WorldWideScience

Sample records for caffeine

  1. Caffeine

    Science.gov (United States)

    ... the jitters. Caffeine can also interfere with normal sleep. Caffeine sensitivity (the amount of caffeine that will produce an effect in someone) varies from person to person. On average, the smaller the person, the less caffeine needed ...

  2. Caffeine

    Science.gov (United States)

    ... mood. Caffeine is in tea, coffee, chocolate, many soft drinks, and pain relievers and other over-the-counter ... Teens usually get most of their caffeine from soft drinks and energy drinks. (In addition to caffeine, these ...

  3. Caffein

    DEFF Research Database (Denmark)

    Nørager, Charlotte Buchard; Jensen, Martin Bach; Madsen, Mogens Rørbæk

    2005-01-01

    /kg) can increase the endurance of athletes engaged in running, bicycling, swimming and other endurance sports. Caffeine is used both in training and in competitions, and the International Olympic Commitée (IOC) has included caffeine as a drug used for doping. There are several theories about caffeine...

  4. Caffeine

    Science.gov (United States)

    ... a bitter substance found in coffee, tea, soft drinks, chocolate, kola nuts, and certain medicines. It has many effects on the body's metabolism, including stimulating the central nervous system. This can make you more alert and give you a boost of energy. For most people, the amount of caffeine in ...

  5. Caffeine Confusion

    Science.gov (United States)

    ... that caffeine makes you feel hyper. Caffeine can boost a person's energy temporarily, but a lot of caffeine can also cause other, not-so-great effects: If you drink too much caffeine at one time, it can make you feel nervous or jumpy. Your hands may shake. Too much ...

  6. Caffeine and Your Child

    Science.gov (United States)

    ... caffeine are everywhere, but it's wise to keep caffeine consumption to a minimum, especially in younger kids. The ... Here are some other reasons to limit kids' caffeine consumption: Kids often drink caffeine contained in regular soft ...

  7. Caffeine and Heart Disease

    Science.gov (United States)

    ... Healthy Workplace Food and Beverage Toolkit Caffeine and Heart Disease Updated:Aug 17,2015 Caffeine has many metabolic ... high caffeine intake increases the risk of coronary heart disease is still under study. Many studies have been ...

  8. Aspirin, Butalbital, and Caffeine

    Science.gov (United States)

    The combination of aspirin, butalbital, and caffeine comes as a capsule and tablet to take by mouth. It usually is taken every 4 ... explain any part you do not understand. Take aspirin, butalbital, and caffeine exactly as directed. Do not ...

  9. Caffeine, fatigue, and cognition

    NARCIS (Netherlands)

    Lorist, MM; Tops, M

    2003-01-01

    Effects of caffeine and fatigue are discussed with special attention to adenosine-dopamine interactions. Effects of caffeine on human cognition are diverse. Behavioural measurements indicate a general improvement in the efficiency of information processing after caffeine, while the EEG data support

  10. Caffeine Use and Extroversion.

    Science.gov (United States)

    Landrum, R. Eric; Meliska, Charles J.

    Some research on the stimulant effect of caffeine suggests that the amount of behavioral enhancement produced by caffeine may depend on subjects' prior experience with the task and the drug. A study was undertaken to test whether prior experience with a task while under the influence of caffeine would facilitate performance of that task. Male…

  11. Caffeine: Friend or Foe?

    Science.gov (United States)

    Doepker, Candace; Lieberman, Harris R; Smith, Andrew Paul; Peck, Jennifer D; El-Sohemy, Ahmed; Welsh, Brian T

    2016-01-01

    The debate on the safety of and regulatory approaches for caffeine continues among various stakeholders and regulatory authorities. This decision-making process comes with significant challenges, particularly when considering the complexities of the available scientific data, making the formulation of clear science-based regulatory guidance more difficult. To allow for discussions of a number of key issues, the North American Branch of the International Life Sciences Institute (ILSI) convened a panel of subject matter experts for a caffeine-focused session entitled "Caffeine: Friend or Foe?," which was held during the 2015 ILSI Annual Meeting. The panelists' expertise covered topics ranging from the natural occurrence of caffeine in plants and interindividual metabolism of caffeine in humans to specific behavioral, reproductive, and cardiovascular effects related to caffeine consumption. Each presentation highlighted the potential risks, benefits, and challenges that inform whether caffeine exposure warrants concern. This paper aims to summarize the key topics discussed during the session.

  12. Caffeine Consumption by College Undergraduates.

    Science.gov (United States)

    Loke, Wing Hong

    1988-01-01

    Surveyed 542 undergraduates concerning their caffeine consumption. Found that subjects consumed less caffeine than average caffeine-drinking population. Coffee was main beverage used. Subjects reported drinking more caffeine when preparing for examinations. Suggests that caffeine may have some beneficial effects on learning. (Author/NB)

  13. [Caffeine and children].

    Science.gov (United States)

    D'ius, P B

    1997-01-01

    Beverages containing caffeine are consumed by most people in most countries most days. Consumption is mostly in beverages such as coffee, tea and some soft drinks, and smaller amounts from other foods such as chocolate. Children also consume caffeine, though in smaller amounts even relative to their smaller size. Many questions have been asked about possible health effects of caffeine and have been answered by scientific research. Studies on pregnant women consuming caffeine show no effects on the fetus, infants, or on development followed up to school age. There have been many studies on children of school age. For example, it has been shown that a single dose of 3 mg/kg is without appreciable effect on a variety of behavioral and physiological functions, and even 10 mg/kg, had only minimal effects, within the normal range of differences between the children without caffeine. While newborn infants metabolize caffeine slowly, children from less than 1 year to adolescence metabolize caffeine about twice as fast as non-smoking adults. The numerous studies showing safety of caffeine in adults, combined with the direct studies in children showing they are similar and not more susceptible to caffeine than adults, gives assurance that lifelong consumption of caffeine in foods and beverages, starting in childhood, is without deleterious effects on health.

  14. Caffeine Consumption, Expectancies of Caffeine-Enhanced Performance, and Caffeinism Symptoms among University Students.

    Science.gov (United States)

    Bradley, John R.; Petree, Allen

    1990-01-01

    Gathered self-report data on college students' (n=797) expectations of caffeine-enhanced performance, level of beverage caffeine consumed daily, and caffeinism signs experienced after consumption of caffeinated beverages. Results supported extending the expectancies model of substance use motivation from alcohol to caffeine. (Author/ABL)

  15. Heritability of caffeine metabolism

    DEFF Research Database (Denmark)

    Matthaei, Johannes; Tzvetkov, Mladen V; Strube, Jakob;

    2016-01-01

    Heritability of caffeine pharmacokinetics and CYP1A2 activity is controversial. Here we analyzed the pharmacokinetics of caffeine, an in vivo probe drug for CYP1A2 and arylamine N-acetyltransferase 2 (NAT2) activity, in monozygotic and dizygotic twins. In the entire group, common and unique envir...

  16. Caffeine in the diet

    Science.gov (United States)

    ... health as long as you have other good health habits. Four 8 oz. cups (1 liter) of brewed or drip coffee (about 400 mg of caffeine) or 5 servings of caffeinated soft drinks or tea (about 165 to 235 mg of ...

  17. Spectrophotometric Analysis of Caffeine

    Directory of Open Access Journals (Sweden)

    Showkat Ahmad Bhawani

    2015-01-01

    Full Text Available The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine.

  18. Caffeine intake and fecundability

    DEFF Research Database (Denmark)

    Jensen, Tina Kold; Henriksen, T B; Hjollund, N H

    1998-01-01

    the effect of caffeine from different sources (coffee, tea, cola, and chocolate). Clearly, the relationship between caffeine and fecundability needs further research, given the high prevalence of caffeine intake among women of childbearing age. We examined the independent and combined effects of smoking....... At enrollment and in six cycles of follow-up, both partners filled out a questionnaire on different factors including smoking habits and their intake of coffee, tea, chocolate, cola beverages, and chocolate bars. In all, 1596 cycles and 423 couples were included in the analyses. The cycle-specific association...

  19. Caffeine as a Gelator

    Directory of Open Access Journals (Sweden)

    Nonappa

    2016-03-01

    Full Text Available Caffeine (a stimulant and ethanol (a depressant may have opposite effects in our body, but under in vitro conditions they can “gel” together. Caffeine, being one of the widely used stimulants, continued to surprise the scientific community with its unprecedented biological, medicinal and physicochemical properties. Here, we disclose the supramolecular self-assembly of anhydrous caffeine in a series of alcoholic and aromatic solvents, rendering a highly entangled microcrystalline network facilitating the encapsulation of the solvents as illustrated using direct imaging, microscopy analysis and NMR studies.

  20. Caffeine, extraversion and working memory.

    Science.gov (United States)

    Smith, Andrew P

    2013-01-01

    Research has shown that extraverts performing a working memory task benefit more from caffeine than do introverts. The present study aimed to replicate this and extend our knowledge by using a lower dose of caffeine (65 mg) and a range of tasks related to different components of working memory. In addition, tasks assessing psychomotor speed and the encoding of new information were included to determine whether caffeine-extraversion interactions were restricted to working memory tasks. A double-blind design was used, with 128 participants being randomly assigned to caffeinated or de-caffeinated coffee conditions. The results showed that caffeine interacted with extraversion in the predicted direction for serial recall and running memory tasks. Caffeine improved simple reaction time and the speed of encoding of new information, effects which were not modified by extraversion. These results suggest possible biological mechanisms underlying effects of caffeine on cognitive performance.

  1. Caffeine content of decaffeinated coffee.

    Science.gov (United States)

    McCusker, Rachel R; Fuehrlein, Brian; Goldberger, Bruce A; Gold, Mark S; Cone, Edward J

    2006-10-01

    Caffeine is the most widely consumed drug in the world with coffee representing a major source of intake. Despite widespread availability, various medical conditions necessitate caffeine-restricted diets. Patients on certain prescription medications are advised to discontinue caffeine intake. Such admonition has implications for certain psychiatric patients because of pharmacokinetic interactions between caffeine and certain anti-anxiety drugs. In an effort to abstain from caffeine, patients may substitute decaffeinated for caffeinated coffee. However, decaffeinated beverages are known to contain caffeine in varying amounts. The present study determined the caffeine content in a variety of decaffeinated coffee drinks. In phase 1 of the study, 10 decaffeinated samples were collected from different coffee establishments. In phase 2 of the study, Starbucks espresso decaffeinated (N=6) and Starbucks brewed decaffeinated coffee (N=6) samples were collected from the same outlet to evaluate variability of caffeine content of the same drink. The 10 decaffeinated coffee samples from different outlets contained caffeine in the range of 0-13.9 mg/16-oz serving. The caffeine content for the Starbucks espresso and the Starbucks brewed samples collected from the same outlet were 3.0-15.8 mg/shot and 12.0-13.4 mg/16-oz serving, respectively. Patients vulnerable to caffeine effects should be advised that caffeine may be present in coffees purported to be decaffeinated. Further research is warranted on the potential deleterious effects of consumption of "decaffeinated" coffee that contains caffeine on caffeine-restricted patients. Additionally, further exploration is merited for the possible physical dependence potential of low doses of caffeine such as those concentrations found in decaffeinated coffee.

  2. Is caffeine a cognitive enhancer?

    Science.gov (United States)

    Nehlig, Astrid

    2010-01-01

    The effects of caffeine on cognition were reviewed based on the large body of literature available on the topic. Caffeine does not usually affect performance in learning and memory tasks, although caffeine may occasionally have facilitatory or inhibitory effects on memory and learning. Caffeine facilitates learning in tasks in which information is presented passively; in tasks in which material is learned intentionally, caffeine has no effect. Caffeine facilitates performance in tasks involving working memory to a limited extent, but hinders performance in tasks that heavily depend on working memory, and caffeine appears to rather improve memory performance under suboptimal alertness conditions. Most studies, however, found improvements in reaction time. The ingestion of caffeine does not seem to affect long-term memory. At low doses, caffeine improves hedonic tone and reduces anxiety, while at high doses, there is an increase in tense arousal, including anxiety, nervousness, jitteriness. The larger improvement of performance in fatigued subjects confirms that caffeine is a mild stimulant. Caffeine has also been reported to prevent cognitive decline in healthy subjects but the results of the studies are heterogeneous, some finding no age-related effect while others reported effects only in one sex and mainly in the oldest population. In conclusion, it appears that caffeine cannot be considered a ;pure' cognitive enhancer. Its indirect action on arousal, mood and concentration contributes in large part to its cognitive enhancing properties.

  3. Caffeine and cognitive performance: persistent methodological challenges in caffeine research.

    Science.gov (United States)

    James, Jack E

    2014-09-01

    Human cognitive performance is widely perceived to be enhanced by caffeine at usual dietary doses. However, the evidence for and against this belief continues to be vigorously contested. Controversy has centred on caffeine withdrawal and withdrawal reversal as potential sources of experimental confounding. In response, some researchers have enlisted "caffeine-naïve" experimental participants (persons alleged to consume little or no caffeine) assuming that they are not subject to withdrawal. This mini-review examines relevant research to illustrate general methodological challenges that have been the cause of enduring confusion in caffeine research. At issue are the processes of caffeine withdrawal and withdrawal reversal, the definition of caffeine-naïve, the population representativeness of participants deemed to be caffeine-naïve, and confounding due to caffeine tolerance. Attention to these processes is necessary if premature conclusions are to be avoided, and if caffeine's complex effects and the mechanisms responsible for those effects are to be illuminated. Strategies are described for future caffeine research aimed at minimising confounding from withdrawal and withdrawal reversal.

  4. Caffeine Reinforces Flavor Preference and Behavior in Moderate Users but Not in Low Caffeine Users

    Science.gov (United States)

    Dack, Charlotte; Reed, Phil

    2009-01-01

    The study examined the role of caffeine consumption in caffeine reinforcement. Previous findings have shown that caffeine reinforced flavor preference in moderate caffeine consumers who are caffeine deprived. However, most of these studies have employed rating procedures only, and have not shown the effectiveness of caffeine to reinforce behaviors…

  5. Mood, music, and caffeine

    NARCIS (Netherlands)

    Jolij, Jacob; Lorist, Monicque

    2014-01-01

    What we see is affected by how we feel: in positive moods, we are more sensitive to positive stimuli, such as happy faces, but in negative moods we are more sensitive to negative stimuli, such as sad faces. Caffeine is known to affect mood - a cup of coffee results in a more positive mood, but also

  6. Caffeine: Can It Help Me Lose Weight?

    Science.gov (United States)

    ... gain, but there's no sound evidence that increased caffeine consumption results in significant or permanent weight loss. Caffeine ... Nutrition. 2006;84:682. Heckman M, et al. Caffeine (1, 3, ... consumption, functionality, safety, and regulatory matters. Journal of Food ...

  7. Pressor effects of caffeine and cigarette smoking.

    Science.gov (United States)

    James, J E; Richardson, M

    1991-09-01

    Pressor effects of caffeine and cigarette smoking were examined in 15 normotensive young men and women. A cross-over design was used in which all subjects participated in four separate conditions: placebo alone, caffeine alone, placebo plus smoking, and caffeine plus smoking. Caffeine and smoking produced independent increases in systolic and diastolic blood pressure, and these effects were additive in the caffeine-plus-smoking condition. Heart rate was significantly increased by smoking but was essentially unaffected by caffeine.

  8. Caffeine addiction? Caffeine for youth? Time to act!

    Science.gov (United States)

    Budney, Alan J; Emond, Jennifer A

    2014-11-01

    While data accumulate and discussion evolves on the clinical importance of caffeine addiction and its classification, the growing practices of (i) adding increasing amounts of caffeine to drinks and other consumables, (ii) promoting these as performance enhancers and (iii) targeting youth as the consumer raise concerns that require immediate action.

  9. The Janus face of caffeine.

    Science.gov (United States)

    Porciúncula, Lisiane O; Sallaberry, Cássia; Mioranzza, Sabrina; Botton, Paulo Henrique S; Rosemberg, Denis B

    2013-11-01

    Caffeine is certainly the psychostimulant substance most consumed worldwide. Over the past years, chronic consumption of caffeine has been associated with prevention of cognitive decline associated to aging and mnemonic deficits of brain disorders. While its preventive effects have been reported extensively, the cognitive enhancer properties of caffeine are relatively under debate. Surprisingly, there are scarce detailed ontogenetic studies focusing on neurochemical parameters related to the effects of caffeine during prenatal and earlier postnatal periods. Furthermore, despite the large number of epidemiological studies, it remains unclear how safe is caffeine consumption during pregnancy and brain development. Thus, the purpose of this article is to review what is currently known about the actions of caffeine intake on neurobehavioral and adenosinergic system during brain development. We also reviewed other neurochemical systems affected by caffeine, but not only during brain development. Besides, some recent epidemiological studies were also outlined with the control of "pregnancy signal" as confounding variable. The idea is to tease out how studies on the impact of caffeine consumption during brain development deserve more attention and further investigation.

  10. Caffeine: sleep and daytime sleepiness.

    Science.gov (United States)

    Roehrs, Timothy; Roth, Thomas

    2008-04-01

    Caffeine is one of the most widely consumed psychoactive substances and it has profound effects on sleep and wake function. Laboratory studies have documented its sleep-disruptive effects. It clearly enhances alertness and performance in studies with explicit sleep deprivation, restriction, or circadian sleep schedule reversals. But, under conditions of habitual sleep the evidence indicates that caffeine, rather then enhancing performance, is merely restoring performance degraded by sleepiness. The sleepiness and degraded function may be due to basal sleep insufficiency, circadian sleep schedule reversals, rebound sleepiness, and/or a withdrawal syndrome after the acute, over-night, caffeine discontinuation typical of most studies. Studies have shown that caffeine dependence develops at relatively low daily doses and after short periods of regular daily use. Large sample and population-based studies indicate that regular daily dietary caffeine intake is associated with disturbed sleep and associated daytime sleepiness. Further, children and adolescents, while reporting lower daily, weight-corrected caffeine intake, similarly experience sleep disturbance and daytime sleepiness associated with their caffeine use. The risks to sleep and alertness of regular caffeine use are greatly underestimated by both the general population and physicians.

  11. Caffeine, Diabetes, Cognition, and Dementia

    NARCIS (Netherlands)

    Biessels, Geert Jan

    2010-01-01

    People with diabetes mellitus are at increased risk of cognitive dysfunction. This review explores the relation between caffeine intake, diabetes, cognition and dementia, focusing on type 2 diabetes (T2DM). Epidemiological studies on caffeine/coffee intake and T2DM risk are reviewed. Next, the impac

  12. The Effects of Caffeine on Athletic Performance

    Science.gov (United States)

    McDaniel, Larry W.; McIntire, Kyle; Streitz, Carmyn; Jackson, Allen; Gaudet, Laura

    2010-01-01

    Athletes who use caffeine before exercising or competition may be upgrading themselves more than they realize. Caffeine is classified as a stimulant and is the most commonly used drug in the world. Caffeine has the same affects that amphetamines and cocaine have, just to a lesser degree. Caffeine crosses the membranes of all the body's tissues. It…

  13. Caffeine: How Much Is Too Much?

    Science.gov (United States)

    ... prevent colds or other infections, may increase the concentration of caffeine in your blood and may increase caffeine's unpleasant ... resolve after a few days. To change your caffeine habit, try these tips: Keep tabs. Start paying attention to how much caffeine you're getting from ...

  14. Caffeine's Vascular Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Darío Echeverri

    2010-01-01

    Full Text Available Caffeine is the most widely consumed stimulating substance in the world. It is found in coffee, tea, soft drinks, chocolate, and many medications. Caffeine is a xanthine with various effects and mechanisms of action in vascular tissue. In endothelial cells, it increases intracellular calcium stimulating the production of nitric oxide through the expression of the endothelial nitric oxide synthase enzyme. Nitric oxide is diffused to the vascular smooth muscle cell to produce vasodilation. In vascular smooth muscle cells its effect is predominantly a competitive inhibition of phosphodiesterase, producing an accumulation of cAMP and vasodilation. In addition, it blocks the adenosine receptors present in the vascular tissue to produce vasoconstriction. In this paper the main mechanisms of action of caffeine on the vascular tissue are described, in which it is shown that caffeine has some cardiovascular properties and effects which could be considered beneficial.

  15. Caffeine, exercise and the brain.

    Science.gov (United States)

    Meeusen, Romain; Roelands, Bart; Spriet, Lawrence L

    2013-01-01

    Caffeine can improve exercise performance when it is ingested at moderate doses (3-6 mg/kg body mass). Caffeine also has an effect on the central nervous system (CNS), and it is now recognized that most of the performance-enhancing effect of caffeine is accomplished through the antagonism of the adenosine receptors, influencing the dopaminergic and other neurotransmitter systems. Adenosine and dopamine interact in the brain, and this might be one mechanism to explain how the important components of motivation (i.e. vigor, persistence and work output) and higher-order brain processes are involved in motor control. Caffeine maintains a higher dopamine concentration especially in those brain areas linked with 'attention'. Through this neurochemical interaction, caffeine improves sustained attention, vigilance, and reduces symptoms of fatigue. Other aspects that are localized in the CNS are a reduction in skeletal muscle pain and force sensation, leading to a reduction in perception of effort during exercise and therefore influencing the motivational factors to sustain effort during exercise. Because not all CNS aspects have been examined in detail, one should consider that a placebo effect may also be present. Overall, it appears that the performance-enhancing effects of caffeine reside in the brain, although more research is necessary to reveal the exact mechanisms through which the CNS effect is established.

  16. Effects of caffeine on sleep and cognition.

    Science.gov (United States)

    Snel, Jan; Lorist, Monicque M

    2011-01-01

    Caffeine can be used effectively to manipulate our mental state. It is beneficial in restoring low levels of wakefulness and in counteracting degraded cognitive task performance due to sleep deprivation. However, caffeine may produce detrimental effects on subsequent sleep, resulting in daytime sleepiness. This justifies a careful consideration of risks related to sleep deprivation in combination with caffeine consumption, especially in adolescents. The efficacy of caffeine to restore detrimental effects of sleep deprivation seems to be partly due to caffeine expectancy and to placebo effects. The claim that stimulant effects of caffeine are related to withdrawal or withdrawal reversal seems to be untenable.

  17. Compound list: caffeine [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available caffeine CAF 00097 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/caffeine....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/caffeine....Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/caffeine...-tggates/LATEST/Rat/in_vivo/Liver/Repeat/caffeine.Rat.in_vivo.Liver.Repeat.zip ftp://ftp.biosciencedbc.jp/ar...chive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/caffeine.Rat.in_vivo.Kidney.Single.zip ftp://ftp.bioscie

  18. Caffeine as a model drug of dependence: recent developments in understanding caffeine withdrawal, the caffeine dependence syndrome, and caffeine negative reinforcement.

    Science.gov (United States)

    Griffiths, R R; Chausmer, A L

    2000-11-01

    Caffeine is an excellent model compound for understanding drugs of abuse/dependence. The results of self-administration and choice studies in humans clearly demonstrate the reinforcing effects of low and moderate doses of caffeine. Caffeine reinforcement has been demonstrated in about 45% of normal subjects with histories of moderate and heavy caffeine use. Recent studies provide compelling evidence that caffeine physical dependence potentiates the reinforcing effects of caffeine through the mechanism of withdrawal symptom avoidance. Tolerance to the subjective and sleep-disrupting effects of caffeine in humans has been demonstrated. Physical dependence as reflected in a withdrawal syndrome in humans has been repeatedly demonstrated in adults and recently demonstrated in children. Withdrawal severity is an increasing function of caffeine maintenance dose, with withdrawal occurring at doses as low as 100 mg per day. Increased cerebral blood flow may be the physiological mechanism for caffeine withdrawal headache. Case studies in adults and adolescents clearly demonstrate that some individuals meet DSM-IV diagnostic criteria for a substance dependence syndrome on caffeine, including feeling compelled to continue caffeine use despite desires and recommendations to the contrary. Survey data suggest that 9% to 30% percent of caffeine consumers may be caffeine dependent according to DSM-IV criteria.

  19. Cardiovascular Effects of Caffeine: Misconceptions about caffeine use and caronary heart disease

    OpenAIRE

    Myers, Martin G.

    1992-01-01

    A review of the literature on the cardiovascular effects of caffeine indicates that moderate caffeine consumption does not cause cardiac arrhythmias, hypertension, or an increased incidence of coronary heart disease. Caffeine use is often associated with atherogenic behavior, such as cigarette smoking. Failure to take into account covariables for cardiovascular disease could be responsible for commonly held misconceptions about caffeine and heart disease.

  20. Caffeine intake among adolescents in Delhi

    Directory of Open Access Journals (Sweden)

    Mridul Gera

    2016-01-01

    Full Text Available Background: Availability and advertising of caffeinated drinks is on the rise in Indian market. Excess caffeine intake may have deleterious effects on health. Objective: To estimate the daily consumption of caffeine among urban school-going adolescents from Delhi. Materials and Methods: A school-based survey was conducted to determine the amount and pattern of caffeine consumption among students of classes 9-12, using a self-administered questionnaire. Results: Of 300 participants (median age 15 year, 174 boys, 291 (97% were consuming caffeine [mean (SD: 121.0 (98.2 mg/day]. Nineteen (6% students were consuming more than 300 mg of caffeine per day. Tea/coffee contributed to more than 50% of the caffeine intake. The rest was derived from cola beverages, chocolates, and energy drinks. Conclusion: Average caffeine consumption among school-going adolescents from Delhi is high. The findings of this preliminary survey need to be confirmed in larger data sets.

  1. Caffeine gum minimizes sleep inertia.

    Science.gov (United States)

    Newman, Rachel A; Kamimori, Gary H; Wesensten, Nancy J; Picchioni, Dante; Balkin, Thomas J

    2013-02-01

    Naps are an effective strategy for maintaining alertness and cognitive performance; however, upon abrupt wakening from naps, sleep inertia (temporary performance degradation) may ensue. In the present study, attenuation of post-nap sleep inertia was attempted by administration of caffeine gum. Using a double-blind, placebo-controlled crossover design, 15 healthy, non-smoking adults were awakened at 1 hr. and again at 6 hr. after lights out (0100 and 0600, respectively) and were immediately administered a gum pellet containing 100 mg of caffeine or placebo. A 5-min. psychomotor vigilance task was administered at 0 min., 6 min., 12 min., and 18 min. post-awakening. At 0100, response speed with caffeine was significantly better at 12 min. and 18 min. post-awakening compared to placebo; at 0600, caffeine's effects were evident at 18 min. post-awakening. Caffeinated gum is a viable means of rapidly attenuating sleep inertia, suggesting that the adenosine receptor system is involved in sleep maintenance.

  2. Caffeine, sleep and quality of life

    NARCIS (Netherlands)

    Lorist, M.M.; Snel, J.; Verster, J.C.; Pandi-Perumal, S.R.; Streiner, D.L.

    2008-01-01

    Caffeine is regarded as a mild stimulant acting on the central nervous system that is responsible for a significant portion of the behavioural and physiological effects of coffee and tea. Motives why people take caffeine are reflected in consumption patterns. Early in the morning caffeine might help

  3. 21 CFR 182.1180 - Caffeine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Caffeine. 182.1180 Section 182.1180 Food and Drugs... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1180 Caffeine. (a) Product. Caffeine. (b) Tolerance. 0.02 percent. (c) Limitations, restrictions,...

  4. Make Caffeine Visible: a Fluorescent Caffeine “Traffic Light” Detector

    Science.gov (United States)

    Xu, Wang; Kim, Tae-Hyeong; Zhai, Duanting; Er, Jun Cheng; Zhang, Liyun; Kale, Anup Atul; Agrawalla, Bikram Keshari; Cho, Yoon-Kyoung; Chang, Young-Tae

    2013-07-01

    Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines. However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy indicate that π-stacking and hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and automated.

  5. Does caffeine affect cardiovascular responses?

    NARCIS (Netherlands)

    S. Bradamante; L. Barenghi (Livia); S. Versari (Silvia); A. Villa (Alessandro); J.W. de Jong (Jan Willem)

    2007-01-01

    textabstractCaffeine (1,3,7-trimethylxanthine), a natural alkaloid present in many beverages such as coffee, tea and cola drinks, is the most widely consumed pharmacological compound. Due to its common use and frequent intake in stressful conditions, a great deal of data have been produced by epidem

  6. Caffeine Modulates Attention Network Function

    Science.gov (United States)

    Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Taylor, Holly A.

    2010-01-01

    The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a flanker task designed to test Posner's three visual attention network functions: alerting, orienting, and executive control [Posner, M. I. (2004). "Cognitive neuroscience of attention". New York, NY: Guilford Press]. In a placebo-controlled, double-blind…

  7. Caffeine, cognition, and socioeconomic status.

    Science.gov (United States)

    Kyle, Janet; Fox, Helen C; Whalley, Lawrence J

    2010-01-01

    There is interest in age-related cognitive decline and environmental risk factors for Alzheimer's disease (AD). This interest is focused on individual differences in exposure to agents that may harm or protect cognitive function. Caffeine is used as a short acting mental stimulant and may possess longer-term properties that protect against age-related decline and, possibly, AD. The current study aimed to: 1) examine current cognitive function in a narrow age range sample (n=351) without dementia (MMSE>25) who are, by reason of age, entering the period of increased risk of AD; and 2) link cognitive function to self-reported intake of caffeine and socioeconomic status (SES). Possible confounding by gender, childhood intelligence, education, and symptoms of anxiety and depression was introduced into the statistical model. There were significant differences between SES groups in caffeine intake (pcognitive performance (pcaffeine intake were associated with slower digit symbol speed (F =3.38, pcaffeine during cognitive testing and strong links between SES and cognitive performance. No evidence in support of cognitive enhancing effects of caffeine was found.

  8. Caffeine Use Affects Pregnancy Outcome

    Science.gov (United States)

    Diego, Miguel; Field, Tiffany; Hernandez-Reif, Maria; Vera, Yanexy; Gil, Karla; Gonzalez-Garcia, Adolfo

    2008-01-01

    A sample of 750 women were interviewed during pregnancy on their depression and anxiety symptoms, substance use and demographic variables. A subsample was seen again at the neonatal stage (n = 152), and their infants were observed for sleep-wake behavior. Symptoms of depression and anxiety were related to caffeine use. Mothers who consumed more…

  9. Consumption of caffeinated beverages and the awareness of their caffeine content among Dutch students.

    Science.gov (United States)

    Mackus, Marlou; van de Loo, Aurora J A E; Benson, Sarah; Scholey, Andrew; Verster, Joris C

    2016-08-01

    The purpose of the current study was to examine the knowledge of caffeine content of a variety of caffeinated beverages among Dutch university students. A pencil-and-paper survey was conducted among N = 800 Dutch students. Most participants (87.8%) reported consuming caffeinated beverages during the past 24 h. Their mean ± SD past 24-h caffeine intake from beverages was 144.2 ± 169.5 mg (2.2 ± 3.0 mg/kg bw). Most prevalent sources of caffeine were coffee beverages (50.8%) and tea (34.8%), followed by energy drink (9.2%), cola (4.7%), and chocolate milk (0.5%). Participants had poor knowledge on the relative caffeine content of caffeinated beverages. That is, they overestimated the caffeine content of energy drinks and cola, and underestimated the caffeine content of coffee beverages. If caffeine consumption is a concern, it is important to inform consumers about the caffeine content of all caffeine containing beverages, including coffee and tea. The current findings support previous research that the most effective way to reduce caffeine intake is to limit the consumption of coffee beverages and tea.

  10. A case of atrial tachycardia sensitive to increased caffeine intake.

    Science.gov (United States)

    Kinugawa, Toru; Kurita, Takashi; Nohara, Ryuji; Smith, Michael L

    2011-01-01

    A 33-year-old Japanese man with atrial tachycardia visited our clinic. He regularly consumed daily alcohol with cola, one cup of regular coffee, and a candy containing 0.7 mg of caffeine per tablet. After stopping his caffeine intake, his arrhythmia ameliorated. Since caffeine might be associated with his arrhythmia, a caffeine load test (equivalent to his daily intake of caffeine) was performed for 4 days. Atrial tachycardia time from a Holter recording was 44.2 minute/day before the caffeine load, compared with 215.2 minute/day during the caffeine load. Plasma caffeine concentration before and during caffeine loading was 3.1 mg/dL and 5.4 mg/dL, respectively. Caffeine use seemed to be an important factor for his atrial tachycardia, since his arrhythmia became worse during caffeine load testing and was ameliorated after the cessation of caffeine.

  11. Caffeine renal clearance and urine caffeine concentrations during steady state dosing. Implications for monitoring caffeine intake during sports events.

    OpenAIRE

    Birkett, D J; Miners, J O

    1991-01-01

    1. Relationships between the plasma and urine concentrations and clearances of caffeine over successive dosage intervals at steady-state were investigated in six healthy volunteers administered caffeine, 150 mg 8 hourly for 6 days. 2. There was marked inter-individual variability in the urine (15.9-fold range) and steady-state plasma (8.1-fold range) concentrations of caffeine. 3. Urine caffeine concentrations were similar to those in plasma, with mean ratios (plasma:urine) ranging from 1.10 ...

  12. Expectation of having consumed caffeine can improve performance and mood

    OpenAIRE

    Dawkins, Lynne; Shahzad, Fatima-Zahra; Ahmed, Suada S.; Edmonds, Caroline J.

    2011-01-01

    We explored whether caffeine, and expectation of having consumed caffeine, affects attention, reward responsivity and mood using double-blinded methodology. 88 participants were randomly allocated to ‘drink-type’ (caffeinated/decaffeinated coffee) and ‘expectancy’ (told caffeinated/told decaffeinated coffee) manipulations. Both caffeine and expectation of having consumed caffeine improved attention and psychomotor speed. Expectation enhanced self-reported vigour and reward responsivity. Self-...

  13. Consumption of caffeinated beverages and the awareness of their caffeine content among Dutch students

    NARCIS (Netherlands)

    Mackus, Marlou; van de Loo, Aurora J A E; Benson, Sarah; Scholey, Andrew; Verster, Joris C

    2016-01-01

    The purpose of the current study was to examine the knowledge of caffeine content of a variety of caffeinated beverages among Dutch university students. A pencil-and-paper survey was conducted among N = 800 Dutch students. Most participants (87.8%) reported consuming caffeinated beverages during the

  14. The effects of caffeine on wound healing.

    Science.gov (United States)

    Ojeh, Nkemcho; Stojadinovic, Olivera; Pastar, Irena; Sawaya, Andrew; Yin, Natalie; Tomic-Canic, Marjana

    2016-10-01

    The purine alkaloid caffeine is a major component of many beverages such as coffee and tea. Caffeine and its metabolites theobromine and xanthine have been shown to have antioxidant properties. Caffeine can also act as adenosine-receptor antagonist. Although it has been shown that adenosine and antioxidants promote wound healing, the effect of caffeine on wound healing is currently unknown. To investigate the effects of caffeine on processes involved in epithelialisation, we used primary human keratinocytes, HaCaT cell line and ex vivo model of human skin. First, we tested the effects of caffeine on cell proliferation, differentiation, adhesion and migration, processes essential for normal wound epithelialisation and closure. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) proliferation assay to test the effects of seven different caffeine doses ranging from 0·1 to 5 mM. We found that caffeine restricted cell proliferation of keratinocytes in a dose-dependent manner. Furthermore, scratch wound assays performed on keratinocyte monolayers indicated dose-dependent delays in cell migration. Interestingly, adhesion and differentiation remained unaffected in monolayer cultures treated with various doses of caffeine. Using a human ex vivo wound healing model, we tested topical application of caffeine and found that it impedes epithelialisation, confirming in vitro data. We conclude that caffeine, which is known to have antioxidant properties, impedes keratinocyte proliferation and migration, suggesting that it may have an inhibitory effect on wound healing and epithelialisation. Therefore, our findings are more in support of a role for caffeine as adenosine-receptor antagonist that would negate the effect of adenosine in promoting wound healing.

  15. Caffeine synthase and related methyltransferases in plants.

    Science.gov (United States)

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  16. Caffeine Modulates Attention Network Function

    Science.gov (United States)

    2010-03-01

    stimulant in the world, found naturally in many foods and beverages, and often cited for its positive effects on vigilance and mental alertness (for...is abundantly available in both natural (e.g., coffee, tea, chocolate) and supplemented (e.g., soft drinks, energy bars) food and beverages, as well...Weiss, M. (2001). Readiness potential in different states of physical activation and after ingestion of taurine and/or caffeine containing drinks

  17. Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus tamarii

    OpenAIRE

    Gutierrez-Sanchez, G.; Roussos, Sevastianos; Augur, Christopher

    2013-01-01

    The aim of the present study was to evaluate the effect of the initial caffeine concentration (1-8 g/L) on growth and caffeine consumption by Aspergillus tamarii as well as pellet morphology, in submerged fermentation. Caffeine was used as sole nitrogen source. At 1 g/L of initial caffeine concentration, caffeine degradation was not affected, resulting in a production of 8.7 g/L of biomass. The highest biomass production (12.4-14.8 g/L) was observed within a range of 2 to 4 g/L of initial caf...

  18. Caffeine and exercise: metabolism, endurance and performance.

    Science.gov (United States)

    Graham, T E

    2001-01-01

    Caffeine is a common substance in the diets of most athletes and it is now appearing in many new products, including energy drinks, sport gels, alcoholic beverages and diet aids. It can be a powerful ergogenic aid at levels that are considerably lower than the acceptable limit of the International Olympic Committee and could be beneficial in training and in competition. Caffeine does not improve maximal oxygen capacity directly, but could permit the athlete to train at a greater power output and/or to train longer. It has also been shown to increase speed and/or power output in simulated race conditions. These effects have been found in activities that last as little as 60 seconds or as long as 2 hours. There is less information about the effects of caffeine on strength; however, recent work suggests no effect on maximal ability, but enhanced endurance or resistance to fatigue. There is no evidence that caffeine ingestion before exercise leads to dehydration, ion imbalance, or any other adverse effects. The ingestion of caffeine as coffee appears to be ineffective compared to doping with pure caffeine. Related compounds such as theophylline are also potent ergogenic aids. Caffeine may act synergistically with other drugs including ephedrine and anti-inflammatory agents. It appears that male and female athletes have similar caffeine pharmacokinetics, i.e., for a given dose of caffeine, the time course and absolute plasma concentrations of caffeine and its metabolites are the same. In addition, exercise or dehydration does not affect caffeine pharmacokinetics. The limited information available suggests that caffeine non-users and users respond similarly and that withdrawal from caffeine may not be important. The mechanism(s) by which caffeine elicits its ergogenic effects are unknown, but the popular theory that it enhances fat oxidation and spares muscle glycogen has very little support and is an incomplete explanation at best. Caffeine may work, in part, by

  19. Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus tamarii.

    Science.gov (United States)

    Gutiérrez-Sánchez, G; Roussos, S; Augur, C

    2013-05-01

    The aim of the present study was to evaluate the effect of the initial caffeine concentration (1-8 g/L) on growth and caffeine consumption by Aspergillus tamarii as well as pellet morphology, in submerged fermentation. Caffeine was used as sole nitrogen source. At 1 g/L of initial caffeine concentration, caffeine degradation was not affected, resulting in a production of 8.7 g/L of biomass. The highest biomass production (12.4-14.8 g/L) was observed within a range of 2 to 4 g/L of initial caffeine concentration. At these initial caffeine concentrations, after 96 h of fermentation, 41-51 % of the initial caffeine was degraded. Using an initial caffeine concentration of 2-3 g/L, the highest specific growth rate was observed (μ = 0.069 1/h). Biomass production decreased at 8 g/L of initial caffeine concentration. A. tamarii formed mainly pellets at all concentrations tested. The size of the pellet decreased at a caffeine concentration of 8 g/L.

  20. A fluvoxamine-caffeine interaction study

    DEFF Research Database (Denmark)

    Jeppesen, U; Loft, S; Poulsen, H E

    1996-01-01

    fluvoxamine and caffeine. The study was carried out as a randomized, in vivo, cross-over study including eight healthy volunteers. In Period A of the study, each subject took 200 mg caffeine orally, and in Period B, the subjects took fluvoxamine 50 mg per day for 4 days and 100 mg per day for 8 days. On day 8...

  1. Creatine and Caffeine: Considerations for Concurrent Supplementation.

    Science.gov (United States)

    Trexler, Eric T; Smith-Ryan, Abbie E

    2015-12-01

    Nutritional supplementation is a common practice among athletes, with creatine and caffeine among the most commonly used ergogenic aids. Hundreds of studies have investigated the ergogenic potential of creatine supplementation, with consistent improvements in strength and power reported for exercise bouts of short duration (≤ 30 s) and high intensity. Caffeine has been shown to improve endurance exercise performance, but results are mixed in the context of strength and sprint performance. Further, there is conflicting evidence from studies comparing the ergogenic effects of coffee and caffeine anhydrous supplementation. Previous research has identified independent mechanisms by which creatine and caffeine may improve strength and sprint performance, leading to the formulation of multi-ingredient supplements containing both ingredients. Although scarce, research has suggested that caffeine ingestion may blunt the ergogenic effect of creatine. While a pharmacokinetic interaction is unlikely, authors have suggested that this effect may be explained by opposing effects on muscle relaxation time or gastrointestinal side effects from simultaneous consumption. The current review aims to evaluate the ergogenic potential of creatine and caffeine in the context of high-intensity exercise. Research directly comparing coffee and caffeine anhydrous is discussed, along with previous studies evaluating the concurrent supplementation of creatine and caffeine.

  2. Effects of caffeine on sleep and cognition

    NARCIS (Netherlands)

    Snel, J.; Lorist, M.M.; Van Dongen, H.P.A.; Kerkhof, G.A.

    2011-01-01

    Caffeine can be used effectively to manipulate our mental state. It is beneficial in restoring low levels of wakefulness and in counteracting degraded cognitive task performance due to sleep deprivation. However, caffeine may produce detrimental effects on subsequent sleep, resulting in daytime slee

  3. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  4. Behavioral Management of Excessive Caffeine Consumption: Three Case Studies.

    Science.gov (United States)

    Johnson-Greene, Douglas; And Others

    Although caffeine is seemingly harmless in ordinary daily intake, there has been increasing concern about the possible side effects of habitual caffeine ingestion. The excessive daily ingestion of caffeine in the form of coffee, soda pop, tea, and various medications may lead to a chronic disorder known as caffeinism. This study tested the…

  5. Caffeine, mental health, and psychiatric disorders.

    Science.gov (United States)

    Lara, Diogo R

    2010-01-01

    Caffeine intake is so common that its pharmacological effects on the mind are undervalued. Since it is so readily available, individuals can adjust their own dose, time of administration and dose intervals of caffeine, according to the perceived benefits and side effects of each dose. This review focuses on human studies of caffeine in subjects with and without psychiatric disorders. Besides the possibility of mild drug dependence, caffeine may bring benefits that contribute to its widespread use. These benefits seem to be related to adaptation of mental energy to the context by increasing alertness, attention, and cognitive function (more evident in longer or more difficult tasks or situations of low arousal) and by elevating mood. Accordingly, moderate caffeine intake (cognitive failures, and lower risk of suicide. However, its putative therapeutic effects on depression and ADHD have been insufficiently studied. Conversely, in rare cases high doses of caffeine can induce psychotic and manic symptoms, and more commonly, anxiety. Patients with panic disorder and performance social anxiety disorder seem to be particularly sensitive to the anxiogenic effects of caffeine, whereas preliminary data suggests that it may be effective for some patients with obsessive compulsive disorder (OCD). The threshold for the anxiogenic effect of caffeine is influenced by a polymorphism of the A2A receptor. In summary, caffeine can be regarded as a pharmacological tool to increase energy and effortful behavior in daily activities. More populational (cross-sectional and prospective) and experimental studies are necessary to establish the role of caffeine intake in psychiatric disorders, especially its putative efficacy on depressive mood and cognitive/attentional disorders.

  6. Energy drinks and the neurophysiological impacts of caffeine

    OpenAIRE

    Leeana eBagwath Persad

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can in...

  7. Endogenous adenosine and hemorrhagic shock: effects of caffeine administration or caffeine withdrawal.

    OpenAIRE

    Conlay, L A; Evoniuk, G; Wurtman, R.J.

    1988-01-01

    Plasma adenosine concentrations doubled when rats were subjected to 90 min of profound hemorrhagic shock. Administration of caffeine (20 mg per kg of body weight), an adenosine-receptor antagonist, attenuated the hemorrhage-induced decrease in blood pressure. In contrast, chronic caffeine consumption (0.1% in drinking water), followed by a brief period of caffeine withdrawal, amplified the hypotensive response to hemorrhage. These data suggest that endogenous adenosine participates in the hyp...

  8. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal.

    Science.gov (United States)

    Shearer, Jane; Graham, Terry E

    2014-10-01

    This review documents two opposing effects of caffeine and caffeine-containing energy drinks, i.e., their positive effects on athletic performance and their negative impacts on glucose tolerance in the sedentary state. Analysis of studies examining caffeine administration prior to performance-based exercise showed caffeine improved completion time by 3.6%. Similar analyses following consumption of caffeine-containing energy drinks yielded positive, but more varied, benefits, which were likely due to the diverse nature of the studies performed, the highly variable composition of the beverages consumed, and the range of caffeine doses administered. Conversely, analyses of studies administering caffeine prior to either an oral glucose tolerance test or insulin clamp showed a decline in whole-body glucose disposal of ~30%. The consequences of this resistance are unknown, but there may be implications for the development of a number of chronic diseases. Both caffeine-induced performance enhancement and insulin resistance converge with the primary actions of caffeine on skeletal muscle.

  9. How habitual caffeine consumption and dose influence flavour preference conditioning with caffeine.

    Science.gov (United States)

    Tinley, Elizabeth M; Durlach, Paula J; Yeomans, Martin R

    2004-09-15

    This study investigated the effects of both habitual caffeine use and dose administered in determining the ability of caffeine to reinforce conditioned changes in flavour preference. Thirty overnight-withdrawn moderate caffeine consumers and 30 non or low-dose caffeine (non/low) consumers evaluated five novel-flavoured fruit teas. Subsequently, their median-rated tea was used in four ensuing conditioning sessions. Either placebo, 1 or 2 mg/kg of caffeine (n=10 consumers, 10 non/low consumers in each condition), was added to the target tea, and all five teas were reevaluated at a final tasting. Pleasantness ratings over the four conditioning sessions indicated that non/low consumers' liking increased for the noncaffeinated fruit tea with no change for the tea containing either 1 or 2 mg/kg of caffeine. Among consumers, pleasantness ratings tended to decrease for the noncaffeinated fruit tea but increased significantly at the 1-mg dose and showed a tendency to increase at the 2-mg dose. Similar effects were shown in the evaluations made before and after conditioning, with no change in the nonexposed drinks. These results show that 1.0 mg/kg of caffeine reinforces changes in flavour pleasantness in acutely withdrawn habitual consumers but not in nonconsumers or nondependent low-caffeine consumers, further endorsing the negative-reinforcement theory of conditioning with caffeine.

  10. Caffeine metabolites not caffeine protect against riboflavin photosensitized oxidative damage related to skin and eye health.

    Science.gov (United States)

    Scurachio, R S; Mattiucci, F; Santos, W G; Skibsted, L H; Cardoso, D R

    2016-10-01

    Caffeine metabolites were found to bind riboflavin with dissociation constant in the millimolar region by an exothermic process with positive entropy of reaction, which was found by (1)H NMR and fluorescence spectroscopy to occur predominantly by hydrogen bonding with water being released from riboflavin solvation shell upon caffeine metabolite binding to riboflavin. The caffeine metabolites 1-methyl uric acid and 1,7-dimethyl uric acid were shown by transient absorption laser flash photolysis to be efficient as quenchers of triplet riboflavin with second-order rate constant of 1.4 10(8)Lmol(-1)s(-1) and 1.0 10(8)Lmol(-1)s(-1), respectively, in aqueous solution of pH6.4 at 25°C and more efficient than the other caffeine metabolite 1,7-dimethyl xanthine with second-order rate constant of 4.2 10(7)Lmol(-1)s(-1). Caffeine was in contrast found to be non-reactive towards triplet riboflavin. Caffeine metabolites rather than caffeine seem accordingly important for the observed protective effect against cutaneous melanoma identified for drinkers of regular but not of decaffeinated coffee. The caffeine metabolites, but not caffeine, were by time resolved single photon counting found to quench singlet excited riboflavin through exothermic formation of ground-state precursor complexes indicating importance of hydrogen bounding through keto-enol tautomer's for protection of oxidizable substrates and sensitive structures against riboflavin photosensitization.

  11. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions.

    Science.gov (United States)

    Guessous, Idris; Pruijm, Menno; Ponte, Belén; Ackermann, Daniel; Ehret, Georg; Ansermot, Nicolas; Vuistiner, Philippe; Staessen, Jan; Gu, Yumei; Paccaud, Fred; Mohaupt, Markus; Vogt, Bruno; Pechère-Bertschi, Antoinette; Pechère-Berstchi, Antoinette; Martin, Pierre-Yves; Burnier, Michel; Eap, Chin B; Bochud, Murielle

    2015-03-01

    Intake of caffeinated beverages might be associated with reduced cardiovascular mortality possibly via the lowering of blood pressure. We estimated the association of ambulatory blood pressure with urinary caffeine and caffeine metabolites in a population-based sample. Families were randomly selected from the general population of Swiss cities. Ambulatory blood pressure monitoring was conducted using validated devices. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24 hours urine using ultrahigh performance liquid chromatography tandem mass spectrometry. We used mixed models to explore the associations of urinary excretions with blood pressure although adjusting for major confounders. The 836 participants (48.9% men) included in this analysis had mean age of 47.8 and mean 24-hour systolic and diastolic blood pressure of 120.1 and 78.0 mm Hg. For each doubling of caffeine excretion, 24-hour and night-time systolic blood pressure decreased by 0.642 and 1.107 mm Hg (both P values theobromine excretion was not associated with blood pressure. Anti-hypertensive therapy, diabetes mellitus, and alcohol consumption modify the association of caffeine urinary excretion with systolic blood pressure. Ambulatory systolic blood pressure was inversely associated with urinary excretions of caffeine and other caffeine metabolites. Our results are compatible with a potential protective effect of caffeine on blood pressure.

  12. Sugary, Caffeinated Drinks Could Cost You Sleep

    Science.gov (United States)

    ... 21 percent more sugar-sweetened, caffeinated beverages like soda and energy drinks than those who slept seven ... no link between the amount of sleep and consumption of juice, tea or diet drinks. It was ...

  13. Caffeinated alcohol beverages: a public health concern.

    Science.gov (United States)

    Attwood, Angela S

    2012-01-01

    Consumption of alcohol mixed with caffeinated energy drinks is becoming popular, and the number of pre-mixed caffeinated alcohol products on the worldwide market is increasing. There is public health concern and even occasional legal restriction relating to these drinks, due to associations with increased intoxication and harms. The precise nature and degree of the pharmacological relationship between caffeine and alcohol is not yet elucidated, but it is proposed that caffeine attenuates the sedative effects of alcohol intoxication while leaving motor and cognitive impairment unaffected. This creates a potentially precarious scenario for users who may underestimate their level of intoxication and impairment. While legislation in some countries has restricted production or marketing of pre-mixed products, many individuals mix their own energy drink-alcohol 'cocktails'. Wider dissemination of the risks might help balance marketing strategies that over-emphasize putative positive effects.

  14. Caffeine intake reduces sleep duration in adolescents.

    Science.gov (United States)

    Lodato, Francesca; Araújo, Joana; Barros, Henrique; Lopes, Carla; Agodi, Antonella; Barchitta, Martina; Ramos, Elisabete

    2013-09-01

    In our study, we hypothesized that higher caffeine intake would be associated with lower sleep duration among 13-year-old adolescents. In addition, we aimed to identify food sources of caffeine intake in this sample. Eligible participants were adolescents who were born in 1990 and attended school in Porto, Portugal, in 2003/2004. Self-administered questionnaires were used, and diet was evaluated using a food frequency questionnaire. From the 2160 eligible participants, only 1522 with valid information regarding their diet were included in this study. In our sample, the median intake of caffeine was 23.1 mg/d, with soft drinks being the major source. Ice tea presented the highest median (25th-75th percentiles) contribution (33.1% [14.0-52.1]), followed by cola (21.1% [6.4-37.6]). Regarding cocoa products, chocolate bars presented a median contribution of 5.1% (1.0-14.0), and snacks containing chocolate had a contribution of 3.0% (0.5-7.2). Coffee and tea presented a negligible contribution. Adolescents who reported less sleep duration and those who spent more time watching TV during the weekend had a significantly higher caffeine intake. Overall, boys had higher intakes of caffeine from soft drinks, and private school attendees, those who had parents with more education, who reported less television viewing time and had lower body mass index presented higher intakes of caffeine from chocolate. Considering sleeping more than 9.5 hours as a reference class, for each increase of 10 mg/d in caffeine intake, we found that the odds ratio of sleeping 8.5 hours or less was 1.12 (95% confidence interval, 1.06-1.19). Our results support the hypothesis that caffeine intake was inversely associated with sleep duration in adolescents.

  15. Prenatal Caffeine Exposure Impairs Pregnancy in Rats

    Directory of Open Access Journals (Sweden)

    Maryam Yadegari

    2016-12-01

    Full Text Available Background: In recent years, concerns have been raised about human reproductive disorders. Caffeine consumption is increasing by the world’s population and there is a relationship between caffeine intake and adverse reproductive outcomes. The aim of this study was to evaluate the effects of caffeine on implantation sites, number of live births, birth weight, crown-rump length (CRL and abnormality in pregnant rats. Materials and Methods: In this experimental study, 40 female albino rats (170-190 g were randomly divided into two experimental and two control groups (n=10/each group. In both experimental groups, animals received caffeine intraperitoneally (IP: 150 mg/kg/day on days 1-5 of pregnancy. In experimental group 1, treated animals were euthanized on day 7of pregnancy and the number of implantation sites was counted. In experimental group 2, treated animals maintained pregnant and after delivery, the number of live births, birth weight, CRL and abnormality of neonates were investigated. In control group, animals received IP injections of distilled water. Data were analyzed by independent t test. Results: Results showed that administration of caffeine significantly decreased the number of implantation sites, number of live births and CRL as compared with control group (P<0.05. There were no significant differences regarding birth weight and abnormality of neonate rats between experimental and control groups. Conclusion: These results suggest that caffeine caused anti-fertility effect and significantly decreased CRL in neonate rats.

  16. [Caffeine in nutrition. Article 1. Consumption with food and regulation].

    Science.gov (United States)

    Bessonov, V V; Khanferyan, R A

    2015-01-01

    The article presents a review of the literature data on the effect of caffeine contained in a variety of foods on the functions of human, it presents the modern international legal regulatory rules in the consumption of caffeine, and caffeine consumption rules corresponding to the technical regulations of the Customs Union (Russian Federation, Kazakhstan, Belaruss). It describes the sources of caffeine in the traditional diet and its consumption, safety evaluation in connection with the acute and chronic caffeine consumption and the value of caffeine as an ingredient in soft drinks tonic.

  17. Caffeine increases food intake while reducing anxiety-related behaviors.

    Science.gov (United States)

    Sweeney, Patrick; Levack, Russell; Watters, Jared; Xu, Zhenping; Yang, Yunlei

    2016-06-01

    The objective of this study was to determine the effects of different doses of caffeine on appetite and anxiety-related behavior. Additionally, we sought to determine if withdrawal from chronic caffeine administration promotes anxiety. In this study, we utilized rodent open field testing and feeding behavior assays to determine the effects of caffeine on feeding and anxiety-related behavior (n = 8 mice; 4-8 weeks old). We also measured 2 h and 24 h food intake and body-weight during daily administration of caffeine (n = 12 mice; 4-8 weeks old). To test for caffeine withdrawal induced anxiety, anxiety-related behavior in rodents was quantified following withdrawal from four consecutive days of caffeine administration (n = 12 mice; 4-8 weeks old). We find that acute caffeine administration increases food intake in a dose-dependent manner with lower doses of caffeine more significantly increasing food intake than higher doses. Acute caffeine administration also reduced anxiety-related behaviors in mice without significantly altering locomotor activity. However, we did not observe any differences in 24 h food intake or body weight following chronic caffeine administration and there were no observable differences in anxiety-related behaviors during caffeine withdrawal. In conclusion, we find that caffeine can both increase appetite and decrease anxiety-related behaviors in a dose dependent fashion. Given the complex relationship between appetite and anxiety, the present study provides additional insights into potential caffeine-based pharmacological mechanisms governing appetite and anxiety disorders, such as bulimia nervosa.

  18. Caffeine intake by patients with autosomal dominant polycystic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Vendramini, L.C.; Nishiura, J.L.; Baxmann, A.C.; Heilberg, I.P. [Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2012-07-20

    Because caffeine may induce cyst and kidney enlargement in autosomal dominant polycystic kidney disease (ADPKD), we evaluated caffeine intake and renal volume using renal ultrasound in ADPKD patients. Caffeine intake was estimated by the average of 24-h dietary recalls obtained on 3 nonconsecutive days in 102 ADPKD patients (68 females, 34 males; 39 ± 12 years) and compared to that of 102 healthy volunteers (74 females, 28 males; 38 ± 14 years). The awareness of the need for caffeine restriction was assessed. Clinical and laboratory data were obtained from the medical records of the patients. Mean caffeine intake was significantly lower in ADPKD patients versus controls (86 vs 134 mg/day), and 63% of the ADPKD patients had been previously aware of caffeine restriction. Caffeine intake did not correlate with renal volume in ADPKD patients. There were no significant differences between the renal volumes of patients in the highest and lowest tertiles of caffeine consumption. Finally, age-adjusted multiple linear regression revealed that renal volume was associated with hypertension, chronic kidney disease stage 3 and the time since diagnosis, but not with caffeine intake. The present small cross-sectional study indicated a low level of caffeine consumption by ADPKD patients when compared to healthy volunteers, which was most likely due to prior awareness of the need for caffeine restriction. Within the range of caffeine intake observed by ADPKD patients in this study (0-471 mg/day), the renal volume was not directly associated with caffeine intake.

  19. Neurobehavioral hazard identification and characterization for caffeine.

    Science.gov (United States)

    Turnbull, Duncan; Rodricks, Joseph V; Mariano, Gregory F

    2016-02-01

    This report evaluates the scientific literature on caffeine with respect to potential central nervous system (CNS) effects, specifically effects on sleep, anxiety, and aggression/risk-taking. Caffeine has been the subject of more scientific safety studies than any other food ingredient. It is important, therefore, to evaluate new studies in the context of this large existing body of knowledge. The safety of caffeine can best be described in a narrative form, and is not usefully expressed in terms of a "bright line" numerical value like an "acceptable daily intake" (ADI). Caffeine intake has been associated with a range of reversible physiological effects, in a few studies at levels of less than 100 mg in sensitive individuals. It is also clear that many people can tolerate much greater levels - perhaps up to 600-800 mg/day or more - without experiencing such effects. The reasons for this type of variability in response are described in this report. Based on all the available evidence, there is no reason to believe that experiencing such effects from caffeine intake has any significant or lasting effect on health. The point at which caffeine intake may cause harm to the CNS is not readily identifiable, in part because data on the effects of daily intakes greater than 600 mg is limited. Effects of caffeine on risk-taking and aggressive behavior in young people have received considerable publicity, yet are the most difficult to study because of ethical concerns and limitations in the ability to design appropriate studies. At present, the weight of available evidence does not support these concerns, yet this should not preclude ongoing careful monitoring of the scientific literature.

  20. Caffeine prevents protection in two human models of ischemic preconditioning.

    NARCIS (Netherlands)

    Riksen, N.P.; Zhou, Z.; Oyen, W.J.G.; Jaspers, R.A.; Ramakers, B.P.; Brouwer, R.M.H.J.; Boerman, O.C.; Steinmetz, N.; Smits, P.; Rongen, G.A.

    2006-01-01

    OBJECTIVES: We studied whether caffeine impairs protection by ischemic preconditioning (IP) in humans. BACKGROUND: Ischemic preconditioning is critically dependent on adenosine receptor stimulation. We hypothesize that the adenosine receptor antagonist caffeine blocks the protective effect of IP. ME

  1. Caffeine use among active duty US Army soldiers.

    Science.gov (United States)

    Lieberman, Harris R; Stavinoha, Trisha; McGraw, Susan; White, Alan; Hadden, Louise; Marriott, Bernadette P

    2012-06-01

    Eighty-percent of the US adult population regularly consumes caffeine, but limited information is available on the extent and patterns of use. Caffeine use is a public health issue and its risks and benefits are regularly considered in scientific literature and the lay media. Recently, new caffeine-containing products have been introduced and are widely available on Army bases and are added to rations to maintain cognitive performance. This study surveyed caffeine consumption and demographic characteristics in 990 US Army soldiers. Data were weighted by age, sex, rank, and Special Forces status. Total caffeine intake and intake from specific products were estimated. Logistic regression was used to examine relationships between caffeine use and soldier demographic and lifestyle characteristics. Eighty-two percent of soldiers consumed caffeine at least once a week. Mean daily caffeine consumption was 285 mg/day (347 mg/day among regular caffeine consumers). Male soldiers consumed, on average, 303 mg/day and females 163 mg/day (regular consumers: 365 mg/day for male soldiers, 216 mg/day for female soldiers). Coffee was the main source of caffeine intake. Among young males, energy drinks were the largest source of caffeine intake, but their intake was not greater than older males. Regression analysis indicated an association of higher caffeine intake with male sex, white race, and tobacco use (P<0.01). Most soldiers consume caffeine in levels accepted as safe, but some consume greater quantities than recommended, although definitive information on safe upper limits of caffeine intake is not available. Labels of caffeine-containing products should provide caffeine content so individuals can make informed decisions.

  2. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    OpenAIRE

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopami...

  3. EVALUATION OF ANTIBACTERIAL ACTIVITY OF CAFFEINE

    Directory of Open Access Journals (Sweden)

    Pawar Pruthviraj

    2011-04-01

    Full Text Available The present study was carried out with water soluble portion and pure solvent of the acetone, ethanol, methanol, acetonitrile, water extracts of leaves and leaf buds of Camellia sinensis (green tea, and beans of Coffea arabica (coffee. Caffeine (3,7-dihydro-1, 3,7-trimethyl-1H-purine-2,6-dione was isolated from both plants using a liquid-liquid extraction method, detected on thin layer chromatography (TLC plates in comparison with standard caffeine, which served as a positive control. After performing the gross behavioral study, the Antibacterial activity was evaluated against Gram-negative bacteria included; Escherichia coli, Proteus mirabilis, Klebsiella pneumonia and Pseudomonas aeruginosa Both compounds at a concentration of 2 mg/ml showed similar antibacterial activities against all tested bacteria, except for P. mirabilis, and the highest inhibitory effect was observed against P. aeruginosa using a modified agar diffusion method. The minimal inhibitory concentration (MIC of caffeine was determined using a broth microdilution method in 96 multi-well microtitre plates. MIC values ranged from 65.5 to 250.0 µg/ml for the caffeine isolated from coffee and 65.5 to 500.0 µg/ml for green tea caffeine. Combination results showed additive effects against most pathogenic bacteria especially for P. aeruginosa, using both antibacterial assays.

  4. Caffeine Consumption Patterns and Beliefs of College Freshmen

    Science.gov (United States)

    McIlvain, Gary E.; Noland, Melody P.; Bickel, Robert

    2011-01-01

    Background: Caffeine consumption by young people has increased dramatically over the last decade through increased coffee consumption and "energy drinks." In higher amounts, caffeine causes many adverse effects that are cause for concern. Purpose: Purposes of this study were to determine: (1) the amount of caffeine consumed by a sample…

  5. Is caffeine consumption a risk factor for osteoporosis?

    Science.gov (United States)

    Cooper, C; Atkinson, E J; Wahner, H W; O'Fallon, W M; Riggs, B L; Judd, H L; Melton, L J

    1992-04-01

    High caffeine consumption has been proposed as a risk factor for osteoporotic fracture, but the evidence associating high caffeine intake with low bone density is inconsistent. We therefore examined the influence of caffeine consumption on bone mineral at six skeletal sites in an age-stratified random sample of white women residing in Rochester, Minnesota. After age adjustment, there was no association between overall caffeine consumption and bone mineral at five of the six sites. In the femoral shaft, however, there was a statistically significant interaction between age and caffeine consumption so that high caffeine intake was associated with slight reductions in bone mineral among elderly subjects but with modestly increased bone mineral at younger ages. When caffeine intake was categorized by source, no consistent influence of coffee, tea, or other caffeinated beverage consumption could be detected on bone mineral. Caffeine intake was, however, positively associated with cigarette smoking and alcohol consumption. After adjusting for age, caffeine consumption was not correlated with biochemical indices of bone turnover, circulating concentrations of estradiol and estrone, or other dietary and musculoskeletal variables. These data suggest that caffeine intake in the range consumed by a representative sample of white women is not an important risk factor for osteoporosis. Among elderly women, however, in whom calcium balance performance is impaired, high caffeine intake may predispose to cortical bone loss from the proximal femur.

  6. Occurrence and concentration of caffeine in Oregon coastal waters.

    Science.gov (United States)

    Rodriguez del Rey, Zoe; Granek, Elise F; Sylvester, Steve

    2012-07-01

    Caffeine, a biologically active drug, is recognized as a contaminant of freshwater and marine systems. We quantified caffeine concentrations in Oregon's coastal ocean to determine whether levels correlated with proximity to caffeine pollution sources. Caffeine was analyzed at 14 coastal locations, stratified between populated areas with sources of caffeine pollution and sparsely populated areas with no major caffeine pollution sources. Caffeine concentrations were measured in major water bodies discharging near sampling locations. Caffeine in seawater ranged from below the reporting limit (8.5 ng/L) to 44.7 ng/L. Caffeine occurrence and concentrations in seawater did not correspond with pollution threats from population density and point and non-point sources, but did correspond with storm event occurrence. Caffeine concentrations in rivers and estuaries draining to the coast ranged from below the reporting limit to 152.2 ng/L. This study establishes the occurrence of caffeine in Oregon's coastal waters, yet relative importance of sources, seasonal variability, and processes affecting caffeine transport into the coastal ocean require further research.

  7. Caffeine levels in beverages from Argentina's market: application to caffeine dietary intake assessment.

    Science.gov (United States)

    Olmos, V; Bardoni, N; Ridolfi, A S; Villaamil Lepori, E C

    2009-03-01

    The caffeine content of different beverages from Argentina's market was measured. Several brands of coffees, teas, mates, chocolate milks, soft and energy drinks were analysed by high-performance liquid chromatography (HPLC) with ultraviolet detection. The highest concentration level was found in short coffee (1.38 mg ml(-1)) and the highest amount per serving was found in instant coffee (95 mg per serving). A consumption study was also carried out among 471 people from 2 to 93 years of age to evaluate caffeine total dietary intake by age and to identify the sources of caffeine intake. The mean caffeine intake among adults was 288 mg day(-1) and mate was the main contributor to that intake. The mean caffeine intake among children of 10 years of age and under was 35 mg day(-1) and soft drinks were the major contributors to that intake. Children between 11 and 15 years old and teenagers (between 16 and 20 years) had caffeine mean intakes of 120 and 240 mg day(-1), respectively, and mate was the major contributor to those intakes. Drinking mate is a deep-rooted habit among Argentine people and it might be the reason for their elevated caffeine mean daily intake.

  8. Caffeine and coffee as therapeutics against Alzheimer's disease.

    Science.gov (United States)

    Arendash, Gary W; Cao, Chuanhai

    2010-01-01

    Epidemiologic studies have increasingly suggested that caffeine/coffee could be an effective therapeutic against Alzheimer's disease (AD). We have utilized a transgenic mouse model for AD in well-controlled studies to determine if caffeine and/or coffee have beneficial actions to protect against or reverse AD-like cognitive impairment and AD pathology. AD mice given caffeine in their drinking water from young adulthood into older age showed protection against memory impairment and lower brain levels of the abnormal protein (amyloid-beta; Abeta) thought to be central to AD pathogenesis. Moreover, "aged" cognitively-impaired AD mice exhibited memory restoration and lower brain Abeta levels following only 1-2 months of caffeine treatment. We believe that the cognitive benefits of chronic caffeine administration in AD mice are due to caffeine itself, and not metabolites of caffeine; this, because our long-term administration of theophylline to AD mice provided no cognitive benefits. In acute studies involving AD mice, one oral caffeine treatment quickly reduced both brain and plasma Abeta levels - similarly rapid alterations in plasma Abeta levels were seen in humans following acute caffeine administration. "Caffeinated" coffee provided to AD mice also quickly decreased plasma Abeta levels, but not "decaffeinated" coffee, suggesting that caffeine is critical to decreasing blood Abeta levels. Caffeine appears to provide its disease-modifying effects through multiple mechanisms, including a direct reduction of Abeta production through suppression of both beta- and gamma-secretase levels. These results indicate a surprising ability of moderate caffeine intake (the human equivalent of 500 mg caffeine or 5 cups of coffee per day) to protect against or treat AD in a mouse model for the disease and a therapeutic potential for caffeine against AD in humans.

  9. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Petr Dobes

    2013-05-01

    Full Text Available Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE and/or, butyrylcholinesterase (BChE, the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  10. Impact of caffeine and coffee on our health.

    Science.gov (United States)

    Gonzalez de Mejia, Elvira; Ramirez-Mares, Marco Vinicio

    2014-10-01

    Coffee is the most frequently consumed caffeine-containing beverage. The caffeine in coffee is a bioactive compound with stimulatory effects on the central nervous system and a positive effect on long-term memory. Although coffee consumption has been historically linked to adverse health effects, new research indicates that coffee consumption may be beneficial. Here we discuss the impact of coffee and caffeine on health and bring attention to the changing caffeine landscape that includes new caffeine-containing energy drinks and supplements, often targeting children and adolescents.

  11. Pharmacokinetics for topically applied caffeine in the rat.

    Science.gov (United States)

    Kronschläger, Martin; Forsman, Erik; Yu, Zhaohua; Talebizadeh, Nooshin; Löfgren, Stefan; Meyer, Linda M; Bergquist, Jonas; Söderberg, Per

    2014-05-01

    Topically applied caffeine was recently identified as a promising candidate molecule for cataract prevention. Little is known about the pharmacokinetics for topically applied caffeine. Potential toxicity of 72 mM caffeine on the ocular surface and the lens was qualitatively monitored and no toxic effects were observed. The concentration of caffeine was measured in the lens and the blood after topical application of 72 mM caffeine to groups of 10 animals sacrificed at 30, 60, 90 and 120 min after topical application. The lens concentration decreased throughout the observation period while the blood concentration increased up to 120 min. Further, the concentration of caffeine in the lens and blood was measured 30 min after topical application of caffeine, the concentration of caffeine being 0.72, 3.34, 15.51 and 72 mM depending on group belonging, in groups of 10 animals. The caffeine concentration in lens and blood, respectively, increased proportionally to the caffeine concentration topically applied. The rat blood concentrations achieved were far below the equivalent threshold dose of FDA recommended daily dose for humans. This information is important for further development of caffeine eye drops for cataract prevention.

  12. Energy Drinks and the Neurophysiological Impact of Caffeine

    Science.gov (United States)

    Persad, Leeana Aarthi Bagwath

    2011-01-01

    Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine, and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body. PMID:22025909

  13. Energy drinks and the neurophysiological impacts of caffeine

    Directory of Open Access Journals (Sweden)

    Leeana eBagwath Persad

    2011-10-01

    Full Text Available Caffeine is the most widely used psychoactive stimulant with prevalent use across all age groups. It is a naturally occurring substance found in the coffee bean, tea leaf, the kola nut, cocoa bean. Recently there has been an increase in energy drink consumption leading to caffeine abuse, with aggressive marketing and poor awareness on the consequences of high caffeine use. With caffeine consumption being so common, it is vital to know the impact caffeine has on the body, as its effects can influence cardio-respiratory, endocrine and perhaps most importantly neurological systems. Detrimental effects have being described especially since an over consumption of caffeine has being noted. This review focuses on the neurophysiological impact of caffeine and its biochemical pathways in the human body.

  14. The pH dependent Raman spectroscopic study of caffeine

    Science.gov (United States)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  15. Caffeine Expectancy Questionnaire (CaffEQ): Construction, Psychometric Properties, and Associations with Caffeine Use, Caffeine Dependence, and Other Related Variables

    Science.gov (United States)

    Huntley, Edward D.; Juliano, Laura M.

    2012-01-01

    Expectancies for drug effects predict drug initiation, use, cessation, and relapse, and may play a causal role in drug effects (i.e., placebo effects). Surprisingly little is known about expectancies for caffeine even though it is the most widely used psychoactive drug in the world. In a series of independent studies, the nature and scope of…

  16. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  17. A Survey of Caffeine Use and Associated Side Effects in a College Population.

    Science.gov (United States)

    Johnson-Greene, Douglas; And Others

    1988-01-01

    Surveyed 270 college students concerning their caffeine consumption. Results suggest there is identifiable group using excessive amounts of caffeine. Identified several deleterious effects possibly related to caffeine use. Approximately 75 percent of caffeine users surveyed rarely sought information on caffeine content of products or avoided…

  18. Caffeine does not modulate inhibitory control

    NARCIS (Netherlands)

    Z. Tieges; J. Snel; A. Kok; K.R. Ridderinkhof

    2009-01-01

    The effects of a 3 mg/kg body weight (BW) dose of caffeine were assessed on behavioral indices of response inhibition. To meet these aims, we selected a modified AX version of the Continuous Performance Test (CPT), the stop task, and the flanker task. In three double-blind, placebo-controlled, withi

  19. Caffeinated drinks, alcohol consumption and hangover severity

    NARCIS (Netherlands)

    Penning, R.; de Haan, L.; Verster, J.C.

    2011-01-01

    This study examined the relationship between consumption of caffeinated beverages and alcohol, and effects on next day hangover severity. In 2010, a survey funded by Utrecht University was conducted among N=549 Dutch students. Beverages consumed on their latest drinking session that produced a hango

  20. Caffeine Does Not Modulate Inhibitory Control

    Science.gov (United States)

    Tieges, Zoe; Snel, Jan; Kok, Albert; Ridderinkhof, K. Richard

    2009-01-01

    The effects of a 3 mg/kg body weight (BW) dose of caffeine were assessed on behavioral indices of response inhibition. To meet these aims, we selected a modified AX version of the Continuous Performance Test (CPT), the stop task, and the flanker task. In three double-blind, placebo-controlled, within-subjects experiments, these tasks were…

  1. Caffeine improves anticipatory processes in task switching

    NARCIS (Netherlands)

    Tieges, Zoe; Snel, Jan; Kok, Albert; Wijnen, Jasper G.; Lorist, Monicque M.; Ridderinkhof, K. Richard

    2006-01-01

    We studied the effects of moderate amounts of caffeine on task switching and task maintenance using mixed-task (AABB) blocks, in which participants alternated predictably between two tasks, and single-task (AAAA, BBBB) blocks. Switch costs refer to longer reaction times (RT) on task switch trials (e

  2. Caffeine effects on perceptual and motor processes

    NARCIS (Netherlands)

    Lorist, MM; Snel, J

    1997-01-01

    The effects of a single dose of caffeine on specific information processing operations were examined by using a visual selective attention task in which subjects were asked to select between a left and right hand response on the basis of two different target letters. The target was presented on a pr

  3. Legitimacy of concerns about caffeine and energy drink consumption.

    Science.gov (United States)

    Wesensten, Nancy J

    2014-10-01

    Whether caffeine and energy drink consumption presents a critical emerging health problem is not currently known. Available evidence suggests that energy drink consumption represents a change in the ways in which individuals in the United States consume caffeine but that the amount of caffeine consumed daily has not appreciably increased. In the present review, the question of whether Americans are sleep deprived (a potential reason for using caffeine) is briefly explored. Reported rates of daily caffeine consumption (based on beverage formulation) and data obtained from both civilian and military populations in the United States are examined, the efficacy of ingredients other than caffeine in energy drinks is discussed, and the safety and side effects of caffeine are addressed, including whether evidence supports the contention that excessive caffeine/energy drink consumption induces risky behavior. The available evidence suggests that the main legitimate concern regarding caffeine and energy drink use is the potential negative impact on sleep but that, otherwise, there is no cause for concern regarding caffeine use in the general population.

  4. Variation in caffeine concentration in single coffee beans.

    Science.gov (United States)

    Fox, Glen P; Wu, Alex; Yiran, Liang; Force, Lesleigh

    2013-11-13

    Twenty-eight coffee samples from around the world were tested for caffeine levels to develop near-infrared reflectance spectroscopy (NIRS) calibrations for whole and ground coffee. Twenty-five individual beans from five of those coffees were used to develop a NIRS calibration for caffeine concentration in single beans. An international standard high-performance liquid chromatography method was used to analyze for caffeine content. Coffee is a legal stimulant and possesses a number of heath properties. However, there is variation in the level of caffeine in brewed coffee and other caffeinated beverages. Being able to sort beans on the basis of caffeine concentration will improve quality control in the level of caffeine in those beverages. The range in caffeine concentration was from 0.01 mg/g (decaffeinated coffee) to 19.9 mg/g (Italian coffee). The majority of coffees were around 10.0-12.0 mg/g. The NIRS results showed r(2) values for bulk unground and ground coffees were >0.90 with standard errors caffeine concentration of individual coffee beans. One application of this calibration could be sorting beans on caffeine concentration to provide greater quality control for high-end markets. Furthermore, bean sorting may open new markets for novel coffee products.

  5. Effects of adolescent caffeine consumption on cocaine sensitivity.

    Science.gov (United States)

    O'Neill, Casey E; Levis, Sophia C; Schreiner, Drew C; Amat, Jose; Maier, Steven F; Bachtell, Ryan K

    2015-03-01

    Caffeine is the most commonly used psychoactive substance, and consumption by adolescents has risen markedly in recent years. We identified the effects of adolescent caffeine consumption on cocaine sensitivity and determined neurobiological changes within the nucleus accumbens (NAc) that may underlie caffeine-induced hypersensitivity to cocaine. Male Sprague-Dawley rats consumed caffeine (0.3 g/l) or water for 28 days during adolescence (postnatal day 28-55; P28-P55) or adulthood (P67-P94). Testing occurred in the absence of caffeine during adulthood (P62-82 or P101-121). Cocaine-induced and quinpirole (D2 receptor agonist)-induced locomotion was enhanced in rats that consumed caffeine during adolescence. Adolescent consumption of caffeine also enhanced the development of a conditioned place preference at a sub-threshold dose of cocaine (7.5 mg/kg, i.p.). These behavioral changes were not observed in adults consuming caffeine for an equivalent period of time. Sucrose preferences were not altered in rats that consumed caffeine during adolescence, suggesting there are no differences in natural reward. Caffeine consumption during adolescence reduced basal dopamine levels and augmented dopamine release in the NAc in response to cocaine (5 mg/kg, i.p.). Caffeine consumption during adolescence also increased the expression of the dopamine D2 receptor, dopamine transporter, and adenosine A1 receptor and decreased adenosine A2A receptor expression in the NAc. Consumption of caffeine during adulthood increased adenosine A1 receptor expression in the NAc, but no other protein expression changes were observed. Together these findings suggest that caffeine consumption during adolescence produced changes in the NAc that are evident in adulthood and may contribute to increases in cocaine-mediated behaviors.

  6. Quantitative Analysis by Isotopic Dilution Using Mass Spectroscopy: The Determination of Caffeine by GC-MS.

    Science.gov (United States)

    Hill, Devon W.; And Others

    1988-01-01

    Describes a laboratory technique for quantitative analysis of caffeine by an isotopic dilution method for coupled gas chromatography-mass spectroscopy. Discusses caffeine analysis and experimental methodology. Lists sample caffeine concentrations found in common products. (MVL)

  7. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    Science.gov (United States)

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  8. Caffeine Use Disorder: A Review of the Evidence and Future Implications

    OpenAIRE

    Addicott, Merideth A.

    2014-01-01

    The latest edition of the Diagnostic and Statistical Manual (DSM-5) has introduced new provisions for caffeine-related disorders. Caffeine Withdrawal is now an officially recognized diagnosis, and criteria for caffeine use disorder have been proposed for additional study. caffeine use disorder is intended to be characterized by cognitive, behavioral, and physiological symptoms indicative of caffeine use despite significant caffeine-related problems, similar to other Substance Use Disorders. H...

  9. Caffeine as a cause of urticaria-angioedema

    OpenAIRE

    Linda Tognetti; Francesco Murdaca; Michele Fimiani

    2014-01-01

    We report the case of a young woman presenting with recurrent urticaria. The episodes occurred both in and out of the workplace. On three occasions it presented as urticaria-angioedema, requiring emergency care on one occassion. A thorough clinical history along with serological and allergological tests allowed a diagnosis of caffeine-induced urticaria-angioedema. We advised the patient to follow a caffeine-free diet and to avoid all caffeine or methylxanthine-containing drugs. After two year...

  10. Maternal Caffeine Consumption and Infant Nighttime Waking: Prospective Cohort Study

    OpenAIRE

    Santos,Iná S; Matijasevich, Alicia; Domingues, Marlos R

    2012-01-01

    OBJECTIVE: Coffee and other caffeinated beverages are commonly consumed in pregnancy. In adults, caffeine may interfere with sleep onset and have a dose-response effect similar to those seen during insomnia. In infancy, nighttime waking is a common event. With this study, we aimed to investigate if maternal caffeine consumption during pregnancy and lactation leads to frequent nocturnal awakening among infants at 3 months of age. METHODS: All children born in the city of Pelotas, Brazil, durin...

  11. Interaction between oral ciprofloxacin and caffeine in normal volunteers.

    OpenAIRE

    Healy, D P; Polk, R E; Kanawati, L; Rock, D T; Mooney, M L

    1989-01-01

    The influence of multiple doses of ciprofloxacin on the disposition of caffeine and its major metabolite, paraxanthine, was investigated in healthy volunteers. Ten xanthine-free, fasting males were given 100 mg of caffeine orally 24 h before being given ciprofloxacin and again with the third dose of ciprofloxacin (750 mg administered every 12 h). Blood samples were serially collected after both doses of caffeine and after the first and last doses of ciprofloxacin. Ciprofloxacin significantly ...

  12. Caffeine Content in Popular Energy Drinks and Energy Shots.

    Science.gov (United States)

    Attipoe, Selasi; Leggit, Jeffrey; Deuster, Patricia A

    2016-09-01

    The use of energy beverages is high among the general population and military personnel. Previous studies have reported discrepancies between the actual amount of caffeine in products and the amount of caffeine on stated labels. Thus, the purpose of this study was to examine the content of caffeine listed on the labels of various energy drinks and energy shots. Top-selling energy drinks (n = 9) and energy shots (n = 5) were purchased from retail stores. Three of each of the 14 products were purchased and analyzed for caffeine content by an independent laboratory. Of the 14 products tested, 5 did not provide caffeine amounts on their facts panel-of those, 3 listed caffeine as an ingredient and 2 listed caffeine as part of a proprietary blend. The remaining 9 (of 14) products stated the amounts of caffeine on their labels, all of which were within 15% of the amount indicated on the label. In this study, although the energy beverages that indicated the amount of caffeine it contained had values within ±15% of the amount listed on the label, a potentially acceptable range, this finding is not acceptable with regard to current labeling regulations, which require added ingredients to total 100%.

  13. Exercise and sport performance with low doses of caffeine.

    Science.gov (United States)

    Spriet, Lawrence L

    2014-11-01

    Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5-13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis.

  14. Caffeine Intake May Modulate Inflammation Markers in Trained Rats

    Directory of Open Access Journals (Sweden)

    Rômulo Pillon Barcelos

    2014-04-01

    Full Text Available Caffeine is presented in many commercial products and has been proven to induce ergogenic effects in exercise, mainly related to redox status homeostasis, inflammation and oxidative stress-related adaptation mechanisms. However, most studies have mainly focused on muscle adaptations, and the role of caffeine in different tissues during exercise training has not been fully described. The aim of this study was therefore, to analyze the effects of chronic caffeine intake and exercise training on liver mitochondria functioning and plasma inflammation markers. Rats were divided into control, control/caffeine, exercise, and exercise/caffeine groups. Exercise groups underwent four weeks of swimming training and caffeine groups were supplemented with 6 mg/kg/day. Liver mitochondrial swelling and complex I activity, and plasma myeloperoxidase (MPO and acetylcholinesterase (AChE activities were measured. An anti-inflammatory effect of exercise was evidenced by reduced plasma MPO activity. Additionally, caffeine intake alone and combined with exercise decreased the plasma AChE and MPO activities. The per se anti-inflammatory effect of caffeine intake should be highlighted considering its widespread use as an ergogenic aid. Therefore, caffeine seems to interfere on exercise-induced adaptations and could also be used in different exercise-related health treatments.

  15. Caffeine Consumption and Sleep Quality in Australian Adults

    Science.gov (United States)

    Watson, Emily J.; Coates, Alison M.; Kohler, Mark; Banks, Siobhan

    2016-01-01

    Caffeine is commonly consumed to help offset fatigue, however, it can have several negative effects on sleep quality and quantity. The aim of this study was to determine the relationship between caffeine consumption and sleep quality in adults using a newly validated caffeine food frequency questionnaire (C-FFQ). In this cross sectional study, 80 adults (M ± SD: 38.9 ± 19.3 years) attended the University of South Australia to complete a C-FFQ and the Pittsburgh Sleep Quality Index (PSQI). Caffeine consumption remained stable across age groups while the source of caffeine varied. Higher total caffeine consumption was associated with decreased time in bed, as an estimate of sleep time (r = −0.229, p = 0.041), but other PSQI variables were not. Participants who reported poor sleep (PSQI global score ≥ 5) consumed 192.1 ± 122.5 mg (M ± SD) of caffeine which was significantly more than those who reported good sleep quality (PSQI global score < 5; 125.2 ± 62.6 mg; p = 0.008). The C-FFQ was found to be a quick but detailed way to collect population based caffeine consumption data. The data suggests that shorter sleep is associated with greater caffeine consumption, and that consumption is greater in adults with reduced sleep quality. PMID:27527212

  16. Caffeine Consumption and Sleep Quality in Australian Adults.

    Science.gov (United States)

    Watson, Emily J; Coates, Alison M; Kohler, Mark; Banks, Siobhan

    2016-08-04

    Caffeine is commonly consumed to help offset fatigue, however, it can have several negative effects on sleep quality and quantity. The aim of this study was to determine the relationship between caffeine consumption and sleep quality in adults using a newly validated caffeine food frequency questionnaire (C-FFQ). In this cross sectional study, 80 adults (M ± SD: 38.9 ± 19.3 years) attended the University of South Australia to complete a C-FFQ and the Pittsburgh Sleep Quality Index (PSQI). Caffeine consumption remained stable across age groups while the source of caffeine varied. Higher total caffeine consumption was associated with decreased time in bed, as an estimate of sleep time (r = -0.229, p = 0.041), but other PSQI variables were not. Participants who reported poor sleep (PSQI global score ≥ 5) consumed 192.1 ± 122.5 mg (M ± SD) of caffeine which was significantly more than those who reported good sleep quality (PSQI global score caffeine consumption data. The data suggests that shorter sleep is associated with greater caffeine consumption, and that consumption is greater in adults with reduced sleep quality.

  17. Effects of Adolescent Caffeine Consumption on Cocaine Sensitivity

    OpenAIRE

    O'Neill, Casey E; Levis, Sophia C; Schreiner, Drew C; Amat, Jose; Steven F. Maier; Bachtell, Ryan K.

    2014-01-01

    Caffeine is the most commonly used psychoactive substance, and consumption by adolescents has risen markedly in recent years. We identified the effects of adolescent caffeine consumption on cocaine sensitivity and determined neurobiological changes within the nucleus accumbens (NAc) that may underlie caffeine-induced hypersensitivity to cocaine. Male Sprague-Dawley rats consumed caffeine (0.3 g/l) or water for 28 days during adolescence (postnatal day 28–55; P28–P55) or adulthood (P67–P94). T...

  18. Regulation of cerebrospinal fluid production by caffeine consumption

    Directory of Open Access Journals (Sweden)

    Yoon Sik

    2009-09-01

    Full Text Available Abstract Background Caffeine is the most commonly consumed psycho-stimulant in the world. The effects of caffeine on the body have been extensively studied; however, its effect on the structure of the brain has not been investigated to date. Results In the present study we found that the long-term consumption of caffeine can induce ventriculomegaly; this was observed in 40% of the study rats. In the caffeine-treated rats with ventriculomegaly, there was increased production of CSF, associated with the increased expression of Na+, K+-ATPase and increased cerebral blood flow (CBF. In contrast to the chronic effects, acute treatment with caffeine decreased the production of CSF, suggesting 'effect inversion' associated with caffeine, which was mediated by increased expression of the A1 adenosine receptor, in the choroid plexus of rats chronically treated with caffeine. The involvement of the A1 adenosine receptor in the effect inversion of caffeine was further supported by the induction of ventriculomegaly and Na+, K+-ATPase, in A1 agonist-treated rats. Conclusion The results of this study show that long-term consumption of caffeine can induce ventriculomegaly, which is mediated in part by increased production of CSF. Moreover, we also showed that adenosine receptor signaling can regulate the production of CSF by controlling the expression of Na+, K+-ATPase and CBF.

  19. Antibacterial activity of caffeine against plant pathogenic bacteria.

    Science.gov (United States)

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  20. Bisphenol A migration from cans containing coffee and caffeine.

    Science.gov (United States)

    Kang, Jeong-Hun; Kondo, Fusao

    2002-09-01

    This study was conducted to reconfirm the possibility and level of bisphenol A (BPA) migration from cans containing coffee and test the relationship between caffeine concentration and BPA migration from the can coating. BPA migration from cans containing decaffeinated and non-decaffeinated instant coffee averaged 66.2 and 84.0 ng ml(-1), respectively. In our study, the possibility of BPA migration from cans containing coffee after processing was found. In addition, the more caffeine content in the water solution of caffeine increased, the more BPA migration grew. This means that caffeine can have an effect on BPA migration from the can coating.

  1. Urinary caffeine after coffee consumption and heat dehydration.

    Science.gov (United States)

    Chambaz, A; Meirim, I; Décombaz, J

    2001-07-01

    This study evaluated the effect of heat-induced dehydration on urinary caffeine excretion after the consumption of a strong coffee solution. Following ingestion of coffee (caffeine 4.9+/-0.1 [SE] mg/kg, 3-4 cups), ten healthy males were intermittently exposed to heat in a sauna until they had lost 2.9 % of lean mass. On a separate occasion, they consumed the same amount of coffee but remained quiet and euhydrated (control). Urine flow was reduced 7-fold in dehydration. At these low excretion rates (caffeine concentration was negatively correlated with flow. Peak urinary caffeine (Cmax) was 7.6 +/- 0.4 (SE) microg/ml in dehydration and 7.1 +/- 0.2 microg/ml in the control (p > 0.05). Compared with the control, dehydration delayed Cmax by 1 hour, maintained higher saliva caffeine concentration (6.1 vs 5.2 microg/ml, p caffeine ratio (p caffeine in urine was reduced (1.2 vs 2.8% of dose, p caffeine due to delayed metabolic clearance was partly opposed by a sizeable elimination in sweat. Therefore, heat dehydration did not lead to higher concentration of caffeine in urine after coffee ingestion.

  2. Caffeine reduction in coffee pulp through silage.

    Science.gov (United States)

    Porres, C; Alvarez, D; Calzada, J

    1993-01-01

    Silage tests to study reductions of antiphysiological compounds (caffeine and polyphenols) of fresh coffee pulp during the anaerobic fermentation were done. A concrete silo divided in compartments, with a total capacity of 9 tons of fresh material was utilized. The silage periods ranged between 99-224 days and the following materials were ensiled: 1) coffee pulp, 2) coffee pulp with sugar cane molasses, 3) coffee pulp with a mixture of molasses and ammonia and 4) screw pressed coffee pulp with molasses. Reductions in caffeine, total polyphenols and condensed polyphenols ranged between 13-63%, 28-70% and 51-81% respectively. It was concluded that in the case of coffee pulp, silage presents and ideal method to preserve the material and partially reduce the contents of antiphysiological compounds.

  3. Alcohol, nicotine, caffeine, and mental disorders

    OpenAIRE

    Crocq, Marc-Antoine

    2003-01-01

    Alcohol, nicotine, and caffeine are the most widely consumed psychotropic drugs worldwide. They are largely consumed by normal individuals, but their use is even more frequent in psychiatric patients, Thus, patients with schizophrenia tend to abuse all three substances. The interrelationships between depression and alcohol are complex. These drugs can all create dependence, as understood in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). Alcohol abuse is cl...

  4. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  5. Increased caffeine consumption is associated with reduced hepatic fibrosis

    Science.gov (United States)

    Modi, Apurva A; Feld, Jordan J; Park, Yoon; Kleiner, David E; Everhart, James E.; Liang, T. Jake; Hoofnagle, Jay H.

    2009-01-01

    Background Although coffee consumption has been associated with reduced frequency of liver disease, it is unclear whether the effect is from coffee or caffeine and whether there is an effect on hepatic fibrosis specifically. Aim To use a food-frequency instrument for dietary caffeine consumption to evaluate the relationship between caffeine intake and liver fibrosis. Methods Patients undergoing liver biopsy completed a detailed caffeine questionnaire on 3 occasions over a 6-month period. Caffeine intake was compared between patients with mild and advanced liver fibrosis (bridging fibrosis/cirrhosis). Logistic regression was used to evaluate the association between caffeine consumption and hepatic fibrosis. Results 177 patients (99 male, 104 Caucasian, 121 with chronic hepatitis C virus [HCV] infection) undergoing liver biopsy completed the caffeine questionnaire on up to three occasions. Results from repeated questionnaires were consistent. Daily caffeine consumption above the 75th percentile for the cohort (308 mg ~2.25 cups of coffee equivalents) was associated with reduced liver fibrosis (OR 0.33, 95% CI: 0.14-0.80, p=0.015) and the protective association persisted after controlling for age, sex, race, liver disease, body mass index and alcohol intake in all patients (OR 0.25, 95% CI: 0.09-0.67, p=0.006), as well as the subset with HCV infection (OR 0.19, 95% CI: 0.05-0.66, p=0.009). Despite a modest trend, consumption of caffeine from sources other than coffee or of decaffeinated coffee was not associated with reduced liver fibrosis. Conclusion A reliable tool for measurement of caffeine consumption demonstrated that caffeine consumption, particularly from regular coffee, above a threshold of approximately 2 coffee-cup equivalents per day, was associated with less severe hepatic fibrosis. PMID:20034049

  6. Caffeine triggers behavioral and neurochemical alterations in adolescent rats.

    Science.gov (United States)

    Ardais, A P; Borges, M F; Rocha, A S; Sallaberry, C; Cunha, R A; Porciúncula, L O

    2014-06-13

    Caffeine is the psychostimulant most consumed worldwide but concerns arise about the growing intake of caffeine-containing drinks by adolescents since the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly known. We now studied the behavioral impact in adolescent male rats of regular caffeine intake at low (0.1mg/mL), moderate (0.3mg/mL) and moderate/high (1.0mg/mL) doses only during their active period (from 7:00 P.M. to 7:00 A.M.). All tested doses of caffeine were devoid of effects on locomotor activity, but triggered anxiogenic effects. Caffeine (0.3 and 1mg/mL) improved the performance in the object recognition task, but the higher dose of caffeine (1.0mg/mL) decreased the habituation to an open-field arena, suggesting impaired non-associative memory. All tested doses of caffeine decreased the density of glial fibrillary acidic protein and synaptosomal-associated protein-25, but failed to modify neuron-specific nuclear protein immunoreactivity in the hippocampus and cerebral cortex. Caffeine (0.3-1mg/mL) increased the density of brain-derived neurotrophic factor (BDNF) and proBDNF density as well as adenosine A1 receptor density in the hippocampus, whereas the higher dose of caffeine (1mg/mL) increased the density of proBDNF and BDNF and decreased A1 receptor density in the cerebral cortex. These findings document an impact of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF levels and decreases of astrocytic and nerve terminal markers without overt neuronal damage in hippocampal and cortical regions.

  7. Increased caffeine consumption is associated with reduced hepatic fibrosis.

    Science.gov (United States)

    Modi, Apurva A; Feld, Jordan J; Park, Yoon; Kleiner, David E; Everhart, James E; Liang, T Jake; Hoofnagle, Jay H

    2010-01-01

    Although coffee consumption has been associated with reduced frequency of liver disease, it is unclear whether the effect is from coffee or caffeine and whether there is an effect on hepatic fibrosis specifically. This study was undertaken to use a food-frequency instrument for dietary caffeine consumption to evaluate the relationship between caffeine intake and liver fibrosis. Patients undergoing liver biopsy completed a detailed caffeine questionnaire on three occasions over a 6-month period. Caffeine intake was compared between patients with mild and advanced liver fibrosis (bridging fibrosis/cirrhosis). Logistic regression was used to evaluate the association between caffeine consumption and hepatic fibrosis. One hundred seventy-seven patients (99 male, 104 white, 121 with chronic hepatitis C virus [HCV] infection) undergoing liver biopsy completed the caffeine questionnaire on up to three occasions. Results from repeated questionnaires were consistent. Daily caffeine consumption above the 75(th) percentile for the cohort (308 mg = approximately 2.25 cups of coffee equivalents) was associated with reduced liver fibrosis (odds ratio [OR], 0.33; 95% confidence interval [CI], 0.14-0.80; P = 0.015) and the protective association persisted after controlling for age, sex, race, liver disease, body mass index, and alcohol intake in all patients (OR, 0.25; 95% CI, 0.09-0.67; P = 0.006), as well as the subset with HCV infection (OR, 0.19; 95% CI, 0.05-0.66; P = 0.009). Despite a modest trend, consumption of caffeine from sources other than coffee or of decaffeinated coffee was not associated with reduced liver fibrosis. A reliable tool for measurement of caffeine consumption demonstrated that caffeine consumption, particularly from regular coffee, above a threshold of approximately 2 coffee-cup equivalents per day, was associated with less severe hepatic fibrosis.

  8. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Science.gov (United States)

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  9. Energy drink consumption and impact on caffeine risk.

    Science.gov (United States)

    Thomson, Barbara M; Campbell, Donald M; Cressey, Peter; Egan, Ursula; Horn, Beverley

    2014-01-01

    The impact of caffeine from energy drinks occurs against a background exposure from naturally occurring caffeine (coffee, tea, cocoa and foods containing these ingredients) and caffeinated beverages (kola-type soft drinks). Background caffeine exposure, excluding energy drinks, was assessed for six New Zealand population groups aged 15 years and over (n = 4503) by combining concentration data for 53 caffeine-containing foods with consumption information from the 2008/09 New Zealand Adult Nutrition Survey (ANS). Caffeine exposure for those who consumed energy drinks (n = 138) was similarly assessed, with inclusion of energy drinks. Forty-seven energy drink products were identified on the New Zealand market in 2010. Product volumes ranged from 30 to 600 ml per unit, resulting in exposures of 10-300 mg caffeine per retail unit consumed. A small percentage, 3.1%, of New Zealanders reported consuming energy drinks, with most energy drink consumers (110/138) drinking one serving per 24 h. The maximum number of energy drinks consumed per 24 h was 14 (total caffeine of 390 mg). A high degree of brand loyalty was evident. Since only a minor proportion of New Zealanders reported consuming energy drinks, a greater number of New Zealanders exceeded a potentially adverse effect level (AEL) of 3 mg kg(-1) bw day(-1) for caffeine from caffeine-containing foods than from energy drinks. Energy drink consumption is not a risk at a population level because of the low prevalence of consumption. At an individual level, however, teenagers, adults (20-64 years) and females (16-44 years) were more likely to exceed the AEL by consuming energy drinks in combination with caffeine-containing foods.

  10. The effects of caffeine on option generation and subsequent choice.

    NARCIS (Netherlands)

    Haüsser, Jan; Schlemmer, Alexander; Kaiser, S.; Kalis, Annemarie; Mojzisch, A.

    2014-01-01

    Rationale Although the effects of caffeine on basic cognitive functions are well-known, its effects on more complex decision making, particularly on option generation, is yet to be explored. Objective We examined the effects of caffeine on option generation in decision making using everyday life dec

  11. The Effects of Caffeine on Memory for Word Lists.

    Science.gov (United States)

    Erikson, George; And Others

    Research has suggested that behavioral differences may account for the effects of caffeine on information processing. To investigate the effects of caffeine on memory for supraspan word lists, 107 college students (47 males, 60 females), divided into 12 groups by high and low impulsivity scores on the Eysenck Personality Inventory, participated in…

  12. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  13. Design, formulation and evaluation of caffeine chewing gum

    Directory of Open Access Journals (Sweden)

    Abolfazl Aslani

    2013-01-01

    Conclusion: In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test.

  14. International society of sports nutrition position stand: caffeine and performance

    Directory of Open Access Journals (Sweden)

    Wildman Robert

    2010-01-01

    Full Text Available Abstract Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1. Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg. 2. Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3. It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4. Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5. Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6. The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7. The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.

  15. Subjective and objective effects of coffee consumption - caffeine or expectations?

    Science.gov (United States)

    Dömötör, Zs; Szemerszky, R; Köteles, F

    2015-03-01

    Impact of 5 mg/kg caffeine, chance of receiving caffeine (stimulus expectancies), and expectations of effects of caffeine (response expectancies) on objective (heart rate (HR), systolic/diastolic blood pressure (SBP/DBP), measures of heart rate variability (HRV), and reaction time (RT)) and subjective variables were investigated in a double-blind, placebo-controlled experiment with a no-treatment group. Participants were 107 undergraduate university students (mean age 22.3 ± 3.96 years). Consumption of 5 mg/kg caffeine had an impact on participants' SBP, standard deviation of normal heartbeat intervals, HR (decrease), and subjective experience 40 minutes later even after controlling for respective baseline values, stimulus and response expectancies, and habitual caffeine consumption. No effects on DBP, high frequency component of HRV, the ratio of low- and high-frequency, and RT were found. Beyond actual caffeine intake, response expectancy score was also a determinant of subjective experience which refers to a placebo component in the total effect. Actual autonomic (SBP, HR) changes and somatosensory amplification tendency, however, had no significant impact on subjective experience. Placebo reaction plays a role in the subjective changes caused by caffeine consumption but it has no impact on objective variables. Conditional vs deceptive administration of caffeine (i.e. stimulus expectancies) had no impact on any assessed variable.

  16. Letter to the editor: Caffeine and incident hypertension in women

    NARCIS (Netherlands)

    Geleijnse, J.M.

    2006-01-01

    Dr Winkelmayer and colleagues1 found an inverse U-shaped relationship between habitual caffeine consumption and incident hypertension in a prospective cohort study of US women followed up for 12 years in the Nurses' Health Studies. However, when examining classes of caffeinated beverages, coffee con

  17. Associations between smoking and caffeine consumption in two European cohorts

    NARCIS (Netherlands)

    Treur, J.L.; Taylor, A.E.; Ware, J.J.; McMahon, G.; Hottenga, J.J.; Baselmans, B.M.L.; Willemsen, G.; Boomsma, D.I.; Munafò, M.R.; Vink, J.M.

    2016-01-01

    Aims To estimate associations between smoking initiation, smoking persistence and smoking heaviness and caffeine consumption, in two population-based samples from the Netherlands and the United Kingdom. Design Observational study employing data on self-reported smoking behaviour and caffeine consump

  18. Caffeine and the risk of hip fracture: the Framingham Study.

    Science.gov (United States)

    Kiel, D P; Felson, D T; Hannan, M T; Anderson, J J; Wilson, P W

    1990-10-01

    Caffeine increases urinary calcium output and has been implicated as a risk factor for osteoporosis. The authors examined the effect of caffeine on hip fracture risk in 3,170 individuals attending the 12th (1971-1973) Framingham Study examination. Coffee and tea consumption, age, Framingham examination number, weight, smoking, alcohol consumption, and estrogen use were used to evaluate hip fracture risk according to caffeine intake. Hip fractures occurred in 135 subjects during 12 years of follow-up. Fracture risk over each 2-year period increased with increasing caffeine intake (one cup of coffee = one unit of caffeine, one cup of tea = 1/2 unit of caffeine). For intake of 1.5-2.0 units per day, the adjusted relative risk (RR) of fracture was not significantly elevated compared with intake of one or less units per day. Consumption of greater than or equal to 2.5 units per day significantly increased the risk of fracture. Overall, intake of greater than two cups of coffee per day (four cups of tea) increased the risk of fracture. In summary, hip fracture risk was modestly increased with heavy caffeine use, but not for intake equivalent to one cup of coffee per day. Since caffeine use may be associated with other behaviors that are, themselves, risk factors for fracture, the association may be indirect. Further studies should be performed to confirm these findings.

  19. Caffeine Use among Active Duty Navy and Marine Corps Personnel

    Directory of Open Access Journals (Sweden)

    Joseph J. Knapik

    2016-10-01

    Full Text Available Data from the National Health and Nutrition Examination Survey (NHANES indicate 89% of Americans regularly consume caffeine, but these data do not include military personnel. This cross-sectional study examined caffeine use in Navy and Marine Corps personnel, including prevalence, amount of daily consumption, and factors associated with use. A random sample of Navy and Marine Corps personnel was contacted and asked to complete a detailed questionnaire describing their use of caffeine-containing substances, in addition to their demographic, military, and lifestyle characteristics. A total of 1708 service members (SMs completed the questionnaire. Overall, 87% reported using caffeinated beverages ≥1 time/week, with caffeine users consuming a mean ± standard error of 226 ± 5 mg/day (242 ± 7 mg/day for men, 183 ± 8 mg/day for women. The most commonly consumed caffeinated beverages (% users were coffee (65%, colas (54%, teas (40%, and energy drinks (28%. Multivariable logistic regression modeling indicated that characteristics independently associated with caffeine use (≥1 time/week included older age, white race/ethnicity, higher alcohol consumption, and participating in less resistance training. Prevalence of caffeine use in these SMs was similar to that reported in civilian investigations, but daily consumption (mg/day was higher.

  20. Structural features of DNA interaction with caffeine and theophylline

    Science.gov (United States)

    Nafisi, Shohreh; Manouchehri, Firouzeh; Tajmir-Riahi, Heidar-Ali; Varavipour, Maryam

    2008-03-01

    Caffeine and theophylline are strong antioxidants that prevent DNA damage. The anticancer and antiviral activities of these natural products are implicated in their mechanism of actions. However, there has been no information on the interactions of these xanthine derivatives with individual DNA at molecular level. The aim of this study was to examine the stability and structural features of calf-thymus DNA complexes with caffeine and theophylline in aqueous solution, using constant DNA concentration (6.25 mM) and various caffeine or theophylline/DNA(P) ratios of 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. FTIR, UV-visible spectroscopic methods were used to determine the ligand external binding modes, the binding constant and the stability of caffeine, theophylline-DNA complexes in aqueous solution. Spectroscopic evidence showed that the complexation of caffeine and theophylline with DNA occurred via G-C and A-T and PO 2 group with overall binding constants of K(caffeine-DNA) = 9.7 × 10 3 M -1 and K(theophylline-DNA) = 1.7 × 10 4 M -1. The affinity of ligand-DNA binding is in the order of theophylline > caffeine. A partial B to A-DNA transition occurs upon caffeine and theophylline complexation.

  1. Caffeine. Courseware Evaluation for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This courseware evaluation rates the "Caffeine" program developed by Lane Community College and sold by the Oregon Department of Education. (The program--not included in this document--is part of a computer-assisted instruction project with nursing applications.) Part A describes "Caffeine" in terms of topics (food and nutrition, allied health)…

  2. Effect of Coffee and Caffeine Ingestion on Resistance Exercise Performance.

    Science.gov (United States)

    Richardson, Darren L; Clarke, Neil D

    2016-10-01

    Richardson, DL and Clarke, ND. Effect of coffee and caffeine ingestion on resistance exercise performance. J Strength Cond Res 30(10): 2892-2900, 2016-The aim of the present study was to determine the effect of ingesting caffeine dose-matched anhydrous caffeine, coffee, or decaffeinated coffee plus anhydrous caffeine during resistance exercise on performance. Nine resistance-trained men (mean ± SD: age, 24 ± 2 years; weight, 84 ± 8 kg; height, 180 ± 8 cm) completed a squat and bench press exercise protocol at 60% 1 repetition maximum until failure on 5 occasions consuming 0.15 g·kg caffeinated coffee (COF), 0.15 g·kg decaffeinated coffee (DEC), 0.15 g·kg decaffeinated coffee plus 5 mg·kg anhydrous caffeine (D + C), 5 mg·kg anhydrous caffeine (CAF), or a placebo (PLA). Felt arousal and rating of perceived exertion (RPE) were used to assess perceptual variables and heart rate (HR) to assess physiological responses between trials. There were significant differences in total weight lifted for the squat between conditions (p Coffee and decaffeinated coffee plus caffeine have the ability to improve performance during a resistance exercise protocol, although possibly not over multiple bouts.

  3. Caffeine metabolites not caffeine protect against riboflavin photosensitized oxidative damage related to skin and eye health

    DEFF Research Database (Denmark)

    Scurachio, R. S.; Mattiucci, F.; Santos, W. G.;

    2016-01-01

    Caffeine metabolites were found to bind riboflavin with dissociation constant in the millimolar region by an exothermic process with positive entropy of reaction, which was found by 1H NMR and fluorescence spectroscopy to occur predominantly by hydrogen bonding with water being released from ribo...

  4. Effect of melatonin and caffeine interaction on caffeine induced oxidative stress and sleep disorders.

    Science.gov (United States)

    Obochi, G O; Amali, O O E; Ochalefu, D O

    2010-11-24

    Effect of interaction of melatonin and caffeine on caffeine induced oxidative stress and sleep disorders was studied. Fifteen wistar rats were randomly assigned into three study groups. The animals in group 1 (the control) received a placebo of 10.0 ml distilled water via gastric intubation. The hosts in groups 2 and 3 were treated with 100 mg caffeine/ kg, or melatonin/ kg, respectively, in a total volume of 10.0 ml vehicle. The experiment lasted for 30 days. One day after the final exposure, the animals were euthanized by inhalation of overdose of chloroform. Blood was collected by cardiac puncture. Serum was obtained by centrifugation (6000 Xg, 30 mins), and used for serum total protein and serum blood urea nitrogen levels. The brain of each rat was also harvested and processed into whole homogenate, frozen in liquid nitrogen (N2), and maintained at -80oC until used for total brain cholesterol and tryptophan levels. The results showed that interaction of melatonin and caffeine enhanced protein synthesis; stimulated gonadotrophin release,  and could be used as oral contraceptive for women, and may be beneficial in the treatment of impotence (androgen depression), leading to improved reproductive and sex life; stimulated tryptophan metabolism, which prevents vitamin B6 deficiency, anemia, negative nitrogen balance, tissue wasting and accumulation of xanthurenic acid, which promotes sleep; and could be beneficial in the treatment of hyper cholesterolemia, thereby preventing coronary heart disease, and post menopausal osteoporosis.

  5. Influence of caffeine and caffeine withdrawal on headache and cerebral blood flow velocities

    NARCIS (Netherlands)

    Couturier, EGM; Laman, DM; vanDuijn, MAJ; vanDuijn, H

    1997-01-01

    Caffeine consumption may cause headache, particularly migraine. Its withdrawal also produces headaches and may be related to weekend migraine attacks. Transcranial Doppler sonography (TCD) has shown changes in cerebral blood flow velocities (BFV) during and between attacks of migraine. In order to e

  6. Caffeine challenge test and panic disorder: a systematic literature review.

    Science.gov (United States)

    Vilarim, Marina Machado; Rocha Araujo, Daniele Marano; Nardi, Antonio Egidio

    2011-08-01

    This systematic review aimed to examine the results of studies that have investigated the induction of panic attacks and/or the anxiogenic effect of the caffeine challenge test in patients with panic disorder. The literature search was performed in PubMed, Biblioteca Virtual em Saúde and the ISI Web of Knowledge. The words used for the search were caffeine, caffeine challenge test, panic disorder, panic attacks and anxiety disorder. In total, we selected eight randomized, double-blind studies where caffeine was administered orally, and none of them controlled for confounding factors in the analysis. The percentage of loss during follow-up ranged between 14.3% and 73.1%. The eight studies all showed a positive association between caffeine and anxiogenic effects and/or panic disorder.

  7. Acute caffeine administration affects zebrafish response to a robotic stimulus.

    Science.gov (United States)

    Ladu, Fabrizio; Mwaffo, Violet; Li, Jasmine; Macrì, Simone; Porfiri, Maurizio

    2015-08-01

    Zebrafish has been recently proposed as a valid animal model to investigate the fundamental mechanisms regulating emotional behavior and evaluate the modulatory effects exerted by psychoactive compounds. In this study, we propose a novel methodological framework based on robotics and information theory to investigate the behavioral response of zebrafish exposed to acute caffeine treatment. In a binary preference test, we studied the response of caffeine-treated zebrafish to a replica of a shoal of conspecifics moving in the tank. A purely data-driven information theoretic approach was used to infer the influence of the replica on zebrafish behavior as a function of caffeine concentration. Our results demonstrate that acute caffeine administration modulates both the average speed and the interaction with the replica. Specifically, zebrafish exposed to elevated doses of caffeine show reduced locomotion and increased sensitivity to the motion of the replica. The methodology developed in this study may complement traditional experimental paradigms developed in the field of behavioral pharmacology.

  8. Understanding Adolescent Caffeine Use: Connecting Use Patterns with Expectancies, Reasons, and Sleep

    Science.gov (United States)

    Ludden, Alison Bryant; Wolfson, Amy R.

    2010-01-01

    Little is known about adolescents' caffeine use, yet caffeinated soda, and more recently coffee and energy drinks, are part of youth culture. This study examines adolescents' caffeine use and, using cluster analysis, identifies three groups of caffeine users who differed in their reasons for use, expectancies, and sleep behaviors. In this high…

  9. Caffeine induction of sulfotransferases in rat liver and intestine.

    Science.gov (United States)

    Zhou, Tianyan; Chen, Yue; Huang, Chaoqun; Chen, Guangping

    2012-10-01

    Sulfotransferases (SULTs) are important phase II drug-metabolizing enzymes. Regulation of SULTs by hormones and other endogenous molecules is relatively well understood, while xenobiotic induction of SULTs is not well studied. Caffeine is one of the most widely consumed psychoactive substances. However, SULT regulation by caffeine has not been reported. In this report, male and female rats were treated with different oral doses of caffeine (2, 10, 50 mg kg⁻¹ per day) for 7 days. Western blot and real-time RT-PCR were used to investigate the changes in SULT protein and mRNA expression following the caffeine treatment. Caffeine induced both rat aryl sulfotransferase (rSULT1A1, AST-IV) and rat hydroxysteroid sulfotransferase (rSULT2A1, STa) in the liver and intestine of female rats in a dose-dependent manner. Caffeine induction of rSULT1A1 and rSULT2A1 in the female rat intestine was much stronger than that in the liver. Although caffeine induced rSULT1A1 significantly in the male rat liver, it did not significantly induce rSULT2A1. In male rat intestine, caffeine significantly induced rSULT2A1. The different SULTs induction patterns in male and female rats suggest that the regulation of rat SULTs by caffeine may be affected by different hormone secretion patterns and levels. Our results suggest that consumption of caffeine can induce drug metabolizing SULTs in drug detoxification tissues.

  10. The effect of caffeine ingestion on delayed onset muscle soreness.

    Science.gov (United States)

    Hurley, Caitlin F; Hatfield, Disa L; Riebe, Deborah A

    2013-11-01

    The beneficial effects of caffeine on aerobic activity and resistance training performance are well documented. However, less is known concerning caffeine's potential role in reducing perception of pain and soreness during exercise. In addition, there is no information regarding the effects of caffeine on delayed onset muscle soreness (DOMS). The primary purpose of this study was to examine the effect of caffeine ingestion on muscle soreness, blood enzyme activity, and performance after a bout of elbow flexion/extension exercise. Nine low-caffeine-consuming males (body mass: 76.68 ± 8.13 kg; height: 179.18 ± 9.35 cm; age: 20 ± 1 year) were randomly assigned to ingest either caffeine or placebo 1 hour before completing 4 sets of 10 bicep curls on a preacher bench, followed by a fifth set in which subjects completed as many repetitions as possible. Soreness and soreness on palpation intensity were measured using three 0-10 visual analog scales before exercise, and 24, 48, 72, 96, and 120 hours after exercise. After a washout period, subjects crossed over to the other treatment group. Caffeine ingestion resulted in significantly (p ≤ 0.05) lower levels of soreness on day 2 and day 3 compared with placebo. Total repetitions in the final set of exercise increased with caffeine ingestion compared with placebo. This study demonstrates that caffeine ingestion immediately before an upper-body resistance training out enhances performance. A further beneficial effect of sustained caffeine ingestion in the days after the exercise bout is an attenuation of DOMS. This decreased perception of soreness in the days after a strenuous resistance training workout may allow individuals to increase the number of training sessions in a given time period.

  11. Caffeine content of Ethiopian Coffea arabica beans

    Directory of Open Access Journals (Sweden)

    Maria Bernadete Silvarolla

    2000-03-01

    Full Text Available The coffee germplasm bank of the Instituto Agronômico de Campinas has many Coffea arabica accessions from Ethiopia, which is considered the primary center of genetic diversity in coffee plants. An evaluation of the caffeine content of beans from 99 progenies revealed intra- and inter-progeny variability. In 68 progenies from the Kaffa region we found caffeine values in the range 0.46-2.82% (mean 1.18%, and in 22 progenies from Illubabor region these values ranged from 0.42 to 2.90% (mean 1.10%. This variability could be exploited in a breeding program aimed at producing beans with low-caffeine content.O banco de germoplasma de café do Instituto Agronômico de Campinas contém grande número de introduções de Coffea arabica provenientes da Etiópia, considerada centro de diversidade genética desta espécie. A avaliação dos teores de cafeína nas sementes de 99 progênies revelou a presença de variabilidade entre e dentro das progênies, de acordo com a região de origem das introduções. Entre as 68 progênies da região de Kaffa encontraram-se valores de cafeína entre 0.46 e 2.82% (média 1.18% e entre as 22 progênies de Illubabor obtiveram-se plantas cujos teores de cafeína variaram de 0.42 a 2.90% (média 1.10%. A variabilidade aqui relatada poderá ser explorada na produção de uma variedade de café com baixos teores de cafeína nas sementes.

  12. Caffeine potentiation of calcium release in frog skeletal muscle fibres.

    Science.gov (United States)

    Delay, M; Ribalet, B; Vergara, J

    1986-06-01

    The effects of caffeine at concentrations up to 3 mM were studied on Ca signals obtained using the metallochromic Ca indicator dyes Arsenazo III and Antipyrylazo III in cut frog skeletal muscle fibres mounted in a triple Vaseline-gap chamber and stimulated by voltage clamp or action potential. The peak amplitude of the transient absorbance change due to Ca2+ release following action potential stimulation is potentiated by an amount dependent on caffeine concentration up to 0.5 mM, and by a concentration-independent amount between 0.5 and 2 mM. At 3 mM-caffeine, the potentiation is reduced, and the Ca signal can have a smaller amplitude than under the control condition. The time course of the rising phase of the Ca signal is preserved by the potentiating effect of caffeine; however, the decay rate of the Ca signal is increasingly slowed at caffeine concentrations greater than 0.5 mM. No substantial change was found in the resting myoplasmic Ca2+ level at caffeine concentrations near 0.5 mM. Even if the free Ca2+ concentration in the presence of this level of caffeine were to increase by 0.04 microM (the threshold of detectability), the calculated potentiation of the Ca signal due to increased partial saturation of intracellular Ca2+ buffers would amount to only about 7%. This value is significantly less than the amount of potentiation observed (up to 40%) following action potentials at caffeine levels of 0.5 mM and above. Experiments made with the impermeant potentiometric dye NK2367 show no alteration by caffeine of the electrical properties of the tubular system. Caffeine at up to moderate concentrations causes a substantial increase in the maximal Ca2+ release obtained following large depolarizations. The voltage dependence of the Ca2+ release is characterized by a caffeine concentration-dependent shift towards more negative membrane potentials. The potentiation of Ca2+ release by caffeine was found to be independent of the external free Ca2+ level. The

  13. Role of state-dependent learning in the cognitive effects of caffeine in mice

    OpenAIRE

    Sanday, Leandro [UNIFESP; Zanin, Karina Agustini [UNIFESP; Patti, Camilla de Lima [UNIFESP; Fernandes-Santos, Luciano [UNIFESP; Oliveira, Larissa C. [UNIFESP; Longo, Beatriz Monteiro; Andersen, Monica Levy [UNIFESP; Tufik, Sergio; Frussa-Filho, Roberto

    2013-01-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine be...

  14. Caffeine consuming children and adolescents show altered sleep behavior and deep sleep

    OpenAIRE

    2015-01-01

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children's and adolescents' sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10-16 years). While later habitual bedtimes (Caffeine 23:14 ± 11...

  15. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep

    OpenAIRE

    2015-01-01

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children’s and adolescents’ sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10–16 years). While later habitual bedtimes (Caffeine 23:14 ± 11...

  16. Investigations of the presence of caffeine in the Rudawa River, Kraków, Poland

    OpenAIRE

    Jagoda, Agnieszka; Żukowski, Witold; Dąbrowska, Barbara

    2015-01-01

    Caffeine concentration in surface water (Rudawa River, Kraków, Poland) has been being investigated since 2011. The method applied for investigations was developed in 2011, and the first series of measurements of caffeine concentration in surface water began in 2011. Caffeine concentration was determined by the gas chromatography-mass spectrometry (GC-MS) method. Solid phase extraction (SPE) was used to enrich the concentration of caffeine in water samples. As an internal standard, the caffein...

  17. Physiology, biochemistry and possible applications of microbial caffeine degradation.

    Science.gov (United States)

    Gummadi, Sathyanarayana N; Bhavya, B; Ashok, Nandhini

    2012-01-01

    Caffeine, a purine alkaloid is a constituent of widely consumed beverages. The scientific evidence which has proved the harm of this alkaloid has paved the way for innumerable research in the area of caffeine degradation. In addition to this, the fact that the by-products of the coffee and tea industry pollute the environment has called for the need of decaffeinating coffee and tea industry's by-products. Though physical and chemical methods for decaffeination are available, the lack of specificity for removal of caffeine in these techniques and their non-eco-friendly nature has opened the area of microbial and enzymatic degradation of caffeine. Another important application of microbial caffeine degradation apart from its advantages like specificity, eco-friendliness and cost-effectiveness is the fact that this process will enable the production of industrially and medically useful components of the caffeine degradation pathway like theobromine and theophylline. This is a comprehensive review which mainly focuses on caffeine degradation, large-scale degradation of the same and its applications in the industrial world.

  18. Effects of theobromine and caffeine on mood and vigilance.

    Science.gov (United States)

    Judelson, Daniel A; Preston, Amy G; Miller, Debra L; Muñoz, Colleen X; Kellogg, Mark D; Lieberman, Harris R

    2013-08-01

    Like caffeine, theobromine crosses the blood-brain barrier and binds to adenosine receptors, suggesting it might share caffeine's beneficial effects on mood and vigilance. Therefore, the purpose of this study was to assess the effect of theobromine doses commonly found in foods on mood and vigilance parameters sensitive to caffeine. Caffeine was tested as a positive control. Twenty-four men (age, 23 [3] years) completed 6 double-blind trials during which they consumed experimental beverages, assessed their mood using standardized self-report questionnaires, and completed a 2-hour visual vigilance task. Three experimental doses (100, 200, and 400 mg theobromine) were delivered in a cocoa-based beverage; 3 matched control treatments (0 mg theobromine, 400 mg theobromine, and 100 mg caffeine) were delivered in a non-cocoa beverage. Mean salivary concentrations of theobromine exhibited significant dose-dependent differences (400 mg trials > 200 mg trial > 100 mg trial > 0 mg trials; P 0.05), but 100-mg caffeine significantly decreased lethargy/fatigue and increased vigor (P = 0.006 and 0.011, respectively). These findings indicate theobromine does not influence mood and vigilance when administered in nutritionally relevant doses, despite sharing many of caffeine's structural characteristics.

  19. Influence of drug concentration on the diffusion parameters of caffeine

    Directory of Open Access Journals (Sweden)

    R Ben Mustapha

    2011-01-01

    Full Text Available Background and Objectives : In the fields of the pharmaceutical and cosmetic industries and in toxicology, the study of the skin penetration of molecules is very interesting. Various studies have considered the impact of different physicochemical drug characteristics, skin thickness, and formulations, on the transition from the surface of the skin to the underlying tissues or to the systemic circulation; however, the influence of drug concentration on the permeation flux of molecules has rarely been raised. Our study aims to discover the influence of caffeine concentration in a formulation on the percutaneous penetration from gels, as a result of different dose applications to polysulfate membrane and human skin. Materials and Methods : For this purpose, three identical base gels were used at 1, 3, and 5% of caffeine, to evaluate the effect of the concentration of caffeine on in vitro release through the synthetic membrane and ex vivo permeation through the human skin, using diffusion Franz TM cells. Results : The diffusion through the epidermal tissue was significantly slower than through the synthetic membrane, which recorded an increase of flux with an increase in the concentration of caffeine. The skin permeation study showed that diffusion depended not only on the concentration, but also on the deposited amount of gel. Nevertheless, for the same amount of caffeine applied, the flux was more significant from the less concentrated gel. Conclusion : Among all the different concentrations of caffeine examined, 1% gel of caffeine applied at 5 mg / cm 2 showed the highest absorption characteristics across human skin.

  20. Caffeine as a cause of urticaria-angioedema

    Directory of Open Access Journals (Sweden)

    Linda Tognetti

    2014-01-01

    Full Text Available We report the case of a young woman presenting with recurrent urticaria. The episodes occurred both in and out of the workplace. On three occasions it presented as urticaria-angioedema, requiring emergency care on one occassion. A thorough clinical history along with serological and allergological tests allowed a diagnosis of caffeine-induced urticaria-angioedema. We advised the patient to follow a caffeine-free diet and to avoid all caffeine or methylxanthine-containing drugs. After two years of caffeine abstinence, she had not experienced any further episodes of urticaria-angioedema. Only a few cases of caffeine-induced urticaria and/or anaphylaxis have been reported till date, with varying outcomes in allergologic investigations. Moreover, several cases are probably undiagnosed or misdiagnosed as idiopathic urticaria or as occupational allergy. We speculate that hypersensitivity to caffeine rather than autoimmine reaction may be the probable cause of urticaria. Caffeine should considered as a potential urticaria-inducing agent and should be included in the allergological test series.

  1. Caffeine Consumption and Sleep Quality in Australian Adults

    OpenAIRE

    Watson, Emily J.; Alison M. Coates; Kohler, Mark; Banks, Siobhan

    2016-01-01

    Caffeine is commonly consumed to help offset fatigue, however, it can have several negative effects on sleep quality and quantity. The aim of this study was to determine the relationship between caffeine consumption and sleep quality in adults using a newly validated caffeine food frequency questionnaire (C-FFQ). In this cross sectional study, 80 adults (M ± SD: 38.9 ± 19.3 years) attended the University of South Australia to complete a C-FFQ and the Pittsburgh Sleep Quality Index (PSQI). Caf...

  2. Cumulative neurobehavioral and physiological effects of chronic caffeine intake: individual differences and implications for the use of caffeinated energy products.

    Science.gov (United States)

    Spaeth, Andrea M; Goel, Namni; Dinges, David F

    2014-10-01

    The use of caffeine-containing energy products has increased worldwide in recent years. All of the top-selling energy drinks contain caffeine, which is likely to be the primary psychoactive ingredient in these products. Research shows that caffeine-containing energy products can improve cognitive and physical performance. Presumably, individuals consume caffeine-containing energy products to counteract feelings of low energy in situations causing tiredness, fatigue, and/or reduced alertness. This review discusses the scientific evidence for sleep loss, circadian phase, sleep inertia, and the time-on-task effect as causes of low energy and summarizes research assessing the efficacy of caffeine to counteract decreased alertness and increased fatigue in such situations. The results of a placebo-controlled experiment in healthy adults who had 3 nights of total sleep deprivation (with or without 2-hour naps every 12 hours) are presented to illustrate the physiological and neurobehavioral effects of sustained low-dose caffeine. Individual differences, including genetic factors, in the response to caffeine and to sleep loss are discussed. The review concludes with future directions for research on this important and evolving topic.

  3. The impact of caffeine use across the lifespan on cognitive performance in elderly women.

    Science.gov (United States)

    Perry, Clinton S; Thomas, Ayanna K; Taylor, Holly A; Jacques, Paul F; Kanarek, Robin B

    2016-12-01

    Habitual caffeine consumption has often been associated with decreasing age-related cognitive decline. However, whether habitual caffeine use preferentially spares different cognitive processes is unclear. Furthermore, whether basing habitual caffeine consumption patterns on current consumption or on a lifetime measure better represents an individual's use remains unclear. In the present study, we collected information from women, aged 56-83, about their current caffeine consumption patterns and history of use, including age they began consuming caffeine. Regression models assessed the relationship between caffeine consumption and performance on batteries designed to probe speed of processing, inhibition, memory, and executive function. While we found no direct associations between caffeine exposure and cognitive performance, we found that caffeine consumption and participant BMI interacted for inhibitory function and speed of processing performance. We discuss possible protective effects of long term caffeine use as well as the possibility of dose dependent effects.

  4. [Caffeine--common ingredient in a diet and its influence on human health].

    Science.gov (United States)

    Wierzejska, Regina

    2012-01-01

    Caffeine is widely consumed by people of all ages. In the last period a market of caffeine-containing products, particularly energy drinks and food supplements increased. Caffeine for years is under discussion, whether has positive whether adverse impact on health. Children are a group of special anxieties. Caffeine is a stimulant of central nervous system and therefore is probably the most commonly used psychoactive substance in the world. The physiological effect of caffeine and the lack of nutrition value causes a great interest its impact on health, especially with reference to the risk of cardiovascular diseases. Results of scientific research are not clear. The influence of caffeine on the human body is conditioned with the individual metabolism of caffeine which also depends on many endogenic and environmental factors. According to the current knowledge moderate caffeine intake by healthy adults at a dose level of 400 mg a day is not associated with adverse effects, but it also depends on other health determinants of a lifestyle. Excessive caffeine consumption can cause negative health consequences such as psychomotor agitation, insomnia, headache, gastrointestinal complaints. Adverse effect of caffeine intoxication is classified in World Health Organization's International Classification of Diseases (ICD-10). Metabolism of caffeine by pregnant woman is slowed down. Caffeine and its metabolites pass freely across the placenta into a fetus. For this reason pregnant women should limit caffeine intake. Children and adolescents should also limit daily caffeine consumption. It results from the influence of caffeine on the central nervous system in the period of rapid growth and the final stage of brain development, calcium balance and sleep duration. Average daily caffeine consumption in European countries ranging from 280-490 mg. The highest caffeine intake is in Scandinavian countries what results from the great consumption of the coffee. As far as caffeine

  5. Removal of caffeine from industrial wastewater using Trichosporon asahii.

    Science.gov (United States)

    Lakshmi, V; Das, Nilanjana

    2013-07-01

    Caffeine (1,3,7-trimethylxanthine), a natural alkaloid present mainly in tea and coffee products has been suggested as an environmental pollutant. Decaffeination is an important process for the removal of caffeine from coffee industrial wastes. In the present study, caffeine removal (through degradation) by yeast isolate, Trichosporon asahii immobilized on various conventional matrices (sodium alginate, carboxymethyl cellulose, chitosan, agar and agarose) was investigated using the method of entrapment. The biofilm forming ability of T. asahii was monitored by atomic force microscopy and scanning electron microscopy. Exopolysaccharide produced by T asahii biofilm was characterized by FT-IR spectroscopy and HPLC analysis. Caffeine removal from coffee processing industrial effluent was found to be 75 and 80 % by alginate immobilized yeast and yeast biofilm formed on gravels over a period of 48 hr in batch mode. Effectiveness of the process was also tested involving the continuous--flow column studies.

  6. Consumption and foraging behaviors for common stimulants (nicotine, caffeine).

    Science.gov (United States)

    Phillips, James G; Currie, Jonathan; Ogeil, Rowan P

    2016-01-01

    Models are needed to understand the emerging capability to track consumers' movements. Therefore, we examined the use of legal and readily available stimulants that vary in their addictive potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the number of times and locations stimulants were purchased and used. On average, nicotine dependent individuals made their purchases from 2 locations, while caffeine dependent individuals consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use. Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency. The finding has implications for attempts to control substance use.

  7. Protonation of caffeine: A theoretical and experimental study

    Science.gov (United States)

    Bahrami, Hamed; Tabrizchi, Mahmoud; Farrokhpour, Hossein

    2013-03-01

    Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M+ ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of "internal proton affinity" (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.

  8. Assessing Caffeine as an Emerging Environmental Concern Using Conventional Approaches

    Science.gov (United States)

    Organic wastewater contaminants, including pharmaceuticals, caffeine, and nicotine, have received increased scrutiny because of their detection in water bodies receiving wastewater discharge. Despite recent measurement in US streams, caffeine’s effect on freshwater organisms is not well documented....

  9. [Caffeine and adaptive changes in the circulatory system during pregnancy].

    Science.gov (United States)

    Cendrowska-Pinkosz, Monika; Dworzański, Wojciech; Krauze, Magdalena; Burdan, Franciszek

    2017-01-23

    Adaptive physiological changes that occur in pregnant women can fluctuate with the intake of substances with proven, adverse biological effect on the body. Due to the fact that caffeine is one of the most chronically used xenobiotics, the impact of consuming caffeine on adaptive processes in the circulatory system of a pregnant women required a research. Many researchers emphasise its negative effect on the circulatory system of the mother and her offspring. However, in spite of years of observation, there is no clear answer to what extent dose or in what period of time the caffeine modulates the adaptive processes during pregnancy. Because of the potential risk the supply of caffeine during pregnancy should be subjected to considerable restrictions.

  10. Cigarette, alcohol, and caffeine consumption: risk factors for spontaneous abortion

    DEFF Research Database (Denmark)

    Rasch, Vibeke

    2003-01-01

    OBJECTIVE: To study the association between cigarette, alcohol, and caffeine consumption and the occurrence of spontaneous abortion. METHODS: The study population consisted of 330 women with spontaneous abortion and 1168 pregnant women receiving antenatal care. A case-control design was utilized......; cases were defined as women with a spontaneous abortion in gestational week 6-16 and controls as women with a live fetus in gestational week 6-16. The variables studied comprise age, parity, occupational situation, cigarette, alcohol, and caffeine consumption. The association between cigarette, alcohol......, and caffeine consumption was studied using logistic regression analyzes while controlling for confounding variables. In addition stratified analyzes of the association between caffeine consumption and spontaneous abortion on the basis of cigarette and alcohol consumption were performed. RESULTS: Women who had...

  11. The effect of caffeine on cerebral asymmetry in rats.

    Science.gov (United States)

    Voiculescu, M; Segarceanu, A; Negutu, M; Ghita, I; Fulga, I; Coman, O A

    2015-01-01

    EEG recordings reflect the gross electrical activity emanating from synaptic currents of individual neurons across large cortical areas. During periods of cortical activation, waking, and higher EEG frequencies, neurons display increased excitability and exhibit more asynchronous discharge. The activity of a number of subcortical neurotransmitter systems from several brain regions outside the thalamus can directly affect cortical activity patterns. These neurotransmitter systems are generally targets of pharmacological intervention or participate in neurological disease states. The EEG trace comprises 4 primary rhythms: alfa (α), beta (β), theta (θ) and delta (δ), which differ in frequency and amplitude. Caffeine effect on brain asymmetry will be studied in this work. The study was realized by means of Fourier spectral frequency analysis (Fast Fourier Transformation) of the EEG signal on anesthetized rats. All 3 doses of caffeine increased the global wave power of brain activity compared to the control group. All 3 doses of caffeine reduced the number of peaks for the 0.5-4 Hz frequency band, with the intermediate dose of caffeine having such an effect in the 4-7 Hz frequency band and the high dose of caffeine for the 23-33 Hz frequency band. The group that received high doses of caffeine showed an increase of the percentage of delta waves, with a concurrent decrease of the percentage of alpha1, alpha2, beta and theta 2 compared to the control group. Low-dose caffeine produced positive values of left-right difference in brain electrical activity (left predominance) for the 0.5-5 Hz and 7.8-10.3 Hz frequency intervals. The group that received high-dose caffeine exhibited a left hemisphere dominance for the 0.5-1.5 Hz; 13.9-14.1 Hz and 19-20 Hz frequency ranges while right dominance was present in the 1.7-13.9 Hz, 15-19 Hz and 21-25 Hz frequency ranges. In conclusion, all doses of caffeine modified the global power of the brain as well as the number of peaks on

  12. Differential cognitive effects of energy drink ingredients: caffeine, taurine, and glucose.

    Science.gov (United States)

    Giles, Grace E; Mahoney, Caroline R; Brunyé, Tad T; Gardony, Aaron L; Taylor, Holly A; Kanarek, Robin B

    2012-10-01

    Energy drinks containing caffeine, taurine, and glucose may improve mood and cognitive performance. However, there are no studies assessing the individual and interactive effects of these ingredients. We evaluated the effects of caffeine, taurine, and glucose alone and in combination on cognitive performance and mood in 24-hour caffeine-abstained habitual caffeine consumers. Using a randomized, double-blind, mixed design, 48 habitual caffeine consumers (18 male, 30 female) who were 24-hour caffeine deprived received one of four treatments (200 mg caffeine/0 mg taurine, 0 mg caffeine/2000 mg taurine, 200 mg caffeine/2000 mg taurine, 0 mg caffeine/0 mg taurine), on each of four separate days, separated by a 3-day wash-out period. Between-participants treatment was a glucose drink (50 g glucose, placebo). Salivary cortisol, mood and heart rate were measured. An attention task was administered 30-minutes post-treatment, followed by a working memory and reaction time task 60-minutes post-treatment. Caffeine enhanced executive control and working memory, and reduced simple and choice reaction time. Taurine increased choice reaction time but reduced reaction time in the working memory tasks. Glucose alone slowed choice reaction time. Glucose in combination with caffeine, enhanced object working memory and in combination with taurine, enhanced orienting attention. Limited glucose effects may reflect low task difficulty relative to subjects' cognitive ability. Caffeine reduced feelings of fatigue and increased tension and vigor. Taurine reversed the effects of caffeine on vigor and caffeine-withdrawal symptoms. No effects were found for salivary cortisol or heart rate. Caffeine, not taurine or glucose, is likely responsible for reported changes in cognitive performance following consumption of energy drinks, especially in caffeine-withdrawn habitual caffeine consumers.

  13. Caffeine enhances upper body strength in resistance-trained women

    Directory of Open Access Journals (Sweden)

    Penhollow Tina

    2010-05-01

    Full Text Available Abstract Background Research has indicated that low-to-moderate dosages of caffeine supplementation are ergogenic for sustained endurance efforts as well as high-intensity exercise. The effects of caffeine supplementation on strength-power performance are equivocal, with some studies indicating a benefit and others demonstrating no change in performance. The majority of research that has examined the effects of caffeine supplementation on strength-power performance has been carried out in both trained and untrained men. Therefore, the purpose of this study was to determine the acute effects of caffeine supplementation on strength and muscular endurance in resistance-trained women. Methods In a randomized manner, 15 women consumed caffeine (6 mg/kg or placebo (PL seven days apart. Sixty min following supplementation, participants performed a one-repetition maximum (1RM barbell bench press test and repetitions to failure at 60% of 1RM. Heart rate (HR and blood pressure (BP were assessed at rest, 60 minutes post-consumption, and immediately following completion of repetitions to failure. Results Repeated measures ANOVA indicated a significantly greater bench press maximum with caffeine (p ≤ 0.05 (52.9 ± 11.1 kg vs. 52.1 ± 11.7 kg with no significant differences between conditions in 60% 1RM repetitions (p = 0.81. Systolic blood pressure was significantly greater post-exercise, with caffeine (p Conclusions These findings indicate a moderate dose of caffeine may be sufficient for enhancing strength performance in resistance-trained women.

  14. Human coffee drinking: manipulation of concentration and caffeine dose.

    OpenAIRE

    Griffiths, R R; Bigelow, G E; Liebson, I A; O'Keeffe, M; O'Leary, D.; Russ, N

    1986-01-01

    In a residential research ward coffee drinking was studied in 9 volunteer human subjects with histories of heavy coffee drinking. A series of five experiments was undertaken to characterize adlibitum coffee consumption and to investigate the effects of manipulating coffee concentration, caffeine dose per cup, and caffeine preloads prior to coffee drinking. Manipulations were double-blind and scheduled in randomized sequences across days. When cups of coffee were freely available, coffee drink...

  15. [Cigarette and coffee--pharmacokinetics interaction between nicotine and caffeine].

    Science.gov (United States)

    Florek, Ewa; Enko, Jolanta; Piekoszewski, Wojciech

    2009-01-01

    Coffee drinking and tobacco smoking stand nicotine and caffeine the number one licit psychoactive substances. Many people inseparably combine a cup of coffee with cigarette. The two most important compounds in these products, nicotine and caffeine can influence on there concentration and pharmacodynamics activity in the body. The changes of the level of these compounds can be caused by changes of the pharmacokinetics on the way of enzyme induction by other chemical individuals content in the coffee and tobacco smoke.

  16. Neonatal caffeine exposure and seizure susceptibility in adult rats.

    Science.gov (United States)

    Guillet, R; Dunham, L

    1995-08-01

    Early developmental exposure to caffeine in rats results in changes in brain excitability that persist to adulthood. The mechanism of these alterations is unknown. To identify potential neurotransmitter systems involved, we exposed neonatal rats to caffeine and determined seizure thresholds for chemoconvulsants active at different CNS receptors in the adult animal. Rats were unhandled (NH) or received by gavage (0.05 ml/10 g) either vehicle (water) or caffeine (15-20 mg/kg/day) for postnatal days 2-6. At age 70-90 days, each rat was infused intravenously (i.v.) with picrotoxin (PIC), bicuculline (BIC) [convulsants acting at the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor], pentylenetetrazol [PTZ, possibly acting at both GABA/BDZ and N-methyl-D-aspartate (NMDA) receptors], caffeine (acting at adenosine receptors), strychnine (STR, acting at glycine receptors), or kainic acid (KA, acting at the NMDA receptor). Seizure thresholds were analyzed as a function of neonatal treatment and sex. Thresholds for caffeine, PTZ, PIC, and KA were increased as a function of neonatal caffeine exposure (p = 0.01, 0.02, 0.02, and 0.005, respectively). The thresholds for BIC and STR were not altered. There were also gender differences in seizure susceptibility. Thresholds for seizures produced by BIC, caffeine, PIC, and STR were higher in females (p = 0.005, 0.005, 0.001, and 0.0001, respectively), but were not different for seizures caused by PTZ. These results suggest that early developmental exposure to caffeine affects later seizure susceptibility. Moreover, some of these effects are gender specific.

  17. Effects of caffeine intake and smoking on neurocognition in schizophrenia.

    Science.gov (United States)

    Núñez, Christian; Stephan-Otto, Christian; Cuevas-Esteban, Jorge; Maria Haro, Josep; Huerta-Ramos, Elena; Ochoa, Susana; Usall, Judith; Brébion, Gildas

    2015-12-30

    Although most studies support the beneficial effects of caffeine on neurocognition, its effects have never been assessed in psychiatric patients. In addition, results from studies in smokers are contradictory. Moreover, there are no data available about the neurocognitive effects of caffeine and tobacco together. We explored the concomitant effects of regular caffeine and tobacco intake on neurocognition in 52 schizophrenic patients and 61 healthy controls. Verbal fluency, processing speed, and working, visual and verbal memory were assessed. For each measurement, two tasks with two levels of complexity were administered. Our results showed that caffeine intake had beneficial effects on male schizophrenic patients only in complex tasks requiring deeper cognitive processing (semantic fluency, cognitive speed, working memory, and visual memory). Female patients and controls were unaffected. In contrast, smoking had a negative effect on male, but not on female, schizophrenic patients in semantic fluency. The effects of smoking in controls were inconsistent. In conclusion, our data showed, for the first time, beneficial effects of caffeine intake on neurocognition in male schizophrenic patients. These data suggest that further research of therapeutics based on caffeine is needed, as this could be beneficial for schizophrenic patients. In contrast, smoking appears to be detrimental.

  18. The use of caffeine versus prophylactic naps in sustained performance.

    Science.gov (United States)

    Bonnet, M H; Gomez, S; Wirth, O; Arand, D L

    1995-02-01

    Previous studies have shown that performance during sleep loss is improved by prophylactic naps as a function of varying nap length. Based on single-dose caffeine studies, a similar dose-response effect has been hypothesized on performance, alertness and mood during sleep loss. The present study compared the effects of repeated versus single-dose administration of caffeine and varying amounts of sleep taken prior to sleep loss on performance, mood and physiological measures during 2 nights and days of sleep loss. A total of 140 normal, young adult males participated at one of two study sites. Ninety-eight subjects at one site were randomly assigned to one of four nap conditions (0, 2, 4 or 8 hours) and 42 subjects at the second site were assigned to one of four caffeine conditions. After a normal baseline night of sleep and morning baseline tests of performance, mood and nap latency, subjects in the nap groups returned to bed at noon, 1600 hours, 1800 hours or not at all. Bedtimes were varied so that all naps ended at 2000 hours. Subjects in the caffeine groups received either a single 400-mg dose of caffeine at 0130 hours each night or repeated doses of 150 or 300 mg every 6 hours starting at 0130 hours on the 1st night of sleep loss. A placebo control group (no nap and placebo administered every 6 hours on the repeated caffeine schedule) was run at both sites.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Science.gov (United States)

    Jin, Lu; Bhuiya, Mohammad Wadud; Li, Mengmeng; Liu, XiangQi; Han, Jixiang; Deng, WeiWei; Wang, Min; Yu, Oliver; Zhang, Zhengzhu

    2014-01-01

    Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g., tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  20. Recent advances in caffeine and theobromine toxicities: a review.

    Science.gov (United States)

    Eteng, M U; Eyong, E U; Akpanyung, E O; Agiang, M A; Aremu, C Y

    1997-01-01

    Caffeine and theobromine are purine alkaloids widely consumed as stimulants and snacks in coffee and cocoa based foods and most often as part of ingredients in drugs. Man has enjoyed a long history of consumption of caffeine and theobromine. Recent interest in these two alkaloids, however, is centered on their potential reproductive toxicities. Caffeine and theobromine are now known to cross the placental and blood brain barrier thus potentially inducing fetal malformation by affecting the expression of genes vital in development. The developing fetus may not have developed enzymes for detoxification of these methylxanthine alkaloids via demethylation. There is a need, therefore, to protect the conceptus against 'insults' from teratogens of this nature. Apart from its reproductive toxicity, the presence of caffeine and theobromine in cocoa could limit its potentials as a nourishing food. This is an issue that needs to be addressed by nutritionists and the food industry at large. This paper discusses the natural sources, consumption and uses, toxicity and the major advances in the reproductive toxicology of caffeine and theobromine. The biosynthesis of these compounds in plants, metabolism in mammalian systems and the involvement of cytochrome P450 are reviewed and summarized. Evidence in favor of the toxicity of these compounds in experimental animals is presented with emphasis on the implications of these findings in humans. The paper concludes with a call for caution in the use of caffeine and theobromine pending further and more elaborate investigations.

  1. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.

    Directory of Open Access Journals (Sweden)

    Lu Jin

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine and theobromine (3, 7-dimethylxanthine are the major purine alkaloids in plants, e.g., tea (Camellia sinensis and coffee (Coffea arabica. Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT and Camellia sinensis caffeine synthase (TCS in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed.

  2. Protonation of caffeine: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Hamed [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Tabrizchi, Mahmoud, E-mail: m-tabriz@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Farrokhpour, Hossein [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-03-29

    Highlights: ► Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources. ► Experimental and theoretical evidence was collected to assign the observed peaks to caffeine related ionic species. ► A new concept of “internal proton affinity”, the protonation tendency for each atom in a molecule, was defined. - Abstract: Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M{sup +} ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of “internal proton affinity” (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.

  3. Caffeine: cognitive and physical performance enhancer or psychoactive drug?

    Science.gov (United States)

    Cappelletti, Simone; Piacentino, Daria; Daria, Piacentino; Sani, Gabriele; Aromatario, Mariarosaria

    2015-01-01

    Caffeine use is increasing worldwide. The underlying motivations are mainly concentration and memory enhancement and physical performance improvement. Coffee and caffeine-containing products affect the cardiovascular system, with their positive inotropic and chronotropic effects, and the central nervous system, with their locomotor activity stimulation and anxiogenic-like effects. Thus, it is of interest to examine whether these effects could be detrimental for health. Furthermore, caffeine abuse and dependence are becoming more and more common and can lead to caffeine intoxication, which puts individuals at risk for premature and unnatural death. The present review summarizes the main findings concerning caffeine's mechanisms of action (focusing on adenosine antagonism, intracellular calcium mobilization, and phosphodiesterases inhibition), use, abuse, dependence, intoxication, and lethal effects. It also suggests that the concepts of toxic and lethal doses are relative, since doses below the toxic and/or lethal range may play a causal role in intoxication or death. This could be due to caffeine's interaction with other substances or to the individuals' preexisting metabolism alterations or diseases.

  4. Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms.

    Science.gov (United States)

    Boere, Julia J; Fellinger, Lizz; Huizinga, Duncan J H; Wong, Sebastiaan F; Bijleveld, Erik

    2016-02-01

    A prevalent combination in daily life, performance pressure and caffeine intake have both been shown to impact people's cognitive performance. Here, we examined the possibility that pressure and caffeine affect cognitive performance via a shared pathway. In an experiment, participants performed a modular arithmetic task. Performance pressure and caffeine intake were orthogonally manipulated. Findings indicated that pressure and caffeine both negatively impacted performance. However, (a) pressure vs. caffeine affected performance on different trial types, and (b) there was no hint of an interactive effect. So, though the evidence is indirect, findings suggest that pressure and caffeine shape performance via distinct mechanisms, rather than a shared one.

  5. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes

    OpenAIRE

    Vaynshteyn, David; Jeong, Hyunyoung

    2012-01-01

    Caffeine is the active constituent in coffee. Continual consumption of caffeine can lead to an attenuated response also known as tolerance. Results from rat studies have shown that caffeine is an inducer of CYP1A2, the enzyme responsible for caffeine’s metabolism. This suggests that CYP1A2 induction by caffeine may be in part responsible for caffeine tolerance. However, whether caffeine induces CYP1A2 expression in humans remains unknown. Our results from luciferase assays performed in HepG2 ...

  6. Caffeine and cognitive decline in elderly women at high vascular risk. : Caffeine and cognition in high-risk women

    OpenAIRE

    Vercambre, Marie-Noël; Berr, Claudine; Ritchie, Karen,; Kang, Jae,

    2013-01-01

    International audience; BACKGROUND: Persons with vascular disorders are at higher risk of cognitive decline. OBJECTIVE: To determine whether caffeine may be associated with cognitive decline reduction in elderly at high vascular risk. METHODS: We included 2,475 women aged 65+ years in the Women's Antioxidant Cardiovascular Study, a randomized trial of antioxidants and B vitamins for cardiovascular disease secondary prevention. We ascertained regular caffeine intake at baseline (1995-1996) usi...

  7. Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life.

    Science.gov (United States)

    Ardais, Ana Paula; Rocha, Andréia S; Borges, Maurício Felisberto; Fioreze, Gabriela T; Sallaberry, Cássia; Mioranzza, Sabrina; Nunes, Fernanda; Pagnussat, Natália; Botton, Paulo Henrique S; Cunha, Rodrigo A; Porciúncula, Lisiane de Oliveira

    2016-04-15

    Caffeine is the psychostimulant most consumed worldwide. In moderate doses, it affords a beneficial effect in adults and upon aging, but has a deleterious effect during brain development. We now tested if caffeine consumption by rats (0.1, 0.3, 1.0 g/L in the drinking water, only during active cycle and weekdays) during adulthood could revert the potentially negative effects of caffeine during early life. Thus, we compared caffeine intake starting 15 days before mating and lasting either up to weaning (development) or up to adulthood, on behavior and synaptic proteins in male and female rats. Recognition memory was impaired only in female rats receiving caffeine (0.3 and 1.0 g/L) during development, coincident with increased proBDNF and unchanged BDNF levels in the hippocampus. Caffeine in both treatment regimens caused hyperlocomotion only in male rats, whereas anxiety-related behavior was attenuated in both sexes by caffeine (1.0 g/L) throughout life. Both caffeine treatment regimens decreased GFAP (as an astrocyte marker) and SNAP-25 (as a nerve terminals marker) in the hippocampus from male rats. TrkB receptor was decreased in the hippocampus from both sexes and treatment regimens. These findings revealed that caffeine intake during a specific time window of brain development promotes sex-dependent behavioral outcomes related to modification in BDNF signaling. Furthermore, caffeine throughout life can overcome the deleterious effects of caffeine on recognition memory during brain development in female rats.

  8. Caffeine induces CYP1A2 expression in rat hepatocytes but not in human hepatocytes.

    Science.gov (United States)

    Vaynshteyn, David; Jeong, Hyunyoung

    2012-06-01

    Caffeine is the active constituent in coffee. Continual consumption of caffeine can lead to an attenuated response also known as tolerance. Results from rat studies have shown that caffeine is an inducer of CYP1A2, the enzyme responsible for caffeine's metabolism. This suggests that CYP1A2 induction by caffeine may be in part responsible for caffeine tolerance. However, whether caffeine induces CYP1A2 expression in humans remains unknown. Our results from luciferase assays performed in HepG2 cells showed that caffeine is not an activator of the aromatic hydrocarbon receptor (AhR), a major transcription factor involved in upregulation of CYP1A2. Furthermore, caffeine did not induce CYP1A2 expression in primary human hepatocytes at a concentration attained by ordinary coffee drinking. On the other hand, caffeine enhanced CYP1A2 expression by 9-fold in rat hepatocytes. Our results suggest that caffeine from ordinary coffee drinking does not induce CYP1A2 expression in humans and that factors other than CYP1A2 induction by caffeine likely contribute to development of caffeine tolerance in humans.

  9. Small Beneficial Effect of Caffeinated Energy Drink Ingestion on Strength.

    Science.gov (United States)

    Collier, Nora B; Hardy, Michelle A; Millard-Stafford, Mindy L; Warren, Gordon L

    2016-07-01

    Collier, NB, Hardy, MA, Millard-Stafford, ML, and Warren, GL. Small beneficial effect of caffeinated energy drink ingestion on strength. J Strength Cond Res 30(7): 1862-1870, 2016-Because caffeine ingestion has been found to increase muscle strength, our aim was to determine whether caffeine when combined with other potential ergogenic ingredients, such as those in commercial energy drinks, would have a similar effect. Fifteen young healthy subjects were used in a double-blind, repeated-measures experimental design. Each subject performed 3 trials, ingesting either a caffeinated energy drink, an uncaffeinated version of the drink, or a placebo drink. The interpolated twitch procedure was used to assess maximum voluntary isometric contraction (MVIC) strength, electrically evoked strength, and percent muscle activation during MVIC of the knee extensors both before and after drink ingestion, and after a fatiguing bout of contractions; electromyographic (EMG) amplitude of the knee extensors during MVIC was also assessed. The mean (±SE) change in MVIC strength from before to after drink ingestion was significantly greater for the caffeinated energy drink compared with placebo [+5.0 (±1.7) vs. -0.5 (±1.5)%] and the difference between the drinks remained after fatigue (p = 0.015); the strength changes for the uncaffeinated energy drink were not significantly different from those of the other 2 drinks at any time. There was no significant effect of drink type on the changes in electrically evoked strength, percent muscle activation, and EMG from before to after drink ingestion. This study indicates that a caffeinated energy drink can increase MVIC strength but the effect is modest and the strength increase cannot be attributed to increased muscle activation. Whether the efficacy of energy drinks can be attributed solely to caffeine remains unclear.

  10. Caffeine attenuates scopolamine-induced memory impairment in humans.

    Science.gov (United States)

    Riedel, W; Hogervorst, E; Leboux, R; Verhey, F; van Praag, H; Jolles, J

    1995-11-01

    Caffeine consumption can be beneficial for cognitive functioning. Although caffeine is widely recognized as a mild CNS stimulant drug, the most important consequence of its adenosine antagonism is cholinergic stimulation, which might lead to improvement of higher cognitive functions, particularly memory. In this study, the scopolamine model of amnesia was used to test the cholinergic effects of caffeine, administered as three cups of coffee. Subjects were 16 healthy volunteers who received 250 mg caffeine and 2 mg nicotine separately, in a placebo-controlled double-blind cross-over design. Compared to placebo, nicotine attenuated the scopolamine-induced impairment of storage in short-term memory and attenuated the scopolamine-induced slowing of speed of short-term memory scanning. Nicotine also attenuated the scopolamine-induced slowing of reaction time in a response competition task. Caffeine attenuated the scopolamine-induced impairment of free recall from short- and long-term memory, quality and speed of retrieval from long-term memory in a word learning task, and other cognitive and non-cognitive measures, such as perceptual sensitivity in visual search, reading speed, and rate of finger-tapping. On the basis of these results it was concluded that caffeine possesses cholinergic cognition enhancing properties. Caffeine could be used as a control drug in studies using the scopolamine paradigm and possibly also in other experimental studies of cognitive enhancers, as the effects of a newly developed cognition enhancing drug should at least be superior to the effects of three cups of coffee.

  11. Caffeine, Is it effective for prevention of postdural puncture headache in young adult patients?

    Directory of Open Access Journals (Sweden)

    Ashraf Ragab

    2014-04-01

    Conclusion: It seems that the incidence of postdural puncture headache decreases in those patients who received caffeine sodium benzoate. The article can potentially help clinicians to use caffeine as an effective drug for prevention of PDPH.

  12. Caffeinated coffee enhances co-operative behavior in the Mixed Motive Game in healthy volunteers.

    Science.gov (United States)

    Tse, Wai S; Chan, Chi Choi S; Shiu, Shun Yan K; Chung, Pik Yee A; Cheng, Shuk Han

    2009-02-01

    Caffeinated drinks are commonly consumed in social gatherings. However, their effects on social behavior remain unclear. The present study examined the effects of caffeinated coffee on antidepressant-related co-operative behavior. Seventy-seven low-caffeine users took part in a randomized, double-blind, cross-over study of single dose of caffeinated coffee (150 mg caffeine) and decaffeinated coffee (9 mg caffeine) with at least a 3-day washout period. In each session, participants were asked to imagine a fictitious person and play the Mixed Motive Game with that person 45 min after coffee consumption. Heart rate, blood pressure, and state moods were measured at baseline and at 45 min post-coffee consumption. After caffeinated coffee, participants exhibited significantly higher blood pressure. They also allocated significantly fewer scores to themselves and sent significantly more sadness message during the game. These results suggest that caffeinated coffee may help to improve social support and depressive symptoms.

  13. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine

    OpenAIRE

    Womack Christopher J; Saunders Michael J; Bechtel Marta K; Bolton David J; Martin Michael; Luden Nicholas D; Dunham Wade; Hancock Melyssa

    2012-01-01

    Abstract Background Although caffeine supplementation improves performance, the ergogenic effect is variable. The cause(s) of this variability are unknown. A (C/A) single nucleotide polymorphism at intron 1 of the cytochrome P450 (CYP1A2) gene influences caffeine metabolism and clinical outcomes from caffeine ingestion. The purpose of this study was to determine if this polymorphism influences the ergogenic effect of caffeine supplementation. Methods Thirty-five trained male cyclists (age = 2...

  14. Influence of caffeine on blood pressure and platelet aggregation

    Directory of Open Access Journals (Sweden)

    José Wilson S. Cavalcante

    2000-08-01

    Full Text Available OBJECTIVE: Studies have demonstrated that methylxanthines, such as caffeine, are A1 and A2 adenosine receptor antagonists found in the brain, heart, lungs, peripheral vessels, and platelets. Considering the high consumption of products with caffeine in their composition, in Brazil and throughout the rest of the world, the authors proposed to observe the effects of this substance on blood pressure and platelet aggregation. METHODS: Thirteen young adults, ranging from 21 to 27 years of age, participated in this study. Each individual took 750mg/day of caffeine (250mg tid, over a period of seven days. The effects on blood pressure were analyzed through the pressor test with handgrip, and platelet aggregation was analyzed using adenosine diphosphate, collagen, and adrenaline. RESULTS: Diastolic pressure showed a significant increase 24 hours after the first intake (p<0.05. This effect, however, disappeared in the subsequent days. The platelet aggregation tests did not reveal statistically significant alterations, at any time during the study. CONCLUSION: The data suggest that caffeine increases diastolic blood pressure at the beginning of caffeine intake. This hypertensive effect disappears with chronic use. The absence of alterations in platelet aggregation indicates the need for larger randomized studies.

  15. Graphene platforms for the detection of caffeine in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, Weslie Yu Heng; Pumera, Martin; Bonanni, Alessandra, E-mail: a.bonanni@ntu.edu.sg

    2013-12-04

    Graphical abstract: -- Highlights: •Commercial caffeine was detected on different chemically modified graphenes. •Electrochemically reduced graphene (ERGO) provided the best performance. •ERGO was then employed for the detection of caffeine in real samples. -- Abstract: The analysis of food components is of high importance due to food safety and security. Here the electrochemical detection of caffeine was performed on different chemically modified graphene (CMG) surfaces carrying diverse amount of defects and oxygen functionalities. The analytical performances of graphite oxide (GPO), graphene oxide (GO), and electrochemically reduced graphene oxide (ERGO) were compared for the first time for the detection of caffeine. It was found that ERGO showed the most favourable analytical parameters, such as lower oxidation potential, sensitivity, linearity and reproducibility of the response. ERGO was then used for the analysis of real samples. Caffeine levels of soluble coffee, teas and energetic drinks were measured without the need of any sample pre-treatment. Our findings are very important to gain more insight into the applicability of different graphene materials to real samples for sense-and-act analysis.

  16. Impact of Caffeine on Weight Changes Due to Ketotifen Administration

    Directory of Open Access Journals (Sweden)

    Bohlool Habibi Asl

    2014-03-01

    Full Text Available Purpose: Prescription of ketotifen as an effective antihistamine in asthma and allergic conditions is associated with side effect of weight gain. Caffeine is an agent which increases thermogenesis and improves energy expenditure and also effective in asthma. The aim of current study was to evaluate caffeine impact in reducing weight gain side effect of ketotifen. Methods: Male mice at the weight limit of 20-30 g in 8 groups were randomly chosen and injected following drug dosages for 45 days intraperitoneally: control group (normal saline 10 ml/kg, three groups of ketotifen (4, 8, 16 mg/kg, three groups of caffeine (4, 8, 16 mg/kg and one group of ketotifen (4 mg/kg in combination with caffeine (4 mg/kg. Weight changes have been recorded and assessed every 3 days for 45 days. Results: The results showed that in all dosages of the two drugs, significant weight loss occurred in comparison with the control group. Conclusion: The effect of caffeine on weight loss according to our results, matches with human studies, while ketotifen contradictory to our assumption, resulted in weight loss which probably was related to the difference in metabolic pathways in mice and humans, or maybe the used doses of ketotifen in this study were insufficient to reduce TNF-α production or influence in serotonin release and be effective on appetite or weight gain.

  17. Do energy drinks contain active components other than caffeine?

    Science.gov (United States)

    McLellan, Tom M; Lieberman, Harris R

    2012-12-01

    Energy drinks (EDs) contain caffeine and are a new, popular category of beverage. It has been suggested that EDs enhance physical and cognitive performance; however, it is unclear whether the claimed benefits are attributable to components other than caffeine. A typical 235 mL ED provides between 40 and 250 mg of caffeine, equating to doses that improve cognitive and, at the higher levels, physical performance. EDs often contain taurine, guaraná, ginseng, glucuronolactone, B-vitamins, and other compounds. A literature search using PubMed, Psych Info, and Google Scholar identified 32 articles that examined the effects of ED ingredients alone and/or in combination with caffeine on physical or cognitive performance. A systematic evaluation of the evidence-based findings in these articles was then conducted. With the exception of some weak evidence for glucose and guaraná extract, there is an overwhelming lack of evidence to substantiate claims that components of EDs, other than caffeine, contribute to the enhancement of physical or cognitive performance. Additional well-designed, randomized, placebo-controlled studies replicated across laboratories are needed in order to assess claims made for these products.

  18. Caffeine increases light responsiveness of the mouse circadian pacemaker.

    Science.gov (United States)

    van Diepen, Hester C; Lucassen, Eliane A; Yasenkov, Roman; Groenen, Inske; Ijzerman, Adriaan P; Meijer, Johanna H; Deboer, Tom

    2014-11-01

    Caffeine is the most commonly used psychoactive stimulant worldwide. It reduces sleep and sleepiness by blocking access to the adenosine receptor. The level of adenosine increases during sleep deprivation, and is thought to induce sleepiness and initiate sleep. Light-induced phase shifts of the rest-activity circadian rhythms are mediated by light-responsive neurons of the suprachiasmatic nucleus (SCN) of the hypothalamus, where the circadian clock of mammals resides. Previous studies have shown that sleep deprivation reduces circadian clock phase-shifting capacity and decreases SCN neuronal activity. In addition, application of adenosine agonists and antagonists mimics and blocks, respectively, the effect of sleep deprivation on light-induced phase shifts in behaviour, suggesting a role for adenosine. In the present study, we examined the role of sleep deprivation in and the effect of caffeine on light responsiveness of the SCN. We performed in vivo electrical activity recordings of the SCN in freely moving mice, and showed that the sustained response to light of SCN neuronal activity was attenuated after 6 h of sleep deprivation prior to light exposure. Subsequent intraperitoneal application of caffeine was able to restore the response to light. Finally, we performed behavioural recordings in constant conditions, and found enhanced period lengthening during chronic treatment with caffeine in drinking water in constant light conditions. The data suggest that increased homeostatic sleep pressure changes circadian pacemaker functioning by reducing SCN neuronal responsiveness to light. The electrophysiological and behavioural data together provide evidence that caffeine enhances clock sensitivity to light.

  19. Determination of caffeine using oscillating chemical reaction in a CSTR.

    Science.gov (United States)

    Gao, Jinzhang; Ren, Jie; Yang, Wu; Liu, XiuHui; Yang, Hua

    2003-07-14

    A new analytical method for the determination of caffeine by the sequential perturbation caused by different amounts of caffeine on the oscillating chemical system involving the manganese(II)-catalyzed reaction between potassium bromate and tyrosine in acidic medium in a CSTR was proposed. The method exposed for the first time in this work. It relies on the relationship between the changes in the oscillation amplitude of the chemical system and the concentration of caffeine. The calibration curve fits a second-order polynomial equation very well when the concentration of caffeine over the range 4.0 x 10(-6) - 1.2 x 10(-4) M (r = 0.9968). The effect of influential variables, such as the concentration of reaction components, injection point, temperature, flow rate and stirring rate were studied. Some aspects of the potential mechanism of action of caffeine on the chemical oscillating system were also discussed. A real sample was determined and the result was satisfactory.

  20. Storm in a coffee cup: caffeine modifies brain activation to social signals of threat.

    Science.gov (United States)

    Smith, Jessica E; Lawrence, Andrew D; Diukova, Ana; Wise, Richard G; Rogers, Peter J

    2012-10-01

    Caffeine, an adenosine A₁ and A(2A) receptor antagonist, is the most popular psychostimulant drug in the world, but it is also anxiogenic. The neural correlates of caffeine-induced anxiety are currently unknown. This study investigated the effects of caffeine on brain regions implicated in social threat processing and anxiety. Participants were 14 healthy male non/infrequent caffeine consumers. In a double-blind placebo-controlled crossover design, they underwent blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) while performing an emotional face processing task 1 h after receiving caffeine (250 mg) or placebo in two fMRI sessions (counterbalanced, 1-week washout). They rated anxiety and mental alertness, and their blood pressure was measured, before and 2 h after treatment. Results showed that caffeine induced threat-related (angry/fearful faces > happy faces) midbrain-periaqueductal gray activation and abolished threat-related medial prefrontal cortex wall activation. Effects of caffeine on extent of threat-related amygdala activation correlated negatively with level of dietary caffeine intake. In concurrence with these changes in threat-related brain activation, caffeine increased self-rated anxiety and diastolic blood pressure. Caffeine did not affect primary visual cortex activation. These results are the first to demonstrate potential neural correlates of the anxiogenic effect of caffeine, and they implicate the amygdala as a key site for caffeine tolerance.

  1. Acute Caffeine Consumption Enhances the Executive Control of Visual Attention in Habitual Consumers

    Science.gov (United States)

    Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Giles, Grace E.; Taylor, Holly A.

    2010-01-01

    Recent work suggests that a dose of 200-400mg caffeine can enhance both vigilance and the executive control of visual attention in individuals with low caffeine consumption profiles. The present study seeks to determine whether individuals with relatively high caffeine consumption profiles would show similar advantages. To this end, we examined…

  2. Adolescent Caffeine Consumption and Self-Reported Violence and Conduct Disorder

    Science.gov (United States)

    Kristjansson, Alfgeir L.; Sigfusdottir, Inga Dora; Frost, Stephanie S.; James, Jack E.

    2013-01-01

    Caffeine is the most widely used psychoactive substance in the world and currently the only one legally available to children and adolescents. The sale and use of caffeinated beverages has increased markedly among adolescents during the last decade. However, research on caffeine use and behaviors among adolescents is scarce. We investigate the…

  3. Exploring maternal patterns of dietary caffeine consumption before conception and during pregnancy.

    Science.gov (United States)

    Chen, Lei; Bell, Erin M; Browne, Marilyn L; Druschel, Charlotte M; Romitti, Paul A

    2014-12-01

    We describe patterns of dietary caffeine consumption before and after pregnancy recognition in a cohort of women who recently gave birth. This study included 8,347 mothers of non-malformed liveborn control infants who participated in the National Birth Defects Prevention Study during 1997-2007. Maternal self-reported consumption of beverages (caffeinated coffee, tea, and soda) and chocolate the year before pregnancy was used to estimate caffeine intake. The proportions of prepregnancy caffeine consumption stratified by maternal characteristics are reported. In addition, patterns of reported change in consumption before and after pregnancy were examined by maternal and pregnancy characteristics. Adjusted prevalence ratios were estimated to assess factors most associated with change in consumption. About 97 % of mothers reported any caffeine consumption (average intake of 129.9 mg/day the year before pregnancy) and soda was the primary source of caffeine. The proportion of mothers reporting dietary caffeine intake of more than 300 mg/day was significantly increased among those who smoked cigarettes or drank alcohol. Most mothers stopped or decreased their caffeinated beverage consumption during pregnancy. Young maternal age and unintended pregnancy were associated with increases in consumption during pregnancy. Dietary caffeine consumption during pregnancy is still common in the US. A high level of caffeine intake was associated with known risk factors for adverse reproductive outcomes. Future studies may improve the maternal caffeine exposure assessment by acquiring additional information regarding the timing and amount of change in caffeine consumption after pregnancy recognition.

  4. Coffee versus Caffeine: Effects on Subjective and Behavioral Measures of Alertness

    Science.gov (United States)

    1991-04-12

    complex, and includes other substances with potential actions of their own. In addition to small amounts of theobromine and theophylline, coffee...to be determined. Pharmacological actions of caffeine. Caffeine (1,3,7 trimethylxanthine) , with theophylline and theobromine , belongs to a class of...naturally occurring alkaloids known as the methylxanthines. While caffeine is the most prevalent of these substances, theophylline and theobromine

  5. Lack of specific association between panicogenic properties of caffeine and HPA-axis activation. A placebo-controlled study of caffeine challenge in patients with panic disorder.

    Science.gov (United States)

    Masdrakis, Vasilios G; Markianos, Manolis; Oulis, Panagiotis

    2015-09-30

    A subgroup of patients with Panic Disorder (PD) exhibits increased sensitivity to caffeine administration. However, the association between caffeine-induced panic attacks and post-caffeine hypothalamic-pituitary-adrenal (HPA)-axis activation in PD patients remains unclear. In a randomized, double-blind, cross-over experiment, 19 PD patients underwent a 400-mg caffeine-challenge and a placebo-challenge, both administered in the form of instant coffee. Plasma levels of adrenocorticotropic hormone (ACTH), cortisol and dehydroepiandrosterone sulfate (DHEAS) were assessed at both baseline and post-challenge. No patient panicked after placebo-challenge, while nine patients (47.3%) panicked after caffeine-challenge. Placebo administration did not result in any significant change in hormones' plasma levels. Overall, sample's patients demonstrated significant increases in ACTH, cortisol, and DHEAS plasma levels after caffeine administration. However, post-caffeine panickers and non-panickers did not differ with respect to the magnitude of the increases. Our results indicate that in PD patients, caffeine-induced panic attacks are not specifically associated with HPA-axis activation, as this is reflected in post-caffeine increases in ACTH, cortisol and DHEAS plasma levels, suggesting that caffeine-induced panic attacks in PD patients are not specifically mediated by the biological processes underlying fear or stress. More generally, our results add to the evidence that HPA-axis activation is not a specific characteristic of panic.

  6. Individual differences affecting caffeine intake. Analysis of consumption behaviours for different times of day and caffeine sources.

    Science.gov (United States)

    Penolazzi, Barbara; Natale, Vincenzo; Leone, Luigi; Russo, Paolo Maria

    2012-06-01

    The main purpose of the present study was to investigate the individual variables contributing to determine the high variability in the consumption behaviours of caffeine, a psychoactive substance which is still poorly investigated in comparison with other drugs. The effects of a large set of specific personality traits (i.e., Impulsivity, Sensation Seeking, Anxiety, Reward Sensitivity and Circadian Preference) were compared along with some relevant socio-demographic variables (i.e., gender and age) and cigarette smoking behaviour. Analyses revealed that daily caffeine intake was significantly higher for males, older people, participants smoking more cigarettes and showing higher scores on Impulsivity, Sensation Seeking and a facet of Reward Sensitivity. However, more detailed analyses showed that different patterns of individual variables predicted caffeine consumption when the times of day and the caffeine sources were considered. The present results suggest that such detailed analyses are required to detect the critical predictive variables that could be obscured when only total caffeine intake during the entire day is considered.

  7. Molecular interactions between caffeine and catechins in green tea.

    Science.gov (United States)

    Colon, Marta; Nerin, Cristina

    2014-07-16

    Migration of green tea components from an active packaging material containing green tea extract was performed in water and 3% acetic acid in water. The migration values for acid simulant were much higher than the values obtained in water. The influence of the acidic media in solutions of catechin standards and green tea extract was evaluated by liquid chromatography. Catechin, epicatechin, and caffeine from the green tea extract exhibited major variation in their concentrations values, with increases of 29.90, 20.75, and 15.95%, respectively, in acidic medium. The results suggested that catechins and caffeine form complexes through intermolecular interactions in neutral media and that these interactions are broken in acidic media. The continuous variation method was also performed to confirm the stoichiometry of the complexes between catechins and caffeine. Finally, a computer simulation was applied by Chem Pro 12.0, and the energies involved were calculated to confirm the experimental results obtained.

  8. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    Institute of Scientific and Technical Information of China (English)

    JIANG Erkang; WU Lijun

    2009-01-01

    A bstract In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy a-particle irradiated and non-irradiated by- stander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensi- tive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline- 1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose a-particle radiation-induced damage in ir- radiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  9. [Self-rated Caffeine Sensitivity: Implications for Personalized Sleep Medicine?].

    Science.gov (United States)

    Landolt, Hans Peter

    2016-05-11

    The prevalence of the insomnia syndrome and the effects of caffeine on sleep are in part genetically determined. Pharmacogenetic studies in humans demonstrate that functional polymorphisms of the genes encoding adenosine A2A receptors and dopamine transporters contribute to individual differences in impaired sleep quality by caffeine. The A2A receptor and dopamine transporter are preferentially expressed in the striatum. Together, these observations suggest that the striatum plays an important role in sleep-wake regulation. Individual caffeine sensitivity and A2A receptor genotype should be taken into account in the development of possible novel adenosine-based pharmacotherapies of sleep-wake disorders and neurodegenerative disorders such as Parkinson's disease. This may permit the prediction of individual drug effects and improve the reliability of clinical trials.

  10. Caffeine in floral nectar enhances a pollinator's memory of reward.

    Science.gov (United States)

    Wright, G A; Baker, D D; Palmer, M J; Stabler, D; Mustard, J A; Power, E F; Borland, A M; Stevenson, P C

    2013-03-08

    Plant defense compounds occur in floral nectar, but their ecological role is not well understood. We provide evidence that plant compounds pharmacologically alter pollinator behavior by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar did not exceed the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.

  11. Effect of coffee (caffeine against human cataract blindness

    Directory of Open Access Journals (Sweden)

    Varma SD

    2016-01-01

    Full Text Available Shambhu D VarmaDepartment of Ophthalmology and Visual Sciences, Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USAAbstract: Previous biochemical and morphological studies with animal experiments have demonstrated that caffeine given topically or orally to certain experimental animal models has significant inhibitory effect on cataract formation. The present studies were undertaken to examine if there is a correlation between coffee drinking and incidence of cataract blindness in human beings. That has been found to be the case. Incidence of cataract blindness was found to be significantly lower in groups consuming higher amounts of coffee in comparison to the groups with lower coffee intake. Mechanistically, the caffeine effect could be multifactorial, involving its antioxidant as well as its bioenergetic effects on the lens.Keywords: caffeine, cataract, cataract blindness, cataractogenic process, intraocular pressure, vision impairment

  12. Absorption of caffeine in fermented Pu-er tea is inhibited in mice.

    Science.gov (United States)

    Huang, Ye-wei; Xu, Huan-huan; Wang, Su-min; Zhao, Yi; Huang, Yu-min; Li, Run-bo; Wang, Xuan-jun; Hao, Shu-mei; Sheng, Jun

    2014-07-25

    Caffeine is present in a number of dietary sources consumed worldwide. Although its pharmacokinetics has been intensively explored, little is known about complexed caffeine (C-CAF) in aqueous extraction of fermented Pu-er tea. The major components of C-CAF are oxidative tea polyphenols (OTP) and caffeine. Furthermore, the C-CAF can be precipitated in low pH solution. After administering the same amount of total caffeine and comparing the peak level of plasma caffeine with the coffee (contains 0.11 ± 0.01% C-CAF) group, the results showed that the caffeine/OTP (contains 66.67 ± 0.02% C-CAF) group and the instant Pu-er tea (contains 23.18 ± 0.02% C-CAF) group were 33.39% and 25.86% lower, respectively. The concentration of the metabolites of caffeine supports the idea that the absorption of the C-CAF was inhibited in mice. Congruent with this result, the amount of caffeine detected in mice excrement showed that more caffeine was eliminated in the caffeine/OTP group and the Pu-er tea group. The locomotor activity tests of mice demonstrated that the stimulating effect of caffeine in caffeine/OTP and Pu-er tea was weaker than in coffee. Our findings demonstrate that caffeine can be combined with OTP and the absorption of C-CAF is inhibited in mice, thus decreasing the irritation effect of caffeine. This may also be developed as a slow release formulation of caffeine.

  13. Caffeine in tea Camellia sinensis--content, absorption, benefits and risks of consumption.

    Science.gov (United States)

    Gramza-Michałowska, A

    2014-01-01

    Therapeutic properties of tea Camellia sinensis are of particular interest since it has been consumed for ages and was always regarded as safe beverage. Tea is most popular beverage in the world because of its attractive aroma, exceptional taste, health promoting and pharmaceutical potential. Current results showed that antioxidative, antibacterial and other health effects are attributed to its caffeine content and caffeine - polyphenols interactions. An overview is given on caffeine content in different tea leaves beverage. Special attention is drawn to caffeine physiological effect on human organism. Controversies concerning the possible caffeine influence on human physical and psychological health are briefly summarized and presented.

  14. Separating neural and vascular effects of caffeine using simultaneous EEG–FMRI: Differential effects of caffeine on cognitive and sensorimotor brain responses

    OpenAIRE

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E.; Evans, C. John; Murphy, Kevin; Rogers, Peter J.; Wise, Richard G.

    2012-01-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A1 and A2A adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of t...

  15. Caffeine consumption in a long-term psychiatric hospital: Tobacco smoking may explain in large part the apparent association between schizophrenia and caffeine use.

    Science.gov (United States)

    Arrojo-Romero, Manuel; Armas Barbazán, Carmen; López-Moriñigo, Javier D; Ramos-Ríos, Ramón; Gurpegui, Manuel; Martínez-Ortega, José M; Jurado, Dolores; Diaz, Francisco J; de Leon, Jose

    2015-05-01

    This study further explores the association between schizophrenia and caffeine use by combining two prior published Spanish samples (250 schizophrenia outpatients and 290 controls from the general population) with two Spanish long-term inpatient samples from the same hospital (145 with schizophrenia and 64 with other severe mental illnesses). The specific aims were to establish whether or not, after controlling for confounders including tobacco smoking, the association between schizophrenia and caffeine is consistent across schizophrenia samples and across different definitions of caffeine use. The frequency of caffeine use in schizophrenia inpatients was not significantly higher than that in non-schizophrenia inpatients (77%, 111/145 vs. 75%, 48/64) or controls but was significantly higher than in schizophrenia outpatients. The frequency of high caffeine users among caffeine users in schizophrenia inpatients was not significantly higher than in non-schizophrenia inpatients (45%, 50/111 vs. 52%, 25/48) or controls, but was significantly lower than in schizophrenia outpatients. Smoking was significantly associated with caffeine use across all samples and definitions. Between 2 and 3% of schizophrenia inpatients, schizophrenia outpatients and non-schizophrenia inpatients showed caffeinism (>700 mg/day in smokers). Several of these smoking patients with caffeinism were also taking other inducers, particularly omeprazole. The lack of consistent association between schizophrenia and caffeine use is surprising when compared with the very consistent association between tobacco smoking and caffeine use across all of our analyses (use and high use in users) and all our samples. The confounding effects of tobacco smoking may explain in large part the apparent association between schizophrenia and caffeine use.

  16. Oxidation of caffeine by phosphate radical anion in aqueous solution under anoxic conditions

    Indian Academy of Sciences (India)

    Maram Ravi Kumar; Mundra Adinarayana

    2000-10-01

    The photooxidation of caffeine in presence of peroxydiphosphate (PDP) in aqueous solution at natural H (∼7 5) has been carried out in a quantum yield reactor using a high-pressure mercury lamp. The reactions were followed spectrophotometrically by measuring the absorbance of caffeine at max (272 nm). The rates of reaction were calculated under different experimental conditions. The quantum yields were calculated from the rates of oxidation of caffeine and the intensity of light at 254 nm which was measured by using peroxydisulphate solution as a standard chemical actinometer. The reaction rates of oxidation of caffeine by PDP increase with increase in [PDP] as well as with increase in light intensity, while they are independent of [caffeine]. The quantum yields of oxidation of caffeine by PDP are independent of [PDP] as well as light intensity. However, quantum yields of oxidation of caffeine by PDP increase with increase in caffeine concentration. On the basis of these experimental results and product analysis, a probable mechanism has been suggested in which PDP is activated to phosphate radical anions (PO$_{4}^{\\bullet 2-}$) by direct photolysis of PDP and also by the sensitizing effect of caffeine. The phosphate radical anions thus produced react with caffeine by electron transfer reaction, resulting in the formation of caffeine radical cation, which deprotonates in a fast step to produce C8OH adduct radicals. These radicals might react with PDP to give final product 1,3,7-trimethyluric acid and PO$_{4}^{\\bullet 2-}$ radicals, the latter propagates the chain reaction.

  17. Role of state-dependent learning in the cognitive effects of caffeine in mice.

    Science.gov (United States)

    Sanday, Leandro; Zanin, Karina A; Patti, Camilla L; Fernandes-Santos, Luciano; Oliveira, Larissa C; Longo, Beatriz M; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2013-08-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine before training and/or before testing both in the plus-maze discriminative avoidance task (an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity) and in the inhibitory avoidance task, a classic paradigm for evaluating memory in rodents. Pre-training caffeine administration did not modify learning, but produced an anxiogenic effect and impaired memory retention. While pre-test administration of caffeine did not modify retrieval on its own, the pre-test administration counteracted the memory deficit induced by the pre-training caffeine injection in both the plus-maze discriminative and inhibitory avoidance tasks. Our data demonstrate that caffeine-induced memory deficits are critically related to state-dependent learning, reinforcing the importance of considering the participation of state-dependency on the interpretation of the cognitive effects of caffeine. The possible participation of caffeine-induced anxiety alterations in state-dependent memory deficits is discussed.

  18. Enhanced caffeine degradation by immobilised cells of Leifsonia sp. strain SIU.

    Science.gov (United States)

    Ibrahim, Salihu; Shukor, Mohd Y; Syed, Mohd A; Johari, Wan L W; Shamaan, Nor A; Sabullah, Mohd K; Ahmad, Siti A

    2016-01-01

    In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum.

  19. Inhibitory effects of caffeine on gustatory plasticity in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Urushihata, Takuya; Takuwa, Hiroyuki; Higuchi, Yukako; Sakata, Kazumi; Wakabayashi, Tokumitsu; Nishino, Asuka; Matsuura, Tetsuya

    2016-10-01

    The effects of caffeine on salt chemotaxis learning were investigated using the nematode Caenorhabditis elegans. To estimate the degree of salt chemotaxis learning, nematodes were placed in a mixed solution of NaCl and caffeine, and then the chemotaxis index of NaCl was obtained from the nematodes placed on agar medium after pre-exposure to caffeine concentrations of 0.01, 0.1, 0.3, and 1.0%. Locomotor activity and preference behavior for caffeine were also estimated under these caffeine conditions. Nematodes pre-exposed to 0.3% caffeine showed inhibition of salt chemotaxis learning. Additional experiments indicated that nematodes showed a preference response to the middle concentration of caffeine (0.1%), with preference behavior declining in the 0.3% caffeine condition. Stable locomotor activity was observed under 0.01-0.3% caffeine conditions. These results suggest that salt chemotaxis learning with 0.3% caffeine is useful for investigating the effects of caffeine on learning in nematodes.

  20. The acute physiological and mood effects of tea and coffee: the role of caffeine level.

    Science.gov (United States)

    Quinlan, P T; Lane, J; Moore, K L; Aspen, J; Rycroft, J A; O'Brien, D C

    2000-05-01

    The objective of this study was to determine the effect of caffeine level in tea and coffee on acute physiological responses and mood. Randomised full crossover design in subjects after overnight caffeine abstention was studied. In study 1 (n = 17) the caffeine level was manipulated naturalistically by preparing tea and coffee at different strengths (1 or 2 cups equivalent). Caffeine levels were 37.5 and 75 mg in tea, 75 and 150 mg in coffee, with water and no-drink controls. In study 2 (n = 15) caffeine level alone was manipulated (water, decaffeinated tea, plus 0, 25, 50, 100, and 200 mg caffeine). Beverage volume and temperature (55 degrees C) were constant. SBP, DBP, heart rate, skin temperature, skin conductance, and mood were monitored over each 3-h study session. In study 1, tea and coffee produced mild autonomic stimulation and an elevation in mood. There were no effects of tea vs. coffee or caffeine dose, despite a fourfold variation in the latter. Increasing beverage strength was associated with greater increases in DBP and energetic arousal. In study 2, caffeinated beverages increased SBP, DBP, and skin conductance and lowered heart rate and skin temperature compared to water. Significant dose-response relationships to caffeine were seen only for SBP, heart rate, and skin temperature. There were significant effects of caffeine on energetic arousal but no consistent dose-response effects. Caffeinated beverages acutely stimulate the autonomic nervous system and increase alertness. Although caffeine can exert dose-dependent effects on a number of acute autonomic responses, caffeine level is not an important factor. Factors besides caffeine may contribute to these acute effects.

  1. Determination of Caffeine in Beverages by High Performance Liquid Chromatography.

    Science.gov (United States)

    DiNunzio, James E.

    1985-01-01

    Describes the equipment, procedures, and results for the determination of caffeine in beverages by high performance liquid chromatography. The method is simple, fast, accurate, and, because sample preparation is minimal, it is well suited for use in a teaching laboratory. (JN)

  2. Caffeine supplementation and reactive agility in elite youth soccer players.

    Science.gov (United States)

    Jordan, J Bradley; Korgaokar, Ajit; Farley, Richard S; Coons, John M; Caputo, Jennifer L

    2014-05-01

    This study examined the effects of caffeine supplementation (6 mg·kg-1) on performance of a reactive agility test (RAT) in 17 elite, male, youth (M = 14 y) soccer players. Using a double-blind, repeated-measures design, players completed 4 days of testing on the RAT after a standardized warm-up. On day 1, anthropometric measurements were taken and players were accommodated to the RAT. On day 2, baseline performance was established. Caffeine or placebo conditions were randomly assigned on day 3 and the condition was reversed on day 4. Players completed 3 randomized trials of the RAT on days 2, 3, and 4 with at least 1 trial to the players' dominant and nondominant sides. There were no significant differences among conditions in reaction time (RT) to the dominant side, heart rates at any point of measurement, or ratings of perceived exertion (RPE) after completion of the warm-up. Caffeine produced faster RT to the nondominant side (P = .041) and higher RPE at the conclusion of the RAT (P = .013). The effect on the total time (TT) to complete the agility test to the nondominant side approached significance (P = .051). Sprint time and TT to either side did not differ. Caffeine supplementation may provide ergogenic benefit to elite, male, youth soccer players.

  3. EFFECTS OF CAFFEINE ON EXERCISE PERFORMANCE IN SEDENTARY FEMALES

    Directory of Open Access Journals (Sweden)

    Karen E. Wallman

    2010-06-01

    Full Text Available The purpose of the study was to examine the effect of caffeine ingestion on total work, average power, oxygen consumption (VO2, respiratory exchange ratio (RER, ratings of perceived exertion (RPE, heart rate (HR and energy expenditure (kJ during stationary cycling at a standardised power output, as well as during a set time period where participants were required to cycle as fast as they could. Ten healthy, sedentary, female, non- regular caffeine users completed 15 min of stationary cycling at a standardised power output equating to 65% HRmax (Phase A, followed by 10 min of stationary cycling where they were required to cycled as fast as they could (Phase B after ingesting 6.0 mg·kg-1 of caffeine or placebo 60 min prior to exercise. VO2 and energy expenditure were significantly higher at the end of Phase A (p = 0.008 and p = 0.011, respectively. All other variables examined in Phase A were similar between trials. In Phase B, there were no significant differences found for any variable assessed. While caffeine ingestion resulted in significant increases in VO2 and energy expenditure during steady-state exercise, it did not improve cycling performance during a 10 min trial where participants were required to cycle as fast as they could

  4. Caffeine and theobromine levels in selected Nigerian beverages.

    Science.gov (United States)

    Eteng, M U; Eyong, E U; Eka, O U; Umoh, I B; Ebong, P E; Ettarh, R R

    1999-01-01

    Caffeine and theobromine contents (mg/g) were determined in samples of selected Nigerian beverage products. The beverages were cocoa (Milo, Bournvita, Rosevita and Enervita), coffee (Nescafe, Bongo, and Maxwell House decaffeinated) and tea (Lipton). The theobromine contents of samples of Milo, Bournvita, Rosevita, Enervita, Nescafe, Bongo, Maxwell House decaffeinated coffee and Lipton were 62.10+/-5.21, 64.80+/-6.72, 82.80+/-4.43, 80.37+/-6.80, 27.00+/-4.31, 14.67+/-2.90, 23.46+/-3.13 and 12.60+/-1.52, respectively. The corresponding caffeine contents of these samples were 2.78+/-0.43 (Milo), 3.17+/-0.36 (Bournvita), 0.92+/-0.51 (Rosevita), 1.05+/-0.68 (Enervita), 93.66+/-8.91 (Nescafe), 6.47+/-2.42 (Bongo), 37.22+/-5.34 (Lipton), and 0.21+/-0.11 (Maxwell House decaffeinated coffee). Semi-processed cocoa beverages (Rosevita and Enervita) had significantly (p theobromine compared with the finished cocoas (Milo and Bournvita). Similarly, Nescafe contained significantly (p < 0.05) higher levels of caffeine compared to Maxwell House (decaffeinated coffee) and Bongo. Levels of caffeine in Lipton tea were moderate.

  5. The influence of caffeine on sustained attention : An ERP study

    NARCIS (Netherlands)

    Lorist, MM; Snel, J; De Ruiter, MB; Ruijter, J

    2000-01-01

    The present study investigated the effects of caffeine on sustained attention by measuring concentration and fatigue. Event-related potentials (ERPs) and behavioral measures were recorded from 12 participants who worked continuously for approximately 10 min in a self-paced reaction task under condit

  6. The Influence of Caffeine on Sustained Attention: An ERP study

    NARCIS (Netherlands)

    Lorist, MM; Snel, J; De Ruiter, MB; Ruijter, J

    2000-01-01

    The present study investigated the effects of caffeine on sustained attention by measuring concentration and fatigue. Event-related potentials (ERPs) and behavioral measures were recorded from 12 participants who worked continuously for approximately 10 min in a self-paced reaction task under condit

  7. The Determination of Caffeine in Coffee: Sense or Nonsense?

    Science.gov (United States)

    Beckers, Jozef L.

    2004-01-01

    The presence of caffeine in coffee is determined by the use of separation devices and UV-vis spectrophotometry. The results indicate that the use of various analytical tools helps to perceive the higher concentration values obtained through UV-vis spectrophotometry than with separation methods.

  8. Caffeine as a protective factor in dementia and Alzheimer's disease.

    Science.gov (United States)

    Eskelinen, Marjo H; Kivipelto, Miia

    2010-01-01

    Caffeine has well-known short-term stimulating effects on central nervous system, but the long-term impacts on cognition have been less clear. Dementia and Alzheimer's disease (AD) are rapidly increasing public health problems in ageing populations and at the moment curative treatment is lacking. Thus, the putative protective effects of caffeine against dementia/AD are of great interest. Here, we discuss findings from the longitudinal epidemiological studies about caffeine/coffee/tea and dementia/AD/cognitive functioning with a special emphasis on our recent results from the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study. The findings of the previous studies are somewhat inconsistent, but most studies (3 out of 5) support coffee's favorable effects against cognitive decline, dementia or AD. In addition, two studies had combined coffee and tea drinking and indicated some positive effects on cognitive functioning. For tea drinking, protective effects against cognitive decline/dementia are still less evident. In the CAIDE study, coffee drinking of 3-5 cups per day at midlife was associated with a decreased risk of dementia/AD by about 65% at late-life. In conclusion, coffee drinking may be associated with a decreased risk of dementia/AD. This may be mediated by caffeine and/or other mechanisms like antioxidant capacity and increased insulin sensitivity. This finding might open possibilities for prevention or postponing the onset of dementia/AD.

  9. Spontaneous Abortion and a Diet Drug Containing Caffeine and Ephedrine

    DEFF Research Database (Denmark)

    Howards, Penelope P; Hertz-Picciotto, Irva; Bech, Bodil H

    2012-01-01

    BACKGROUND: Medications may be consumed periconceptionally before a woman knows she is pregnant. In this study, the authors evaluate the association of a prescription diet drug (Letigen) containing ephedrine (20 mg) and caffeine (200 mg) with spontaneous abortion (SAB) in the Danish National Birth...

  10. Associations between smoking and caffeine consumption in two European cohorts

    Science.gov (United States)

    Taylor, Amy E.; Ware, Jennifer J.; McMahon, George; Hottenga, Jouke‐Jan; Baselmans, Bart M. L.; Willemsen, Gonneke; Boomsma, Dorret I.; Munafò, Marcus R.; Vink, Jacqueline M.

    2016-01-01

    Abstract Aims To estimate associations between smoking initiation, smoking persistence and smoking heaviness and caffeine consumption in two population‐based samples from the Netherlands and the United Kingdom. Design Observational study employing data on self‐reported smoking behaviour and caffeine consumption. Setting Adults from the general population in the Netherlands and the United Kingdom. Participants Participants from the Netherlands Twin Register [NTR: n = 21 939, mean age 40.8, standard deviation (SD) = 16.9, 62.6% female] and the Avon Longitudinal Study of Parents and Children (ALSPAC: n = 9086, mean age 33.2, SD = 4.7, 100% female). Measurements Smoking initiation (ever versus never smoking), smoking persistence (current versus former smoking), smoking heaviness (number of cigarettes smoked) and caffeine consumption in mg per day through coffee, tea, cola and energy drinks. Findings After correction for age, gender (NTR), education and social class (ALSPAC), smoking initiation was associated with consuming on average 52.8 [95% confidence interval (CI) = 45.6–60.0; NTR] and 59.5 (95% CI = 51.8–67.2; ALSPAC) mg more caffeine per day. Smoking persistence was also associated with consuming more caffeine [+57.9 (95% CI = 45.2–70.5) and +83.2 (95% CI = 70.2–96.3) mg, respectively]. Each additional cigarette smoked per day was associated with 3.7 (95% CI = 1.9–5.5; NTR) and 8.4 (95% CI = 6.9–10.0; ALSPAC) mg higher daily caffeine consumption in current smokers. Smoking was associated positively with coffee consumption and less strongly with cola and energy drinks. For tea, associations were positive in ALSPAC and negative in NTR. Conclusions There appears to be a positive association between smoking and caffeine consumption in the Netherlands and the United Kingdom. PMID:26750569

  11. Severe acute caffeine poisoning due to intradermal injections: Mesotherapy hazard

    Directory of Open Access Journals (Sweden)

    Perković-Vukčević Nataša

    2012-01-01

    Full Text Available Introduction. Caffeine is indicated in the treatment of migraine headaches, as well as neonatal apnea and bradycardia syndrome. In mild poisoning, the most prevalent symptoms are nausea, vomiting, diarrhea, tremor, anxiety and headache. In more severe cases, symptoms consist of heart rythym abnormalities, myocardial infarction and seizures. Due to its common lipolytic effect, caffeine is used in mesotherapy, usually in combination with drugs of similar effect. We presented a patient with acute iatrogenic caffeine poisoning. Case report. A 51-year-old woman, with preexisting hypertension and hypertensive cardiomyopathy was subjected to cosmetic treatment in order to remove fat by intradermal caffeine injections. During the treatment the patient felt sickness, an urge to vomit, and a pronounced deterioration of general condition. Upon examination, the patient exhibited somnolence, hypotension and nonsustained ventricular tachycardia, which was sufficient enough evidence for further hospitalization. On admission to the intensive care unit the patient was anxious with increased heart rate, normotensive, with cold, damp skin, and visible traces of injection sites with surrounding hematomas on the anterior abdominal wall. Paroxysmal supraventricular tachycardia (PSVT on electrocardiographic monitoring was found. The laboratory analysis determined a lowered potassium level of 2.1 mmol/L (normal range 3,5 - 5.2 mmol/L, and a toxicological analysis (liquid chromatography with ultraviolet detection proved a toxic concentration of caffeine in plasma - 85.03 mg/L (toxic concentration over 25 mg/L. On application of intensive therapy, antiarrhythmics, and substitution of potassium, as well as both symptomatic and supportive therapy, there was a significant recovery. The patient was discharged without any sequele within four days. Conclusion. A presented rare iatrogenic acute caffeine poisoning occured due to massive absorption of caffeine from the

  12. Caffeine Ingestion Improves Repeated Freestyle Sprints in Elite Male Swimmers

    Science.gov (United States)

    Goods, Paul S.R.; Landers, Grant; Fulton, Sacha

    2017-01-01

    The purpose of this investigation was to determine the efficacy of a moderate dose of caffeine to improve repeat-sprint performance in elite freestyle sprinters. Nine highly trained male swimmers performed 6 x 75 m freestyle sprints on two occasions 1-h after consuming either 3 mg·kg-1 caffeine (CAF), or placebo, in a cross-over manner. Capillary blood samples for the analysis of blood lactate concentration and pH were collected after the 1st, 3rd, and 5th sprint, while heart rate and perceived exertion (RPE) were collected after every sprint. There was a moderate effect for improved mean sprint time in the CAF condition (0.52 s; 1.3%; d = 0.50). When assessed individually, there was a large effect for improved performance in sprints 3 (1.00 s; 2.5%; d = 1.02) and 4 (0.84 s; 2.1%; d = 0.84) in CAF compared to placebo, with worthwhile performance improvement found for each of the first 5 sprints. There was a significant treatment effect for higher blood lactate concentration for CAF (p = 0.029), and a significant treatment*time effect for reduced pH in the CAF condition (p = 0.004). Mean heart rate (167 ± 9 bpm vs 169 ± 7 bpm) and RPE (17 ± 1 vs 17 ± 1) were not different between placebo and CAF trials, respectively. This investigation is the first to demonstrate enhanced repeat-sprint ability in swimmers following acute caffeine ingestion. It appears likely that the combination of a moderate dose of caffeine (3-6 mg·kg-1) with trained athletes is most likely to enhance repeat-sprint ability in various athletic populations; however, the exact mechanism(s) for an improved repeat-sprint ability following acute caffeine ingestion remain unknown. Key points A moderate dose of caffeine (3 mg·kg-1) ingested 1 h before a repeat-sprint freestyle set significantly improves mean sprint time in elite swimmers. The combination of at least a moderate dose of caffeine (>3 mg·kg-1) with trained athletes appears the most likely to result in ergogenic benefit to anaerobic

  13. Caffeine Ingestion Improves Repeated Freestyle Sprints in Elite Male Swimmers

    Directory of Open Access Journals (Sweden)

    Paul S.R. Goods, Grant Landers, Sacha Fulton

    2017-03-01

    Full Text Available The purpose of this investigation was to determine the efficacy of a moderate dose of caffeine to improve repeat-sprint performance in elite freestyle sprinters. Nine highly trained male swimmers performed 6 x 75 m freestyle sprints on two occasions 1-h after consuming either 3 mg·kg-1 caffeine (CAF, or placebo, in a cross-over manner. Capillary blood samples for the analysis of blood lactate concentration and pH were collected after the 1st, 3rd, and 5th sprint, while heart rate and perceived exertion (RPE were collected after every sprint. There was a moderate effect for improved mean sprint time in the CAF condition (0.52 s; 1.3%; d = 0.50. When assessed individually, there was a large effect for improved performance in sprints 3 (1.00 s; 2.5%; d = 1.02 and 4 (0.84 s; 2.1%; d = 0.84 in CAF compared to placebo, with worthwhile performance improvement found for each of the first 5 sprints. There was a significant treatment effect for higher blood lactate concentration for CAF (p = 0.029, and a significant treatment*time effect for reduced pH in the CAF condition (p = 0.004. Mean heart rate (167 ± 9 bpm vs 169 ± 7 bpm and RPE (17 ± 1 vs 17 ± 1 were not different between placebo and CAF trials, respectively. This investigation is the first to demonstrate enhanced repeat-sprint ability in swimmers following acute caffeine ingestion. It appears likely that the combination of a moderate dose of caffeine (3-6 mg·kg-1 with trained athletes is most likely to enhance repeat-sprint ability in various athletic populations; however, the exact mechanism(s for an improved repeat-sprint ability following acute caffeine ingestion remain unknown.

  14. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling.

    Science.gov (United States)

    O'Neill, Casey E; Newsom, Ryan J; Stafford, Jacob; Scott, Talia; Archuleta, Solana; Levis, Sophia C; Spencer, Robert L; Campeau, Serge; Bachtell, Ryan K

    2016-05-01

    Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence increased

  15. Kinetics of growth and caffeine demethylase production of Pseudomonas sp. in bioreactor.

    Science.gov (United States)

    Gummadi, Sathyanarayana N; Santhosh, Devarai

    2010-09-01

    The effect of various initial caffeine concentrations on growth and caffeine demethylase production by Pseudomonas sp. was studied in bioreactor. At initial concentration of 6.5 g l(-1) caffeine, Pseudomonas sp. showed a maximum specific growth rate of 0.2 h(-1), maximum degradation rate of 1.1 g h(-1), and caffeine demethylase activity of 18,762 U g CDW(-1) (CDW: cell dry weight). Caffeine degradation rate was 25 times higher in bioreactor than in shake flask. For the first time, we show highest degradation of 75 g caffeine (initial concentration 20 g l(-1)) in 120 h, suggesting that the tested strain has potential for successful bioprocess for caffeine degradation. Growth kinetics showed substrate inhibition phenomenon. Various substrate inhibition models were fitted to the kinetic data, amongst which the double-exponential (R(2) = 0.94), Luong (R(2) = 0.92), and Yano and Koga 2 (R(2) = 0.94) models were found to be the best. The Luedeking-Piret model showed that caffeine demethylase production kinetics was growth related. This is the first report on production of high levels of caffeine demethylase in batch bioreactor with faster degradation rate and high tolerance to caffeine, hence clearly suggesting that Pseudomonas sp. used in this study is a potential biocatalyst for industrial decaffeination.

  16. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep.

    Science.gov (United States)

    Aepli, Andrina; Kurth, Salome; Tesler, Noemi; Jenni, Oskar G; Huber, Reto

    2015-10-15

    Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children's and adolescents' sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG) in children and adolescents (10-16 years). While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4) and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1), morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1-4.5 Hz) at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects). Comparable reductions were found for alpha activity (8.25-9.75 Hz). These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development.

  17. Caffeine Consuming Children and Adolescents Show Altered Sleep Behavior and Deep Sleep

    Directory of Open Access Journals (Sweden)

    Andrina Aepli

    2015-10-01

    Full Text Available Caffeine is the most commonly ingested psychoactive drug worldwide with increasing consumption rates among young individuals. While caffeine leads to decreased sleep quality in adults, studies investigating how caffeine consumption affects children’s and adolescents’ sleep remain scarce. We explored the effects of regular caffeine consumption on sleep behavior and the sleep electroencephalogram (EEG in children and adolescents (10–16 years. While later habitual bedtimes (Caffeine 23:14 ± 11.4, Controls 22:17 ± 15.4 and less time in bed were found in caffeine consumers compared to the control group (Caffeine 08:10 ± 13.3, Controls 09:03 ± 16.1, morning tiredness was unaffected. Furthermore, caffeine consumers exhibited reduced sleep EEG slow-wave activity (SWA, 1–4.5 Hz at the beginning of the night compared to controls (20% ± 9% average reduction across all electrodes and subjects. Comparable reductions were found for alpha activity (8.25–9.75 Hz. These effects, however, disappeared in the morning hours. Our findings suggest that caffeine consumption in adolescents may lead to later bedtimes and reduced SWA, a well-established marker of sleep depth. Because deep sleep is involved in recovery processes during sleep, further research is needed to understand whether a caffeine-induced loss of sleep depth interacts with neuronal network refinement processes that occur during the sensitive period of adolescent development.

  18. Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cao, Chuanhai; Cirrito, John R; Lin, Xiaoyang; Wang, Li; Wang, Lilly; Verges, Deborah K; Dickson, Alexander; Mamcarz, Malgorzata; Zhang, Chi; Mori, Takashi; Arendash, Gary W; Holtzman, David M; Potter, Huntington

    2009-01-01

    Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer's disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain amyloid-beta (Abeta) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Abeta levels in both brain interstitial fluid and plasma without affecting Abeta elimination. Long-term oral caffeine treatment to aged AD mice provided not only sustained reductions in plasma Abeta, but also decreases in both soluble and deposited Abeta in hippocampus and cortex. Irrespective of caffeine treatment, plasma Abeta levels did not correlate with brain Abeta levels or with cognitive performance in individual aged AD mice. Although higher plasma caffeine levels were strongly associated with lower plasma Abeta1-40 levels in aged AD mice, plasma caffeine levels were also not linked to cognitive performance. Plasma caffeine and theophylline levels were tightly correlated, both being associated with reduced inflammatory cytokine levels in hippocampus. Our conclusion is two-fold: first, that both plasma and brain Abeta levels are reduced by acute or chronic caffeine administration in several AD transgenic lines and ages, indicating a therapeutic value of caffeine against AD; and second, that plasma Abeta levels are not an accurate index of brain Abeta levels/deposition or cognitive performance in aged AD mice.

  19. Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee.

    Science.gov (United States)

    Mustard, Julie A; Dews, Lauren; Brugato, Arlana; Dey, Kevin; Wright, Geraldine A

    2012-06-15

    Caffeine affects several molecules that are also involved in the processes underlying learning and memory such as cAMP and calcium. However, studies of caffeine's influence on learning and memory in mammals are often contradictory. Invertebrate model systems have provided valuable insight into the actions of many neuroactive compounds including ethanol and cocaine. We use the honey bee (Apis mellifera) to investigate how the ingestion of acute doses of caffeine before, during, and after conditioning influences performance in an appetitive olfactory learning and memory task. Consumption of caffeine doses of 0.01 M or greater during or prior to conditioning causes a significant reduction in response levels during acquisition. Although bees find the taste of caffeine to be aversive at high concentrations, the bitter taste does not explain the reduction in acquisition observed for bees fed caffeine before conditioning. While high doses of caffeine reduced performance during acquisition, the response levels of bees given caffeine were the same as those of the sucrose only control group in a recall test 24h after conditioning. In addition, caffeine administered after conditioning had no affect on recall. These results suggest that caffeine specifically affects performance during acquisition and not the processes involved in the formation of early long term memory.

  20. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, 04-01, The Nanos, Singapore 138669 (Singapore)

    2006-07-25

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved.

  1. Caffeine consumption among adults on benzodiazepine therapy: United States 1988-1994.

    Science.gov (United States)

    Cooper, Michael; Safran, Marc; Eberhardt, Mark

    2004-08-01

    The concomitant use of benzodiazepines and caffeine was studied to learn if caffeine consumption varied as a function of benzodiazepine use. Caffeine may antagonize the effects of benzodiazepine and even relatively small amounts can aggravate symptoms associated with anxiety disorders. In addition, caffeine can cause or aggravate insomnia, one of the main reasons cited for use by the subjects in this analysis. Given this, there would seem to be sufficient reason for at least some users of benzodiazepines to consider, with their physicians, avoiding or limiting caffeine consumption. Data from the Third National Health and Nutrition Examination Survey were analyzed to obtain a nationally representative sample of benzodiazepine users. Subjects included 253 individuals (64% women) whose median age was 54 yr. Approximately 88% of benzodiazepine users reported caffeine consumption in the 24-hr. Dietary Recall. 26% of benzodiazepine users and 23% of nonusers reported consuming greater than 250 mg of caffeine during the 24-hr. reference period. In regression analyses, no significant relationships were found between reported caffeine consumption and benzodiazepine use. This study suggests that users and nonusers of benzodiazepines ingest similar amounts of caffeine even though some users should probably avoid or limit caffeine use.

  2. Behavioural effects of compounds co-consumed in dietary forms of caffeinated plants.

    Science.gov (United States)

    Haskell, C F; Dodd, F L; Wightman, E L; Kennedy, D O

    2013-06-01

    Research into the cognitive and mood effects of caffeine in human subjects has highlighted some fairly robust and well-accepted effects. However, the majority of these studies have focused on caffeine in isolation; whilst caffeine is normally consumed in the form of plant-derived products and extracts that invariably contain other potentially bioactive phytochemicals. The aim of the present review is to consider the possible mechanisms of action of co-occurring phytochemicals, and any epidemiological evidence suggesting that they contribute to potential health benefits ascribed to caffeine. Intervention studies to date that have been conducted to explore the effects on brain function of the non-caffeine components in caffeine-bearing plants (coffee, tea, cocoa, guaraná), either alone or in combination with caffeine, will also be summarised. Research is beginning to accumulate showing independent effects for several of the phytochemicals that co-occur with caffeine, and/or a modulation of the effects of caffeine when it is co-consumed with these naturally concomitant phytochemicals. The present review highlights that more research aimed at understanding the effects of these compounds is needed and, more importantly, the synergistic relationship that they may have with caffeine.

  3. Trends and patterns of caffeine consumption among US teenagers and young adults, NHANES 2003-2012.

    Science.gov (United States)

    Tran, N L; Barraj, L M; Bi, X; Jack, M M

    2016-08-01

    Caffeine consumption among US teenagers (13-17y), young adults (18-24y) and adults (25-29y) for a 10 year period was examined using NHANES 2003-12. Of the 85% who consume caffeine 84% consume caffeinated beverages. This percentage remained constant despite new caffeine sources. Less than 7.1% of the population consume energy drinks. While mean caffeine intake among teenage caffeine consumers decreased from 62 to 55 mg/day (p-value = 0.018) over the 10-year period, no discernable trend was observed for other age groups. Caffeine intake from energy drinks increased, and was only statistically significant for age 18-24y accounting for caffeine intake. Mean caffeine intake per consumption occasion was equivalent between coffee and energy drinks for teenagers and young adults. During a 30-min period mean caffeine consumption was similar when an energy drink was the only consumption event or when it occurred with other caffeinated beverage products suggestive of a substitution effect. Linear regression models of caffeine intake from energy drinks against caffeine from coffee, tea and soda among energy drink consumers in the upper 50th percentile shows a statistically significant inverse relationship (R2 = 28%, coffee: β = -0.35, p < 0.001; tea: β = -0.44, p < 0.001; soda: β = -0.22, p = 0.036) and further supports the substitution concept.

  4. Determination of the caffeine contents of various food items within the Austrian market and validation of a caffeine assessment tool (CAT).

    Science.gov (United States)

    Rudolph, E; Färbinger, A; König, J

    2012-01-01

    The caffeine content of 124 products, including coffee, coffee-based beverages, energy drinks, tea, colas, yoghurt and chocolate, were determined using RP-HPLC with UV detection after solid-phase extraction. Highest concentrations of caffeine were found for coffee prepared from pads (755 mg l⁻¹) and regular filtered coffee (659 mg l⁻¹). The total caffeine content of coffee and chocolate-based beverages was between 15 mg l⁻¹ in chocolate milk and 448 mg l⁻¹ in canned ice coffee. For energy drinks the caffeine content varied in a range from 266 to 340 mg l⁻¹. Caffeine concentrations in tea and ice teas were between 13 and 183 mg l⁻¹. Coffee-flavoured yoghurts ranged from 33 to 48 mg kg⁻¹. The caffeine concentration in chocolate and chocolate bars was between 17 mg kg⁻¹ in whole milk chocolate and 551 mg kg⁻¹ in a chocolate with coffee filling. A caffeine assessment tool was developed and validated by a 3-day dietary record (r²= 0.817, p caffeine saliva concentrations (r²= 0.427, p < 0.01).

  5. Separating neural and vascular effects of caffeine using simultaneous EEG-FMRI: differential effects of caffeine on cognitive and sensorimotor brain responses.

    Science.gov (United States)

    Diukova, Ana; Ware, Jennifer; Smith, Jessica E; Evans, C John; Murphy, Kevin; Rogers, Peter J; Wise, Richard G

    2012-08-01

    The effects of caffeine are mediated through its non-selective antagonistic effects on adenosine A(1) and A(2A) adenosine receptors resulting in increased neuronal activity but also vasoconstriction in the brain. Caffeine, therefore, can modify BOLD FMRI signal responses through both its neural and its vascular effects depending on receptor distributions in different brain regions. In this study we aim to distinguish neural and vascular influences of a single dose of caffeine in measurements of task-related brain activity using simultaneous EEG-FMRI. We chose to compare low-level visual and motor (paced finger tapping) tasks with a cognitive (auditory oddball) task, with the expectation that caffeine would differentially affect brain responses in relation to these tasks. To avoid the influence of chronic caffeine intake, we examined the effect of 250 mg of oral caffeine on 14 non and infrequent caffeine consumers in a double-blind placebo-controlled cross-over study. Our results show that the task-related BOLD signal change in visual and primary motor cortex was significantly reduced by caffeine, while the amplitude and latency of visual evoked potentials over occipital cortex remained unaltered. However, during the auditory oddball task (target versus non-target stimuli) caffeine significantly increased the BOLD signal in frontal cortex. Correspondingly, there was also a significant effect of caffeine in reducing the target evoked response potential (P300) latency in the oddball task and this was associated with a positive potential over frontal cortex. Behavioural data showed that caffeine also improved performance in the oddball task with a significantly reduced number of missed responses. Our results are consistent with earlier studies demonstrating altered flow-metabolism coupling after caffeine administration in the context of our observation of a generalised caffeine-induced reduction in cerebral blood flow demonstrated by arterial spin labelling (19

  6. Evaluation of cognitive brain functions in caffeine users: a P3 evoked potential study.

    Science.gov (United States)

    Dixit, Abhinav; Vaney, Neelam; Tandon, O P

    2006-01-01

    Caffeine is one of the most widely consumed stimulant drugs of the modern world. It brings about a feeling of well-being, relaxation, increased alertness and concentration. Its effects have been studied on brain function and behavior using mood questionnaires, reaction time tests, memory tests, EEG and of late Event Related Potentials (ERPs). This study evaluates the response of caffeine on ERPs and Reaction Time (RT) using auditory "oddball" paradigm. Forty undergraduate medical students volunteered for the study and their ERPs and RT were recorded before and after 40 minutes of ingestion of caffeine. There was a non-significant decrease in latency of N1, P2, N2 and P3 and a significant decrease in Reaction Time after caffeine consumption. The amplitude of P3 showed a significant increase after intake of caffeine. The results of this study indicate that caffeine leads to facilitation of information processing and motor output response of the brain.

  7. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases.

    Science.gov (United States)

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-01-01

    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation.

  8. DETERMINATION OF CAFFEINE CONTENTS OF COFFEE BRANDS IN THE VIETNAMESE MARKET

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2012-02-01

    Full Text Available In this study, the caffeine contents in five certain Vietnamese coffee (Dak Tin, Di Linh, Nam Nguyen, Origin and Vinacafe found in the Vietnamese market were determined using UV/vis spectrophotometry. The quantification of caffeine sample was calculated by standard addition method. Our results showed that the caffeine contents in coffee brewing were influenced by temperature of water used to brew, time of brewing, and independent on the volume of water, respectively. In general, higher concentrations of caffeine were found in all samples prepared at temperature 100°C for 5 minutes. The order of caffeine contents in coffee samples was Dak Tin, Di Linh, Nam Nguyen, Origin and Vinacafe, respectively. This study can contribute to a better knowledge of caffeine contents in Vietnamese coffee of Vietnamese consumers.

  9. [Clinical research on improvement of glucose metabolic marker level by coffee drinking-validity of saliva caffeine concentration measurement].

    Science.gov (United States)

    Okada, Tomoko; Kobayashi, Daisuke; Kono, Suminori; Shimazoe, Takao

    2010-05-01

    We measured both serum and saliva caffeine concentration using HPLC and assessed the correlation between them in volunteers with mild obesity. Significant correlation was shown between saliva and serum caffeine concentration. It may be necessary to measure caffeine metabolite concentration because its metabolites may also have an improving effect of glucose metabolism. In summary, we found that saliva caffeine concentration measurement was useful to assess caffeine intake level. Moreover, it will be helpful to know whether caffeine has an improving effect of glucose metabolism.

  10. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3

    OpenAIRE

    Fenton, Robert A.; Poulsen, Søren B.; de la Mora Chavez, Samantha; Soleimani, Manoocher; Busslinger, Meinrad; Dominguez Rieg, Jessica A.; Rieg, Timo

    2015-01-01

    Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na+/H+ exchanger isoform 3 (NHE3) localization and phosphorylation, resul...

  11. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system

    OpenAIRE

    Deslandes A.C.; Veiga H.; Cagy M; Piedade R; Pompeu F.; Ribeiro P

    2005-01-01

    Caffeine is the most consumed psychoactive substance in the world. The effects of caffeine have been studied using cognitive and motor measures, quantitative electroencephalography (qEEG) and event-related potentials. However, these methods are not usually employed in combination, a fact that impairs the interpretation of the results. The objective of the present study was to analyze changes in electrophysiological, cognitive and motor variables with the ingestion of caffeine, and to relate c...

  12. Effects of caffeine are more marked on daytime recovery sleep than on nocturnal sleep.

    Science.gov (United States)

    Carrier, Julie; Fernandez-Bolanos, Marta; Robillard, Rébecca; Dumont, Marie; Paquet, Jean; Selmaoui, Brahim; Filipini, Daniel

    2007-04-01

    Caffeine is often used to counteract sleepiness generated by sleep deprivation, jet lag, and shift-work, and is consumed at different times of day. Caffeine also has effects on sleep. However, little is known about the interaction between sleep deprivation, circadian timing, and caffeine consumption on sleep. In this study, we compared the effects of caffeine on nocturnal sleep initiated at habitual circadian time and on daytime recovery sleep. Thirty-four moderate caffeine consumers participated in both caffeine (200 mg) and placebo (lactose) conditions in a double-blind crossover design. Seventeen subjects followed their habitual sleep-wake cycle and slept in the laboratory during the night (Night), while 17 subjects were sleep deprived for one night and recovery sleep started in the morning (DayRec). All subjects received a capsule of 100 mg of caffeine (or placebo) 3 h before bedtime, and the remaining dose 1 h before bedtime. Compared to placebo, caffeine lengthened sleep latency, increased stage 1, and reduced stage 2 and slow-wave sleep (SWS) in both groups. However, caffeine reduced sleep efficiency more strongly in the DayRec group, and decreased sleep duration and REM sleep only in that group. The stronger effects of caffeine on daytime recovery sleep compared to nocturnal sleep are probably the consequence of the combined influence of increasing circadian wake propensity drive and the dissipation of homeostatic sleep pressure. We propose that the reduction of SWS by caffeine during daytime sleep increases the impact of the circadian wake signal on sleep. These results have implications for individuals using caffeine during night time.

  13. A benefit-risk assessment of caffeine as an analgesic adjuvant.

    Science.gov (United States)

    Zhang, W Y

    2001-01-01

    Caffeine has been an additive in analgesics for many years. However, the analgesic adjuvant effects of caffeine have not been seriously investigated since a pooled analysis conducted in 1984 showed that caffeine reduces the amount of paracetamol (acetaminophen) necessary for the same effect by approximately 40%. In vitro and in vivo pharmacological research has provided some evidence that caffeine can have anti-nociceptive actions through blockade of adenosine receptors, inhibition of cyclo-oxygenase-2 enzyme synthesis, or by changes in emotion state. Nevertheless, these actions are only considered in some cases. It is suggested that the actual doses of analgesics and caffeine used can influence the analgesic adjuvant effects of caffeine, and doses that are either too low or too high lead to no analgesic enhancement. Clinical trials suggest that caffeine in doses of more than 65 mg may be useful for enhancement of analgesia. However, except for in headache pain, the benefits are equivocal. While adding caffeine to analgesics increases the number of patients who become free from headache [rate ratio = 1.36, 95% confidence interval (CI) 1.17 to 1.58], it also leads to more patients with nervousness and dizziness (relative risk = 1.60, 95% CI 1.26 to 2.03). It is suggested that long-term use or overuse of analgesic medications is associated with rebound headache. However, there is no robust evidence that headache after use or withdrawal of caffeine-containing analgesics is more frequent than after other analgesics. Case-control studies have shown that caffeine-containing analgesics are associated with analgesic nephropathy (odds ratio = 4.9, 95% CI 2.3 to 10.3). However, no specific contribution of caffeine to analgesic nephropathy can be identified from these studies. Whether caffeine produces nephrotoxicity on its own, or increases nephrotoxicity due to analgesics, is yet to be established.

  14. Effect of caffeine on the risk of coronary heart disease— A re-evaluation

    OpenAIRE

    Adebayo, J. O.; Akinyinka, A. O.; Odewole, G. A.; Okwusidi, J.I.

    2007-01-01

    The effect of caffeine intake on the risk of coronary heart disease was studied. Twenty-one rats used were randomly divided into three experimental groups, the first group served as the control while the second and third groups were administered caffeine orally at doses of 10mg/kg body weight and 20mg/kg body weight respectively for fourteen days. Caffeine, at 10mg/kg body weight, significantly increased (P

  15. Caffeine and central noradrenaline: effects on mood, cognitive performance, eye movements and cardiovascular function.

    Science.gov (United States)

    Smith, Andrew; Brice, Carolyn; Nash, Jon; Rich, Neil; Nutt, David J

    2003-09-01

    There have been numerous studies on the effects of caffeine on behaviour and cardiovascular function. It is now important to clarify the mechanisms that underlie such effects, and the main objective of the present study was to investigate whether changes in central noradrenaline underlie some of the behavioural and cardiovascular effects of caffeine. This was examined using a clonidine challenge paradigm. Twenty-four healthy volunteers were assigned to one of four conditions: (i) clonidine/caffeine; (ii) clonidine/placebo; (iii) placebo/caffeine: (iv) placebo/placebo. Baseline measurements of mood, cognitive performance, saccadic eye movements and cardiovascular function were recorded. Subsequently, volunteers were given either clonidine (200 microg) or placebo and consumed coffee containing caffeine (1.5 mg/kg) or placebo. The test battery was then repeated 30 min, 150 min and 270 min later. A second cup of coffee (with the same amount of caffeine as the first) was consumed 120 min after the first cup. The results showed that clonidine reduced alertness, impaired many aspects of performance and slowed saccadic eye movements; caffeine removed many of these impairments. Both clonidine and caffeine influenced blood pressure (clonidine reduced it, caffeine raised it) but the effects appeared to be independent, suggesting that separate mechanisms were involved. In addition, there were some behavioural effects of caffeine that were independent of the clonidine effect (e.g. effects on speed of encoding of new information) and these may reflect other neurotransmitter systems (e.g cholinergic effects). Overall, the results suggest that caffeine counteracts reductions in the turnover of central noradrenaline. This mechanism may underlie the beneficial effects of caffeine seen in low alertness states.

  16. Caffeine intake is independently associated with neuropsychological performance in patients with obstructive sleep apnea

    OpenAIRE

    Norman, Daniel; Bardwell, Wayne A; Loredo, Jose S.; Ancoli-Israel, Sonia; Heaton, Robert K; Dimsdale, Joel E.

    2008-01-01

    In healthy individuals, caffeine intake may improve performance on cognitive tests. Obstructive sleep apnea (OSA) is a disorder that has been associated with impaired cognitive function. In this study, we investigated whether increased caffeine intake in untreated patients with OSA is linked to better cognitive performance. Forty-five untreated OSA patients underwent baseline polysomnography after completing a survey of 24-h caffeine intake. Participants completed a battery of neuropsychologi...

  17. Caffeine suppresses β-amyloid levels in plasma and brain of Alzheimer’s transgenic mice

    OpenAIRE

    Cao, Chuanhai; Cirrito, John R.; Lin, Xiaoyang; Wang, Lilly; Verges, Deborah K.; Dickson, Alexander; Mamcarz, Malgorzata; Zhang, Chi; Mori, Takashi; Arendash, Gary W.; Holtzman, David M.; Potter, Huntington

    2009-01-01

    Recent epidemiologic studies suggest that caffeine may be protective against Alzheimer’s Disease (AD). Supportive of this premise, our previous studies have shown that moderate caffeine administration protects/restores cognitive function and suppresses brain β-amyloid (Aβ) production in AD transgenic mice. In the present study, we report that acute caffeine administration to both young adult and aged AD transgenic mice rapidly reduces Aβ levels in both brain interstitial fluid and plasma with...

  18. Autopsy report for a caffeine intoxication case and review of the current literature

    OpenAIRE

    Yamamoto, Takuma; Yoshizawa, Katsuhiko; Kubo, Shin-ichi; EMOTO, Yuko; Hara, Kenji; Waters, Brian; Umehara, Takahiro; Murase, Takehiko; Ikematsu, Kazuya

    2014-01-01

    Caffeine (1,3,7-trimethylxanthine) is a popular mild central nervous system stimulant found in the leaves, seeds and fruits of various plants and in foodstuffs such as coffee, tea, and chocolate, among others. Caffeine is widely used and is not associated with severe side effects when consumed at relatively low doses. Although rarely observed, overdoses can occur. However, only a few fatal caffeine intoxication cases have been reported in the literature. Herein, we report the pathological exa...

  19. Guarana Provides Additional Stimulation over Caffeine Alone in the Planarian Model

    OpenAIRE

    Dimitrios Moustakas; Michael Mezzio; Branden R Rodriguez; Mic Andre Constable; Mulligan, Margaret E.; Voura, Evelyn B.

    2015-01-01

    The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of g...

  20. The relationship between daily caffeine consumption and withdrawal symptoms: a questionnaire-based study

    OpenAIRE

    Küçer, Nermin

    2010-01-01

    To estimate daily caffeine intake among a group of university students at the Kocaeli Vocational School of Health Services in Turkey, and to determine the relationship between daily caffeine consumption and withdrawal symptoms. Materials and methods: This survey study was conducted using a questionnaire that was administered to 156 university students (129 females, 27 males) at the Kocaeli Vocational School of Health Services in Kocaeli, Turkey. The quantity of caffeine-containing products ...

  1. Chronic caffeine exposure attenuates blast-induced memory deficit in mice

    Institute of Scientific and Technical Information of China (English)

    Ya-Lei Ning; Nan Yang; Xing Chen; Zi-Ai Zhao; Xiu-Zhu Zhang; Xing-Yun Chen; Ping Li

    2015-01-01

    Objective:To investigate the effects of three different ways of chronic caffeine administration on blastinduced memory dysfunction and to explore the underlying mechanisms.Methods:Adult male C57BL/6 mice were used and randomly divided into five groups:control:without blast exposure,con-water:administrated with water continuously before and after blast-induced traumatic brain injury (bTBI),con-caffeine:administrated with caffeine continuously for 1 month before and after bTBI,pre-caffeine:chronically administrated with caffeine for 1 month before bTBI and withdrawal after bTBI,post-caffeine:chronically administrated with caffeine after bTBI.After being subjected to moderate intensity of blast injury,mice were recorded for learning and memory performance using Morris water maze (MWM) paradigms at 1,4,and 8 weeks post-blast injury.Neurological deficit scoring,glutamate concentration,proinflammatory cytokines production,and neuropathological changes at 24 h,1,4,and 8 weeks post-bTBI were examined to evaluate the brain injury in early and prolonged stages.Adenosine A1 receptor expression was detected using qPCR.Results:All of the three ways of chronic caffeine exposure ameliorated blast-induced memory deficit,which is correlated with the neuroprotective effects against excitotoxicity,inflammation,astrogliosis and neuronal loss at different stages of injury.Continuous caffeine treatment played positive roles in both early and prolonged stages of bTBI;pre-bTBl and post-bTBl treatment of caffeine tended to exert neuroprotective effects at early and prolonged stages of bTBI respectively.Up-regulation of adenosine A1 receptor expression might contribute to the favorable effects of chronic caffeine consumption.Conclusion:Since caffeinated beverages are widely consumed in both civilian and military personnel and are convenient to get,the results may provide a promising prophylactic strategy for blast-induced neurotrauma and the consequent cognitive impairment.

  2. Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study

    OpenAIRE

    Heilbronner, Urs; Hinrichs, Hermann; Heinze, Hans-Jochen; Zaehle, Tino

    2015-01-01

    Background Caffeine is a widely used stimulant with potentially beneficial effects on cognition as well as vasoconstrictive properties. In functional magnetic imaging research, caffeine has gained attention as a potential enhancer of the blood oxygenation level-dependent (BOLD) response. In order to clarify changes of oxy- and deoxyhemoglobin (HbO and HbR) induced by caffeine during a cognitive task, we investigated a working memory (WM) paradigm (visual 2-back) using near-infrared spectrosco...

  3. L-theanine partially counteracts caffeine-induced sleep disturbances in rats.

    Science.gov (United States)

    Jang, Hwan-Soo; Jung, Ji Young; Jang, Il-Sung; Jang, Kwang-Ho; Kim, Sang-Hyun; Ha, Jeoung-Hee; Suk, Kyoungho; Lee, Maan-Gee

    2012-04-01

    L-theanine has been reported to inhibit the excitatory effects of caffeine. The present study examined the effects of L-theanine on caffeine-induced sleep disturbances in rats. Rats received the following drug pairings: saline and saline (Control), 7.5 mg/kg caffeine and saline, or 7.5 mg/kg of caffeine followed by various doses of L-theanine (22.5, 37.5, 75, or 150 mg/kg). Vigilance states were divided into: wakefulness (W), transition to slow-wave sleep (tSWS), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). Caffeine significantly increased the duration of W and decreased the duration of SWS and REMS compared to the Control. Although L-theanine failed to reverse the caffeine-induced W increase, at 22.5 and 37.5 mg/kg (but not at 75 and 150 mg/kg), it significantly reversed caffeine-induced decreases in SWS. In conclusion, low doses of L-theanine can partially reverse caffeine-induced reductions in SWS; however, effects of L-theanine on caffeine-induced insomnia do not appear to increase dose-dependently.

  4. Caffeine intake is independently associated with neuropsychological performance in patients with obstructive sleep apnea.

    Science.gov (United States)

    Norman, Daniel; Bardwell, Wayne A; Loredo, Jose S; Ancoli-Israel, Sonia; Heaton, Robert K; Dimsdale, Joel E

    2008-08-01

    In healthy individuals, caffeine intake may improve performance on cognitive tests. Obstructive sleep apnea (OSA) is a disorder that has been associated with impaired cognitive function. In this study, we investigated whether increased caffeine intake in untreated patients with OSA is linked to better cognitive performance. Forty-five untreated OSA patients underwent baseline polysomnography after completing a survey of 24-h caffeine intake. Participants completed a battery of neuropsychological tests, then demographically corrected T scores and a global deficit score (GDS) were calculated on these tests. Partial correlation analysis was performed to compare daily caffeine intake with GDS, after controlling for body mass index (BMI) and sleep apnea severity. Analysis of covariance was done to examine differences in daily caffeine intake between cognitively impaired (GDS >or= 0.5) and non-impaired (GDS or= 0.5) for cognitive impairment. There was a significant inverse association between caffeine intake and the GDS, both when controlling for BMI (r =or -0.331, p = 0.04) and when controlling for BMI and apnea severity (r =or-0.500, p = 0.002); those with less impairment consumed more caffeine. Analysis of covariance demonstrated that cognitively impaired individuals consumed one-sixth as much caffeine as non-impaired individuals (p caffeine intake was associated with less cognitive impairment.

  5. ASSOCIATION OF CAFFEINE INTAKE AND LIVER FIBROSIS IN PATIENTS WITH CHRONIC HEPATITIS C

    Directory of Open Access Journals (Sweden)

    Kalinca da Silva OLIVEIRA

    2015-03-01

    Full Text Available Background Caffeine consumption has been associated to decreased levels of liver enzymes and lower risk of fibrosis in patients with hepatitis C virus. Objectives This study aimed to evaluate the association between caffeine consumption and inflammatory activity or degree of liver fibrosis in patients with hepatitis C virus infection. Methods A cross-sectional study of patients with chronic hepatitis C virus infection treated in an outpatient Gastroenterology Unit of Santa Casa Hospital (Porto Alegre - Brasil. Patients were interviewed regarding the consumption of caffeine and anthropometric assessment was performed. Liver biopsy was performed in a maximum period of 36 months before inclusion in the study Results There were 113 patients, 67 (59.3% females, 48 (42.5% were aged between 52 and 62 years, and 101 (89.4% were white. The average caffeine consumption was 251.41 ± 232.32 mg/day, and 70 (62% patients consumed up to 250 mg/day of caffeine. There was no association between caffeine consumption and inflammatory activity on liver biopsy. On the other hand, when evaluating the caffeine consumption liver fibrosis an inverse association was observed. Conclusions The greater consumption of caffeine was associated with lower liver fibrosis. There was no association between caffeine consumption and inflammatory activity.

  6. Estimating caffeine intake from energy drinks and dietary supplements in the United States.

    Science.gov (United States)

    Bailey, Regan L; Saldanha, Leila G; Gahche, Jaime J; Dwyer, Johanna T

    2014-10-01

    No consistent definition exists for energy products in the United States. These products have been marketed and sold as beverages (conventional foods), energy shots (dietary supplements), and in pill or tablet form. Recently, the number of available products has surged, and formulations have changed to include caffeine. To help characterize the use of caffeine-containing energy products in the United States, three sources of data were analyzed: sales data, data from federal sources, and reports from the Drug Abuse Warning Network. These data indicate that sales of caffeine-containing energy products and emergency room visits involving their consumption appear to be increasing over time. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 indicate that 2.7% [standard error (SE) 0.2%] of the US population ≥1 year of age used a caffeine-containing energy product, providing approximately 150-200 mg/day of caffeine per day in addition to caffeine from traditional sources like coffee, tea, and colas. The highest usage of these products was among males between the ages of 19 and 30 years (7.6%, SE 1.0). Although the prevalence of caffeine-containing energy product use remains low overall in the US population, certain subgroups appear to be using these products in larger amounts. Several challenges remain in determining the level of caffeine exposure from and accurate usage patterns of caffeine-containing energy products.

  7. Low Concentration of Caffeine Inhibits the Progression of the Hepatocellular Carcinoma via Akt Signaling Pathway.

    Science.gov (United States)

    Dong, Shuying; Kong, Jian; Kong, Jinge; Shen, Qiang; Kong, Fandong; Sun, Wenbing; Zheng, Lemin

    2015-01-01

    Accumulating evidences have reported that caffeine has anticancer effects at high blood concentrations. However, whether caffeine has anticancer effects on human hepatocellular carcinoma (HCC) cells at low concentration, especially at physiologically applicable concentration (concentrations of caffeine (0, 50, 100, 200, 400 or 600 μM). MTT assay was used to investigate the proliferation ability in vitro. Migration and invasion abilities were determined by wound healing assay and transwell assay. The molecular changes were detected by western blot. An ectopic nude mice model which the mice were gavaged with caffeine was used to reveal the anticancer effects of caffeine on HepG2 cells in vivo. Results showed that caffeine could inhibit the proliferation, migration and invasion significantly at physiologically applicable concentration in vitro. Also the associated molecular changes of cancer progression were observed. In animal experiment, the mice gavaged with caffeine also performanced reduced tumor burden in vivo. Moreover, the interrelated protein expression was also observed in vivo which was coincident with the results in vitro. All in all, this observation indicated that caffeine may suppress the progression of HCC through Akt signaling pathway. This makes caffeine a potential candidate for treating HCC which will be a safer and more effective treatment by giving for a long time at physiologically applicable concentration.

  8. Effects of mental workload and caffeine on catecholamines and blood pressure compared to performance variations.

    Science.gov (United States)

    Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Vlachogiannis, Emmanouil; Skepastianos, Petros; Bamidis, Panayiotis; Maglaveras, Nikos; Pappas, Kostantinos

    2003-02-01

    Caffeine is characterised as a central nervous system stimulant, also affecting metabolic and cardiovascular functions. A number of studies have demonstrated an effect of caffeine on the excretion of catecholamines and their metabolites. Urinary epinephrine and norepinephrine have been shown to increase after caffeine administration. Similar trends were observed in our study in adrenaline (ADR) and noradrenaline (NORADR) levels and additionally a dose dependent effect of caffeine. The effect of caffeine on cognitive performance, blood pressure, and catecholamines was tested under resting conditions and under mental workload. Each subject performed the test after oral administration of 1 cup and then 3 cups of coffee. Root mean square error (RMSE) for the tracking task was continuously monitored. Blood pressure was also recorded before and after each stage of the experiment. Catecholamines were collected and measured for three different conditions as: at rest, after mental stress alone, after one dose of caffeine under stress, and after triple dose of caffeine under stress. Comparison of the performance of each stage with the resting conditions revealed statistically significant differences between group of smokers/coffee drinkers compared with the other two groups of non-coffee drinkers/non-smokers and non-smokers/coffee drinkers. There was no statistically significant difference between the last two groups. There was an increase of urine adrenaline with 1 cup of coffee and statistically significant increase of urine noradrenaline. Both catecholamines were significantly increased with triple dose of caffeine. Mental workload increased catecholamines. There was a dose dependent effect of caffeine on catecholamines.

  9. BRCA1 and its phosphorylation involved in caffeine-inhibitable event upstream of G2 checkpoint

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Caffeine,which specifically inhibits ATM/ATR kinases,efficiently abrogates the ionizing radiation(IR)-induced G2 arrest and increases the sensitivity of various tumor cells to IR.Mechanisms for the effect of caffeine remain to be elucidated.As a target of ATM/ATR kinases,BRCA1 becomes activated and phosphorylated in response to IR.Thus,in this work,we investigated the possible role of BRCA1 in the effect of caffeine on G2 checkpoint and observed how BRCA1 phosphorylation was regulated in this process.For these purposes,the BRCA1 protein level and the phosphorylation states were analyzed by Western blotting by using an antibody against BRCA1 and phospho-specific antibodies against Ser-1423 and Ser-1524 residues in cells exposed to a combination of IR and caffeine.The results showed that caffeine down-regulated IR-induced BRCA1 expression and specifically abolished BRCA1 phosphorylation of Ser-1524,which was followed by an override of G2 arrest by caffeine.In addition,the ability of BRCA1 to transactivate p21 may be required for MCF-7 but not necessary for Hela response to caffeine.These data suggest that BRCA1 may be a potential target of caffeine.BRCA1 and its phosphorylation are most likely to be involved in the caffeine-inhibitable event upstream of G2 arrest.

  10. Caffeine improves left hemisphere processing of positive words.

    Directory of Open Access Journals (Sweden)

    Lars Kuchinke

    Full Text Available A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition.

  11. Does caffeine alter muscle carbohydrate and fat metabolism during exercise?

    DEFF Research Database (Denmark)

    Graham, Terry E; Battram, Danielle S; Dela, Flemming

    2008-01-01

    and carbohydrate metabolism. While caffeine certainly mobilizes fatty acids from adipose tissue, rarely have measures of the respiratory exchange ratio indicated an increase in fat oxidation. However, this is a difficult measure to perform accurately during exercise, and small changes could be physiologically......Caffeine, an adenosine receptor antagonist, has been studied for decades as a putative ergogenic aid. In the past 2 decades, the information has overwhelmingly demonstrated that it indeed is a powerful ergogenic aid, and frequently theories have been proposed that this is due to alterations in fat...... important. The few studies examining human muscle metabolism directly have also supported the fact that there is no change in fat or carbohydrate metabolism, but these usually have had a small sample size. We combined the data from muscle biopsy analyses of several similar studies to generate a sample size...

  12. Caffeine in coffee: its removal. Why and how?

    Science.gov (United States)

    Ramalakshmi, K; Raghavan, B

    1999-09-01

    The popularity of coffee as a beverage is ever increasing despite the fact that there are reports antagonized to its consumption. Of the several factors cited, the alkaloid caffeine present in coffee can cause addiction and stimulate the central nervous system. It has an effect on the cardiovascular system with a slight increase in blood pressure and heart output. It undergoes biotransformation in the human body to form methylated derivatives of uric acid. In recent times, much effort has gone into the research on the removal of caffeine in coffee, resulting in a specialty product called decaffeinated coffee. Decaffeination methods mainly employ organic solvents or water or supercritical carbon dioxide. These methods with their attendant advantages and disadvantages are reviewed in this article.

  13. Molecular mechanisms of DNA repair inhibition by caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.P.; Sancar, A. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))

    1990-05-01

    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  14. Effect of caffeine on rat offspring from treated dams.

    Science.gov (United States)

    Aeschbacher, H U; Milon, H; Poot, A; Würzner, H P

    1980-11-01

    Pregnant Sprague-Dawley rats were given caffeine at 1.0, 0.5 and 0.25 g/kg diet during gestation and lactation. At birth, half of the pups from control and treated rats at each dose level were exchanged and cross fostered. Two litters were produced by each animal from each of the experimental groups. Caffeine at dietary concentrations of 0.5 and 0.25 g/kg throughout gestation and lactation had no significant effect on birth weight, litter size or development. There was also no effect at these doses following treatment during either gestation alone, or lactation alone. At 1.0 g/kg there was a slight reduction of birth weight, as well as a trend towards lower weight gain in litters from dams fed the test diet throughout gestation and lactation.

  15. Effects of some polymeric additives on the cocrystallization of caffeine

    Science.gov (United States)

    Chung, Jihae; Kim, Il Won

    2011-11-01

    Effects of polymeric additives on the model cocrystallization were examined. The model cocrystal was made from caffeine and oxalic acid, and poly(ethylene glycol) (PEG), poly( L-lactide) (PLLA), poly(ɛ-caprolactone) (PCL), and poly(acrylic acid) (PAA) were the additives. The cocrystals were formed as millimeter-sized crystals without additives, and they became microcrystals with PLLA and PCL, and nanocrystals with PAA. XRD and IR revealed that the cocrystal structure was unchanged despite the strong effects of the additives on the crystal morphology, although some decrease in crystallinity was observed with PAA as confirmed by DSC. The DSC study also showed that the cocrystal melted and recrystallized to form α-caffeine upon heating. The present study verified that the polymeric additives can be utilized to modulate the size and morphology of the cocrystals without interfering the intermolecular interactions essential to the integrity of the cocrystal structures.

  16. Caffeine Attenuates Decreases in Leg Power Without Increased Muscle Damage.

    Science.gov (United States)

    Ribeiro, Beatriz G; Morales, Anderson P; Sampaio-Jorge, Felipe; Barth, Thiago; de Oliveira, Marcio B C; Coelho, Gabriela M D O; Leite, Tiago C

    2016-08-01

    Ribeiro, BG, Morales, AP, Sampaio-Jorge, F, Barth, T, de Oliveira, MBC, Coelho, GMdO, and Leite, TC. Caffeine attenuates decreases in leg power without increased muscle damage. J Strength Cond Res 30(8): 2354-2360, 2016-Caffeine ingestion has been shown to be an effective ergogenic aid in several sports. Caffeine administration may increase exercise capacity, which could lead to a greater degree of muscle damage after exercise. This was a randomized, double-blind, placebo-controlled crossover study. Six male handball athletes ingested placebo (PLA) or caffeine (CAF) (6 mg·kg body mass) capsules on 2 different occasions. Sixty minutes after ingestion of the capsules, serum CAF levels were evaluated. Thereafter, all participants performed a protocol of vertical jumps (VJs). The protocol consisted of 4 sets of 30 seconds of continuous VJs with 60 seconds of recovery between sets. Blood lactate (LAC) and creatine kinase (CK) levels were determined before and after the protocol. We found significant differences in serum CAF levels between PLA (0.09 ± 0.18 µg·ml) vs. CAF (6.59 ± 4.44 µg·ml) (p 0.05). These results indicate that immediate ingestion of CAF (6 mg·kg body weight) can reduce the level of muscle fatigue and preserve leg power during the test, possibly resulting in increase in LAC. There was no increase in muscle damage, which indicates that immediate administration of (6 mg·kg body weight) CAF is safe. Thus, nutritional interventions with CAF could help athletes withstand a greater physiological overload during high-intensity training sessions. The results of this study would be applicable to sports and activities that require repetitive leg power.

  17. Commercial Caffeinated Products for Military Use: Customer Acceptability

    Science.gov (United States)

    2012-01-01

    November 2010). The MCMWTC participants primarily performed day and night rock climbing tasks, while those in STTS were performing dismounted movements ...and candy bars (25%); the remaining top ten included gum; beverage, powdered; sunflower 9 seeds; chocolate covered espresso beans; and chewy candies...caffeinated forms of beef jerky, chewy candies, energy concentrates, sunflower seeds or candy bars, respectively. However, 59% and 48% of the respondents

  18. Cigarette, alcohol, and caffeine consumption: risk factors for spontaneous abortion

    DEFF Research Database (Denmark)

    Rasch, Vibeke

    2003-01-01

    given birth twice or more previously had increased odds ratio (OR), 1.78 (1.27-2.49), whereas women who were students had decreased OR, 0.55 (0.34-0.91) for having spontaneous abortions. Regarding lifestyle factors, the adjusted ORs among women who consumed 5 units or more alcohol per week or 375 mg...... units alcohol per week and 375 mg or more caffeine per day during pregnancy may increase the risk of spontaneous abortion....

  19. Blood pressure in relation to coffee and caffeine consumption.

    Science.gov (United States)

    Guessous, Idris; Eap, Chin B; Bochud, Murielle

    2014-09-01

    The relationship between blood pressure (BP) and coffee is of major interest given its widespread consumption and the public health burden of high BP. Yet, there is no specific recommendation regarding coffee intake in existing hypertension guidelines. The lack of a definitive understanding of the BP-coffee relationship is partially attributable to issues that we discuss in this review, issues such as acute vs. chronic effects, genetic and smoking effect modifications, and coffee vs. caffeine effects. We also present evidence from meta-analyses of studies on the association of BP with coffee intake. The scope of this review is limited to the latest advances published with a specific focus on caffeine, acknowledging that caffeine is only one among numerous components in coffee that may influence BP. Finally, considering the state of the research, we propose a mechanism by which the CYP1A2 gene and enzyme influence BP via inhibition of the adenosine receptor differentially in smokers and non-smokers.

  20. Challenging sleep in aging: the effects of 200 mg of caffeine during the evening in young and middle-aged moderate caffeine consumers.

    Science.gov (United States)

    Drapeau, Caroline; Hamel-Hébert, Isabelle; Robillard, Rébecca; Selmaoui, Brahim; Filipini, Daniel; Carrier, Julie

    2006-06-01

    The aim of this study was to evaluate the effects of a 200-mg administration of caffeine on polysomnographic sleep variables and quantitative sleep electroencephalography (EEG) in 12 young (20-30 years) and 12 middle-aged (40-60 years) moderate caffeine consumers (one to three cups of coffee per day). All subjects were submitted to both a caffeine (200 mg) and placebo (lactose) condition in a double-blind cross-over design. The conditions were separated by 1 week. Compared with the placebo condition, the evening ingestion of caffeine lengthened sleep latency, reduced sleep efficiency, and decreased sleep duration and amount of stage 2 sleep in both age groups. Caffeine also reduced spectral power in delta frequencies in frontal, central and parietal brain areas, but not in prefrontal (PF) and occipital regions. Moreover, caffeine increased spectral power in beta frequencies in frontal and central brain areas in both age groups. A suppression of spectral power in the PF area in low delta frequencies (0.5-1.00 Hz) and a rise in spectral power in the parietal region in high alpha (10.00-12.00 Hz) and beta frequencies (17.00-21.00, 23.00-25.00, 27.00-29.00 Hz) occurred solely in middle-aged subjects. No such changes were noticeable in young subjects. Generally, caffeine produced similar effects in young and middle-aged subjects. Only a few frequency bins showed more effects of caffeine in middle-aged subjects compared with young subjects. Furthermore, sleep EEG results do not entirely support the hypothesis that caffeine fully mimics the effects of a reduction of homeostatic sleep propensity when following a normal sleep-wake cycle.

  1. THE TESTING OF CAFFEIN “IN VITRO” REACTION ON CYMBIDIUM HYBRIDUM PROTOCORMS SUBCULTURED ON ESPECIALLY BRIDGE OF FILTERED PAPER

    Directory of Open Access Journals (Sweden)

    C.F. Blidar

    2005-08-01

    biomass of these, was registered at the variants of culture medium with caffeine in a 0,001% concentration. On the lowest or highest concentration of 0,001% caffeine, we find out a progressive decrease of the protocorms vitality.

  2. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium.

    Science.gov (United States)

    Belščak-Cvitanović, Ana; Komes, Draženka; Karlović, Sven; Djaković, Senka; Spoljarić, Igor; Mršić, Gordan; Ježek, Damir

    2015-01-15

    Alginate-based blends consisting of carrageenan, pectin, chitosan or psyllium husk powder were prepared for assessment of the best formulation aimed at encapsulation of caffeine. Alginate-pectin blend exhibited the lowest viscosity and provided the smallest beads. Alginate-psyllium husk blend was characterised with higher viscosity, yielding the largest bead size and the highest caffeine encapsulation efficiency (83.6%). The release kinetics of caffeine indicated that the porosity of alginate hydrogel was not reduced sufficiently to retard the diffusion of caffeine from the beads. Chitosan coated alginate beads provided the most retarded release of caffeine in water. Morphological characteristics of beads encapsulating caffeine were adversely affected by freeze drying. Bitterness intensity of caffeine-containing beads in water was the lowest for alginate-psyllium beads and chitosan coated alginate beads. Higher sodium alginate concentration (3%) for production of hydrogel beads in combination with psyllium or chitosan coating would present the most favourable carrier systems for immobilization of caffeine.

  3. The effect of a physiological concentration of caffeine on the endurance of maximally and submaximally stimulated mouse soleus muscle.

    Science.gov (United States)

    Tallis, Jason; James, Rob S; Cox, Val M; Duncan, Michael J

    2013-03-01

    The use of caffeine as an ergogenic aid to promote endurance has been widely studied, with human literature showing the greatest benefit during submaximal muscle activities. Recent evidence suggests that the acute treatment of skeletal muscle with physiological concentrations of caffeine (70 μM maximum) will directly potentiate force production. The aims of the present study are: firstly, to assess the effects of a physiological concentration (70 μM) of caffeine on endurance in maximally activated mouse soleus (relatively slow) muscle; and secondly, to examine whether endurance changes when muscle is activated submaximally during caffeine treatment. Maximally stimulated soleus muscle treated with 70 μM caffeine resulted in a significant (17.6 %) decrease in endurance. In contrast, at a submaximal stimulation frequency, caffeine treatment significantly prolonged endurance (by 19.2 %). Findings are activation-dependent such that, during high frequency stimulation, caffeine accelerates fatigue, whereas, during low frequency stimulation, caffeine delays fatigue.

  4. Caffeinated and non-caffeinated alcohol use and indirect aggression: The impact of self-regulation.

    Science.gov (United States)

    Sheehan, Brynn E; Linden-Carmichael, Ashley N; Lau-Barraco, Cathy

    2016-07-01

    Research shows that heavier alcohol use is associated with physical aggression. Scant research has examined the way in which alcohol relates to other forms of aggression, such as indirect aggression (e.g., malicious humor, social exclusion). Given the possible negative consequences of indirect aggression and the limited evidence suggesting alcohol use can elicit indirectly aggressive responses, research is needed to further investigate the association between drinking behavior and indirect aggression. Additionally, specific alcoholic beverages, such as caffeinated alcoholic beverages (CABs; e.g., Red Bull and vodka), may potentiate aggression above the influence of typical use, and thus warrant examination with regard to indirect aggression. One factor that may impact the strength of the alcohol-indirect aggression and CAB-indirect aggression relationships is one's level of self-regulation. Consequently, our study examined the relationships between (1) alcohol use and indirect aggression, (2) CAB use and indirect aggression, and (3) self-regulation as a moderator. Participants were 733 (67.6% female) undergraduate students who reported their CAB and alcohol use, self-regulation, and aggressive behaviors. Results revealed that heavier alcohol use was associated with more frequent indirect aggression after controlling for dispositional aggression. Heavier CAB use was related to more frequent indirect aggression after accounting for typical use and dispositional aggression. Self-regulation moderated these associations such that for those with lower self-regulation, greater alcohol and CAB consumption was associated with greater indirect aggression. Our findings suggest that heavier alcohol and CAB consumption may be risk factors for engaging in indirect aggression and this risk is impacted by one's regulatory control.

  5. Review of Caffeine-Related Fatalities along with Postmortem Blood Concentrations in 51 Poisoning Deaths.

    Science.gov (United States)

    Jones, Alan Wayne

    2017-02-18

    Publications reporting concentrations of caffeine in postmortem blood were reviewed if the cause of death was attributed to overdosing (poisoning) with drugs. Age and gender of the deceased, the manner of death (accident, suicide or undetermined) and types of co-ingested drugs were evaluated in relation to the concentrations of caffeine in blood (N = 51). The mean age (±SD) of the victims was 39 ± 17.8 years (range 18-84 years) and most were female (N = 31 or 61%). The difference in mean age of males (42 ± 17.2 years) and females (37 ± 18.3 years) was not statistically significant (t = 0.811, P = 0.421). The mean (±SD), median and range of caffeine concentrations in postmortem blood were 187 ± 96 mg/L (180 mg/L) and 33-567 mg/L, respectively. The median concentration of caffeine in males (161 mg/L) was not significantly different from that of females (182 mg/L), z = 1.18, P = 0.235. There was no correlation between the age of the deceased and the concentration of caffeine in postmortem blood (R2 = 0.026, P > 0.05). Manner of death was classified as suicide in 51% of cases (median blood-caffeine 185 mg/L), accidental in 16% (median 183 mg/L) or undetermined in 33% (median 113 mg/L). The median concentration of caffeine in blood was lower when manner of death was undetermined compared with suicide or accidental (P = 0.023). Although other drugs, including ethanol, antidepressants, antipsychotics, benzodiazepines and/or ephedrine, were often identified in postmortem blood, the predominant psychoactive substance was caffeine. The deceased had ingested caffeine in tablet or powder form and it does not seem likely that toxic concentrations of caffeine can be achieved from over-consumption of caffeinated beverages alone.

  6. Crossover comparison of efficacy and preference for rizatriptan 10 mg versus ergotamine/caffeine in migraine.

    Science.gov (United States)

    Christie, Suzanne; Göbel, Hartmut; Mateos, Valentin; Allen, Christopher; Vrijens, France; Shivaprakash, Malathi

    2003-01-01

    Rizatriptan is a selective 5-HT(1B/1D) receptor agonist with rapid oral absorption and early onset of action in the acute treatment of migraine. This randomized double- blind crossover outpatient study assessed the preference for 1 rizatriptan 10 mg tablet to 2 ergotamine 1 mg/caffeine 100 mg tablets in 439 patients treating a single migraine attack with each therapy. Of patients expressing a preference (89.1%), more than twice as many preferred rizatriptan to ergotamine/caffeine (69.9 vs. 30.1%, p rizatriptan and 54.2% of patients who preferred ergotamine/caffeine. The co-primary endpoint of being pain free at 2 h was also in favor of rizatriptan. Forty-nine percent of patients were pain free 2 h after rizatriptan, compared with 24.3% treated with ergotamine/caffeine (p rizatriptan being superior within 1 h of treatment. Headache relief at 2 h was 75.9% for rizatriptan and 47.3% for ergotamine/caffeine (p rizatriptan being superior to ergotamine/caffeine within 30 min of dosing. Almost 36% of patients taking rizatriptan were pain free at 2 h and had no recurrence or need for additional medication within 24 h, compared to 20% of patients on ergotamine/caffeine (p Rizatriptan was also superior to ergotamine/caffeine in the proportions of patients with no nausea, vomiting, phonophobia or photophobia and for patients with normal function 2 h after drug intake (p rizatriptan (69.8%) than at 2 h after treatment with ergotamine/caffeine (38.6%, p rizatriptan and 15.3% with ergotamine/caffeine. Both active treatments were well tolerated. The most common adverse events (incidence > or = 5% in one group) after rizatriptan and ergotamine/caffeine, respectively, were dizziness (6.7 and 5.3%), nausea (4.2 and 8.5%) and somnolence (5.5 and 2.3%).

  7. Incorporation of caffeine into a quantitative model of fatigue and sleep.

    Science.gov (United States)

    Puckeridge, M; Fulcher, B D; Phillips, A J K; Robinson, P A

    2011-03-21

    A recent physiologically based model of human sleep is extended to incorporate the effects of caffeine on sleep-wake timing and fatigue. The model includes the sleep-active neurons of the hypothalamic ventrolateral preoptic area (VLPO), the wake-active monoaminergic brainstem populations (MA), their interactions with cholinergic/orexinergic (ACh/Orx) input to MA, and circadian and homeostatic drives. We model two effects of caffeine on the brain due to competitive antagonism of adenosine (Ad): (i) a reduction in the homeostatic drive and (ii) an increase in cholinergic activity. By comparing the model output to experimental data, constraints are determined on the parameters that describe the action of caffeine on the brain. In accord with experiment, the ranges of these parameters imply significant variability in caffeine sensitivity between individuals, with caffeine's effectiveness in reducing fatigue being highly dependent on an individual's tolerance, and past caffeine and sleep history. Although there are wide individual differences in caffeine sensitivity and thus in parameter values, once the model is calibrated for an individual it can be used to make quantitative predictions for that individual. A number of applications of the model are examined, using exemplar parameter values, including: (i) quantitative estimation of the sleep loss and the delay to sleep onset after taking caffeine for various doses and times; (ii) an analysis of the system's stable states showing that the wake state during sleep deprivation is stabilized after taking caffeine; and (iii) comparing model output successfully to experimental values of subjective fatigue reported in a total sleep deprivation study examining the reduction of fatigue with caffeine. This model provides a framework for quantitatively assessing optimal strategies for using caffeine, on an individual basis, to maintain performance during sleep deprivation.

  8. Protein-energy malnutrition during pregnancy alters caffeine's effect on brain tissue of neonate rats.

    Science.gov (United States)

    Mori, M; Wilber, J F; Nakamoto, T

    1984-12-17

    We studied whether protein-energy malnutrition changed brain susceptibility to a small dose of caffeine in newborn rats. Since we had demonstrated previously that caffeine intake during lactation increased the brain neuropeptide on newborns, we investigated further the effects of the prenatal administration of caffeine on TRH and cyclo (His-Pro). From day 13 of gestation to delivery day, pregnant rats in one group were fed either a 20% or a 6% protein diet ad libitum, and those in the other group were pair-fed with each protein diet supplemented with caffeine at an effective dose of 2 mg/100 g body weight. Upon delivery, brain weight, brain protein, RNA, DNA and the neuropeptides thyrotropin-releasing hormone (TRH) and cyclo (His-Pro) were measured in the newborn rats. A 6% protein without caffeine diet caused reductions in brain weights and brain protein, RNA and DNA contents, but did not alter brain TRH and cyclo (His-Pro) concentrations in the newborn animals. In the offspring from dams fed a 6% protein diet, caffeine administration significantly elevated brain weights and brain contents of protein, RNA and DNA. In contrast, these values were similar between noncaffeine and caffeine-supplemented animals in a 20% protein diet group. Brain TRH and cyclo (His-Pro) concentrations were not changed by caffeine administration. These data suggest that caffeine augments protein synthesis in the newborn rat brain when malnourished, but that the same dose of caffeine did not affect protein synthesis in brains of newborn rats from normally nourished dams. Therefore, the present findings indicate that the nutritional status of mothers during pregnancy has important implication in the impact of caffeine on their offspring's brains.

  9. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    Science.gov (United States)

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  10. Maternal caffeine intake from coffee and tea, fetal growth, and the risks of adverse birth outcomes: The Generation R Study

    NARCIS (Netherlands)

    R. Bakker (Rachel); R.P.M. Steegers-Theunissen (Régine); A. Obradov (Aleksandra); H. Raat (Hein); A. Hofman (Albert); V.W.V. Jaddoe (Vincent)

    2010-01-01

    textabstractBackground: Caffeine is a widely used and accepted pharmacologically active substance. The effect of caffeine intake during pregnancy on fetal growth and development is still unclear. Objective: We examined the associations of maternal caffeine intake, on the basis of coffee and tea cons

  11. The effect of caffeine on working memory load-related brain activation in middle-aged males

    NARCIS (Netherlands)

    E.B. Klaassen; R.H.M. de Groot; E.A.T. Evers; J. Snel; E.C.I. Veerman; A.J.M. Ligtenberg; J. Jolles; D.J. Veltman

    2012-01-01

    Caffeine is commonly consumed in an effort to enhance cognitive performance. However, little is known about the usefulness of caffeine with regard to memory enhancement, with previous studies showing inconsistent effects on memory performance. We aimed to determine the effect of caffeine on working

  12. The effect of caffeine on working memory load-related brain activation in middle-aged males

    NARCIS (Netherlands)

    Klaassen, E.B.; de Groot, R.H.M.; Evers, E.A.T.; Snel, J.; Veerman, E.C.I.; Ligtenberg, A.J.M.; Jolles, J.; Veltman, D.J.

    2013-01-01

    Caffeine is commonly consumed in an effort to enhance cognitive performance. However, little is known about the usefulness of caffeine with regard to memory enhancement, with previous studies showing inconsistent effects on memory performance. We aimed to determine the effect of caffeine on working

  13. Illustrating Caffeine's Pharmacological and Expectancy Effects Utilizing a Balanced Placebo Design.

    Science.gov (United States)

    Lotshaw, Sandra C.; And Others

    1996-01-01

    Hypothesizes that pharmacological and expectancy effects may be two principles that govern caffeine consumption in the same way they affect other drug use. Tests this theory through a balanced placebo design on 100 male undergraduate students. Expectancy set and caffeine content appeared equally powerful, and worked additionally, to affect…

  14. Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ghribi Othman

    2008-04-01

    Full Text Available Abstract High levels of serum cholesterol and disruptions of the blood brain barrier (BBB have all been implicated as underlying mechanisms in the pathogenesis of Alzheimer's disease. Results from studies conducted in animals and humans suggest that caffeine might be protective against Alzheimer's disease but by poorly understood mechanisms. Using rabbits fed a cholesterol-enriched diet, we tested our hypothesis that chronic ingestion of caffeine protects against high cholesterol diet-induced disruptions of the BBB. New Zealand rabbits were fed a 2% cholesterol-enriched diet, and 3 mg caffeine was administered daily in drinking water for 12 weeks. Total cholesterol and caffeine concentrations from blood were measured. Olfactory bulbs (and for some studies hippocampus and cerebral cortex as well were evaluated for BBB leakage, BBB tight junction protein expression levels, activation of astrocytes, and microglia density using histological, immunostaining and immunoblotting techniques. We found that caffeine blocked high cholesterol diet-induced increases in extravasation of IgG and fibrinogen, increases in leakage of Evan's blue dye, decreases in levels of the tight junction proteins occludin and ZO-1, increases in astrocytes activation and microglia density where IgG extravasation was present. Chronic ingestion of caffeine protects against high cholesterol diet-induced increases in disruptions of the BBB, and caffeine and drugs similar to caffeine might be useful in the treatment of Alzheimer's disease.

  15. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice.

    Science.gov (United States)

    Arendash, Gary W; Mori, Takashi; Cao, Chuanhai; Mamcarz, Malgorzata; Runfeldt, Melissa; Dickson, Alexander; Rezai-Zadeh, Kavon; Tane, Jun; Citron, Bruce A; Lin, Xiaoyang; Echeverria, Valentina; Potter, Huntington

    2009-01-01

    We have recently shown that Alzheimer's disease (AD) transgenic mice given a moderate level of caffeine intake (the human equivalent of 5 cups of coffee per day) are protected from development of otherwise certain cognitive impairment and have decreased hippocampal amyloid-beta (Abeta) levels due to suppression of both beta-secretase (BACE1) and presenilin 1 (PS1)/gamma-secretase expression. To determine if caffeine intake can have beneficial effects in "aged" APPsw mice already demonstrating cognitive impairment, we administered caffeine in the drinking water of 18-19 month old APPsw mice that were impaired in working memory. At 4-5 weeks into caffeine treatment, those impaired transgenic mice given caffeine (Tg/Caff) exhibited vastly superior working memory compared to the continuing impairment of control transgenic mice. In addition, Tg/Caff mice had substantially reduced Abeta deposition in hippocampus (decrease 40%) and entorhinal cortex (decrease 46%), as well as correlated decreases in brain soluble Abeta levels. Mechanistically, evidence is provided that caffeine suppression of BACE1 involves the cRaf-1/NFkappaB pathway. We also determined that caffeine concentrations within human physiological range effectively reduce active and total glycogen synthase kinase 3 levels in SweAPP N2a cells. Even with pre-existing and substantial Abeta burden, aged APPsw mice exhibited memory restoration and reversal of AD pathology, suggesting a treatment potential of caffeine in cases of established AD.

  16. Performance pressure and caffeine both affect cognitive performance, but likely through independent mechanisms

    NARCIS (Netherlands)

    Boere, J.J.; Fellinger, L.; Huizinga, D.J.H.; Wong, S.F.; Bijleveld, E.H.

    2016-01-01

    A prevalent combination in daily life, performance pressure and caffeine intake have both been shown to impact people's cognitive performance. Here, we examined the possibility that pressure and caffeine affect cognitive performance via a shared pathway. In an experiment, participants performed a mo

  17. Breakfast cereal and caffeinated coffee: effects on working memory, attention, mood, and cardiovascular function.

    Science.gov (United States)

    Smith, A P; Clark, R; Gallagher, J

    1999-08-01

    This study examined the effects of breakfast cereal and caffeinated coffee on working memory, attention, mood, and cardiovascular function. One hundred and forty-four volunteers (72 male, 72 female, mean age 21 years) were assigned to one of the groups formed by combining breakfast (cereal versus no breakfast) and caffeine (caffeinated versus decaffeinated coffee) conditions. The volunteers completed a baseline session between 0800 and 0845 h. The breakfast/caffeine administration took place between 0845 and 0915 h. They then completed another test session (starting at 0945) and had a coffee break at 1045, followed by a final session starting at 1145. The results showed that those who consumed breakfast cereal had a more positive mood at the start of the test sessions, performed better on a spatial memory task, and felt calmer at the end of the test session than those in the no breakfast condition. Ingestion of caffeine had no effect on initial mood or working memory, but it did improve encoding of new information and counteracted the fatigue that developed over the test session. Caffeine increased blood pressure and pulse rate, whereas breakfast cereal consumption only had an effect on pulse. Overall, these results confirm previous findings on the effects of breakfast and caffeine, and demonstrate distinct profiles for two common examples of early-morning food and drink, breakfast cereal and caffeinated coffee.

  18. The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor.

    Science.gov (United States)

    Wu, Mark N; Ho, Karen; Crocker, Amanda; Yue, Zhifeng; Koh, Kyunghee; Sehgal, Amita

    2009-09-02

    Caffeine is one of the most widely consumed stimulants in the world and has been proposed to promote wakefulness by antagonizing function of the adenosine A2A receptor. Here, we show that chronic administration of caffeine reduces and fragments sleep in Drosophila and also lengthens circadian period. To identify the mechanisms underlying these effects of caffeine, we first generated mutants of the only known adenosine receptor in flies (dAdoR), which by sequence is most similar to the mammalian A2A receptor. Mutants lacking dAdoR have normal amounts of baseline sleep, as well as normal homeostatic responses to sleep deprivation. Surprisingly, these mutants respond normally to caffeine. On the other hand, the effects of caffeine on sleep and circadian rhythms are mimicked by a potent phosphodiesterase inhibitor, IBMX (3-isobutyl-1-methylxanthine). Using in vivo fluorescence resonance energy transfer imaging, we find that caffeine induces widespread increase in cAMP levels throughout the brain. Finally, the effects of caffeine on sleep are blocked in flies that have reduced neuronal PKA activity. We suggest that chronic administration of caffeine promotes wakefulness in Drosophila, at least in part, by inhibiting cAMP phosphodiesterase activity.

  19. The influence of caffeine on spatial-selective attention : an event-related potential study

    NARCIS (Netherlands)

    de Ruiter, MB; Snel, J; Lorist, MM; Ruijter, J

    2000-01-01

    Objectives: Following the indications of previous studies that caffeine might have a specific effect on the processing of spatial information compared with other types of information, the present study investigated the influence of caffeine on an often used spatial-selective attention task. Methods:

  20. Effects of caffeine on anticipatory control processes : Evidence from a cued task-switch paradigm

    NARCIS (Netherlands)

    Tieges, Zoe; Snel, Jan; Kok, Albert; Plat, Niels; Ridderinkhof, Richard

    2007-01-01

    Effects of caffeine on task switching were studied using ERPs in a cued task-switch paradigm. The need for advance preparation was manipulated by varying the number of task-set aspects that required switching. In a double-blind, within-subjects experiment, caffeine reduced shift costs compared to pl

  1. Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo.

    Directory of Open Access Journals (Sweden)

    Zheng-lai Ma

    Full Text Available Caffeine consumption is worldwide. It has been part of our diet for many centuries; indwelled in our foods, drinks, and medicines. It is often perceived as a "legal drug", and though it is known to have detrimental effects on our health, more specifically, disrupt the normal fetal development following excessive maternal intake, much ambiguity still surrounds the precise mechanisms and consequences of caffeine-induced toxicity. Here, we employed early chick embryos as a developmental model to assess the effects of caffeine on the development of the fetal nervous system. We found that administration of caffeine led to defective neural tube closures and expression of several abnormal morphological phenotypes, which included thickening of the cephalic mesenchymal tissues and scattering of somites. Immunocytochemistry of caffeine-treated embryos using neural crest cell markers also demonstrated uncharacteristic features; HNK1 labeled migratory crest cells exhibited an incontinuous dorsal-ventral migration trajectory, though Pax7 positive cells of the caffeine-treated groups were comparatively similar to the control. Furthermore, the number of neurons expressing neurofilament and the degree of neuronal branching were both significantly reduced following caffeine administration. The extent of these effects was dose-dependent. In conclusion, caffeine exposure can result in malformations of the neural tube and induce other teratogenic effects on neurodevelopment, although the exact mechanism of these effects requires further investigation.

  2. Relations Among Caffeine Consumption, Smoking, Smoking Urge, and Subjective Smoking Reinforcement in Daily Life.

    Science.gov (United States)

    Treloar, Hayley R; Piasecki, Thomas M; McCarthy, Danielle E; Baker, Timothy B

    2014-09-01

    Caffeine consumption and cigarette smoking tend to occur within the same individuals and at the same time. One potential explanation for this co-use is that caffeine consumption increases subjective smoking reinforcement. Electronic diaries were used to collect momentary reports of smoking, caffeine consumption, temptation/urge to smoke, and subjective smoking reinforcement in 74 prequit smokers. Momentary reports of caffeine consumption and smoking were associated, replicating previous findings. These results remained significant when contextual factors (time of day, weekday/weekend, presence of others, presence of others smoking, location, and past hour alcohol consumption) were covaried. Caffeine consumption was also associated with positive cigarette appraisals and reports of strong temptation/urge to smoke and urge reduction from the prior cigarette. Under the conditions of caffeine consumption versus at other times, smokers were significantly more likely to report their last cigarette as producing a rush/buzz, being pleasant, relaxing, and tasting good. The effects for temptation/urge to smoke and rush/buzz varied as a function of latency since smoking. Caffeine consumption increased reports of urge to smoke and rush/buzz only when smoking occurred more than 15 minutes prior to the diary entry. Findings suggest that caffeine consumption influences some aspects of smoking motivation or affects memorial processing of smoking reinforcement.

  3. CHROMATOGRAPHIC DETERMINATION OF CAFFEINE CONTENTS IN SOFT AND ENERGY DRINKS AVAILABLE ON THE ROMANIAN MARKET

    Directory of Open Access Journals (Sweden)

    Mira Elena Ionică

    2010-10-01

    Full Text Available Caffeine is a stimulant that is commonly found in many foods and drinks that we consume. Concerns exist about the potential adverse health effects of high consumption of dietary caffeine, especially in children and pregnant women. Recommended caffeine intakes corresponding to no adverse health effects have been suggested recently for healthy adults (400 – 450 mg/day, for women contemplating pregnancy (300 mg/day, and for young children age 4 – 6 years (45 mg/day. Different brands of soft and energy carbonated beverages available on the Romanian market were analysed for caffeine by HPLC with a diode array UV-VIS detector at 217 nm. The column was a reverse phase C18 and the mobile phase consisted of potassium dihydrogen orthophosphate buffer (0.02 mol/L, pH 4.3 and acetonitrile (88:12, v/v. The caffeine contents in energy drink samples ranged from 16.82 mg/100 mL to 39.48 mg/100 mL while the carbonated soft drink group showed caffeine content in the range of 9.79 – 14.38 mg/100 mL. In addition, the concentrations of caffeine have been converted into the daily intake doses based on beverages consumption. The mean values of caffeine daily intakes were 124 mg and 49 mg through the ingestion of energy drinks and soft drinks, respectively.

  4. Foetal response to maternal coffee intake : role of habitual versus non-habitual caffeine consumption

    NARCIS (Netherlands)

    Mulder, E. J. H.; Tegaldo, L.; Bruschettini, P.; Visser, G. H. A.

    2010-01-01

    Little is known about the effect on the human foetus of long-term and acute exposure to caffeine. We studied the organisation of foetal sleep-wake states in 13 healthy near-term foetuses over a wide range of maternal plasma caffeine concentrations (0-13 mu g/mL) reflecting normal lifestyle condition

  5. Caffeine ingestion impairs insulin sensitivity in a dose-dependent manner in both men and women.

    Science.gov (United States)

    Beaudoin, Marie-Soleil; Allen, Brian; Mazzetti, Gillian; Sullivan, Peter J; Graham, Terry E

    2013-02-01

    The effects of alkaloid caffeine on insulin sensitivity have been investigated primarily in men, and with a single caffeine dose most commonly of 5-6 mg·kg(-1) of body weight (BW). It is unknown if the effects of caffeine on glucose homeostasis are sex-specific and (or) dose-dependent. This study examined whether caffeine ingestion would disrupt glucose homeostasis in a dose-dependent or threshold manner. It also examined whether sex-specific responses to caffeine exist. It was hypothesized that women would have an exaggerated response to caffeine, and that caffeine would only impair glucose metabolism once a threshold was reached. Twenty-four healthy volunteers (12 males, 12 females) participated in 4 trials, in a crossover, randomized, and double-blind fashion. They ingested caffeine (1, 3, or 5 mg·kg(-1) of BW) or placebo followed, 1 h later, by a 2-h oral glucose tolerance test. Glucose, insulin, C-peptide area under the curve (AUC), and insulin sensitivity index data were fitted to a segmented linear model to determine dose-responses. There were no differences between sexes for any endpoints. Regression slopes were significantly different from zero (p fashion beginning at very low doses (0-1 mg·kg(-1) BW) in both healthy men and women.

  6. Differential contributions of theobromine and caffeine on mood, psychomotor performance and blood pressure.

    Science.gov (United States)

    Mitchell, E S; Slettenaar, M; vd Meer, N; Transler, C; Jans, L; Quadt, F; Berry, M

    2011-10-24

    The combination of theobromine and caffeine, methylxanthines found in chocolate, has previously been shown to improve mood and cognition. However, it is unknown whether these molecules act synergistically. This study tested the hypothesis that a combination of caffeine and theobromine has synergistic effects on cognition, mood and blood pressure in 24 healthy female subjects. The effects of theobromine (700 mg), caffeine (120 mg) or the combination of both, or placebo were tested on mood (the Bond-Lader visual analog scale), psychomotor performance (the Digit Symbol Substitution Test (DSST)) and blood pressure before and at 1, 2 and 3 h after administration. Theobromine alone decreased self-reported calmness 3h after ingestion and lowered blood pressure relative to placebo 1 h after ingestion. Caffeine increased self-reported alertness 1, 2 and 3h after ingestion and contentedness 1 and 2 h after ingestion, and increased blood pressure relative to placebo (at 1 h). The combination of caffeine+theobromine had similar effects as caffeine alone on mood, but with no effect on blood pressure. There was no treatment effect on DSST performance. Together these results suggest that theobromine and caffeine could have differential effects on mood and blood pressure. It was tentatively concluded that caffeine may have more CNS-mediated effects on alertness, while theobromine may be acting primarily via peripheral physiological changes.

  7. Meiotic polyploidization with homoeologous recombination induced by caffeine treatment in interspecific lily hybrids

    NARCIS (Netherlands)

    Lim, K.B.; Barba Gonzalez, R.; Shujun Zhou,; Ramanna, M.S.; Tuyl, van J.M.

    2005-01-01

    Caffeine solution was injected into the flower bud to recover F, fertility of the intersectional diploid Lilium species hybrid (2n=2x=24). 0.3% of caffeine solution was the most effective concentration to produce fertile 2n-gametes. The male and female gametes had a range of fertility following caff

  8. The effect of different dosages of caffeine on endurance performance time

    NARCIS (Netherlands)

    Pasman, W.J.; Baak, M.A. van; Jeukendrup, A.E.; Haan, A. de

    1995-01-01

    The effect of different dosages of caffeine (0 - 5 - 9 - 13 mg · kg body weight-1) on endurance performance was examined. Nine well-trained cyclists participated in this study (VO2max 65.1 + 2.6 ml · kg-1 · min-1). Caffeine capsules were administered in random order and double-blind. One hour after

  9. Can We Predict Cognitive Performance Decrements Due to Sleep Loss and the Recuperative Effects of Caffeine

    Science.gov (United States)

    2015-10-14

    the amplitude factor MD and elimination rate kD accounted for the extant plasma caffeine concentration , which was computed using the standard one...factor and elimination rate parameters, respectively, that now depend on the caffeine concentration at time tj [26]. This repeated-dose gPD model in Eq...

  10. Effects of dilute aqueous NaCl solution on caffeine aggregation

    Science.gov (United States)

    Sharma, Bhanita; Paul, Sandip

    2013-11-01

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  11. Investigations of the presence of caffeine in the Rudawa River, Kraków, Poland.

    Science.gov (United States)

    Jagoda, Agnieszka; Żukowski, Witold; Dąbrowska, Barbara

    2015-09-01

    Caffeine concentration in surface water (Rudawa River, Kraków, Poland) has been being investigated since 2011. The method applied for investigations was developed in 2011, and the first series of measurements of caffeine concentration in surface water began in 2011. Caffeine concentration was determined by the gas chromatography-mass spectrometry (GC-MS) method. Solid phase extraction (SPE) was used to enrich the concentration of caffeine in water samples. As an internal standard, the caffeine isotope (13)C3 in methanol (Sigma Aldrich) was used. The values of four additional parameters (concentration of nitrates, biochemical oxygen demand after 7 days, number of Escherichia coli and number of Enterococcus faecalis) were determined for the water sample analyzed. Caffeine was detected in all studied samples. The control series of measurements during 2011-2014 confirmed that caffeine is present in Rudawa River water and that the concentration of this substance in Rudawa River ranges from 14.0 to 852.0 ng/dm(3). There is no correlation between the concentration of caffeine and the concentration of other anthropogenic contaminants determined in water.

  12. Use of saliva in therapeutic drug monitoring of caffeine in preterm infants

    NARCIS (Netherlands)

    de Wildt, SN; Kerkvliet, KTM; Wezenberg, MGA; Ottink, S; Hop, WCJ; Vulto, AG; van den Anker, JN

    2001-01-01

    Caffeine is frequently used to treat apnea of prematurity in preterm infants. Because caffeine has a narrow therapeutic window, plasma concentrations are generally monitored weekly. It would be advantageous to monitor this therapy without blood sampling; saliva might offer this possibility. Paired p

  13. Effects of dilute aqueous NaCl solution on caffeine aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhanita; Paul, Sandip, E-mail: sandipp@iitg.ernet.in [Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam (India)

    2013-11-21

    The effect of salt concentration on association properties of caffeine molecule was investigated by employing molecular dynamics simulations in isothermal-isobaric ensemble of eight caffeine molecules in pure water and three different salt (NaCl) concentrations, at 300 K temperature and 1 atm pressure. The concentration of caffeine was taken almost at the solubility limit. With increasing salt concentration, we observe enhancement of first peak height and appearance of a second peak in the caffeine-caffeine distribution function. Furthermore, our calculated solvent accessible area values and cluster structure analyses suggest formation of higher order caffeine cluster on addition of salt. The calculated hydrogen bond properties reveal that there is a modest decrease in the average number of water-caffeine hydrogen bonds on addition of NaCl salt. Also observed are: (i) decrease in probability of salt contact ion pair as well as decrease in the solvent separated ion pair formation with increasing salt concentration, (ii) a modest second shell collapse in the water structure, and (iii) dehydration of hydrophobic atomic sites of caffeine on addition of NaCl.

  14. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine

    Directory of Open Access Journals (Sweden)

    Womack Christopher J

    2012-03-01

    Full Text Available Abstract Background Although caffeine supplementation improves performance, the ergogenic effect is variable. The cause(s of this variability are unknown. A (C/A single nucleotide polymorphism at intron 1 of the cytochrome P450 (CYP1A2 gene influences caffeine metabolism and clinical outcomes from caffeine ingestion. The purpose of this study was to determine if this polymorphism influences the ergogenic effect of caffeine supplementation. Methods Thirty-five trained male cyclists (age = 25.0 ± 7.3 yrs, height = 178.2 ± 8.8 cm, weight = 74.3 ± 8.8 kg, VO2max = 59.35 ± 9.72 ml·kg-1·min-1 participated in two computer-simulated 40-kilometer time trials on a cycle ergometer. Each test was performed one hour following ingestion of 6 mg·kg-1 of anhydrous caffeine or a placebo administered in double-blind fashion. DNA was obtained from whole blood samples and genotyped using restriction fragment length polymorphism-polymerase chain reaction. Participants were classified as AA homozygotes (N = 16 or C allele carriers (N = 19. The effects of treatment (caffeine, placebo and the treatment × genotype interaction were assessed using Repeated Measures Analysis of Variance. Results Caffeine supplementation reduced 40 kilometer time by a greater (p Conclusions Results suggest that individuals homozygous for the A allele of this polymorphism may have a larger ergogenic effect following caffeine ingestion.

  15. INFLUENCE OF CAFFEINE ON SELECTIVE ATTENTION IN WELL-RESTED AND FATIGUED SUBJECTS

    NARCIS (Netherlands)

    LORIST, MM; SNEL, J; KOK, A; MULDER, G

    1994-01-01

    Effects of caffeine were studied in a visual focused selective search task in well-rested and fatigued subjects. A dose of 200 + 50 mg caffeine or placebo, dissolved in decaffeinated coffee, was administered in a double-blind and deceptive fashion. The task was to detect a target letter on one diago

  16. Influence of caffeine on information processing stages in well rested and fatigued subjects.

    NARCIS (Netherlands)

    L.M. Lorist; J. Snel; A. Kok

    1994-01-01

    Examined the effects of caffeine on different information processing stages using choice reaction time (RT) tasks. A 200-mg dose at the beginning and a maintenance dose of 50 mg caffeine or lactose half-way through the session were administered to 15 well-rested and 15 fatigued university students (

  17. Caffeine Enhances Real-World Language Processing: Evidence from a Proofreading Task

    Science.gov (United States)

    Brunye, Tad T.; Mahoney, Caroline R.; Rapp, David N.; Ditman, Tali; Taylor, Holly A.

    2012-01-01

    Caffeine has become the most prevalently consumed psychostimulant in the world, but its influences on daily real-world functioning are relatively unknown. The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a commonplace language task that required readers to identify and correct 4 error types in extended…

  18. CAFFEINE SPECIFICITY OF VARIOUS NON-IMPRINTED POLYMERS IN AQUEOUS MEDIA

    Science.gov (United States)

    Limitations exist in applying the conventional microbial methods to the detection of human fecal contamination in water. Certain organic compounds such as caffeine, have been reported by the U.S. Geological Survey as a more suitable tracer. The employment of caffeine has been h...

  19. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    Science.gov (United States)

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  20. Caffeine Positively Modulates Ferritin Heavy Chain Expression in H460 Cells: Effects on Cell Proliferation

    Science.gov (United States)

    Battaglia, Anna Martina; Faniello, Maria Concetta; Cuda, Giovanni; Costanzo, Francesco

    2016-01-01

    Both the methylxanthine caffeine and the heavy subunit of ferritin molecule (FHC) are able to control the proliferation rate of several cancer cell lines. While caffeine acts exclusively as a negative modulator of cell proliferation, FHC might reduce or enhance cell viability depending upon the different cell type. In this work we have demonstrated that physiological concentrations of caffeine reduce the proliferation rate of H460 cells: along with the modulation of p53, pAKT and Cyclin D1, caffeine also determines a significant FHC up-regulation through the activation of its transcriptional efficiency. FHC plays a central role in the molecular pathways modulated by caffeine, ending in a reduced cell growth, since its specific silencing by siRNA almost completely abolishes caffeine effects on H460 cell proliferation. These results allow the inclusion of ferritin heavy subunits among the multiple molecular targets of caffeine and open the way for studying the relationship between caffeine and intracellular iron metabolism. PMID:27657916

  1. The effect of caffeine on glucose kinetics in humans - influence of adrenaline

    DEFF Research Database (Denmark)

    Battram, Danielle S.; Graham, Terry E.; Richter, Erik A.

    2005-01-01

    While caffeine impedes insulin-mediated glucose disposal in humans, its effect on endo-genous glucose production (EGP) remains unknown. In addition, the mechanism involved in these effects is unclear, but may be due to the accompanying increase in adrenaline concentration. We studied the effect...... of caffeine on EGP and glucose infusion rates (GIR), and whether or not adrenaline can account for all of caffeine's effects. Subjects completed three isoglycaemic-hyperinsulinaemic clamps (with 3-[3H]glucose infusion) 30 min after ingesting: (1) placebo capsules (n= 12); (2) caffeine capsules (5 mg kg-1) (n......= 12); and either (3) placebo plus a high-dose adrenaline infusion (HAdr; adrenaline concentration, 1.2 nM; n= 8) or (4) placebo plus a low-dose adrenaline infusion (LAdr; adrenaline concentration, 0.75 nM; n= 6). With caffeine, adrenaline increased to 0.6 nM but no effect on EGP was observed. While...

  2. Intravenous caffeine versus intravenous ketorolac for the management of moderate to severe migraine headache

    Directory of Open Access Journals (Sweden)

    Alireza Baratloo

    2016-06-01

    Full Text Available The aim of this study was to determine if intravenous caffeine is as effective as intravenous ketorolac for the treatment of moderate to severe migraine headaches. Eligible patients randomly received 60 mg caffeine citrate or 60 mg ketorolac infused intravenously. Their pain score were measured at baseline, one hour and two hours after infusion. Therapeutic success was defined as decreasing of at least 3 points on the pain score. In total 110 patients were enrolled (75.5% women. Therapeutic success after 60 min was achieved by 63.6% of patients in the caffeine and 70.1% of patients in the ketorolac group (p = 0.23. After 120 min, 87.3% of the caffeine group and 83.6% of the ketorolac group achieved therapeutic success (p = 0.49. In this multi-center, randomized double blind study, intravenous caffeine was as effective as intravenous ketorolac for first line abortive management of acute migraine.

  3. Caffeine enhances memory performance in young adults during their non-optimal time of day

    Directory of Open Access Journals (Sweden)

    Stephanie M Sherman

    2016-11-01

    Full Text Available Many college students struggle to perform well on exams in the early morning. Although students drink caffeinated beverages to feel more awake, it is unclear whether these actually improve performance. After consuming coffee (caffeinated or decaffeinated, college-age adults completed implicit and explicit memory tasks in the early morning and late afternoon (Experiment 1. During the morning, participants ingesting caffeine demonstrated a striking improvement in explicit memory, but not implicit memory. Caffeine did not alter memory performance in the afternoon. In Experiment 2, participants engaged in cardiovascular exercise in order to examine whether increases in physiological arousal similarly improved memory. Despite clear increases in arousal, exercise did not improve memory performance compared to a stretching control condition. These results suggest that caffeine has a specific benefit for memory during students’ non-optimal time of day – early morning. These findings have real-world implications for students taking morning exams.

  4. The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness.

    Science.gov (United States)

    Giesbrecht, T; Rycroft, J A; Rowson, M J; De Bruin, E A

    2010-12-01

    The non-proteinic amino acid L-theanine and caffeine, a methylxanthine derivative, are naturally occurring ingredients in tea. The present study investigated the effect of a combination of 97 mg L-theanine and 40 mg caffeine as compared to placebo treatment on cognitive performance, alertness, blood pressure, and heart rate in a sample of young adults (n = 44). Cognitive performance, self-reported mood, blood pressure, and heart rate were measured before L-theanine and caffeine administration (i.e. at baseline) and 20 min and 70 min thereafter. The combination of moderate levels of L-theanine and caffeine significantly improved accuracy during task switching and self-reported alertness (both P cognitive tasks, such as visual search, choice reaction times, or mental rotation. The present results suggest that 97 mg of L-theanine in combination with 40 mg of caffeine helps to focus attention during a demanding cognitive task.

  5. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1.

    Science.gov (United States)

    Alkadhi, Karim A; Alhaider, Ibrahim A

    2016-03-01

    We have investigated the neuroprotective effect of chronic caffeine treatment on basal levels of memory-related signaling molecules in area CA1 of sleep-deprived rats. Animals in the caffeine groups were treated with caffeine in drinking water (0.3g/l) for four weeks before they were REM sleep-deprived for 24h in the Modified Multiple Platforms paradigm. Western blot analysis of basal protein levels of plasticity- and memory-related signaling molecules in hippocampal area CA1 showed significant down regulation of the basal levels of phosphorylated- and total-CaMKII, phosphorylated- and total-CREB as well as those of BDNF and CaMKIV in sleep deprived rats. All these changes were completely prevented in rats that chronically consumed caffeine. The present findings suggest an important neuroprotective property of caffeine in sleep deprivation.

  6. Effect of Caffeine-Zn2+ System in Preventing Corrosion of Carbon Steel in Well Water

    Directory of Open Access Journals (Sweden)

    K. Rajam

    2013-01-01

    Full Text Available The inhibition efficiency (IE of caffeine in controlling corrosion of carbon steel in well water in the absence and presence of Zn2+ has been evaluated by mass loss method. The formulation, consisting of 200 ppm of caffeine and 50 ppm Zn2+, offers 82% inhibition efficiency to carbon steel immersed in well water. Addition of malic acid increases inhibition efficiency of the caffeine-Zn2+ system. The inhibition efficiency of caffeine-Zn2+ and caffeine-Zn2+-malic acid system decreases with the increase in immersion period and increases with the increase in pH from 3 to 11. AC impedance spectra, SEM micrographs, and AFM studies reveal the formation of protective film on the metal surface. The film is found to be UV fluorescent.

  7. Caffeine intake and semen quality in a population of 2,554 young Danish men

    DEFF Research Database (Denmark)

    Jensen, Tina Kold; Swan, Shanna H; Skakkebaek, Niels E

    2010-01-01

    /week) and/or caffeine (>800 mg/day) intake was associated with reduced sperm concentration and total sperm count, although only significant for cola. High-intake cola drinkers had an adjusted sperm concentration and total sperm count of 40 mill/mL (95% confidence interval (CI): 32, 51) and 121 mill (95% CI......The authors examined the association between semen quality and caffeine intake among 2,554 young Danish men recruited when they were examined to determine their fitness for military service in 2001-2005. The men delivered a semen sample and answered a questionnaire including information about...... caffeine intake from various sources, from which total caffeine intake was calculated. Moderate caffeine and cola intakes (101-800 mg/day and 14 0.5-L bottles...

  8. Caffeine intake and semen quality in a population of 2,554 young Danish men

    DEFF Research Database (Denmark)

    Jensen, Tina Kold; Swan, Shanna H; Skakkebaek, Niels E;

    2010-01-01

    The authors examined the association between semen quality and caffeine intake among 2,554 young Danish men recruited when they were examined to determine their fitness for military service in 2001-2005. The men delivered a semen sample and answered a questionnaire including information about...... caffeine intake from various sources, from which total caffeine intake was calculated. Moderate caffeine and cola intakes (101-800 mg/day and 14 0.5-L bottles....../week) and/or caffeine (>800 mg/day) intake was associated with reduced sperm concentration and total sperm count, although only significant for cola. High-intake cola drinkers had an adjusted sperm concentration and total sperm count of 40 mill/mL (95% confidence interval (CI): 32, 51) and 121 mill (95% CI...

  9. Comparative study of the binding of trypsin to caffeine and theophylline by spectrofluorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruiyong, E-mail: wangry@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Kang, Xiaohui [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Wang, Ruiqiang [The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 (China); Wang, Rui; Dou, Huanjing; Wu, Jing; Song, Chuanjun [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China); Chang, Junbiao, E-mail: changjunbiao@zzu.edu.cn [Department of Chemistry, Zhengzhou University, Zhengzhou 450001 (China)

    2013-06-15

    The interactions between trypsin and caffeine/theophylline were investigated by fluorescence spectroscopy, UV–visible absorption spectroscopy, resonance light scattering and synchronous fluorescence spectroscopy under mimic physiological conditions. The results revealed that the fluorescence quenching of trypsin by caffeine and theophylline was the result of the formed complex of caffeine–trypsin and theophylline–trypsin. The binding constants and thermodynamic parameters at three different temperatures were obtained. The hydrophobic interaction was the predominant intermolecular forces to stabilize the complex. Results showed that caffeine was the stronger quencher and bound to trypsin with higher affinity than theophylline. -- Highlights: ► The fluorescence of trypsin can be quenched by caffeine or theophylline via hydrophobic contacts. ► Caffeine binds to trypsin with higher affinity than theophylline. ► The influence of molecular structure on the binding aspects is reported.

  10. Nicotine Deprivation Produces Deficits in Pain Perception that are Moderately Attenuated by Caffeine Consumption.

    Science.gov (United States)

    Baiamonte, Brandon A; Stickley, Sarah C; Ford, Sarah J

    2016-01-01

    During withdrawal, nicotine users experience aversive withdrawal symptoms, such as increased nociceptive processing, which may be responsible for subsequent use. Smokers often consume more caffeine than non-smokers and the combined effects of these two psychoactive drugs result in an enhanced analgesic effect of nicotine. We examined the effects of caffeine (via coffee consumption) and nicotine withdrawal on pain perception in minimally deprived smokers and non-smokers. Pain threshold and pain tolerance were assessed using a radiant heat stimulus before and 30 minutes after caffeine consumption. Nicotine deprivation (2 hrs) produced increases in pain threshold and decreases in pain tolerance representative of hyperalgesia. When smokers are nicotine deprived, caffeine consumption diminished baseline elevations in pain threshold, but had no effect on pain tolerance. These data suggest that caffeine consumption can dampen deficits in sensory discrimination related to pain during nicotine deprivation by reducing pain threshold to levels representative of non-smoking controls.

  11. Mechanism of Creaming Down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins.

    Science.gov (United States)

    Ishizu, Takashi; Tsutsumi, Hiroyuki; Sato, Takashi

    2016-01-01

    The component of a precipitate resulting from creaming down, which was made from caffeine and a catechin mixture, was determined by an integrated value of H2 proton signals of tea catechins in the quantitative (1)H-NMR spectrum. The results showed that gallate-type catechins formed a precipitate by creaming down more predominantly than non-gallate-type catechins. X-ray crystallographic analysis showed that the gallate-type catechin (-)-epigallocatechin-3-O-gallate (EGCg), (-)-epicatechin-3-O-gallate (ECg) formed 2 : 2 and 2 : 4 complexes with caffeine, respectively, and the non-gallate-type catechin (-)-epicatechin (EC) and caffeine formed a 1 : 1 complex. The 2 : 2, 2 : 4 complexes of caffeine and EGCg, ECg formed a hydrophobic space with three aromatic A, B, and B' rings of two EGCg, ECg molecules, and one caffeine molecule was captured in this hydrophobic space. However, no such hydrophobic space in the 1 : 1 complex of caffeine and EC formed. It was thought that the hydrophobicity of the 2 : 2, 2 : 4 complexes of caffeine and EGCg, ECg was stronger than that of the 1 : 1 complex of caffeine and EC, with the result that the 2 : 2, 2 : 4 complexes of caffeine and EGCg, ECg precipitated by creaming down more predominantly than the 1 : 1 complex of caffeine and EC in an aqueous solution. Furthermore, the molecular capture of various heterocyclic compounds by formation of the 2 : 2 complex of EGCg from the aqueous solution was investigated using the quantitative (1)H-NMR spectrum.

  12. High Blood caffeine levels in MCI linked to lack of progression to dementia.

    Science.gov (United States)

    Cao, Chuanhai; Loewenstein, David A; Lin, Xiaoyang; Zhang, Chi; Wang, Li; Duara, Ranjan; Wu, Yougui; Giannini, Alessandra; Bai, Ge; Cai, Jianfeng; Greig, Maria; Schofield, Elizabeth; Ashok, Raj; Small, Brent; Potter, Huntington; Arendash, Gary W

    2012-01-01

    Although both human epidemiologic and animal model studies have suggested that caffeine/coffee protects against Alzheimer's disease, direct human evidence for this premise has been lacking. In the present case-control study, two separate cohorts consisting of 124 total individuals (65-88 years old) were cognitively assessed and a blood sample taken for caffeine/biomarker analysis. Subjects were then monitored for cognitive status over the ensuing 2-4 year period to determine the extent to which initial plasma caffeine/biomarkers levels would be predictive of changes in cognitive status. Plasma caffeine levels at study onset were substantially lower (-51%) in mild cognitive impairment (MCI) subjects who later progressed to dementia (MCI→DEM) compared to levels in stable MCI subjects (MCI→MCI). Moreover, none of the MCI→DEM subjects had initial blood caffeine levels that were above a critical level of 1200 ng/ml, while half of stable MCI→MCI subjects had blood caffeine levels higher than that critical level. Thus, plasma caffeine levels greater than 1200 ng/ml (≈6 μM) in MCI subjects were associated with no conversion to dementia during the ensuing 2-4 year follow-up period. Among the 11 cytokines measured in plasma, three of them (GCSF, IL-10, and IL-6) were decreased in MCI→DEM subjects, but not in stable MCI→MCI subjects with high plasma caffeine levels. Coffee would appear to be the major or perhaps only source of caffeine for such stable MCI patients. This case-control study provides the first direct evidence that caffeine/coffee intake is associated with a reduced risk of dementia or delayed onset, particularly for those who already have MCI.

  13. Effects of caffeine on skin and core temperatures, alertness, and recovery sleep during circadian misalignment.

    Science.gov (United States)

    McHill, Andrew W; Smith, Benjamin J; Wright, Kenneth P

    2014-04-01

    Caffeine promotes wakefulness during night shift work, although it also disturbs subsequent daytime sleep. Increased alertness by caffeine is associated with a higher core body temperature (CBT). A lower CBT and a narrow distal-to-proximal skin temperature gradient (DPG) have been reported to be associated with improved sleep, yet whether caffeine influences the DPG is unknown. We tested the hypothesis that the use caffeine during nighttime total sleep deprivation would reduce the DPG, increase CBT and alertness, and disturb subsequent daytime recovery sleep. We also expected that a greater widening of the DPG prior to sleep would be associated with a greater degree of sleep disturbance. Thirty healthy adults (9 females) aged 21.6 ± 3.5 years participated in a double-blind, 28-h modified constant routine protocol. At 23 h of wakefulness, participants in the treatment condition (n = 10) were given 2.9 mg/kg caffeine, equivalent to ~200 mg (or 2 espressos) for a 70-kg adult, 5 h before a daytime recovery sleep episode. Throughout the protocol, core and skin body temperatures, DPG, sleep architecture, and subjective alertness and mood were measured. Prior to sleep, caffeine significantly widened the DPG and increased CBT, alertness, and clear-headedness (p Caffeine also disturbed daytime recovery sleep (p sleep were associated with a longer latency to sleep, and a wider DPG was associated with disturbed recovery sleep (i.e., increased wakefulness after sleep onset, increased stage 1 sleep, decreased sleep efficiency, and decreased slow wave sleep) (p caffeine may represent a component of the integrated physiological response by which caffeine improves alertness and disturbs subsequent daytime recovery sleep. Furthermore, our findings highlight that sleep disturbances associated with caffeine consumed near the circadian trough of alertness are still present when daytime recovery sleep occurs 5 h or approximately 1 half-life later.

  14. The Effects of Preexercise Caffeinated Coffee Ingestion on Endurance Performance: An Evidence-Based Review.

    Science.gov (United States)

    Higgins, Simon; Straight, Chad R; Lewis, Richard D

    2016-06-01

    Endurance athletes commonly ingest caffeine as a means to enhance training intensity and competitive performance. A widely-used source of caffeine is coffee, however conflicting evidence exists regarding the efficacy of coffee in improving endurance performance. In this context, the aims of this evidence-based review were threefold: 1) to evaluate the effects of preexercise coffee on endurance performance, 2) to evaluate the effects of coffee on perceived exertion during endurance performance, and 3) to translate the research into usable information for athletes to make an informed decision regarding the intake of caffeine via coffee as a potential ergogenic aid. Searches of three major databases were performed using terms caffeine and coffee, or coffee-caffeine, and endurance, or aerobic. Included studies (n = 9) evaluated the effects of caffeinated coffee on human subjects, provided the caffeine dose administered, administered caffeine ≥ 45 min before testing, and included a measure of endurance performance (e.g., time trial). Significant improvements in endurance performance were observed in five of nine studies, which were on average 24.2% over controls for time to exhaustion trials, and 3.1% for time to completion trials. Three of six studies found that coffee reduced perceived exertion during performance measures significantly more than control conditions (p studies there is moderate evidence supporting the use of coffee as an ergogenic aid to improve performance in endurance cycling and running. Coffee providing 3-8.1 mg/kg (1.36-3.68 mg/lb) of caffeine may be used as a safe alternative to anhydrous caffeine to improve endurance performance.

  15. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.

    Science.gov (United States)

    Schimpl, Flávia Camila; Kiyota, Eduardo; Mayer, Juliana Lischka Sampaio; Gonçalves, José Francisco de Carvalho; da Silva, José Ferreira; Mazzafera, Paulo

    2014-09-01

    Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein.

  16. Discriminative Stimulus Effects of Binary Drug Mixtures: Studies with Cocaine, MDPV, and Caffeine

    Science.gov (United States)

    Abbott, Megan; Galindo, Kayla; Rush, Elise L.; Rice, Kenner C.; France, Charles P.

    2016-01-01

    Illicit drug preparations often include more than one pharmacologically active compound. For example, cocaine and synthetic cathinones [e.g., 3,4-methylenedioxypyrovalerone (MDPV)] are often mixed with caffeine before sale. Caffeine is likely added to these preparations because it is inexpensive and legal; however, caffeine might also mimic or enhance some of the effects of cocaine or MDPV. In these studies, male Sprague-Dawley rats were trained to discriminate 10 mg/kg cocaine from saline, and the discriminative stimulus effects of cocaine, caffeine, and MDPV were evaluated alone and as binary mixtures (cocaine and caffeine, MDPV and caffeine, and cocaine and MDPV) at fixed-dose ratios of 3:1, 1:1, and 1:3 relative to the dose of each drug that produced 50% cocaine-appropriate responding. Dose-addition analyses were used to determine the nature of the drug-drug interactions for each mixture (e.g., additive, supra-additive, or subadditive). Although additive interactions were observed for most mixtures, supra-additive interactions were observed at the 50% effect level for the 1:1 mixture of cocaine and caffeine and at the 80% effect level for all three mixtures of cocaine and caffeine, as well as for the 3:1 and 1:3 mixtures of cocaine and MDPV. These results demonstrate that with respect to cocaine-like discriminative stimulus effects, caffeine can function as a substitute in drug preparations containing either cocaine or MDPV, with enhancements of cocaine-like effects possible under certain conditions. Further research is needed to determine whether similar interactions exist for other abuse-related or toxic effects of drug preparations, including cocaine, synthetic cathinones, and caffeine. PMID:27493274

  17. Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Measurement of Caffeine in Caffeine-Laced Pants and in Urine and Skin of a Pants User

    Directory of Open Access Journals (Sweden)

    Manuela Pellegrini

    2014-04-01

    Full Text Available A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry method was developed for the measurement of caffeine in caffeine-laced pants and in urine and skin of a pants user. The substance and its internal standard (N-ethylnorcotinine were separated by reversed phase chromatography with 5 mM ammonium formate pH 3.0 and 0.3% formic acid in acetonitrile mobile phase (83:17 v/v by isocratic elution and detected by tandem mass spectrometry operated in multiple reaction monitoring mode via positive electrospray ionization. Linearity was studied from 1.4 to100 ng/mL range for urine, from 5 to 100 ng/cotton swab for skin caffeine and from 1.3 to 100 µg/samples for 4 cm2 textile samples. Good determination coefficients (r2 = 0.99 were found in all cases. At three concentrations spanning the linear dynamic ranges of different samples mean recoveries of caffeine were always higher than 80% and intra-assay and inter-assay imprecision and inaccuracy were always better than 105%. For the first time, caffeine content in this cosmetotextile was determined together with the measurement of caffeine released on the user skin, the absorbed amount with resulting urinary concentrations.

  18. Fluoride content in caffeinated, decaffeinated and herbal teas.

    Science.gov (United States)

    Chan, J T; Koh, S H

    1996-01-01

    The fluoride contents of infusions prepared from 44 different brands and types of teas were measured. Fluoride concentrations ranged from 0.34 to 3.71 ppm (mean = 1.50 ppm) in caffeinated tea infusions, 0.02-0.14 ppm (mean = 0.05 ppm) in herbal tea infusions, and 1.01-5.20 ppm (mean = 3.19) in decaffeinated tea infusions. This is the first report of the fluoride content of decaffeinated teas. The mean fluoride content of decaffeinated tea infusions is significantly (p decaffeination is the most likely explanation of the above observation.

  19. Postnatal neurobehavioral development in rats exposed in utero to caffeine.

    Science.gov (United States)

    West, G L; Sobotka, T J; Brodie, R E; Beier, J M; O'Donnell, M W

    1986-01-01

    Potential behavioral and teratogenic effects of caffeine were studied in Charles River CD albino rats. Caffeine in distilled water was given by gavage to pregnant rats (dams) at doses of 5, 25, 50 or 75 mg/kg on Days 3-19 of gestation. Concurrent controls received distilled water gavage (10 ml/kg) on the same days. Dams were allowed to deliver normally. Physical and behavioral observations were made on dams during gestation and lactation and on F1 offspring through 9 weeks of age. Caffeine decreased body weights and food intake and increased water intake in gestating dams but these effects dissipated during lactation. Spontaneous locomotor activity (PAC) and open field (OF) were increased immediately after caffeine gavage but not before. Parturition was slightly delayed. With analyses of data based on individual pups the following effects were noted. Pre- and post-weaning offspring body weights were decreased in females at 50 and 75 mg/kg and in males at 75 mg/kg. Incisor eruption was delayed in females at 5, 50 and 75 mg/kg and in males at all doses. Auditory startle developed earlier in the 5 mg/kg dose group but was delayed at 75 mg/kg for males only. Eye opening was delayed in both sexes at 25, 50 and 75 mg/kg. In females, vaginal opening was delayed at 5, 25 and 75 mg/kg and 9-week ovary weights were increased at 75 mg/kg. In postweaning males, food intake was decreased and water intake was increased with increasing dose. In males, PAC was decreased at 75 mg/kg only on Day 12. At 7 weeks of age, step-down passive avoidance was decreased at 5 and 25 mg/kg but increased at 50 and 75 mg/kg, and at 8 weeks of age, shuttlebox active avoidance was decreased with increasing dose. Maternal and offspring behaviors were only weakly correlated. Correction for litter effect in developmental data yielded fewer significant results and only at 50 and 75 mg/kg. The issue of whether it is always appropriate to correct for "litter effect" is discussed.

  20. RNA binding efficacy of theophylline, theobromine and caffeine.

    Science.gov (United States)

    Johnson, I Maria; Kumar, S G Bhuvan; Malathi, R

    2003-04-01

    The binding of naturally occurring methylxanthines such as theophylline, theobromine and caffeine to nucleic acids are reckoned to be pivotal as they are able to modulate the cellular activities. We explore the interaction of yeast RNA binding efficacy of the above xanthine derivatives by using UV absorption differential spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Both the analyses show discrimination in their binding affinity to RNA. The differential UV-spectrum at P/D 3.3 reveals the greater RNA binding activity for theophylline (85 +/- 5%), whereas moderate and comparatively less binding activity for theobromine (45 +/- 5%) and caffeine (30 +/- 5%) and the binding activity was found to depend on concentration of the drugs. In FTIR analysis we observed changes in the amino group (NH) of RNA complexed by drugs, where the NH band is found to become very broad, indicating hydrogen bonding (H-bonding) with theophylline (3343.4 cm(-1)), theobromine (3379.8 cm(-1)) and caffeine (3343 cm(-1)) as compared to the free RNA (3341.6 cm(-1)). Furthermore in RNA-theophylline complex, it is observed that the carbonyl (C=O) vibration frequency (nu(C=O)) of both drug (nu(C=O)=1718, 1666 cm(-1)) as well as RNA (nu(C=O)=1699, 1658 cm(-1)) disappeared and a new vibration band appeared around 1703 cm(-1), indicating that the C=O and NH groups of drug and RNA are effectively involved in H-bonding. Whereas in RNA-theobromine and RNA-caffeine complexes, we found very little changes in C=O frequency and only broadening of the NH band of RNA due to complexation is observed in these groups. The changes in the vibrations of G-C/A-U bands and other bending frequencies are discussed. Thus the discrimination in the binding affinity of methylxanthines with RNA molecule shows that strong RNA binding drugs like theophylline can selectively be delivered to RNA targets of microbial pathogens having the mechanism of RNA catalysis.

  1. Caffeine Supplementation and muscle damage in soccer players

    Directory of Open Access Journals (Sweden)

    Marco Machado

    2009-06-01

    Full Text Available The aim of this work was to evaluate the effect of caffeine supplementation and intermittent exercise on the muscle injury markers in soccer players. 15 male professional soccer players completed a placebo controlled double blind test protocol. 45 minutes before exercise, participants ingested 5.5 mg.kg-1 body mass of caffeine (EXP, n=8 or placebo (CONT, n=7. The exercise was 12 sets of 10 sprints (20 m each with 10 sec recovery time between sprints and 2 min between sets. Blood samples were collected before (PRE and 48h after exercise (POST. Serum activity of CK, LDH, AST, and ALT were quantified. Serum enzyme activity was enhanced by exercise in both groups, without a synergistic effect of caffeine. The findings suggest muscle injury markers concentration increases after physical activities, but caffeine supplementation (as used in this study has no influence upon muscle cellular integrity.O objetivo do trabalho foi avaliar o efeito da cafeína e do exercício intermitente nos marcadores de lesão muscular em jogadores de futebol. 15 jogadores de futebol profissional completaram um estudo duplo-cego placebo controlado. 45 minutos antes do exercício, os participantes ingeriram 5.5 mg.kg-1 do peso corporal de cafeína (EXP, n=8 ou placebo (CONT, n=7. O exercício consistiu em 12 séries de 10 sprints (com 20 m cada com 10 segundos de recuperação entre os sprints e 2 min entre as séries. Amostras de sangue foram coletadas antes (PRE e 48h depois do exercício (POST. As atividades séricas de CK, LDH, AST e ALT foram quantificadas. A atividade sérica de todas as enzimas aumentou em ambos os grupos, sem efeito sinérgico da suplementação de cafeína. Os achados confirmam que o exercício aumenta a atividade sérica das enzimas, mas a cafeína (como a usada neste estudo não interfere na integridade da fibra muscular.

  2. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review.

    Science.gov (United States)

    Astorino, Todd A; Roberson, Daniel W

    2010-01-01

    Caffeine is the most widely used drug in the world, commonly ingested in coffee, tea, soda, and energy drinks. Its ability to enhance muscular work has been apparent since the early 1900s. Caffeine typically increases endurance performance; however, efficacy of caffeine ingestion for short-term high-intensity exercise is equivocal, which may be explained by discrepancies in exercise protocols, dosing, and subjects' training status and habitual caffeine intake found across studies. The primary aim of this review is to critically examine studies that have tested caffeine's ability to augment performance during exercise dependent on nonoxidative metabolism such as sprinting, team sports, and resistance training. A review of the literature revealed 29 studies that measured alterations in short-term performance after caffeine ingestion. Each study was critically analyzed using the Physiotherapy Evidence Database (PEDro) scale. The mean PEDro score was 7.76 +/- 0.87. Eleven of 17 studies revealed significant improvements in team sports exercise and power-based sports with caffeine ingestion, yet these effects were more common in elite athletes who do not regularly ingest caffeine. Six of 11 studies revealed significant benefits of caffeine for resistance training. Some studies show decreased performance with caffeine ingestion when repeated bouts are completed. The exact mechanism explaining the ergogenic effect of caffeine for short-term exercise is unknown.

  3. A PRELIMINARY STUDY AND FIRST REPORT ON CAFFEINE DEGRADING BACTERIA ISOLATED FROM THE SOILS OF CHITTOOR AND VELLORE

    Directory of Open Access Journals (Sweden)

    Sharan Siddharth

    2012-03-01

    Full Text Available An attempt on basic study of the caffeine degrading organism and screening of potential ‘caffeinase’ producing bacteria has been studied and reported. Caffeine is present in soft drinks, coffee plants, tea leaves, and kola nuts and is used extensively in human consumption. Various health and environmental demerits makes it significant to reduce the levels of caffeine into a much less harmful compound, which can be done biologically using specific microorganisms. The enzyme responsible for caffeine degradation plays a major role and hence needs to be studied for caffeinase isolation and improvement of available caffeine products. Isolation of such microorganisms and their study of extent of caffeine degradation would prove to be helpful in generating an economic and safer method of caffeine removal in food products and coffee left over which could be less harmful to human health and the environment.

  4. Investigation of pharmaceutical drugs and caffeine-containing foods using Fourier and terahertz time-domain spectroscopy

    Science.gov (United States)

    KaraliÅ«nas, Mindaugas; Venckevičius, Rimvydas; Kašalynas, Irmantas; Puc, Uroš; Abina, Andreja; Jeglič, Anton; Zidanšek, Aleksander; Valušis, Gintaras

    2015-08-01

    Several pharmaceutical drugs, such as alprazolam, ibuprofen, acetaminophen, activated carbon and others, and caffeine-containing foods were tested using terahertz (THz) time domain spectroscopy in the range from 0.3 to 2 THz. The dry powder of pharmaceutical drugs was mixed with HDPE and pressed into the pellets using hydraulic press. The coffee grounds were also pressed into the pellets after ball-milling and mixing with HDPE. The caffeine containing liquid foods were dried out on the paper strips of various stacking. Experiments allow one to determine characteristic spectral signatures of the investigated substances within THz range caused by active pharmaceutical ingredients, like in the case of caffeine, as well as supporting pharmaceutical ingredients. Spectroscopic THz imaging approach is considered as a possible option to identify packaged pharmaceutical drugs. The caffeine spectral features in the tested caffeine containing foods are difficult to observed due to the low caffeine concentration and complex caffeine chemical surrounding.

  5. Differences in pharmacokinetic and electroencephalographic responses to caffeine in sleep-sensitive and non-sensitive subjects.

    Science.gov (United States)

    Bchir, Fatma; Dogui, Mohamed; Ben Fradj, Radhia; Arnaud, Maurice J; Saguem, Sâad

    2006-07-01

    The present study investigated pharmacokinetic and electroencephalographic responses to caffeine (140 mg) in two groups of healthy volunteers reporting, or not, caffeine-related sleep disturbances. Significant differences in caffeine consumption and smoking habits were observed between the two groups. Plasma samples were taken from each subject before (T0) and after caffeine intake at 0.5, 1, 2, 4, 6 and 24 h. Three pharmacokinetic parameters: half-life (t1/2), maximum time (Tmax) and maximum plasma concentration (Cmax) were calculated from caffeine plasma concentration measurements determined by reversed phase HPLC analysis. Caffeine-sensitive subjects showed significantly greater half-life values when calculated on 24 h after the administration than tolerant subjects (pcaffeine administration, the increased caffeine clearance observed overnight, when smoking was resumed in the control group, may indicate a short delay for the induction of hepatic cytochrome, reported here for the first time. Electrophysiological responses to caffeine, including vigilance and cortical activity, were assessed by ambulatory electroencephalographic (EEG) recorded during a period of 6 h before and after caffeine consumption. Following caffeine intake, the caffeine-intolerant subjects presented an increase in vigilance levels with faster peak alpha, beta frequency and lower delta and theta power when compared to tolerant subjects. Pharmacokinetic parameters and EEG data showed significant differences between sleep-sensitive and control subjects. These variations may be, in part, explained by cigarette smoking and the higher caffeine intake observed in the subjects of the control groups while caffeine sleep-sensitive subjects have a significantly lower caffeine intake, as already reported in previous studies on patients with sleep disturbances.

  6. Subjective effects of caffeine among introverts and extraverts in the morning and evening.

    Science.gov (United States)

    Liguori, A; Grass, J A; Hughes, J R

    1999-08-01

    In previous studies of psychomotor performance, the stimulant effects of caffeine differed by personality characteristics. For example, caffeine improved the task performance of extraverts but overaroused introverts and thus impaired their performance. The present study compared the effects of caffeine on subjective arousal among introverts and extraverts. Seventeen introverts and 19 extraverts drank coffee that contained doses of 0, 2, and 4 mg/kg caffeine during morning and evening sessions in a within-subjects, randomized, double-blind, crossover design. At 30-min intervals for 180 min after drinking, participants completed the Profile of Mood States, a battery of self-report visual analog scales, and the Digit Symbol Substitution Test (DSST). Caffeine effects on mood and task performance did not significantly interact with extraversion, except for nonsignificant trends for caffeine to increase happiness and vigor more among extraverts than introverts. No 3-way interactions of group, time, and dose were found on any scales or on the DSST. Results do not support the hypothesis that caffeine differentially affects extraverts and introverts, particularly at different times of the day.

  7. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system

    Directory of Open Access Journals (Sweden)

    Deslandes A.C.

    2005-01-01

    Full Text Available Caffeine is the most consumed psychoactive substance in the world. The effects of caffeine have been studied using cognitive and motor measures, quantitative electroencephalography (qEEG and event-related potentials. However, these methods are not usually employed in combination, a fact that impairs the interpretation of the results. The objective of the present study was to analyze changes in electrophysiological, cognitive and motor variables with the ingestion of caffeine, and to relate central to peripheral responses. For this purpose we recorded event-related potentials and eyes-closed, resting EEG, applied the Stroop test, and measured reaction time. Fifteen volunteers took caffeine (400 mg or placebo in a randomized, crossover, double-blind design. A significant reduction of alpha absolute power over the entire scalp and of P300 latency at the Fz electrode were observed after caffeine ingestion. These results are consistent with a stimulatory effect of caffeine, although there was no change in the attention (Stroop test or in reaction time. The qEEG seems to be the most sensitive index of the changes produced by caffeine in the central nervous system since it proved to be capable of detecting changes that were not evident in the tests of cognitive or motor performance.

  8. Caffeine, cognitive functioning, and white matter lesions in the elderly: establishing causality from epidemiological evidence.

    Science.gov (United States)

    Ritchie, Karen; Artero, Sylvaine; Portet, Florence; Brickman, Adam; Muraskin, Jordan; Beanino, Ephrem; Ancelin, Marie-Laure; Carrière, Isabelle

    2010-01-01

    The present study examines the epidemiological evidence for a causal relationship between caffeine consumption and cognitive deterioration in the elderly. Using a population of 641 elderly persons, we examined cognitive functioning, caffeine consumption, magnetic resonance imaging volumetrics, and other factors known to affect cognitive performance. Our findings demonstrate the association between caffeine consumption and lower cognitive change over time to be statistically significant for women only, taking into account multiple confounders, to be dose-dependent and temporarily related (caffeine consumption precedes cognitive change). Mean log transformed white matter lesion/cranial volume ratios were found to be significantly lower in women consuming more than 3 units of caffeine per day after adjustment for age (-1.23 SD=0.06) than in women consuming 2-3 units (-1.04 SD=0.04) or one unit or less (-1.04 SD=0.07, -35% in cm3 compared to low drinkers). This observation is coherent with biological assumptions that caffeine through adenosine is linked to amyloid accumulation and subsequently white matter lesion formation. The significant relationship observed between caffeine intake in women and lower cognitive decline is highly likely to be a true causal relationship and not a spurious association.

  9. Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology.

    Science.gov (United States)

    Laurent, Cyril; Eddarkaoui, Sabiha; Derisbourg, Maxime; Leboucher, Antoine; Demeyer, Dominique; Carrier, Sébastien; Schneider, Marion; Hamdane, Malika; Müller, Christa E; Buée, Luc; Blum, David

    2014-09-01

    Tau pathology found in Alzheimer's disease (AD) is crucial in cognitive decline. Epidemiologic evidences support that habitual caffeine intake prevents memory decline during aging and reduces the risk to develop Alzheimer's disease. So far, experimental studies addressed the impact of caffeine in models mimicking the amyloid pathology of AD. However, in vivo effects of caffeine in a model of AD-like tauopathy remain unknown. Here, we evaluated effects of chronic caffeine intake (0.3 g/L through drinking water), given at an early pathologic stage, in the THY-Tau22 transgenic mouse model of progressive AD-like tau pathology. We found that chronic caffeine intake prevents from the development of spatial memory deficits in tau mice. Improved memory was associated with reduced hippocampal tau phosphorylation and proteolytic fragments. Moreover, caffeine treatment mitigated several proinflammatory and oxidative stress markers found upregulated in the hippocampus of THY-Tau22 animals. Together, our data support that moderate caffeine intake is beneficial in a model of AD-like tau pathology, paving the way for future clinical evaluation in AD patients.

  10. Caffeine inheritance in interspecific hybrids of Coffea arabica x Coffea canephora (Gentianales, Rubiaceae

    Directory of Open Access Journals (Sweden)

    Regina H.G. Priolli

    2008-01-01

    Full Text Available Caffeine inheritance was investigated in F2 and BC1F1 generations between Coffea arabica var. Bourbon Vermelho (BV and Coffea canephora var. Robusta 4x (R4x. The caffeine content of seeds and leaves was determined during 2004 and 2005. Microsatellite loci-markers were used to deduce the meiotic pattern of chromosome pairing of tetraploid interspecific hybrids. Genetic analysis indicated that caffeine content in seeds was quantitatively inherited and controlled by genes with additive effects. The estimates of broad-sense heritability of caffeine content in seeds were high for both generations. In coffee leaves, the caffeine content (BSH from the same populations showed transgressive segregants with enhanced levels and high BSH. Segregation of loci-markers in BC1F1 populations showed that the ratios of the gametes genotype did not differ significantly from those expected assuming random associations and tetrasomic inheritance. The results confirm the existence of distinct mechanisms controlling the caffeine content in seeds and leaves, the gene exchange between the C. arabica BV and C. canephora R4x genomes and favorable conditions for improving caffeine content in this coffee population.

  11. Sleep is more sensitive to high doses of caffeine in the middle years of life.

    Science.gov (United States)

    Robillard, Rébecca; Bouchard, Maude; Cartier, Annick; Nicolau, Laurence; Carrier, Julie

    2015-06-01

    During the middle years of life, sleep becomes more fragile and its sensitivity to psychostimulants may increase. This study evaluated the effects of 200 mg and 400 mg of caffeine on sleep in young and middle-aged adults. The sleep of 22 young (23.5 ± 1.9 years) and 24 middle-aged (51.7 ± 11.5 years) adults was recorded using polysomnography in two conditions (placebo and caffeine) in a double-blind cross-over design. Compared to placebo, caffeine increased sleep latency, shortened total sleep duration and reduced sleep efficiency. At the higher dose, these effects were more pronounced in middle-aged than in young adults. Furthermore, the higher dose of caffeine increased absolute stage 1 sleep in young adults, whereas it decreased absolute stage 2 sleep in middle-aged adults. Caffeine also induced dose-dependent increases in relative stage 1 sleep and reductions in absolute and relative slow wave sleep and absolute rapid eye movement sleep in both age groups. There was no dose- or age-related modulation of the effects of caffeine on quantified electroencephalographic measures. These results indicate that, compared to young adults, middle-aged adults are generally more sensitive to the effects of a high dose of caffeine on sleep quantity and quality.

  12. Effect of chronic caffeine intake on myocardial function during early growth.

    Science.gov (United States)

    Temples, T E; Geoffray, D J; Nakamoto, T; Hartman, A D; Miller, H I

    1987-04-01

    The purpose of these studies was to evaluate the effects of chronic caffeine ingestion on the myocardium during fetal and neonatal growth and development. The isolated perfused working heart preparation was used to evaluate cardiac function. During gestation and lactation, one group of dams consumed a caffeine supplemented diet (10 mg/kg/day). Their offspring were sacrificed and the hearts analyzed 50 days after birth. We found that the intake of caffeine by the dams resulted in significant increases in the offspring's coronary flow, peak systolic pressure, and myocardial work. A second group of dams ingested a diet containing caffeine (10 mg/kg/day) during lactation only. Their pups continued to consume the caffeine diet until 50 days. Pup hearts exhibited significant reductions in cardiac output, stroke volume, pressure development, myocardial work, and external efficiency when compared to controls. Caffeine did not affect body or heart weight or adipose size or number in these experiments. Thus, continued caffeine consumption following birth may alter cardiac performance of the offspring.

  13. [EVALUATION OF THE CYTOGENETIC AND MUTAGEN-MODIFYING ACTIVITY OF CAFFEINE IN MOUSE BONE MARROW CELLS].

    Science.gov (United States)

    Durnev, A D; Kulakova, A V; Zhanataev, A K; Oganesiants, L A

    2015-01-01

    The cytogenetic and mutagen-modifying activity of caffeine was studied with the method of chromosomal aberrations in bone marrow cells of mice hybrids F1 CBAxC57BL/6. Caffeine per se was administered intragastrically or intraperitoneally, and in combination with mutagens--intragastrically. Mutagens injected intraperitoneally. Caffeine at doses of 10 and 100 mg/kg (single dose) and 10 mg/kg (five days) in parenteral administration and oral introduction failed to possess cytogenetic activity. In combination with mutagens caffeine (1, 10 and 100 mg/kg) had no effect on the cytogenetic activity of dioxydine (200 mg/kg/intraperitoneally) for a single coadministration, five-day pre or five-day coadministration. In combination with other mutagens under the same processing conditions caffeine at doses of 10 and 100 mg/kg significantly increased cytogenetic effects of cyclophosphamide (20 mg/kg) in the pretreatment of the animals and at the dose of 100 mg/kg significantly attenuated the cytogenetic effect of cisplatin (5 mg/kg) in single and repeated co-administration. Thus we have shown the absence of caffeine cytogenetic activity in vivo and showed the multidirectional effect of caffeine in doses far exceeding its daily consumption, to the manifestation ofcytogenetic effects of certain chemical mutagens in some modes of processing animals.

  14. Caffeine Reduces Reaction Time and Improves Performance in Simulated-Contest of Taekwondo

    Directory of Open Access Journals (Sweden)

    Victor G. F. Santos

    2014-02-01

    Full Text Available The aim of this study was to investigate the effects of caffeine on reaction time during a specific taekwondo task and athletic performance during a simulated taekwondo contest. Ten taekwondo athletes ingested either 5 mg·kg−1 body mass caffeine or placebo and performed two combats (spaced apart by 20 min. The reaction-time test (five kicks “Bandal Tchagui” was performed immediately prior to the first combat and immediately after the first and second combats. Caffeine improved reaction time (from 0.42 ± 0.05 to 0.37 ± 0.07 s only prior to the first combat (P = 0.004. During the first combat, break times during the first two rounds were shorter in caffeine ingestion, followed by higher plasma lactate concentrations compared with placebo (P = 0.029 and 0.014, respectively. During the second combat, skipping-time was reduced, and relative attack times and attack/skipping ratio was increased following ingestion of caffeine during the first two rounds (all P < 0.05. Caffeine resulted in no change in combat intensity parameters between the first and second combat (all P > 0.05, but combat intensity was decreased following placebo (all P < 0.05. In conclusion, caffeine reduced reaction time in non-fatigued conditions and delayed fatigue during successive taekwondo combats.

  15. Caffeine consumption and self-assessed stress, anxiety, and depression in secondary school children.

    Science.gov (United States)

    Richards, Gareth; Smith, Andrew

    2015-12-01

    Previous research suggests that effects of caffeine on behaviour are positive unless one is investigating sensitive groups or ingestion of large amounts. Children are a potentially sensitive subgroup, and especially so considering the high levels of caffeine currently found in energy drinks. The present study used data from the Cornish Academies Project to investigate associations between caffeine (both its total consumption, and that derived separately from energy drinks, cola, tea, and coffee) and single-item measures of stress, anxiety, and depression, in a large cohort of secondary school children from the South West of England. After adjusting for additional dietary, demographic, and lifestyle covariates, positive associations between total weekly caffeine intake and anxiety and depression remained significant, and the effects differed between males and females. Initially, effects were also observed in relation to caffeine consumed specifically from coffee. However, coffee was found to be the major contributor to high overall caffeine intake, providing explanation as to why effects relating to this source were also apparent. Findings from the current study increase our knowledge regarding associations between caffeine intake and stress, anxiety, and depression in secondary school children, though the cross-sectional nature of the research made it impossible to infer causality.

  16. Pregnancy-induced changes in the pharmacokinetics of caffeine and its metabolites.

    Science.gov (United States)

    Yu, Tian; Campbell, Sarah C; Stockmann, Chris; Tak, Casey; Schoen, Katherine; Clark, Erin A S; Varner, Michael W; Spigarelli, Michael G; Sherwin, Catherine M T

    2016-05-01

    This study sought to assess the pharmacokinetic (PK) changes of caffeine and its CYP1A2 metabolites across the 3 trimesters of pregnancy. A prospective, multicenter PK study was conducted among 59 pregnant women (93.2% white) who were studied once during a trimester. One beverage with 30-95 mg caffeine was consumed, and a blood/urine sample was collected within 1 hour postingestion. Concentrations of caffeine and its primary metabolites were quantified from serum and urine by LC-MS/MS. There was a significant increase in dose-normalized caffeine serum and urine concentrations between the first and third trimesters (P concentrations also increased significantly in the third trimester in serum (P caffeine urine/serum concentration ratio also increased in the last trimester (P concentrations. This study identified decreased caffeine metabolism and an increase in the active metabolite theophylline concentrations during pregnancy, especially in the third trimester, revealing evidence of the large role that pregnancy plays in influencing caffeine metabolism.

  17. Non specific drug distribution in an autopsy case report of fatal caffeine intoxication.

    Science.gov (United States)

    Ishikawa, Takaki; Yuasa, Isao; Endoh, Minoru

    2015-11-01

    Caffeine has long been recognized as an addictive substance that causes autonomic nerve effect, and is known to increase catecholamine secretion from the adrenal glands. In recent years, the risk of ingesting toxic levels of caffeine has increased because of the easy availability of analgesics, CNS (Central Nervous System) stimulant medicine and dietary supplements at shops, health stores and through online purchases. We report the death of a young female resulting from the ingestion for suicide of an online purchased sleepiness-preventing medicine containing caffeine. The autopsy findings included pulmonary edema and congestion plus cutaneous emphysema. The stomach contents included a dark-brown viscous fluid without tablet or food residue. Toxicological examination revealed the presence of caffeine in the right heart blood (154.2 μg/mL) and stomach contents (197.5 μg/mL) (lethal blood level, >80 μg/mL). The highest caffeine content was in the bile (852.3 μg/mL). Biochemical findings showed that catecholamine concentration in the peripheral blood in the iliac vein was elevated. Immunostaining of catecholamine was weak in the adrenal medulla. We recommend highlighting the toxicity risk of ingesting substances with a high caffeine concentration, and we propose that caffeine concentrations should be included in the comprehensive routine forensic toxicological tests for all cases.

  18. Effects of coffee/caffeine on brain health and disease: What should I tell my patients?

    Science.gov (United States)

    Nehlig, Astrid

    2016-04-01

    Over the last decade, Food Regulation Authorities have concluded that coffee/caffeine consumption is not harmful if consumed at levels of 200 mg in one sitting (around 2½ cups of coffee) or 400 mg daily (around 5 cups of coffee). In addition, caffeine has many positive actions on the brain. It can increase alertness and well-being, help concentration, improve mood and limit depression. Caffeine may disturb sleep, but only in sensitive individuals. It may raise anxiety in a small subset of particularly sensitive people. Caffeine does not seem to lead to dependence, although a minority of people experience withdrawal symptoms. Caffeine can potentiate the effect of regular analgesic drugs in headache and migraine. Lifelong coffee/caffeine consumption has been associated with prevention of cognitive decline, and reduced risk of developing stroke, Parkinson's disease and Alzheimer's disease. Its consumption does not seem to influence seizure occurrence. Thus, daily coffee and caffeine intake can be part of a healthy balanced diet; its consumption does not need to be stopped in elderly people.

  19. Neonatal caffeine exposure alters seizure susceptibility in rats in an age-related manner.

    Science.gov (United States)

    Guillet, R

    1995-10-27

    Early developmental exposure to caffeine in rats results in decreased susceptibility to certain chemically-induced seizures in the adult. To determine whether this effect first appears in adulthood or is present during preceding developmental stages, we exposed neonatal rats to caffeine and determined seizure thresholds in animals 28, 42 and 70-90 days of age. Rats were unhandled or received either vehicle (water) or caffeine (15-20 mg/kg/day) by gavage (0.05 ml/10 g) over postnatal days 2-6. At 28, 42, or 70-90 days of age, rats were infused intravenously with picrotoxin (PIC), bicuculline (BIC), pentylenetetrazol (PTZ), caffeine (CAFF), strychnine (STR), or kainic acid (KA). Seizure thresholds for each compound were analyzed as a function of neonatal treatment, sex, and age. At 28 days, neonatally caffeine-exposed rats had a higher seizure threshold only for PTZ (P PIC (P < 0.0007) and PTZ (P < 0.0001) than did controls. These results at 28 and 42 days are compared with previously reported data that demonstrated that in adulthood, rats neonatally exposed to caffeine have higher thresholds for seizure induction with CAFF, PTZ, and KA. Thus, early developmental exposure to caffeine results in decreases in seizure susceptibility that are agent specific and may result in a delay in the decrease in seizure threshold that occurs for many agents between late juvenile ages and adulthood.

  20. In Utero Caffeine Exposure Induces Transgenerational Effects on the Adult Heart

    Science.gov (United States)

    Fang, Xiefan; Poulsen, Ryan R.; Rivkees, Scott A.; Wendler, Christopher C.

    2016-01-01

    Each year millions of pregnant woman are exposed to caffeine, which acts to antagonize adenosine action. The long-term consequences of this exposure on the developing fetus are largely unknown, although in animal models we have found adverse effects on cardiac function. To assess if these effects are transmitted transgenerationally, we exposed pregnant mice to caffeine equivalent to 2–4 cups of coffee at two embryonic stages. Embryos (F1 generation) exposed to caffeine early from embryonic (E) day 6.5–9.5 developed a phenotype similar to dilated cardiomyopathy by 1 year of age. Embryos exposed to caffeine later (E10.5–13.5) were not affected. We next examined the F2 generation and F3 generation of mice exposed to caffeine from E10.5–13.5, as this coincides with germ cell development. These F2 generation adult mice developed a cardiac phenotype similar to hypertrophic cardiomyopathy. The F3 generation exhibited morphological changes in adult hearts, including increased mass. This report shows that in utero caffeine exposure has long-term effects into adulthood and that prenatal caffeine exposure can exert adverse transgenerational effects on adult cardiac function. PMID:27677355

  1. Effects of coffee and caffeine on bladder dysfunction in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Chao-ran YI; Zhong-qing WEI; Xiang-lei DENG; Ze-yu SUN; Xing-rang LI; Cheng-gong TIAN

    2006-01-01

    Aim: To explore the effects and mechanisms of caffeine and coffee on bladder dysfunction in streptozotocin-induced diabetic rats. Methods: Sprague-Dawley male rats were divided randomly into 4 groups: control, diabetes mellitus (DM), DM with coffee treatment, and DM with caffeine treatment. The diabetic rat was induced by intraperitoneal injection of streptozotocin (60 mg/kg). After 7 weeks of treatment with coffee and caffeine, cystometrogram, contractile responses to electrical field stimulation (EFS) and acetylcholine (ACh), and cyclic AMP (cAMP) concentration of the bladder body and base were measured. Results: The bladder weight, volume threshold for micturition and post-void residual volume (PVR) in the diabetic rats were significantly higher compared to those in the control animals. Coffee or caffeine treatment significantly reduced the bladder weight, bladder capacity and PVR in the diabetic rats. DM caused significant decreases in cAMP concentration of the bladder and coffee and caffeine caused upregulation of cAMP content in the diabetic bladder. In addition, coffee and caffeine tended to normalize the altered detrusor contractile responses to EFS and ACh in the diabetic rats. Conclusion: These results indicate that caffeine and coffee may have beneficial effects on bladder dysfunction in the early stage of diabetes by increasing cAMP content in the lower urinary tract, recovering the micturition reflex and improving the detrusor contractility.

  2. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine

  3. Caffeine content of prepackaged national-brand and private-label carbonated beverages.

    Science.gov (United States)

    Chou, K-H; Bell, L N

    2007-08-01

    Caffeine is a well-known stimulant that is added as an ingredient to various carbonated soft drinks. Due to its stimulatory and other physiological effects, individuals desire to know the exact amount of caffeine consumed from these beverages. This study analyzed the caffeine contents of 56 national-brand and 75 private-label store-brand carbonated beverages using high-performance liquid chromatography. Caffeine contents ranged from 4.9 mg/12 oz (IGA Cola) to 74 mg/12 oz (Vault Zero). Some of the more common national-brand carbonated beverages analyzed in this study with their caffeine contents were Coca-Cola (33.9 mg/12 oz), Diet Coke (46.3 mg/12 oz), Pepsi (38.9 mg/12 oz), Diet Pepsi (36.7 mg/12 oz), Dr Pepper (42.6 mg/12 oz), Diet Dr Pepper (44.1 mg/12 oz), Mountain Dew (54.8 mg/12 oz), and Diet Mountain Dew (55.2 mg/12 oz). The Wal-Mart store-brand beverages with their caffeine contents were Sam's Cola (12.7 mg/12 oz), Sam's Diet Cola (13.3 mg/12 oz), Dr Thunder (30.6 mg/12 oz), Diet Dr Thunder (29.9 mg/12 oz), and Mountain Lightning (46.5 mg/12 oz). Beverages from 14 other stores were also analyzed. Most store-brand carbonated beverages were found to contain less caffeine than their national-brand counterparts. The wide range of caffeine contents in carbonated beverages indicates that consumers would benefit from the placement of caffeine values on food labels.

  4. The effect of maternal caffeine ingestion on pancreatic function in the neonatal rat.

    Science.gov (United States)

    Dunlop, M; Larkins, R G; Court, J M

    1982-10-01

    Pancreatic function was investigated in neonatal suckling offspring of caffeine-ingesting dams, with or without maternal sucrose supplementation, throughout pregnancy and lactation. In offspring of rats ingesting caffeine without sucrose supplementation, there was initial hyperinsulinaemia, followed by a progressive fall of plasma insulin to subnormal levels. This fall in plasma insulin coincided with depletion of pancreatic insulin stores. Both the fall in plasma insulin and depletion of pancreatic insulin stores were prevented by sucrose supplementation of caffeine-ingesting dams. Offspring of dams fed sucrose alone and control offspring also maintained pancreatic insulin stores and circulating insulin levels over the first 14 days of postnatal life. Pancreases from offspring of caffeine-exposed animals tested in vitro showed enhanced sensitivity of the insulin release process to glucose. This was reflected in the glucose concentration required to elicit half-maximal insulin release (2.4 +/- 0.2 mmol/l for caffeine offspring, 2.3 +/- 0.2 mmol/l for caffeine with sucrose, 3.8 +/- 0.3 mmol/l for sucrose and 4.1 +/- 0.3 mmol/l for control offspring, mean +/- SEM). In contrast, offspring of sucrose-supplemented (with or without caffeine) dams showed increased sensitivity of the proinsulin biosynthetic process to glucose, whereas offspring of dams ingesting caffeine alone showed no significant enhancement of the biosynthetic process compared with control offspring. Thus enhanced sensitivity of the insulin secretory process to glucose without a change in the sensitivity of the biosynthetic process in the offspring of the caffeine ingesting (non-sucrose supplemented) dams could explain the progressive depletion of pancreatic insulin stores and eventual hypoinsulinaemia seen in this group.

  5. A comparison of blue light and caffeine effects on cognitive function and alertness in humans.

    Directory of Open Access Journals (Sweden)

    C Martyn Beaven

    Full Text Available The alerting effects of both caffeine and short wavelength (blue light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.

  6. A comparison of blue light and caffeine effects on cognitive function and alertness in humans.

    Science.gov (United States)

    Beaven, C Martyn; Ekström, Johan

    2013-01-01

    The alerting effects of both caffeine and short wavelength (blue) light have been consistently reported. The ability of blue light to enhance alertness and cognitive function via non-image forming neuropathways have been suggested as a non-pharmacological countermeasure for drowsiness across a range of occupational settings. Here we compare and contrast the alerting and psychomotor effects of 240 mg of caffeine and a 1-h dose of ~40 lx blue light in a non-athletic population. Twenty-one healthy subjects performed a computer-based psychomotor vigilance test before and after each of four randomly assigned trial conditions performed on different days: white light/placebo; white light/240 mg caffeine; blue light/placebo; blue light/240 mg caffeine. The Karolinska Sleepiness Scale was used to assess subjective measures of alertness. Both the caffeine only and blue light only conditions enhanced accuracy in a visual reaction test requiring a decision and an additive effect was observed with respect to the fastest reaction times. However, in a test of executive function, where a distraction was included, caffeine exerted a negative effect on accuracy. Furthermore, the blue light only condition consistently outperformed caffeine when both congruent and incongruent distractions were presented. The visual reactions in the absence of a decision or distraction were also enhanced in the blue light only condition and this effect was most prominent in the blue-eyed participants. Overall, blue light and caffeine demonstrated distinct effects on aspects of psychomotor function and have the potential to positively influence a range of settings where cognitive function and alertness are important. Specifically, despite the widespread use of caffeine in competitive sporting environments, the possible impact of blue light has received no research attention.

  7. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3.

    Science.gov (United States)

    Fenton, Robert A; Poulsen, Søren B; de la Mora Chavez, Samantha; Soleimani, Manoocher; Busslinger, Meinrad; Dominguez Rieg, Jessica A; Rieg, Timo

    2015-06-15

    Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na(+)/H(+) exchanger isoform 3 (NHE3) localization and phosphorylation, resulting in diuresis and natriuresis. We generated tubulus-specific NHE3 knockout mice (Pax8-Cre), where NHE3 abundance in the S1, S2, and S3 segments of the proximal tubule was completely absent or severely reduced (>85%) in the thick ascending limb. Consumption of fluid and food, as well as glomerular filtration rate, were comparable in control or tubulus-specific NHE3 knockout mice under basal conditions, while urinary pH was significantly more alkaline without evidence for metabolic acidosis. Caffeine self-administration increased total fluid and food intake comparably between genotypes, without significant differences in consumption of caffeinated solution. Acute caffeine application via oral gavage elicited a diuresis and natriuresis that was comparable between control and tubulus-specific NHE3 knockout mice. The diuretic and natriuretic response was independent of changes in total NHE3 expression, phosphorylation of serine-552 and serine-605, or apical plasma membrane NHE3 localization. Although caffeine had no clear effect on localization of the basolateral Na(+)/bicarbonate cotransporter NBCe1, pretreatment with DIDS inhibited caffeine-induced diuresis and natriuresis. In summary, NHE3 is not required for caffeine-induced diuresis and natriuresis.

  8. Effects of aripiprazole on caffeine-induced hyperlocomotion and neural activation in the striatum.

    Science.gov (United States)

    Batista, Luara A; Viana, Thércia G; Silveira, Vívian T; Aguiar, Daniele C; Moreira, Fabrício A

    2016-01-01

    Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors. In addition to its antipsychotic activity, this compound blocks the effects of some psychostimulant drugs. It has not been verified, however, if aripiprazole interferes with the effects of caffeine. Hence, this study tested the hypothesis that aripiprazole prevents caffeine-induced hyperlocomotion and investigated the effects of these drugs on neural activity in the striatum. Male Swiss mice received injections of vehicle or antipsychotic drugs followed by vehicle or caffeine. Locomotion was analyzed in a circular arena and c-Fos protein expression was quantified in the dorsolateral, dorsomedial, and ventrolateral striatum, and in the core and shell regions of nucleus accumbens. Aripiprazole (0.1, 1, and 10 mg/kg) prevented caffeine (10 mg/kg)-induced hyperlocomotion at doses that do not change basal locomotion. Haloperidol (0.01, 0.03, and 0.1 mg/kg) also decreased caffeine-induced hyperlocomotion at all doses, although at the two higher doses, this compound reduced basal locomotion. Immunohistochemistry analysis showed that aripiprazole increases c-Fos protein expression in all regions studied, whereas caffeine did not alter c-Fos protein expression. Combined treatment of aripiprazole and caffeine resulted in a decrease in the number of c-Fos positive cells as compared to the group receiving aripiprazole alone. In conclusion, aripiprazole prevents caffeine-induced hyperlocomotion and increases neural activation in the striatum. This latter effect is reduced by subsequent administration of caffeine. These results advance our understanding on the pharmacological profile of aripiprazole.

  9. Intermolecular Interactions between Eosin Y and Caffeine Using 1H-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Macduff O. Okuom

    2013-01-01

    Full Text Available DETECHIP has been used in testing analytes including caffeine, cocaine, and tetrahydrocannabinol (THC from marijuana, as well as date rape and club drugs such as flunitrazepam, gamma-hydroxybutyric acid (GHB, and methamphetamine. This study investigates the intermolecular interaction between DETECHIP sensor eosin Y (DC1 and the analyte (caffeine that is responsible for the fluorescence and color changes observed in the actual array. Using 1H-NMR, 1H-COSY, and 1H-DOSY NMR methods, a proton exchange from C-8 of caffeine to eosin Y is proposed.

  10. Effects of added caffeine on results following artificial insemination with fresh and refrigerated rabbit semen.

    Science.gov (United States)

    López, F J; Alvariño, J M

    2000-02-28

    Lactating rabbits (n=1335) were artificially inseminated to study the effect of the addition of caffeine on rabbit semen stored for up to 96 h. Concentration of 0-5 mM/l were tested. Whereas a concentration of 0.2 mM/l increased spermatozoa motility, higher concentration values adversely affected reproductive parameters. Spermatozoa stored at 18 degrees C for 72-96 h did not have the capacity to react with caffeine when it was added before insemination. Caffeine did not enhance fertility or prolificacy, regardless of its ability to increase sperm motility.

  11. Mental effects of caffeine in fatigued and non-fatigued female and male subjects.

    Science.gov (United States)

    Linde, L

    1995-05-01

    In experiment 1 eight male and eight female subjects were randomly assigned to either a caffeine or a placebo condition. Caffeine (150 mg) was given at midnight and at 4 a.m. Oral temperature, subjective ratings of fatigue and mood, and performance in two cognitive tasks (an auditive attention task and a visual coding task) were assessed. Subjective 'drowsiness' and 'tiredness' increased significantly more in subjects given placebo than in subjects given caffeine treatment. The effects of drug treatment in performance and temperature were non-significant. However, the temperature of female subjects increased between midnight and 4 a.m. and the temperature of male subjects decreased during the same period of time. On the other hand, at 5 a.m. female subjects rated themselves as more sleepy, tired and 'disorganized' than the male subjects. In experiment 2 nine female and nine male subjects were assigned randomly to either placebo or caffeine treatment. Caffeine (200 mg) was given at 5 a.m. Oral temperature, subjective ratings of fatigue and mood, and level of performance in three cognitive tasks (the same as above plus Raven's progressive matrices) were assessed. Moreover, the subjects rated the effort of performing each task. The effects of drug treatment in level of performance were non-significant. However, the subjective effort of performing the auditive attention task increased significantly in subjects given placebo treatment, suggesting a compensatory arousal mechanism (Broadbent 1971). The effect of gender on temperature was non-significant. There was a significant interaction between gender and treatment in respect of subjective effort of performing the matrices task. In men caffeine decreased subjective effort and in women subjective effort was increased by caffeine. Experiment 3 was set up to investigate the hypothesis that negative effects of caffeine in women, observed in experiment 2, were due to over-optimal ('vigilance-related') arousal for the visual

  12. A gender-specific analysis of adolescent dietary caffeine, alcohol consumption, anger, and violent behavior.

    Science.gov (United States)

    James, Jack E; Kristjansson, Alfgeir L; Sigfusdottir, Inga Dora

    2015-01-01

    Self-reported dietary caffeine and alcohol consumption were examined in relation to anger and violent behavior in Icelandic tenth-graders. Structural equation modeling (SEM) was used to investigate direct and indirect effects of measured and latent variables in the population sample of 3,670, controlling for parental financial standing, family structure, ADHD, and peer delinquency. Gender differences were observed that have not been reported previously, especially in relation to anger as a possible mediator of violent behavior against a background of caffeine and alcohol consumption. Study findings suggest the need to take account of caffeine consumption in relation to adolescent anger and violence.

  13. Caffeine and theobromine in epicuticular wax of Ilex paraguariensis A. St.-Hil.

    Science.gov (United States)

    Athayde, M L; Coelho, G C; Schenkel, E P

    2000-12-01

    Caffeine and theobromine were identified and quantified in leaf epicuticular waxes of Ilex paraguariensis A. St.-Hil. (Aquifoliaceae). The total epicuticular leaf wax content was ca. 0.5% on average of dry leaf weight. Epicuticular caffeine and theobromine contents varied from 0.16 to 127.6 microg/mg and from 0 to 9.5 microg/mg of wax, respectively. For some selected samples, the intracellular methylxanthine concentration was also determined. A positive correlation was found between inner and epicuticular caffeine contents.

  14. Standard addition strip for quantitative electrostatic spray ionization mass spectrometry analysis: determination of caffeine in drinks.

    Science.gov (United States)

    Tobolkina, Elena; Qiao, Liang; Roussel, Christophe; Girault, Hubert H

    2014-12-01

    Standard addition strips were prepared for the quantitative determination of caffeine in different beverages by electrostatic spray ionization mass spectrometry (ESTASI-MS). The gist of this approach is to dry spots of caffeine solutions with different concentrations on a polymer strip, then to deposit a drop of sample mixed with an internal standard, here theobromine on each spot and to measure the mass spectrometry signals of caffeine and theobromine by ESTASI-MS. This strip approach is very convenient and provides quantitative analyses as accurate as the classical standard addition method by MS or liquid chromatography.

  15. [Isolation, extractive concentration, and determination of caffeine in the studies of blood plasma].

    Science.gov (United States)

    Korenman, Ia I; Shormanov, V K; Mokshina, N Ia; Krivosheeva, O A; Golubitskiĭ, G B

    2012-01-01

    The optimal conditions for the isolation of caffeine from human blood by means of acetone extraction are described with special reference to the peculiarities of extraction from aqueous solutions. The possibility of concentration and purification of caffeine from blood plasma using acetone and aceton-chlorophorm mixture (2:8) as the solvents is illustrated. In addition, purification by silica-gel thin layer chromatography is discussed. Thin layer chromatography, UV-spectrophotometry, and high performance liquid chromatography are considered as potential methods for the identification and quantitative determination of caffeine.

  16. Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system

    DEFF Research Database (Denmark)

    Mose, Tina; Kjaerstad, Mia Birkhoej; Mathiesen, Line

    2008-01-01

    group of compounds. Benzoic acid, caffeine, and glyphosate were chosen as model compounds because they are small molecules with large differences in physiochemical properties. Caffeine crossed the placenta by passive diffusion. The initial transfer rate of benzoic acid was more limited in the first part...... of the perfusion compared to caffeine, but reached the same steady-state level by the end of perfusion. The transfer of glyphosate was restricted throughout perfusion, with a lower permeation rate, and only around 15% glyphosate in maternal circulation crossed to the fetal circulation during the study period....

  17. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF.

    Science.gov (United States)

    Moy, Gregory A; McNay, Ewan C

    2013-01-17

    Obesity, high-fat diets, and subsequent type 2 diabetes (T2DM) are associated with cognitive impairment. Moreover, T2DM increases the risk of Alzheimer's disease (AD) and leads to abnormal elevation of brain beta-amyloid levels, one of the hallmarks of AD. The psychoactive alkaloid caffeine has been shown to have therapeutic potential in AD but the central impact of caffeine has not been well-studied in the context of a high-fat diet. Here we investigated the impact of caffeine administration on metabolism and cognitive performance, both in control rats and in rats placed on a high-fat diet. The effects of caffeine were significant: caffeine both (i) prevented the weight-gain associated with the high-fat diet and (ii) prevented cognitive impairment. Caffeine did not alter hippocampal metabolism or insulin signaling, likely because the high-fat-fed animals did not develop full-blown diabetes; however, caffeine did prevent or reverse a decrease in hippocampal brain-derived neurotrophic factor (BDNF) seen in high-fat-fed animals. These data confirm that caffeine may serve as a neuroprotective agent against cognitive impairment caused by obesity and/or a high-fat diet. Increased hippocampal BDNF following caffeine administration could explain, at least in part, the effects of caffeine on cognition and metabolism.

  18. Acute personalized habitual caffeine doses improve attention and have selective effects when considering the fractionation of executive functions.

    Science.gov (United States)

    Lanini, Juliana; Galduróz, José Carlos Fernandes; Pompéia, Sabine

    2016-01-01

    Caffeine is widely used, often consumed with food, and improves simple and complex/executive attention under fasting conditions. We investigated whether these cognitive effects are observed when personalized habitual doses of caffeine are ingested by caffeine consumers, whether they are influenced by nutriments and if various executive domains are susceptible to improvement. This was a double-blind, placebo-controlled study including 60 young, healthy, rested males randomly assigned to one of four treatments: placebo fasting, caffeine fasting, placebo meal and caffeine meal. Caffeine doses were individualized for each participant based on their self-reported caffeine consumption at the time of testing (morning). The test battery included measures of simple and sustained attention, executive domains (inhibiting, updating, shifting, dual tasking, planning and accessing long-term memory), control measures of subjective alterations, glucose and insulin levels, skin conductance, heart rate and pupil dilation. Regardless of meal intake, acute habitual doses of caffeine decreased fatigue, and improved simple and sustained attention and executive updating. This executive effect was not secondary to the habitual weekly dose consumed, changes in simple and sustained attention, mood, meal ingestion and increases in cognitive effort. We conclude that the morning caffeine "fix" has positive attentional effects and selectively improved executive updating whether or not caffeine is consumed with food.

  19. Caffeine Induces Cell Death via Activation of Apoptotic Signal and Inactivation of Survival Signal in Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2008-05-01

    Full Text Available Caffeine consumption is a risk factor for osteoporosis, but the precise regulatory mechanisms are currently unknown. Here, we show that cell viability decreases in osteoblasts treated with caffeine in a dose-dependent manner. This cell death is attributed primarily to apoptosis and to a smaller extent, necrosis. Moreover, caffeine directly stimulates intracellular oxidative stress. Our data support caffeine-induced apoptosis in osteoblasts via a mitochondria-dependent pathway. The apoptotic biochemical changes were effectively prevented upon pretreatment with ROS scavengers, indicating that ROS plays a critical role as an upstream controller in the caffeine-induced apoptotic cascade. Additionally, p21-activated protein kinase 2 (PAK2 and c-Jun N-terminal kinase (JNK were activated in caffeine-treated osteoblasts. Experiments further found that PAK2 activity is required for caffeine-induced JNK activation and apoptosis. Importantly, our data also show that caffeine triggers cell death via inactivation of the survival signal, including the ERK- and Akt-mediated anti-apoptotic pathways. Finally, exposure of rats to dietary water containing 10~20 μM caffeine led to bone mineral density loss. These results demonstrate for the first time that caffeine triggers apoptosis in osteoblasts via activation of mitochondria-dependent cell death signaling and inactivation of the survival signal, and causes bone mineral density loss in vivo.

  20. Determination of Aspartame, Caffeine, Saccharin, and Benzoic Acid in Beverages by High Performance Liquid Chromatography.

    Science.gov (United States)

    Delaney, Michael F.; And Others

    1985-01-01

    Describes a simple and reliable new quantitative analysis experiment using liquid chromatography for the determinaiton of caffeine, saccharin, and sodium benzoate in beverages. Background information, procedures used, and typical results obtained are provided. (JN)

  1. The effect of different doses of caffeine on cardiovascular variables and shooting performance

    Directory of Open Access Journals (Sweden)

    Ebrahimi Mohsen

    2015-04-01

    Full Text Available Study aim: the purpose of this study was to assess the effect of 3 mg and 5 mg per kg of body weight of caffeine on heart rate, blood pressure and shooting performance among elite shooters.

  2. QSAR Study on Caffeine Derivatives Docked on Poly(ARNA Polymerase Protein Cid1

    Directory of Open Access Journals (Sweden)

    Teodora E. Harsa

    2016-06-01

    Full Text Available Caffeine is the most commonly ingested alkylxantine and is recognized as a psycho-stimulant. It improves some aspects of cognitive performance, however it reduces the cerebral blood flow both in animals and humans. In this paper a QSAR study on caffeine derivatives, docked on the Poly(ARNA polymerase protein cid1, is reported. A set of forty caffeine derivatives, downloaded from PubChem, was modeled, within the hypermolecule strategy; the predicted activity was LD50 and prediction was done on similarity clusters with the leaders chosen as the best docked ligands on the Poly(ARNA polymerase protein cid1. It was concluded that LD50 of the studied caffeines is not influenced by their binding to the target protein. This work is licensed under a Creative Commons Attribution 4.0 International License.

  3. Caffeine degradation in water by gamma irradiation, ozonation and ozonation/gamma irradiation

    Directory of Open Access Journals (Sweden)

    Torun Murat

    2014-03-01

    Full Text Available Aqueous solutions of caffeine were treated with ozone and gamma irradiation. The amounts of remaining caffeine were determined after solid phase extraction as a function of absorbed dose and ozonation time. In addition to this, some important parameters such as inorganic ions, chemical oxygen demand (COD dissolved oxygen and total acidity changes were followed. Caffeine (50 ppm is found to be completely decomposed at 3.0 kGy and 1.2 kGy doses in the absence of H2O2 and in 1.20 mM H2O2 solutions, respectively. In the case of gamma irradiation after ozonation, 50 ppm caffeine was removed at 0.2 kGy when the solution was ozonized for 100 s at a rate of 10 g O3 h-1 in 400 mL 50 ppm paracetamol solution.

  4. Cariogenic effect of caffeine intake during lactation on first molars of newborn rats.

    Science.gov (United States)

    Nakamoto, T; Cheuk, S L; Yoshino, S; Falster, A U; Simmons, W B

    1993-10-01

    Lactating dams with eight suckling pups were fed either a 20% protein diet as a control or experimentally a 20% protein diet supplemented with caffeine (2 mg/100g body weight) from the birth of the pups to day 22. At day 22, the pups from both groups were weaned and fed a cariogenic diet until day 50, when they were killed. Dental caries of the molars were scored from randomized mandibles. The enamel of the first molars in the caffeine group showed significantly higher caries scores than that of the controls. This appears to be the first unequivocal evidence that caffeine is a cariogenic agent when newborns are exposed to it during critical periods of tooth development. Therefore, the widespread human consumption of caffeine could be a threat to the healthy development of teeth.

  5. Determination of caffeine content in tea based on poly(safranine T) electroactive film modified electrode.

    Science.gov (United States)

    Guo, Sujuan; Zhu, Qianqian; Yang, Baocheng; Wang, Jing; Ye, Baoxian

    2011-12-01

    Safranine T was electropolymerised on a glassy carbon electrode and then characterised by scanning electron microscope (SEM), X-ray diffraction (XRD) and electrochemical impedance spectroscopy (EIS). This uniform electropolymerised film was crystallisable and showed a high electrocatalytic ability towards the oxidation of caffeine. To avoid the interferences of the anions, Nafion was covered on the surface of poly(safranine T) film modified glassy carbon electrode. As a new voltammetric sensor, this modified electrode is sensitive, selective and stable to determine caffeine content in tea. The peak current increased linearly with the concentration of caffeine in the range of 3×10(-7)-1×10(-4)M, with a detection limit of 1×10(-7)M. All of these make it a useful tool for determining caffeine content in tea. What's more, it produces much less organic waste compared with other analytical techniques.

  6. Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee.

    Science.gov (United States)

    Amare, Meareg; Admassie, Shimelis

    2012-05-15

    4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee. The peak current increased linearly with the concentration of caffeine in the range of 6 × 10(-8) to 4 × 10(-5) mol L(-1), with a detection limit of 1.37 × 10(-7) mol L(-1) (LoD = 3δ/slope). Analysis of caffeine in coffee was affected neither by sample matrices nor by structurally similar compounds. Recoveries ranging between 93.75 ± 2.32 and 100.75 ± 3.32 were achieved from coffee extracts indicating the applicability of the developed method for real sample analyses.

  7. [Changes of carbohydrate and lipid metabolism in women during pregnancy taking caffeine].

    Science.gov (United States)

    Cendrowska-Pinkosz, Monika; Dworzański, Wojciech; Krauze, Magdalena; Burdan, Franciszek

    2017-01-23

    Adaptive physiological changes that occur in pregnant woman's body can fluctuate with the intake of substances with proven adverse biological effect on the body. Due to the fact that caffeine is one of the most chronically used xenobiotics it required a research for the impact of consuming caffeine on adaptive processes in the glucose and fatty acid homeostasis of a pregnant woman Many researchers emphasize its negative effect on the glucose and fatty acid homeostasis of the mother and her offspring. However, in spite of years of observation, there is no clear answer to what amount or in what period of time the caffeine modulates the adaptive processes during pregnancy. Because of the potential risk the supply of caffeine during pregnancy should be subjected to considerable restrictions.

  8. Crystallographic and Computational Study of Purine: Caffeine Derivative

    Directory of Open Access Journals (Sweden)

    Ahmed F. Mabied

    2014-01-01

    Full Text Available The crystal structure of substituted purine derivative, 8-(3-butyl-4-phenyl-2,3-dihydrothiazol-2-ylidenehydrazino-3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-diones, caffeine derivative, has been determined. It crystallized in monoclinic system and space group P21/c with unit cell parameters a = 15.2634 (9, b = 13.4692 (9, c = 11.9761 (7 Å, and β = 108.825 (3°. Although each constituting moiety of the structure individually is planar, nonplanar configuration for the whole molecule was noticed. Molecular mechanics computations indicated the same nonplanar feature of the whole molecule. A network of intermolecular hydrogen bonds contacts and π interactions stabilized the structure.

  9. Purification and characterization of a novel caffeine oxidase from Alcaligenes species.

    Science.gov (United States)

    Mohapatra, B R; Harris, N; Nordin, R; Mazumder, A

    2006-09-18

    Alcaligenes species CF8 isolated from surface water of a lake produced a novel serine type metallo-caffeine oxidase. The optimal medium for caffeine oxidase production by this strain was (w/v) NaNO(3), 0.4%; KH(2)PO(4), 0.15%; Na(2)HPO(4), 0.05%; FeCl(3).6H(2)O, 0.0005%; CaCl(2).2H(2)O, 0.001%; MgSO(4).7H(2)O, 0.02%; glucose, 0.2%; caffeine, 0.05%, pH 7.5. The enzyme was purified to 63-fold by using ammonium sulfate precipitation, dialysis, ion exchange (diethylaminoethyl-cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified caffeine oxidase was monomeric with a molecular mass of 65 kDa. The purified caffeine oxidase with a half-life of 20 min at 50 degrees C had maximal activity at pH 7.5 and 35 degrees C. The purified caffeine oxidase had strict substrate specificity towards caffeine (K(m) 8.94 microM and V(max) 47.62 U mg protein(-1)) and was not able to oxidize xanthine and hypoxanthine. The enzyme activity was not inhibited by para-chloromercuribenzoic acid, iodoacetamide, n-methylmaleimide, salicylic acid and sodium arsenite indicating the enzyme did not belong to xanthine oxidase family. The enzyme was not affected by Ca(+2), Mg(+2) and Na(+), but was completely inhibited by Co(+2), Cu(+2) and Mn(+2) at 1mM level. The novel caffeine oxidase isolated here from Alcaligenes species CF8 may be useful in biotechnological processes including waste treatment and biosensor development.

  10. Effect of taurine and potential interactions with caffeine on cardiovascular function.

    Science.gov (United States)

    Schaffer, Stephen W; Shimada, Kayoko; Jong, Chian Ju; Ito, Takashi; Azuma, Junichi; Takahashi, Kyoko

    2014-05-01

    The major impetus behind the rise in energy drink popularity among adults is their ability to heighten mental alertness, improve physical performance and supply energy. However, accompanying the exponential growth in energy drink usage have been recent case reports and analyses from the National Poison Data System, raising questions regarding the safety of energy drinks. Most of the safety concerns have centered on the effect of energy drinks on cardiovascular and central nervous system function. Although the effects of caffeine excess have been widely studied, little information is available on potential interactions between the other active ingredients of energy drinks and caffeine. One of the active ingredients often mentioned as a candidate for interactions with caffeine is the beta-amino acid, taurine. Although taurine is considered a conditionally essential nutrient for humans and is thought to play a key role in several human diseases, clinical studies evaluating the effects of taurine are limited. However, based on this review regarding possible interactions between caffeine and taurine, we conclude that taurine should neutralize several untoward effects of caffeine excess. In agreement with this conclusion, the European Union's Scientific Committee on Food published a report in March 2003 summarizing its investigation into potential interactions of the ingredients in energy drinks. At the cardiovascular level, they concluded that "if there are any interactions between caffeine and taurine, taurine might reduce the cardiovascular effects of caffeine." Although these interactions remain to be further examined in humans, the physiological functions of taurine appear to be inconsistent with the adverse cardiovascular symptoms associated with excessive consumption of caffeine-taurine containing beverages.

  11. Driver’s Attitudes about the Impact of Caffeine and Energy Drinks on Road Traffic Safety

    OpenAIRE

    Dalibor Pešić; Boris Antić; Davor Brčić; Jelica Davidović

    2015-01-01

    Large amounts of energy drinks and caffeine, which is the main ingredient of energy drinks, produce a negative effect on the drivers, and therefore affect traffic safety.In order to determine the attitudes of drivers toward the impact of energy drinks and caffeine, a research was conducted using a questionnaire form and the targeted group of the survey were drivers. The research was conducted in the City of Belgrade in December 2012. There were 420 survey papers distributed to drivers of diff...

  12. Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions.

    Science.gov (United States)

    Sun, Peizhe; Lee, Wan-Ning; Zhang, Ruochun; Huang, Ching-Hua

    2016-12-20

    Photoactivation of aqueous chlorine could promote degradation of chlorine-resistant and photochemically stable chemicals accumulated in swimming pools. This study investigated the degradation of two such chemicals, N,N-diethyl-3-methylbenzamide (DEET) and caffeine, by low pressure ultraviolet (UV) light and simulated sunlight (SS) activated free chlorine (FC) in different water matrices. Both DEET and caffeine were rapidly degraded by UV/FC and SS/FC but exhibited different kinetic behaviors. The degradation of DEET followed pseudo-first-order kinetics, whereas the degradation of caffeine accelerated with reaction. Mechanistic study revealed that, under UV/FC, ·OH and Cl· were responsible for degradation of DEET, whereas ClO· related reactive species (ClOrrs), generated by the reaction between FC and ·OH/Cl·, played a major role in addition to ·OH and Cl· in degrading caffeine. Reaction rate constants of DEET and caffeine with the respective radical species were estimated. The imidazole moiety of caffeine was critical for the special reactivity with ClOrrs. Water matrix such as pH had a stronger impact on the UV/FC process than the SS/FC process. In saltwater matrix under UV/FC and SS/FC, the degradation of DEET was significantly inhibited, but the degradation of caffeine was much faster than that in nonsalty solutions. The interaction between Br(-) and Cl(-) may play an important role in the degradation of caffeine by UV/FC in saltwater. Reaction product analysis showed similar product patterns by UV/FC and SS/FC and minimal formation of chlorinated intermediates and disinfection byproducts.

  13. Randomized double-blind placebo-controlled crossover study of caffeine in patients with intermittent claudication

    DEFF Research Database (Denmark)

    Momsen, A H; Jensen, M B; Norager, C B;

    2010-01-01

    Intermittent claudication is a disabling symptom of peripheral arterial disease for which few medical treatments are available. This study investigated the effect of caffeine on physical capacity in patients with intermittent claudication.......Intermittent claudication is a disabling symptom of peripheral arterial disease for which few medical treatments are available. This study investigated the effect of caffeine on physical capacity in patients with intermittent claudication....

  14. Caffeine/nutrition interaction in the rat brain: Influence on latent inhibition and cortical spreading depression.

    Science.gov (United States)

    de Aguiar, Márlison José Lima; de Aguiar, Cilene Rejane Ramos Alves; Guedes, Rubem Carlos Araújo

    2011-01-10

    Caffeine, like malnutrition, can produce behavioral and electrophysiological alterations. However, the interaction of both factors remains unclear. Here this interaction has been studied in male Wistar rats previously malnourished during the lactation period by feeding their dams the "regional basic diet" of Northeast Brazil, containing about 8% protein, predominantly from vegetable sources (RBD(8)). At 70-75days of life, a subset of the pups was treated intraperitoneally with 30mg/kg caffeine for 4days while being tested according to the behavioral model of latent inhibition. Another group was subjected to an electrophysiological recording of the phenomenon known as cortical spreading depression, and the effects of caffeine injected during the recording session were evaluated. Caffeine did not affect cortical spreading depression, but antagonized latent inhibition in both the RBD(8)-malnourished rats and in the well-nourished control group fed a chow diet with 22% protein. This effect of caffeine was not seen in malnourished rats fed a protein-supplemented RBD (protein increased to 22% by increasing the proportion of foodstuffs from vegetable origin; RBD(22) group), suggesting that the amino acid imbalance of this diet may modulate the caffeine effects on latent inhibition. The results indicate a differential effect of caffeine in the latent inhibition behavioral model, as compared to the cortical spreading depression phenomenon, and this effect is influenced by the early nutritional status of the animal. We suggest that caffeine may modulate dopaminergic subcortical receptors participating in attention processes, but does not interact at the cortical level, in a way that would affect cortical spreading depression.

  15. Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer's mice and cells.

    Science.gov (United States)

    Dragicevic, Natasa; Delic, Vedad; Cao, Chuanhai; Copes, Neil; Lin, Xiaoyang; Mamcarz, Maggie; Wang, Li; Arendash, Gary W; Bradshaw, Patrick C

    2012-12-01

    Caffeine and melatonin have been shown to protect the Swedish mutant amyloid precursor protein (APP(sw)) transgenic mouse model of Alzheimer's disease from cognitive dysfunction. But their mechanisms of action remain incompletely understood. These Alzheimer's mice have extensive mitochondrial dysfunction, which likely contributes to their cognitive decline. To further explore the mechanism through which caffeine and melatonin protect cognitive function in these mice, we monitored the function of isolated mitochondria from APP(sw) mice treated with caffeine, melatonin, or both in their drinking water for one month. Melatonin treatment yielded a near complete restoration of mitochondrial function in assays of respiratory rate, membrane potential, reactive oxygen species production, and ATP levels. Caffeine treatment by itself yielded a small increase in mitochondrial function. However, caffeine largely blocked the large enhancement of mitochondrial function provided by melatonin. Studies with N2a neuroblastoma cells stably expressing APP(sw) showed that specific inhibition of cAMP-dependent phosphodiesterase (PDE) 4 or cGMP-dependent PDE5 also blocked melatonin protection of mitochondrial function, but A(2a) and A₁ adenosine receptor antagonists were without effect. Melatonin or caffeine at the concentrations used to modulate mitochondrial function in the cells had no effect on cAMP-dependent PDE activity or cellular cAMP or cGMP levels. Therefore, caffeine and increased cyclic nucleotide levels likely block melatonin signaling to mitochondria by independent mechanisms that do not involve adenosine receptor antagonism. The results of this study indicate that melatonin restores mitochondrial function much more potently than caffeine in APP(sw) transgenic mouse and cell models of Alzheimer's disease.

  16. A new green approach for the reduction of graphene oxide nanosheets using caffeine

    Indian Academy of Sciences (India)

    Thu Ha Thi Vu; Thanh Thuy Thi Tran; Hong Ngan Thi Le; Phuong Hoa Thi Nguyen; Ngoc Quynh Bui; Nadine Essayem

    2015-06-01

    A simple and green chemistry approach for the preparation of reduced graphene oxide nanosheets was successfully demonstrated through the reduction of graphene oxide (GO) using caffeine as the reductant. Without using toxic and harmful chemicals, this method is environmentally friendly and suitable for the large-scale production of graphene. The samples of GO, before and after reduction with caffeine have been characterized by X-ray diffraction, Raman, Fourier transform infrared, X-ray photoelectron spectroscopy, thermogravimetric analysis and transmission electron microscopy.

  17. The Effect of Caffeine Ingestion during Evening Exercise on Subsequent Sleep Quality in Females.

    Science.gov (United States)

    Ali, A; O'Donnell, J M; Starck, C; Rutherfurd-Markwick, K J

    2015-06-01

    In a randomised, double-blind, placebo-controlled crossover design, 10 females taking monophasic oral contraceptives completed 90 min intermittent treadmill-running 45 min after ingestion of 6 mg∙kg(-1) body mass anhydrous caffeine or artificial sweetener (placebo). Water (3 mL∙kg(-1)) was provided every 15 min during exercise. Venous blood samples were taken before, during and after exercise, as well as after sleep (~15 h post-ingestion), and levels of caffeine, paraxanthine, theobromine and theophylline were measured using high-performance liquid chromatography. Sleep quality was assessed using the Leeds Sleep Evaluation Questionnaire. Plasma caffeine concentration peaked 100 min after ingestion. Caffeine clearance was 0.95±0.14 mL·min(-1)·kg(-1) while the elimination half-life of caffeine was 17.63±8.06 h. Paraxanthine and theophylline levels were significantly elevated at 15 h with no significant change in theobromine. Sleep latency and subsequent quality of sleep was impaired following caffeine supplementation (P<0.05); there were no differences between trials for how participants were feeling upon awakening. This is the first controlled study to examine caffeine supplementation on sleep quality in female athletes taking a low-dose monophasic oral contraceptive steroid following an intermittent-exercise running protocol. The data shows that female athletes using monophasic oral contraceptive steroids will have impaired sleep quality following evening caffeine ingestion.

  18. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation

    DEFF Research Database (Denmark)

    Mohr, Magni; Nielsen, Jens Jung; Bangsbo, Jens

    2011-01-01

    The effect of oral caffeine ingestion on intense intermittent exercise performance and muscle interstitial ion concentrations was examined. The study consists of two studies (S1 and S2). In S1 twelve subjects completed the Yo-Yo intermittent recovery level 2 (Yo-Yo IR2) test with prior caffeine (6......(+) with microdialysis. In S1 Yo-Yo IR2 performance was 16% better (P...

  19. Epidemiologic Evidence of a Relationship between Tea, Coffee, or Caffeine Consumption and Cognitive Decline12

    OpenAIRE

    Arab, Lenore; Khan, Faraz; Lam, Helen

    2013-01-01

    A systematic literature review of human studies relating caffeine or caffeine-rich beverages to cognitive decline reveals only 6 studies that have collected and analyzed cognition data in a prospective fashion that enables study of decline across the spectrum of cognition. These 6 studies, in general, evaluate cognitive function using the Mini Mental State Exam and base their beverage data on FFQs. Studies included in our review differed in their source populations, duration of study, and mos...

  20. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  1. Guarana provides additional stimulation over caffeine alone in the planarian model.

    Directory of Open Access Journals (Sweden)

    Dimitrios Moustakas

    Full Text Available The stimulant effect of energy drinks is primarily attributed to the caffeine they contain. Many energy drinks also contain other ingredients that might enhance the tonic effects of these caffeinated beverages. One of these additives is guarana. Guarana is a climbing plant native to the Amazon whose seeds contain approximately four times the amount of caffeine found in coffee beans. The mix of other natural chemicals contained in guarana seeds is thought to heighten the stimulant effects of guarana over caffeine alone. Yet, despite the growing use of guarana as an additive in energy drinks, and a burgeoning market for it as a nutritional supplement, the science examining guarana and how it affects other dietary ingredients is lacking. To appreciate the stimulant effects of guarana and other natural products, a straightforward model to investigate their physiological properties is needed. The planarian provides such a system. The locomotor activity and convulsive response of planarians with substance exposure has been shown to provide an excellent system to measure the effects of drug stimulation, addiction and withdrawal. To gauge the stimulant effects of guarana we studied how it altered the locomotor activity of the planarian species Dugesia tigrina. We report evidence that guarana seeds provide additional stimulation over caffeine alone, and document the changes to this stimulation in the context of both caffeine and glucose.

  2. Driver’s Attitudes about the Impact of Caffeine and Energy Drinks on Road Traffic Safety

    Directory of Open Access Journals (Sweden)

    Dalibor Pešić

    2015-06-01

    Full Text Available Large amounts of energy drinks and caffeine, which is the main ingredient of energy drinks, produce a negative effect on the drivers, and therefore affect traffic safety.In order to determine the attitudes of drivers toward the impact of energy drinks and caffeine, a research was conducted using a questionnaire form and the targeted group of the survey were drivers. The research was conducted in the City of Belgrade in December 2012. There were 420 survey papers distributed to drivers of different age groups of which 412 were returned. The survey was completely anonymous and consisted of two parts. The first part was related to basic demographic information about the respondents and it had 8 closed type questions. These questions were responded by circling one of the offered answers. The second part of the survey referred to determining the driver’s attitudes about energy drinks and caffeine. The second part consisted of 26 questions and respondents were to use a five-level scale in order to show to what extent they agree or disagree with any of the listed statements.The results show that energy drinks are consumed mostly by young people, less than 25 years old. The effect of caffeine on gender is statistically significant. Headache is the reason why caffeine (25% is consumed more than energy drinks (8%.Major impact of energy drinks and caffeine on road safety indicates a required activity in this area such as education.

  3. Genetic characterization of caffeine degradation by bacteria and its potential applications.

    Science.gov (United States)

    Summers, Ryan M; Mohanty, Sujit K; Gopishetty, Sridhar; Subramanian, Mani

    2015-05-01

    The ability of bacteria to grow on caffeine as sole carbon and nitrogen source has been known for over 40 years. Extensive research into this subject has revealed two distinct pathways, N-demethylation and C-8 oxidation, for bacterial caffeine degradation. However, the enzymological and genetic basis for bacterial caffeine degradation has only recently been discovered. This review article discusses the recent discoveries of the genes responsible for both N-demethylation and C-8 oxidation. All of the genes for the N-demethylation pathway, encoding enzymes in the Rieske oxygenase family, reside on 13.2-kb genomic DNA fragment found in Pseudomonas putida CBB5. A nearly identical DNA fragment, with homologous genes in similar orientation, is found in Pseudomonas sp. CES. Similarly, genes for C-8 oxidation of caffeine have been located on a 25.2-kb genomic DNA fragment of Pseudomonas sp. CBB1. The C-8 oxidation genes encode enzymes similar to those found in the uric acid metabolic pathway of Klebsiella pneumoniae. Various biotechnological applications of these genes responsible for bacterial caffeine degradation, including bio-decaffeination, remediation of caffeine-contaminated environments, production of chemical and fuels and development of diagnostic tests have also been demonstrated.

  4. Solubility of caffeine from green tea in supercritical CO2: a theoretical and empirical approach.

    Science.gov (United States)

    Gadkari, Pravin Vasantrao; Balaraman, Manohar

    2015-12-01

    Decaffeination of fresh green tea was carried out with supercritical CO2 in the presence of ethanol as co-solvent. The solubility of caffeine in supercritical CO2 varied from 44.19 × 10(-6) to 149.55 × 10(-6) (mole fraction) over a pressure and temperature range of 15 to 35 MPa and 313 to 333 K, respectively. The maximum solubility of caffeine was obtained at 25 MPa and 323 K. Experimental solubility data were correlated with the theoretical equation of state models Peng-Robinson (PR), Soave Redlich-Kwong (SRK), and Redlich-Kwong (RK). The RK model had regressed experimental data with 15.52 % average absolute relative deviation (AARD). In contrast, Gordillo empirical model regressed the best to experimental data with only 0.96 % AARD. Under supercritical conditions, solubility of caffeine in tea matrix was lower than the solubility of pure caffeine. Further, solubility of caffeine in supercritical CO2 was compared with solubility of pure caffeine in conventional solvents and a maximum solubility 90 × 10(-3) mol fraction was obtained with chloroform.

  5. An in vitro approach to assessing a potential drug interaction between MDMA (ecstasy) and caffeine.

    Science.gov (United States)

    Downey, C; Daly, F; O'Boyle, K M

    2014-03-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a popular recreational drug which causes long-term neurotoxicity and increased risk of fatality. In rats, MDMA toxicity is exacerbated by co-administration of caffeine. The aim of this study was to investigate whether caffeine altered the effects of MDMA in a battery of in vitro tests selected to model some of the known actions of MDMA in vivo. In cytotoxicity studies, caffeine modestly enhanced the effect of MDMA on neuronal N2a cell viability but not that of liver, intestinal or kidney cells. MDMA inhibited the formation of fluorescent metabolites by CYP2D6≫CYP3A4>CYP1A2 but this was not altered by caffeine. Similarly, the inhibition of synaptosomal [(3)H] 5-HT uptake by MDMA was not affected by the presence of caffeine. Thus, these in vitro tests failed to detect any substantial interaction between caffeine and MDMA, highlighting the difficulty of modelling in vivo drug interactions using in vitro tests. However, the results show that the inhibition of synaptosomal [(3)H] 5-HT uptake by MDMA was greater at 41°C and 25°C than at 37°C which raises the possibility that MDMA's effect on SERT in vivo may be increased as body temperature increases, contributing to its harmful effects in users.

  6. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  7. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice.

    Science.gov (United States)

    Mabunga, Darine Froy N; Gonzales, Edson Luck T; Kim, Hee Jin; Choung, Se Young

    2015-05-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice.

  8. Caffeine, sleep and wakefulness: implications of new understanding about withdrawal reversal.

    Science.gov (United States)

    James, Jack E; Keane, Michael A

    2007-12-01

    The broad aim of this review is to critically examine the implications of new understanding concerning caffeine withdrawal and withdrawal reversal in the context of research concerned with the effects of caffeine on sleep and wakefulness. A comprehensive search was conducted for relevant experimental studies in the PubMED and PsycINFO databases. Studies were assessed with particular reference to methodological adequacy for controlling against confounding due to caffeine withdrawal and withdrawal reversal. This assessment was used to clarify evidence of effects, highlight areas of ambiguity and derive recommendations for future research. It was found that researchers have generally failed to take account of the fact that habitual use of caffeine, even at moderate levels, leads to physical dependence evidenced by physiological, behavioural and subjective withdrawal effects during periods of abstinence. Consequently, there has been near-complete absence of adequate methodological controls against confounding due to reversal of withdrawal effects when caffeine is experimentally administered. The findings of what has been a substantial research effort to elucidate the effects of caffeine on sleep and wakefulness, undertaken over a period spanning decades, are ambiguous. Current shortcomings can be redressed by incorporating suitable controls in new experimental designs.

  9. Effect of caffeine on the risk of coronary heart disease- A re-evaluation.

    Science.gov (United States)

    Adebayo, J O; Akinyinka, A O; Odewole, G A; Okwusidi, J I

    2007-03-01

    The effect of caffeine intake on the risk of coronary heart disease was studied. Twenty-one rats used were randomly divided into three experimental groups, the first group served as the control while the second and third groups were administered caffeine orally at doses of 10mg/kg body weight and 20mg/kg body weight respectively for fourteen days. Caffeine, at 10mg/kg body weight, significantly increased (P<0.05) serum LDL- cholesterol concentration and coronary heart disease risk ratio while it significantly reduced (P<0.05) serum triacylglycerol concentration when compared with controls. At 20mg/kg body weight, caffeine significantly increased (P<0.05) coronary heart disease risk ratio while it significantly reduced (P<0.05) serum HDL-cholesterol concentration and serum triacylgycerol concentration when compared with controls. No dose response effect was observed possibly suggestive of a threshold effect. These results suggest that caffeine predisposes consumers of caffeine containing beverages to coronary heart disease.

  10. Effects of caffeine intake during gestation and lactation on bones of young growing rats.

    Science.gov (United States)

    Schneider, P E; Miller, H I; Nakamoto, T

    1990-01-01

    The objective of this study was to evaluate the extended effect of caffeine intake received during gestation and lactation on the mandible and femur of rats. Timed-pregnant dams were divided into two groups. Dams of group 1 were fed a 20% protein diet throughout the experimental period from day 9 of gestation. Dams of group 2 were also fed a 20% protein diet, supplemented with caffeine (1 mg/100 g of body weight). Upon delivery, 8 pups were assigned to each dam, and the dams were continued on their respective diets. At weaning (day 22 postnatally), only male rats were selected. Pups of both groups were fed a 20% protein diet without caffeine. At day 56 postnatally the rats were killed. Mandibles and femurs were removed and the following parameters analyzed: weight, physical dimension, volume, and Knoop microhardness. Caffeine intake during gestation and lactation resulted in an impairment of femur growth and development and to a lesser extent mandibular growth and development. The early effects of caffeine in the maternal diet were lasting, as noted by the lack of recovery of the offspring even after changing to a caffeine-free diet for an extended time after weaning.

  11. Effects of caffeine on learning and memory in rats tested in the Morris water maze

    Directory of Open Access Journals (Sweden)

    Angelucci M.E.M.

    2002-01-01

    Full Text Available We studied some of the characteristics of the improving effect of the non-specific adenosine receptor antagonist, caffeine, using an animal model of learning and memory. Groups of 12 adult male Wistar rats receiving caffeine (0.3-30 mg/kg, ip, in 0.1 ml/100 g body weight administered 30 min before training, immediately after training, or 30 min before the test session were tested in the spatial version of the Morris water maze task. Post-training administration of caffeine improved memory retention at the doses of 0.3-10 mg/kg (the rats swam up to 600 cm less to find the platform in the test session, P<=0.05 but not at the dose of 30 mg/kg. Pre-test caffeine administration also caused a small increase in memory retrieval (the escape path of the rats was up to 500 cm shorter, P<=0.05. In contrast, pre-training caffeine administration did not alter the performance of the animals either in the training or in the test session. These data provide evidence that caffeine improves memory retention but not memory acquisition, explaining some discrepancies among reports in the literature.

  12. Caffeine induces cardiomyocyte hypertrophy via p300 and CaMKII pathways.

    Science.gov (United States)

    Shi, Liang; Xu, Hao; Wei, Jinhong; Ma, Xingfeng; Zhang, Jianbao

    2014-09-25

    Caffeine is commonly utilized to trigger intracellular calcium in cardiomyocyte. It is well accepted that caffeine could induce cardiac arrhythmia, but it is not clear with regard of its impacts on the cardiac function. This article presents a recent study concerning the effects of caffeine on the cardiomyocyte hypertrophy and the associated signal pathway. The experimental results showed that the total protein contents, the surface area of cardiomyocyte and β-myosin heavy chain (β-MHC) expression increased in ventricular myocytes of neonatal Sprague-Dawley (SD) rats after 24h caffeine incubation. It is also observed that the basal intracellular calcium (Ca(2+)) level has increased, while the amplitude of Ca(2+) oscillation and Ca(2+) content have decreased in sarcoplasmic reticulum (SR). The caffeine-induced myocyte enhancer factor-2 (MEF2) expression and hypertrophy can be completely abolished by the inhibition of cardiac ryanodine receptor (RyR2), as well as KN93 and curcumin treatments. Meanwhile, the amplitude of Ca(2+) oscillation and the Ca(2+) content of SR in the completely-inhibited group have reached the physiological level. These results suggest that the caffeine-induced cardiomyocyte hypertrophy established the connection between Ca(2+) release from SR and cytosol that activates CaMKII and p300, which in turn enhances the expression of MEF2 that promotes cardiomyocyte hypertrophy.

  13. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes.

    Science.gov (United States)

    Williams, Andrew D; Cribb, Paul J; Cooke, Matthew B; Hayes, Alan

    2008-03-01

    Caffeine and ephedrine-related alkaloids recently have been removed from International Olympic Committee banned substances lists, whereas ephedrine itself is now permissible at urinary concentrations less than 10 mug.mL. The changes to the list may contribute to an increased use of caffeine and ephedra as ergogenic aids by athletes. Consequently, we sought to investigate the effects of ingesting caffeine (C) or a combination of ephedra and caffeine (C + E) on muscular strength and anaerobic power using a double-blind, crossover design. Forty-five minutes after ingesting a glucose placebo (P: 300 mg), C (300 mg) or C + E (300 mg + 60 mg), 9 resistance-trained male participants were tested for maximal strength by bench press [BP; 1 repetition maximum (1RM)] and latissimus dorsi pull down (LP; 1RM). Subjects also performed repeated repetitions at 80% of 1RM on both BP and LP until exhaustion. After this test, subjects underwent a 30-second Wingate test to determine peak anaerobic cycling power, mean power, and fatigue index. Although subjects reported increased alertness and enhanced mood after supplementation with caffeine and ephedra, there were no significant differences between any of the treatments in muscle strength, muscle endurance, or peak anaerobic power. Our results do not support the contention that supplementation with ephedra or caffeine will enhance either muscle strength or anaerobic exercise performance.

  14. Atrial fibrillation in healthy adolescents after highly caffeinated beverage consumption: two case reports

    Directory of Open Access Journals (Sweden)

    Heyden Marybeth

    2011-01-01

    Full Text Available Abstract Introduction Energy drinks and highly caffeinated drinks comprise some of the fastest growing products of the beverage industry, often targeting teenagers and young adults. Cardiac arrhythmias in children related to high caffeine consumption have not been well described in the literature. This case series describes the possible association between the consumption of highly caffeinated drinks and the subsequent development of atrial fibrillation in the adolescent population. Case presentations We report the cases of two Caucasian adolescent boys of 14 and 16 years of age at the time of presentation, each without a significant cardiac history, who presented with palpitations or vague chest discomfort or both after a recent history of excessive caffeine consumption. Both were found to have atrial fibrillation on electrocardiogram; one patient required digoxin to restore a normal sinus rhythm, and the other self-converted after intravenous fluid administration. Conclusion With the increasing popularity of energy drinks in the pediatric and adolescent population, physicians should be aware of the arrhythmogenic potential associated with highly caffeinated beverage consumption. It is important for pediatricians to understand the lack of regulation in the caffeine content and other ingredients of these high-energy beverages and their complications so that parents and children can be educated about the risk of cardiac arrhythmias with excessive energy drink consumption.

  15. Effect of caffeine on cervical vestibular-evoked myogenic potential in healthy individuals

    Directory of Open Access Journals (Sweden)

    Ana Maria Almeida de Sousa

    2014-06-01

    Full Text Available INTRODUCTION: Caffeine is the most common psychoactive drug in use around the world and is found at different concentrations in a variety of common food items. Clinically, a strong association between caffeine consumption and diseases of the vestibular system has been established. Cervical vestibular-evoked myogenic potential (cVEMP is an electrophysiological test that is used to assess the sacculocollic pathway by measuring changes in the vestialibulocollic reflex. AIM: The present study aimed to evaluate the effect of an acute dose of caffeine on the vestibulocollic reflex by using cVEMP. METHOD: A prospective experimental study was performed in which healthy volunteers were submitted to the test before and after the intake of 420 mg of caffeine. The following parameters were compared: p13 and n23 latencies and p13-n23 amplitude. RESULT: No statistically significant difference was found in the test results before and after caffeine use. CONCLUSION: The vestibulocollic reflex is not altered by caffeine intake.

  16. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers.

    Science.gov (United States)

    Doerner, Jonas M; Kuetting, Daniel L; Luetkens, Julian A; Naehle, Claas P; Dabir, Darius; Homsi, Rami; Nadal, Jennifer; Schild, Hans H; Thomas, Daniel K

    2015-03-01

    To investigate the impact of a caffeine and taurine containing energy drink (ED) on myocardial contractility in healthy volunteers using cardiac MR and cardiac MR based strain analysis. 32 healthy volunteers (mean age 28 years) were investigated before and 1 h after consumption of a caffeine and taurine containing ED. For assessment of global cardiac functional parameters balanced SSFP-Cine imaging was performed, whereas CSPAMM tagging was used to evaluate global and regional myocardial strain. In addition, ten randomly chosen subjects were investigated once more using a caffeine only protocol to further evaluate the effect of caffeine solely. Heart rate and blood pressure were recorded throughout all studies. ED consumption led to a significant increase in peak systolic strain (PSS) and peak systolic strain rate (PSSR) 1 h after consumption (PSS: w/o ED -22.8 ± 2.1%; w ED -24.3 ± 2.4%, P = caffeine only group. In contrast, global left ventricular function was unchanged (P = 0.2076). No significant changes of vital parameters and diastolic filling pattern were detected 1 h after ED consumption. Consumption of a caffeine and taurine containing ED results in a subtle, but significant increase of myocardial contractility 1 h after consumption.

  17. Validation of a semi-physiological model for caffeine in healthy subjects and cirrhotic patients.

    Science.gov (United States)

    Cuesta-Gragera, Ana; Navarro-Fontestad, Carmen; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; García-Arieta, Alfredo; Trocóniz, Iñaki F; Casabó, Vicente G; Bermejo, Marival

    2015-06-20

    The objective of this paper was to validate a previously developed semi physiological model to simulate bioequivalence trials of drug products. The aim of the model was to ascertain whether the measurement of the metabolite concentration-time profiles would provide any additional information in bioequivalence studies (Fernandez-Teruel et al., 2009a,b; Navarro-Fontestad et al., 2010). The semi-physiological model implemented in NONMEM VI was used to simulate caffeine and its main metabolite plasma levels using caffeine parameters from bibliography. Data from 3 bioequivalence studies in healthy subjects at 3 different doses (100, 175 and 400mg of caffeine) and one study in cirrhotic patients (200 or 250mg) were used. The first aim was to adapt the previous semi-physiological model for caffeine, showing the hepatic metabolism with one main metabolite, paraxanthine. The second aim was to validate the model by comparison of the simulated plasma levels of parent drug and metabolite to the experimental data. The simulations have shown that the proposed semi-physiological model was able to reproduce adequately the pharmacokinetic behavior of caffeine and paraxanthine in both healthy subjects and cirrhotic patients at all the assayed doses. Therefore, the model could be used to simulate plasma concentrations vs. time of drugs with the same pharmacokinetic scheme as caffeine, as long as their population parameters are known, and it could be useful for bioequivalence trial simulation of drugs that undergo hepatic metabolism with a single main metabolite.

  18. Acute Low-Dose Caffeine Supplementation Increases Electromyographic Fatigue Threshold in Healthy Men.

    Science.gov (United States)

    Morse, Jacob J; Pallaska, Gramos; Pierce, Patrick R; Fields, Travis M; Galen, Sujay S; Malek, Moh H

    2016-11-01

    Morse, JJ, Pallaska, G, Pierce, PR, Fields, TM, Galen, SS, and Malek, MH. Acute low-dose caffeine supplementation increases electromyographic fatigue threshold in healthy men. J Strength Cond Res 30(11): 3236-3241, 2016-The purpose of this study is to determine whether consumption of a single low-dose caffeine drink will delay the onset of the electromyographic fatigue threshold (EMGFT) in the superficial quadriceps femoris muscles. We hypothesize that the EMGFT values for the caffeine condition will be significantly higher than the EMGFT values for the placebo condition. On separate occasions, 10 physically active men performed incremental single-leg knee-extensor ergometry 1 hour after caffeine (200 mg) or placebo consumption. The EMGFT was determined for each participant for both conditions. The results indicated a significant increase for maximal power output (16%; p = 0.004) and EMGFT (45%; p = 0.004) in the caffeine condition compared with placebo. These findings suggest that acute low-dose caffeine supplementation delays neuromuscular fatigue in the quadriceps femoris muscles.

  19. Ultra-violet Spectrophotometric Determination of Caffeine in Soft and Energy Drinks Available in Yenagoa, Nigeria

    Directory of Open Access Journals (Sweden)

    Amos-Tautua

    2014-02-01

    Full Text Available This study was carried out to determine the pH and levels of caffeine in eight brands of carbonated and energy drinks available in local market in Yenagoa, Nigeria. Quantitative analysis of caffeine was performed by a simple and fast standard UV spectrophotometric method, using carbon tetrachloride as the extracting solvent. Results showed that the pH of the beverages were slightly acidic ranging from 5.92-6.44. The minimum caffeine level was observed in the carbonated soft drink Coca Cola (43.71±0.55 ppm, while the energy drink, Red Bull sample showed the highest caffeine content (58.31±0.35 ppm. The carbonated soft drinks showed caffeine levels in the range of 43.71 and 45.83 ppm with average concentration of 44.52 ppm, whereas in the energy drinks it ranged from 47.56 to 58.31 ppm with a mean concentration of 52.24 ppm. The caffeine content in all the beverage samples analyzed in this study are well below the maximum allowable limits set by the US Food and Drugs Administration.

  20. Caffeine treatment prevented from weight regain after calorie shifting diet induced weight loss.

    Science.gov (United States)

    Davoodi, Sayed Hossein; Hajimiresmaiel, Seyed Javad; Ajami, Marjan; Mohseni-Bandpei, Anoushiravan; Ayatollahi, Seyyed Abdulmajid; Dowlatshahi, Kamran; Javedan, Gholamali; Pazoki-Toroudi, Hamidreza

    2014-01-01

    Low calorie diets are always difficult for obese subjects to follow and lead to metabolic and behavioral adaptation. Therefore, we evaluated the effect of caffeine treatment with calorie shifting diet (CSD) on weight loss. Female subjects (n=60; BMI≥25) completed 4-weeks control diet, 6-weeks CSD (3 repeated phases; each 2-weeks) and 4-weeks follow-up diet, with or without caffeine treatment (5 mg/Kg/day). The first 11 days of each phase included calorie restriction with four meals every day and 4 hours intervals. Significant weight and fat loss were observed after 4-weeks of CSD (5.7 ± 1.24 Kg and 4.84 ± 1.53 Kg) or CSD+Caffeine (7.57 ± 2.33 Kg and 5.24 ± 2.07 Kg) which was consistent for one month of the follow-up (CSD: 5.24 ± 1.83 Kg and 4.3 ± 1.62 Kg, CSD+Caffeine: 12.11 ± 2.31 Kg and 9.85 ± 1.6 Kg, p Caffeine treatments, significantly decreased plasma glucose, total-cholesterol, and triacylglycerol (p after 4-weeks of CSD (p after week 7 (p caffeine treatment with CSD could be an effective alternative approach to weight and fat loss with small changes in RMR and improved tolerance of subjects to the new diet.

  1. Potential link between caffeine consumption and pediatric depression: A case-control study

    Directory of Open Access Journals (Sweden)

    Farias Lucilene G

    2011-08-01

    Full Text Available Abstract Background Early-onset depressive disorders can have severe consequences both from developmental and functional aspects. The etiology of depressive disorders is complex and multi-factorial, with an intricate interaction among environmental factors and genetic predisposition. While data from studies on adults suggest that caffeine is fairly safe, effects of caffeine in children, who are in period of rapid brain development, are currently unknown. Furthermore, systematic research addressing the relationship between depressive symptoms in children and caffeine consumption is lacking. The present study examined the effects of caffeine consumption on depressed mood in children with depression and non-depressed participants. Methods Children and adolescents (n = 51 already enrolled in an ongoing longitudinal study, aged 9-12 years, were assessed for depressive symptoms with the Children Depressive Inventory (CDI. Psychopathological symptoms were assessed with the Child Behavioral Checklist (CBCL and eating habits were assessed with the Nutrition-Behavior Inventory (NBI 1. The children were compared to control children without psychopathology attending public schools in a Southern Brazilian city. Results Participants with CDI scores ≥ 15 (mean = 19; S.D. = 4 also had high NBI scores (mean = 52; S.D. = 19, p Conclusions These findings indicate that depressed children consume more caffeinated drinks than non-depressed children. Nonetheless while a strong association between depressive symptoms and caffeine consumption among children was found, further research should investigate whether or not this association is due to a cause and effect relationship.

  2. Does Caffeine Consumption Modify Cerebrospinal Fluid Amyloid-β Levels in Patients with Alzheimer's Disease?

    DEFF Research Database (Denmark)

    Travassos, Maria; Santana, Isabel; Baldeiras, Inês

    2015-01-01

    in the CSF were determined using sandwich ELISA methods and other Aβ species, Aβ(X-38), Aβ(X-40), and Aβ(X-42), with the MSD Aβ Triplex assay. The concentration of caffeine was 0.79±1.15 μg/mL in the CSF and 1.20±1.88 μg/mL in the plasma. No correlation was found between caffeine consumption and Aβ42......Caffeine may be protective against Alzheimer's disease (AD) by modulating amyloid-β (Aβ) metabolic pathways. The present work aimed to study a possible association of caffeine consumption with the cerebrospinal fluid (CSF) biomarkers, particularly Aβ. The study included 88 patients with AD or mild...... cognitive impairment. The consumption of caffeine and theobromine was evaluated using a validated food questionnaire. Quantification of caffeine and main active metabolites was performed with liquid chromatography coupled to tandem mass spectrometry. The levels of A(1-42), total tau, and phosphorylated tau...

  3. Caffeine intake in pregnancy: Relationship between internal intake and effect on birth weight.

    Science.gov (United States)

    Partosch, F; Mielke, H; Stahlmann, R; Gundert-Remy, U

    2015-12-01

    We used a physiologically based kinetic model to simulate caffeine blood concentration-time profiles in non-pregnant and pregnant women. The model predicted concentration-time profile was in good accordance with experimental values. With 200 mg, the safe dose per occasion in non-pregnant women, AUC and peak concentration in pregnant women were nearly twice that of non-pregnant women. In order to derive a safe dose for the pregnant women we estimated the dose in the pregnant women model taken at once which would not exceed AUC and peak concentration in the non-pregnant women of 200 mg as single dose. The resulting dose is 100 mg caffeine per occasion which we recommend as safe. The caffeine dose of 200 mg per day is declared as safe for pregnant women with respect to the foetus by EFSA based on results on reduced birth weight in epidemiological studies. We modelled AUC and peak concentration for different caffeine doses to investigate the relationship between internal caffeine exposure and risk measures of reduced birth weight from epidemiological studies. The graphical analysis revealed that the reduction in birth weight was related to AUC and peak concentration up to a dose of 250 mg caffeine.

  4. Occurrence and de novo biosynthesis of caffeine and theanine in seedlings of tea (Camellia sinensis).

    Science.gov (United States)

    Deng, Wei-Wei; Ashihara, Hiroshi

    2015-05-01

    Caffeine (1,3,7-trimethyl xanthine) and theanine (γ-glutamyl-L-ethylamide) are the major nitrogen-containing secondary metabolites in tea leaves. The aim of the present study was to elucidate the relative concentration and amounts of these compounds and the de novo biosynthetic activity in different parts of tea seedlings grown for 27-, 106- and 205 days. The results indicated that caffeine and its biosynthetic activity occur only in leaves and stems, while theanine is distributed in all organs, including roots. The concentration of caffeine and theanine in leaves ranged from 0.3-1.1 mg N/g and 0.1-0.5 mg N/g fresh weight, respectively. A higher concentration of theanine was found in roots (0.5-1.1 mg N). The total amounts of theanine expressed as g N/seedling were 1.1-1.5 times higher than that of caffeine. The high biosynthetic activity of caffeine from NH4+ was found in young leaves during the first 106 days after germination. Theanine biosynthetic activity probably occurs in roots, since higher 15N atom% excess was observed in roots during the first 27 days. Theanine may be synthesized mainly in roots and translocated to leaves. The de novo biosynthesis of caffeine and theanine in tea seedlings and their accumulation and translocation are discussed.

  5. Spectroscopic study of surface enhanced Raman scattering of caffeine on borohydride-reduced silver colloids

    Science.gov (United States)

    Chen, Xiaomin; Gu, Huaimin; Shen, Gaoshan; Dong, Xiao; Kang, Jian

    2010-06-01

    The surface enhanced Raman scattering (SERS) of caffeine on borohydride-reduced silver colloids system under different aqueous solution environment has been studied in this paper. The relative intensity of SERS of caffeine significantly varies with different concentrations of sodium chloride and silver particles. However, at too high or too low concentration of sodium chloride and silver particle, the enhancement of SERS spectra is not evident. The SERS spectra of caffeine suggest that the contribution of the charge transfer mechanism to SERS may be dominant. The chloride ions can significantly enhance the efficiency of SERS, while the enhancement is selective, as the efficiency in charge transfer enhancement is higher than in electromagnetic enhancement. Therefore, it can be concluded that the active site of chloride ion locates on the bond between the caffeine and the silver surface. In addition, the SERS spectra of caffeine on borohydride-reduced and citrate-reduced silver colloids are different, which may be due to different states caffeine adsorbed on silver surface under different silver colloids.

  6. Caffeine and glucose homeostasis during rest and exercise in diabetes mellitus.

    Science.gov (United States)

    Zaharieva, Dessi P; Riddell, Michael C

    2013-08-01

    Caffeine is a substance that has been used in our society for generations, primarily for its effects on the central nervous system that causes wakefulness. Caffeine supplementation has become increasingly more popular as an ergogenic aid for athletes and considerable scientific evidence supports its effectiveness. Because of their potential to alter energy metabolism, the effects of coffee and caffeine on glucose metabolism in diabetes have also been studied both epidemiologically and experimentally. Predominantly targeting the adenosine receptors, caffeine causes alterations in glucose homeostasis by decreasing glucose uptake into skeletal muscle, thereby causing elevations in blood glucose concentration. Caffeine intake has also been proposed to increase symptomatic warning signs of hypoglycemia in patients with type 1 diabetes and elevate blood glucose levels in patients with type 2 diabetes. Other effects include potential increases in glucose counterregulatory hormones such as epinephrine, which can also decrease peripheral glucose disposal. Despite these established physiological effects, increased coffee intake has been associated with reduced risk of developing type 2 diabetes in large-scale epidemiological studies. This review paper highlights the known effects of caffeine on glucose homeostasis and diabetes metabolism during rest and exercise.

  7. Differential effect of caffeine intake in subjects with genetic susceptibility to Parkinson's Disease.

    Science.gov (United States)

    Kumar, Prakash M; Paing, Swe Swe Thet; Li, HuiHua; Pavanni, R; Yuen, Y; Zhao, Y; Tan, Eng King

    2015-11-02

    We examined if caffeine intake has a differential effect in subjects with high and low genetic susceptibility to Parkinson's disease (PD), a common neurodegenerative disorder. A case control study involving 812 subjects consisting of PD and healthy controls were conducted. Caffeine intake assessed by a validated questionnaire and genotyping of PD gene risk variant (LRRK2 R1628P) was carried out. Compared to caffeine takers with the wild-type genotype (low genetic susceptibility), non-caffeine takers with R1628P variant (high genetic susceptibility) had a 15 times increased risk of developing PD (OR = 15.4, 95% CI = (1.94, 122), P = 0.01), whereas caffeine takers with R1628P (intermediate susceptibility) had a 3 times risk (OR = 3.07, 95% CI = (2.02, 4.66), P Caffeine intake would significantly reduce the risk of PD much more in those with high genetic susceptibility compared to those with low genetic susceptibility.

  8. Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer's mouse model.

    Science.gov (United States)

    Chu, Yi-Fang; Chang, Wen-Han; Black, Richard M; Liu, Jia-Ren; Sompol, Pradoldej; Chen, Yumin; Wei, Huilin; Zhao, Qiuyan; Cheng, Irene H

    2012-12-01

    Alzheimer's disease (AD), a chronic neurodegenerative disorder associated with the abnormal accumulations of amyloid β (Aβ) peptide and oxidative stress in the brain, is the most common form of dementia among the elderly. Crude caffeine (CC), a major by-product of the decaffeination of coffee, has potent hydrophilic antioxidant activity and may reduce inflammatory processes. Here, we showed that CC and pure caffeine intake had beneficial effects in a mouse model of AD. Administration of CC or pure caffeine for 2months partially prevented memory impairment in AD mice, with CC having greater effects than pure caffeine. Furthermore, consumption of CC, but not pure caffeine, reduced the Aβ(1-42) levels and the number of amyloid plaques in the hippocampus. Moreover, CC and caffeine protected primary neurons from Aβ-induced cell death and suppressed Aβ-induced caspase-3 activity. Our data indicate that CC may contain prophylactic agents against the cell death and the memory impairment in AD.

  9. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  10. Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry Measurement of Caffeine in Caffeine-Laced Pants and in Urine and Skin of a Pants User

    OpenAIRE

    Manuela Pellegrini; Daniela De Orsi; Carmine Guarino; Maria Concetta Rotolo; Rita di Giovannandrea; Roberta Pacifici; Simona Pichini

    2014-01-01

    A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry method was developed for the measurement of caffeine in caffeine-laced pants and in urine and skin of a pants user. The substance and its internal standard (N-ethylnorcotinine) were separated by reversed phase chromatography with 5 mM ammonium formate pH 3.0 and 0.3% formic acid in acetonitrile mobile phase (83:17 v/v) by isocratic elution and detected by tandem mass spectrometry operated in multiple reacti...

  11. Caffeine-induced activated glucocorticoid metabolism in the hippocampus causes hypothalamic-pituitary-adrenal axis inhibition in fetal rats.

    Science.gov (United States)

    Xu, Dan; Zhang, Benjian; Liang, Gai; Ping, Jie; Kou, Hao; Li, Xiaojun; Xiong, Jie; Hu, Dongcai; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    Epidemiological investigations have shown that fetuses with intrauterine growth retardation (IUGR) are susceptible to adult metabolic syndrome. Clinical investigations and experiments have demonstrated that caffeine is a definite inducer of IUGR, as children who ingest caffeine-containing food or drinks are highly susceptible to adult obesity and hypertension. Our goals for this study were to investigate the effect of prenatal caffeine ingestion on the functional development of the fetal hippocampus and the hypothalamic-pituitary-adrenal (HPA) axis and to clarify an intrauterine HPA axis-associated neuroendocrine alteration induced by caffeine. Pregnant Wistar rats were intragastrically administered 20, 60, and 180 mg/kg · d caffeine from gestational days 11-20. The results show that prenatal caffeine ingestion significantly decreased the expression of fetal hypothalamus corticotrophin-releasing hormone. The fetal adrenal cortex changed into slight and the expression of fetal adrenal steroid acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc), as well as the level of fetal adrenal endogenous corticosterone (CORT), were all significantly decreased after caffeine treatment. Moreover, caffeine ingestion significantly increased the levels of maternal and fetal blood CORT and decreased the expression of placental 11β-hydroxysteroid dehydrogenase-2 (11β-HSD-2). Additionally, both in vivo and in vitro studies show that caffeine can downregulate the expression of fetal hippocampal 11β-HSD-2, promote the expression of 11β-hydroxysteroid dehydrogenase 1 and glucocorticoid receptor (GR), and enhance DNA methylation within the hippocampal 11β-HSD-2 promoter. These results suggest that prenatal caffeine ingestion inhibits the development of the fetal HPA axis, which may be associated with the fetal overexposure to maternal glucocorticoid and activated glucocorticoid metabolism in the fetal hippocampus. These results will be beneficial in

  12. Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer's mice.

    Science.gov (United States)

    Cao, Chuanhai; Wang, Li; Lin, Xiaoyang; Mamcarz, Malgorzata; Zhang, Chi; Bai, Ge; Nong, Jasson; Sussman, Sam; Arendash, Gary

    2011-01-01

    Retrospective and prospective epidemiologic studies suggest that enhanced coffee/caffeine intake during aging reduces risk of Alzheimer's disease (AD). Underscoring this premise, our studies in AD transgenic mice show that long-term caffeine administration protects against cognitive impairment and reduces brain amyloid-β levels/deposition through suppression of both β- and γ-secretase. Because coffee contains many constituents in addition to caffeine that may provide cognitive benefits against AD, we examined effects of caffeinated and decaffeinated coffee on plasma cytokines, comparing their effects to caffeine alone. In both AβPPsw+PS1 transgenic mice and non-transgenic littermates, acute i.p. treatment with caffeinated coffee greatly and specifically increased plasma levels of granulocyte-colony stimulating factor (GCSF), IL-10, and IL-6. Neither caffeine solution alone (which provided high plasma caffeine levels) or decaffeinated coffee provided this effect, indicating that caffeine synergized with some as yet unidentified component of coffee to selectively elevate these three plasma cytokines. The increase in GCSF is particularly important because long-term treatment with coffee (but not decaffeinated coffee) enhanced working memory in a fashion that was associated only with increased plasma GCSF levels among all cytokines. Since we have previously reported that long-term GCSF treatment enhances cognitive performance in AD mice through three possible mechanisms (e.g., recruitment of microglia from bone marrow, synaptogenesis, and neurogenesis), the same mechanisms could be complimentary to caffeine's established ability to suppress Aβ production. We conclude that coffee may be the best source of caffeine to protect against AD because of a component in coffee that synergizes with caffeine to enhance plasma GCSF levels, resulting in multiple therapeutic actions against AD.

  13. [Effects of coffee and caffeine on fertility, reproduction, lactation, and development. Review of human and animal data].

    Science.gov (United States)

    Nehlig, A; Debry, G

    1994-01-01

    In the present review, we have examined the effects of coffee ingestion on fertility, reproduction, lactation and development. The potential effects of coffee consumption on fertility, spontaneous abortion and prematurity are not clearly established but appear to be quite limited. In rodents, caffeine can induce malformations but this effect appears in general at doses never encountered in humans. Indeed, as soon as the quantity of caffeine is divided over the day, as is the case for human consumption, the teratogenic effect of caffeine disappears in rodents. Coffee ingested during gestation induces a dose-dependent decrease in birth weight, but usually only when ingested amounts are high (i.e. more than 7 cups/day), whereas coffee has no effect at moderate doses. Caffeine consumption during gestation affects hematologic parameters of the new-born infant or rat. In animals, caffeine induces long-term consequences on sleep, locomotion, learning abilities, emotivity and anxiety, whereas, in children, the effects of early exposure to coffee and caffeine on behavior are not clearly established. The quantities of caffeine found in maternal milk vary with authors, but it appears clearly that caffeine does not change maternal milk composition and has a tendency to stimule milk production. In conclusion to this review, it appears that maternal coffee or caffeine consumption during gestation and/or lactation does not seem to have measurable consequences on the fetus of the newborn, as long as ingested quantities remain moderate. Therefore, pregnant mothers should be advised to limit their coffee and caffeine intake to 300 mg caffeine/day (i.e. 2-3 cups of coffee or 2.5-3 l of coke) especially because of the increase of caffeine half-life during the third trimester of pregnancy and in the neonate.

  14. The effect of caffeine on working memory load-related brain activation in middle-aged males.

    Science.gov (United States)

    Klaassen, Elissa B; de Groot, Renate H M; Evers, Elisabeth A T; Snel, Jan; Veerman, Enno C I; Ligtenberg, Antoon J M; Jolles, Jelle; Veltman, Dick J

    2013-01-01

    Caffeine is commonly consumed in an effort to enhance cognitive performance. However, little is known about the usefulness of caffeine with regard to memory enhancement, with previous studies showing inconsistent effects on memory performance. We aimed to determine the effect of caffeine on working memory (WM) load-related activation during encoding, maintenance and retrieval phases of a WM maintenance task using functional magnetic resonance imaging (fMRI). 20 healthy, male, habitual caffeine consumers aged 40-61 years were administered 100 mg of caffeine in a double-blind placebo-controlled crossover design. Participants were scanned in a non-withdrawn state following a workday during which caffeinated products were consumed according to individual normal use (range = 145-595 mg). Acute caffeine administration was associated with increased load-related activation compared to placebo in the left and right dorsolateral prefrontal cortex during WM encoding, but decreased load-related activation in the left thalamus during WM maintenance. These findings are indicative of an effect of caffeine on the fronto-parietal network involved in the top-down cognitive control of WM processes during encoding and an effect on the prefrontal cortico-thalamic loop involved in the interaction between arousal and the top-down control of attention during maintenance. Therefore, the effects of caffeine on WM may be attributed to both a direct effect of caffeine on WM processes, as well as an indirect effect on WM via arousal modulation. Behavioural and fMRI results were more consistent with a detrimental effect of caffeine on WM at higher levels of WM load, than caffeine-related WM enhancement. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

  15. Effects of concurrent caffeine and mobile phone exposure on local target probability processing in the human brain

    OpenAIRE

    Attila Trunk; Gábor Stefanics; Norbert Zentai; Ivett Bacskay; Attila Felinger; György Thuróczy; István Hernádi

    2015-01-01

    Millions of people use mobile phones (MP) while drinking coffee or other caffeine containing beverages. Little is known about the potential combined effects of MP irradiation and caffeine on cognitive functions. Here we investigated whether caffeine intake and concurrent exposure to Universal Mobile Telecommunications System (UMTS) MP-like irradiation may interactively influence neuro-cognitive function in an active visual oddball paradigm. In a full factorial experimental design, 25 particip...

  16. Exercise-Induced Fatigue and Caffeine Supplementation Affect Psychomotor Performance but Not Covert Visuo-Spatial Attention

    OpenAIRE

    Sakakibara, Manabu; Connell, Charlotte J. W.; Thompson, Benjamin; Kuhn, Gustav; Gant, Nicholas

    2016-01-01

    Fatigue resulting from strenuous exercise can impair cognition and oculomotor control. These impairments can be prevented by administering psychostimulants such as caffeine. This study used two experiments to explore the influence of caffeine administered at rest and during fatiguing physical exercise on spatial attention—a cognitive function that is crucial for task-based visually guided behavior. In independent placebo controlled studies, cohorts of 12 healthy participants consumed caffeine...

  17. Caffeine Supplementation as an Ergogenic Aid for Muscular Strength and Endurance: A Recommendation for Coaches and Athletes

    OpenAIRE

    Brooks, Joseph H; Wyld, Kevin; Chrismas, Bryna C. R.

    2016-01-01

    Caffeine (1, 3, 7-trimethylxanthine) which can be ubiquitously found in energy drinks, sodas, coffee, and supplements, is one of the principal legal drugs consumed worldwide. Caffeine based ergogenic aids are utilized prolifically within training and competition for an ergogenic benefit to enhance sporting performance by both recreational and elite athletes. The evidence of caffeine's ability to enhance endurance performance is well established, however, evidence of an er...

  18. Sources of Caffeine in Diets of US Children and Adults: Trends by Beverage Type and Purchase Location

    Directory of Open Access Journals (Sweden)

    Adam Drewnowski

    2016-03-01

    Full Text Available New sources of caffeine, besides coffee and tea, have been introduced into the US food supply. Data on caffeine consumption age and purchase location can help guide public health policy. National Health and Nutrition Examination Surveys (NHANES were used to estimate population-level caffeine intakes, using data from 24-h dietary recall. First, caffeine intakes by age-group and beverage type were estimated using the most recent 2011–2012 data (n = 7456. Second, fourteen years trends in caffeine consumption, overall and by beverage type, were evaluated for adults and children. Trend analyses were conducted by age groups. Last, trends in caffeine intakes by purchase location and beverage type were estimated. In 2011–2012, children aged four to eight years consumed the least caffeine (15 mg/day, and adults aged 51–70 years consumed the most (213 mg/day. The population mean (age ≥ four years was 135 mg/day, driven largely by coffee (90 mg/day, tea (25 mg/day, and soda (21 mg/day. For the 14–19 years and 20–34 years age-groups, energy drinks contributed 6 mg/day (9.9% and 5 mg/day (4.5%, respectively. The bulk of caffeine came from store-bought coffee and tea. Among both children and adults combined, caffeine intakes declined from 175 mg/day (1999–2000 to 142 mg/day (2011–2012, largely driven by a drop in caffeine from soda (41 mg/day to 21 mg/day. Store-bought coffee and tea remain principal drivers of caffeine intake in the US. Sodas and energy drinks make minor contributions to overall caffeine intakes.

  19. Sources of Caffeine in Diets of US Children and Adults: Trends by Beverage Type and Purchase Location.

    Science.gov (United States)

    Drewnowski, Adam; Rehm, Colin D

    2016-03-10

    New sources of caffeine, besides coffee and tea, have been introduced into the US food supply. Data on caffeine consumption age and purchase location can help guide public health policy. National Health and Nutrition Examination Surveys (NHANES) were used to estimate population-level caffeine intakes, using data from 24-h dietary recall. First, caffeine intakes by age-group and beverage type were estimated using the most recent 2011-2012 data (n = 7456). Second, fourteen years trends in caffeine consumption, overall and by beverage type, were evaluated for adults and children. Trend analyses were conducted by age groups. Last, trends in caffeine intakes by purchase location and beverage type were estimated. In 2011-2012, children aged four to eight years consumed the least caffeine (15 mg/day), and adults aged 51-70 years consumed the most (213 mg/day). The population mean (age ≥ four years) was 135 mg/day, driven largely by coffee (90 mg/day), tea (25 mg/day), and soda (21 mg/day). For the 14-19 years and 20-34 years age-groups, energy drinks contributed 6 mg/day (9.9%) and 5 mg/day (4.5%), respectively. The bulk of caffeine came from store-bought coffee and tea. Among both children and adults combined, caffeine intakes declined from 175 mg/day (1999-2000) to 142 mg/day (2011-2012), largely driven by a drop in caffeine from soda (41 mg/day to 21 mg/day). Store-bought coffee and tea remain principal drivers of caffeine intake in the US. Sodas and energy drinks make minor contributions to overall caffeine intakes.

  20. Population pharmacokinetics of caffeine and its metabolites theobromine, paraxanthine and theophylline after inhalation in combination with diacetylmorphine.

    Science.gov (United States)

    Zandvliet, Anthe S; Huitema, Alwin D R; de Jonge, Milly E; den Hoed, Rob; Sparidans, Rolf W; Hendriks, Vincent M; van den Brink, Wim; van Ree, Jan M; Beijnen, Jos H

    2005-01-01

    The stimulant effect of caffeine, as an additive in diacetylmorphine preparations for study purposes, may interfere with the pharmacodynamic effects of diacetylmorphine. In order to obtain insight into the pharmacology of caffeine after inhalation in heroin users, the pharmacokinetics of caffeine and its dimethylxanthine metabolites were studied. The objectives were to establish the population pharmacokinetics under these exceptional circumstances and to compare the results to published data regarding intravenous and oral administration in healthy volunteers. Diacetylmorphine preparations containing 100 mg of caffeine were used by 10 persons by inhalation. Plasma concentrations of caffeine, theobromine, paraxanthine and theophylline were measured by high performance liquid chromatography. Non-linear mixed effects modelling was used to estimate population pharmacokinetic parameters. The model was evaluated by the jack-knife procedure. Caffeine was rapidly and effectively absorbed after inhalation. Population pharmacokinetics of caffeine and its dimethylxanthine metabolites could adequately and simultaneously be described by a linear multi-compartment model. The volume of distribution for the central compartment was estimated to be 45.7 l and the apparent elimination rate constant of caffeine at 8 hr after inhalation was 0.150 hr(-1) for a typical individual. The bioavailability was approximately 60%. The presented model adequately describes the population pharmacokinetics of caffeine and its dimethylxanthine metabolites after inhalation of the caffeine sublimate of a 100 mg tablet. Validation proved the stability of the model. Pharmacokinetics of caffeine after inhalation and intravenous administration are to a large extent similar. The bioavailability of inhaled caffeine is approximately 60% in experienced smokers.

  1. High Doses of Caffeine during the Peripubertal Period in the Rat Impair the Growth and Function of the Testis

    Directory of Open Access Journals (Sweden)

    Minji Park

    2015-01-01

    Full Text Available Prenatal caffeine exposure adversely affects the development of the reproductive organs of male rat offspring. Thus, it is conceivable that peripubertal caffeine exposure would also influence physiologic gonadal changes and function during this critical period for sexual maturation. This study investigated the impact of high doses of caffeine on the testes of prepubertal male rats. A total of 45 immature male rats were divided randomly into three groups: a control group and 2 groups fed 120 and 180 mg/kg/day of caffeine, respectively, via the stomach for 4 weeks. Caffeine caused a significant decrease in body weight gain, accompanied by proportional decreases in lean body mass and body fat. The caffeine-fed animals had smaller and lighter testes than those of the control that were accompanied by negative influences on the histologic parameters of the testes. In addition, stimulated-testosterone ex vivo production was reduced in Leydig cells retrieved from the caffeine-fed animals. Our results demonstrate that peripubertal caffeine consumption can interfere with the maturation and function of the testis, possibly by interrupting endogenous testosterone secretion and reducing the sensitivity of Leydig cells to gonadotrophic stimulation. In addition, we confirmed that pubertal administration of caffeine reduced testis growth and altered testis histomorphology.

  2. Hydration and self-association of caffeine molecules in aqueous solution: Comparative effects of sucrose and β-cyclodextrin

    Science.gov (United States)

    Mejri, Mondher; BenSouissi, Abdelfattah; Aroulmoji, Vincent; Rogé, Barbara

    2009-07-01

    The UV-spectra of pure caffeine were measured and two quite differentiated hyper- or hypo-chromic effects were observed as concentration was increased. The first one was explained as due to caffeine-water molecule interaction and the second as originating from dimer formation and staking of caffeine molecules. The effects of sucrose and β-cyclodextrin on the hydration and the self-association of caffeine were also examined by UV spectroscopy. Sucrose was found to enhance the self-association of caffeine molecules by attracting and structuring water molecules around itself. The caffeine-caffeine hydrophobic interactions were promoted in such hydrophilic environment and so was the stacking. The molecular aggregation leads to reducing the electronic mobility and so is the case for the mesomeric effect in the heterogeneous cycle. This could explain the hypo-chromic phenomenon observed when sucrose concentration was increased. β-Cyclodextrin shows a distinct behaviour because of its ability to form inclusion complexes with various hydrophobic guest molecules. This ability enhances the solubility of caffeine molecules throughout the inclusion interactions and prevents the caffeine self-association.

  3. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice.

    Science.gov (United States)

    Poole, Rachel L; Braak, David; Gould, Thomas J

    2016-02-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, which suggests that the developing hippocampus may be sensitive to the effects of caffeine.

  4. The Role of Clomipramine in Potentiating the Teratogenic Effects of Caffeine in Pregnant Rats: A Histopathological Study

    Directory of Open Access Journals (Sweden)

    Vahid Nikoui

    2013-01-01

    Full Text Available Since little is known about the teratogenic effects of clomipramine used concurrently with caffeine during the organogenesis period, the aim of this study was to test the teratogenic effects of a coadministration of caffeine and clomipramine on rat fetuses. We divided 42 pregnant rats into seven groups, randomly. The first group (control received 0.5 mL of normal saline. Clomipramine was injected at 40 mg/kg and 80 mg/kg to the second and third groups, respectively. The fourth and fifth groups received caffeine in doses of 60 mg/kg and 120 mg/kg, respectively. The sixth group received a combination of 40 mg/kg clomipramine and 60 mg/kg caffeine, and the seventh group was given clomipramine and caffeine at 80 mg/kg and 120 mg/kg, respectively. The fetuses were removed on the 17th day of pregnancy and studied in terms of microscopic and macroscopic morphological features. Fetuses of rats receiving high doses of caffeine or combinations of caffeine and clomipramine showed a significant rate of cleft palate development, open eyelids, mortality, torsion anomalies, shrinkage of skin, and subcutaneous haemorrhage (P≤0.001. This study concludes that caffeine in high doses or the simultaneous administration of caffeine and clomipramine leads to teratogenicity.

  5. Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available BACKGROUND: Evidence suggests that adenosine acts via cardiac A1 adenosine receptors (A1ARs to protect embryos against hypoxia. During embryogenesis, A1ARs are the dominant regulator of heart rate, and A1AR activation reduces heart rate. Adenosine action is inhibited by caffeine, which is widely consumed during pregnancy. In this study, we tested the hypothesis that caffeine influences developing embryos by altering cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Effects of caffeine and adenosine receptor-selective antagonists on heart rate were studied in vitro using whole murine embryos at E9.5 and isolated hearts at E12.5. Embryos were examined in room air (21% O(2 or hypoxic (2% O(2 conditions. Hypoxia decreased heart rates of E9.5 embryos by 15.8% and in E12.5 isolated hearts by 27.1%. In room air, caffeine (200 µM had no effect on E9.5 heart rates; however, caffeine increased heart rates at E12.5 by 37.7%. Caffeine abolished hypoxia-mediated bradycardia at E9.5 and blunted hypoxia-mediated bradycardia at E12.5. Real-time PCR analysis of RNA from isolated E9.5 and E12.5 hearts showed that A1AR and A2aAR genes were expressed at both ages. Treatment with adenosine receptor-selective antagonists revealed that SCH-58261 (A2aAR-specific antagonist had no affects on heart function, whereas DPCPX (A1AR-specific antagonist had effects similar to caffeine treatment at E9.5 and E12.5. At E12.5, embryonic hearts lacking A1AR expression (A1AR-/- had elevated heart rates compared to A1AR+/- littermates, A1AR-/- heart rates failed to decrease to levels comparable to those of controls. Caffeine did not significantly affect heart rates of A1AR-/- embryos. CONCLUSIONS/SIGNIFICANCE: These data show that caffeine alters embryonic cardiac function and disrupts the normal cardiac response to hypoxia through blockade of A1AR action. Our results raise concern for caffeine exposure during embryogenesis, particularly in pregnancies with increased risk of

  6. What users think about the differences between caffeine and illicit/prescription stimulants for cognitive enhancement.

    Directory of Open Access Journals (Sweden)

    Andreas G Franke

    Full Text Available Pharmacological cognitive enhancement (CE is a topic of increasing public awareness. In the scientific literature on student use of CE as a study aid for academic performance enhancement, there are high prevalence rates regarding the use of caffeinated substances (coffee, caffeinated drinks, caffeine tablets but remarkably lower prevalence rates regarding the use of illicit/prescription stimulants such as amphetamines or methylphenidate. While the literature considers the reasons and mechanisms for these different prevalence rates from a theoretical standpoint, it lacks empirical data to account for healthy students who use both, caffeine and illicit/prescription stimulants, exclusively for the purpose of CE. Therefore, we extensively interviewed a sample of 18 healthy university students reporting non-medical use of caffeine as well as illicit/prescription stimulants for the purpose of CE in a face-to-face setting about their opinions regarding differences in general and morally-relevant differences between caffeine and stimulant use for CE. 44% of all participants answered that there is a general difference between the use of caffeine and illicit/prescription stimulants for CE, 28% did not differentiate, 28% could not decide. Furthermore, 39% stated that there is a moral difference, 56% answered that there is no moral difference and one participant was not able to comment on moral aspects. Participants came to their judgements by applying three dimensions: medical, ethical and legal. Weighing the medical, ethical and legal aspects corresponded to the students' individual preferences of substances used for CE. However, their views only partly depicted evidence-based medical aspects and the ethical issues involved. This result shows the need for well-directed and differentiated information to prevent the potentially harmful use of illicit or prescription stimulants for CE.

  7. What users think about the differences between caffeine and illicit/prescription stimulants for cognitive enhancement.

    Science.gov (United States)

    Franke, Andreas G; Lieb, Klaus; Hildt, Elisabeth

    2012-01-01

    Pharmacological cognitive enhancement (CE) is a topic of increasing public awareness. In the scientific literature on student use of CE as a study aid for academic performance enhancement, there are high prevalence rates regarding the use of caffeinated substances (coffee, caffeinated drinks, caffeine tablets) but remarkably lower prevalence rates regarding the use of illicit/prescription stimulants such as amphetamines or methylphenidate. While the literature considers the reasons and mechanisms for these different prevalence rates from a theoretical standpoint, it lacks empirical data to account for healthy students who use both, caffeine and illicit/prescription stimulants, exclusively for the purpose of CE. Therefore, we extensively interviewed a sample of 18 healthy university students reporting non-medical use of caffeine as well as illicit/prescription stimulants for the purpose of CE in a face-to-face setting about their opinions regarding differences in general and morally-relevant differences between caffeine and stimulant use for CE. 44% of all participants answered that there is a general difference between the use of caffeine and illicit/prescription stimulants for CE, 28% did not differentiate, 28% could not decide. Furthermore, 39% stated that there is a moral difference, 56% answered that there is no moral difference and one participant was not able to comment on moral aspects. Participants came to their judgements by applying three dimensions: medical, ethical and legal. Weighing the medical, ethical and legal aspects corresponded to the students' individual preferences of substances used for CE. However, their views only partly depicted evidence-based medical aspects and the ethical issues involved. This result shows the need for well-directed and differentiated information to prevent the potentially harmful use of illicit or prescription stimulants for CE.

  8. The effects of Red Bull energy drink compared with caffeine on cycling time-trial performance.

    Science.gov (United States)

    Quinlivan, Alannah; Irwin, Christopher; Grant, Gary D; Anoopkumar-Dukie, Sheilandra; Skinner, Tina; Leveritt, Michael; Desbrow, Ben

    2015-10-01

    This study investigated the ergogenic effects of a commercial energy drink (Red Bull) or an equivalent dose of anhydrous caffeine in comparison with a noncaffeinated control beverage on cycling performance. Eleven trained male cyclists (31.7 ± 5.9 y 82.3 ± 6.1 kg, VO2max = 60.3 ± 7.8 mL · kg-1 · min-1) participated in a double-blind, placebo-controlled, crossover-design study involving 3 experimental conditions. Participants were randomly administered Red Bull (9.4 mL/kg body mass [BM] containing 3 mg/kg BM caffeine), anhydrous caffeine (3 mg/kg BM given in capsule form), or a placebo 90 min before commencing a time trial equivalent to 1 h cycling at 75% peak power output. Carbohydrate and fluid volumes were matched across all trials. Performance improved by 109 ± 153 s (2.8%, P = .039) after Red Bull compared with placebo and by 120 ± 172 s (3.1%, P = .043) after caffeine compared with placebo. No significant difference (P > .05) in performance time was detected between Red Bull and caffeine treatments. There was no significant difference (P > .05) in mean heart rate or rating of perceived exertion among the 3 treatments. This study demonstrated that a moderate dose of caffeine consumed as either Red Bull or in anhydrous form enhanced cycling time-trial performance. The ergogenic benefits of Red Bull energy drink are therefore most likely due to the effects of caffeine, with the other ingredients not likely to offer additional benefit.

  9. The effect of caffeine on mammary gland development and milk yield in primiparous sows.

    Science.gov (United States)

    Li, S; Hacker, R R

    1995-02-01

    Pregnant Yorkshire gilts (n = 42) were fed caffeine (6 g/d) or served as controls from d 60 of pregnancy until d 4 postpartum to test the effect of caffeine on mammary gland development, milk yield, and feed consumption. Caffeine reduced voluntary feed intake (P = .001) and body weight gain (P = .001) of gilts from d 60 to 109 of gestation. Pig birth weight in the treated group was less than (P = .01) that in the control group. However, pig viability score at birth was not affected by maternal caffeine ingestion. For assessing mammary gland DNA, RNA, dry fat-free tissue (DFFT), fat, and protein content, four sows from the caffeine group and three controls were slaughtered on the 1st d of lactation. Immediately after slaughter, mammary systems were removed, separated by gland, and dissected free of skin, muscle, and fatty pad, which had not been invaded by glandular tissue. The DNA and RNA content were evaluated in DFFT. Caffeine increased mammary RNA content (P = .023) and milk yield (P = .001) on d 1 of lactation. However, DNA, DFFT, fat, and protein were not significantly increased, although values were somewhat greater in the treatment group (approximately 82%). On d 21 of lactation, milk yield of treated sows did not differ from that of controls. The increased milk yield on d 1 of lactation was due to increased mammary epithelial cell activity and cell numbers. These results indicate that caffeine feeding can have a positive effect on porcine mammary gland development as well as milk yield.

  10. Does Caffeine Consumption Modify Cerebrospinal Fluid Amyloid-β Levels in Patients with Alzheimer's Disease?

    Science.gov (United States)

    Travassos, Maria; Santana, Isabel; Baldeiras, Inês; Tsolaki, Magda; Gkatzima, Olymbia; Sermin, Genc; Yener, Görsev G; Simonsen, Anja; Hasselbalch, Steen G; Kapaki, Elisabeth; Mara, Bourbouli; Cunha, Rodrigo A; Agostinho, Paula; Blennow, Kaj; Zetterberg, Henrik; Mendes, Vera M; Manadas, Bruno; de Mendon, Alexandreça

    2015-01-01

    Caffeine may be protective against Alzheimer's disease (AD) by modulating amyloid-β (Aβ) metabolic pathways. The present work aimed to study a possible association of caffeine consumption with the cerebrospinal fluid (CSF) biomarkers, particularly Aβ. The study included 88 patients with AD or mild cognitive impairment. The consumption of caffeine and theobromine was evaluated using a validated food questionnaire. Quantification of caffeine and main active metabolites was performed with liquid chromatography coupled to tandem mass spectrometry. The levels of A(1-42), total tau, and phosphorylated tau in the CSF were determined using sandwich ELISA methods and other Aβ species, Aβ(X-38), Aβ(X-40), and Aβ(X-42), with the MSD Aβ Triplex assay. The concentration of caffeine was 0.79±1.15 μg/mL in the CSF and 1.20±1.88 μg/mL in the plasma. No correlation was found between caffeine consumption and Aβ42 in the CSF. However, a significant positive correlation was found between the concentrations of theobromine, both in the CSF and in the plasma, with Aβ42 in the CSF. Theobromine in the CSF was positively correlated with the levels of other xanthines in the CSF, but not in the plasma, suggesting that it may be formed by central metabolic pathways. In conclusion, caffeine consumption does not modify the levels of CSF biomarkers, and does not require to be controlled for when measuring CSF biomarkers in a clinical setting. Since theobromine is associated with a favorable Aβ profile in the CSF, the possibility that it might have a protective role in AD should be further investigated.

  11. Caffeinated Energy Drinks Improve High-Speed Running in Elite Field Hockey Players.

    Science.gov (United States)

    Del Coso, Juan; Portillo, Javier; Salinero, Juan José; Lara, Beatriz; Abian-Vicen, Javier; Areces, Francisco

    2016-02-01

    The aim of this investigation was to determine the efficacy of a caffeine-containing energy drink to improve physical performance of elite field hockey players during a game. On 2 days separated by a week, 13 elite field hockey players (age and body mass = 23.2 ± 3.9 years and 76.1 ± 6.1 kg) ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo drink). After 60 min for caffeine absorption, participants played a simulated field hockey game (2 × 25 min). Individual running pace and instantaneous speed during the game were assessed using GPS devices. The total number of accelerations and decelerations was determined by accelerometry. Compared with the placebo drink, the caffeinated energy drink did not modify the total distance covered during the game (6,035 ± 451 m and 6,055 ± 499 m, respectively; p = .87), average heart rate (155 ± 13 beats per min and 158 ± 18 beats per min, respectively; p = .46), or the number of accelerations and decelerations (697 ± 285 and 618 ± 221, respectively; p = .15). However, the caffeinated energy drink reduced the distance covered at moderate-intensity running (793 ± 135 and 712 ± 116, respectively; p = .03) and increased the distance covered at high-intensity running (303 ± 67 m and 358 ± 117 m; p = .05) and sprinting (85 ± 41 m and 117 ± 55 m, respectively; p = .02). Elite field hockey players can benefit from ingesting caffeinated energy drinks because they increase the running distance covered at high-intensity running and sprinting. Increased running distance at high speed might represent a meaningful advantage for field hockey performance.

  12. Improvements in Cycling but Not Handcycling 10 km Time Trial Performance in Habitual Caffeine Users.

    Science.gov (United States)

    Graham-Paulson, Terri; Perret, Claudio; Goosey-Tolfrey, Victoria

    2016-06-25

    Caffeine supplementation during whole-/lower-body exercise is well-researched, yet evidence of its effect during upper-body exercise is equivocal. The current study explored the effects of caffeine on cycling/handcycling 10 km time trial (TT) performance in habitual caffeine users. Eleven recreationally trained males (mean (SD) age 24 (4) years, body mass 85.1 (14.6) kg, cycling/handcycling peak oxygen uptake ( V · peak) 42.9 (7.3)/27.6 (5.1) mL∙kg∙min(-1), 160 (168) mg/day caffeine consumption) completed two maximal incremental tests and two familiarization sessions. During four subsequent visits, participants cycled/handcycled for 30 min at 65% mode-specific V · peak (preload) followed by a 10 km TT following the ingestion of 4 mg∙kg(-1) caffeine (CAF) or placebo (PLA). Caffeine significantly improved cycling (2.0 (2.0)%; 16:35 vs. 16:56 min; p = 0.033) but not handcycling (1.8 (3.0)%; 24:10 vs. 24:36 min; p = 0.153) TT performance compared to PLA. The improvement during cycling can be attributed to the increased power output during the first and last 2 km during CAF. Higher blood lactate concentration (Bla) was reported during CAF compared to PLA (p Caffeine improved cycling but not handcycling TT performance. The lack of improvement during handcycling may be due to the smaller active muscle mass, elevated (Bla) and/or participants' training status.

  13. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism.

    Science.gov (United States)

    Wu, Yi-Meng; Luo, Han-Wen; Kou, Hao; Wen, Yin-Xian; Shen, Lang; Pei, Ling-Guo; Zhou, Jin; Zhang, Yuan-Zhen; Wang, Hui

    2015-11-15

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30-120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8-20 μM) in the BeWo cells. In vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta.

  14. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains.

    Science.gov (United States)

    Abreu, Renata Viana; Silva-Oliveira, Eliane Moretto; Moraes, Márcio Flávio Dutra; Pereira, Grace Schenatto; Moraes-Santos, Tasso

    2011-10-01

    Coffee is a popular beverage consumed worldwide and its effect on health protection has been well studied throughout literature. This study investigates the effect of chronic coffee and caffeine ingestion on cognitive behavior and the antioxidant system of rat brains. The paradigms of open field and object recognition were used to assess locomotor and exploratory activities, as well as learning and memory. The antioxidant system was evaluated by determining the activities of glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as the lipid peroxidation and reduced glutathione content. Five groups of male rats were fed for approximately 80 days with different diets: control diet (CD), fed a control diet; 3% coffee diet (3%Co) and 6% coffee diet (6%Co), both fed a diet containing brewed coffee; 0.04% caffeine diet (0.04%Ca) and 0.08% caffeine diet (0.08%Ca), both fed a control diet supplemented with caffeine. The estimated caffeine intake was approximately 20 and 40 mg/kg per day, for the 3%Co-0.04%Ca and 6%Co-0.08%Ca treatments, respectively. At 90 days of life, the animals were subjected to the behavioral tasks and then sacrificed. The results indicated that the intake of coffee, similar to caffeine, improved long-term memory when tested with object recognition; however, this was not accompanied by an increase in locomotor and exploratory activities. In addition, chronic coffee and caffeine ingestion reduced the lipid peroxidation of brain membranes and increased the concentration of reduced-glutathione. The activities of the GR and SOD were similarly increased, but no change in GPx activity could be observed. Thus, besides improving cognitive function, our data show that chronic coffee consumption modulates the endogenous antioxidant system in the brain. Therefore, chronic coffee ingestion, through the protection of the antioxidant system, may play an important role in preventing age-associated decline in the cognitive

  15. Feeling smart: Effects of caffeine and glucose on cognition, mood and self-judgment.

    Science.gov (United States)

    Ullrich, Susann; de Vries, Yfke C; Kühn, Simone; Repantis, Dimitris; Dresler, Martin; Ohla, Kathrin

    2015-11-01

    During education and early career, young adults often face examinations and assessment centers. Coffee and energy drinks are convenient and commonly used to enhance or maintain performance in these situations. Whether these macronutrients improve performance in a demanding and drawn-out multi-task situation is not clear. Using double-blind, placebo-controlled studies, we set out to examine the effects of caffeine and glucose in an assessment center-like situation, under natural consumption conditions, in a group of young adults who were heterogeneous with respect to consumption patterns. We measured multi-task performance including logical thinking, processing speed, numeric and verbal memory, attention and the ability to concentrate, and mood over a two-hour period. Caffeine and glucose were administered in common beverages with appropriate placebo controls allowing the assessment of psychological effects of expectancy. Importantly, and in contrast to most previous studies, participants retained their habitual caffeine and sugar intake (studies 1 and 2) as this represents common behavior. Based on the bulk of literature, we hypothesized that (i) caffeine enhances attentional performance and mood, while performance in more complex tasks will remain unchanged, and that (ii) glucose enhances performance on memory tasks accompanied with negative mood. Our results provide evidence that neither caffeine nor glucose significantly influence cognitive performance when compared with placebo, water, or no treatment controls in a multi-task setting. Yet, caffeine and, by trend, placebo improve dispositions such that participants perceive preserved mental energy throughout the test procedure. These subjective effects were stronger after 24 h caffeine abstinence (study 3). Future studies will have to address whether these mood changes actually result in increased motivation during a challenging task.

  16. Role of Caffeine Intake on Erectile Dysfunction in US Men: Results from NHANES 2001-2004.

    Directory of Open Access Journals (Sweden)

    David S Lopez

    Full Text Available Caffeine is consumed by more than 85% of adults and little is known about its role on erectile dysfunction (ED in population-based studies. We investigated the association of caffeine intake and caffeinated beverages with ED, and whether these associations vary among comorbidities for ED.Data were analyzed for 3724 men (≥20 years old who participated in the National Health and Nutrition Examination Survey (NHANES. ED was assessed by a single question during a self-paced, computer-assisted self-interview. We analyzed 24-h dietary recall data to estimate caffeine intake (mg/day. Multivariable logistic regression analyses using appropriate sampling weights were conducted.We found that men in the 3rd (85-170 mg/day and 4th (171-303 mg/day quintiles of caffeine intake were less likely to report ED compared to men in the lowest 1st quintile (0-7 mg/day [OR: 0.58; 95% CI, 0.37-0.89; and OR: 0.61; 95% CI, 0.38-0.97, respectively], but no evidence for a trend. Similarly, among overweight/obese and hypertensive men, there was an inverse association between higher quintiles of caffeine intake and ED compared to men in the lowest 1st quintile, P≤0.05 for each quintile. However, only among men without diabetes we found a similar inverse association (Ptrend = 0.01.Caffeine intake reduced the odds of prevalent ED, especially an intake equivalent to approximately 2-3 daily cups of coffee (170-375 mg/day. This reduction was also observed among overweight/obese and hypertensive, but not among diabetic men. Yet, these associations are warranted to be investigated in prospective studies.

  17. The Caffeine Content of Dietary Supplements Commonly Purchased in the U.S.: Analysis of 53 Products Having Caffeine-containing Ingredients

    Science.gov (United States)

    As part of a study initiating the development of an analytically validated Dietary Supplement Ingredient Database (DSID) in the United States (U.S.), a selection of dietary supplement products were analyzed for their caffeine content. Products sold as tablets, caplets, or capsules and listing at l...

  18. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    Science.gov (United States)

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders.

  19. Naturalistic Effects of Five Days of Bedtime Caffeine Use on Sleep, Next-Day Cognitive Performance, and Mood.

    Science.gov (United States)

    Keenan, Emma K; Tiplady, Brian; Priestley, Caroline M; Rogers, Peter J

    2014-03-01

    Background: Disruptive effects of caffeine on sleep have previously been reported, although measures of next-day mood and performance have rarely been included. The present study aims to evaluate the effects of caffeine on sleep and associated next-day effects in a naturalistic field setting. Methods: Nineteen participants (daily caffeine intake 0-141 mg), assessed as good sleepers, took part in a randomized, placebo-controlled, double-blind, 2-week crossover study to assess the effects of bedtime caffeine use (250 mg) on sleep and next-day cognitive performance and mood, which were assessed on a mobile phone in the morning and afternoon. Sleep was assessed objectively (actiwatch) and subjectively (sleep diary). Results: Caffeine's effects on sleep were largely restricted to the first day of administration, with actigraphically measured reduced sleep efficiency, increased activity score and fragmentation index, decreased self-rated sleep quality, and an increased occurrence of participants waking early; only decreased sleep efficiency remained over the week. Effects on next-day performance and mood were evident over the whole week, although despite disrupting sleep, accuracy on a working memory task was higher after caffeine than placebo administration. Conclusions: Caffeine disrupted sleep, although when assessing next-day performance, which may have been affected by the presence of residual caffeine, performance appeared better after caffeine compared to placebo, although this was most likely due to prevention of the effects of overnight withdrawal from caffeine rather than representing a net benefit. Furthermore, partial tolerance developed to the effects of caffeine on sleep.

  20. Effects on sleep stages and microarchitecture of caffeine and its combination with zolpidem or trazodone in healthy volunteers.

    Science.gov (United States)

    Paterson, L M; Nutt, D J; Ivarsson, M; Hutson, P H; Wilson, S J

    2009-07-01

    Caffeine is the world's most popular stimulant and is known to disrupt sleep. Administration of caffeine can therefore be used in healthy volunteers to mimic the effects of insomnia and thus to test the hypnotic effects of medication. This study assessed the effects of caffeine on sleep architecture and electroencephalography (EEG) spectrum alone and in combination with two different sleep-promoting medications. Home polysomnography was performed in 12 healthy male volunteers in a double-blind study whereby subjects received placebo, caffeine (150 mg), caffeine plus zolpidem (10 mg) and caffeine plus trazodone (100 mg) at bedtime in a randomised crossover design. In addition to delaying sleep onset, caffeine decreased total sleep time (TST), sleep efficiency (SE) and stage 2 sleep without significantly altering wake after sleep onset or the number of awakenings. Zolpidem attenuated the caffeine-induced decrease in SE and increased spindle density in the caffeine plus zolpidem combination compared with placebo. Trazodone attenuated the decrease in SE and TST, and it also increased stage 3 sleep, decreased the number of awakenings and decreased the spindle density. No significant changes in rapid eye movement (REM) sleep were observed, neither was any significant alteration in slow wave activity nor other EEG spectral measures, although the direction of change was similar to that previously reported for caffeine and appeared to 'normalise' after trazodone. These data suggest that caffeine mimics some, but not all of the sleep disruption seen in insomnia and that its disruptive effects are differentially attenuated by the actions of sleep-promoting compounds with distinct mechanisms of action.

  1. Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats.

    Science.gov (United States)

    Conde, Silvia V; Nunes da Silva, Tiago; Gonzalez, Constancio; Mota Carmo, Miguel; Monteiro, Emilia C; Guarino, Maria P

    2012-01-01

    We tested the hypothesis that long-term caffeine intake prevents the development of insulin resistance and hypertension in two pathological animal models: the high-fat (HF) and the high-sucrose (HSu) diet rat. We used six groups of animals: control; caffeine-treated (Caff; 1 g/l in drinking water during 15 d); HF; caffeine-treated HF (HFCaff); HSu; caffeine-treated HSu (HSuCaff). Insulin sensitivity was assessed using the insulin tolerance test. Blood pressure, weight gain, visceral fat, hepatic glutathione, plasma caffeine, insulin and NO, and serum NEFA and catecholamines were measured. Caffeine reversed insulin resistance and hypertension induced by both the HF and HSu diets. In the HF-fed animals caffeine treatment restored fasting insulin levels to control values and reversed increased weight gain and visceral fat mass. In the HSu group, caffeine reversed fasting hyperglycaemia and restored NEFA to control values. There were no changes either in plasma NO or in hepatic glutathione levels. In contrast, caffeine totally prevented the increase in serum catecholamines induced by HF and HSu diets. To test the hypothesis that inhibition of the sympathetic nervous system prevents the development of diet-induced insulin resistance we administered carvedilol, an antagonist of β1, β2 and also α1 adrenoceptors, to HF and HSu rats. Carvedilol treatment fully prevented diet-induced insulin resistance and hypertension, mimicking the effect of caffeine. We concluded that long-term caffeine intake prevented the development of insulin resistance and hypertension in HF and HSu models and that this effect was related to a decrease in circulating catecholamines.

  2. Maternal caffeine consumption and small for gestational age births: results from a population-based case-control study.

    Science.gov (United States)

    Hoyt, Adrienne T; Browne, Marilyn; Richardson, Sandra; Romitti, Paul; Druschel, Charlotte

    2014-08-01

    Caffeine is consumed in various forms during pregnancy, has increased half-life during pregnancy and crosses the placental barrier. Small for gestational age (SGA) is an important perinatal outcome and has been associated with long term complications. We examined the association between maternal caffeine intake and SGA using National Birth Defects Prevention Study data. Non-malformed live born infants with an estimated date of delivery from 1997-2007 (n = 7,943) were included in this analysis. Maternal caffeine exposure was examined as total caffeine intake and individual caffeinated beverage type (coffee, tea, and soda); sex-, race/ethnic-, and parity-specific growth curves were constructed to estimate SGA births. Crude and adjusted odds ratios (aORs) and 95% confidence intervals were estimated using unconditional logistic regression. Interaction with caffeine exposures was assessed for maternal smoking, vasoconstrictor medication use, and folic acid. Six hundred forty-eight infants (8.2%) were found to be SGA in this analysis. Increasing aORs were observed for increasing intakes of total caffeine and for each caffeinated beverage with aORs (adjusting for maternal education, high blood pressure, and smoking) ranging from 1.3 to 2.1 for the highest intake categories (300+ mg/day total caffeine and 3+ servings/day for each beverage type). Little indication of additive interaction by maternal smoking, vasoconstrictor medication use, or folic acid intake was observed. We observed an increase in SGA births for mothers with higher caffeine intake, particularly for those consuming 300+ mg of caffeine per day. Increased aORs were also observed for tea intake but were more attenuated for coffee and soda intake.

  3. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    OpenAIRE

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi; Moorthy, Bhagavatula; Lingappan, Krithika

    2014-01-01

    Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had...

  4. The metabolic and performance effects of caffeine compared to coffee during endurance exercise.

    Directory of Open Access Journals (Sweden)

    Adrian B Hodgson

    Full Text Available There is consistent evidence supporting the ergogenic effects of caffeine for endurance based exercise. However, whether caffeine ingested through coffee has the same effects is still subject to debate. The primary aim of the study was to investigate the performance enhancing effects of caffeine and coffee using a time trial performance test, while also investigating the metabolic effects of caffeine and coffee. In a single-blind, crossover, randomised counter-balanced study design, eight trained male cyclists/triathletes (Mean ± SD: Age 41 ± 7 y, Height 1.80 ± 0.04 m, Weight 78.9 ± 4.1 kg, VO2 max 58 ± 3 ml • kg(-1 • min(-1 completed 30 min of steady-state (SS cycling at approximately 55% VO2max followed by a 45 min energy based target time trial (TT. One hour prior to exercise each athlete consumed drinks consisting of caffeine (5 mg CAF/kg BW, instant coffee (5 mg CAF/kg BW, instant decaffeinated coffee or placebo. The set workloads produced similar relative exercise intensities during the SS for all drinks, with no observed difference in carbohydrate or fat oxidation. Performance times during the TT were significantly faster (~5.0% for both caffeine and coffee when compared to placebo and decaf (38.35 ± 1.53, 38.27 ± 1.80, 40.23 ± 1.98, 40.31 ± 1.22 min respectively, p<0.05. The significantly faster performance times were similar for both caffeine and coffee. Average power for caffeine and coffee during the TT was significantly greater when compared to placebo and decaf (294 ± 21 W, 291 ± 22 W, 277 ± 14 W, 276 ± 23 W respectively, p<0.05. No significant differences were observed between placebo and decaf during the TT. The present study illustrates that both caffeine (5 mg/kg/BW and coffee (5 mg/kg/BW consumed 1 h prior to exercise can improve endurance exercise performance.

  5. Extraction of catechins and caffeine from different tealeaves and comparison with micellar electrokinetic chromatography

    Institute of Scientific and Technical Information of China (English)

    SONG Guanqun; LIN Jinming; Qu Feng; C.W.Huie

    2003-01-01

    This work describes the simultaneous deter- mination of catechins and caffeine in green, black tealeaves and canned tea-drink using micellar electrokinetic chromatography. The catechins analyzed include (+)-catechin, (-)- epicatechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. Using UV absorption method at 280 nm, the limits of detections of catechins and caffeine are 10-6 mol/L, which is suitable for the real sample determination. Using this analytical method, the extraction of these compounds from the tealeaves with hot water is compared under different temperatures. The effects of temperature on the amount of catechins and caffeine extracted are evident, showing that (-)-epigallocatechin gallate is the most easiest to be extracted at 100℃. The stability of catechins and caffeine in stocking solution of tea-drink at 4℃ is also compared on five consecutive days. The contents of catechins and caffeine in green and black teas are discussed and the difference of the content between different tealeaves can provide a reference for the assessment of tea quality.

  6. [Designer drugs and caffeine - characteristics of psychoactive substances and their impact on the organism].

    Science.gov (United States)

    Wierzejska, Regina

    2014-01-01

    For many teenagers the time of growing up is a period of trying prohibited substances. Nowadays apart from alcohol and tobacco new designed, psychoactive substances known as "smart drugs" or "legal highs" are available. Intensive development of their market is taking place in the last few years which is difficult to overcome by regulations only. Toxicological tests used now are not able to detect the presence of many such substances in the body. Designer drugs cause the interest of young people even from small towns and many times taking them give effects requiring medical help. Caffeine is also a psychoactive substance but depending on the dose it can have positive or detrimental effect. Recently there are more and more products with caffeine, especially drinks and dietary supplements, what can cause the increase of consumption of caffeine. Children are particularly exposed to the adverse effect of high consumption of caffeine because of their small body weight and development of the central nervous system. This article presents actual data about the market of designer drugs, frequency of using them, consumption of caffeine by children and teenagers and about the impact of these substances on the organism.

  7. Effect of caffeine and adenosine on G2 repair: mitotic delay and chromosome damage.

    Science.gov (United States)

    González-Fernández, A; Hernández, P; López-Sáez, J F

    1985-04-01

    Proliferating plant cells treated during the late S period with 5-aminouracil (AU), give the typical response that DNA-damaging agents induce, characterized by: an important mitotic delay, and a potentiation of the chromosome damage by caffeine post-treatment. The study of labelled prophases, after a tritiated thymidine pulse, allowed evaluation of the mitotic delay induced by AU as well as its reversion by caffeine, while chromosome damage was estimated by the percentage of anaphases and telophases showing chromosomal aberrations. Post-treatment with adenosine alone has shown no effect on mitotic delay or chromosomal damage. However, when cells after AU were incubated in caffeine plus adenosine, the chromosome damage potentiation was abolished without affecting the caffeine action on mitotic delay. As a consequence, we postulate that caffeine could have two effects on G2 cells with damaged DNA: the first, to cancel their mitotic delay and the second to inhibit some DNA-repair pathway(s). Only this last effect could be reversed by adenosine.

  8. Removal of caffeine from green tea by microwave-enhanced vacuum ice water extraction.

    Science.gov (United States)

    Lou, Zaixiang; Er, Chaojuan; Li, Jing; Wang, Hongxin; Zhu, Song; Sun, Juntao

    2012-02-24

    In order to selectively remove caffeine from green tea, a microwave-enhanced vacuum ice water extraction (MVIE) method was proposed. The effects of MVIE variables including extraction time, microwave power, and solvent to solid radio on the removal yield of caffeine and the loss of total phenolics (TP) from green tea were investigated. The optimized conditions were as follows: solvent (mL) to solid (g) ratio was 10:1, microwave extraction time was 6 min, microwave power was 350 W and 2.5 h of vacuum ice water extraction. The removal yield of caffeine by MVIE was 87.6%, which was significantly higher than that by hot water extraction, indicating a significant improvement of removal efficiency. Moreover, the loss of TP of green tea in the proposed method was much lower than that in the hot water extraction. After decaffeination by MVIE, the removal yield of TP tea was 36.2%, and the content of TP in green tea was still higher than 170 mg g(-1). Therefore, the proposed microwave-enhanced vacuum ice water extraction was selective, more efficient for the removal of caffeine. The main phenolic compounds of green tea were also determined, and the results indicated that the contents of several catechins were almost not changed in MVIE. This study suggests that MVIE is a new and good alternative for the removal of caffeine from green tea, with a great potential for industrial application.

  9. Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo.

    Science.gov (United States)

    Santos, Victor G F; Santos, Vander R F; Felippe, Leandro J C; Almeida, Jose W; Bertuzzi, Rômulo; Kiss, Maria A P D M; Lima-Silva, Adriano E

    2014-02-10

    The aim of this study was to investigate the effects of caffeine on reaction time during a specific taekwondo task and athletic performance during a simulated taekwondo contest. Ten taekwondo athletes ingested either 5 mg·kg⁻¹ body mass caffeine or placebo and performed two combats (spaced apart by 20 min). The reaction-time test (five kicks "Bandal Tchagui") was performed immediately prior to the first combat and immediately after the first and second combats. Caffeine improved reaction time (from 0.42 ± 0.05 to 0.37 ± 0.07 s) only prior to the first combat (P = 0.004). During the first combat, break times during the first two rounds were shorter in caffeine ingestion, followed by higher plasma lactate concentrations compared with placebo (P = 0.029 and 0.014, respectively). During the second combat, skipping-time was reduced, and relative attack times and attack/skipping ratio was increased following ingestion of caffeine during the first two rounds (all P 0.05), but combat intensity was decreased following placebo (all P taekwondo combats.

  10. Time of day and caffeine influence some neuropsychological tests in the elderly.

    Science.gov (United States)

    Walters, Elizabeth R; Lesk, Valerie E

    2015-03-01

    We report that performance on neuropsychological tests used in the diagnosis of dementia can be influenced by external factors such as time of day (TOD) and caffeine. This study investigates TOD effects on cognitive performance in the elderly. The optimal TOD at which an individual is at his or her maximal arousal alters with age, and in the elderly, typically occurs in the morning. Neuropsychological test scores from healthy elderly participants were analyzed to determine whether TOD affected performance. Interactions between caffeine and TOD were also investigated. Across 2 data sets that were analyzed, significant TOD effects were noted for Pattern-Comparison Speed (PCS), Letter-Comparison Speed (LCS; Salthouse & Babcock, 1991), Trail Making Test Part A (Reitan, 1958), Mini-Mental State Examination (MMSE; Folstein, Folstein, & McHugh, 1975) and the Graded Naming Test (GNT; McKenna & Warrington, 1980), revealing a decline in test scores as TOD increases. Significant interactions between TOD, age, and the PCS, LCS, and Trail Making Part A were noted in Data Set 1. In Data Set 2, caffeine intake had been controlled for, and significant interactions between caffeine, TOD, and scores on the MMSE and GNT were found. The TOD and caffeine effects highlight the need to control for these external factors when scoring the assessments. This conclusion has implications for the clinical procedure of diagnosis and treatment of dementia and Alzheimer's.

  11. Caffeine intake is associated with a lower risk of cognitive decline: a cohort study from Portugal.

    Science.gov (United States)

    Santos, Catarina; Lunet, Nuno; Azevedo, Ana; de Mendonça, Alexandre; Ritchie, Karen; Barros, Henrique

    2010-01-01

    Alzheimer's disease has emerged in recent decades as a major health problem and the role of lifestyles in the modulation of risk has been increasingly recognized. Recent epidemiological studies suggest a protective effect for caffeine intake in dementia. We aimed to quantify the association between caffeine dietary intake and cognitive decline, in a cohort of adults living in Porto. A cohort of 648 subjects aged > or =65 years was recruited between 1999-2003. Follow-up evaluation (2005-2008) was carried out on 58.2% of the eligible participants and 10.9% were deceased. Caffeine exposure in the year preceding baseline evaluation was assessed with a validated food frequency questionnaire. Cognitive evaluation consisted of baseline and follow-up Mini-Mental State Examination (MMSE). Cognitive decline was defined by a decrease > or =2 points in the MMSE score between evaluations. Relative risk (RR) and 95% confidence interval (95%CI) estimates adjusted for age, education, smoking, alcohol drinking, body mass index, hypertension, and diabetes were computed using Poisson regression. Caffeine intake (> 62 mg/day [3rd third] vs. cognitive decline in women (RR=0.49, 95%CI 0.24-0.97), but not significantly in men (RR=0.65, 95%CI 0.27-1.54). Our study confirms the negative association between caffeine and cognitive decline in women.

  12. Calcium and caffeine interaction in increased calcium balance in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Sandra Tavares da Silva

    2013-06-01

    Full Text Available OBJECTIVE: This study investigated the effects of caffeine intake associated with inadequate or adequate calcium intake in laparotomized or ovariectomized rats by means of the calcium balance. Forty adults Wistar rats were ovariectomized or laparotomized. METHODS: The animals (n=40 were randomly placed in eight groups receiving the AIN-93 diet with 100% or 50% of the recommended calcium intake with or without added caffeine (6mg/kg/day. The animals were kept in individuals metabolic cages at a temperature of 24°±2ºC, light/dark cycles of 12/12 hours, and deionized water available ad libitum. On the 8th week of the experiment, food consumption was measured and 24-hour urine and 4-day feces were collected to determine calcium balance [Balance=Ca intake-(Urinary Ca+Fecal Ca]. RESULTS: Animals with adequate calcium intake presented higher balances and rates of calcium absorption and retention (p<0.05 than those with inadequate calcium intake, regardless of caffeine intake (p<0.05. Caffeine intake did not affect urinary calcium excretion but increased balance (p<0.05 in the groups with adequate calcium intake. CONCLUSION: Adequate calcium intake attenuated the negative effects of estrogen deficiency and improved calcium balance even in the presence of caffeine.

  13. The effects of caffeine on sleep and maturational markers in the rat.

    Science.gov (United States)

    Olini, Nadja; Kurth, Salomé; Huber, Reto

    2013-01-01

    Adolescence is a critical period for brain maturation during which a massive reorganization of cortical connectivity takes place. In humans, slow wave activity (sleep was proposed to reflect cortical maturation which relies on use-dependent processes. A stimulant like caffeine, whose consumption has recently increased especially in adolescents, is known to affect sleep wake regulation. The goal of this study was to establish a rat model allowing to assess the relationship between cortical maturation and sleep and to further investigate how these parameters are affected by caffeine consumption. To do so, we assessed sleep and markers of maturation by electrophysiological recordings, behavioral and structural readouts in the juvenile rat. Our results show that sleep slow wave activity follows a similar inverted U-shape trajectory as already known in humans. Caffeine treatment exerted short-term stimulating effects and altered the trajectory of slow wave activity. Moreover, caffeine affected behavioral and structural markers of maturation. Thus, caffeine consumption during a critical developmental period shows long lasting effects on sleep and brain maturation.

  14. The effects of caffeine on sleep and maturational markers in the rat.

    Directory of Open Access Journals (Sweden)

    Nadja Olini

    Full Text Available Adolescence is a critical period for brain maturation during which a massive reorganization of cortical connectivity takes place. In humans, slow wave activity (<4.5 Hz during NREM sleep was proposed to reflect cortical maturation which relies on use-dependent processes. A stimulant like caffeine, whose consumption has recently increased especially in adolescents, is known to affect sleep wake regulation. The goal of this study was to establish a rat model allowing to assess the relationship between cortical maturation and sleep and to further investigate how these parameters are affected by caffeine consumption. To do so, we assessed sleep and markers of maturation by electrophysiological recordings, behavioral and structural readouts in the juvenile rat. Our results show that sleep slow wave activity follows a similar inverted U-shape trajectory as already known in humans. Caffeine treatment exerted short-term stimulating effects and altered the trajectory of slow wave activity. Moreover, caffeine affected behavioral and structural markers of maturation. Thus, caffeine consumption during a critical developmental period shows long lasting effects on sleep and brain maturation.

  15. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes.

    Science.gov (United States)

    Diaz-Lara, Francisco Javier; Del Coso, Juan; García, Jose Manuel; Portillo, Luis J; Areces, Francisco; Abián-Vicén, Javier

    2016-11-01

    Scientific information about the effects of caffeine intake on combat sport performance is scarce and controversial. The aim of this study was to investigate the effectiveness of caffeine to improve Brazilian Jiu-jitsu (BJJ)-specific muscular performance. Fourteen male and elite BJJ athletes (29.2 ± 3.3 years; 71.3 ± 9.1 kg) participated in a randomized double-blind, placebo-controlled and crossover experiment. In two different sessions, BJJ athletes ingested 3 mg kg(-1) of caffeine or a placebo. After 60 min, they performed a handgrip maximal force test, a countermovement jump, a maximal static lift test and bench-press tests consisting of one-repetition maximum, power-load, and repetitions to failure. In comparison to the placebo, the ingestion of the caffeine increased: hand grip force in both hands (50.9 ± 2.9 vs. 53.3 ± 3.1 kg; respectively p BJJ athletes. Thus, caffeine might be an effective ergogenic aid to improve physical performance in BJJ.

  16. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink.

    Science.gov (United States)

    Del Coso, Juan; Pérez-López, Alberto; Abian-Vicen, Javier; Salinero, Juan Jose; Lara, Beatriz; Valadés, David

    2014-11-01

    There are no scientific data about the effects of caffeine intake on volleyball performance. The aim of this study was to investigate the effect of a caffeine-containing energy drink to enhance physical performance in male volleyball players. A double-blind, placebo-controlled, randomized experimental design was used. In 2 different sessions separated by 1 wk, 15 college volleyball players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed volleyball-specific tests: standing spike test, maximal squat jump (SJ), maximal countermovement jump (CMJ), 15-s rebound jump test (15RJ), and agility T-test. Later, a simulated volleyball match was played and recorded. In comparison with the placebo drink, the ingestion of the caffeinated energy drink increased ball velocity in the spike test (73 ± 9 vs 75 ± 10 km/h, P volleyball actions more frequently (24.6% ± 14.3% vs 34.3% ± 16.5%, P volleyball players.

  17. The effects of caffeine ingestion on cortical areas: functional imaging study.

    Science.gov (United States)

    Park, Chan-A; Kang, Chang-Ki; Son, Young-Don; Choi, Eun-Jung; Kim, Sang-Hoon; Oh, Seung-Taek; Kim, Young-Bo; Park, Chan-Woong; Cho, Zang-Hee

    2014-05-01

    The effect of caffeine as a cognitive enhancer is well known; however, caffeine-induced changes in the cortical regions are still not very clear. Therefore, in this study, we conducted an investigation of the activation and deactivation with blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) and of metabolic activity change with positron emission tomography (PET) in the human brain. Fourteen healthy subjects performed a visuomotor task inducing attention with 3T MRI, and PET imaging was also carried out in seven subjects to determine the cerebral glucose metabolic changes of caffeine at rest. The result by fMRI showed increased BOLD activation in the left cerebellum, putamen, insula, thalamus and the right primary motor cortex, and decreased BOLD deactivation in the posterior medial and the left posterior lateral cortex. Also, the resting state PET data showed reduced metabolic activity in the putamen, caudate nucleus, insula, pallidum and posterior medial cortex. The common cortical regions between fMRI and PET, such as putamen, insula and posterior medial cortex, where significant changes occurred after caffeine ingestion, are well known to play an important role in cognitive function like attention. This result suggests that the effect of caffeine as a cognitive enhancer is derived by modulating the attentional areas.

  18. Caffeine elicits c-Fos expression in horizontal diagonal band cholinergic neurons.

    Science.gov (United States)

    Reznikov, Leah R; Pasumarthi, Ravi K; Fadel, Jim R

    2009-12-09

    Caffeine is a widely self-administered psychostimulant with purported neuroprotective and procognitive effects in rodent models of aging. The cholinergic basal forebrain is important for arousal and attention and is implicated in age-related cognitive decline. Accordingly, we determined the effects of caffeine on cholinergic neuron activation in the rat basal forebrain. Young adult (age 2 months) male rats were treated with caffeine (0, 10, or 50 mg/kg) and killed 2 h later. Caffeine significantly increased c-Fos expression in cholinergic neurons of the horizontal limb of the diagonal band of Broca but not other basal forebrain regions such as the medial septum or substantia innominata. The horizontal limb of the diagonal band of Broca provides cholinergic innervation to the olfactory bulb, suggesting that deficits in this structure may contribute to diminished olfactory function observed in Alzheimer's disease patients. These results suggest that part of the cognitive-enhancing effects of caffeine may be mediated through activation of this part of the cholinergic basal forebrain.

  19. Caffeine consumption around an exercise bout: effects on energy expenditure, energy intake, and exercise enjoyment.

    Science.gov (United States)

    Schubert, Matthew M; Hall, Susan; Leveritt, Michael; Grant, Gary; Sabapathy, Surendran; Desbrow, Ben

    2014-10-01

    Combining an exercise and nutritional intervention is arguably the optimal method of creating energy imbalance for weight loss. This study sought to determine whether combining exercise and caffeine supplementation was more effective for promoting acute energy deficits and manipulations to substrate metabolism than exercise alone. Fourteen recreationally active participants (mean ± SD body mass index: 22.7 ± 2.6 kg/m2) completed a resting control trial (CON), a placebo exercise trial (EX), and a caffeine exercise trial (EX+CAF, 2 × 3 mg/kg of caffeine 90 min before and 30 min after exercise) in a randomized, double-blinded design. Trials were 4 h in duration with 1 h of rest, 1 h of cycling at ∼65% power at maximum O2 consumption or rest, and a 2-h recovery. Gas exchange, appetite perceptions, and blood samples were obtained periodically. Two hours after exercise, participants were offered an ad libitum test meal where energy and macronutrient intake were recorded. EX+CAF resulted in significantly greater energy expenditure and fat oxidation compared with EX (+250 kJ; +10.4 g) and CON (+3,126 kJ; +29.7 g) (P Caffeine also led to exercise being perceived as less difficult and more enjoyable (P caffeine with exercise creates a greater acute energy deficit, and the implications of this protocol for weight loss or maintenance over longer periods of time in overweight/obese populations should be further investigated.

  20. Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes.

    Science.gov (United States)

    Huang, Ruiqi; O'Donnell, Andrew J; Barboline, Jessica J; Barkman, Todd J

    2016-09-20

    Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study.

  1. Effect of different protocols of caffeine intake on metabolism and endurance performance.

    Science.gov (United States)

    Cox, Gregory R; Desbrow, Ben; Montgomery, Paul G; Anderson, Megan E; Bruce, Clinton R; Macrides, Theodore A; Martin, David T; Moquin, Angela; Roberts, Alan; Hawley, John A; Burke, Louise M

    2002-09-01

    Competitive athletes completed two studies of 2-h steady-state (SS) cycling at 70% peak O(2) uptake followed by 7 kJ/kg time trial (TT) with carbohydrate (CHO) intake before (2 g/kg) and during (6% CHO drink) exercise. In Study A, 12 subjects received either 6 mg/kg caffeine 1 h preexercise (Precaf), 6 x 1 mg/kg caffeine every 20 min throughout SS (Durcaf), 2 x 5 ml/kg Coca-Cola between 100 and 120 min SS and during TT (Coke), or placebo. Improvements in TT were as follows: Precaf, 3.4% (0.2-6.5%, 95% confidence interval); Durcaf, 3.1% (-0.1-6.5%); and Coke, 3.1% (-0.2-6.2%). In Study B, eight subjects received 3 x 5 ml/kg of different cola drinks during the last 40 min of SS and TT: decaffeinated, 6% CHO (control); caffeinated, 6% CHO; decaffeinated, 11% CHO; and caffeinated, 11% CHO (Coke). Coke enhanced TT by 3.3% (0.8-5.9%), with all trials showing 2.2% TT enhancement (0.5-3.8%; P Coca-Cola during the latter stages of exercise was equally effective in enhancing endurance performance, primarily due to low intake of caffeine (approximately 1.5 mg/kg).

  2. Caffeine protects mice against whole-body lethal dose of {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    George, K.C.; Hebbar, S.A.; Kale, S.P.; Kesavan, P.C. [Biosciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    1999-06-01

    Administration of caffeine (1,3,7-trimethylxanthine), a major component of coffee, to Swiss mice at doses of 80 or 100 mg/kg body weight 60 min prior to whole-body lethal dose of {gamma}-irradiation (7.5 Gy) resulted in the survival of 70 and 63% of animals, respectively, at the above doses in contrast to absolutely no survivors (LD-100/25 days) in the group exposed to radiation alone. Pre-treatment with a lower concentration of caffeine (50 mg/kg) did not confer any radioprotection. The protection exerted by caffeine (80 mg/kg), however, was reduced from 70 to 50% if administered 30 min prior to irradiation. The trend statistics reveal that a dose of 80 mg/kg administered 60 min before whole-body exposure to 7.5 Gy is optimal for maximal radioprotection. However, caffeine (80 mg/kg) administered within 3 min after irradiation offered no protection. While there is documentation in the literature that caffeine is an antioxidant and radioprotector against the toxic pathway of radiation damage in a wide range of cells and organisms, this is the first report demonstrating unequivocally its potent radioprotective action in terms of survival of lethally whole-body irradiated mice. (author)

  3. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers.

    Science.gov (United States)

    Lara, Beatriz; Ruiz-Vicente, Diana; Areces, Francisco; Abián-Vicén, Javier; Salinero, Juan José; Gonzalez-Millán, Cristina; Gallo-Salazar, César; Del Coso, Juan

    2015-09-28

    This study investigated the effect of a caffeinated energy drink on various aspects of performance in sprint swimmers. In a randomised and counterbalanced order, fourteen male sprint swimmers performed two acute experimental trials after the ingestion of a caffeinated energy drink (3 mg/kg) or after the ingestion of the same energy drink without caffeine (0 mg/kg; placebo). After 60 min of ingestion of the beverages, the swimmers performed a countermovement jump, a maximal handgrip test, a 50 m simulated competition and a 45 s swim at maximal intensity in a swim ergometer. A blood sample was withdrawn 1 min after the completion of the ergometer test. In comparison with the placebo drink, the intake of the caffeinated energy drink increased the height in the countermovement jump (49.4 (SD 5.3) v. 50.9 (SD 5.2) cm, respectively; Pinsomnia (7 v. 7%), muscle pain (36 v. 36%) or headache (0 v. 7%) during the hours following its ingestion (P>0.05). A caffeinated energy drink increased some aspects of swimming performance in competitive sprinters, whereas the side effects derived from the intake of this beverage were marginal at this dosage.

  4. Tolfenamic acid, metoclopramide, caffeine and their combinations in the treatment of migraine attacks.

    Science.gov (United States)

    Tokola, R A; Kangasniemi, P; Neuvonen, P J; Tokola, O

    1984-12-01

    Tolfenamic acid is a fenamate which inhibits prostaglandin (PG) biosynthesis and may act as a PG antagonist as well. Caffeine and metoclopramide are used in combination with analgesics and ergotamine in the treatment of migraine attacks, but controlled clinical studies on fixed combinations with analgesics are rare. The effects of orally given tolfenamic acid (200 mg), caffeine (100 mg), metoclopramide (10 mg), tolfenamic acid + caffeine (200 mg + 100 mg), tolfenamic acid + metoclopramide (200 mg + 10 mg) and placebo were studied in 49 migraine patients (3 men, 46 women) in a double-blind randomized cross-over study comprising 482 migraine attacks. The patients were allowed to take either one or two capsules of each preparation for an attack. Additional drugs were allowed after 3 h. Parameters characterizing the effects and side-effects of the drugs were registered. Tolfenamic acid and its combinations were found to be effective in the treatment of acute migraine, but caffeine and metoclopramide alone did not differ from placebo. Combination with metoclopramide was better than tolfenamic acid alone as judged by the smaller dose needed and the intensity of attack. Between tolfenamic acid alone and its caffeine combination there were no statistically significant differences.

  5. EFFECT OF SHORT-TERM CAFFEINE SUPPLEMENTATION ON STRESS RESPONSE AND IMMUNE SYSTEM OF MALE ATHLETES

    Directory of Open Access Journals (Sweden)

    Asghar Tofighi

    2014-03-01

    Full Text Available Vigorous exercise stress might be leading cause of immune system disorders and appearance of acute and chronic inflammation in human body. Caffeine supplementation prior to exercise can be effective on body immune response. This study aimed to evaluate the effect of short-term caffeine supplementation on immune response and stress index in male athletes after an exhaustive aerobic exercise. Materials and methods : In a double-blind study 24 male athletes (endurance runner and triathlon randomly divided in Caffeine supplementation (CAF and Placebo (CON groups. One hour prior to main exhaustive treadmill test (Bruce test CAF group consumed caffeine (6 Mg/BW and CON group received placebo. Blood samples were collected before and immediately after exercise test from anticubital vein. After supplying serum; Cortisol, leukocyte and serum Heat shock protein 72 (Hsp72 concentrations were determined using ELISA method. Paired and independent t student test was used for analysis of inter and intra group differences respectively. Results: serum cortisol and Hsp72 concentrations in CON group was significantly higher than CAF group (P0.05. In addition Mean of variation in CON group was significantly higher than CAF group (P<0.05. Conclusions: Based on study results caffeine supplementation prior to short-term exhaustive aerobic exercise has positive effect on innate immunity and body defensive system.

  6. Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping

    NARCIS (Netherlands)

    Kuijpers, Dirkjan; Prakken, Niek H.; Vliegenthart, Rozemarijn; van Dijkman, Paul R. M.; van der Harst, Pim; Oudkerk, Matthijs

    2016-01-01

    Caffeine intake before adenosine stress myocardial perfusion imaging may cause false negative findings. We hypothesized that the antagonistic effect of caffeine can be measured by T1 relaxation times in rest and adenosine stress cardiac magnetic resonance imaging (CMR), as T1 mapping techniques are

  7. Ergogenic effects of caffeine and sodium bicarbonate supplementation on intermittent exercise performance preceded by intense arm cranking exercise

    DEFF Research Database (Denmark)

    Marriott, Matthaus; Krustrup, Peter; Mohr, Magni

    2015-01-01

    BACKGROUND: Caffeine and sodium bicarbonate ingestion have been suggested to improve high-intensity intermittent exercise, but it is unclear if these ergogenic substances affect performance under provoked metabolic acidification. To study the effects of caffeine and sodium bicarbonate on intense ...

  8. Effect of energy drink and caffeinated beverage consumption on sleep, mood, and performance in children and adolescents.

    Science.gov (United States)

    Owens, Judith A; Mindell, Jodi; Baylor, Allison

    2014-10-01

    The increasing availability of highly caffeinated beverages, including energy drinks, in the United States has resulted in a rise in consumption by children and adolescents. In addition, there is mounting evidence that these products are often consumed by youth for their perceived fatigue-mitigating and mood- or performance-enhancing effects. Although such perceptions by children and adolescents about the potential consequences of caffeine consumption are highly likely to influence decision making regarding the use of such products, there is still a relative paucity of studies that focus on the effect of caffeinated beverages on sleep, mood, and performance in the pediatric population. This review summarizes the following aspects of this topic, as derived from the information currently available: 1) the perception, among youth, of caffeine's risks and benefits and the sources of information about caffeine, particularly with regard to sleep, mood, and performance; 2) the bidirectional effect of caffeine on sleep in children and adolescents and the association of caffeine with other sleep-related practices, and 3) the evidence that supports caffeine as a performance and mood enhancer as well as a countermeasure to sleepiness in the pediatric population. Finally, gaps in knowledge are identified, and a direction for future research is outlined.

  9. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet.

    Science.gov (United States)

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2013-01-15

    Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory.

  10. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters.

    Science.gov (United States)

    Heckman, Melanie A; Weil, Jorge; Gonzalez de Mejia, Elvira

    2010-04-01

    Caffeine ranks as one of the top most commonly consumed dietary ingredients throughout the world. It is naturally found in coffee beans, cacao beans, kola nuts, guarana berries, and tea leaves including yerba mate. The total daily intake, as well as the major source of caffeine varies globally; however, coffee and tea are the 2 most prominent sources. Soft drinks are also a common source of caffeine as well as energy drinks, a category of functional beverages. Moderate caffeine consumption is considered safe and its use as a food ingredient has been approved, within certain limits, by numerous regulatory agencies around the world. Performance benefits attributed to caffeine include physical endurance, reduction of fatigue, and enhancing mental alertness and concentration. Caffeine has also been recently linked to weight loss and consequent reduction of the overall risks for developing the metabolic syndrome. However, the caloric contribution of caffeine-sweetened beverages needs to be considered in the overall energy balance. Despite all these benefits the potential negative effects of excessive caffeine intake should also be considered, particularly in children and pregnant women.

  11. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice

    Directory of Open Access Journals (Sweden)

    J. Olakunle Onaolapo

    2016-07-01

    Conclusion: Repeated caffeine consumption and/or acute sleep-deprivation led to significant changes in pattern of open-field behaviour and stress/antioxidant response in mice. Responses seen in the study are probably due to modulatory effects of caffeine on the total body response to stressful stimuli.

  12. Caffeine dose-dependently induces thermogenesis but restores ATP in HepG2 cells in culture.

    Science.gov (United States)

    Riedel, Annett; Pignitter, Marc; Hochkogler, Christina M; Rohm, Barbara; Walker, Jessica; Bytof, Gerhard; Lantz, Ingo; Somoza, Veronika

    2012-09-01

    Caffeine has been hypothesised as a thermogenic agent that might help to maintain a healthy body weight. Since very little is known about its actions on cellular energy metabolism, we investigated the effect of caffeine on mitochondrial oxidative phosphorylation, cellular energy supply and thermogenesis in HepG2 cells, and studied its action on fatty acid uptake and lipid accumulation in 3T3-L1 adipocytes at concentrations ranging from 30-1500 μM. In HepG2 cells, caffeine induced a depolarisation of the inner mitochondrial membrane, a feature of mitochondrial thermogenesis, both directly and after 24 h incubation. Increased concentrations of uncoupling protein-2 (UCP-2) also indicated a thermogenic activity of caffeine. Energy generating pathways, such as mitochondrial respiration, fatty acid oxidation and anaerobic lactate production, were attenuated by caffeine treatment. Nevertheless, HepG2 cells demonstrated a higher energy charge potential after exposure to caffeine that might result from energy restoration through attenuation of energy consuming pathways, as typically found in hibernating animals. In 3T3-L1 cells, in contrast, caffeine increased fatty acid uptake, but did not affect lipid accumulation. We provide evidence that caffeine stimulates thermogenesis but concomitantly causes energy restoration that may compensate enhanced energy expenditure.

  13. Peripubertal Caffeine Exposure Impairs Longitudinal Bone Growth in Immature Male Rats in a Dose- and Time-Dependent Manner.

    Science.gov (United States)

    Choi, Yun-Young; Choi, Yuri; Kim, Jisook; Choi, Hyeonhae; Shin, Jiwon; Roh, Jaesook

    2016-01-01

    This study investigated the dose- and time-dependent effects of caffeine consumption throughout puberty in peripubertal rats. A total of 85 male SD rats were randomly divided into four groups: control and caffeine-fed groups with 20, 60, or 120 mg/kg/day through oral gavage for 10, 20, 30, or 40 days. Caffeine decreased body weight gain and food consumption in a dose- and time-dependent manner, accompanied by a reduction in muscle and body fat. In addition, it caused a shortening and lightening of leg bones and spinal column. The total height of the growth plate decreased sharply at 40 days in the controls, but not in the caffeine-fed groups, and the height of hypertrophic zone in the caffeine-fed groups was lower than in the control. Caffeine increased the height of the secondary spongiosa, whereas parameters related to bone formation, such as bone area ratio, thickness and number of trabeculae, and bone perimeter, were significantly reduced. Furthermore, serum levels of IGF-1, estradiol, and testosterone were also reduced by the dose of caffeine exposure. Our results demonstrate that caffeine consumption can dose- and time-dependently inhibit longitudinal bone growth in immature male rats, possibly by blocking the physiologic changes in body composition and hormones relevant to bone growth.

  14. Caffeine in Boston Harbor past and present, assessing its utility as a tracer of wastewater contamination in an urban estuary

    Science.gov (United States)

    Sites throughout Boston Harbor were analyzed for caffeine to assess its utility as a tracer in identifying sources of sanitary wastewater. Caffeine ranged from 15 ng/L in the outer harbor to a high of 185 ng/L in the inner harbor. Inner harbor concentrations were a result of comb...

  15. Having a Coffee Break: The Impact of Caffeine Consumption on Microglia-Mediated Inflammation in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Maria H. Madeira

    2017-01-01

    Full Text Available Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.

  16. OPTIMIZATION OF A UV-VIS SPECTROMETRIC METHOD FOR CAFFEINE ANALYSIS IN TEA, COFFEE AND OTHER BEVERAGES

    Directory of Open Access Journals (Sweden)

    S. DOBRINAS

    2014-01-01

    Full Text Available A method has been developed and validated for the determination of caffeine in tea, coffee and other beverages by UV-VIS spectrometry. A linear calibration curve was generated with caffeine concentration ranging from 3 mg∙L-1 to 18 mg∙L-1. The procedure developed provides a 0.85 mg∙L-1 detection limit of caffeine, respectively 1.52 mg∙L-1 quantification limit and the relative standard deviation (RSD was less than 0.05 % for independent measurement. The developed method was sensitive/specific and robust. Caffeine in tea infusions was found to be dependent on infusion time, the longer of the infusion time and the higher of the caffeine concentrations in tea infusions.

  17. Study of caffeine binding to human serum albumin using optical spectroscopic methods

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The binding of caffeine to human serum albumin (HSA) under physiological conditions has been stud-ied by the methods of fluorescence,UV-vis absorbance and circular dichroism (CD) spectroscopy. The mechanism of quenching of HSA fluorescence by caffeine was shown to involve a dynamic quenching procedure. The number of binding sites n and apparent binding constant Kb were measured by the fluorescence quenching method and the thermodynamic parameters △H,△G,△S were calculated. The results indicate that the binding is mainly enthalpy-driven,with van der Waals interactions and hydrogen bonding playing major roles in the reaction. The distance r between donor (HSA) and acceptor (caffeine) was obtained according to the Frster theory of non-radiative energy transfer. Synchronous fluorescence,CD and three-dimensional fluorescence spectroscopy showed that the microenvironment and conformation of HSA were altered during the reaction.

  18. ADSORPTION OF CAFFEINE BY HYDROGEN DONATING ADSORBENTS BASED ON HYDROGEN BONDING

    Institute of Scientific and Technical Information of China (English)

    XUMancai; SHIZuoqing; 等

    2000-01-01

    The adsorption isotherms of caffeine from aqueous solution onto three hydrogen donating adsorbents-hydroxypolystyrene,polystryene-azo-pyrogallol,and D72 resin-were measured.The adsorption enthalpies calculated from the isotherms according to the Clausisu-Clapeyron equation were -24-36kJ/mol,-32-37kJ/mol,and -19-24kJ/mol respectively.These values implied that the adsorption processes were based on hydrogen bonding.Furthermore.the mechanism of the adsorption of caffeine onto D72 resin was studied by IR spectra and the small molecular model experiments,and the results showed that the adsorption of caffeine onto hydrogen donating adsorbents was based on hydrogen bonding.

  19. Dichotomous Effect of Caffeine, Curcumin, and Naringenin on Genomic DNA of Normal and Diabetic Subjects

    Directory of Open Access Journals (Sweden)

    Debarati Chattopadhyay

    2014-01-01

    Full Text Available Nutraceutical compounds show antioxidant and prooxidant properties under stress conditions like cancer, diabetes, and other diseases. The objective of this study is to find the dichotomic behavior of caffeine, curcumin, and naringenin on DNA of diabetic and normal subjects in the presence and absence of copper, hydrogen peroxide, and complex of copper-hydrogen peroxide. Hydrogen peroxide releases hydroxyl free radicals (•OH on oxidation of Cu (I to Cu (II through Fenton-type reaction to cause DNA damage. In the results, agarose gel electrophoretic pattern speculates the prooxidant effect of caffeine and antioxidant effect of curcumin on DNA in the presence of copper and hydrogen peroxide. UV-Vis spectral analysis shows hyperchromism on addition of DNA to caffeine, hypochromism with curcumin, and subtle changes with naringenin. The chosen nutraceuticals act as inducers and quenchers of oxidative free radicals arising from diabetes.

  20. A new method for studying caffeine's antioxygenic property: Peroxidase-Oxidase biochemical reaction

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; CAI Ruxiu; LIN Zhixin; LIU Zhihong

    2003-01-01

    The effect of Caffeine on Peroxidase-Oxidase (PO) reaction was studied systematically in this paper. We proved that the valley of PO oscillation is the best phase angle which was used to research antioxygenic property by the Analyte Pulse Perturbation Technique (APP), based on investigating the mechanism. Area integral calculus was proposed to use in quantitative analysis for the first time. There is a good linear relationship (R = 0.9950) between the ratio of amplitude changes of PO oscillation and the concentration of caffeine in the range 4.61×10-7 mol/L-1.84×10-5 mol/L. A new method for analysis by PO oscillation was set up. We also investigated two-dimensional projections and Fourier spectrum of nonlinear complicate system--PO reaction which was perturbed by caffeine, in order to provide a theoretical basis for studying effects of kinds of antioxidants on life system.