporative characteristics of 19 different crude oils and petroleum products were studied . Best-fit equation parameters were determined for percentage loss by time and absolute weight loss. Except in three cases, all oils were found to fit logarithmic curves. The equation constants were correlated with oil distillation data. Relationships enabling calculation of evaporation equations directly from distillation data have been developed. The high correlation of distillation data and evaporation data suggests that the two processes are analogous and that evaporation, like distillation, is largely governed by intrinsic oil properties rather than environmental properties such as boundary-layer factors

  11. Experimental and numerical study of the chemical composition of WSex thin films obtained by pulsed laser deposition in vacuum and in a buffer gas atmosphere

    International Nuclear Information System (INIS)

    Grigoriev, S.N.; Fominski, V.Yu.; Gnedovets, A.G.; Romanov, R.I.

    2012-01-01

    WSe x thin films were obtained by pulsed laser deposition in vacuum and at various Ar gas pressures up to 10 Pa. Stoichiometry and chemical state of the WSe x films were studied by means of Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy. In the case of pulsed laser deposition of WSe x films in vacuum the value of stoichiometric coefficient x was 1.3. During the deposition in argon at pressures of 2-10 Pa the value of x varied from 1.5 to 2.2. To explain the influence of the buffer gas, a model was used that takes into account the following processes: (1) congruent pulsed laser evaporation of the WSe 2.2 target; (2) scattering of laser-evaporated W and Se atoms in Ar; (3) sputtering of the deposited film by high-energy atoms from the laser plume. Experimentally, the velocity distributions of laser-evaporated W and Se atoms in vacuum were determined by the time-of-flight measurements. Collision Monte Carlo simulations were used to quantify the impact of the buffer gas on the energy and the incidence angle distributions of the deposited W and Se atoms. Model distributions were used to determine the chemical composition of the WSe x films, depending on the efficiency of the preferential sputtering of Se atoms.

  12. Condensation and Evaporation Transitions in Deep Capillary Grooves

    OpenAIRE

    Malijevský, A. (Alexandr); Parry, A.O.

    2014-01-01

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature $T_w$ condensation is first-order and evaporation is continuous with the metas...

  13. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    Science.gov (United States)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related

  14. Hollow Fiber Space Water Membrane Evaporator Flight Prototype Design and Testing

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice; Vogel, Mtthew; Honas, Matt; Dillon, Paul; Colunga, Aaron; Truong, Lily; Porwitz, Darwin; Tsioulos, Gus

    2011-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, eliminated the spacers, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. A number of tests were performed in order to improve the strength of the polyurethane header that holds the fibers in place while the system is pressurized. Vacuum chamber testing showed similar heat rejection as a function of inlet water temperature and water vapor backpressure was similar to the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated acceptable performance decline.

  15. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique

    Science.gov (United States)

    Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.

    2015-12-01

    Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  16. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  17. Coded aperture imaging of alpha source spatial distribution

    International Nuclear Information System (INIS)

    Talebitaher, Alireza; Shutler, Paul M.E.; Springham, Stuart V.; Rawat, Rajdeep S.; Lee, Paul

    2012-01-01

    The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226 Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226 Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.

  18. Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology.

    Science.gov (United States)

    Shin, Jae Man; Kim, YongJoo; Yun, Hongseok; Yi, Gi-Ra; Kim, Bumjoon J

    2017-02-28

    Shape and morphology of polymeric particles are of great importance in controlling their optical properties or self-assembly into unusual superstructures. Confinement of block copolymers (BCPs) in evaporative emulsions affords particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate ellipsoids, and others. Herein, we report that the evaporation rate of solvent from emulsions encapsulating symmetric polystyrene-b-polybutadiene (PS-b-PB) determines the shape and internal nanostructure of micron-sized BCP particles. A distinct morphological transition from the ellipsoids with striped lamellae to the onion-like spheres was observed with decreasing evaporation rate. Experiments and dissipative particle dynamics (DPD) simulations showed that the evaporation rate affected the organization of BCPs at the particle surface, which determined the final shape and internal nanostructure of the particles. Differences in the solvent diffusion rates in PS and PB at rapid evaporation rates induced alignment of both domains perpendicular to the particle surface, resulting in ellipsoids with axial lamellar stripes. Slower evaporation rates provided sufficient time for BCP organization into onion-like structures with PB as the outermost layer, owing to the preferential interaction of PB with the surroundings. BCP molecular weight was found to influence the critical evaporation rate corresponding to the morphological transition from ellipsoid to onion-like particles, as well as the ellipsoid aspect ratio. DPD simulations produced morphologies similar to those obtained from experiments and thus elucidated the mechanism and driving forces responsible for the evaporation-induced assembly of BCPs into particles with well-defined shapes and morphologies.

  19. Starobinsky-like inflation and running vacuum in the context of Supergravity

    CERN Document Server

    Basilakos, Spyros; Solà, Joan

    2016-01-01

    We describe the primeval inflationary phase of the early Universe within a quantum field theoretical (QFT) framework that can be viewed as the effective action of vacuum decay in the early times. Interestingly enough, the model accounts for the "graceful exit" of the inflationary phase into the standard radiation regime. The underlying QFT framework considered here is Supergravity (SUGRA), more specifically an existing formulation in which the Starobinsky-type inflation (de-Sitter background) emerges from the quantum corrections to the effective action after integrating out the gravitino fields in their (dynamically induced) massive phase. We also demonstrate that the structure of the effective action in this model is consistent with the generic idea of renormalization group (RG) running of the cosmological parameters, specifically it follows from the corresponding RG equation for the vacuum energy density as a function of the Hubble rate, $\\rho_{\\Lambda}(H)$. Overall our combined approach amounts to a concre...

  20. Developments in Zedivap evaporators; Zedivap jatkokehitys - EKY 01

    Energy Technology Data Exchange (ETDEWEB)

    Jaakkola, H. [Ahlstrom Machinery Oy, Helsinki (Finland). Heat Engineering

    1998-12-31

    Pulp and paper industry is looking forward to find economical ways to minimize their fresh water consumption and to reduce their impact in environment. One way to achieve the target is to replace fresh water by producing pure water from effluent. Zedivap technology has been developed to evaporate effluents and have been operated in full scale for few years. In this project Zedivap-technology was developed further to minimize fouling of heat transfer surfaces, to improve evaporator availability and to increase the knowledge of wastewater properties. To reach an uniform evaporator body construction to utilise different sources of energy, like electricity, high pressure steam or low temperature waste heat, the heat transfer surfaces will in most cases be of lamella type made of metallic sheets improving remarkably the availability compared to original design with plastic heating surfaces. As a result also the cleaning demands for a wastewater evaporator has reduced remarkably by replacing liquid distributor tray by spray nozzles. (orig.)

  1. Condensation and evaporation transitions in deep capillary grooves

    International Nuclear Information System (INIS)

    Malijevský, Alexandr; Parry, Andrew O

    2014-01-01

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard–Jones-like potential. We find that below the wetting temperature T w condensation is first-order and evaporation is continuous with the metastability of the condensation being well described by the complementary Kelvin equation. In contrast above T w both phase transitions are continuous and their critical singularities are determined. In addition we show that for the evaporation transition above T w there is an elegant mapping, or covariance, with the complete wetting transition occurring at a planar wall. Our numerical DFT studies are complemented by analytical slab model calculations which explain how the asymmetry between condensation and evaporation arises out of the combination of long-ranged forces and substrate geometry. (paper)

  2. Condensation and evaporation transitions in deep capillary grooves.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O

    2014-09-03

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature Tw condensation is first-order and evaporation is continuous with the metastability of the condensation being well described by the complementary Kelvin equation. In contrast above Tw both phase transitions are continuous and their critical singularities are determined. In addition we show that for the evaporation transition above Tw there is an elegant mapping, or covariance, with the complete wetting transition occurring at a planar wall. Our numerical DFT studies are complemented by analytical slab model calculations which explain how the asymmetry between condensation and evaporation arises out of the combination of long-ranged forces and substrate geometry.

  3. Developments in Zedivap evaporators; Zedivap jatkokehitys - EKY 01

    Energy Technology Data Exchange (ETDEWEB)

    Jaakkola, H [Ahlstrom Machinery Oy, Helsinki (Finland). Heat Engineering

    1999-12-31

    Pulp and paper industry is looking forward to find economical ways to minimize their fresh water consumption and to reduce their impact in environment. One way to achieve the target is to replace fresh water by producing pure water from effluent. Zedivap technology has been developed to evaporate effluents and have been operated in full scale for few years. In this project Zedivap-technology was developed further to minimize fouling of heat transfer surfaces, to improve evaporator availability and to increase the knowledge of wastewater properties. To reach an uniform evaporator body construction to utilise different sources of energy, like electricity, high pressure steam or low temperature waste heat, the heat transfer surfaces will in most cases be of lamella type made of metallic sheets improving remarkably the availability compared to original design with plastic heating surfaces. As a result also the cleaning demands for a wastewater evaporator has reduced remarkably by replacing liquid distributor tray by spray nozzles. (orig.)

  4. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    Science.gov (United States)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  5. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  6. Synthesis and characterisation of Cu{sub 2}ZnSnSe{sub 4} thin films prepared via a vacuum evaporation-based route

    Energy Technology Data Exchange (ETDEWEB)

    Volobujeva, O., E-mail: v.olga@staff.ttu.ee; Bereznev, S.; Raudoja, J.; Otto, K.; Pilvet, M.; Mellikov, E.

    2013-05-01

    Different sequentially stacked binary chalcogenide layers (CuSe, ZnSe, and SnSe) deposited by vacuum evaporation onto molybdenum covered soda-lime glass substrates were used as precursors to form Cu{sub 2}ZnSnSe{sub 4} films. The influence of the stacked binary layer sequence, substrate temperature, both the duration and speed of deposition and the post deposition treatment atmosphere on the structural and the morphological parameters of the Cu{sub 2}ZnSnSe{sub 4} thin films was studied. Our results indicate the possibility of replacing the Se{sub 2} selenisation with a thermal treatment in an SnSe{sub 2} atmosphere to avoid the selenisation of the Mo substrate and MoSe{sub 2} formation. This SnSe{sub 2} treatment forms p-type Cu{sub 2}ZnSnSe{sub 4} films with an optical band-gap of 1.14 eV and a solar cell structure with an efficiency of up to 3%. - Highlights: ► Cu{sub 2}ZnSnSe{sub 4} thin films were grown using binary precursors and selenisation. ► Composition and morphology were studied in dependence of selenisation atmosphere. ► The use of SnSe{sub 2} selenisation allows to avoid Mo substrate selenisation. ► The high quality of films is indicated by the value of their E{sub g} = 1.14 eV. ► Cu{sub 2}ZnSnSe{sub 4} thin films were in p-type conductivity and were realized as solar cells.

  7. Changes of Benthic Macroinvertebrates in Thi Vai River and Cai Mep Estuaries Under Polluted Conditions with Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Huong Nguyen Thi Thanh

    2017-06-01

    Full Text Available The pollution on the Thi Vai River has been spreading out rapidly over the two lasted decades caused by the wastewater from the industrial parks in the left bank of Thi Vai River and Cai Mep Estuaries. The evaluation of the benthic macroinvertebrate changes was very necessary to identify the consequences of the industrial wastewater on water quality and aquatic ecosystem of Thi Vai River and Cai Mep Estuaries. In this study, the variables of benthic macroinvertebrates and water quality were investigated in Thi Vai River and Cai Mep Estuaries, Southern Vietnam. The monitoring data of benthic macroinvertebrates and water quality parameters covered the period from 1989 to 2015 at 6 sampling sites in Thi Vai River and Cai Mep Estuaries. The basic water quality parameters were also tested including pH, dissolved oxygen (DO, total nitrogen, and total phosphorus. The biodiversity indices of benthic macroinvertebrates were applied for water quality assessment. The results showed that pH ranged from 6.4 – 7.6 during the monitoring. The DO concentrations were in between 0.20 - 6.70 mg/L. The concentrations of total nitrogen and total phosphorous ranged from 0.03 - 5.70 mg/L 0.024 - 1.380 mg/L respectively. Macroinvertebrate community in the study area consisted of 36 species of polychaeta, gastropoda, bivalvia, and crustacea, of which, species of polychaeta were dominant in species number. The benthic macroinvertebartes density ranged from 0 - 2.746 individuals/m−1 with the main dominant species of Neanthes caudata, Prionospio malmgreni, Paraprionospio pinnata, Trichochaeta carica, Maldane sarsi, Capitella capitata, Terebellides stroemi, Euditylia polymorpha, Grandidierella lignorum, Apseudes vietnamensis. The biodiversity index values during the monitoring characterized for aquatic environmental conditions of mesotrophic to polytrophic. Besides, species richness positively correlated with DO, total nitrogen, and total phosphorus. The results

  8. Vacuum distilling vessel

    Energy Technology Data Exchange (ETDEWEB)

    Reik, H

    1928-12-27

    Vacuum distilling vessel for mineral oil and the like, characterized by the ring-form or polyconal stiffeners arranged inside, suitably eccentric to the casing, being held at a distance from the casing by connecting members of such a height that in the resulting space if necessary can be arranged vapor-distributing pipes and a complete removal of the residue is possible.

  9. CAI and training system for the emergency operation procedure in the advanced thermal reactor, FUGEN

    International Nuclear Information System (INIS)

    Kozaki, T.; Imanaga, K.; Nakamura, S.; Maeda, K.; Sakurai, N.; Miyamoto, M.

    2003-01-01

    In the Advanced Thermal Reactor (ATR ) of the JNC, 'FUGEN', a symptom based Emergency Operating Procedure (EOF) was introduced in order to operate Fugen more safely and it became necessary for the plant operators to master the EOF. However it took a lot of time for the instructor to teach the EOP to operators and to train them. Thus, we have developed a Computer Aided Instruction (CAI) and Training System for the EOP, by which the operators can learn the EOP and can be trained. This system has two major functions, i.e., CAI and training. In the CAI function, there are three learning courses, namely, the EOP procedure, the simulation with guidance and Q and A, and the free simulation. In the training function, all of necessary control instruments (indicators, switches, annunciators and so forth) and physics models for the EOP training are simulated so that the trainees can be trained for all of the EOPs. In addition, 50 kinds of malfunction models are installed in order to perform appropriate accident scenarios for the EOP. The training of the EOP covers the range from AOO (Anticipated Operational Occurrence) to Over-DBAs (Design Based Accidents). This system is built in three personal computers that are connected by the computer network. One of the computers is expected to be used for the instructor and the other two are for the trainees. The EOP is composed of eight guidelines, such as 'Reactor Control' and 'Depression and Cooling', and the operation screens which are corresponded to the guidelines are respectively provided. According to the trial, we have estimated that the efficiency of the learning and the training would be improved about 30% for the trainee and about 75% for the instructor in the actual learning and training. (author)

  10. Ultra high vacuum systems for accelerators

    International Nuclear Information System (INIS)

    Loefgren, P.

    2001-01-01

    mbar, a combination of pumps is needed. At these low pressures there are, however, some pumps that are disqualified, such as pumps which not are bakable (some cryopumps) and pumps that are using organic fluids for pumping (diffusion pumps) or as lubricants (turbopumps). Instead a combination of pumps like sputter-ion pumps, getter pumps and cryo pumps are routinely used today at accelerator facilities to reach this extreme vacuum regime. In addition to pumping efficiency aspects like operation stability and costs have to be considered when choosing the appropriate pumps for the vacuum system. Even if quite a lot of work has been devoted to develop vacuum gauges for measuring pressures below 10 -11 mbar, only a few commercial gauges are available. It is of great importance that the gauge is capable of measuring without influencing the pressure to be measured, which often is the case. Most gauges used today in this pressure range are improved versions of the old Bayard-Alpert type developed in 1950. Using the storage ring, CRYRING, at the Manne Siegbahn Laboratory in Stockholm Sweden as an example it will be shown how it, with the right combination of vacuum pumps and materials, is possible to reach and keep the pressure below 10 -11 mbar over a long time during an experiment. Since a vacuum system of this type consists of more than just the chamber walls, pumps and gauges there are several other aspects that have to be considered in order to maintain low pressures. Detectors, electric wiring and all kinds of feedthroughs are just a few examples of weak links in the vacuum system. Other issues that will discussed are how to measure pressure when commercial gauges fail and how it is possible to use the background gas in a more constructive way instead of just considering it as a problem. (author)

  11. Experience with the UHV box coater and the evaporation procedure for VUV reflective coatings on the HADES RICH mirror

    CERN Document Server

    Maier-Komor, P; Wieser, J; Ulrich, A

    1999-01-01

    An UHV box coater was set up for the deposition of highly reflective layers in the vacuum ultraviolet (VUV) wavelength range on large-area mirror substrates. The VUV mirrors are needed for the ring imaging Cherenkov (RICH) detector of the high-acceptance di-electron spectrometer (HADES). The complete dry vacuum system is described. The spatial deposition distribution from the evaporation sources was measured. The reflectivity of the Al mirror layer was optimized for the wavelength range of 145-210 nm by varying the thickness of the MgF sub 2 protective layer. The setup for measuring the reflectivity in the VUV range is described and reflectivity data are presented.

  12. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  13. Investigation of vacuum deposited hybrid coatings of protic organic UV absorbers embedded in a silica matrix used for the UV protection of Polycarbonate glazing

    OpenAIRE

    Weber, C.; Schulz, U.; Mühlig, C.; Kaiser, N.; Tünnermann, A.

    2016-01-01

    A study of vacuum-deposited organic-inorganic hybrid coatings for UV protection of polycarbonate is presented. UV-absorbing compounds, which are commonly used for polycarbonate, were embedded in a silica matrix by thermal co-evaporation under high vacuum. In addition to the optical properties of the coatings, the influence of the silica network on the organic UV absorber and the stability of the intramolecular hydrogen bond (IMHB) are discussed. A model is presented to show the interaction be...

  14. Evaporational losses under different soil moisture regimes and atmospheric evaporativities using tritium

    International Nuclear Information System (INIS)

    Saxena, P.; Chaudhary, T.N.; Mookerji, P.

    1991-01-01

    Tritium as tracer was used in a laboratory study to estimate the contribution of moisture from different soil depths towards actual soil water evaporation. Results indicated that for comparable amounts of free water evaporation (5 cm), contribution of moisture from 70-80 cm soil layer towards total soil moisture loss through evaporation increased nearly 1.5 to 3 folds for soils with water table at 90 cm than without water table. Identical initial soil moistures were exposed to different atmospheric evaporativities. Similarly, for a given initial soil moisture status, upward movement of moisture from 70-80 cm soil layer under low evaporativity was nearly 8 to 12 times that of under high evaporativity at 5 cm free water evaporation value. (author). 6 refs., 4 tabs., 2 figs

  15. Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.

    Science.gov (United States)

    Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki

    2016-10-05

    Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH 3 NH 3 I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI 2 and CH 3 NH 3 I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.

  16. Heat and mass transfer analogies for evaporation models at high evaporation rate

    OpenAIRE

    Trontin , P.; Villedieu , P.

    2014-01-01

    International audience; In the framework of anti and deicing applications, heated liquid films can appear above the ice thickness, or directly above the wall. Then, evaporation plays a major role in the Messinger balance and evaporated mass has to be predicted accurately. Unfortunately, it appears that existing models under-estimate evaporation at high temperature. In this study, different evaporation models at high evaporation rates are studied. The different hypothesis on which these models...

  17. Applications of vacuum technology to novel accelerator problems

    Energy Technology Data Exchange (ETDEWEB)

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10/sup -9/ torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed.

  18. 2,3-Butanediol recovery from fermentation broth by alcohol precipitation and vacuum distillation.

    Science.gov (United States)

    Jeon, Sangjun; Kim, Duk-Ki; Song, Hyohak; Lee, Hee Jong; Park, Sunghoon; Seung, Doyoung; Chang, Yong Keun

    2014-04-01

    This study presents a new and effective downstream process to recover 2,3-butanediol (2,3-BD) from fermentation broth which is produced by a recombinant Klebsiella pneumoniae strain. The ldhA-deficient K. pneumoniae strain yielded about 90 g/L of 2,3-BD, along with a number of by-products, such as organic acids and alcohols, in a 65 h fed-batch fermentation. The pH-adjusted cell-free fermentation broth was firstly concentrated until 2,3-BD reached around 500 g/L by vacuum evaporation at 50°C and 50 mbar vacuum pressure. The concentrated solution was further treated using light alcohols, including methanol, ethanol, and isopropanol, for the precipitation of organic acids and inorganic salts. Isopropanol showed the highest removal efficiency, in which 92.5% and 99.8% of organic acids and inorganic salts were precipitated, respectively. At a final step, a vacuum distillation process enabled the recovery of 76.2% of the treated 2,3-BD, with 96.1% purity, indicating that fermentatively produced 2,3-BD is effectively recovered by a simple alcohol precipitation and vacuum distillation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Quartz microbalance device for transfer into ultrahigh vacuum systems

    International Nuclear Information System (INIS)

    Stavale, F.; Achete, C. A.; Niehus, H.

    2008-01-01

    An uncomplicated quartz microbalance device has been developed which is transferable into ultrahigh vacuum (UHV) systems. The device is extremely useful for flux calibration of different kinds of material evaporators. Mounted on a commercial specimen holder, the device allows fast quartz microbalance transfer into the UHV and subsequent positioning exactly to the sample location where subsequent thin film deposition experiments shall be carried out. After backtransfer into an UHV sample stage, the manipulator may be loaded in situ with the specimen suited for the experiment. The microbalance device capability is demonstrated for monolayer and submonolayer vanadium depositions with an achieved calibration sensitivity of less the 0.001 ML coverage.

  20. Evaporator Cleaning Studies

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1999-01-01

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning

  1. Mixed phase evaporation source

    International Nuclear Information System (INIS)

    1975-01-01

    Apparatus for reducing convection current heat loss in electron beam evaporator is described. A material to be evaporated (evaporant) is placed in the crucible of an electron beam evaporation source along with a porous mass formed of a powdered or finely divided solid to act as an impedance to convection currents. A feed system is employed to replenish the supply of evaporant as it is vaporized

  2. The possibility of controlled auto-ignition (CAI) in gasoline engine and gas to liquid (GTL) as a fuel of diesel engine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, D. [Korea Inst. of Machinery and Materials, Daejou (Korea)

    2005-07-01

    A significant challenge grows from the ever-increasing demands for the optimization of performance, emissions, fuel economy and drivability. The most powerful technologies in the near future to improve these factors are believed Controlled Auto-Ignition (CAI) in gasoline engine and Gas to Liquid (GTL) as a fuel of Diesel engine. In recent years there has been an increasing trend to use more complex valvetrain designs from traditional camshaft driven mechanical systems to camless electromagnetic or electrohydraulic solutions. Comparing to fixed valve actuation systems, variable valve actuation (VVA) should be powerful to optimize the engine cycle. The matching of valve events to the engine performance and to emission requirements at a given engine or vehicle operating condition can be further optimized to the Controlled Auto-Ignition (CAI) in gasoline engine, which has benefits in NOx emission, fuel consumption, combustion stability and intake throttle load. In case of Diesel engine, the increasing demands for NOx and soot emission reduction have introduced aftertreatment technologies recently, but been in need of basic solution for the future, such as a super clean fuel like Gas to Liquid (GTL), which has benefits in comparability to diesel fuel, independency from crude oil and reduction of CO, THC and soot emissions. Korea looks to the future with these kinds of technologies, and tries to find the possibility for reaching the future targets in the internal combustion engine. (orig.)

  3. Bird community structure in riparian environments in Cai River, Rio Grande do Sul, Brazil

    OpenAIRE

    Jaqueline Brummelhaus; Marcia Suelí Bohn; Maria Virginia Petry

    2012-01-01

    Urbanization produces changes in riparian environments, causing effects in the structure of bird communities, which present different responses to the impacts. We compare species richness, abundance, and composition of birds in riparian environments with different characteristics in Cai River, Rio Grande do Sul, Brazil. We carried out observations in woodland, grassland, and urban environments, between September 2007 and August 2008. We listed 130 bird species, 29 species unique to woodland e...

  4. Late time properties of a decaying false vacuum

    International Nuclear Information System (INIS)

    Urbanowski, K.

    2014-01-01

    The false vacuum states are unstable and they decay by tunneling. Some of them may survive up to times when their survival probability has a non-exponential form. At times much latter than the transition time, when contributions to the survival probability of its exponential and non-exponential parts are comparable, the survival probability as a function of time t has an inverse power-like form. We show that at this time region the instantaneous energy of the false vacuum states tends to the energy of the true vacuum state as 1/t 2 for t → ∞. (author)

  5. Vacuum mammotomy under ultrasound guidance

    International Nuclear Information System (INIS)

    Luczynska, E.; Kocurek, A.; Pawlik, T.; Aniol, J.; Herman, K.; Skotnicki, P.

    2007-01-01

    Breast ultrasound is a non-invasive method of breast examination. You can use it also for fine needle biopsy, core needle biopsy, vacuum mammotomy and for placing the '' wire '' before open surgical biopsy. 106 patients (105 women and 1 man) aged 20-71 years (mean age 46.9) were treated in Cancer Institute in Cracow by vacuum mammotomy under ultrasound guidance. The lesions found in ultrasonography were divided into three groups: benign lesions (BI RADS II), ambiguous lesions (BI RADS 0, III and IVa), and suspicious lesions (BI RADS IV B, IV C and V). Then lesions were qualified to vacuum mammotomy. According to USG, fibroadenoma or '' fibroadenoma-like '' lesions were found in 75 women, in 6 women complicated cysts, in 6 women cyst with dense fluid (to differentiate with FA), and in 19 patients undefined lesions. Fibroadenoma was confirmed in histopathology in 74% patients among patients with fibroadenoma or '' fibroadenoma-like '' lesions in ultrasound (in others also benign lesions were found). Among lesions undefined after ultrasound examination (total 27 patients) cancer was confirmed in 6 % (DCIS and IDC). In 6 patients with complicated cysts in ultrasound examination, histopathology confirmed fibroadenoma in 4 women, an intraductal lesion in 1 woman and inflamatory process in 1 woman. Also in 6 women with a dense cyst or fibroadenoma seen in ultrasound, histopathology confirmed fibroadenoma in 3 women and fibrosclerosis in 3 women. Any breast lesions undefined or suspicious after ultrasound examination should be verified. The method of verification or kind of operation of the whole lesion (vacuum mammotomy or '' wire '') depends on many factors, for example: lesion localization; lesion size; BI RADS category. (author)

  6. Field evaporation test of uranium tailings solution

    International Nuclear Information System (INIS)

    Chandler, B.L.; Shepard, T.A.; Stewart, T.A.

    1985-01-01

    A field experiment was performed to observe the effect on evaporation rate of a uranium tailings impoundment pond water as salt concentration of the water increased. The duration of the experiment was long enough to cause maximum salt concentration of the water to be attained. The solution used in the experiment was tailings pond water from an inactive uranium tailings disposal site in the initial stages of reclamation. The solution was not neutralized. The initial pH was about 1.0 decreasing to a salt gel at the end of the test. The results of the field experiment show a gradual and slight decrease in evaporation efficiency. This resulted as salt concentrations increased and verified the practical effectiveness of evaporation as a water removal method. In addition, the physical and chemical nature of the residual salts suggest that no long-term stability problem would likely result due to their presence in the impoundment during or after reclamation

  7. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    Science.gov (United States)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  8. Spherically symmetric static spacetimes in vacuum f(T) gravity

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2011-01-01

    We show that Schwarzschild geometry remains as a vacuum solution for those four-dimensional f(T) gravitational theories behaving as ultraviolet deformations of general relativity. In the gentler context of three-dimensional gravity, we also find that the infrared-deformed f(T) gravities, like the ones used to describe the late cosmic speed up of the Universe, have as the circularly symmetric vacuum solution a Deser-de Sitter or a Banados, Teitelboim and Zanelli-like spacetime with an effective cosmological constant depending on the infrared scale present in the function f(T).

  9. Leybold vacuum handbook

    CERN Document Server

    Diels, K; Diels, Kurt

    1966-01-01

    Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.

  10. Fluid-Evaporation Records Preserved in Meridiani Rocks

    Science.gov (United States)

    Rao, M. N.; Nyquist, Laurence E.; Sutton, S. R.

    2009-01-01

    We have shown earlier that the high SO3/Cl ratios found in secondary mineral assemblages in shergottite GRIM glasses (Gas-Rich Impact-Melt) likely resulted from interactions of regolith materials with sulfate-rich (and Cl-poor) solutions. The low SO3/Cl ratios determined in secondary salts in nakhalite fracture-fillings presumably formed by rock interactions with chloride-rich (and SO4-poor) solutions near Mars surface. The SO3 and Cl abundances determined by APXS in abraded rocks (RAT) from Endurance, Fram and Eagle craters indicate that these salt assemblages likely formed by evaporative concentration of brine fluids at Meridiani. The SO3/Cl ratios in the abraded rocks are examined here, instead of their absolute abundances, because the abundance ratios might provide better guide-lines for tracking the evolution of evaporating fluids at Meridiani. The SO3/Cl ratios in these samples, in turn, might provide clues for the mobile element ratios of the altering fluids that infiltrated into the Meridiani rocks.

  11. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  12. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  13. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  14. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  15. Vacuum pumping for controlled thermonuclear reactors

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.

    1976-01-01

    Thermonuclear reactors impose unique vacuum pumping problems involving very high pumping speeds, handling of hazardous materials (tritium), extreme cleanliness requirements, and quantitative recovery of pumped materials. Two principal pumping systems are required for a fusion reactor, a main vacuum system for evacuating the torus and a vacuum system for removing unaccelerated deuterium from neutral beam injectors. The first system must pump hydrogen isotopes and helium while the neutral beam system can operate by pumping only hydrogen isotopes (perhaps only deuterium). The most promising pumping techniques for both systems appear to be cryopumps, but different cryopumping techniques can be considered for each system. The main vacuum system will have to include cryosorption pumps cooled to 4.2 0 K to pump helium, but the unburned deuterium-tritium and other impurities could be pumped with cryocondensation panels (4.2 0 K) or cryosorption panels at higher temperatures. Since pumping speeds will be limited by conductance through the ducts and thermal shields, the pumping performance for both systems will be similar, and other factors such as refrigeration costs are likely to determine the choice. The vacuum pumping system for neutral beam injectors probably will not need to pump helium, and either condensation or higher temperature sorption pumps can be used

  16. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    Science.gov (United States)

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of Evaporation Pressure and the Variety of Cane on the Quality of Sugar Honey and Panela

    Directory of Open Access Journals (Sweden)

    Luz Esperanza Prada Forero

    2015-07-01

    Full Text Available When multi-effect evaporators (EME are implemented at the process of panela —besides of technological adjustment— to maintain the quality of the product is also required. This state unveiled a technolog y gap, and issues such as the contribution of compositional differences in the varieties of cane on panela. To fill part of this technological gap, the objective of this work is to determine the effect of pressure evaporation and the varieties of cane on quality of honey and panela. To achieve this, the evaporation pressure and sugarcane varieties in one experimental design completely randomized with 4x3 factorial arrangement and four replications was implemented: varieties CC 85-46, RD 75-11 andPR 61-632, without flocculant, without coadjuvant and was evaporated with a heat flux of 27,778 kW/m2 and without antifoam. The results showed a similar behavior for the studied sugarcane varieties. So honeys and panelas in the pressurized system presented dark coloration, reddish tone, high turbidity, a glycoside coefficient between 60 % and 70 % and they did not solidified. Honeys and panelas in vacuum systems presented a greater turbidity, clear colorations, yellowish tones, and good solidification and coefficients glycosides under 12 %.

  18. A Model Driven Question-Answering System for a CAI Environment. Final Report (July 1970 to May 1972).

    Science.gov (United States)

    Brown, John S.; And Others

    A question answering system which permits a computer-assisted instruction (CAI) student greater initiative in the variety of questions he can ask is described. A method is presented to represent the dynamic processes of a subject matter area by augmented finite state automata, which permits efficient inferencing about dynamic processes and…

  19. Evaporation in hydrology and meteorology

    OpenAIRE

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the theory. Further, special conditions in evaporation are considered, followed by a fotmulation of the difficulties in determining evaporation, The last part of the paper gives a short discussion about ...

  20. Origins of mass-dependent and mass-independent Ca isotope variations in meteoritic components and meteorites

    Science.gov (United States)

    Bermingham, K. R.; Gussone, N.; Mezger, K.; Krause, J.

    2018-04-01

    The Ca isotope composition of meteorites and their components may vary due to mass-dependent and/or -independent isotope effects. In order to evaluate the origin of these effects, five amoeboid olivine aggregates (AOAs), three calcium aluminum inclusions (CAIs), five chondrules (C), a dark inclusion from Allende (CV3), two dark fragments from North West Africa 753 (NWA 753; R3.9), and a whole rock sample of Orgueil (CI1) were analyzed. This is the first coupled mass-dependent and -independent Ca isotope dataset to include AOAs, a dark inclusion, and dark fragments. Where sample masses permit, Ca isotope data are reported with corresponding petrographic analyses and rare earth element (REE) relative abundance patterns. The CAIs and AOAs are enriched in light Ca isotopes (δ44/40Ca -5.32 to +0.72, where δ44/40Ca is reported relative to SRM 915a). Samples CAI 5 and AOA 1 have anomalous Group II REE patterns. These REE and δ44/40Ca data suggest that the CAI 5 and AOA 1 compositions were set via kinetic isotope fractionation during condensation and evaporation. The remaining samples show mass-dependent Ca isotope variations which cluster between δ44/40Ca +0.53 and +1.59, some of which are coupled with unfractionated REE abundance patterns. These meteoritic components likely formed through the coaccretion of the evaporative residue and condensate following Group II CAI formation or their chemical and isotopic signatures were decoupled (e.g., via nebular or parent-body alteration). The whole rock sample of Orgueil has a δ44/40Ca +0.67 ± 0.18 which is in agreement with most published data. Parent-body alteration, terrestrial alteration, and variable sampling of Ca-rich meteoritic components can have an effect on δ44/40Ca compositions in whole rock meteorites. Samples AOA 1, CAI 5, C 2, and C 4 display mass-independent 48/44Ca anomalies (ε48/44Ca +6 to +12) which are resolved from the standard composition. Other samples measured for these effects (AOA 5, CAI 1, CAI 2

  1. Multiple Nebular Gas Reservoirs Recorded by Oxygen Isotope Variation in a Spinel-Rich CAI in CO3 MIL 090019

    Science.gov (United States)

    Simon, J. I.; Simon, S. B.; Nguyen, A. N.; Ross, D. K.; Messenger, S.

    2017-07-01

    We conducted NanoSIMS ion imaging studies of a primitive spinel-rich CAI from the MIL 090019 CO3 chondrite. It records radial O-isotopic heterogeneity among multiple occurrences of the same mineral, reflecting distinct nebular O-isotopic reservoirs.

  2. Growth of manganese sulfide (α-MnS) thin films by thermal vacuum evaporation: Structural, morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia); Segura, Alfredo [MALTA-Consolider Team, Institut de Ciència dels Materials – Departamento de Fisica Aplicada, University of Valencia, E-46100 Burjassot, Valencia (Spain); Maghraoui-Meherzi, Hager [Université de Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie, LR99ES15, 2092 Tunis (Tunisia)

    2016-09-15

    MnS thin films have been successfully prepared by thermal evaporation method at different substrate temperatures using different masses of MnS powder. The prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV–visible spectrophotometry. The XRD measurements show that the films crystallized in the pure α-MnS for substrate temperatures above 100 °C. The optical bandgap of thin films is found to be in the range of 3.2–3.3 eV. A factorial experimental design was used for determining the influence of the two experimental parameters on the films growth. - Highlights: • α-MnS films were deposited on glass and quartz substrates using the thermal evaporation technique. • The effect of substrate temperature on the properties of the MnS films has been studied. • The factorial design was used to determine the most influence parameters.

  3. Deposition of dielectric films on silicon using a fore-vacuum plasma electron source

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, D. B.; Tyunkov, A. V.; Yushkov, Yu. G., E-mail: yuyushkov@gmail.com [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2016-06-15

    We describe an experiment on the use of a fore-vacuum-pressure, plasma-cathode, electron beam source with current up to 100 mA and beam energy up to 15 keV for deposition of Mg and Al oxide films on Si substrates in an oxygen atmosphere at a pressure of 10 Pa. The metals (Al and Mg) were evaporated and ionized using the electron beam with the formation of a gas-metal beam-plasma. The plasma was deposited on the surface of Si substrates. The elemental composition of the deposited films was analyzed.

  4. On the link between potential evaporation and regional evaporation from a CBL perspective

    Science.gov (United States)

    Lhomme, J. P.; Guilioni, L.

    2010-07-01

    The relationship between potential evaporation and actual evaporation was first examined by Bouchet (Proc Berkeley Calif Symp IAHS Publ, 62:134-142, 1963) who considered potential evaporation as the consequence of regional evaporation due to atmospheric feedbacks. Using a heuristic approach, he derived a complementary relationship which, despite no real theoretical background, has proven to be very useful in interpreting many experimental data under various climatic conditions. Here, the relationship between actual and potential evaporation is reinterpreted in the context of the development of the convective boundary layer (CBL): first, with a closed-box approach, where the CBL has an impermeable lid; and then with an open system, where air is exchanged between the CBL and its external environment. By applying steady forcing to these systems, it is shown that an equilibrium state is reached, where potential evaporation has a specific equilibrium formulation as a function of two parameters: one representing large-scale advection and the other the feedback effect of regional evaporation on potential evaporation, i.e. a kind of “medium-scale advection”. It is also shown that the original form of Bouchet’s complementary relationship is not verified in the equilibrium state. This analysis leads us to propose a new and more rational approach of the relationship between potential and actual evaporation through the effective surface resistance of the region.

  5. EVAPORATION FORM OF ICE CRYSTALS IN SUBSATURATED AIR AND THEIR EVAPORATION MECHANISM

    OpenAIRE

    ゴンダ, タケヒコ; セイ, タダノリ; Takehiko, GONDA; Tadanori, SEI

    1987-01-01

    The evaporation form and the evaporation mechanism of dendritic ice crystals grown in air of 1.0×(10)^5 Pa and at water saturation and polyhedral ice crystals grown in air of 4.0×10 Pa and at relatively low supersaturation are studied. In the case of dendritic ice crystals, the evaporation preferentially occurs in the convex parts of the crystal surfaces and in minute secondary branches. On the other hand, in the case of polyhedral ice crystals, the evaporation preferentially occurs in the pa...

  6. Complete genome sequence of Defluviimonas alba cai42T, a microbial exopolysaccharides producer.

    Science.gov (United States)

    Zhao, Jie-Yu; Geng, Shuang; Xu, Lian; Hu, Bing; Sun, Ji-Quan; Nie, Yong; Tang, Yue-Qin; Wu, Xiao-Lei

    2016-12-10

    Defluviimonas alba cai42 T , isolated from the oil-production water in Xinjiang Oilfield in China, has a strong ability to produce exopolysaccharides (EPS). We hereby present its complete genome sequence information which consists of a circular chromosome and three plasmids. The strain characteristically contains various genes encoding for enzymes involved in EPS biosynthesis, modification, and export. According to the genomic and physiochemical data, it is predicted that the strain has the potential to be utilized in industrial production of microbial EPS. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Silicon anode prepared by rotary evaporation for lithium ion batteries

    International Nuclear Information System (INIS)

    Shin, D H; Cho, G B; Song, M G; Choi, Y J; Gu, H B; Kim, K W

    2007-01-01

    A rotary evaporation process was applied to improve electrical contact between acetylene black (AB) and Si electrode. Morphologies and electrochemical properties of the Si electrode were compared with those of conventionally prepared Si electrode. In the evaporated Si electrode, AB particles consisted of network-like structure surrounding the surface of Si particle, while in the conventional one, AB particles partially stuck on the Si surface. Increasing the current density from 0.1 to 0.5 C, stable cycle behavior with a slight decrease in discharge capacity was found in the evaporated electrode, while unstable cycle behavior with a significantly decreased capacity was observed in the conventional electrode. At high-current density (0.5 C rate), the discharge capacity of the evaporated Si electrode was maintained over 480 mAh g -1 after 100 cycles. The good cycle performance was attributed to the low resistance induced by the improved interfacial contact between AB and Si particles

  8. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  9. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to

  10. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  11. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  12. Investigating steam penetration using thermometric methods in dental handpieces with narrow internal lumens during sterilizing processes with non-vacuum or vacuum processes.

    Science.gov (United States)

    Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B

    2017-12-01

    Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. The vacuum interlock system for the CELSIUS ring

    International Nuclear Information System (INIS)

    Gajewski, K.

    1990-01-01

    A vacuum interlock system has been designed and built for the CELSIUS storage ring. The ultrahigh-vacuum system of CELSIUS has a design pressure of 10 -11 mbar. This is achieved by using vacuum-fired stainless-steel chambers, baking the whole ring to 300degC and running some 50 sputter ion and titanium sublimation pumps. The turbopumps, combined with roughing pumps, are used during the pump-down and the bake-out. The pressure is monitored by Penning vacuum gauges. There is a number of programmable pressure thresholds set to trigger various events (like closing the sector valves, disabling the bake-out, etc.). The interlock system is based on the Mitsubishi programmable logic controller (PLC). An IBM PC is used as an operator's console. The operation and performance of the system is described. On the basis of present experience an upgrading of the system is suggested. (orig.)

  14. [Dynamics of Irreversible Evaporation of a Water-Protein Droplet and a Problem of Structural and Dynamical Experiments with Single Molecules].

    Science.gov (United States)

    Shaitan, K V; Armeev, G A; Shaytan, A K

    2016-01-01

    We discuss the effect of isothermal and adiabatic evaporation of water on the state of a water-protein droplet. The discussed problem is of current importance due to development of techniques to perform single molecule experiments using free electron lasers. In such structure-dynamic experiments the delivery of a sample into the X-ray beam is performed using the microdroplet injector. The time between the injection and delivery is in the order of microseconds. In this paper we developed a specialized variant of all-atom molecular dynamics simulations for the study of irreversible isothermal evaporation of the droplet. Using in silico experiments we determined the parameters of isothermal evaporation of the water-protein droplet with the sodium and chloride ions in the concentration range of 0.3 M at different temperatures. The energy of irreversible evaporation determined from in silico experiments at the initial stages of evaporation virtually coincides with the specific heat of evaporation for water. For the kinetics of irreversible adiabatic evaporation an exact analytical solution was obtained in the limit of high thermal conductivity of the droplet (or up to the droplet size of -100 Å). This analytical solution incorporates parameters that are determined using in silico. experiments on isothermal droplet evaporation. We show that the kinetics of adiabatic evaporation and cooling of the droplet scales with the droplet size. Our estimates of the water-protemi droplet. freezing rate in the adiabatic regime in a vacuum chamber show that additional techniques for stabilizing the temperature inside the droplet should be used in order to study the conformational transitions of the protein in single molecules. Isothermal and quasi-isothermal conditions are most suitable for studying the conformational transitions upon object functioning. However, in this case it is necessary to take into account the effects of dehydration and rapid increase of ionic strength in an

  15. Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis.

    Science.gov (United States)

    Thokchom, Ashish Kumar; Swaminathan, Rajaram; Singh, Anugrah

    2014-10-21

    Evaporation-induced particle deposition patterns like coffee rings provide easy visual identification that is beneficial for developing inexpensive and simple diagnostic devices for detecting pathogens. In this study, the effect of chemotaxis on such pattern formation has been realized experimentally in drying droplets of bacterial suspensions. We have investigated the velocity field, concentration profile, and deposition pattern in the evaporating droplet of Escherichia coli suspension in the presence and absence of nutrients. Flow visualization experiments using particle image velocimetry (PIV) were carried out with E. coli bacteria as biological tracer particles. Experiments were conducted for suspensions of motile (live) as well as nonmotile (dead) bacteria. In the absence of any nutrient gradient like sugar on the substrate, both types of bacterial suspension showed two symmetric convection cells and a ring like deposition of particles after complete evaporation. Interestingly, the droplet containing live bacterial suspension showed a different velocity field when the sugar was placed at the base of the droplet. This can be attributed to the chemoattractant nature of the sugar, which induced chemotaxis among live bacteria targeted toward the nutrient site. Deposition of the suspended bacteria was also displaced toward the nutrient site as the evaporation proceeded. Our experiments demonstrate that both velocity fields and concentration patterns can be altered by chemotaxis to modify the pattern formation in evaporating droplet containing live bacteria. These results highlight the role of bacterial chemotaxis in modifying coffee ring patterns.

  16. Negative vacuum energy densities and the causal diamond measure

    International Nuclear Information System (INIS)

    Salem, Michael P.

    2009-01-01

    Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.

  17. Vacuum distillation for the separation of LiCl-KCl eutectic salt and cadmium in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Woo, M. S.; Kim, K. R.; Kim, J. G.; Ahn, D. H.; Lee, H. S.

    2010-10-01

    Electrorefining is a key step in pyro processing. Electrorefining process is generally composed of two recovery steps- a deposit of uranium onto a solid cathode (electrorefining) and then the recovery of the remaining uranium and Tru (Transuranic) elements simultaneously by a liquid cadmium cathode (electrowinning). In this study, distillation experiments of a LiCl-KCl eutectic salt and cadmium metal were carried out to examine the distillation behaviors for the development of the electrorefining and the electrowinning processes. The experimental set-up was composed of a distillation tower with an evaporator and a condenser, vacuum pump, control unit, and an off gas treatment system. The solid-liquid separation prior to distillation of the LiCl-KCl eutectic salt was proposed and found to be feasible for the reduction of the burden of the distillation process. The LiCl-KCl eutectic salt was successfully distilled after the liquid salt separation. Distillation experiments for cadmium metal were also carried out. The apparent evaporation rates of LiCl-KCl eutectic salt and cadmium increased with an increasing temperature. The evaporation behaviors of cadmium metal and cadmium-cerium alloy were compared. Cadmium in the alloy was successfully distilled and separated from cerium. The evaporation rate of cadmium in the alloy was lower than that of cadmium metal. The low evaporation rate of the alloy was probably caused by the formation of an intermetallic compound and the residual salt during the preparation of the alloy. Therefore, the distillation temperature for the distillation of the liquid cathode should be higher than the distillation of cadmium metal. The measured evaporation rates of the eutectic salt and cadmium were compared with the values calculated by a relation based on the kinetics of gases. The theoretical values of the evaporation rate calculated by the Hertz-Langmuir relation were higher than the experimental values. The deviations were compensated for

  18. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  19. THE THERMOELECTRIC VACUUM CROCK-POT AND THE AUTOMATED WORKPLACE FOR ITS RESEARCH AS A CONTROL OBJECT

    Directory of Open Access Journals (Sweden)

    S. Hudz

    2017-08-01

    Full Text Available The technologies of thermal treatment in vacuum are widely used in various fields of production, in particular in the food industry, but their application at farms, hotels or a for domestic purposes is limited because of the big sizes, high cost of processing equipment and complexity of its management at realization of foodstuff processing. Products, made with use of vacuum technologies, keep much more useful substances because they aren't exposed to high-temperature processing and oxidation while preparation. Development and production of the small-sized equipment for realization of heat treatment processes of foodstuff in vacuum would create technical and economic conditions for implementation of temperature processing processes of foodstuff at farms, hotels and even at home that would promote creation of new food, development of new recipes and, in general, development of the new direction in cookery. So the article describes the problem of equipment construction for the process of thermal processing of food in vacuum such as cooking jam, concentration of juices and dairy products, distillation, drying, pickling, and the possibility of building inexpensive compact vacuum unit for the implementation of these processes (crock-pot for use at hotels, farms and even for domestic purposes. The analysis of technological schemes for energy efficient evaporation process in vacuum crock-pot is provided. The developed technological scheme of vacuum crock-pot with thermoelectric converters and principle of its operation are considered. Microprocessor block diagram of a multichannel data acquisition system consisting workstation for investigation of thermoelectric vacuum crock-pot as a control object is presented and control algorithms helping to reduce energy consumption and to increase operational reliability in implementing processes and the quality of ready-made products are provided.

  20. A Design of Computer Aided Instructions (CAI) for Undirected Graphs in the Discrete Math Tutorial (DMT). Part 1.

    Science.gov (United States)

    1990-06-01

    The objective of this thesis research is to create a tutorial for teaching aspects of undirected graphs in discrete math . It is one of the submodules...of the Discrete Math Tutorial (DMT), which is a Computer Aided Instructional (CAI) tool for teaching discrete math to the Naval Academy and the

  1. A Design of Computer Aided Instructions (CAI) for Undirected Graphs in the Discrete Math Tutorial (DMT). Part 2

    Science.gov (United States)

    1990-06-01

    The objective of this thesis research is to create a tutorial for teaching aspects of undirected graphs in discrete math . It is one of the submodules...of the Discrete Math Tutorial (DMT), which is a Computer Aided Instructional (CAI) tool for teaching discrete math to the Naval Academy and the

  2. Pilot-Scale Test Results Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At The Hanford Site Washington USA -11364

    International Nuclear Information System (INIS)

    Corbett, J.E.; Tedesch, A.R.; Wilson, R.A.; Beck, T.H.; Larkin, J.

    2011-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  3. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    Energy Technology Data Exchange (ETDEWEB)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  4. Sexual life and sexual wellness in individuals with complete androgen insensitivity syndrome (CAIS) and Mayer-Rokitansky-Küster-Hauser Syndrome (MRKHS).

    Science.gov (United States)

    Fliegner, Maike; Krupp, Kerstin; Brunner, Franziska; Rall, Katharina; Brucker, Sara Y; Briken, Peer; Richter-Appelt, Hertha

    2014-03-01

    Sexual wellness depends on a person's physical and psychological constitution. Complete Androgen Insensitivity Syndrome (CAIS) and Mayer-Rokitansky-Küster-Hauser Syndrome (MRKHS) can compromise sexual well-being. To compare sexual well-being in CAIS and MRKHS using multiple measures: To assess sexual problems and perceived distress. To gain insight into participants' feelings of inadequacy in social and sexual situations, level of self-esteem and depression. To determine how these psychological factors relate to sexual (dys)function. To uncover what participants see as the source of their sexual problems. Data were collected using a paper-and-pencil questionnaire. Eleven individuals with CAIS and 49 with MRKHS with/without neovagina treatment were included. Rates of sexual dysfunctions, overall sexual function, feelings of inadequacy in social and sexual situations, self-esteem and depression scores were calculated. Categorizations were used to identify critical cases. Correlations between psychological variables and sexual function were computed. Sexually active subjects were compared with sexually not active participants. A qualitative content analysis was carried out to explore causes of sexual problems. An extended list of sexual problems based on the Diagnostic and Statistical Manual of Mental Disorders, 4th ed., text revision, by the American Psychiatric Association and related distress. Female Sexual Function Index (FSFI), German Questionnaire on Feelings of Inadequacy in Social and Sexual Situations (FUSS social scale, FUSS sexual scale), Rosenberg Self-Esteem Scale (RSE), Brief Symptom Inventory (BSI) subscale depression. Open question on alleged causes of sexual problems. The results point to a far-reaching lack of sexual confidence and sexual satisfaction in CAIS. In MRKHS apprehension in sexual situations is a source of distress, but sexual problems seem to be more focused on issues of vaginal functioning. MRKHS women report being satisfied with their

  5. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    Science.gov (United States)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  6. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    International Nuclear Information System (INIS)

    Kumar, B Ramesh; Gangradey, R

    2012-01-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  7. Evaporative processes for desalination of produced water; Processos evaporativos para dessalinizacao de agua produzida a fins de reuso

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Vivian T.; Dezotti, Marcia W. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Quimica; Schuhli, Juliana B.; Gomes, Marcia T.; Pereira Junior, Oswaldo A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    During the productive life of an oil well, it gets the moment when a big quantity of produced water comes together with the oil. It can achieve 99% in the end of its economical life. The thermal desalination of the formation water is one of the most common technologies for achieving its reuse. This way, it was constructed one 'Robert' evaporator. The tests used different sodium chloride concentrations from 2,000 mg/L to 80,000 mg/L simulating concentrations found in the produced water from PETROBRAS wells. The tests were conducted in three different vacuum pressures. It was observed, increasing the vacuum applied to the system, results in reduction of solution boiling point. The salt concentrations of the brine blowdown were influenced by the sodium chloride concentration at the feed flow, by the vacuum applied to the system and, consequently, by the solution boiling point and flow rates. The produced distillate water presented sodium chloride concentration lower than 2 mg/L, indicating that this system can produce water to reuse in irrigation. (author)

  8. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  9. Vacuum inhomogeneous cosmological models

    International Nuclear Information System (INIS)

    Hanquin, J.-L.

    1984-01-01

    The author presents some results concerning the vacuum cosmological models which admit a 2-dimensional Abelian group of isometries: classifications of these space-times based on the topological nature of their space-like hypersurfaces and on their time evolution, analysis of the asymptotical behaviours at spatial infinity for hyperbolical models as well as in the neighbourhood of the singularity for the models possessing a time singularity during their evolution. (Auth.)

  10. Black hole — never forms, or never evaporates

    International Nuclear Information System (INIS)

    Sun, Yi

    2011-01-01

    Many discussion about the black hole conundrums, such like singularity and information loss, suggested that there must be some essential irreconcilable conflict between quantum theory and classical gravity theory, which cannot be solved with any semiclassical quantized model of gravity, the only feasible way must be some complete unified quantum theory of gravity. In Vachaspati, the arguments indicate the possibility of an alternate outcome of gravitational collapse which avoids the information loss problem. In this paper, also with semiclassical analysis, it shows that so long as the mechanism of black hole evaporation satisfies a quite loose condition that the evaporation lifespan is finite for external observers, regardless of the detailed mechanism and process of evaporation, the conundrums above can be naturally avoided. This condition can be satisfied with Hawking-Unruh mechanism. Thus, the conflict between quantum theory and classical gravity theory may be not as serious as it seemed to be, the effectiveness of semiclassical methods might be underestimated. An exact universal solution with spherical symmetry of Einstein field equation has been derived in this paper. All possible solutions with spherical symmetry of Einstein field equation are its special cases. In addition, some problems of the Penrose diagram of an evaporating black hole first introduced by Hawking in 1975 are clarified

  11. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation

    KAUST Repository

    Wang, Yuchao

    2016-01-22

    Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.

  12. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation

    KAUST Repository

    Wang, Yuchao; Zhang, Lianbin; Wang, Peng

    2016-01-01

    Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.

  13. Seawater desalination with solar-energy-integrated vacuum membrane distillation system

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-03-01

    Full Text Available This study designed and tested a novel type of solar-energy-integrated vacuum membrane distillation (VMD system for seawater desalination under actual environmental conditions in Wuhan, China. The system consists of eight parts: a seawater tank, solar collector, solar cooker, inclined VMD evaporator, circulating water vacuum pump, heat exchanger, fresh water tank, and brine tank. Natural seawater was used as feed and a hydrophobic hollow-fiber membrane module was used to improve seawater desalination. The experiment was conducted during a typical summer day. Results showed that when the highest ambient temperature was 33 °C, the maximum value of the average solar intensity was 1,080 W/m2. The system was able to generate 36 kg (per m2 membrane module distilled fresh water during 1 day (7:00 am until 6:00 pm, the retention rate was between 99.67 and 99.987%, and electrical conductivity was between 0.00276 and 0.0673 mS/cm. The average salt rejection was over 90%. The proposed VMD system shows favorable potential application in desalination of brackish waters or high-salt wastewater treatment, as well.

  14. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    Science.gov (United States)

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  15. A One-Dimensional Particle-in-Cell Model of Plasma Build-Up in Vacuum Arcs

    CERN Document Server

    Timko, H; Kovermann, J; Taborelli, M; Nordlund, K; Descoeudres, A; Schneider, R; Calatroni, S; Matyash, K; Wuensch, W; Hansen, A; Grudiev, A

    2011-01-01

    Understanding the mechanism of plasma build-up in vacuum arcs is essential in many fields of physics. A one-dimensional particle-in-cell computer simulation model is presented, which models the plasma developing from a field emitter tip under electrical breakdown conditions, taking into account the relevant physical phenomena. As a starting point, only an external electric field and an initial enhancement factor of the tip are assumed. General requirements for plasma formation have been identified and formulated in terms of the initial local field and a critical neutral density. The dependence of plasma build-up on tip melting current, the evaporation rate of neutrals and external circuit time constant has been investigated for copper and simulations imply that arcing involves melting currents around 0.5-1 A/mu m(2),evaporation of neutrals to electron field emission ratios in the regime 0.01 - 0.05, plasma build-up timescales in the order of similar to 1 - 10 ns and two different regimes depending on initial ...

  16. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe

    KAUST Repository

    Huang, Bin-Juine

    2015-04-01

    © 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest daily pure water production is 40.6kgd-1. The measured highest productivity based on the area of glass cover, solar absorber, and evaporating surface is 34.7, 40.6, and 7.96kgm-2d-1, respectively, which are much higher than the published results. The measured solar distillation efficiency is 2.0-3.5. The performance enhancement results mainly from the lateral diffusion process in the spiraled still cell. The vapor flow generated by heat input can flow freely and laterally through the spiral channel down to the end when solar heat input is high. Besides, the larger evaporating and condensing area at the outer cell may increase heat and mass transfer at the outer cell.

  17. Stationary vacuum fields with a conformally flat three-space Pt. 1

    International Nuclear Information System (INIS)

    Lukacs, B.; Perjes, Z.; Sebestyen, A.; Sparling, G.A.J.

    1982-01-01

    A generalized notion of conformastat space-times is introduced in relativity theory. In this sense, the conformastat space-time is stationary with the three-space of time-like Killing trajectories being conformally flat. A 3+1 decomposition of the field equations is given, and two classes of nonstatic conformastat vacuum fields are exhaustively investigated. The resulting three metrics form a NUT-type extension of the solution of the static conformastat vacuum problem. The authors conjecture that all conformastat vacuum space-times are axially symmetric. (author)

  18. From evaporating pans to transpiring plants (John Dalton Medal Lecture)

    Science.gov (United States)

    Roderick, Michael

    2013-04-01

    The name of the original inventor of irrigated agriculture is lost to antiquity. Nevertheless, one can perhaps imagine an inquisitive desert inhabitant noting the greener vegetation along a watercourse and putting two and two together. Once water was being supplied and food was being produced it would be natural to ask a further question: how much water can we put on? No doubt much experience was gained down through the ages, but again, one can readily imagine someone inverting a rain gauge, filling it with water and measuring how fast the water evaporated. The inverted rain gauge measures the demand for water by the atmosphere. We call it the evaporative demand. I do not know if this is what actually happened but it sure makes an interesting start to a talk. Evaporation pans are basically inverted rain gauges. The rain gauge and evaporation pan measure the supply and demand respectively and these instruments are the workhorses of agricultural meteorology. Rain gauges are well known. Evaporation pans are lesser known but are in widespread use and are a key part of several national standardized meteorological networks. Many more pans are used for things like scheduling irrigation on farms or estimating evaporation from lakes. Analysis of the long records now available from standardized networks has revealed an interesting phenomenon, i.e., pan evaporation has increased in some places and decreased in other but when averaged over large numbers of pans there has been a steady decline. These independent reports from, for example, the US, Russia, China, India, Thailand, are replicated in the southern hemisphere in, for example, Australia, New Zealand and South Africa. One often hears the statement that because the earth is expected to warm with increasing greenhouse gas emissions then it follows that water will evaporate faster. The pan evaporation observations show that this widely held expectation is wrong. When expectations disagree with observations, it is the

  19. Corundum-Hibonite Inclusions and the Environments of High Temperature Processing in the Early Solar System

    Science.gov (United States)

    Needham, A. W.; Messenger, S.

    2013-01-01

    Calcium, Aluminum-rich inclusions (CAIs) are composed of the suite of minerals predicted to be the first to condense from a cooling gas of solar composition [1]. Yet, the first phase to condense, corundum, is rare in CAIs, having mostly reacted to form hibonite followed by other phases at lower temperatures. Many CAIs show evidence of complex post-formational histories, including condensation, evaporation, and melting [e.g. 2, 3]. However, the nature of these thermal events and the nebular environments in which they took place are poorly constrained. Some corundum and corundum-hibonite grains appear to have survived or avoided these complex CAI reprocessing events. Such ultra-refractory CAIs may provide a clearer record of the O isotopic composition of the Sun and the evolution of the O isotopic composition of the planet-forming region [4-6]. Here we present in situ O and Mg isotopic analyses of two corundum/hibonite inclusions that record differing formation histories.

  20. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  1. Fabrication and electrical characterization of 15% yttrium-doped barium zirconate-nitrate freeze drying method combined with vacuum heating

    International Nuclear Information System (INIS)

    Imashuku, Susumu; Uda, Tetsuya; Nose, Yoshitaro; Awakura, Yasuhiro

    2011-01-01

    Research highlights: → Very fine 15% yttrium-doped barium zirconate powder of particle size about 30 nm was obtained by synthesizing at 500 deg. C in vacuum from powder mixed by the nitrate freeze-drying method. → Large and homogeneous grains of 15% yttrium-doped barium zirconate were easily obtained using the synthesized powder. → Grain boundary resistance was not inversely proportional to the grain size as theoretically expected. → Specific grain boundary conductivity varies with samples because impurities and/or evaporation loss of barium oxide might affect the grain-boundary resistance in 15% yttrium-doped barium zirconate. - Abstract: We applied a nitrate freeze-drying method to obtain a fine synthesized powder of 15% yttrium-doped barium zirconate. Fine 15% yttrium-doped barium zirconate powder of particle size about 30 nm was obtained by synthesizing at 500 deg. C in vacuum from a powder mixed by the nitrate freeze-drying method. However, we could not obtain such fine powder by synthesizing in air. Using the powder synthesized in vacuum, large and homogeneous grains of 15% yttrium-doped barium zirconate were easily obtained after sintering. Then, the bulk and grain boundary resistance were evaluated by AC 2-terminal measurement of sample in the form of bar and pellet and DC 4-terminal measurement of bar-shape sample. The grain boundary resistance was not inversely proportional to the grain size as theoretically expected. We concluded that specific grain boundary conductivity varies with samples. Some impurities, evaporation loss of barium oxide and/or other unexpected reasons might affect the grain boundary resistance in 15% yttrium-doped barium zirconate.

  2. MEA vacuum system

    International Nuclear Information System (INIS)

    Stroo, R.; Schwebke, H.; Heine, E.

    1984-01-01

    This report describes construction and operation of the MEA vacuum system of NIKHEF (Netherlands). First, the klystron vacuum system, beam transport system, diode pump and a triode pump are described. Next, the isolation valve and the fast valves of the vacuum system are considered. Measuring instruments, vacuum system commands and messages of failures are treated in the last chapter. (G.J.P.)

  3. Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, Dmitry; Levkov, Dmitry; Panin, Alexander, E-mail: gorby@ms2.inr.ac.ru, E-mail: levkov@ms2.inr.ac.ru, E-mail: panin@ms2.inr.ac.ru [Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow (Russian Federation)

    2017-10-01

    Small evaporating black holes were proposed to be dangerous inducing fast decay of the electroweak false vacuum. We observe that the flat-spectrum matter perturbations growing at the post-inflationary matter dominated stage can produce such black holes in a tiny amount which may nevertheless be sufficient to destroy the vacuum in the visible part of the Universe via the induced process. If the decay probability in the vicinity of Planck-mass black holes was of order one as suggested in literature, the absence of such objects in the early Universe would put severe constraints on inflation and subsequent stages thus excluding many well-motivated models (e.g. the R {sup 2}-inflation) and supporting the need of new physics in the Higgs sector. We give a qualitative argument, however, that exponential suppression of the probability should persist in the limit of small black hole masses. This suppression relaxes our cosmological constraints, and, if sufficiently strong, may cancel them.

  4. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Gaudio, Pasquale; Lupelli, Ivan; Malizia, Andrea; Porfiri, Maria Teresa; Richetta, Maria

    2013-01-01

    Highlights: ► Fusion safety, plasma material interaction. ► Numerical and experimental data comparison to analyze the consequences of Loss of Vacuum Accident that can provoke dust mobilization inside the Vacuum Vessel of the Nuclear Fusion Reactor ITER-like. -- Abstract: The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks

  5. Does evaporation paradox exist in China?

    Directory of Open Access Journals (Sweden)

    Z. T. Cong

    2009-03-01

    Full Text Available One expected consequence of global warming is the increase in evaporation. However, lots of observations show that the rate of evaporation from open pans of water has been steadily decreasing all over the world in the past 50 years. The contrast between expectation and observation is called "evaporation paradox". Based on data from 317 weather stations in China from 1956 to 2005, the trends of pan evaporation and air temperature were obtained and evaporation paradox was analyzed. The conclusions include: (1 From 1956 to 2005, pan evaporation paradox existed in China as a whole while pan evaporation kept decreasing and air temperature became warmer and warmer, but it does not apply to Northeast and Southeast China; (2 From 1956 to 1985, pan evaporation paradox existed narrowly as a whole with unobvious climate warming trend, but it does not apply to Northeast China; (3 From 1986 to 2005, in the past 20 years, pan evaporation paradox did not exist for the whole period while pan evaporation kept increasing, although it existed in South China. Furthermore, the trend of other weather factors including sunshine duration, windspeed, humidity and vapor pressure deficit, and their relations with pan evaporation are discussed. As a result, it can be concluded that pan evaporation decreasing is caused by the decreasing in radiation and wind speed before 1985 and pan evaporation increasing is caused by the decreasing in vapor pressure deficit due to strong warming after 1986. With the Budyko curve, it can be concluded that the actual evaporation decreased in the former 30 years and increased in the latter 20 year for the whole China.

  6. Ecton mechanism of ion flow generation in vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    The basic characteristics of cathode plasma generation in vacuum arc (ion erosion, ion average charge) were studied from the point of an ecton model of a cathode spot in vacuum arc. The estimates of ion parameters obtained for a single cell of a cathode spot show qualitative conformity with the experimental data. One introduces the following mechanism of cathode plasma generation in vacuum arc. In case of explosion-like destruction of a cathode segment under the effect of the Joule heating the cathode matter changes sequentially its state: condensed one, nonideal and ideal plasma ones. During this change one observes formation of plasma charge composition and ion acceleration under the effect of plasma pressure gradient

  7. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  8. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  9. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  10. AC and dielectric properties of vacuum evaporated InTe bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matheswaran, P. [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), GN Mills (po), Coimbatore 641 029, Tamil Nadu (India); Sathyamoorthy, R., E-mail: rsathya59@gmail.com [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), GN Mills (po), Coimbatore 641 029, Tamil Nadu (India); Saravanakumar, R. [PG and Research, Department of Physics, Kongunadu Arts and Science College (Autonomous), GN Mills (po), Coimbatore 641 029, Tamil Nadu (India); Velumani, S. [Department of Electrical Engineering (SEES), CINVESTAV-IPN Zacatenco, D.F., 07360 (Mexico)

    2010-10-25

    III-VI compound semiconductors receive great attention due to its applications in memory devices, switching devices, gas sensors, hybrid solar cells, etc. InTe thin films were prepared by sequential thermal evaporation of In and Te at Ar atmosphere. X-ray diffraction pattern of the films shows that the films posses mixed phase of In{sub 2}Te{sub 3} and In{sub 2}Te{sub 5}. Grain size (D) and dislocation density were calculated by using Scherer's formula. Surface morphology of the film is analyzed by SEM and the surface is found to be agglomeration of well defined grains. EDS analysis reveals that elemental composition is in right stoichiometry. The value of capacitance and tan {delta} was recorded with respect to different frequencies and at different temperatures. It is observed that the capacitance decreases with increase in frequency at all temperatures. The observed nature of the capacitance is due to the inability of the dipoles to orient in a rapidly varying electric field. The pronounced increase in capacitance toward the low frequency region may be attributed to the blocking of charge carriers at the electrodes which leads to space charge layer resulting in the increase of capacitance. The mechanism responsible for AC conduction is found to be electronic hopping. TCC and TCP values were calculated and the results are discussed.

  11. Production of Sn/SnO2/MWCNT composites by plasma oxidation after thermal evaporation from pure Sn targets onto buckypapers.

    Science.gov (United States)

    Alaf, M; Gultekin, D; Akbulut, H

    2012-12-01

    In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).

  12. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    Science.gov (United States)

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  13. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  14. Isotope fractionation of sandy-soil water during evaporation - an experimental study.

    Science.gov (United States)

    Rao, Wen-Bo; Han, Liang-Feng; Tan, Hong-Bing; Wang, Shuai

    2017-06-01

    Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ 18 O and δ 2 H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100 %. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ 2 H and δ 18 O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ 2 H and δ 18 O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.

  15. Gauge groups and topological invariants of vacuum manifolds

    International Nuclear Information System (INIS)

    Golo, V.L.; Monastyrsky, M.I.

    1978-01-01

    The paper is concerned with topological properties of the vacuum manifolds in the theories with the broken gauge symmetry for the groups of the type SO(k) x U(n), SO(k) x SO(p) x U(r). For the Ginsburg-Landau theory of the superfluid 3 He the gauge transformations are discussed. They provide the means to indicate all possible types of the vacuum manifolds, which are likely to correspond to distinct phases of the superfluid 3 He. Conditions on the existence of the minimums of the Ginsburg-Landau functional are discussed

  16. Effects of the fermionic vacuum polarization in QED

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, M.F.X.P.; Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil); Barone, F.E.

    2018-01-15

    Some effects of vacuum polarization in QED due to the presence of field sources are investigated. We focus on effects with no counter-part in Maxwell electrodynamics. The Uehling interaction energy between two stationary point-like charges is calculated exactly in terms of Meijer-G functions. Effects induced on a hydrogen atom by the vacuum polarization in the vicinity of a Dirac string are considered. We also calculate the interaction between two parallel Dirac strings and corrections to the energy levels of a quantum particle constrained to move on a ring circumventing a solenoid. (orig.)

  17. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  18. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    International Nuclear Information System (INIS)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user's risk and may lead to rejection of the whole assembly

  19. The role of current characteristics of the arc evaporator in formation of the surface metal-coating composite

    International Nuclear Information System (INIS)

    Plikhunov, V V; Petrov, L M; Grigorovich, K V

    2016-01-01

    The influence of current characteristics of the vacuum arc evaporator on the interaction process of plasma streams with the surface under treatment during generation of the physicochemical properties of the formed metal-coating composite is considered. It is shown that the interaction of plasma streams with the processed surface provides surface heating, defects elimination, change in energy properties, and mass transfer of plasma stream elements activating surface diffusion processes whose intensity is evaluated by the arc current magnitude and location of the processed surface relative to the cathode axis. (paper)

  20. From Corporate Social Responsibility, through Entrepreneurial Orientation, to Knowledge Sharing: A Study in Cai Luong (Renovated Theatre) Theatre Companies

    Science.gov (United States)

    Tuan, Luu Trong

    2015-01-01

    Purpose: This paper aims to examine the role of antecedents such as corporate social responsibility (CSR) and entrepreneurial orientation in the chain effect to knowledge sharing among members of Cai Luong theatre companies in the Vietnamese context. Knowledge sharing contributes to the depth of the knowledge pool of both the individuals and the…

  1. Influence of organic films on the evaporation and condensation of water in aerosol.

    Science.gov (United States)

    Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P

    2013-05-28

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.

  2. Influence of organic films on the evaporation and condensation of water in aerosol

    Science.gov (United States)

    Davies, James F.; Miles, Rachael E. H.; Haddrell, Allen E.; Reid, Jonathan P.

    2013-01-01

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [CnH(2n+1)OH], with the value decreasing from 2.4 × 10−3 to 1.7 × 10−5 as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid. PMID:23674675

  3. Effects of an anode sheath on energy and momentum transfer in vacuum arcs

    International Nuclear Information System (INIS)

    Wang, Zhenxing; Zhou, Zhipeng; Tian, Yunbo; Wang, Haoran; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan

    2017-01-01

    Anode phenomena under high-current vacuum arcs have a significant impact on the interrupting capacity of vacuum interrupters. However, the vacuum arc energy flux and momentum flux on the anode—which are necessary boundary conditions for simulations—are either set to an imaginary distribution or calculated using simple formulas without considering anode sheath regulatory effects. The objective of this paper is to reveal the anode sheath effects on regulating the energy and momentum transfer from the arc column to the anode surface in vacuum arcs. A particle-in-cell model for the anode sheath is developed. The required input parameters are obtained from a magnetohydrodynamic model for the arc column. From the results, there exists a sheath near the anode with a negative voltage drop. Both the electron density and the ion density significantly decline in the anode sheath region. The kinetic energy of the ions absorbed by the anode consists of directed kinetic energy, random kinetic energy, and sheath acceleration energy. The sheath acceleration energy contribution is the largest, and the random kinetic energy also accounts for a large part that cannot be ignored. The arc pressure on the anode surface is mainly caused by ion impact, and the accelerating effect of the anode sheath on the ions cannot be neglected in pressure calculations. In addition, in the case of an arc current at 15 kA, the input energy and momentum upon the anode surface is not obviously affected by the evaporated atoms at surface temperatures of 1600 K and 2000 K. (paper)

  4. Crystal Growth and Scintillation Properties of Eu2+ doped Cs4CaI6 and Cs4SrI6

    Science.gov (United States)

    Stand, L.; Zhuravleva, M.; Chakoumakos, B.; Johnson, J.; Loyd, M.; Wu, Y.; Koschan, M.; Melcher, C. L.

    2018-03-01

    In this work we present the crystal growth and scintillation properties of two new ternarymetal halide scintillators activated with divalent europium, Cs4CaI6 and Cs4SrI6. Single crystals of each compound were grown in evacuated quartz ampoules via the vertical Bridgman technique using a two-zone transparent furnace. Single crystal X-ray diffraction experiments showed that both crystals have a trigonal (R-3c) structure, with a density of 3.99 g/cm3 and 4.03 g/cm3. The radioluminescence and photoluminescence measurements showed typical luminescence properties due to the 5d-4f radiative transitions in Eu2+. At this early stage of development Cs4SrI6:Eu and Cs4CaI6:Eu have shown very promising scintillation properties, with light yields and energy resolutions of 62,300 ph/MeV and 3.3%, and 51,800 photons/MeV and 3.6% at 662 keV, respectively.

  5. The PVLAS experiment for measuring the magnetic birefringence of vacuum

    International Nuclear Information System (INIS)

    Zavattini, G.; Gastaldi, U.; Messineo, G.; Piemontese, L.; Della Valle, F.; Milotti, E.; Pengo, R.; Ruoso, G.

    2013-01-01

    We describe the principle and status of the PVLAS experiment being prepared at the Department of Physics and INFN section in Ferrara, Italy. The goal of the experiment is to measure the magnetic birefringence of vacuum. This effect is directly connected to the vacuum QED structure and can be detected by measuring the ellipticity acquired by a linearly polarized laser beam traversing a strong magnetic field. Vacuum magnetic birefringence is predicted by the Euler- Heisenberg effective Lagrangian. The experimental method is also sensitive to new physics and could place new laboratory limits to hypothetical particles coupling to two photons, such as axion like particles, or millicharged particles.

  6. An ultrahigh vacuum, low-energy ion-assisted deposition system for III-V semiconductor film growth

    Science.gov (United States)

    Rohde, S.; Barnett, S. A.; Choi, C.-H.

    1989-06-01

    A novel ion-assisted deposition system is described in which the substrate and growing film can be bombarded with high current densities (greater than 1 mA/sq cm) of very low energy (10-200 eV) ions. The system design philosophy is similar to that used in III-V semiconductor molecular-beam epitaxy systems: the chamber is an all-metal ultrahigh vacuum system with liquid-nitrogen-cooled shrouds, Knudsen-cell evaporation sources, a sample insertion load-lock, and a 30-kV reflection high-energy electron diffraction system. III-V semiconductor film growth is achieved using evaporated group-V fluxes and group-III elemental fluxes sputtered from high-purity targets using ions extracted from a triode glow discharge. Using an In target and an As effusion cell, InAs deposition rates R of 2 microns/h have been obtained. Epitaxial growth of InAs was observed on both GaSb(100) and Si(100) substrates.

  7. Evaporation of Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Roman, C.E.; Garzon, I.L.

    1991-01-01

    Extensive molecular dynamics simulations have been done to study the evaporation of a 13-atom Lennard-Jones cluster. The survival probability and the evaporative lifetime are calculated as a function of the cluster total energy from a classical trajectory analysis. The results are interpreted in terms of the RRK theory of unimolecular dissociation. The calculation of the binding energy of the evaporated species from the evaporation rate and the average kinetic energy release is discussed. (orig.)

  8. Multilayer Ti-Cr-N Coatings Produced by the Vacuum-Arc Deposition

    International Nuclear Information System (INIS)

    Kunchenko, Yu.V.; Kunchenko, V.V.; Neklyudov, I.M.; Kartmazov, G.N.; Andreev, A.A.

    2007-01-01

    A possibility is demonstrated for nanolayer TiN x /CrN x coating formation by the method of vacuum-arc deposition on the substrate, which being rotated around the 'Bulat'-type chamber axis intercepts sequentially the plasma flows generated by three evaporators. The model for calculating the coating deposition rate (thickness) was used to determine the geometrical parameters that provide the formation of layer structures in the nanometer range. The variations of phase-structure characteristics, compression microstresses (σ) microhardness (H v ) of the coating formed have been investigated as functions of nitrogen pressure (P N =0.001...1.0 Pa), bias voltage (U=-100...-300 V) and condensation temperature (T C =330...750 degree C) at focusing magnetic field strength H F =0; 35 and 100 Oe. The mentioned field strengths were responsible for the ion current densities (j∼5,8...10 and ≥15 mA/cm 2 ). A nonmonotonic behaviour of H v as a function of condensation temperature and of vacuum annealing temperature has been established. The maximum H v values (∼35...37 GPa) were observed in the 450...500 degree C range

  9. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  10. Vacuum stability in neutrinophilic Higgs doublet model

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Horita, Tomohiro

    2011-01-01

    A neutrinophilic Higgs model has tiny vacuum expectation value (VEV), which can naturally explain tiny masses of neutrinos. There is a large energy scale hierarchy between a VEV of the neutrinophilic Higgs doublet and that of usual standard model-like Higgs doublet. In this Letter we at first analyze vacuum structures of Higgs potential in both supersymmetry (SUSY) and non-SUSY neutrinophilic Higgs models, and next investigate a stability of this VEV hierarchy against radiative corrections. We will show that the VEV hierarchy is stable against radiative corrections in both Dirac neutrino and Majorana neutrino scenarios in both SUSY and non-SUSY neutrinophilic Higgs doublet models.

  11. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, Charles L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-01

    (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that

  12. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    International Nuclear Information System (INIS)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-01

    (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that

  13. Evaporation of multicomponent chemical spills: When is liquid phase resistance significant?

    International Nuclear Information System (INIS)

    Berger, D.; Mackay, D.

    1993-01-01

    When chemicals are spilled on land or water, it is important to be able to estimate evaporation rates accurately. Conventional models used to predict evaporation rates of multicomponent spills assume that the entire resistance to evaporation lies in the vapor phase. Under certain conditions, an additional liquid phase resistance may be introduced, resulting in retarded evaporation rates. Existing models may thus fail to predict spill behavior accurately. A study is described whose objective is to elucidate the significance of the liquid phase resistance. Evaporation experiments were conducted in which a thin layer of synthetic oil (mineral oil enriched with compounds such as pentane, hexane, toluene, octane, and p-xylene) was exposed to prolonged evaporation in a metal tray at controlled wind speeds. Bulk samples of the spill layer were taken at specific time intervals and their composition was determined by gas chromatographic analysis. The results are compared to those from a theoretical model and to gas stripping experiments. The model is based on the evaporative flux equation incorporating Raoult's law; inputs are the air-oil partition coefficient for each component and the composition of the synthetic oil on a volume and mole fraction basis. The study has enabled the formation of vertical concentration profiles to be examined and liquid phase mass transfer coefficients to be estimated. The results imply that liquid-phase resistance effects are likely to be important for the most volatile components. Contaminated areas may thus continue to be hazardous, even though model predictions indicate otherwise. 7 refs., 3 figs., 2 tabs

  14. Super-Maxwellian helium evaporation from pure and salty water

    International Nuclear Information System (INIS)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L.; Nathanson, Gilbert M.

    2016-01-01

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient

  15. Super-Maxwellian helium evaporation from pure and salty water

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu; Nathanson, Gilbert M., E-mail: skinner@chem.wisc.edu, E-mail: nathanson@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  16. Device of supporting a vacuum plasma vessel

    International Nuclear Information System (INIS)

    Kanoi, Minoru; Hori, Yasuro.

    1980-01-01

    Purpose: To improve the earthquake-resistance of a vacuum plasma vessel by equalizing the natural vibrations of a vibrating system formed by supporting mechanisms of the respective sectors of the vessel. Constitution: The vacuum plasma vessel is constructed of bellows interposed among a plurality of thick sector-like rings and the rings, which are respectively supported by supporting mechanisms. Thus, the vibrating systems are divided into the rings interposed with the bellows, arms as the supporting mechanisms, and posts. The natural vibrations of these vibrating systems are equalized to each other by suitably adjusting the configurations and the sized of the arms and the posts or the weight or the like of the rings. Therefore, the respective rings become vibrated at the natural vibrations equal to each other so as to largely reduce the stresses produced at both ends of the bellows. Accordingly, it can remarkably improve the earthquake-resistance of the entire plasma vessel. (Sekiya, K.)

  17. Static black hole and vacuum energy: thin shell and incompressible fluid

    Science.gov (United States)

    Ho, Pei-Ming; Matsuo, Yoshinori

    2018-03-01

    With the back reaction of the vacuum energy-momentum tensor consistently taken into account, we study static spherically symmetric black-hole-like solutions to the semi-classical Einstein equation. The vacuum energy is assumed to be given by that of 2-dimensional massless scalar fields, as a widely used model in the literature for black holes. The solutions have no horizon. Instead, there is a local minimum in the radius. We consider thin shells as well as incompressible fluid as the matter content of the black-hole-like geometry. The geometry has several interesting features due to the back reaction of vacuum energy. In particular, Buchdahl's inequality can be violated without divergence in pressure, even if the surface is below the Schwarzschild radius. At the same time, the surface of the star can not be far below the Schwarzschild radius for a density not much higher than the Planck scale, and the proper distance from its surface to the origin can be very short even for very large Schwarzschild radius. The results also imply that, contrary to the folklore, in principle the Boulware vacuum can be physical for black holes.

  18. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.

    Science.gov (United States)

    Shou, Wan; Mahajan, Bikram K; Ludwig, Brandon; Yu, Xiaowei; Staggs, Joshua; Huang, Xian; Pan, Heng

    2017-07-01

    Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum-based integrated circuit (IC) processes. Here, a low-cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation-condensation in confined domains. The printing process can be performed on low-temperature substrates in ambient environment allowing easy integration on a roll-to-roll platform for economical manufacturing of bioresorbable electronics. The fabricated Zn conductors show excellent electrical conductivity (≈1.124 × 10 6 S m -1 ), mechanical durability, and water dissolvability. Successful demonstration of strain gauges confirms the potential application in various environmentally friendly sensors and circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    Science.gov (United States)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  20. Energy-momentum tensor in thermal strong-field QED with unstable vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S P [Department of General and Experimental Physics, Herzen State Pedagogical University of Russia, Moyka emb. 48, 191186 St Petersburg (Russian Federation); Gitman, D M [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo, SP (Brazil)], E-mail: gavrilovsergeyp@yahoo.com, E-mail: gitman@dfn.if.usp.br

    2008-04-25

    The mean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions (similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.

  1. Energy-momentum tensor in thermal strong-field QED with unstable vacuum

    International Nuclear Information System (INIS)

    Gavrilov, S P; Gitman, D M

    2008-01-01

    The mean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions (similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established

  2. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  3. Microbubble-Triggered Spontaneous Separation of Transparent Thin Films from Substrates Using Evaporable Core-Shell Nanocapsules.

    Science.gov (United States)

    Son, Intae; Lee, Byungsun; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Ahn, Byung Wook; Hwang, Jeongho; Lee, Jonghyuk; Lee, Jun Hyup

    2018-05-23

    The spontaneous separation of a polymer thin film from a substrate is an innovative technology that will enable material recycling and reduce manufacturing cost in the film industry, and this can be applied in a wide range of applications, from optical films to wearable devices. Here, we present an unprecedented spontaneous strategy for separating transparent polymer films from substrates on the basis of microbubble generation using nanocapsules containing an evaporable material. The core-shell nanocapsules are prepared from poly(methyl methacrylate)-polyethyleneimine nanoparticles via the encapsulation of methylcyclohexane (MCH). A spherical nanostructure with a vaporizable core is obtained, with the heat-triggered gas release ability leading to the formation of microbubbles. Our separation method applied to transparent polymer films doped with a small amount of the nanocapsules encapsulating evaporable MCH enables spontaneous detachment of thin films from substrates via vacuum-assisted rapid vaporization of MCH over a short separation time, and clear detachment of the film is achieved with no deterioration of the inherent optical transparency and adhesive property compared to a pristine film.

  4. Bio-inspired intelligent evaporation modulation in a thermo-sensitive nanogel colloid solution for self-thermoregulation.

    Science.gov (United States)

    Huang, Zhi; Liu, Kang; Feng, Yanhui; Zhou, Jun; Zhang, Xinxin

    2017-06-28

    Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.

  5. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Liang; Qiu, Keqiang

    2011-01-01

    Highlights: → The cathode active materials LiCoO 2 from spent lithium-ion batteries peeled completely from aluminum foils by vacuum pyrolysis and hydrometallurgical process. → The aluminum foils were excellent without damage after vacuum pyrolysis. → The pyrolysis products organic fluorine compounds from organic electrolyte and binder were collected and enriched. → High leaching efficiencies of cobalt and lithium were obtained with H 2 SO 4 and H 2 O 2 . - Abstract: Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO 2 and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600 o C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2 M sulfuric acid leaching solution at 80 o C and solid/liquid ratio of 50 g L -1 for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries.

  6. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People' s Republic of China (China); Qiu, Keqiang, E-mail: qiuwhs@sohu.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People' s Republic of China (China)

    2011-10-30

    Highlights: {yields} The cathode active materials LiCoO{sub 2} from spent lithium-ion batteries peeled completely from aluminum foils by vacuum pyrolysis and hydrometallurgical process. {yields} The aluminum foils were excellent without damage after vacuum pyrolysis. {yields} The pyrolysis products organic fluorine compounds from organic electrolyte and binder were collected and enriched. {yields} High leaching efficiencies of cobalt and lithium were obtained with H{sub 2}SO{sub 4} and H{sub 2}O{sub 2}. - Abstract: Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO{sub 2} and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600 {sup o}C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2 M sulfuric acid leaching solution at 80 {sup o}C and solid/liquid ratio of 50 g L{sup -1} for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries.

  7. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  8. Thermal deposition of intact tetrairon(III) single-molecule magnets in high-vacuum conditions.

    Science.gov (United States)

    Margheriti, Ludovica; Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Gatteschi, Dante; Caneschi, Andrea; Chiappe, Daniele; Moroni, Riccardo; de Mongeot, Francesco Buatier; Cornia, Andrea; Piras, Federica M; Magnani, Agnese; Sessoli, Roberta

    2009-06-01

    A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.

  9. Two years since SSAMS: Status of {sup 14}C AMS at CAIS

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Prasad, G.V.; Cherkinsky, Alexander; Culp, Randy A.; Dvoracek, Doug K.

    2015-10-15

    The NEC 250 kV single stage AMS accelerator (SSAMS) was installed two years ago at the Center for Applied Isotope Studies (CAIS), University of Georgia. The accelerator is primarily being used for radiocarbon measurements to test the authenticity of natural and bio-based samples while all other samples such as geological, atmospheric, marine and archaeological. are run on the 500 kV, NEC 1.5SDH-1 model tandem accelerator, which has been operating since 2001. The data obtained over a six months period for OXI, OXII, ANU sucrose and FIRI-D are discussed. The mean value of ANU sucrose observed to be slightly lower than the consensus value. The processed blanks on SSAMS produce lower apparent age compared to the tandem accelerator as expected.

  10. Nakedly singular non-vacuum gravitating equilibrium states

    Science.gov (United States)

    Woszczyna, Andrzej; Kutschera, Marek; Kubis, Sebastian; Czaja, Wojciech; Plaszczyk, Piotr; Golda, Zdzisław A.

    2016-01-01

    Non-vacuum static spherically symmetric spacetimes with central point-like repulsive gravity sources are investigated. Both the symmetries of spacetime and the degree of irregularity of curvature invariants, are the same as for the Schwarzschild case. The equilibrium configurations are modelled using the neutron star polytrope equation of state.

  11. Liquid evaporation process and evaporator

    International Nuclear Information System (INIS)

    Bergey, Claude; Ravenel, Jacques.

    1975-01-01

    The process described enables a liquid to be evaporated rapidly without any projection. A jet of hot gas is applied to the liquid, the power and angle of the jet being chosen so as to spin the liquid. It is particularly used in the case of radioactive products [fr

  12. Crystal Structure, Optical, and Electrical Properties of SnSe and SnS Semiconductor Thin Films Prepared by Vacuum Evaporation Techniques for Solar Cell Applications

    Science.gov (United States)

    Ariswan; Sutrisno, H.; Prasetyawati, R.

    2017-05-01

    Thin films of SnSe and SnS semiconductors had been prepared by vacuum evaporation techniques. All prepared samples were characterized on their structure, optical, and electrical properties in order to know their application in technology. The crystal structure of SnSe and SnS was determined by X-Ray Diffraction (XRD) instrument. The morphology and chemical composition were obtained by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive of X-Ray Analysis (EDAX). The optical property such as band gap was determined by DR-UV-Vis (Diffuse Reflectance-Ultra Violet-Visible) spectroscopy, while the electrical properties were determined by measuring the conductivity by four probes method. The characterization results indicated that both SnSe and SnS thin films were polycrystalline. SnSe crystallized in an orthorhombic crystal system with the lattice parameters of a = 11.47 Å, b = 4.152 Å and c = 4.439 Å, while SnS had an orthorhombic crystal system with lattice parameters of a = 4.317 Å, b = 11.647 Å and c = 3.981 Å. Band gaps (Eg) of SnSe and SnS were 1.63 eV and 1.35 eV, respectively. Chemical compositions of both thin films were non-stoichiometric. Molar ratio of Sn : S was close to ideal which was 1 : 0.96, while molar ratio of Sn : S was 1 : 0.84. The surface morphology described the arrangement of the grains on the surface of the thin film with sizes ranging from 0.2 to 0.5 microns. Color similarity on the surface of the SEM images proved a homogenous thin layer.

  13. The secondary electron yield of TiZr and TiZrV non evaporable getter thin film coatings

    CERN Document Server

    Scheuerlein, C; Hilleret, Noël; Taborelli, M

    2001-01-01

    The secondary electron yield (SEY) of two different non evaporable getter (NEG) samples has been measured 'as received' and after thermal treatment. The investigated NEGs are TiZr and TiZrV thin film coatings of 1 mm thickness, which are sputter deposited onto copper substrates. The maximum SEY dmax of the air exposed TiZr and TiZrV coating decreases from above 2.0 to below 1.1 during a 2 hour heat treatment at 250 °C and 200 °C, respectively. Saturating an activated TiZrV surface under vacuum with the gases typically present in ultra high vacuum systems increases dmax by about 0.1. Changes in elemental surface composition during the applied heat treatments were monitored by Auger electron spectroscopy (AES). After activation carbon, oxygen and chlorine were detected on the NEG surfaces. The potential of AES for detecting the surface modifications which cause the reduction of SE emission during the applied heat treatments is critically discussed.

  14. Putting evaporators to work: wiped film evaporator for high level wastes

    International Nuclear Information System (INIS)

    Dierks, R.D.; Bonner, W.F.

    1976-01-01

    At Battelle, Pacific Northwest Laboratories, a pilot scale, wiped film evaporator was tested for concentrating high level liquid wastes from Purex-type nuclear fuel recovery processes. The concentrates produced up to 60 wt-percent total solids; and the simplicity of operation and design of the evaporator gave promise for low maintenance and high reliability

  15. Evaporating firewalls

    Science.gov (United States)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  16. Sewerage force adjustment technology for energy conservation in vacuum sanitation systems

    Science.gov (United States)

    Guo, Zhonghua; Li, Xiaoning; Kagawa, Toshiharu

    2013-03-01

    The vacuum sanitation is the safe and sound disposal approach of human excreta under the specific environments like flights, high speed trains and submarines. However, the propulsive force of current systems is not adjustable and the energy consumption does not adapt to the real time sewerage requirement. Therefore, it is important to study the sewerage force adjustment to improve the energy efficiency. This paper proposes an energy conservation design in vacuum sanitation systems with pneumatic ejector circuits. The sewerage force is controlled by changing the systematic vacuum degree according to the amount of the excreta. In particular, the amount of the excreta is tested by liquid level sensor and mass sensor. According to the amount of the excreta, the relationship between the excreta amount and the sewerage force is studied to provide proper propulsive force. In the other aspect, to provide variable vacuum degrees for different sanitation requirements, the suction and discharge system is designed with pneumatic vacuum ejector. On the basis of the static flow-rate characteristics and the vacuum generation model, the pressure response in the ejector circuit is studied by using the static flow rate characteristics of the ejector and air status equation. The relationship is obtained between supplied compressed air and systematic vacuum degree. When the compressed air is supplied to the ejector continuously, the systematic vacuum degree increases until the vacuum degree reaches the extreme value. Therefore, the variable systematic vacuum degree is obtained by controlling the compressed air supply of the ejector. To verify the effect of energy conservation, experiments are carried out in the artificial excreta collection, and the variable vacuum-degree design saves more than 30% of the energy supply. The energy conservation is realized effectively in the new vacuum sanitation systems with good application prospect. The proposed technology provides technological

  17. Evaporation estimates from the Dead Sea and their implications on its water balance

    Science.gov (United States)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  18. Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode

    International Nuclear Information System (INIS)

    Ongul, Fatih; Yuksel, Sureyya Aydın; Bozar, Sinem; Gunes, Serap; Cakmak, Gulbeden; Guney, Hasan Yuksel; Egbe, Daniel Ayuk Mbi

    2015-01-01

    In this paper, the photovoltaic characteristics of bulk heterojunction solar cells employing an eutectic gallium–indium (EGaIn) alloy as a top metal contact which was coated by a simple and inexpensive brush-painting was investigated. The overall solar cell fabrication procedure was vacuum-free. As references, regular organic bulk heterojunction solar cells employing thermally evaporated Aluminum as a top metal contact were also fabricated. Inserting the ZnO layer between the active layer and the cathode electrodes (Al and EGaIn) improved the photovoltaic performance of the herein investigated devices. The power conversion efficiencies with and without EGaIn top electrodes were rather comparable. Hence, we have shown that the EGaIn, which is liquid at room temperature, can be used as a cathode. It allows an easy and rapid device fabrication that can be implemented through a vacuum free process. (paper)

  19. Magnetically induced vacuum decay

    International Nuclear Information System (INIS)

    Xue Shesheng

    2003-01-01

    We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed

  20. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  1. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .

  2. Overall solution for water circulation based on evaporation; Kiertovesien kaesittelyn kokonaisratkaisu perustuen haihdutustekniikkaan - KLT 01

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L.; Mckeough, P.; Buchert, J. [VTT Energy, Espoo (Finland)

    1998-12-31

    The aim of the project is to investigate and evaluate treatment methods for concentrates from the evaporation of circulation waters. The most feasible process, from both a technical and economical viewpoint, will be identified from a group of alternative concepts. Experimental research will focus on further evaporation of concentrates of TMP filtrates. Laboratory, PDU and pilot equipment will be employed in the work. The main tasks will be to study further evaporation of concentrates and to improve evaporation with the aid of different pre- and intermediate treatments, like enzyme treatment. Process evaluation will focus on a separate final treatment of the high-solids concentrate of the TMP filtrate. Treatment concepts will be developed and a techno-economic assessment of the processes will be carried out. (orig.)

  3. Overall solution for water circulation based on evaporation; Kiertovesien kaesittelyn kokonaisratkaisu perustuen haihdutustekniikkaan - KLT 01

    Energy Technology Data Exchange (ETDEWEB)

    Fagernaes, L; Mckeough, P; Buchert, J [VTT Energy, Espoo (Finland)

    1999-12-31

    The aim of the project is to investigate and evaluate treatment methods for concentrates from the evaporation of circulation waters. The most feasible process, from both a technical and economical viewpoint, will be identified from a group of alternative concepts. Experimental research will focus on further evaporation of concentrates of TMP filtrates. Laboratory, PDU and pilot equipment will be employed in the work. The main tasks will be to study further evaporation of concentrates and to improve evaporation with the aid of different pre- and intermediate treatments, like enzyme treatment. Process evaluation will focus on a separate final treatment of the high-solids concentrate of the TMP filtrate. Treatment concepts will be developed and a techno-economic assessment of the processes will be carried out. (orig.)

  4. Vacuum system for ISABELLE

    International Nuclear Information System (INIS)

    Hobson, J.P.

    1975-01-01

    An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made

  5. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two-part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validation of the developed OSATS scale for vac...

  6. Film flow analysis for a vertical evaporating tube with inner evaporation and outer condensation

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A numerical study for the flow, heat and mass transfer characteristics of the evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation occurs at the free surface of the inside film. The transport equations for momentum and energy are parabolized by the boundary-layer approximation and solved by using the marching technique. The calculation domain of 2 film flow regions (evaporating and condensation films at the inside and outside tube wall respectively) and tube wall is solved simultaneously. The coupling technique for the problem with the 3 different regions and the 2 interfaces of them has been developed to calculated the temperature field. The velocity and temperature fields and the amount of the condensed and evaporated mass as well as the position where the evaporating film is completely dried out are successfully predicted for various inside pressures and inside film inlet flow rates

  7. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  8. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPOR –COMPRESSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  9. Modelling vacuum arcs : from plasma initiation to surface interactions

    International Nuclear Information System (INIS)

    Timko, H.

    2011-01-01

    A better understanding of vacuum arcs is desirable in many of today's 'big science' projects including linear colliders, fusion devices, and satellite systems. For the Compact Linear Collider (CLIC) design, radio-frequency (RF) breakdowns occurring in accelerating cavities influence efficiency optimisation and cost reduction issues. Studying vacuum arcs both theoretically as well as experimentally under well-defined and reproducible direct-current (DC) conditions is the first step towards exploring RF breakdowns. In this thesis, we have studied Cu DC vacuum arcs with a combination of experiments, a particle-in-cell (PIC) model of the arc plasma, and molecular dynamics (MD) simulations of the subsequent surface damaging mechanism. We have also developed the 2D Arc-PIC code and the physics model incorporated in it, especially for the purpose of modelling the plasma initiation in vacuum arcs. Assuming the presence of a field emitter at the cathode initially, we have identified the conditions for plasma formation and have studied the transitions from field emission stage to a fully developed arc. The 'footing' of the plasma is the cathode spot that supplies the arc continuously with particles; the high-density core of the plasma is located above this cathode spot. Our results have shown that once an arc plasma is initiated, and as long as energy is available, the arc is self-maintaining due to the plasma sheath that ensures enhanced field emission and sputtering.The plasma model can already give an estimate on how the time-to-breakdown changes with the neutral evaporation rate, which is yet to be determined by atomistic simulations. Due to the non-linearity of the problem, we have also performed a code-to-code comparison. The reproducibility of plasma behaviour and time-to-breakdown with independent codes increased confidence in the results presented here. Our MD simulations identified high-flux, high-energy ion bombardment as a possible mechanism forming the early

  10. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  11. New Petrology, Mineral Chemistry and Stable MG Isotope Compositions of an Allende CAI: EK-459-7-2

    Science.gov (United States)

    Jeffcoat, C. R.; Kerekgyarto, A. G.; Lapen, T. J.; Righter, M.; Simon, J. I.; Ross, D. K.

    2016-01-01

    Calcium-aluminum-rich inclusions (CAIs) are the key to understanding physical and chemical conditions in the nascent solar nebula. These inclusions have the oldest radiometric ages of solar system materials and are composed of phases that are predicted to condense early from a gas of solar composition. Thus, their chemistry and textures record conditions and processes in the earliest stages of development of the solar nebula. Type B inclusions are typically larger and more coarse grained than other types with substantial evidence that many of them were at least partially molten. Type B inclusions are further subdivided into Type B1 (possess thick melilite mantle) and Type B2 (lack melilite mantle). Despite being extensively studied, the origin of the melilite mantles of Type B1 inclusions remains uncertain. We present petrologic and chemical data for a Type B inclusion, EK-459-7-2, that bears features found in both Type B1 and B2 inclusions and likely represents an intermediate between the two types. Detailed studies of more of these intermediate objects may help to constrain models for Type B1 rim formation.

  12. Ion-induced desorption from stainless-steel vacuum chambers has been studied with a view to improving the dynamic pressure in the future LEIR ion accumulator ring for the LHC.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    This picture shows part of a vacuum chamber fully equipped with St707 non-evaporable getter (NEG) strips which were bombarded in Linac3 with lead ions at 4.2 MeV/u. A change of the surface morphology is visible where the Pb53+ ions impacted under grazing incidence onto the NEG.

  13. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    Science.gov (United States)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  14. Preparation and optical and electrical evaluation of bulk SiO2 sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    International Nuclear Information System (INIS)

    Sanchez Vergara, Maria Elena; Morales-Saavedra, Omar G.; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto; Ortiz Rebollo, Armando

    2009-01-01

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E g ) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO 2 sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively

  15. Dynamic response of the JT-60 vacuum vessel under the electromagnetic forces

    International Nuclear Information System (INIS)

    Takatsu, H.; Shimizu, M.; Ohta, M.

    1982-01-01

    Dynamic response analyses of the JAERI Tokamak 60 (JT-60) vacuum vessel were carried out under three kinds of saddle-like electromagnetic forces. In the analysis, the dynamic response of the bellows was obtained by dividing it into three components; the first, caused by the forced deflection due to the displacement of an adjacent rigid ring; the second, caused by inertia force; and the third, caused by a saddle-like electromagnetic force. Eigenvalue analyses showed that the 20th mode is a typical rotation mode of the rigid ring around the major radius with a natural frequency of 46.3 Hz. From the results of the dynamic response analyses, the maximum displacement response of the rigid ring was 3.1 mm and remarkable dynamic response was observed in the case of plasma disruption with a time constant of 1 ms. In cases of start-up of the plasma current and plasma disruption with a time constant of 50 ms, the rigid ring vibrates quasi-statically. It is clear that the dynamic behavior of the vacuum vessel is governed mainly by the saddle-like electromagnetic force, with a smaller effect of the inverse saddle-like electromagnetic force on the dynamic response of the vacuum vessel. (orig.)

  16. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    Science.gov (United States)

    Chang, Chin-Chun; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10-8 Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  17. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Chun, E-mail: chinchun@nsrrc.org.tw; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10{sup −8} Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  18. Discovery Monday: Much ado about nothing: vacuums

    CERN Multimedia

    2004-01-01

    Most people seem to agree that an empty space has nothing in it. But what about the physicists? "Wait a minute!", they will tell you, at the Microcosm's next Discovery Monday on 5th April, for they know that even interstellar space is not as empty as it might seem... Because particles, the tiny constituents of matter, are everywhere. Even the most sophisticated vacuum pumps cannot get rid of them all. What's more, energy is omnipresent in the Universe. Energy has the habit of turning itself into matter then disappearing, only to come back again as energy... and all this in the twinkling of an eye. Hence the term "virtual matter". A completely empty space simply does not exist. Vacuums are of vital importance to CERN's physicists. In the accelerators, it is essential to obtain the best possible vacuum inside the tube through which the particles travel, in order to avoid interference from other, stray particles. To this end they use "getter" strips, which act like fly traps. When these strip...

  19. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    CAMPBELL, T.A.

    1999-01-01

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  20. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  1. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  2. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  3. Processing and Properties of Vacuum Assisted Resin Transfer Molded Phenylethynyl Terminated Imide Composites

    Science.gov (United States)

    Cano, Roberto J.; Ghose, Sayata; Watson, Kent A.; Chunchu, Prasad B.; Jensen, Brian J.; Connell, John W.

    2012-01-01

    Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems that can be processed without the use of an autoclave for advanced aerospace applications. Due to their low melt viscosities and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature vacuum assisted resin transfer molding (HT-VARTM). VARTM has shown the potential to reduce the manufacturing cost of composite structures. In the current study, two PETI resins, LARC(Trademark) PETI-330 and LARC(Trademark) PETI-9, were infused into carbon fiber preforms at 260 C and cured at temperatures up to 371 C. Photomicrographs of polished cross sections were taken and void contents, determined by acid digestion, were below 4.5%. Mechanical properties including short block compression (SBC), compression after impact (CAI), and open hole compression (OHC) were determined at room temperature, 177 C, and 288 C. Both PETI-9 and PETI-330 composites demonstrated very good retention of mechanical properties at elevated temperatures. SBC and OHC properties after aging for 1000 hours at temperatures up to 288 C were also determined.

  4. Quantum vacuum energy in two dimensional space-times

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Fulling, S.A.

    1977-01-01

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)

  5. Quantum vacuum energy in two dimensional space-times

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.

  6. Vacuum level effects on gait characteristics for unilateral transtibial amputees with elevated vacuum suspension.

    Science.gov (United States)

    Xu, Hang; Greenland, Kasey; Bloswick, Donald; Zhao, Jie; Merryweather, Andrew

    2017-03-01

    The elevated vacuum suspension system has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on gait characteristics is still unclear. The purpose of this study was to investigate the effects of elevated vacuum levels on temporal parameters, kinematics and kinetics for unilateral transtibial amputees. Three-dimensional gait analysis was conducted in 9 unilateral transtibial amputees walking at a controlled speed with five vacuum levels ranging from 0 to 20inHg, and also in 9 able-bodied subjects walking at self-preferred speed. Repeated ANOVA and Dunnett's t-test were performed to determine the effect of vacuum level and limb for within subject and between groups. The effect of vacuum level significantly affected peak hip external rotation and external knee adduction moment. Maximum braking and propulsive ground reaction forces generally increased for the residual limb and decreased for the intact limb with increasing vacuum. Additionally, the intact limb experienced an increased loading due to gait asymmetry for several variables. There was no systematic vacuum level effect on gait. Higher vacuum levels, such as 15 and 20inHg, were more comfortable and provided some relief to the intact limb, but may also increase the risk of osteoarthritis of the residual limb due to the increased peak external hip and knee adduction moments. Very low vacuum should be avoided because of the negative effects on gait symmetry. A moderate vacuum level at 15inHg is suggested for unilateral transtibial amputees with elevated vacuum suspension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Existence of an 16O-rich gaseous reservoir in the solar nebula.

    Science.gov (United States)

    Krot, Alexander N; McKeegan, Kevin D; Leshin, Laurie A; MacPherson, Glenn J; Scott, Edward R D

    2002-02-08

    Carbonaceous chondrite condensate olivine grains from two distinct petrographic settings, calcium-aluminum-rich inclusion (CAI) accretionary rims and amoeboid olivine aggregates (AOAs), are oxygen-16 (16O) enriched at the level previously observed inside CAIs. This requires that the gas in the nebular region where these grains condensed was 16O-rich. This contrasts with an 16O-poor gas present during the formation of chondrules, suggesting that CAIs and AOAs formed in a spatially restricted region of the solar nebula containing 16O-rich gas. The 16O-rich gas composition may have resulted either from mass-independent isotopic chemistry or from evaporation of regions with enhanced dust/gas ratios, possibly in an X-wind environment near the young Sun.

  8. Introduction to vacuum technology: supplementary study material developed for IVS sponsored vacuum courses

    International Nuclear Information System (INIS)

    Bhusan, K.G.

    2008-01-01

    Vacuum technology has advanced to a large extent mainly from the demands of experimental research scientists who have more than ever understood the need for clean very low pressure environments. This need only seems to increase as the lowest pressures achievable in a laboratory setup are dropping down by the decade. What is not usually said is that conventional techniques of producing ultrahigh vacuum have also undergone a metamorphosis in order to cater to the multitude of restrictions in modern day scientific research. This book aims to give that practical approach to vacuum technology. The basics are given in the first chapter with more of a definition oriented approach - which is practically useful. The second chapter deals with the production of vacuum and ultrahigh vacuum with an emphasis on the working principles of several pumps and their working pressure ranges. Measurement of low pressures, both total and partial is presented in the third chapter with a note on leak detection and mass spectrometric techniques. Chapter 4 gives an overview of the materials that are vacuum compatible and their material properties. Chapter 5 gives the necessary methods to be followed for cleaning of vacuum components especially critical if ultrahigh vacuum environment is required. The practical use of a ultrahigh vacuum environment is demonstrated in Chapter 6 for production of high quality thin films through vapour deposition

  9. Deposition of Methylammonium Lead Triiodide by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation

    Science.gov (United States)

    Barraza, E. Tomas; Dunlap-Shohl, Wiley A.; Mitzi, David B.; Stiff-Roberts, Adrienne D.

    2018-02-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) was used to deposit the metal-halide perovskite (MHP) CH3NH3PbI3 (methylammonium lead triiodide, or MAPbI), creating phase-pure films. Given the moisture sensitivity of these crystalline, multi-component organic-inorganic hybrid materials, deposition of MAPbI by RIR-MAPLE required a departure from the use of water-based emulsions as deposition targets. Different chemistries were explored to create targets that properly dissolved MAPbI components, were stable under vacuum conditions, and enabled resonant laser energy absorption. Secondary phases and solvent contamination in the resulting films were studied through Fourier transform infrared (FTIR) absorbance and x-ray diffraction (XRD) measurements, suggesting that lingering excess methylammonium iodide (MAI) and low-vapor pressure solvents can distort the microstructure, creating crystalline and amorphous non-perovskite phases. Thermal annealing of films deposited by RIR-MAPLE allowed for excess solvent to be evaporated from films without degrading the MAPbI structure. Further, it was demonstrated that RIR-MAPLE does not require excess MAI to create stoichiometric films with optoelectronic properties, crystal structure, and film morphology comparable to films created using more established spin-coating methods for processing MHPs. This work marks the first time a MAPLE-related technique was used to deposit MHPs.

  10. Impact of vacuum frying on quality of potato crisps and frying oil.

    Science.gov (United States)

    Belkova, Beverly; Hradecky, Jaromir; Hurkova, Kamila; Forstova, Veronika; Vaclavik, Lukas; Hajslova, Jana

    2018-02-15

    This research was focused on a critical assessment of vacuum frying as a technology enabling minimization of acrylamide formation in potato crisps and reducing undesirable chemical changes that occur in frying oil at high temperatures. The potato slices were fried in rapeseed oil under vacuum at 125°C and atmospheric pressure at 165°C. The experiments were performed on two potato varieties, Saturna and Impala. Vacuum frying reduced the formation of acrylamide by 98% and also other Maillard reaction products, specifically alkylpyrazines. Concurrently a lower extent of oxidative changes was observed in the frying oil, while 3-MCPD esters decreased fairly quickly during conventional frying. Sensory characteristics of the vacuum and conventionally fried potato crisps were evaluated by a 23-member panel. The majority of panellists preferred the flavour of 'conventional crisps', while only a few of them appreciated potato-like fresh flavour of 'vacuum crisps' and classified this product as 'tasty'. Copyright © 2017. Published by Elsevier Ltd.

  11. Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Wu Jinbao; Chang, J.-J.; Li, M.-Y.; Leu, M.-S.; Li, A.-K.

    2007-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been deposited on Si(100) and stainless steel substrates by cathodic vacuum arc plasma deposition with pulse voltage. Adherent deposits on silicon can be obtained through applying gradient Ti/TiC/DLC layers. A pulse bias of - 100 V was applied to the substrate in order to obtain a denser structure of DLC coating approximately 1 μm thick. The microstructure and hardness value of DLC films were analyzed by using X-ray photoelectron spectroscopy and nano-indenter. The experimental results show that the duty cycle strongly influenced the hardness and sp 3 content of the DLC coatings. We observed that when the duty cycle was raised from 2.5% to 12.5%, the hardness increased from 26 GPa to 49 GPa, and the sp 3 fraction of the DLC films measured by XPS increased from 39% to 50.8 % as well. But at constant duty cycle, say 12.5%, the hardness is dropped from 49 to 14 GPa in proportion to the increase of residual gas pressure from 3 x 10 -3 Pa to 1 Pa. As the residual gas pressure increased, collisional phenomenon will decrease the energy of the ions. Ions with low energy make more graphitic carbon links and result in a low hardness value

  12. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    Science.gov (United States)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  13. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  14. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    Science.gov (United States)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  15. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  16. Study of electron-beam-evaporated MgO films using electron diffraction, optical absorption and cathodoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aboelfotoh, M.O.; Ramsey, J.N.

    1982-05-21

    Reflection high energy electron diffraction, optical absorption and cathodoluminescence were used to study MgO films deposited onto fused silica, single-crystal silicon and LiF substrates at various temperatures. Results showed that some of the same optical absorption and emission bands observed in X- or UV-irradiated, additively colored or mechanically deformed MgO crystals were observed in evaporated MgO films. The peak positions and the relative peak intensities of the optical absorption and emission bands depended on the substrate temperature during film deposition as well as on the structure of the film. The effect of heating the films in air and vacuum on the optical absorption and emission bands is also discussed.

  17. Pumping experiment of water on B and LaB6 films with electron beam evaporator

    International Nuclear Information System (INIS)

    Mori, Takahiro; Hanaoka, Yutaka; Akaishi, Kenya; Kubota, Yusuke; Motojima, Osamu; Mushiaki, Motoi; Funato, Yasuyuki.

    1992-10-01

    Pumping characteristics of water vapor on boron and lanthanum hexaboride films formed with an electron beam evaporator have been investigated in high vacuum of a pressure region between 10 -4 and 10 -3 Pa. Measured initial maximum pumping speeds of water for fresh B and LaB 6 films on substrates with a deposition amount from 2.3 x 10 21 to 6.7 x 10 21 molecules·m -2 are 3.2 ∼ 4.9 m 3 ·s -1 ·m -2 , and maximum saturation amounts of adsorbed water on these films are 2.9 x 10 20 ∼ 1.3 x 10 21 H 2 O molecules·m -2 . (author)

  18. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  19. Measurements of the evaporation rate upon evaporation of thin layer at different heating modes

    OpenAIRE

    Gatapova E.Ya.; Korbanova E.G.

    2017-01-01

    Technique for measurements of the evaporation rate of a heated liquid layer is presented. The local minimum is observed which is associated with the point of equilibrium of the liquid–gas interface. It is shown when no heat is applied to the heating element temperature in gas phase is larger than in liquid, and evaporation occurs with the rate of 0.014–0.018 μl/s. Then evaporation rate is decreasing with increasing the heater temperature until the equilibrium point is reached at the liquid–ga...

  20. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    Science.gov (United States)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  1. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo droplet

    NARCIS (Netherlands)

    Tan, H.; Diddens, C.; Lv, P.; Kuerten, J.G.M.; Zhang, X.; Lohse, D.

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even

  2. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NARCIS (Netherlands)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J.G.M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even

  3. Hypertext and three-dimensional computer graphics in an all digital PC-based CAI workstation.

    Science.gov (United States)

    Schwarz, D. L.; Wind, G. G.

    1991-01-01

    In the past several years there has been an enormous increase in the number of computer-assisted instructional (CAI) applications. Many medical educators and physicians have recognized the power and utility of hypertext. Some developers have incorporated simple diagrams, scanned monochrome graphics or still frame photographs from a laser disc or CD-ROM into their hypertext applications. These technologies have greatly increased the role of the microcomputer in education and training. There still remain numerous applications for these tools which are yet to be explored. One of these exciting areas involves the use of three-dimensional computer graphics. An all digital platform increases application portability. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1807767

  4. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces.

    Science.gov (United States)

    Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve

    2016-03-22

    We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and

  5. The effect of Meibomian lipids and tear proteins on evaporation rate under controlled in vitro conditions.

    Science.gov (United States)

    Herok, George Henryk; Mudgil, Poonam; Millar, Thomas James

    2009-07-01

    The lipid layer of the tear film is associated with preventing evaporative loss. The ability of human Meibomian lipids to reduce evaporation in vitro was tested. Films of human or animal Meibomian lipids or mixtures of cholesterol and phosphatidylcholine were spread on the surface of either artificial buffer or on whole tears and placed on a mass balance that was enclosed in a sealed chamber. The temperature was adjusted to 37 degrees C and gas flow was controlled. Increasing the amounts of Meibomian lipids gave a very small reduction in evaporation. It was concluded from these in vitro experiments that prevention of evaporation from the tear film is not due to the Meibomian lipids alone, but is more likely to be due to a complex interaction between components of the aqueous and the Meibomian lipids.

  6. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  7. Trends in evaporation of a large subtropical lake

    Science.gov (United States)

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2017-07-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  8. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  9. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  10. Influence of Gap Distance on Vacuum Arc Characteristics of Cup Type AMF Electrode in Vacuum Interrupters

    International Nuclear Information System (INIS)

    Cheng Shaoyong; Xiu Shixin; Wang Jimei; Shen Zhengchao

    2006-01-01

    The greenhouse effect of SF 6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters

  11. Treatment of liquid radioactive waste: Evaporation

    International Nuclear Information System (INIS)

    Pfeiffer, R.

    1982-01-01

    About 10.000 m 3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  12. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  13. Dietary Changes over Time in a Caiçara Community from the Brazilian Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Priscila L. MacCord

    2006-12-01

    Full Text Available Because they are occurring at an accelerated pace, changes in the livelihoods of local coastal communities, including nutritional aspects, have been a subject of interest in human ecology. The aim of this study is to explore the dietary changes, particularly in the consumption of animal protein, that have taken place in Puruba Beach, a rural community of caiçaras on the São Paulo Coast, Brazil, over the 10-yr period from 1992-1993 to 2002-2003. Data were collected during six months in 1992-1993 and during the same months in 2002-2003 using the 24-hr recall method. We found an increasing dependence on external products in the most recent period, along with a reduction in fish consumption and in the number of fish species eaten. These changes, possibly associated with other nonmeasured factors such as overfishing and unplanned tourism, may cause food delocalization and a reduction in the use of natural resources. Although the consequences for conservation efforts in the Atlantic Forest and the survival of the caiçaras must still be evaluated, these local inhabitants may be finding a way to reconcile both the old and the new dietary patterns by keeping their houses in the community while looking for sources of income other than natural resources. The prospect shown here may reveal facets that can influence the maintenance of this and other communities undergoing similar processes by, for example, shedding some light on the ecological and economical processes that may occur within their environment and in turn affect the conservation of the resources upon which the local inhabitants depend.

  14. Opto-mechanical design of vacuum laser resonator for the OSQAR experiment

    Science.gov (United States)

    Hošek, Jan; Macúchová, Karolina; Nemcová, Šárka; Kunc, Štěpán.; Šulc, Miroslav

    2015-01-01

    This paper gives short overview of laser-based experiment OSQAR at CERN which is focused on search of axions and axion-like particles. The OSQAR experiment uses two experimental methods for axion search - measurement of the ultra-fine vacuum magnetic birefringence and a method based on the "Light shining through the wall" experiment. Because both experimental methods have reached its attainable limits of sensitivity we have focused on designing a vacuum laser resonator. The resonator will increase the number of convertible photons and their endurance time within the magnetic field. This paper presents an opto-mechanical design of a two component transportable vacuum laser resonator. Developed optical resonator mechanical design allows to be used as a 0.8 meter long prototype laser resonator for laboratory testing and after transportation and replacement of the mirrors it can be mounted on the LHC magnet in CERN to form a 20 meter long vacuum laser resonator.

  15. The evaporation of crude oil and petroleum products

    International Nuclear Information System (INIS)

    Fingas, M. F.

    1996-01-01

    The physics of oil and petroleum evaporation was studied by means of an experimental apparatus. The evaporation was determined by weight loss and recorded on a computer. Examination of the data showed that most oil and petroleum products (those with seven to ten components) evaporate at a logarithmic rate with respect to time, while other petroleum products (those with fewer chemical components) evaporate at a rate which is square root with respect to time. Evaporation of oil and petroleum was not strictly boundary-layer regulated because the typical oil evaporation rate rates do not exceed that of molecular diffusion and thus turbulent diffusion does not increase the evaporation rates. Overall, boundary layer regulation can be ignored in the prediction of oil and petroleum evaporation. The simple equation relating only the logarithm of time (or the square root of time in the case of narrow-cut products) and temperature are sufficient to accurately describe oil evaporation. refs., figs

  16. R and D ERL: Vacuum

    International Nuclear Information System (INIS)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the ∼10 -9 torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2 o K is reduced to low 10 -11 torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The cryostat vacuum thermally

  17. Water evaporation: a transition path sampling study.

    Science.gov (United States)

    Varilly, Patrick; Chandler, David

    2013-02-07

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  18. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  19. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  20. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  1. Evaporative lithographic patterning of binary colloidal films.

    Science.gov (United States)

    Harris, Daniel J; Conrad, Jacinta C; Lewis, Jennifer A

    2009-12-28

    Evaporative lithography offers a promising new route for patterning a broad array of soft materials. In this approach, a mask is placed above a drying film to create regions of free and hindered evaporation, which drive fluid convection and entrained particles to regions of highest evaporative flux. We show that binary colloidal films exhibit remarkable pattern formation when subjected to a periodic evaporative landscape during drying.

  2. Evaporative cooling in polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shimotori, S; Sonai, A [Toshiba Corp. Tokyo (Japan)

    1996-06-05

    The concept of the evaporative cooling for the internally humidified PEFC was confirmed by the experiment. The evaporative cooling rates at the anode and the cathode were mastered under the various temperatures and air utilizations. At a high temperature the proportion of the evaporative cooling rate to the heat generation rate got higher, the possibility of the evaporative cooling was demonstrated. 2 refs., 7 figs., 1 tab.

  3. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  4. Towards a rational definition of potential evaporation

    Directory of Open Access Journals (Sweden)

    J.-P. Lhommel

    1997-01-01

    Full Text Available The concept of potential evaporation is defined on the basis of the following criteria: (i it must establish an upper limit to the evaporation process in a given environment (the term 'environment' including meteorological and surface conditions, and (ii this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (incoming radiation and air characteristics measured at a reference height and the appropriate surface characteristics (albedo, roughness length, soil heat flux. Since each surface has its own potential evaporation, a function of its own surface characteristics, it is useful to define a reference potential evaporation as a short green grass completely shading the ground. Although the potential evaporation from a given surface is readily calculated from the Penman equation, its physical significance or interpretation is not so straightforward, because it represents only an idealized situation, not a real one. Potential evaporation is the evaporation from this surface, when saturated and extensive enough to obviate any effect of local advection, under the same meteorological conditions. Due to the feedback effects of evaporation on air characteristics, it does not represent the 'real' evaporation (i.e. the evaporation which could be physically observed in the real world from such an extensive saturated surface in these given meteorological conditions (if this saturated surface were substituted for an unsaturated one previously existing. From a rigorous standpoint, this calculated potential evaporation is not physically observable. Nevertheless, an approximate representation can be given by the evaporation from a limited saturated area, the dimension of which depends on the height of measurement of the air characteristics used as input in the Penman equation. If they are taken at a height

  5. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  6. Is evaporative colling important for shallow clouds?

    Science.gov (United States)

    Gentine, P.; Park, S. B.; Davini, P.; D'Andrea, F.

    2017-12-01

    We here investigate and test using large-eddy simulations the hypothesis that evaporative cooling might not be crucial for shallow clouds. Results from various Shallow convection and stratocumulus LES experiments show that the influence of evaporative cooling is secondary compared to turbulent mixing, which dominates the buoyancy reversal. In shallow cumulus subising shells are not due to evaporative cooling but rather reflect a vortical structure, with a postive buoyancy anomaly in the core due to condensation. Disabling evaporative cooling has negligible impact on this vortical structure and on buoyancy reversal. Similarly in non-precipitating stratocumuli evaporative cooling is negeligible copmared to other factors, especially turbulent mixing and pressure effects. These results emphasize that it may not be critical to icnlude evaporative cooling in parameterizations of shallow clouds and that it does not alter entrainment.

  7. Can Planck-mass relics of evaporating black holes close the Universe

    International Nuclear Information System (INIS)

    MacGibbon, J.H.

    1987-01-01

    The authors propose that the cosmological dark matter consists of the Planck-mass remnants of evaporating primordial black holes. Such remnants would be expected to have close to the critical density if the black holes evaporating at the present epoch have the maximum density consistent with cosmic-ray constraints. Primordial black holes of the required density may form naturally at the end of an inflationary epoch. Planck-mass relics would behave dynamically just like 'cold dark matter' and would therefore share the attractions of other 'cold' candidates. In addition, because the baryonic matter in black holes cannot participate in nucleosynthesis the limits on the baryonic content of the Universe set by primordial nucleosynthesis are circumvented. (author)

  8. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  9. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  10. Evaporation from a sphagnum moss surface

    Science.gov (United States)

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  11. Material-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  12. Radiation-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  13. Low-temperature epitaxy of silicon by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, B. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany); Dogan, P. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)], E-mail: pinar.dogan@hmi.de; Sieber, I.; Fenske, F.; Gall, S. [Hahn-Meitner-Institut Berlin, Kekulestr. 5, 12489 Berlin (Germany)

    2007-07-16

    In this paper we report on homoepitaxial growth of thin Si films at substrate temperatures T{sub s} = 500-650 deg. C under non-ultra-high vacuum conditions by using electron beam evaporation. Si films were grown at high deposition rates on monocrystalline Si wafers with (100), (110) and (111) orientations. The ultra-violet visible reflectance spectra of the films show a dependence on T{sub s} and on the substrate orientation. To determine the structural quality of the films in more detail Secco etch experiments were carried out. No etch pits were found on the films grown on (100) oriented wafers. However, on films grown on (110) and (111) oriented wafers different types of etch pits could be detected. Films were also grown on polycrystalline silicon (poly-Si) seed layers prepared by an Aluminum-Induced Crystallisation (AIC) process on glass substrates. Electron Backscattering Diffraction (EBSD) shows that the film growth proceeds epitaxially on the grains of the seed layer. But a considerably higher density of extended defects is revealed by Secco etch experiments.

  14. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider (LHC) at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring (LEAR). These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow-discharges, non-evaporable getter coating) are reported in terms of the molecular desorption yields for H2, CH4, CO, Ar and CO2. Unexpected large values of molecular yields per incident ion up to 2 104 molecules/ion have been observed. The red...

  15. Improving the performance of organic thin film transistors formed on a vacuum flash-evaporated acrylate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Z., E-mail: ziqian.ding@materials.ox.ac.uk; Abbas, G. A.; Assender, H. E. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Morrison, J. J.; Sanchez-Romaguera, V.; Yeates, S. G. [School of Chemistry, University of Manchester, Manchester M13 9PL (United Kingdom); Taylor, D. M. [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2013-12-02

    A systematic investigation has been undertaken, in which thin polymer buffer layers with different ester content have been spin-coated onto a flash-evaporated, cross-linked diacrylate gate-insulator to form bottom-gate, top-contact organic thin-film transistors. The highest device mobilities, ∼0.65 cm{sup 2}/V s and ∼1.00 cm{sup 2}/V s for pentacene and dinaphtho[2,3-b:2′,3′-f]-thieno[3,2-b]thiophene (DNTT), respectively, were only observed for a combination of large-grain (∼1–2 μm) semiconductor morphology coupled with a non-polar dielectric surface. No correlation was found between semiconductor grain size and dielectric surface chemistry. The threshold voltage of pentacene devices shifted from −10 V to −25 V with decreasing surface ester content, but remained close to 0 V for DNTT.

  16. Application of programmable controllers to vacuum system interlocks

    International Nuclear Information System (INIS)

    Lee, G.; Moore, D.

    1979-11-01

    This paper describes the Doublet III Vacuum Control System in which all input signals and output loads are connected to a programmable controller (PC) for logical interfacing. Input signals derived from CAMAC, control panels, limit switches, etc., are implemented as output signals to CAMAC, vacuum valves, pump motors, etc., according to a logic program stored in the PC memory. The memory can be easily programmed by anyone familar with either Boolean algebra or relay-ladder network diagrams. The program data is entered with the aid of a calculator like, keyboard instrument with LED readout displays. The PC system contains a 1024 word RAM memory with a battery backup system to provide 72 hours protection of contents in case of power failure

  17. Literature Review On Impact Of Glycolate On The 2H Evaporator And The Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Adu-Wusu, K.

    2012-01-01

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations (le) 33 mg/L or 0.44 mM. The ETF unit operations that will have

  18. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  19. Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)

    Science.gov (United States)

    Alhamid, M. Idrus; Yulianto, M.; Nasruddin

    2012-06-01

    A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.

  20. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.; Elwardani, Ahmed Elsaid; Gusev, Ivan G.; Xie, Jianfei; Shishkova, Irina N.; Cao, Bingyang; Snegirev, Alexander Yu.; Heikal, Morgan Raymond

    2013-01-01

    and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono