WorldWideScience

Sample records for caffeic acid phenethyl

  1. Caffeic acid phenethyl ester prevents apoptotic cell death in the developing rat brain after pentylenetetrazole-induced status epilepticus.

    Science.gov (United States)

    Yiş, Uluç; Topçu, Yasemin; Özbal, Seda; Tuğyan, Kazım; Bayram, Erhan; Karakaya, Pakize; Yilmaz, Osman; Kurul, Semra Hız

    2013-11-01

    Population-based studies suggest that seizure incidence is highest during the first year of life, and early-life seizures frequently result in the development of epilepsy and behavioral alterations later in life. The early-life insults like status epilepticus often lead to epileptogenesis, a process in which initial brain injury triggers cascades of molecular, cellular, and network changes and eventually spontaneous seizures. Caffeic acid phenethyl ester is an active component of propolis obtained from honeybees and has neuroprotective properties. The aim of this study was to investigate whether caffeic acid phenethyl ester exerts neuroprotective effects on the developing rat brain after status epilepticus. Twenty-one dams reared Wistar male rats, and 21-day-old rats were divided into three groups: control group, pentylenetetrazole-induced status epilepticus group, and caffeic acid phenethyl ester-treated group. Status epilepticus was induced on the first day of experiment. Caffeic acid phenethyl ester injections (30 mg/kg intraperitoneally) started 40 min after the tonic phase of status epilepticus was reached, and the injections of caffeic acid phenethyl ester were repeated over 5 days. Rats were sacrificed, and brain tissues were collected on the 5th day of experiment after the last injection of caffeic acid phenethyl ester. Apoptotic cell death was evaluated. Histopathological examination showed that caffeic acid phenethyl ester significantly preserved the number of neurons in the CA1, CA3, and dentate gyrus regions of the hippocampus and the prefrontal cortex. It also diminished apoptosis in the hippocampus and the prefrontal cortex. In conclusion, this experimental study suggests that caffeic acid phenethyl ester administration may be neuroprotective in status epilepticus in the developing rat brain.

  2. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    OpenAIRE

    Cheng-Fang Tsai; Yueh-Hsiung Kuo; Wei-Lan Yeh; Caren Yu-Ju Wu; Hsiao-Yun Lin; Sheng-Wei Lai; Yu-Shu Liu; Ling-Hsuan Wu; Jheng-Kun Lu; Dah-Yuu Lu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current ...

  3. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    Directory of Open Access Journals (Sweden)

    Martin J. G. Hébert

    2015-01-01

    Full Text Available Two novel boron compounds containing caffeic acid phenethyl ester (CAPE derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE.

  4. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2015-03-01

    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  5. Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture

    Directory of Open Access Journals (Sweden)

    Kazancioglu HO

    2015-12-01

    Full Text Available Hakki Oguz Kazancioglu,1 Sertac Aksakalli,2 Seref Ezirganli,1 Muhammet Birlik,2 Mukaddes Esrefoglu,3 Ahmet Hüseyin Acar1 1Department of Oral and Maxillofacial Surgery, 2Department of Orthodontics, Faculty of Dentistry, 3Department of Histology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey Background: Narrow maxilla is a common problem in orthodontics and dentofacial orthopedics. To solve this problem, a procedure called rapid maxillary expansion (RME has been used. However, relapse tendency is a major problem of RME. Although relapse tendency is not clearly understood, various treatment procedures and new application has been investigated. The present study aimed to investigate the possible effectiveness of caffeic acid phenethyl ester (CAPE on new bone formation in rat midpalatal suture after RME.Materials and methods: Twenty male Sprague Dawley rats were used in this study. The animals were randomly divided into two groups as control and CAPE group. In CAPE group, CAPE was administered systemically via intraperitoneal injection. RME procedure was performed on all animals. For this purpose, the springs were placed on the maxillary incisors of rats and activated for 5 days. After then, the springs were removed and replaced with short lengths of rectangular retaining wire for consolidation period of 15 days. At the end of the study, histomorphometric analysis was carried out to assess of new bone formation.Results: New bone formation was significantly greater in CAPE group than the control group (P<0.05. CAPE enhances new bone formation in midpalatal suture after RME.Conclusion: These results show that CAPE may decrease the time needed for retention. Keywords: rapid maxillary expansion, bone formation, caffeic acid phenethyl ester, midpalatal suture, histopathology

  6. Molecular Characterization and Enhancement of Anticancer Activity of Caffeic Acid Phenethyl Ester by γ Cyclodextrin

    Science.gov (United States)

    Wadhwa, Renu; Nigam, Nupur; Bhargava, Priyanshu; Dhanjal, Jaspreet Kaur; Goyal, Sukriti; Grover, Abhinav; Sundar, Durai; Ishida, Yoshiyuki; Terao, Keiji; Kaul, Sunil C

    2016-01-01

    Caffeic Acid Phenethyl Ester (CAPE) is a key component in New Zealand propolis, known for a variety of health promoting and therapeutic potentials. We investigated the molecular mechanism of anticancer and anti-metastasis activities of CAPE. cDNA array performed on the control and CAPE-treated breast cancer cells revealed activation of DNA damage signaling involving upregulation of GADD45α and p53 tumor suppressor proteins. Molecular docking analysis revealed that CAPE is capable of disrupting mortalin-p53 complexes. We provide experimental evidence and demonstrate that CAPE induced disruption of mortalin-p53 complexes led to nuclear translocation and activation of p53 resulting in growth arrest in cancer cells. Furthermore, CAPE-treated cells exhibited downregulation of mortalin and several other key regulators of cell migration accountable for its anti-metastasis activity. Of note, we found that whereas CAPE was unstable in the culture medium (as it gets degraded into caffeic acid by secreted esterases), its complex with gamma cyclodextrin (γCD) showed high efficacy in anti-tumor and anti-metastasis assays in vitro and in vivo (when administered through either intraperitoneal or oral route). The data proposes that CAPE-γCD complex is a potent anti-cancer and anti-metastasis reagent. PMID:27698914

  7. Antioxidant Properties of Caffeic acid Phenethyl Ester and 4-Vinylcatechol in Stripped Soybean Oil.

    Science.gov (United States)

    Jia, Cai-Hua; Wang, Xiang-Yu; Qi, Jin-Feng; Hong, Soon-Taek; Lee, Ki-Teak

    2016-01-01

    Caffeic acid was used to synthesize 4-vinylcatechol (4-VC) by thermal decarboxylation and to prepare caffeic acid phenethyl ester (CAPE) by esterification reaction. The identities of synthesized products were confirmed by (1)H NMR. Antioxidative activities of 4-VC and CAPE were compared with α-tocopherol and BHT in stripped soybean oil at 60 °C under the dark. To evaluate the degrees of oxidation at different concentrations and combinations, peroxide value (PV) and (1)H NMR were performed. From the results of PV, the formation of primary oxidation products (i.e., hydroperoxides) in stripped soybean oil containing 200 ppm CAPE was the slowest. The relative oxidation degree of 200 ppm CAPE (9.5%) was lower than other samples on 9 d. Similar results were obtained by (1)H NMR analysis. After 15 d of storage, levels of conjugated diene forms and aldehydes of 200 ppm CAPE sample (57.3 and 0.9 mmol/mol oil) were also lower than other treatments. In addition, 4-VC and α-tocopherol were found to have a synergistic antioxidant effect. PMID:26641978

  8. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells.

    Science.gov (United States)

    Tsai, Cheng-Fang; Kuo, Yueh-Hsiung; Yeh, Wei-Lan; Wu, Caren Yu-Ju; Lin, Hsiao-Yun; Lai, Sheng-Wei; Liu, Yu-Shu; Wu, Ling-Hsuan; Lu, Jheng-Kun; Lu, Dah-Yuu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS), cyclooxygenase (COX)-2 and the production of nitric oxide (NO). Administration of CAPE resulted in increased expressions of hemeoxygenase (HO)-1and erythropoietin (EPO) in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK)-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells. PMID:25768341

  9. Molecular Characterization and Enhancement of Anticancer Activity of Caffeic Acid Phenethyl Ester by γ Cyclodextrin

    Science.gov (United States)

    Wadhwa, Renu; Nigam, Nupur; Bhargava, Priyanshu; Dhanjal, Jaspreet Kaur; Goyal, Sukriti; Grover, Abhinav; Sundar, Durai; Ishida, Yoshiyuki; Terao, Keiji; Kaul, Sunil C

    2016-01-01

    Caffeic Acid Phenethyl Ester (CAPE) is a key component in New Zealand propolis, known for a variety of health promoting and therapeutic potentials. We investigated the molecular mechanism of anticancer and anti-metastasis activities of CAPE. cDNA array performed on the control and CAPE-treated breast cancer cells revealed activation of DNA damage signaling involving upregulation of GADD45α and p53 tumor suppressor proteins. Molecular docking analysis revealed that CAPE is capable of disrupting mortalin-p53 complexes. We provide experimental evidence and demonstrate that CAPE induced disruption of mortalin-p53 complexes led to nuclear translocation and activation of p53 resulting in growth arrest in cancer cells. Furthermore, CAPE-treated cells exhibited downregulation of mortalin and several other key regulators of cell migration accountable for its anti-metastasis activity. Of note, we found that whereas CAPE was unstable in the culture medium (as it gets degraded into caffeic acid by secreted esterases), its complex with gamma cyclodextrin (γCD) showed high efficacy in anti-tumor and anti-metastasis assays in vitro and in vivo (when administered through either intraperitoneal or oral route). The data proposes that CAPE-γCD complex is a potent anti-cancer and anti-metastasis reagent.

  10. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2015-03-01

    Full Text Available Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE, a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS, cyclooxygenase (COX-2 and the production of nitric oxide (NO. Administration of CAPE resulted in increased expressions of hemeoxygenase (HO-1and erythropoietin (EPO in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.

  11. Antioxidant Properties of Caffeic acid Phenethyl Ester and 4-Vinylcatechol in Stripped Soybean Oil.

    Science.gov (United States)

    Jia, Cai-Hua; Wang, Xiang-Yu; Qi, Jin-Feng; Hong, Soon-Taek; Lee, Ki-Teak

    2016-01-01

    Caffeic acid was used to synthesize 4-vinylcatechol (4-VC) by thermal decarboxylation and to prepare caffeic acid phenethyl ester (CAPE) by esterification reaction. The identities of synthesized products were confirmed by (1)H NMR. Antioxidative activities of 4-VC and CAPE were compared with α-tocopherol and BHT in stripped soybean oil at 60 °C under the dark. To evaluate the degrees of oxidation at different concentrations and combinations, peroxide value (PV) and (1)H NMR were performed. From the results of PV, the formation of primary oxidation products (i.e., hydroperoxides) in stripped soybean oil containing 200 ppm CAPE was the slowest. The relative oxidation degree of 200 ppm CAPE (9.5%) was lower than other samples on 9 d. Similar results were obtained by (1)H NMR analysis. After 15 d of storage, levels of conjugated diene forms and aldehydes of 200 ppm CAPE sample (57.3 and 0.9 mmol/mol oil) were also lower than other treatments. In addition, 4-VC and α-tocopherol were found to have a synergistic antioxidant effect.

  12. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    OpenAIRE

    Sumeyya Akyol; Veli Ugurcu; Aynur Altuntas; Rukiye Hasgul; Ozlem Cakmak; Omer Akyol

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury ...

  13. Effects of caffeic acid phenethyl ester on proliferation of vascular smooth muscle cells in rats

    Institute of Scientific and Technical Information of China (English)

    Gang Yang; Chao Chang; YuQing Wang; Yibo Feng; ShuLing Rong

    2006-01-01

    Objective: To investigate the inhibitory effect of caffeic acid phenethyl ester(CAPE) on the proliferation of vascular smooth muscle cells (VSMC) activated by lipopolysaccharide (LPS) and to clarify its mechanism. Methods: VSMC activated by LPS (1 mg·L-1) were treated with CAPE at different concentrations. The inhibitory effects of CAPE on the proliferation of VSMC were determined by methabenzthiazuron(MTT) colorimetry. The effects of CAPE on the expression of proliferating cell nuclear antigen (PCNA) and Survivin protein in VSMC were evaluated by immunocytochemistry staining technique (SABC method). Cell cycle was analyzed by flow cytometry(FCM) with propidium iodide (PI) labeling method. The relative expression level of Survivin mRNA was measured with real-time quantified RT-PCR technique. Results: CAPE exerted significant inhibitory effects on. proliferation of VSMC at concentrations ranging from 5 mg·L-1 to 80 mg·L-1, decreased the rate of cells positive for PCNA and Survivin protein and repressed the expression of Survivin mRNA in a dose- and time-dependent manner (P < 0.05).FCM analysis displayed that CAPE up-regulated the ratio of G0/G1 stages and reduced the percentage of VSMC in S stage (P <0.05). Conclusion: CAPE can significantly inhibit the proliferation of VSMC activated by LPS in a dose- and time-dependent manner, which may be carried out through regulating cell cycle and repressing the expression of PCNA and Survivin.

  14. EFFECTS OF EXERCISE AND CAFFEIC ACID PHENETHYL ESTER AFTER CHRONIC EXERCISE RAT MODEL

    Directory of Open Access Journals (Sweden)

    Ayse Alp

    2011-01-01

    Full Text Available In order to understand whether exercise and caffeic acid phenethyl ester (CAPE has an effect on obesity and weight control, we investigated the effects of CAPE, and exercise on lipid parameters (triglyceride, total cholesterol, HDL-C, LDL-C, and adipokine substances such as leptin and resistin in rats. 40 male rat were randomly assigned into 4 groups. It was determined that CAPE does not have any significant effect on these parameters but that lipid parameters and leptin values in exercise groups decreased considerably, while no significant change occurred in resistin levels. In order to understand whether diet has an effect on exercise, body weights of all animal groups in pre and post-exercise were compared. A significant weight gain was observed (p = 0.005 in all groups. This study concluded that exercise has a considerable effect on leptin and lipid parameters; however, exercise alone was not sufficient for weight control and could be effective in weight control only when accompanied by a restricted diet.

  15. Modulation of Tamoxifen Cytotoxicity by Caffeic Acid Phenethyl Ester in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tarek K. Motawi

    2016-01-01

    Full Text Available Although Tamoxifen (TAM is one of the most widely used drugs in managing breast cancer, many women still relapse after long-term therapy. Caffeic acid phenethyl ester (CAPE is a polyphenolic compound present in many medicinal plants and in propolis. The present study examined the effect of CAPE on TAM cytotoxicity in MCF-7 cells. MCF-7 cells were treated with different concentrations of TAM and/or CAPE for 48 h. This novel combination exerted synergistic cytotoxic effects against MCF-7 cells via induction of apoptotic machinery with activation of caspases and DNA fragmentation, along with downregulation of Bcl-2 and Beclin 1 expression levels. However, the mammalian microtubule-associated protein light chain LC 3-II level was unchanged. Vascular endothelial growth factor level was also decreased, whereas levels of glutathione and nitric oxide were increased. In conclusion, CAPE augmented TAM cytotoxicity via multiple mechanisms, providing a novel therapeutic approach for breast cancer treatment that can overcome resistance and lower toxicity. This effect provides a rationale for further investigation of this combination.

  16. Caffeic Acid Phenethyl Ester Regulates PPAR’s Levels in Stem Cells-Derived Adipocytes

    Directory of Open Access Journals (Sweden)

    Luca Vanella

    2016-01-01

    Full Text Available Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ, considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape, isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration.

  17. Early Treatment of radiation-Induced Heart Damage in Rats by Caffeic acid phenethyl Ester

    International Nuclear Information System (INIS)

    The study designed to determine the therapeutic effect of caffeic acid phenethyl ester (CAPE) in minimising radiation-induced injuries in rats. Rats were exposed to 7 Gy γ-rays, 30 minutes later; rats were injected with CAPE (10μmol/ kg body, i.p.) for 7 consecutive days. Rats were sacrificed at 8 and 15 days after starting the experiment. Gamma-irradiation induced significant increase in malonaldehyde (MDA) level and xanthine oxidase (XO) and adenosine deaminase (ADA) activities, and significant decrease in total nitrate/nitrate (NO (x)) level and glutathione peroxidise (Gpx), superoxide dismutase (SOD)and catalase (CAT) activities in heart tissue and augmented activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST) in serum. Irradiated rats early treated with CAPE showed significant decrease in MDA, XO and ADA and significant increase in group. Cardiac enzymes were restored. Conclusion, CAPE could exhibits curable effect on gamma irradiation-induced cardiac-oxidative impairment in rats. (Author)

  18. Effects of caffeic acid phenethyl ester on palatal mucosal defects and tooth extraction sockets

    Directory of Open Access Journals (Sweden)

    Günay A

    2014-10-01

    Full Text Available Ahmet Günay,1 Osman Fatih Arpağ,2 Serhat Atilgan,3 Ferhan Yaman,3 Yusuf Atalay,4 İzzet Acikan3 1Department of Periodontology, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey; 2Department of Periodontology, Faculty of Dentistry, Mustafa Kemal University, Hatay, Turkey; 3Department of Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey; 4Department of Maxillofacial Surgery, Faculty of Dentistry, Kocatepe University, Afyon, Turkey Aim: The purpose of this study was to evaluate the effects of caffeic acid phenethyl ester (CAPE on palatal mucosal defects and tooth extraction sockets in an experimental model.Materials and methods: Forty-two male Sprague-Dawley rats with a mean age of 7 weeks and weighing 280–490 g were used in this study. The rats were randomly divided into two groups: group A (the control group, n=21 and group B (the experimental group, n=21. Under anesthesia with ketamine (8 mg/100 g, intraperitoneally, palatal mucosal defects were created and tooth extraction was performed in the rats in groups A and B. Group A received no treatment, whereas group B received CAPE. CAPE was injected daily (10 µmol/kg, intraperitoneally. The rats were killed on days 7, 14, and 30 after the procedures. Palatal mucosa healing and changes in bone tissue and fibrous tissue were evaluated histopathologically.Result: Pairwise comparisons showed no statistically significant difference between days 7 and 14 in either group (P>0.05. At day 30, bone healing was significantly better in group B (CAPE than in group A (control (P<0.05. Fibrinogen levels at day 30 were significantly higher in group A (control than in group B (CAPE (P<0.05. Pairwise comparisons showed no statistically significant difference in palatal mucosa healing levels between days 7 and 14 in both groups (P>0.05.Conclusion: In conclusion, the findings of this study suggest that CAPE can significantly improve tooth socket healing. Keywords: caffeic

  19. Protective Effect of Caffeic Acid Phenethyl Ester in Rat Cerebral Ischemia/Reperfusion Damage

    Directory of Open Access Journals (Sweden)

    Ertuğrul Uzar

    2011-09-01

    Full Text Available OBJECTIVE: Because oxidative stress is related to cerebral ischemia/reperfusion (I/R injury, modulation of oxygen free radical production may represent a new approach to the management of cerebral I/R. Caffeic acid phenethyl ester (CAPE has been determined to have neuroprotective, antioxidant, anti-inflammatory, and anti-apoptotic activities. The aim of this study was to investigate whether CAPE has a protective effect on cerebral I/R damage, and to determine the possible effects of CAPE on total antioxidant/oxidant status. METHODS: A total of 30 rats were randomly divided into three groups as control group, I/R group, and I/R + CAPE. Total oxidant status (TOS, total antioxidant status (TAS and oxidative stress index (OSI levels and histopathological cellular structures were evaluated in cerebral tissues obtained after the experiment procedure in all groups. RESULTS: In the brain tissue, TOS and OSI levels were found to be significantly increased in the I/R group compared to the controls (p= 0.023, p= 0.001, respectively. Significantly decreased TAS levels were found in the I/R group compared to the controls (p= 0.001. CAPE treatment prevented the increase in TOS and OSI that is produced by cerebral I/R (p= 0.041, p= 0.001, respectively. TAS was found to be increased in the CAPE + I/R group compared with the I/R group (p= 0.002. In the I/R group, the brain sections showed findings of cerebral I/R damage including inflammation, vascular congestion and necrosis (for both variables, p= 0.001. These histopathological cerebral damage findings were found to be significantly reduced in the CAPE + I/R group compared to the I/R group (for both parameters, p< 0.05. CONCLUSION: In this study, it was found that oxidative stress had an important role in the pathogenesis of cerebral I/R damage, and histopathological and biochemical evaluations showed significantly decreased I/R damage following CAPE treatment in rats.

  20. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    Directory of Open Access Journals (Sweden)

    Sumeyya Akyol

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R. In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility.

  1. Caffeic Acid Phenethyl Ester: Consequences of Its Hydrophobicity in the Oxidative Functions and Cytokine Release by Leukocytes

    Directory of Open Access Journals (Sweden)

    Luana Chiquetto Paracatu

    2014-01-01

    Full Text Available Numerous anti-inflammatory properties have been attributed to caffeic acid phenethyl ester (CAPE, an active component of propolis. NADPH oxidases are multienzymatic complexes involved in many inflammatory diseases. Here, we studied the importance of the CAPE hydrophobicity on cell-free antioxidant capacity, inhibition of the NADPH oxidase and hypochlorous acid production, and release of TNF-α and IL-10 by activated leukocytes. The comparison was made with the related, but less hydrophobic, caffeic and chlorogenic acids. Cell-free studies such as superoxide anion scavenging assay, triene degradation, and anodic peak potential (Epa measurements showed that the alterations in the hydrophobicity did not provoke significant changes in the oxidation potential and antiradical potency of the tested compounds. However, only CAPE was able to inhibit the production of superoxide anion by activated leukocytes. The inhibition of the NADPH oxidase resulted in the blockage of production of hypochlorous acid. Similarly, CAPE was the more effective inhibitor of the release of TNF-α and IL-10 by Staphylococcus aureus stimulated cells. In conclusion, the presence of the catechol moiety and the higher hydrophobicity were essential for the biological effects. Considering the involvement of NADPH oxidases in the genesis and progression of inflammatory diseases, CAPE should be considered as a promising anti-inflammatory drug.

  2. Enhancement of Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquid with DMSO Co-solvent☆

    Institute of Scientific and Technical Information of China (English)

    Shuangshuang Gu; Jun Wang; Xianbin Wei; Hongsheng Cui; Xiangyang Wu; Fuan Wu

    2014-01-01

    Caffeic acid phenethyl ester (CAPE) is a natural and rare ingredient with several biological activities, but its indus-trial production using lipase-catalyzed esterification of caffeic acid (CA) and 2-phenylethanol (PE) in ionic liquids (ILs) is hindered by low substrate concentrations and long reaction time. To set up a high-efficiency bioprocess for production of CAPE, a novel dimethyl sulfoxide (DMSO)–IL co-solvent system was established in this study. The 2%(by volume) DMSO–[Bmim][Tf2N] system was found to be the best medium with higher substrate solu-bility and conversion of CA. Under the optimum conditions, the substrate concentration of CA was raised 8-fold, the reaction time was reduced by half, and the conversion reached 96.23%. The kinetics follows a ping-pong bi-bi mechanism with inhibition by PE, with kinetic parameters as follows:Vmax=0.89 mmol · min−1 · g−1, Km,CA=42.9 mmol · L−1, Km,PE=165.7 mmol · L−1, and Ki,PE=146.2 mmol · L−1. The results suggest that the DMSO co-solvent effect has great potential to enhance the enzymatic synthesis efficiency of CAPE in ILs.

  3. Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquids:Effect of Specific Ions and Reaction Parameters

    Institute of Scientific and Technical Information of China (English)

    王俊; 李晶; 张磊霞; 顾双双; 吴福安

    2013-01-01

    Caffeic acid phenethyl ester (CAPE) is a rare, naturally occurring phenolic food additive. This work systematically reported fundamental data on conversion of caffeic acid (CA), yield of CAPE, and reactive selectiv-ity during the lipase-catalyzed esterification process of CA and phenylethanol (PE) in ionic liquids (ILs). Sixteen ILs were selected as the reaction media, and the relative lipase-catalyzed synthesis properties of CAPE were meas-ured in an effort to enhance the yield of CAPE with high selectivity. The results indicated that ILs containing weakly coordinating anions and cations with adequate alkyl chain length improved the synthesis of CAPE. [Emim][Tf2N] was selected as the optimal reaction media. The optimal parameters were as follows by response surface methodology (RSM):reaction temperature, 84.0 °C;mass ratio of Novozym 435 to CA, 14︰1;and molar ratio of PE to CA, 16︰1. The highest reactive selectivity of CAPE catalyzed by Novozym 435 in [Emim][Tf2N] reached 64.55%(CA conversion 98.76%and CAPE yield 63.75%, respectively). Thus, lipase-catalyzed esterifica-tion in ILs is a promising method suitable for CAPE production.

  4. Caffeic Acid Phenethyl Ester Increases Radiosensitivity of Estrogen Receptor-Positive and -Negative Breast Cancer Cells by Prolonging Radiation-Induced DNA Damage

    OpenAIRE

    Khoram, Nastaran Masoudi; Bigdeli, Bahareh; Nikoofar, Alireza; Goliaei, Bahram

    2016-01-01

    Purpose Breast cancer is an important cause of death among women. The development of radioresistance in breast cancer leads to recurrence after radiotherapy. Caffeic acid phenethyl ester (CAPE), a polyphenolic compound of honeybee propolis, is known to have anticancer properties. In this study, we examined whether CAPE enhanced the radiation sensitivity of MDA-MB-231 (estrogen receptor-negative) and T47D (estrogen receptor-positive) cell lines. Methods The cytotoxic effect of CAPE on MDA-MB-2...

  5. Caffeic acid phenethyl ester downregulates phospholipase D1 via direct binding and inhibition of NFκB transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee; Kang, Dong Woo [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Jung, Yunjin [College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Kang-Yell [Translational Research Center for Protein Function Control, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2013-12-06

    Highlights: •We found CAFÉ, a natural product that suppresses expression and activity of PLD1. •CAPE decreased PLD1 expression by inhibiting NFκB transactivation. •CAPE rapidly inhibited PLD activity via its binding to a Cys837 of PLD1. •PLD1 downregulation by CAPE inhibited invasion and proliferation of glioma cells. -- Abstract: Upregulation of phospholipase D (PLD) is functionally linked with oncogenic signals and tumorigenesis. Caffeic acid phenethyl ester (CAPE) is an active compound of propolis extract that exhibits anti-proliferative, anti-inflammatory, anti-oxidant, and antineoplastic properties. In this study, we demonstrated that CAPE suppressed the expression of PLD1 at the transcriptional level via inhibition of binding of NFκB to PLD1 promoter. Moreover, CAPE, but not its analogs, bound to a Cys837 residue of PLD1 and inhibited enzymatic activity of PLD. CAPE also decreased activation of matrix metalloproteinases-2 induced by phosphatidic acid, a product of PLD activity. Ultimately, CAPE-induced downregulation of PLD1 suppressed invasion and proliferation of glioma cells. Taken together, the results of this study indicate that CAPE might contribute to anti-neoplastic effect by targeting PLD1.

  6. Evaluation of anti-allergic properties of caffeic acid phenethyl ester in a murine model of systemic anaphylaxis

    International Nuclear Information System (INIS)

    Caffeic acid phenethyl ester (CAPE) is an active component of honeybee propolis extracts. It has several positive effects, including anti-inflammatory, anti-oxidation, anti-cancer, anti-bacterial, anti-viral, anti-fungal, and immunomodulatory effects. In particular, the suppressive effect of NF-κB may disrupt a component of allergic induction. The principal objective of this experimental study was to evaluate the effects of CAPE on the active systemic anaphylaxis induced by ovalbumin (OVA) challenge in mice. Mice were intraperitoneally sensitized and intravenously challenged with OVA. Histopathological analysis, nuclear factor (NF)-κB activation, and the plasma levels of histamine and total IgE after allergen challenge were evaluated. After challenges, all of the sham-treated mice developed anaphylactic symptoms, increased plasma levels of histamine and OVA-specific IgE, marked vascular leakage, NF-κB activation, platelet-activating factor (PAF) production, and histological changes including pulmonary edema and hemorrhage in the renal medullae within 20 min. By way of contrast, a reduction in the plasma levels of histamine and OVA-specific IgE and an inhibition of NF-κB activation and PAF release were observed in the CAPE-treated mice. In addition, a significant prevention of hemoconcentration and OVA-induced pathological changes were noted. These results indicate that CAPE demonstrates an anti-allergic effect, which may be the result of its protective effects against IgE-mediated allergy

  7. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    Science.gov (United States)

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  8. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    Directory of Open Access Journals (Sweden)

    Aburrahman Gun

    2016-01-01

    Full Text Available Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS. HFCS (6 weeks, 30% fed with drinking water caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  9. Fibrinolytic Activity and Dose-Dependent Effect of Incubating Human Blood Clots in Caffeic Acid Phenethyl Ester: In Vitro Assays

    Directory of Open Access Journals (Sweden)

    Abuzar Elnager

    2015-01-01

    Full Text Available Background. Caffeic acid phenethyl ester (CAPE has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM. After 3 hours, D-dimer (DD levels and WB clot weights were measured for each concentration. Thromboelastography (TEG parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM. The 50% effective dose (ED50 of CAPE (based on DD was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted.

  10. Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mi-Sook Lee

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST and forced swim (FST tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234, resulting in an increased pGR(S220/S234 ratio. We also observed negative correlations between pGR(S220/(S234 and p38 mitogen-activated protein kinase (p38MAPK phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function.

  11. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    Science.gov (United States)

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment. PMID:27042260

  12. Effects of novel hybrids of caffeic acid phenethyl ester and NSAIDs on experimental ocular inflammation.

    Science.gov (United States)

    Pittalà, Valeria; Salerno, Loredana; Romeo, Giuseppe; Siracusa, Maria Angela; Modica, Maria Nunziata; Romano, Giovanni Luca; Salomone, Salvatore; Drago, Filippo; Bucolo, Claudio

    2015-04-01

    In this study, we report the design and synthesis of novel hybrids of caffeic acid phenetyl ester (CAPE) and non-steroidal anti-inflammatory drugs (NSAIDs). We assessed their effects on an experimental ocular inflammation in New Zealand rabbits. The formulations of CAPE-aspirin and CAPE-indomethacin hybrids were topical instilled in the rabbit׳s eye. Afterwards, the anti-inflammatory activity was evaluated by grading the clinical signs and by assessing the inflammatory cell count, protein, PGE2 and TNFα levels in the aqueous humor. Furthermore, ocular tolerability of hybrids formulations was evaluated in a separate set of animals by using a modified Draize test. The ocular inflammation in the control group was significantly higher than in both the hybrid-treated groups, as indicated by clinical grading and biomarkers assessment. However, only the CAPE-aspirin hybrid reduced, in a significant dose-dependent manner, the ocular inflammation elicited by paracentesis. CAPE-indomethacin hybrid was able to significantly attenuate the clinical grading and the PGE2 aqueous levels only at the highest dose (0.1%). CAPE-aspirin significantly reduced PGE2 and TNFα levels in the aqueous humor as well as proteins and PMNs. Finally, all formulations showed no ocular irritation compared with vehicle-treated group. In conclusion, CAPE-aspirin shows full anti-inflammatory efficacy in experimental model of ocular inflammation demonstrating an optimal pharmacological and safety profile. Taken together these data indicate that CAPE-aspirin hybrid represents a valid and safe new chemical entity potentially useful for the treatment of ocular inflammation. PMID:25704612

  13. A single dose of caffeic acid phenethyl ester prevents initiation in a medium-term rat hepatocarcinogenesis model

    Institute of Scientific and Technical Information of China (English)

    Claudia Esther Carrasco-Legleu; Yesennia Sánchez-Pérez; Lucrecia Márquez-Rosado; Samia Fattel-Fazenda; Evelia Arce-Popoca; Sergio Hernández-García; Saú1 Villa-Trevi(n)o

    2006-01-01

    AIM:To study of the effect of caffeic acid phenethyl ester (CAPE) on the initiation period in a medium-term assay of hepatocarcinogenesis.METHODS: Male Wistar rats were subjected to a carcinogenic treatment (CT) and sacrificed at 25th d;altered hepatic foci (AHF) were generated efficiently.To a second group of rats a single 20 mg/kg doses of CAPE was given 12 h before initiation with CT and were sacrificed at 25th d. We evaluated the expression of preneoplastic markers as y-glutamyltranspeptidase (GGT) and glutathione S-transferase type pi protein (GSTp) by histochemistry, RT-PCR and Western blot analyses, respectively. We measured thiobarbituric acid reactive substances (TBARS) in homogenates of liver and used Unscheduled DNA Synthesis (UDS) assay by incorporation of [3H] thymidine (3HdT) in primary hepatocyte cultures (PHC).RESULTS:At 25th d after CT CAPE reduced the observed increase of GGT+AHF by 84% and liver expression of ggt mRNA by 100%. In case of the GSTp protein, the level was reduced by 90%. As indicative of oxidative stress generated by diethylnitrosamine (DEN) 12 h after its administration, we detected a 68% increase of TBARS.When CAPE was administered before DEN, it completely protected from liver TBARS induction. To have an indication of the sole effect of CAPE on initiation, two carcinogens were tested in a UDS assay in PHC, we used methyl-n-nitrosoguanidine as a direct carcinogen and DEN, as indirect carcinogen. In this assay, genotoxic damage caused by carcinogens was abolished at 5μM CAPE concentration.CONCLUSION:Our results demonstrated that CAPE possesses anti-genotoxic and antineoplastic capabilities,by an anti-oxidative and free-radical scavenging mechanism.

  14. Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse

    International Nuclear Information System (INIS)

    Purpose: Caffeic acid phenethyl ester (CAPE), a component of propolis, was reported capable of depleting glutathione (GSH). We subsequently examined the radiosensitizing effect of CAPE and its toxicity. Methods and Materials: The effects of CAPE on GSH level, GSH metabolism enzyme activities, NF-κB activity, and radiosensitivity in mouse CT26 colorectal adenocarcinoma cells were determined. BALB/c mouse with CT26 cells implantation was used as a syngeneic in vivo model for evaluation of treatment and toxicity end points. Results: CAPE entered CT26 cells rapidly and depleted intracellular GSH in CT26 cells, but not in bone marrow cells. Pretreatment with nontoxic doses of CAPE significantly enhanced cell killing by ionizing radiation (IR) with sensitizer enhancement ratios up to 2.2. Pretreatment of CT26 cells with N-acetyl-L-cysteine reversed the GSH depletion activity and partially blocked the radiosensitizing effect of CAPE. CAPE treatment in CT26 cells increased glutathione peroxidase, decreased glutathione reductase, and did not affect glutathione S-transferase or γ-glutamyl transpeptidase activity. Radiation activated NF-κB was reversed by CAPE pretreatment. In vivo study revealed that pretreatment with CAPE before IR resulted in greater inhibition of tumor growth and prolongation of survival in comparison with IR alone. Pretreatment with CAPE neither affected body weights nor produced hepatic, renal, or hematopoietic toxicity. Conclusions: CAPE sensitizes CT26 colorectal adenocarcinoma to IR, which may be via depleting GSH and inhibiting NF-κB activity, without toxicity to bone marrow, liver, and kidney

  15. Oxidative stress in testicular tissues of rats exposed to cigarette smoke and protective effects of caffeic acid phenethyl ester

    Institute of Scientific and Technical Information of China (English)

    Hüseyin Ozyurt; Hidir Pekmez; Bekir Suha Parlaktas; Ilter Kus; Birsen Ozyurt; Mustafa Sarsllmaz

    2006-01-01

    Aim: To show the oxidative stress after cigarette smoke exposure in rat testis and to evaluate the effects of caffeic acid phenethyl ester (CAPE). Methods: Twenty-one rats were divided into three groups of seven. Animals in Group Ⅰwere used as control. Rats in Group Ⅱ were exposed to cigarette smoke only (4 x 30 min/d) and rats in Group Ⅲall the rats were killed and the levels of nitric oxide (NO) and anti-oxidant enzymes such as superoxide-dismutase,catalase and glutathione peroxidase (GSH-Px) and the level of malondialdehyde were studied in the testicular tissues of rats with spectrophotometric analysis. Results: There was a significant increase in catalase and superoxide-dismutase activities in Group Ⅱ when compared to the controls, but the levels of both decreased after CAPE administration in Group Ⅲ. GSH-Px activity was decreased in Group Ⅱ but CAPE caused an elevation in GSH-Px activity in Group Ⅲ.The difference between the levels of GSH-Px in Group Ⅰ and Group Ⅱ was significant, but the difference between groups Ⅱ and Ⅲ was not significant. Elevation of malondialdehyde after smoke exposure was significant and CAPE caused a decrease to a level which was not statistically different to the control group. A significantly increased level of NO after exposure to smoke was reversed by CAPE administration and the difference between NO levels in groups Ⅰ and Ⅲ was statistically insignificant. Conclusion: Exposure to cigarette smoke causes changes in the oxidative enzyme levels in rat testis, but CAPE can reverse these harmful effects.

  16. The Effect of Caffeic Acid Phenethyl Ester (CAPE) Fortification on the Liver Element Distribution that Occurs After Exercise.

    Science.gov (United States)

    Akil, Mustafa; Coban, Funda Karabag; Yalcinkaya, Ozcan

    2016-08-01

    The purpose of this study is to examine the effect of the caffeic acid phenethyl ester (CAPE) fortification applied to the rats, which were made to exercise, on the liver elements. The study was conducted on 32 Sprague-Dawley male rats. The experimental animals were divided into 4 groups in equal numbers. Group 1 is the group which was applied 10 μmol/kg/day CAPE as intraperitoneal (IP) for 4 weeks, and they were not made to exercise at the end of the application. Group 2 is the group which was applied 10 μmol/kg/day CAPE as IP for 4 weeks, and they were made to exercise at the end of the 4th week. Group 3 is the general control group. Group 4 is the swimming control group. A 10 mmol/kg CAPE application dissolved in ethyl alcohol of 10 % was applied to the CAPE group. Sodium (Na), zinc (Zn), calcium (Ca), iron (Fe), chrome (Cr), magnesium (Mg), potassium (K), copper (Cu) and cadmium (Cd) levels were identified in the liver samples at the end of the application. The results of the study suggest that exercise and CAPE fortification in rats cause changes in the Na, Zn, Ca, Fe and Cr parameters in liver tissues, and it does not affect Cd, Cu, Mg and K element distribution. It is thought that CAPE fortification would be helpful for preserving those parameters whose levels are known to be changing with exercise. PMID:26743862

  17. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ping Lin

    Full Text Available Caffeic acid phenethyl ester (CAPE treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.

  18. Caffeic Acid Phenethyl Ester and Ethanol Extract of Propolis Induce the Complementary Cytotoxic Effect on Triple-Negative Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-05-01

    Full Text Available Chemotherapy of breast cancer could be improved by bioactive natural substances, which may potentially sensitize the carcinoma cells’ susceptibility to drugs. Numerous phytochemicals, including propolis, have been reported to interfere with the viability of carcinoma cells. We evaluated the in vitro cytotoxic activity of ethanol extract of propolis (EEP and its derivative caffeic acid phenethyl ester (CAPE towards two triple-negative breast cancer (TNBC cell lines, MDA-MB-231 and Hs578T, by implementation of the MTT and lactate dehydrogenase (LDH assays. The morphological changes of breast carcinoma cells were observed following exposure to EEP and CAPE. The IC50 of EEP was 48.35 µg∙mL−1 for MDA-MB-23 cells and 33.68 µg∙mL−1 for Hs578T cells, whereas the CAPE IC50 was 14.08 µM and 8.01 µM for the MDA-MB-231 and Hs578T cell line, respectively. Here, we report that propolis and CAPE inhibited the growth of the MDA-MB-231 and Hs578T lines in a dose-dependent and exposure time-dependent manner. EEP showed less cytotoxic activity against both types of TNBC cells. EEP and, particularly, CAPE may markedly affect the viability of breast cancer cells, suggesting the potential role of bioactive compounds in chemoprevention/chemotherapy by potentiating the action of standard anti-cancer drugs.

  19. Caffeic Acid Phenethyl Ester Inhibits Oral Cancer Cell Metastasis by Regulating Matrix Metalloproteinase-2 and the Mitogen-Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chih-Yu Peng

    2012-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, an active component extracted from honeybee hives, exhibits anti-inflammatory and anticancer activities. However, the molecular mechanism by which CAPE affects oral cancer cell metastasis has yet to be elucidated. In this study, we investigated the potential mechanisms underlying the effects of CAPE on the invasive ability of SCC-9 oral cancer cells. Results showed that CAPE attenuated SCC-9 cell migration and invasion at noncytotoxic concentrations (0 μM to 40 μM. Western blot and gelatin zymography analysis findings further indicated that CAPE downregulated matrix metalloproteinase-2 (MMP-2 protein expression and inhibited its enzymatic activity. CAPE exerted its inhibitory effects on MMP-2 expression and activity by upregulating tissue inhibitor of metalloproteinase-2 (TIMP-2 and potently decreased migration by reducing focal adhesion kinase (FAK phosphorylation and the activation of its downstream signaling molecules p38/MAPK and JNK. These data indicate that CAPE could potentially be used as a chemoagent to prevent oral cancer metastasis.

  20. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  1. Caffeic Acid Phenethyl Ester: A Review of Its Antioxidant Activity, Protective Effects against Ischemia-reperfusion Injury and Drug Adverse Reactions.

    Science.gov (United States)

    Tolba, Mai F; Omar, Hany A; Azab, Samar S; Khalifa, Amani E; Abdel-Naim, Ashraf B; Abdel-Rahman, Sherif Z

    2016-10-01

    Propolis, a honey bee product, has been used in folk medicine for centuries for the treatment of abscesses, canker sores and for wound healing. Caffeic acid phenethyl ester (CAPE) is one of the most extensively investigated active components of propolis which possess many biological activities, including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-cancer effects. CAPE is a polyphenolic compound characterized by potent antioxidant and cytoprotective activities and protective effects against ischemia-reperfusion (I/R)-induced injury in multiple tissues such as brain, retina, heart, skeletal muscles, testis, ovaries, intestine, colon, and liver. Furthermore, several studies indicated the protective effects of CAPE against chemotherapy-induced adverse drug reactions (ADRs) including several antibiotics (streptomycin, vancomycin, isoniazid, ethambutol) and chemotherapeutic agents (mitomycin, doxorubicin, cisplatin, methotrexate). Due to the broad spectrum of pharmacological activities of CAPE, this review makes a special focus on the recently published data about CAPE antioxidant activity as well as its protective effects against I/R-induced injury and many adverse drug reactions. PMID:25365228

  2. Caffeic acid phenethyl ester modifies the Th1/Th2 balance in ileal mucosa after γ-irradiation in the rat by modulating the cytokine pattern

    Institute of Scientific and Technical Information of China (English)

    Olivier Grémy; Marc Benderitter; Christine Linard

    2006-01-01

    AIM: To pharmacologically modulate Th polarization in the ileum exposed to ionizing radiation by using the immuno-modulatory/apoptotic properties of Caffeic Acid Phenethyl Ester (CAPE).METHODS: Rats received CAPE (30 mg/kg) treatment ip 15 min prior to intestinal 10 Gy γ-irradiation and once a day for a 6 d period after irradiation. Expression of genes implicated in Th differentiation in ileal mucosa (IL-23/IL12Rβ2), Th cytokine responses (IFN-γ, IL-2, IL-4, IL-13),Th migratory behaviour (CXCR3, CCR5, CCR4), Th signailing suppressors (SOCS1, SOCS3), transcription factor (T-Bet, GATA-3) and apoptosis (FasL/Fas, TNF/TNFR,XIAP, Bax, caspase-3) was analyzed by RT-PCR 6 h and 7 d post-irradiation. CD4+ and TUNEL positive cells were visualized by immunostaining.RESULTS: The expression of Th1-related cytokine/chemokine receptors (IFN-γ, IL-2, CXCR3, CCR5) was repressed at 7 d post-irradiation while Th2 cell cytokine/chemokines (IL-4, IL-13, CCR4) were not repressed or even upregulated. The irradiation-induced Th2 profile was confirmed by the upregulation of both Th2-specific transcription factor GATA-3 and SOCS3. Although an apoptosis event occurred 6 h after 10 Gy of intestinal γ-irradiation, apoptotic mediator analysis showed a tendency to apoptotic resistance 7 d post-irradiation. CAPE amplified apoptotic events at 6h and normalized Bax/FasL expressions at 7 d.CONCLUSION: CAPE prevented the ileal Th2 immune response by modulating the irradiation-influenced cytokine environment and apoptosis.

  3. Fabrication of Novel Bioactive Cellulose-Based Films Derived from Caffeic Acid Phenethyl Ester-Loaded Nanoparticles via a Rapid Expansion Process: RESOLV.

    Science.gov (United States)

    Saelo, Suparak; Assatarakul, Kitipong; Sane, Amporn; Suppakul, Panuwat

    2016-09-01

    Caffeic acid phenethyl ester (CAPE) nanoparticles (NPs) with an average size of ∼40 nm obtained from TEM and binomial average sizes of ∼90 and ∼400 nm obtained from DLS were successfully produced by rapid expansion of subcritical solutions into liquid solvents (RESOLV). The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of CAPE and CAPE-NPs were determined by plate count method against 12 pathogenic and spoilage bacteria and 3 strains of yeast. Total phenolic content (TPC) and antioxidant activities of CAPE-NPs were quantified and subsequently investigated using two assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric reducing antioxidant power (FRAP). CAPE-NP-incorporated cellulose-based films were prepared and characterized. MICs and MBCs of CAPE-NPs against most bacteria and Candida albicans were 700 and 1400 μg/mL, respectively. CAPE-NPs yielded a TPC value of 426.74 μgGAE/mg and lower antioxidant activities than those of CAPE in ethanol (CAPE-EtOH), whereas BHT yielded lower FRAP than that of CAPE-NPs. The impregnation of CAPE into cellulose-based films was confirmed by FTIR spectra. Moreover, incorporation of only 0.5 wt % CAPE-NPs into the films resulted in an inhibitory effect against microorganisms. Fortunately, incorporation of higher concentration of CAPE-NPs-MC films led to a significantly higher antioxidant activity and vice versa. This indicated that CAPE-NPs significantly enhanced the antimicrobial and antioxidant activities of CAPE. The results show that the environmentally benign supercritical CO2 technique should be generally applicable to NP fabrication of other important bioactive ingredients, especially in liquid form. In addition, it is suggested that CAPE-NPs can be used to reduce the dosage of CAPE and improve their bioavailability and thus merit further investigation for bioactive packaging film and coating applications. PMID:27548627

  4. Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.

    Science.gov (United States)

    Jia, Cai-Hua; Shin, Jung-Ah; Lee, Ki-Teak

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) and 4-vinylcatechol (4-VC) were prepared for studying their antioxidative activities in emulsion. Oil-in-water emulsions of stripped soybean oil containing 200 ppm of CAPE, 4-VC, or α-tocopherol were stored at 40 °C in the dark for 50 days, and proton nuclear magnetic resonance ((1)H NMR) was used to identify and quantify the oxidation products. Emulsion droplet sizes, peroxide values, and levels of primary oxidation products (i.e., hydroperoxides) and secondary oxidation products (i.e., aldehydes) were determined. The results showed that CAPE (200 ppm) and 4-VC (200 ppm) had significantly greater antioxidant activities on the oxidation of stripped soybean oil-in-water emulsions than α-tocopherol (200 ppm). The peroxide values of CAPE (8.4 mequiv/L emulsion) and 4-VC (15.0 mequiv/L emulsion) were significantly lower than that of α-tocopherol (33.4 mequiv/L emulsion) (p < 0.05) on 36 days. In addition, the combinations of CAPE + α-tocopherol (100 + 100 ppm) or 4-VC + α-tocopherol (100 + 100 ppm) had better antioxidant activities than α-tocopherol (200 ppm). For CAPE + α-tocopherol, 4-VC + α-tocopherol, and α-tocopherol, the amounts of conjugated diene forms were 16.67, 13.72, and 16.32 mmol/L emulsion, and the concentrations of aldehydes were 2.15, 1.13, and 4.26 mmol/L emulsion, respectively, after 50 days of storage.

  5. Ameliorating Role of Caffeic Acid Phenethyl Ester (CAPE Against Methotrexate-Induced Oxidative Stress in the Sciatic Nerve, Spinal Cord and Brain Stem Tissues of Rats

    Directory of Open Access Journals (Sweden)

    Ertuğrul Uzar

    2010-03-01

    Full Text Available OBJECTIVE: Methotrexate (MTX-associated neurotoxicity is an important clinical problem in cancer patients, but the mechanisms of MTX-induced neurotoxicity are not yet known exactly. The aims of this study were (1 to investigate the possible role of malondialdehyde (MDA, superoxide dismutase (SOD enzyme, glutathione peroxidase (GSH-Px and catalase (CAT in the pathogenesis of MTX-induced neurotoxicity and (2 to determine whether there is a putative protective effect of caffeic acid phenethyl ester (CAPE on MTX-induced neurotoxicity in the spinal cord, brainstem and sciatic nerve of rats. METHODS: A total of 19 adult Wistar male rats were divided into three experimental groups. Group I, control group; Group II, MTX-treated group; and Group III, MTX + CAPE-treated group. MTX was administered to the MTX and MTX + CAPE groups intraperitoneally (IP with a single dose of 20 mg/kg on the second day of the experiment. CAPE was administered to the MTX + CAPE group IP with a dose of 10 μmol/kg for 7 days. RESULTS: In the sciatic nerve and spinal cord tissue, CAT and GSH-Px activities were increased in the MTX group in comparison with the control group. CAPE treatment with MTX significantly decreased CAT and GSH-Px activities in the neuronal tissues of rats in comparison with the MTX group. In the spinal cord and brainstem tissues, SOD activity in the MTX group was decreased in comparison with the control group, but in the sciatic nerve, there was no significant difference. In the spinal cord and brainstem of rats, SOD activity was increased in the CAPE + MTX group when compared with the MTX group. The level of MDA was higher in the MTX group than in the control group. CAPE administration with MTX injection caused a significant decrease in MDA level when compared with the MTX group. CONCLUSION: These results reveal that MTX increases oxidative stress in the sciatic nerve, spinal cord and brainstem of rats and that CAPE has a preventive effect on the

  6. Anti-catabolic effect of caffeic acid phenethyl ester, an active component of honeybee propolis on bone loss in ovariectomized mice: a micro-computed tomography study and histological analysis

    Institute of Scientific and Technical Information of China (English)

    Duan Wangping; Wang Qing; Li Fang; Xiang Chuan; Zhou Lin; Xu Jiake; Feng Haotian

    2014-01-01

    Background Osteoporosis (OP) is a common bone disease,which adversely affects life quality.Effective treatments are necessary to combat both the loss and fracture of bone.Recent studies indicated that caffeic acid phenethyl ester (CAPE) is a natural chemical compound from honeybee propolis which is capable of attenuating osteoclastogenesis and bone resorption.Therefore,this study aimed to investigate the effect of CAPE on bone loss in OP mice using micro-computed tomography (CT) and histology.Methods Eighteen mice were prepared and evenly divided into three groups.The six mice in the sham+PBS group did not undergo ovariectomy and were intraperitoneally injected with PBS during the curing period.Twelve mice were ovariectomized (OVX) to induce OP.Six of them in the OVX+CAPE group were intraperitoneally injected with 0.5 mg/kg CAPE twice per week for 4 weeks after ovariectomy.The other six OVX mice in OVX+PBS group were treated with PBS.All the mice were sacrificed 4 weeks after ovariectomy.The tibias were bilaterally excised for micro-CT scan and histological analysis.The Mann-Whitney U test was used to test the statistical differences among groups.Results Bone loss occurred in OVX mice.Compared with the sham+PBS group,mice in the OVX+PBS group exhibited a significant decrease in bone mineral density (BMD,P <0.05),bone volume fraction (BV/TV,P <0.01),trabecular thickness (Tb.Th,P <0.05),and trabecular number (Tb.N,P <0.01),as well as a non-insignificant increase in the number of osteoclasts (N.Oc/B.Pm).With CAPE treatment,the microarchitecture of the tibial metaphyses was significantly improved with a reduction of osteoclast formation.Compared with the OVX+PBS group,BV/TV in the OVX+CAPE group was significantly increased by 33.9% (P <0.05).Conclusion CAPE therapy results in the protection of bone loss induced by OVX.

  7. Anticancer Activities of Substituted Cinnamic Acid Phenethyl Esters on Human Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIShu-chun; LIHui; ZHANGFa; LIZhong-jun; CUIJing-rong

    2003-01-01

    Caffeic acid phenethyl ester (CAPE) and sixteen substituted cinnamic acid phenethyl esters were prepared via conventional procedures in order to test their in vitro anticancer activities by either MTT assay or SRB assay on six different human cancer cell lines. The results indicated that in the concentration of 10μmol·L-1 the lead compmuM CAPE possessed anficancer activities against human HL-60, Bel-7402, and Hela cell lines, and two other compounds possessed potent anticancer activities against Bel-7402 and Hela cell lines.

  8. The Effect for Lengths of the Alkyl Side Chain on the Antioxidant and Antiproliferative Activity of Caffeic Acid Phenethyl Ester%碳链长度对咖啡酸酯的抗氧化及抗增殖活性的影响

    Institute of Scientific and Technical Information of China (English)

    罗辉; 王琪

    2012-01-01

      咖啡酸苯乙酯(caffeic acid phenethyl ester, CAPE)是蜂胶中的主要活性成分,具有显著的抗氧化及抗肿瘤活性。研究了具有不同边链长度的CAPE类似物(咖啡酸丁酯、咖啡酸己酯、咖啡酸辛酯和咖啡酸十六烷基酯)对水溶性偶氮引发剂2,2′-偶氮二(2-脒基丙烷)二盐酸盐(AAPH)诱导的血红细胞膜氧化损伤的保护作用。其抗氧化活性顺序为:咖啡酸辛酯>CAPE~咖啡酸丁酯>咖啡酸己酯>咖啡酸十六烷基酯。同时,测定了这些化合物抑制人肺癌细胞 A549增殖活性,其活性顺序为:咖啡酸丁酯>CAPE>咖啡酸辛脂>咖啡酸己脂>咖啡酸十六烷基脂。研究结果表明:与CAPE相比,咖啡酸辛酯的抗氧化活性和咖啡酸丁酯抑制A549细胞增殖活性优于母体分子。咖啡酸酯的抗氧化活性和抑制 A549细胞增殖的活性与其边链长度(亲脂性)并不呈简单的线性关系。“合适”的亲脂性和胞内的定位是影响化合物这些活性的重要因素。

  9. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex

    Directory of Open Access Journals (Sweden)

    Lin Yuheng

    2012-04-01

    Full Text Available Abstract Background Caffeic acid (3,4-dihydroxycinnamic acid is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H was able to convert p-coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p-coumarate 3-hydroxylase (C3H, is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs from Rhodobacter species were compared after overexpression in E. coli. The results indicated that the TAL from R. capsulatus (Rc possesses higher activity towards both tyrosine and L-dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and RcTAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli, which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis

  10. Caffeic acid derivatives in the roots of yacon (Smallanthus sonchifolius).

    Science.gov (United States)

    Takenaka, Makiko; Yan, Xiaojun; Ono, Hiroshi; Yoshida, Mitsuru; Nagata, Tadahiro; Nakanishi, Tateo

    2003-01-29

    Five caffeic acid derivatives were found in the roots of yacon, Smallanthus sonchifolius (Poepp. and Endl.) H. Robinson, Asteraceae, as the major water-soluble phenolic compounds. The structures of these compounds were determined by analysis of spectroscopic data. Two of these were chlorogenic acid (3-caffeoylquinic acid) and 3,5-dicaffeoylquinic acid, common phenolic compounds in plants of the family Asteraceae. Three were esters of caffeic acid with the hydroxy groups of aldaric acid, derived from hexose. The structure of the aldaric moiety was determined by hydrolysis and comparison of NMR spectra with those of standard aldaric acids. The compounds were novel caffeic acid esters of altraric acid: 2,4- or 3,5-dicaffeoylaltraric acid, 2,5-dicaffeoylaltraric acid, and 2,3,5- or 2,4,5-tricaffeoylaltraric acid. PMID:12537459

  11. Improved Delivery of Caffeic Acid through Liposomal Encapsulation

    OpenAIRE

    Katuwavila, Nuwanthi P.; A. D. L. Chandani Perera; V. Karunaratne; Gehan A. J. Amaratunga; D. Nedra Karunaratne

    2016-01-01

    Photoageing resulting from long term exposure of the skin to UV light can be minimized by scavenging the reactive photochemical intermediates with antioxidants. For effective photoprotection, the antioxidant must overcome the barrier properties of the skin and reach the target site in significant amounts. The present study aims to improve the skin penetration of caffeic acid, a very effective free radical scavenger, by encapsulating in liposomes. Caffeic acid loaded liposomes prepared using t...

  12. Novel Caffeic Acid Nanocarrier: Production, Characterization, and Release Modeling

    Directory of Open Access Journals (Sweden)

    Milad Fathi

    2013-01-01

    Full Text Available This paper deals with the development of novel nanocarriers using layer by layer carbohydrate coating of caffeic acid loaded solid lipid nanoparticles (SLNs to improve stability and colon delivery of the poorly water-soluble caffeic acid. Three biopolymers (chitosan, alginate, and pectin in different concentrations (0.1, 0.25, and 0.5% were electrostatically coated over the SLN surface. The size and zeta potential of produced nanocarriers were measured using photon correlation spectroscopy. Mathematical models (i.e., zero-order, first-order, Higuchi, Ritger-Peppas, reciprocal powered time, Weibull, and quadratic models were used to describe the release and kinetic modeling in gastrointestinal solution (GIS. Also, antioxidant activity of caffeic acid during the release in GIS was investigated using DPPH and reducing activity methods. The prepared treatments coated by alginate-chitosan as well as pectin-chitosan coated SLN at the concentration of 0.1% showed nanosized bead; the latter efficiently retarded the release of caffeic acid in gastric media up to 2.5 times higher than that of SLN. Zeta potential values of coated samples were found to significantly increase in comparison to SLN indicating the higher stability of produced nanocarriers. Antioxidant activity of caffeic acid after gastric release did not result in the same trend as observed for caffeic acid release from different treatments; however, in line with less caffeic acid release in the intestine solution by the effect of coating, lower antioxidant activity was determined at the end stage of the experiment.

  13. Caffeic Acid Derivatives in Dried Lamiaceae and Echinacea purpurea Products

    Science.gov (United States)

    The concentrations of caffeic acid derivatives within Lamiaceae and Echinacea (herb, spice, tea, and dietary supplement forms) readily available in the U.S. marketplace (n=72) were determined. After the first identification of chicoric acid in Ocimum basilicum (basil), the extent to which chicoric a...

  14. 5-Caffeoylquinic acid and caffeic acid orally administered suppresses P-selectin expression on mouse platelets

    Science.gov (United States)

    Caffeic acid and 5-caffeoylquinic acid are a naturally occurring phenolic acid and its ester found in human diets. In this paper, potential effects of caffeic acid and 5-caffeoylquinic acid found in coffee and other plant sources on platelet activation were studied via investigating P-selectin expre...

  15. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    Science.gov (United States)

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system.

  16. Effects of Lipoic Acid, Caffeic Acid and a Synthesized Lipoyl-Caffeic Conjugate on Human Hepatoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Giuseppe Castello

    2011-07-01

    Full Text Available Hepatocellular carcinoma (HCC is among the most aggressive and fatal cancers. Its treatment with conventional chemotherapeutic agents is inefficient, due to several side effects linked to impaired organ function typical of liver diseases. Consequently, there exists a decisive requirement to explore possible alternative chemopreventive and therapeutic strategies. The use of dietary antioxidants and micronutrients has been proposed for HCC successful management. The aim of this work was to test in vitro the effects of lipoic acid, caffeic acid and a new synthesized lipoyl-caffeic conjugate on human hepatoma cell lines in order to assess their effect on tumor cell growth. The results of cytotoxicity assays at different times showed that the cell viability was directly proportional to the molecule concentrations and incubation times. Moreover, to evaluate the pro- or anti-inflammatory effects of these molecules, the cytokine concentrations were evaluated in treated and untreated cellular supernatants. The obtained cytokine pattern showed that, at the increasing of three molecules concentrations, three pro-inflammatory cytokines such as IL-1β, IL-8 and TNF-α decreased whereas the anti-inflammatory cytokine such as IL-10 increased.

  17. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Yunliang; Wang, Yutong; Li, Jinfeng; Hua, Linlin; Han, Bing; Zhang, Yuzhen; Yang, Xiaopeng; Zeng, Zhilei; Bai, Hongying; Yin, Honglei; Lou, Jiyu

    2016-09-01

    Caffeic acid is a type of phenolic acid and organic acid. It is found in food (such as tomatoes, carrots, strawberries, blueberries and wheat), beverages (such as wine, tea, coffee and apple juice) as well as Chinese herbal medicines. In the present study, we examined the effects of caffeic acid on learning deficits in a rat model of Alzheimer's disease (AD). The rats were randomly divided into three groups: i) control group, ii) AD model group and iii) caffeic acid group. Caffeic acid significantly rescued learning deficits and increased cognitive function in the rats with AD as demonstrated by the Morris water maze task. Furthermore, caffeic acid administration resulted in a significant decrease in acetylcholinesterase activity and nitrite generation in the rats with AD compared with the AD model group. Furthermore, caffeic acid suppressed oxidative stress, inflammation, nuclear factor‑κB‑p65 protein expression and caspase‑3 activity as well as regulating the protein expression of p53 and phosphorylated (p-)p38 MAPK expression in the rats with AD. These experimental results indicate that the beneficial effects of caffeic acid on learning deficits in a model of AD were due to the suppression of oxidative stress and inflammation through the p38 MAPK signaling pathway. PMID:27430591

  18. Preparation of MIP-based QCM nanosensor for detection of caffeic acid.

    Science.gov (United States)

    Gültekin, Aytaç; Karanfil, Gamze; Kuş, Mahmut; Sönmezoğlu, Savaş; Say, Rıdvan

    2014-02-01

    In the present work, a new caffeic acid imprinted quartz crystal microbalance (QCM) nanosensor has been designed for selective assignation of caffeic acid in plant materials. Methacrylamidoantipyrine-iron(III) [MAAP-Fe(III)] as metal-chelating monomer has been used to prepare selective molecular imprinted polymer (MIP). MIP film for detection of caffeic acid has been developed on QCM electrode and selectivity experiments and analytical performance of caffeic acid imprinted QCM nanosensor has been studied. The caffeic acid imprinted QCM nanosensor has been characterized by AFM. After the characterization studies, imprinted and non-imprinted nanosensors was connected to QCM system for studies of connection of the target molecule, selectivity and the detection of amount of target molecule in real samples. The detection limit was found to be 7.8 nM. The value of Langmuir constant (b) (4.06 × 10(6)) that was acquired using Langmuir graph demonstrated that the affinity of binding sites was strong. Also, selectivity of prepared caffeic acid imprinted nanosensor was found as being high compared to chlorogenic acid. Finally, the caffeic acid levels in plant materials was determined by the prepared QCM nanosensor.

  19. Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2011-12-01

    Full Text Available BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well. METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL-tumor necrosis factor alpha (TNF-α-macrophage colony stimulating factor (M-CSF-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells. Tartrate resistant acid phosphatase (TRAP staining was performed and TRAP-positive polynucleated cells (PNCs were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System. RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis. KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α.

  20. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.

    Science.gov (United States)

    Huang, Qin; Lin, Yuheng; Yan, Yajun

    2013-12-01

    Caffeic acid is a plant-specific phenylpropanoic acid with multiple health-improving effects reported, and its therapeutic derivatives have also been studied throughout the last decade. To meet its market need and achieve high-level production, microbial production of caffeic acid approaches have been developed in metabolically engineered Escherichia coli. In our previous work, we have established the first artificial pathway that realized de novo production of caffeic acid using E. coli endogenous 4-hydroxyphenylacetate 3-hydroxylase (4HP3H). In this work, we exploited the catalytic potential of 4HPA3H in the whole-cell bioconversion study and produced 3.82 g/L (461.12 mg/L/OD) caffeic acid from p-coumaric acid, a direct precursor. We further engineered a phenylalanine over-producer into a tyrosine over-producer and then introduced the artificial pathway. After adjusting the expression strategy and optimizing the inoculants timing, de novo production of caffeic acid reached 766.68 mg/L. Both results from the direct precursor and simple carbon sources represent the highest titers of caffeic acid from microbial production so far.

  1. Synthesis of labelled compound of ferulic acid and caffeic acid with tritium

    International Nuclear Information System (INIS)

    Effective components of Chinese traditional herbs consist of many compounds, but some of the compounds usually contain unsaturated carbon-carbon double bonds. The unsaturated organic compounds 3H-Ferulic acid and 3H-Caffeic acid are prepared with their tritiated intermediates made by electric-dischange exposure method, which ensures the compounds contaning double bonds not hydrogenated. The 3H-Ferulic acid is composed of 3H-vanillin and Malonic acid. The 3H-Caffeic acid is composed of 3H-protocatechuyl aldehyde and Malonic acid and the specific activity of the products is 0.2 mCi/mg. The radiochemicaly purity is greater than 90%

  2. Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture

    OpenAIRE

    Kazancioglu, Hakki Oguz

    2015-01-01

    Hakki Oguz Kazancioglu,1 Sertac Aksakalli,2 Seref Ezirganli,1 Muhammet Birlik,2 Mukaddes Esrefoglu,3 Ahmet Hüseyin Acar1 1Department of Oral and Maxillofacial Surgery, 2Department of Orthodontics, Faculty of Dentistry, 3Department of Histology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey Background: Narrow maxilla is a common problem in orthodontics and dentofacial orthopedics. To solve this problem, a procedure called rapid maxillary expansion (RME) has been us...

  3. Quantitative analysis of caffeic and ferulic acids in oatmeal. Comparison of a conventional method with a stable isotope dilution assay.

    Science.gov (United States)

    Guth, H; Grosch, W

    1994-09-01

    [13C]Caffeic acid and [13C]ferulic acid were synthesized and then used as internal standards for the determination of these acids (free and esterified) in oatmeal. A comparative study indicated that 84% of the ferulic acid, but only 32% of the caffeic acid, which is more susceptible to oxidation than the former, could be found by a conventional analytical approach.

  4. Preparation and characterization of SPION functionalized via caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Baykal, A. [Department of Chemistry, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Amir, Md., E-mail: mda.fatih@gmail.com [Department of Chemistry, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Günerb, S. [Department of Physics, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Sözeri, H. [TUBITAK-UME, National Metrology Institute, 41470 Gebze, Kocaeli (Turkey)

    2015-12-01

    Caffeic acid coated superparamagnetic iron oxide nanoparticles (SPION-CFA) was synthesized by reflux method. The structural, spectroscopic and magnetic properties were studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and Vibrating sample magnetometer (VSM) techniques. Thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of CA on the surface of SPION. The theoretical analyzes performed on recorded room temperature VSM spectrum confirmed the formation of superparamagnetic nature of SPION-CFA. The particle size dependent Langevin function was applied to determine the average magnetic particle dimension (D{sub mag}) around 11.93 nm. In accordance, the average crystallite and particle sizes were obtained as 11.40 nm and ~12.00 nm from XRD and TEM measurements. The extrapolated specific saturation magnetization (σ{sub s}) is 44.11 emu/g and measured magnetic moment is 1.83 µ{sub B}. These parameters assign small order of magnetization for NPs with respect to bulk Fe{sub 3}O{sub 4}. Magnetic anisotropy was offered as uniaxial and calculated effective anisotropy constant (K{sub eff}) is 34.82×10{sup 4} Erg/g. The size-dependent saturation magnetization suggests the existence of a magnetically inactive layer as 1.035 nm for SPION-CFA. - Highlights: • The effects of CFA on the microstructure and magnetic properties of SPION have been investigated. • Product was structurally and magnetically characterized. • Product presented superparamagnetic behavior at room temperature.

  5. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  6. Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products.

    Science.gov (United States)

    Khuwijitjaru, Pramote; Suaylam, Boonyanuch; Adachi, Shuji

    2014-02-26

    Caffeic acid was subjected to degradation under subcritical water conditions within 160-240 °C and at a constant pressure of 5 MPa in a continuous tubular reactor. Caffeic acid degraded quickly at these temperatures; the main products identified by liquid chromatography-diode array detection/mass spectrometry were hydroxytyrosol, protocatechuic aldehyde, and 4-vinylcatechol. The reaction rates for the degradation of caffeic acid and the formation of products were evaluated. Online high-performance liquid chromatography/2,2-diphenyl-1-picryhydrazyl assay was used to determine the antioxidant activity of each product in the solution. It was found that the overall antioxidant activity of the treated solution did not change during the degradation process. This study showed a potential of formation of antioxidants from natural phenolic compounds under these subcritical water conditions, and this may lead to a discovering of novel antioxidants compounds during the extraction by this technique. PMID:24483598

  7. Activity of caffeic acid in different fish lipid matrices: A review

    DEFF Research Database (Denmark)

    Medina, Isabel; Undeland, Ingrid; Larsson, Karin;

    2012-01-01

    Caffeic acid, a hydroxycinnamic acid common in different vegetable sources, has been employed as a natural antioxidant for inhibiting oxidation of fish lipids present in different food matrices. The aim of this review is to discuss the mechanisms involved in the antioxidative and prooxidative eff...

  8. Antioxidant Effect of Caffeic Acid on Oxytetracycline Induced Lipid Peroxidation in Albino Rats

    OpenAIRE

    Jayanthi, R.; Subash, P.

    2010-01-01

    Caffeic acid is a well-known phenolic compound widely present in plant kingdom. The aim of this study was to investigate the possible protective effect of caffeic acid (CA) against oxytetracycline (OXT) induced hepatotoxicity in male Albino Wistar rats. A total of 30 rats weighing 150–170 g were randomly divided into five groups of six rats in each group. Oral administration of OXT (200 mg/kg body weight/day) for 15 days produced hepatic damage as manifested by a significant increase in serum...

  9. Solubilities of p-coumaric and caffeic acid in ionic liquids and organic solvents

    International Nuclear Information System (INIS)

    Highlights: ► New solubility data of p-coumaric and caffeic acid in ionic liquids and organic solvents. ► Normal melting point temperature and enthalpy of fusion of p-coumaric and caffeic acid. ► Thermogravimetric analysis for p-coumaric and caffeic acid. ► Correlation with UNIQUAC and NRTL. -- Abstract: The solubilities of two cinnamic acid derivatives, namely p-coumaric acid and caffeic acid, in six 1-alkyl-3-methyl imidazolium based ionic liquids composed of the PF6−, BF4−, TFO− and TF2N− anions, and in two organic solvents, t-pentanol and ethyl acetate, have been measured at the temperature range of about (303 to 317) K. The p-coumaric acid was found to be more soluble than caffeic acid in all studied solvents. Higher solubilities of both acids were observed in the ionic liquids composed of the BF4− and TFO− anions. The increase of the alkyl chain length on the cation invokes a decrease in solubility in the case of hydrophilic ionic liquids composed of BF4− anion, while in the case of hydrophobic ones composed of PF6− anion an increase in the solubility is observed. Between the two organic solvents t-pentanol is better solvent than ethyl acetate for both acids. Moreover, using the van’t Hoff equations the apparent Gibbs energy, enthalpy, and entropy of solution were calculated. Finally, successful correlation of the experimental data was achieved with the UNIQUAC and the NRTL activity coefficient models, while poor predictions of the solubility of the two acids in the organic solvents were obtained with two UNIFAC models

  10. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    Indian Academy of Sciences (India)

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  11. Caffeic acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats.

    Science.gov (United States)

    Hsu, F L; Chen, Y C; Cheng, J T

    2000-04-01

    The antihyperglycemic effect of caffeic acid, one of the phenolic compounds contained in the fruit of Xanthium strumarium, was investigated. After an intravenous injection of caffeic acid into diabetic rats of both streptozotocin-induced and insulin-resistant models, a dose-dependent decrease of plasma glucose was observed. However, a similar effect was not produced in normal rats. An insulin-independent action of caffeic acid can thus be considered. Otherwise, this compound reduced the elevation of plasma glucose level in insulin-resistant rats receiving a glucose challenge test. Also, glucose uptake into the isolated adipocytes was raised by caffeic acid in a concentration-dependent manner. Increase of glucose utilization by caffeic acid seems to be responsible for the lowering of plasma glucose. PMID:10821047

  12. Determination of caffeic acid in root and rhizome of Black cohosh (Cimicifuga racemosa (L. Nutt.

    Directory of Open Access Journals (Sweden)

    Zapala Karolina

    2014-06-01

    Full Text Available Cimicifuga racemosa, is a plant with a diverse and long history of medicinal use. Caffeic acid, bioactive compound, which often occurs with other polyphenols can influence the biological activity of this plant. The aim of our work was quantitative analysis of caffeic acid in roots and rhizomes of two varieties of C. racemosa. Analysis was performed by HPLC method. The extracts were separated on C18 reversed-phase column using mixture of methanol, water and formic acid (25:75:0.5 v/v/v as a mobile phase. The flow rate of eluent was 1.0 ml·min-1. The obtained validation parameters such as linearity, linear regression equation and precision expressed as a relative standard deviation were adequate for quantitative determination. Caffeic acid was found in all tested extracts. The highest total amount of caffeic acid was determined in C. racemosa var. racemosa (255.3 μg·g-1 while its concentration in C. racemosa var. cordifolia was significantly lower (213.0 μg·g-1.

  13. Mechanism and kinetics in reactions of caffeic acid with radicals by pulse radiolysis and calculation

    International Nuclear Information System (INIS)

    The interaction of caffeic acid with eaq-, (CH3)2(OH) CCH2·, CO2·-, H·, ·OH and N3· radicals were studied by γ-, pulse radiolysis and molecular orbital calculation. UV-visible spectra of electron/·OH adducts, semi-quinone radicals of caffeic ions, and the stable products from the reactions were derived. The rate constants were determined. The attacked sites and the most favorable structures of the transient radicals were predicted. Reaction mechanisms were proposed. (author)

  14. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2009-01-01

    The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y......) correlated positively and linearly to p-coumaric acid consumption (X): Y = 0.5 X + 9.5; R 2 = 0.96, P skin concentrations, indicated that the grape skins harboured an o......-hydroxylation activity, proposedly a monophenol- or a flavonoid 3′-monooxygenase activity (EC 1.14.18.1 or EC 1.14.13.21). The K m of this crude o-hydroxylation activity in the red grape skin was 0.5 mM with p-coumaric acid....

  15. Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Yu ZHOU; San-hua FANG; Yi-lu YE; Li-sheng CHU; Wei-ping ZHANG; Meng-ling WANG; Er-qing WEI

    2006-01-01

    Aim: To investigate the effects of caffeic acid on early and delayed injuries after focal cerebral ischemia in rats, and the possible relation to 5-lipoxygenase inhibition. Methods: Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in Sprague-Dawley rats. Caffeic acid (10 and 50 mg/kg) was ip injected for 5 d after ischemia. The brain injuries were observed, and the levels of cysteinyl leukotrienes and leukotriene B4 in the brain tissue were measured. Results: Caffeic acid (50 mg/kg) ameliorated neurological dysfunction and neuron loss, and decreased infarct volume 24 h after ischemia; it attenuated brain atrophy, infarct volume, and particularly astrocyte proliferation 14 d after ischemia. In addition, it reduced the production of leukotrienes (5-lipoxygenase metabolites) in the ischemic hemispheres 3 h and 7 d after ischemia. Conclusion: Caffeic acid has protective effect on both early and delayed injuries after focal cerebral ischemia in rats; and this effect may partly relate to 5-lipoxygenase inhibition.

  16. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

    Science.gov (United States)

    Deshmukh, Rahul; Kaundal, Madhu; Bansal, Vikas; Samardeep

    2016-07-01

    Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (plearning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD. PMID:27261577

  17. Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves.

    Science.gov (United States)

    Miura, Chitose; Matsunaga, Hisami; Haginaka, Jun

    2016-08-01

    Molecularly imprinted polymers (MIPs) for caffeic acid (CA) were prepared using 4-vinylpyridine and methacrylamide (MAM) as functional monomers, divinylbenzene as a crosslinker and acetonitrile-toluene (3:1, v/v) as a porogen by precipitation polymerization. The use of MAM as the co-monomer resulted in the formation of microsphere MIPs and non-imprinted polymers (NIPs) with ca. 3- and 5-μm particle diameters, respectively. Binding experiments and Scatchard analyses revealed that the binding capacity and affinity of the MIP to CA are higher than those of the NIP. The retention and molecular-recognition properties of the prepared MIPs were evaluated using water-acetonitrile and sodium phosphate buffer-acetonitrile as mobile phases in hydrophilic interaction chromatography (HILIC) and reversed-phase chromatography, respectively. In HILIC mode, the MIP showed higher molecular-recognition ability for CA than in reversed-phase mode. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of CA on the MIP in HILIC mode, while hydrogen bonding and hydrophobic interactions seem to work for the recognition of CA in reversed-phase mode. The MIP had a specific molecular-recognition ability for CA in HILIC mode, while other structurally related compounds, such as chlorogenic acid (CGA), gallic acid, protocatechuic acid and vanillic acid, could not be recognized by the MIP. Furthermore, the MIP was successfully applied for extraction of CA and CGA in the leaves of Eucommia ulmodies in HILIC mode. PMID:26776340

  18. Caffeic acid-coated multifunctional magnetic nanoparticles for the treatment and bimodal imaging of tumours.

    Science.gov (United States)

    Lee, Jun; Kim, Kyoung Sub; Na, Kun

    2016-07-01

    Accurate theragnosis of tumour is essential for improving the life rate of tumour patients. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as both diagnostic and therapeutic agents. However, their application is often limited because of a lack of water solubility, lack of cancer treatment efficacy, and ineffective targeting of tumour cells. In this report, a double ligand (caffeic acid-polyethylene glycol-folic acid; FA-PEG-CA, caffeic acid-polyethylene glycol-pheophorbide-a; PheoA-PEG-CA) coated iron oxide nanoparticle has been fabricated that overcomes the limitations of conventional SPION. Photosensitizer and tumour targeting ligands were coated on SPION using a ligand-substitution method. We confirmed the successful substitution of oleic acid ligands with FA-PEG-CA and PheoA-PEG-CA ligands by FT-IR spectroscopy. The caffeic acid coated iron oxide nanoparticles (CAMNPs) also demonstrated high water solubility in an aqueous environment and folate-mediated active tumour targeting. The water solubility of CAMNPs was evaluated by DLS measurement and TEM images. The cytotoxicity of CAMNPs increased two-fold in MDA-MB-231 cells at a laser irradiation condition. The fabricated CAMNPs retained their ability to function as both MRI diagnostic and tumour-selective therapeutic agents. These results suggest that these efficient characteristics of CAMNPs can be incorporated into applications, thus enhancing the efficacy of clinical cancer treatment. PMID:27107705

  19. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf

    Directory of Open Access Journals (Sweden)

    Lee Uk

    2011-06-01

    Full Text Available Abstract Background Since oxidative stress has been implicated in a neurodegenerative disease such as Alzheimer's disease (AD, natural antioxidants are promising candidates of chemopreventive agents. This study examines antioxidant and neuronal cell protective effects of various fractions of the methanolic extract of Erigeron annuus leaf and identifies active compounds of the extract. Methods Antioxidant activities of the fractions from Erigeron annuus leaf were examined with [2,2-azino-bis(3-ethylbenz thiazoline-6-sulfonic acid diammonium salt] (ABTS and ferric reducing antioxidant power (FRAP assays. Neuroprotective effect of caffeic acid under oxidative stress induced by H2O2 was investigated with [3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide] (MTT and lactate dehydrogenase (LDH assays. Results This study demonstrated that butanol fraction had the highest antioxidant activity among all solvent fractions from methanolic extract E. annuus leaf. Butanol fraction had the highest total phenolic contents (396.49 mg of GAE/g. Caffeic acid, an isolated active compound from butanol fraction, showed dose-dependent in vitro antioxidant activity. Moreover, neuronal cell protection against oxidative stress induced cytotoxicity was also demonstrated. Conclusion Erigeron annuus leaf extracts containing caffeic acid as an active compound have antioxidative and neuroprotective effects on neuronal cells.

  20. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk

    DEFF Research Database (Denmark)

    Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc;

    2015-01-01

    The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1–C20) were better antioxidants than the original phenolic...... compound. The optimal chain length with respect to protection against oxidation was, however, different for the two food systems. Fish oil enriched mayonnaise with caffeates of medium alkyl chain length (butyl, octyl and dodecyl) added resulted in a better oxidative stability than caffeates with shorter...... (methyl) or longer (octadecyl) alkyl chains. Whereas in fish oil enriched milk emulsions the most effective caffeates were those with shorter alkyl chains (methyl and butyl) rather than the ones with medium and long chains (octyl, dodecyl, hexadecyl and eicosyl). These results demonstrate that there might...

  1. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    Science.gov (United States)

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  2. Effect of Caffeic Acid and Low-Power Laser Light Co-Exposure on Viability of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Gheibi

    2015-08-01

    Full Text Available Background The resistance of Pseudomonas aeruginosa to antibiotics is a big problem, especially in burns and wound infections. Laser irradiation affects microorganisms by denaturing their proteins, which involves changes in the chemical or physical properties of the protein. Objectives The aim of this study was to investigate the effect of caffeic acid and low-power laser light co-exposure on Pseudomonas aeruginosa isolated from burn wounds. Materials and Methods Ten bacterial samples were collected from patients with burn wound infections at Shahid Motahhari medical center of Tehran. The He-Ne laser was used in this study with output power of 2 mW. Results The data significantly indicated that both the caffeic acid and laser treatment alone reduced the number of colony-forming units compared to control cultures. Co-exposure of bacterial suspensions to caffeic acid and laser at three time points showed the following number of colony-forming units 240.23 ± 60.15, 148.13 ± 52.66 and 84.57 ± 35, respectively. The best concentrations of caffeic acid to achieve countable colonies were 1.5 and 1.75 mM. At the concentration of 1.5 mM of caffeic acid, the number of colonies significantly reduced to 280.78 ± 59 (P = 0.008 while at 1.75 mM the number of colonies reduced to 234.07 ± 72.28 (P = 0.0001. Conclusions Caffeic acid treatment reduced bacterial growth and resulted in a decreased number of colony formation. The simultaneous effect of caffeic acid and laser at three time courses showed a synergic effect in reducing colony formation compared to the control and caffeic acid, and laser alone.

  3. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen.

    Science.gov (United States)

    Li, Tianbao; Xu, Juan; Zhao, Lei; Shen, Shaofei; Yuan, Maosen; Liu, Wenming; Tu, Qin; Yu, Ruijin; Wang, Jinyi

    2016-10-01

    An Au nanoparticles/poly(caffeic acid) (AuNPs/PCA) composite modified glassy carbon (GC) electrode was prepared by successively potentiostatic technique in pH 7.4 phosphate buffer solution containing 0.02mM caffeic acid and 1.0mM HAuCl4. Electrochemical characterization of the AuNPs/PCA-GC electrode was investigated by electrochemical impedance spectroscopy and cyclic voltammetry. The electrochemical behavior of acetaminophen (AP) at the AuNPs/PCA-GC electrode was also studied by cyclic voltammetry. Compared with bare GC and poly(caffeic acid) modified GC electrode, the AuNPs/PCA-GC electrode was exhibited excellent electrocatalytic activity toward the oxidation of AP. The plot of catalytic current versus AP concentration showed two linear segments in the concentration ranges 0.2-20µM and 50-1000µM. The detection limit of 14 nM was obtained by using the first range of the calibration plot. The AuNPs/PCA-GC electrode has been successfully applied and validated by analyzing AP in blood, urine and pharmaceutical samples. PMID:27474318

  4. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.

    Science.gov (United States)

    Lee, Won Jun; Zhu, Bao Ting

    2006-02-01

    We studied the modulating effects of caffeic acid and chlorogenic acid (two common coffee polyphenols) on the in vitro methylation of synthetic DNA substrates and also on the methylation status of the promoter region of a representative gene in two human cancer cells lines. Under conditions that were suitable for the in vitro enzymatic methylation of DNA and dietary catechols, we found that the presence of caffeic acid or chlorogenic acid inhibited in a concentration-dependent manner the DNA methylation catalyzed by prokaryotic M.SssI DNA methyltransferase (DNMT) and human DNMT1. The IC50 values of caffeic acid and chlorogenic acid were 3.0 and 0.75 microM, respectively, for the inhibition of M.SssI DNMT-mediated DNA methylation, and were 2.3 and 0.9 microM, respectively, for the inhibition of human DNMT1-mediated DNA methylation. The maximal in vitro inhibition of DNA methylation was approximately 80% when the highest concentration (20 microM) of caffeic acid or chlorogenic acid was tested. Kinetic analyses showed that DNA methylation catalyzed by M.SssI DNMT or human DNMT1 followed the Michaelis-Menten curve patterns. The presence of caffeic acid or chlorogenic acid inhibited DNA methylation predominantly through a non-competitive mechanism, and this inhibition was largely due to the increased formation of S-adenosyl-L-homocysteine (SAH, a potent inhibitor of DNA methylation), resulting from the catechol-O-methyltransferase (COMT)-mediated O-methylation of these dietary catechols. Using cultured MCF-7 and MAD-MB-231 human breast cancer cells, we also demonstrated that treatment of these cells with caffeic acid or chlorogenic acid partially inhibited the methylation of the promoter region of the RARbeta gene. The findings of our present study provide a general mechanistic basis for the notion that a variety of dietary catechols can function as inhibitors of DNA methylation through increased formation of SAH during the COMT-mediated O-methylation of these dietary

  5. Effects of roasting temperatures and gamma irradiation on the content of chlorogenic acid, caffeic acid and soluble carbohydrates of coffee

    International Nuclear Information System (INIS)

    Two varieties of Puerto Rican coffee, Coffea canephora L. var. Robusta, and Coffea arabica L. var. Borbon, were subjected to four different doses of radiation and roasted at two different temperatures. Aqueous extracts of the ground coffee beans were analyzed for chlorogenic acid and caffeic acid at 324 nm and 360 nm wavelength settings, respectively. Samples subjected to the roasting treatments in conjuction with irradiation treatments were treated with basic lead acetate prior to the colorimetric analyses in order to eliminate interfering substances. The total carbohydrate content was also determined by colorimetric techniques with anthrone reagent. The total nitrogen content of the pulverized samples were determined by the micro-Kjeldahl method. While roasting treatments caused a reduction in the concentrations of the chlorogenic acid, caffeic acid, and the carbohydrates, the radiation treatments increased the concentrations of soluble carbohydrates without affecting the concentrations of chlorogenic acid or caffeic acid. It therefore appears that radiation treatments seem to cause degradation of the acid-polysaccharide complexes liberating soluble sugars. There were no noticable changes in the total content of nitrogen caused by roasting or the radiation treatments as indicated by the statistical analysis employing the split plot design. (author)

  6. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guizhen; Zhu, Tao; Lei, Yingjie [Tianjin University of Technology, Tianjin (China)

    2015-10-15

    A series of deep eutectic solvents (DESs) were prepared using glycerol and choline chloride (ChCl), and Fourier transform infrared spectrometer (FT-IR) was used to analyze the spectra of glycerol, choline chloride and DESs based on glycerol and choline chloride. Then DESs were used as the additives of mobile phase to optimize chromatographic behavior of caffeic acid in high performance liquid chromatography (HPLC). A 17-run Box-Behnken design (BBD) was employed to evaluate effect of DESs as additives by analyzing the maximum theoretical plate number. Three factors, reaction temperature (60 .deg. C, 80 .deg. C, 100 .deg. C), molar ratio of glycerol and choline chloride (2 : 1, 3 : 1, 4 : 1, n/n), and volume percent of additives (0.05%, 0.10%, 0.15%, v/v), were investigated in BBD. The optimum experiment condition was that of reaction temperature (80 .deg. C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additive (0.10%, v/v). The mean chromatographic theoretical plate number of the caffeic acid this condition was 1567.5, and DESs as additives shorten the retention time and modify the chromatogram shape, proving DESs as additives for effective theoretical plate number and column efficiency in HPLC.

  7. Homogeneous and heterogeneous degradation of caffeic acid using photocatalysis driven by UVA and solar light.

    Science.gov (United States)

    Yáñez, Eliana; Santander, Paola; Contreras, David; Yáñez, Jorge; Cornejo, Lorena; Mansilla, Héctor D

    2016-01-01

    Waste water from the wine industry is characterized by a high concentration of dissolved organic matter and the presence of natural phenolic compounds with low biodegradability. High concentrations of phenolic compounds may cause environmental pollution and risks to human health. In this article caffeic acid (CA) was used as a model compound of wine effluent because it is refractory to the conventional wastewater treatments. The oxidation of caffeic acid in water solution (0.01 g L(-1)) by heterogeneous photocatalysis and photo-Fenton reaction was studied using UVA. The optimal conditions for each treatment were performed by multivariate experimental design. The optimal conditions for heterogeneous photocatalysis were pH 5.3 and 0.9 g L(-1) TiO2. In the case of photo-Fenton treatment, optimized variable were 82.4 μmol L(-1) of Fe(2+) and 558.6 μmol L(-1) of H2O2. The degradation profiles of CA were monitored by UV-Vis, HPLC, TOC and COD. To reach 90% of CA removal, 40 and 2 min of reaction, respectively, were required by heterogeneous and photo-Fenton processes, respectively. For comparison purposes, the reactions were also performed under solar light. The use of solar light does not change the efficiency of the photo-Fenton reaction, yet the performance of the heterogeneous process was significantly improved, reaching 90% of degradation in 15 min. PMID:26548918

  8. Homogeneous and heterogeneous degradation of caffeic acid using photocatalysis driven by UVA and solar light.

    Science.gov (United States)

    Yáñez, Eliana; Santander, Paola; Contreras, David; Yáñez, Jorge; Cornejo, Lorena; Mansilla, Héctor D

    2016-01-01

    Waste water from the wine industry is characterized by a high concentration of dissolved organic matter and the presence of natural phenolic compounds with low biodegradability. High concentrations of phenolic compounds may cause environmental pollution and risks to human health. In this article caffeic acid (CA) was used as a model compound of wine effluent because it is refractory to the conventional wastewater treatments. The oxidation of caffeic acid in water solution (0.01 g L(-1)) by heterogeneous photocatalysis and photo-Fenton reaction was studied using UVA. The optimal conditions for each treatment were performed by multivariate experimental design. The optimal conditions for heterogeneous photocatalysis were pH 5.3 and 0.9 g L(-1) TiO2. In the case of photo-Fenton treatment, optimized variable were 82.4 μmol L(-1) of Fe(2+) and 558.6 μmol L(-1) of H2O2. The degradation profiles of CA were monitored by UV-Vis, HPLC, TOC and COD. To reach 90% of CA removal, 40 and 2 min of reaction, respectively, were required by heterogeneous and photo-Fenton processes, respectively. For comparison purposes, the reactions were also performed under solar light. The use of solar light does not change the efficiency of the photo-Fenton reaction, yet the performance of the heterogeneous process was significantly improved, reaching 90% of degradation in 15 min.

  9. Preparation and spectral investigation of inclusion complex of caffeic acid with hydroxypropyl-beta-cyclodextrin.

    Science.gov (United States)

    Zhang, Min; Li, Jinxia; Zhang, Liwei; Chao, Jianbin

    2009-01-01

    The inclusion complexation behavior of caffeic acid (CA) with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was studied by UV-vis, fluorescence spectroscopy and nuclear magnetic resonance spectroscopy (NMR). Experimental conditions including the concentration of HP-beta-CD and media acidity were investigated in detail. The result suggested HP-beta-CD was more suitable for including CA in acidity solution. The binding contants (K) of the inclusion complexes were determined by linear regression analysis and the inclusion ratio was found to be 1:1. The water solubility of CA was increased by inclusion with HP-beta-CD according to the phase-solubility diagram. The spatial configuration of complex has been proposed based on (1)H NMR and two-dimensional (2D) NMR, the result suggested that CA was entrapped inside the hydrophobic core of HP-beta-CD with the lipophilic aromatic ring and the portion of ethylene.

  10. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.

    Science.gov (United States)

    Grant-Preece, Paris; Schmidtke, Leigh M; Barril, Celia; Clark, Andrew C

    2017-01-15

    Glyoxylic acid is a tartaric acid degradation product formed in model wine solutions containing iron and its production is greatly increased by exposure to UV-visible light. In this study, the combined effect of sulfur dioxide, caffeic acid, pH and temperature on the light-induced (⩾300nm) production of glyoxylic acid in model wine containing tartaric acid and iron was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Glyoxylic acid produced in the irradiated model wine was present in free and hydrogen sulfite adduct forms and the measured total, free and percentage free glyoxylic acid values were modeled using RSM. Sulfur dioxide significantly decreased the total amount of glyoxylic acid produced, but could not prevent its production, while caffeic acid showed no significant impact. The interaction between pH and temperature was significant, with low pH values and low temperatures giving rise to higher levels of total glyoxylic acid. PMID:27542478

  11. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    Science.gov (United States)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol, methanol or DMSO. Consequently, obtained results show that the method of selection is extremely important and will influence the results. Thus, broth microdilution and reduction percentage methods can be recommended as reliable and useful screening methods for determination of antimicrobial activity of PLGA nanoparticle formulations used particularly in drug delivery systems compared to both agar well and disk diffusion methods.

  12. Caffeic Acid Phenethyl Ester Loaded PLGA Nanoparticles: Effect of Various Process Parameters on Reaction Yield, Encapsulation Efficiency, and Particle Size

    Directory of Open Access Journals (Sweden)

    Serap Derman

    2015-01-01

    Full Text Available CAPE loaded PLGA nanoparticles were prepared using the oil in water (o/w single emulsion solvent evaporation methods. Five different processing parameters including initial CAPE amount, initial PLGA amount, PVA concentration in aqueous phase, PVA volume, and solvent type were screened systematically to improve encapsulation of hydrophobic CAPE molecule, simultaneously minimize particle size, and raise the reaction yield. Obtained results showed that the encapsulation efficiency of the nanoparticles significantly increased with the increase of the initial CAPE amount (p<0.05 and particle size (p<0.05. Furthermore, the particle size is significantly influenced by initial polymer amount (p<0.05 and surfactant concentration (p<0.05. By the optimization of process parameters, the nanoparticles produced 70±6% reaction yield, 89±3% encapsulation efficiency, -34.4±2.5 mV zeta potential, and 163±2 nm particle size with low polydispersity index 0.119±0.002. The particle size and surface morphology of optimized nanoparticles were studied and analyses showed that the nanoparticles have uniform size distribution, smooth surface, and spherical shape. Lyophilized nanoparticles with different CAPE and PLGA concentration in formulation were examined for in vitro release at physiological pH. Interestingly, the optimized nanoparticles showed a high (83.08% and sustained CAPE release (lasting for 16 days compared to nonoptimized nanoparticle.

  13. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.

  14. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    Science.gov (United States)

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  15. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase.

    Science.gov (United States)

    Li, Huaijun Michael; Rotter, David; Hartman, Thomas G; Pak, Fulya E; Havkin-Frenkel, Daphna; Belanger, Faith C

    2006-06-01

    The biosynthesis of many plant secondary compounds involves the methylation of one or more hydroxyl groups, catalyzed by O-methyltransferases (OMTs). Here, we report the characterization of two OMTs, Van OMT-2 and Van OMT-3, from the orchid Vanilla planifolia Andrews. These enzymes catalyze the methylation of a single outer hydroxyl group in substrates possessing a 1,2,3-trihydroxybenzene moiety, such as methyl gallate and myricetin. This is a substrate requirement not previously reported for any OMTs. Based on sequence analysis these enzymes are most similar to caffeic acid O-methyltransferases (COMTs), but they have negligible activity with typical COMT substrates. Seven of 12 conserved substrate-binding residues in COMTs are altered in Van OMT-2 and Van OMT-3. Phylogenetic analysis of the sequences suggests that Van OMT-2 and Van OMT-3 evolved from the V. planifolia COMT. These V. planifolia OMTs are new instances of COMT-like enzymes with novel substrate preferences.

  16. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    Science.gov (United States)

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins.

  17. Synthesis and Biological Properties of Caffeic Acid-PNA Dimers Containing Guanine

    Directory of Open Access Journals (Sweden)

    Antonio Fiorentino

    2013-07-01

    Full Text Available Caffeic acid (CA; 3,4-dihydroxycinnamic acid is endowed with high antioxidant activity. CA derivatives (such as amides have gained a lot of attention due to their antioxidative, antitumor and antimicrobial properties as well as stable characteristics. Caffeoyl-peptide derivatives showed different antioxidant activity depending on the type and the sequence of amino acid used. For these reasons, we decided to combine CA with Peptide Nucleic Acid (PNA to test whether the new PNA-CA amide derivatives would result in an improvement or gain of CA’s biological (i.e., antioxidant, cytotoxic, cytoprotective properties. We performed the synthesis and characterization of seven dimer conjugates with various combinations of nucleic acid bases and focused NMR studies on the model compound ga-CA dimer. We demonstrate that PNA dimers containing guanine conjugated to CA exhibited different biological activities depending on composition and sequence of the nucleobases. The dimer ag-CA protected HepG2, SK-B-NE(2, and C6 cells from a cytotoxic dose of hydrogen peroxide (H2O2.

  18. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    Science.gov (United States)

    Selmin, Francesca; Puoci, Francesco; Parisi, Ortensia I.; Franzé, Silvia; Musazzi, Umberto M.; Cilurzo, Francesco

    2015-01-01

    This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C). By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE), suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%). Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs. PMID:25569163

  19. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    Directory of Open Access Journals (Sweden)

    Francesca Selmin

    2015-01-01

    Full Text Available This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C. By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE, suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%. Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs.

  20. Effect of repeated harvesting on the content of caffeic acid and seven species of caffeoylquinic acids in sweet potato leaves.

    Science.gov (United States)

    Sasaki, Kazunori; Oki, Tomoyuki; Kai, Yumi; Nishiba, Yoichi; Okuno, Shigenori

    2015-01-01

    The purpose of this study was to investigate the effect of repeated harvesting on the content of caffeic acid (CA) and seven species of caffeoylquinic acids (CQAs) in sweet potato leaves using a newly developed high-performance liquid chromatography method. Six cultivars and two breeding lines were used in this study. Leaves were collected at monthly intervals from 1st harvest (May) to 4th harvest (August) in 2011 and 2012. ANOVA analysis revealed that the contents of CQAs were significantly different among all cultivars and breeding lines, but no significant differences were found for CA. No annual variation was confirmed in CA and CQAs. Repeated harvest of sweet potato leaves affected the content of only 4-CQA and 5-CQA. Post-hoc comparisons using Tukey's method indicated that the contents of 4-CQA and 5-CQA in sweet potato leaves harvested at first time were significantly higher compared to those at the other harvest times. PMID:25971339

  1. Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation

    OpenAIRE

    Laranjinha, João; Cadenas, Enrique

    1999-01-01

    This study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models w...

  2. Effect of Caffeic Acid and Low-Power Laser Light Co-Exposure on Viability of Pseudomonas aeruginosa

    OpenAIRE

    Gheibi; Divan Khosroshahi; Habibi

    2015-01-01

    Background The resistance of Pseudomonas aeruginosa to antibiotics is a big problem, especially in burns and wound infections. Laser irradiation affects microorganisms by denaturing their proteins, which involves changes in the chemical or physical properties of the protein. Objectives The aim of this study was to investigate the effect of caffeic acid and low-power laser light co-exposure on Pseudomonas aeruginosa isolated from b...

  3. Biocatalytic properties of a peroxidase-active cell-free extract from onion solid wastes: caffeic acid oxidation.

    Science.gov (United States)

    El Agha, Ayman; Abbeddou, Souheila; Makris, Dimitris P; Kefalas, Panagiotis

    2009-04-01

    The exploitation of food residual sources consists of a major factor in reducing the polluting load of food industry wastes and developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bio-organic molecules with potential phytotoxicity, including hydrolases, peroxidases and polyphenoloxidases. Although the use of bacterial and fungal enzymes has gained interest in studies pertaining to bioremediation applications, plant enzymes have been given less attention or even disregarded. In this view, this study aimed at the investigating the use of a crude peroxidase preparation from onion solid by-products for oxidising caffeic acid, a widespread o-diphenol, whose various derivatives may occur in food industry wastes, such as olive mill waste waters. Increased enzyme activity was observed at a pH value of 5, but considerable activity was also retained for pH up to 7. Favourable temperatures for increased activity varied between 20 degrees C and 40 degrees C, 30 degrees C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H(2)O(2)-treated caffeic acid solution revealed the existence of a tetramer as major oxidation product. Based on the data generated, a putative pathway for the formation of the peroxidase-mediated caffeic acid tetramer was proposed. PMID:18670892

  4. Molecularly imprinted polymers combination with deep eutectic solvents for solid-phase extraction of caffeic acid from hawthorn.

    Science.gov (United States)

    Li, Guizhen; Tang, Weiyang; Cao, Weimin; Wang, Qian; Zhu, Tao

    2015-08-01

    Molecularly imprinted polymers (MIPs) with caffeic acid as template and non-imprinted polymers (NIPs) materials were prepared in the same procedure. Field emission scanning electron microscopy (FE-SEM) and adsorption capacity test were used to evaluate characteristic of the new materials. MIPs, NIPs and C18 were used for rapid purification of caffeic acid from hawthorn with solid-phase extraction ( SPE) , and extract yields of caffeic acid with the proposed materials were 3.46 µg/g, 1.01 µg/g and 1.17 µg/g, respectively. To optimize the MIPs-SPE procedures, different kinds of elution solutions were studied. Deep eutectic solvents (DESs) were prepared by choline chloride (ChCl)-glycerol (1/2, n/n) and choline chloride-urea (1/ 2, n/n). Methanol was mixed with the two kinds of DESs (glycerol-based DESs, urea-based DESs) in different ratios (0.5:1, 1:1, 2:1, 3:1, 4:1, 5:1, v/v), and they were used to investigated as elution solutions in the above MIPs-SPE procedures. The results showed that MIPs were potential SPE materials, and methanol/ glycerol-based DESs (3 :1, v/v) had the best elution capability with the recovery of 82.32%. PMID:26749853

  5. Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans.

    Science.gov (United States)

    Rungsimakan, Supattra; Rowan, Michael G

    2014-12-01

    Three diterpenoids, 1-oxomicrostegiol (1), viroxocin (2), viridoquinone (3), were isolated from the roots of Salvia viridis L. cvar. Blue Jeans. Five known diterpenoids, microstegiol (4), 7α-acetoxy-14-hydroxy-8,13-abietadiene-11,12-dione (5; 7-O-acetylhorminone tautomer), 7α,14-dihydroxy-8,13-abietadiene-11,12-dione (6; horminone tautomer), ferruginol and salvinolonyl 12-methyl ether (7) were also found in the roots together with 1-docosyl ferulate (8), and a mixture of 2-(4'-alkoxyphenyl) ethyl alkanoates (9). Two lupane triterpenoids, 2α-acetoxy-lup-20(29)-en-3β-ol (10), and 3β-acetoxy-lup-20(29)-en-2α-ol (11) were found in the aerial parts together with known compounds, lup-20(29)-ene-2α,3β-diol (12), ursolic acid, oleanolic acid, β-sitosterol and β-sitosterol glucoside. A known phenylpropanoid, trans-verbascoside (or acteoside; 13), was the main constituent in the polar fraction of the aerial part, and it is now reported in the genus Salvia for the first time. Other polyphenolic compounds were cis-verbascoside (14), leucosceptoside A (15), martynoside (16), caffeic acid, 6-O-caffeoyl-glucose (18), rosmarinic acid, salidroside, luteolin-7-O-α-rhamnopyranosyl-(1→6)-β-galactopyranoside, luteolin-7-O-β-galactopyranoside, luteolin-7-O-α-rhamnopyranosyl-(1→6)-β-glucopyranoside, luteolin-7-O-β-glucopyranoside, and apigenin-7-O-β-glucopyranoside. The structures were determined by 1D-, 2D-NMR and HR-ESI-MS techniques. Compounds 6, 10, ferruginol, ursolic acid and oleanolic acid exhibited antibacterial activity against Enterococcus faecalis (ATCC 775) with MIC 50 μM, 25 μM, 50 μM, 12.5 μM, 12.5 μM respectively. Ferruginol, ursolic acid and oleanolic acid were also active against Staphylococcus aureus (ATCC 6571), and Bacillus cereus (ATCC 2599) with MIC 12.5-50 μM. 4 was also active against S.aureus (ATCC 6571) with MIC 50 μM. These values are consistent with previous studies on the antimicrobial activity of Salvia diterpenoids.

  6. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation—A Chemical Approach

    Science.gov (United States)

    Genaro-Mattos, Thiago C.; Maurício, Ângelo Q.; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects

  7. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Directory of Open Access Journals (Sweden)

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  8. Oxidative stress, polarization of macrophages and tumour angiogenesis: Efficacy of caffeic acid.

    Science.gov (United States)

    Oršolić, Nada; Kunštić, Martina; Kukolj, Marina; Gračan, Romana; Nemrava, Johann

    2016-08-25

    Macrophage polarization is a process when macrophage expresses different functional programs in response to microenvironmental signals and two extreme forms exist; M1 and M2 macrophages. M1 macrophages are highly microbicidal and anticancer with enhanced ability to kill and phagocytose pathogens, upregulate pro-inflammatory cytokines and reactive molecular species, and present antigens; M2 macrophages and the related tumour associated macrophages (TAMs) regulate tissue remodelling and promote tissue repair and angiogenesis and can amplification of metabolic pathways that can suppress adaptive immune responses. It is demonstrated that ROS production, critical for the activation and functions of M1 macrophages, is necessary for the differentiation of M2 macrophages and TAMs, and that antioxidant therapy blocks TAMs differentiation and tumorigenesis in mouse models of cancer. In order to study how caffeic acid (CA), a natural antioxidant, affects macrophage function, polarization, angiogenesis and tumour growth we injected mice with Ehrlich ascites tumour (EAT) cells and treated them for 10 days with CA in a dose of 40 and/or 80 mg kg(-1.) Macrophage polarization was further characterized by quantifying secreted pro- and anti-inflammatory cytokines, nitric oxide and arginase 1 activity. CA may increase the cytotoxic actions of M1 macrophages and inhibit tumour growth; inhibitory activity on TAMs may be mediated through its antioxidative activity. Taken together, we conclude that the antitumour activity of CA was the result of the synergistic activities of different mechanisms by which CA acts on proliferation, angiogenesis, immunomodulation and survival. The continuous administration of CA efficiently blocked the occurrence of TAMs and markedly suppressed tumorigenesis in mouse cancer models. Targeting TAMs by antioxidants can be a potentially effective method for cancer treatment. PMID:27378625

  9. Development of an Electrochemical Sensor for NADH Determination Based on a Caffeic Acid Redox Mediator Supported on Carbon Black

    Directory of Open Access Journals (Sweden)

    Chiara Zanardi

    2015-04-01

    Full Text Available Screen-printed electrode (SPE modified with carbon black nanoparticles (CB has been tested as a new platform for the stable deposition of caffeic acid (CFA on the electrode surface. The electrochemical performance from varying the amount of CFA/CB composite has been tested with respect to NADH determination. The electrocatalytic activity of CFA/CB has also been compared with that of SPEs modified by a single component of the coating, i.e., either CFA or CB. Finally, glycerol dehydrogenase, a typical NADH-dependent enzyme, was deposited on the CFA/CB coating in order to test the applicability of the sensor in glycerol determination.

  10. Enrichment of caffeic acid in peanut sprouts and evaluation of its in vitro effectiveness against oxidative stress-induced erythrocyte hemolysis.

    Science.gov (United States)

    Wang, Guang; Lei, Zhuogui; Zhong, Qing; Wu, Wenjia; Zhang, Hong; Min, Tian; Wu, Hui; Lai, Furao

    2017-02-15

    The profile of caffeic acid in tissues of peanut sprouts and its antioxidant activity in erythrocyte-based assays were investigated. Caffeic acid was found to accumulate in the epicotyl-plumule (reached 2097.13±96μg/g DW on day 10 after peanut germination). It was purified by semipreparative high-performance liquid chromatography. The purified caffeic acid showed noticeable protective effects on human erythrocytes against 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH)-induced hemolysis. It also contributed to maintenance of normal morphological features and inhibited malondialdehyde formation and the lactate dehydrogenase release in erythrocytes under oxidative stress. Further analysis revealed that caffeic acid effectively inhibited AAPH-induced free-radical production and maintained the normal metabolism of the erythrocytic redox system, including superoxide dismutase, glutathione peroxidase, and glutathione. Our work showed that caffeic acid, which is greatly enriched in peanut sprout, can effectively protect erythrocytes from oxidative damage. These results provide valuable information for the use of peanut sprouts as a functional food. PMID:27664642

  11. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

    OpenAIRE

    Lee, Ki-Mo; Kang, Hyung-Sik; Yun, Chul-Ho; Kwak, Hahn-Shik

    2012-01-01

    Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. E...

  12. A study of esterification of caffeic acid with methanol using p-toluenesulfonic acid as a catalyst

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2013-01-01

    Full Text Available Caffeic acid (CA can be considered as an important natural antioxidant. However, the low solubility and stability of CA in various solvent systems is a major limiting factor governing the overall application in the lipid industry, so the synthesis of methyl caffeate (MCusing CA and methanol is a feasible way to improve its lipophilicity. Here, the reaction conditions and kinetic parameters for the synthesis of MC using p-toluenesulfonic acid (PTSA as a catalyst were firstly investigated, and the product was confirmed byliquid chromatography-mass spectrometry (LC-MS,Fourier transform infrared spectroscopy (FTIR, nuclear magnetic resonance (NMR, and melting point analysis. The highest yield of MC catalyzed by PTSA reached 84.0% under the optimum conditions as follows: molar ratio of methanol to CA of 20:1, reaction temperature of 65°C, mass ratio of catalyst to substrate of 8 %, and reaction time of 4 h. The esterification kinetics of CA and methanol is described by the pseudo-homogeneous second order reversible model, the relationship between temperature and the forward rate constant is k1 = exp (358.7 - 2111/T, and the activation energy is 17.5 kJ mol-1. These results indicated that the PTSA possesses high catalytic activity in the synthesis of MC, which is an efficient catalyst suitable for MC production in the chemical industry.

  13. Anti-tyrosinase kinetics and antibacterial process of caffeic acid N-nonyl ester in Chinese Olive (Canarium album) postharvest.

    Science.gov (United States)

    Jia, Yu-Long; Zheng, Jing; Yu, Feng; Cai, Yi-Xiang; Zhan, Xi-Lan; Wang, Hui-Fang; Chen, Qing-Xi

    2016-10-01

    Enzymatic browning and bacterial putrefaction are mainly responsible for quality losses of Chinese Olive (Canarium album) postharvest and lead to very short shelf life on average. Screening anti-browning and anti-bacterial agents is important for preservation of Chinese Olive. Caffeic acid N-nonyl ester (C-9) and caffeic acid N- Heptyl ester (C-7) was synthesized as inhibitors of tyrosinase, which is a key enzyme in browning process. The compound of C-9 could inhibit the activity of tyrosinase strongly and its IC50 value was determined to be 37.5μM, while the compound of C-7 had no inhibitory ability. Kinetic analyses showed that compound of C-9 has been a reversible inhibitory mechanism below 50μM and been irreversible mechanisms above 50μM. For the reversible inhibitory mechanism, the values of inhibitory constants (KI and KIS) were determined to be 24.6 and 37.4μM, respectively. The results of Chinese Olive fruit postharvest showed that the compound of C-9 could effectively anti-browning and anti-bacterial putrefaction. In addition, this compound had strong antibacterial activities against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Salmonella. Therefore, C-9 could be a potential anti-browning and anti-bacterial reagent. PMID:27246378

  14. A Comparative Study of the Radical-scavenging Activity of the Phenolcarboxylic Acids Caffeic Acid, p-Coumaric Acid, Chlorogenic Acid and Ferulic Acid, With or Without 2-Mercaptoethanol, a Thiol, Using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2008-10-01

    Full Text Available Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione, a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME, as a substitute for GSH, was investigated by the induction period (IP method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R. and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO. using differential scanning calorimetry (DSC. Upon PhCOO. radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R. radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (kinh/kp declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME mixture (1:1 molar ratio (A to the calculated IP (the simple sum of phenol acid antioxidant and ME (B was investigated. Upon R. scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO. scavenging, the corresponding mixture was A/B < 1, particularly the latter was 0.7, suggesting an antagonistic effect. Upon both radicals scavenging, the A/B for the ferulic acid or chlorogenic acid

  15. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    Science.gov (United States)

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization.

  16. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    Science.gov (United States)

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization. PMID:26197161

  17. Redox intermediates of flavonoids and caffeic acid esters from propolis: an EPR spectroscopy and cyclic voltammetry study.

    Science.gov (United States)

    Rapta, P; Misík, V; Stasko, A; Vrábel, I

    1995-05-01

    The redox properties of flavonoids: chrysin (1), tectochrysin (2), galangin (3), isalpinin (4), pinostrobin (5), pinobanksin (6), pinobanksin-3-acetate (7), and of caffeic acid ester (8) and diacetylcaffeic acid ester (9), all isolated from propolis, were investigated by cyclic voltammetry in acetonitrile. The choice of aprotic solvent lowered the reactivity of the radical intermediates and made possible to identify redox steps and intermediates not detected so far. The oxidation potentials (vs. saturated calomel electrode) of the investigated compounds were in the region of 1.5 V for 3 and 4; 1.9 V for 1, 2, and 5; 2.0 V for 6 and 7; 1.29 V for 8; and 2.3 V for 9. These oxidation potentials were mainly influenced by the presence of a double bond in 2,3-position and substituent R1 in position 3. Comparison with our earlier data revealed that flavonoids, 1-4, and caffeic acid ester 8 with lower oxidation potentials showed the maximal lipid antioxidant activity, whereas those with higher potentials (5, 6, 7, and 9) are less active. On reduction of 1-9 several one-electron-steps were typically observed in the potential regions: -1.5 V, -1.8 V, and -2 V. where in simultaneous EPR experiments anion radicals of 1 and 3 were observed with the center of unpaired spin density on ring A. Upon oxidation of flavonoids 1-4 carbonyl carbon-centered radicals, .C(O)R, were identified as consecutive products using the EPR spin trapping technique. PMID:7797098

  18. Determination of the structure and catalytic mechanism of Sorghum bicolor caffeic acid O-methyltransferase and the structural impact of three brown midrib12 mutations

    Science.gov (United States)

    With S-adenosylmethionine (SAM) acting as the methyl donor, caffeic acid O-methyltransferase from Sorghum bicolor (SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde, to form sinapaldehyde. In order to determine the mechanism of SbCOMT and understand the red...

  19. Additions of caffeic acid, ascorbyl palmitate or gamma-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    The objectives of the study were to investigate the effects of caffeic acid, ascorbyl palmitate and gamma-tocopherol on protection of fish oil-enriched energy bars against lipid oxidation during storage for 10 weeks at room temperature. The lipophilic gamma-tocopherol reduced lipid oxidation during...

  20. Caffeic Acid Reduces the Viability and Migration Rate of Oral Carcinoma Cells (SCC-25 Exposed to Low Concentrations of Ethanol

    Directory of Open Access Journals (Sweden)

    Arkadiusz Dziedzic

    2014-10-01

    Full Text Available Alcohol increases the risk of carcinoma originated from oral epithelium, but the biological effects of ultra-low doses of ethanol on existing carcinoma cells in combination with natural substances are still unclear. A role for ethanol (EtOH, taken in small amounts as an ingredient of some beverages or mouthwashes to change the growth behavior of established squamous cell carcinoma, has still not been examined sufficiently. We designed an in vitro study to determine the effect of caffeic acid (CFA on viability and migration ability of malignant oral epithelial keratinocytes, exposed to ultra-low concentrations (maximum 100 mmol/L EtOH. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-dimethyltetrazolium bromide and LDH (lactate dehydrogenase assays were used to assess the cytotoxic effect of EtOH/CFA and the viability of squamous carcinoma SCC-25 cells (ATCC CRL-1628, mobile part of the tongue. Tested EtOH concentrations were: 2.5, 5, 10, 25, 50, and 100 mmol/L, along with an equal CFA concentration of 50 μmol/L. Carcinoma cells’ migration was investigated by monolayer “wound” healing assay. We demonstrated that very low concentrations of EtOH ranging between 2.5 and 10 mmol/L may induce the viability of oral squamous cell carcinoma cells, while the results following addition of CFA reveal an antagonistic effect, attenuating pro-proliferative EtOH activity. The migration rate of oral squamous carcinoma cells can be significantly inhibited by the biological activity of caffeic acid.

  1. Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: a Bcl-2 independent mechanism.

    Science.gov (United States)

    Khanduja, Krishan Lal; Avti, Pramod Kumar; Kumar, Surender; Mittal, Nidhi; Sohi, Kiranjit Kaur; Pathak, Chander Mohan

    2006-02-01

    Polyphenols have been shown to induce apoptosis in a variety of tumor cells including leukemia both in vitro and in vivo. However, their action on normal human peripheral blood mononuclear cells (PBMCs) during oxidative stress remains to be explored. In this study, we have evaluated the anti-apoptotic and radical scavenging activities of dietary phenolics, namely caffeic acid (CA), ellagic acid (EA) and ferulic acid (FA). H2O2-induced apoptosis in normal human PBMCs was assayed by phosphotidylserine externalization, nucleosomal damage and DNA fragmentation. Incubation of PBMCs with 5 mM H2O2 led to increased Annexin-V binding to externalized phosphatidyl serine (PS), an event of pre-apoptotic stage of the cell. Peripheral blood mononuclear cells pretreated with phenolics could resist H2O2-induced apoptotic damage. Caffeic acid (60 and 120 microM) and EA (100 and 200 microM) caused no change in externalization of PS, whereas FA (100 and 200 microM) increased externalization of PS in PBMCs treated with H2O2. The effects of phenolics were abolished to a large extent by culturing the PBMCs for 24 h after washing the phenolics from the medium. Inhibitory activities of these phenolics on lipid peroxidation were in the order of EA

  2. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    Science.gov (United States)

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  3. Determination of caffeic acid in Cirsium setosum by HPCE%HPCE 法测定小蓟中咖啡酸含量

    Institute of Scientific and Technical Information of China (English)

    刘学杰; 陈晓健

    2015-01-01

    目的:建立高效毛细管电泳法测定小蓟中咖啡酸的含量。方法采用石英毛细管柱,以硼砂溶液为缓冲液,运用电泳法测定小蓟中咖啡酸的含量。结果咖啡酸进样量在0.121~0.968μg 范围内(r =0.9990)线性关系良好,平均回收率为96.33%。结论本方法专属性强,灵敏度高,重复性好,可用于小蓟中咖啡酸的含量测定。%Objective To establish an HPCE method for the determination of caffeic acid in Cirsium setosum. Methods Using quartz capillary column,borax solution for buffer solution,the content of coffeic acid in Cirsium setosum was deter-mined by electrophoresis. Results The linear range of caffeic acid was 0. 121 ~ 0. 968 μg(r = 0. 999 0),the average re-covery was 96. 33%. Conclusion This method had a strong specificity,high sensitivity and fine reproducibility and can be used as a method for the determination of caffeic acid in Cirsium setosum.

  4. Caffeic Acid Derivatives in Market Available Lamiaceae and Echinacea purpurea Products

    Science.gov (United States)

    Fresh basil leaves contain chicoric acid, the principal phenolic compound of Echinacea purpurea and purportedly the active ingredient in its dietary supplements. Our group discovered and first reported chicoric acid in basil. This following study examined the distribution of chicoric acid within the...

  5. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    Science.gov (United States)

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms. PMID:27005412

  6. The role of cyclodextrins in ORAC-fluorescence assays. antioxidant capacity of tyrosol and caffeic acid with hydroxypropyl-β-cyclodextrin.

    Science.gov (United States)

    García-Padial, Marcos; Martínez-Ohárriz, María Cristina; Navarro-Blasco, Iñigo; Zornoza, Arantza

    2013-12-18

    Tyrosol and caffeic acid are biophenols that contribute to the beneficial properties of virgin olive oil. The influence of hydroxypropyl-β-cyclodextrin (HPβ-CD) on their respective antioxidant capacities was analyzed. The ORAC antioxidant activity of tyrosol (expressed as μM Trolox equivalents/μM Tyrosol) was 0.83 ± 0.03 and it increased up to 1.20 ± 0.11 in the presence of 0.8 mM HPβ-CD. However, the ORAC antioxidant activity of caffeic acid experienced no change. The different effect of HPβ-CD on each compound was discussed. In addition, the effect of increasing concentrations of different cyclodextrins in the development of ORAC-fluorescence (ORAC-FL) assays was studied. The ORAC signal was higher for HPβ-CD, followed by Mβ-CD, β-CD, γ-CD and finally α-CD. These results could be explained by the formation of inclusion complexes with fluorescein.

  7. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid.

    Science.gov (United States)

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-01-01

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778

  8. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    Directory of Open Access Journals (Sweden)

    Estefanía Burgos-Morón

    2016-07-01

    Full Text Available Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2 also play an important role in the development of a variety of cancers (e.g., bladder cancer in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay and DNA damage (γ-H2AX and 53BP1 focus assay induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee.

  9. Synthesis of Caffeic Acid Amides Bearing 2,3,4,5-Tetra-hydrobenzo[b][1,4]dioxocine Moieties and Their Biological Evaluation as Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Ji-Wen Yuan

    2014-06-01

    Full Text Available A series of caffeic acid amides D1-D17 bearing 2,3,4,5-tetrahydrobenzo-[b][1,4]dioxocine units has been synthesized and their biological activities evaluated for potential antiproliferative and EGFR inhibitory activity. Of all the compounds studied, compound D9 showed the most potent inhibitory activity (IC50 = 0.79 μM for HepG2 and IC50 = 0.36 μM for EGFR. The structures of compounds were confirmed by 1H-NMR, ESI-MS and elemental analysis. Among all, the structure of compound D9 ((E-N-(4-ethoxyphenyl-3-(2,3,4,5-tetrahydrobenzo[b][1,4]dioxocin-8-ylacrylamide was also determined by single-crystal X-ray diffraction analysis. Compound D9 was found to be a potential antitumor agent according to biological activity, molecular docking, apoptosis assay and inhibition of HepG2.

  10. Humic substances can modulate the allelopathic potential of caffeic, ferulic, and salicylic acids for seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.).

    Science.gov (United States)

    Loffredo, Elisabetta; Monaci, Linda; Senesi, Nicola

    2005-11-30

    The capacity of a leonardite humic acid (LHA), a soil humic acid (SHA), and a soil fulvic acid (SFA) in modulating the allelopathic potential of caffeic acid (CA), ferulic acid (FA), and salicylic acid (SA) on seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) was investigated. Lettuce showed a sensitivity greater than that of tomato to CA, FA, and SA phytotoxicity, which was significantly reduced or even suppressed in the presence of SHA or SFA, especially at the highest dose, but not LHA. In general, SFA was slightly more active than SHA, and the efficiency of the action depended on their concentration, the plant species and the organ examined, and the allelochemical. The daily measured residual concentration of CA and FA decreased drastically and that of SA slightly in the presence of germinating seeds of lettuce, which were thus able to absorb and/or enhance the degradation of CA and FA. The adsorption capacity of SHA for the three allelochemicals was small and decreased in the order FA > CA > SA, thus suggesting that adsorption could be a relevant mechanism, but not the only one, involved in the "antiallelopathic" action. PMID:16302757

  11. Caffeic Acid Inhibits UVB-induced Inflammation and Photocarcinogenesis Through Activation of Peroxisome Proliferator-activated Receptor-γ in Mouse Skin.

    Science.gov (United States)

    Balupillai, Agilan; Prasad, Rajendra N; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugham, Mohana; Govindasamy, Kanimozhi; Gunaseelan, Srithar

    2015-11-01

    In this study, the effect of caffeic acid (CA) on both acute and chronic UVB-irradiation-induced inflammation and photocarcinogenesis was investigated in Swiss albino mice. Animals were exposed to 180 mJ cm(-2) of UVB once daily for 10 consecutive days and thrice weekly for 30 weeks for acute and chronic study respectively. UVB exposure for 10 consecutive days showed edema formation, increased lipid peroxidation and decreased antioxidant status with activation of inflammatory molecules such as TNF-α, IL-6, COX-2 and NF-κB. However, CA (15 mg per kg.b.wt.) administration before each UVB exposure decreased lipid peroxidation, inflammatory markers expression and enhanced antioxidant status probably through the activation of peroxisome proliferator-activated receptors (PPARγ) in the mice skin. PPARγ is considered a potential target for photochemoprevention because it inhibits UVB-mediated inflammatory responses. In this study, UVB exposure for 30 weeks caused squamous cell carcinoma and upregulation of iNOS, VEGF and TGF-β and downregulation of p53 and tumor incidence in the mice skin. Both topical (CAT) and intraperitoneal (CAIP) treatment before each UVB exposure downregulates iNOS, VEGF, TGF-β, upregulates p53 and reduces tumors multiplicity in the mice skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through activation of anti-inflammatory transcription factor PPARγ in the mice.

  12. Caffeic Acid Phenylethyl Ester and MG-132 Have Apoptotic and Antiproliferative Effects on Leukemic Cells But Not on Normal Mononuclear Cells12

    Science.gov (United States)

    Cavaliere, Victoria; Papademetrio, Daniela L; Lorenzetti, Mario; Valva, Pamela; Preciado, María Victoria; Gargallo, Patricia; Larripa, Irene; Monreal, Mariela B; Pardo, María Laura; Hajos, Silvia E; Blanco, Guillermo AC; Álvarez, Élida MC

    2009-01-01

    Chemotherapy aims to limit proliferation and induce apoptotic cell death in tumor cells. Owing to blockade of signaling pathways involved in cell survival and proliferation, nuclear factor κB (NF-κB) inhibitors can induce apoptosis in a number of hematological malignancies. The efficacy of conventional chemotherapeutic drugs, such as vincristine (VCR) and doxorubicine (DOX), may be enhanced with combined therapy based on NF-κB modulation. In this study, we evaluated the effect of caffeic acid phenylethyl ester (CAPE) and MG-132, two nonspecific NF-κB inhibitors, and conventional chemotherapeutics drugs DOX and VCR on cell proliferation and apoptosis induction on a lymphoblastoid B-cell line, PL104, established and characterized in our laboratory. CAPE and MG-132 treatment showed a strong antiproliferative effect accompanied by clear cell cycle deregulation and apoptosis induction. Doxorubicine and VCR showed antiproliferative effects similar to those of CAPE and MG-132, although the latter drugs showed an apoptotic rate two-fold higher than DOX and VCR. None of the four compounds showed cytotoxic effect on peripheral mononuclear cells from healthy volunteers. CAPE- and MG-132-treated bone marrow cells from patients with myeloid and lymphoid leukemias showed 69% (P < .001) and 25% decrease (P < .01) in cell proliferation and 42% and 34% (P < .01) apoptosis induction, respectively. Overall, our results indicate that CAPE and MG-132 had a strong and selective apoptotic effect on tumor cells that may be useful in future treatment of hematological neoplasias. PMID:19252751

  13. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd. Iljin for the Production of Biomass and Caffeic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Ewa Skała

    2015-01-01

    Full Text Available The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43% was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3 at two different lighting conditions (light or dark were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots.

  14. Synthesis,antibacterial and antioxidant activity of caffeic acid vitamin C ester%咖啡酸维生素C酯的合成、抑菌活性和抗氧化性研究

    Institute of Scientific and Technical Information of China (English)

    刘菊香; 范广璞; 刘长春

    2012-01-01

    A facile one-pot method for synthesis of caffeic acid vitamin C ester via Knoevenagel condensation and esterification from 3,4-dihydroxybenzaldehyde,malonate and vitamin C were studied.Antibacterial and antioxidant activity of caffeic acid vitamin C ester were determined.In the presence of SO2-4/ZrO2 catalyst,caffeic acid was synthesized by Knoevenagel condensation of 3,4-dihydroxybenzaldehyde with malonate,then esterified with vitamin C to give caffeic acid vitamin C ester in 85.1% yield.The structure of target compound was confirmed by1H NMR and IR spectrum.The antibacterial tests indicated that caffeic acid vitamin C ester exhibited good inhibition activity on Staphylococcus aureus,Escherichia coli,Bacillus subtilis,Saccharomyces cerevisiae,Penicillium chrysogenum,Aspergillus flavus and Aspergillus niger.And the inhibition activity of caffeic acid vitamin C ester on bacteria and yeast were much higher than those on mould.The antioxidant tests indicated that caffeic acid vitamin C ester could efficiently scavenge DPPH free radical and hydroxyl free radical,which was significantly higher than that of vitamin C.%研究了以3,4-二羟基苯甲醛、丙二酸和维生素C为原料,经过Knoevenagel缩合和直接酯化一锅法合成咖啡酸维生素C酯的方法,并考察了咖啡酸维生素C酯的抑菌活性和抗氧化性。在催化剂SO42-/ZrO2的作用下,3,4-二羟基苯甲醛与丙二酸首先发生Knoevenagel缩合生成咖啡酸,产物不需要分离,加入维生素C继续进行酯化反应,以85.1%的产率得到了咖啡酸维生素C酯,产物结构用1HNMR和IR进行确证。抑菌活性实验表明,咖啡酸维生素C酯对金黄色葡萄球菌、大肠杆菌、枯草杆菌、酿酒酵母、青霉、黄曲霉和黑曲霉均有较强的抑制作用,对细菌和酵母的抑制作用高于霉菌。抗氧化性实验表明,咖啡酸维生素C酯可以有效清除DPPH自由基和羟基自由基,清除效果明显好于维生素C。

  15. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines.

    Science.gov (United States)

    Sirota, R; Gibson, D; Kohen, R

    2015-01-01

    In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes. In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells. The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes. We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity. In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H2O2 produced by the catechol group. On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment.

  16. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol.

    Science.gov (United States)

    Jung, Je Hyeong; Altpeter, Fredy

    2016-09-01

    Sugarcane (Saccharum spp. hybrids) is a prime crop for commercial biofuel production. Advanced conversion technology utilizes both, sucrose accumulating in sugarcane stems as well as cell wall bound sugars for commercial ethanol production. Reduction of lignin content significantly improves the conversion of lignocellulosic biomass into ethanol. Conventional mutagenesis is not expected to confer reduction in lignin content in sugarcane due to its high polyploidy (x = 10-13) and functional redundancy among homo(eo)logs. Here we deploy transcription activator-like effector nuclease (TALEN) to induce mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane. Capillary electrophoresis (CE) was validated by pyrosequencing as reliable and inexpensive high throughput method for identification and quantitative characterization of TALEN mediated mutations. Targeted COMT mutations were identified by CE in up to 74 % of the lines. In different events 8-99 % of the wild type COMT were converted to mutant COMT as revealed by pyrosequencing. Mutation frequencies among mutant lines were positively correlated to lignin reduction. Events with a mutation frequency of 99 % displayed a 29-32 % reduction of the lignin content compared to non-transgenic controls along with significantly reduced S subunit content and elevated hemicellulose content. CE analysis displayed similar peak patterns between primary COMT mutants and their vegetative progenies suggesting that TALEN mediated mutations were faithfully transmitted to vegetative progenies. This is the first report on genome editing in sugarcane. The findings demonstrate that targeted mutagenesis can improve cell wall characteristics for production of lignocellulosic ethanol in crops with highly complex genomes. PMID:27306903

  17. Role of the caffeic acid oxidation products on the iron mobilization at the soil-root interface

    OpenAIRE

    Deiana, Salvatore Andrea; Gessa, Carlo Emanuele; Pilo, Maria Itria; Premoli, Alessandra Maria; Solinas, Vincenzo

    1995-01-01

    Previous results show that the reduction of Fe(III) by caffeiic acid (CAF) is strongly influenced by the pH of the reaction medium (DEIANA et al., 1995). In particular, it has been found that al pH > 3.8 the reducing activity of CAF towards the Fe(III) ions in solution is low, but it increases when Fe(III) is complexed as Fe(III)-polygalacturonate. The mobilization of the Fe(II) ions, which form upon the Fe(III) reduction, has been shown to depend mainly on the nature of the Fe(II...

  18. Clinical observation on treating postoperative chemotherapy-induced neutropenia with caffeic acid tablets%咖啡酸片治疗食管癌术后化疗引起白细胞减少的临床观察

    Institute of Scientific and Technical Information of China (English)

    陆军

    2013-01-01

    Objective:To investigate the effect of caffeic acid tablets on treating postoperative chemotherapy-induced neutropenia. Methods: 64 cases were divided into two groups, the treated group was given caffeic acid tablets, the control group was given batilol, vitamin B4, Li Ke-jun. Reviewed blood routine once a week before treatment, in treatment and after treatment, observed rise in white blood cells. Results: The difference between the two groups was statistically significant (P<0.01). Conclusion: Caffeic acid tablets have good efficacy on treating postoperative chemotherapy-induced neutropenia.%目的:探讨咖啡酸片治疗食管癌术后白细胞减少的疗效及作用。方法:将食管癌术后白细胞减少患者64例随机分成两组,治疗组给予咖啡酸片;对照组给予鲨肝醇、维生素B4、利可君。两组在治疗前、治疗中、治疗后每周复查1次血常规,观察白细胞上升情况。结果:两组疗效间差异有统计学意义(P<0.01)。结论:咖啡酸片对食管癌术后化疗白细胞减少有很好的疗效。

  19. Reuse of Organomineral Substrate Waste from Hydroponic Systems as Fertilizer in Open-Field Production Increases Yields, Flavonoid Glycosides, and Caffeic Acid Derivatives of Red Oak Leaf Lettuce (Lactuca sativa L.) Much More than Synthetic Fertilizer.

    Science.gov (United States)

    Dannehl, Dennis; Becker, Christine; Suhl, Johanna; Josuttis, Melanie; Schmidt, Uwe

    2016-09-28

    Effects of organic waste from a hydroponic system added with minerals (organomineral fertilizer) and synthetic fertilizer on major polyphenols of red oak leaf lettuce using HPLC-DAD-ESI-MS(3) were investigated. Interestingly, contents of the main flavonoid glycosides and caffeic acid derivatives of lettuce treated with organomineral fertilizer were equal to those synthesized without soil additives. This was found although soil nutrient concentrations, including that of nitrogen, were much lower without additives. However, lettuce treated with synthetic fertilizer showed a significant decrease in contents of caffeic acid derivatives and flavonoid glycosides up to 78.3 and 54.2%, respectively. It is assumed that a negative effect of a high yield on polyphenols as described in the growth-differentiation balance hypothesis can be counteracted by (i) a higher concentration of Mg or (ii) optimal physical properties of the soil structure. Finally, the organomineral substrate waste reused as fertilizer and soil improver resulted in the highest yield (+78.7%), a total fertilizer saving of 322 kg ha(-1) and waste reduction in greenhouses.

  20. 白色紫锥菊不定根诱导及咖啡酸衍生物积累研究%Induction of adventitious roots of Echinacea pallida and accumulation of caffeic acid derivatives

    Institute of Scientific and Technical Information of China (English)

    吴春华; 黄韬; 崔锡花; 白基烨

    2012-01-01

    以白色紫锥菊试管苗子叶为外植体,研究了植物生长素2,4-D,IAA,IBA,NAA对不定根诱导以及IBA浓度对液体悬浮培养中不定根的生长及咖啡酸衍生物积累的影响,并进行了生物反应器培养.结果表明,对白色紫锥不定根诱导最适合植物生长素是IBA1.0mg· L-1,不定根诱导数目达到22.5根/培养皿.液体悬浮培养中IBA 1.0 mg·L-1最适合不定根生长及咖啡酸衍生物的积累.白色紫锥菊不定根在5L气升式生物反应器中培养30 d后可获得8.98 g· L-1干重,是三角瓶悬浮培养干重4.38 g·L-1的2.05倍;生物反应器培养的不定根中紫锥菊苷质量分数为14.08 mg·g-1(干重),是栽培根的2.4倍;氯原酸,菊苣酸,总咖啡酸衍生物含量是栽培根的4.0 ~25.6倍.该研究为大量生产紫锥菊药品可提供富含紫锥菊苷等咖啡酸衍生物的高品质生物医学药材.%Objective:To investigate the effect of auxins 2,4-D, IAA, IBA, NAA on induction of adventitious roots as well as that of IBA concentrations on the growth of adventitious roots and the accumulation of caffeic acid derivatives, with test-tube seedling leaves Echinacea pallida as the explant,and cultivate adventitious roots in bioreactors. Result: 1.0 mg·L-1 IBA was found the best for the induction of adventitious roots,with the numer of induced adventitious roots up to 22. 5 in each culture dish. Among different concentrations for suspension cultivation of IBA tested, 1. 0 mg·L-1lBA was found the most suitable for the growth of adventitious roots and the accumulation of caffeic acid derivatives. In a 5 L balloon type bubble bioreactor,8. 98 g·L-1 dry weight was achieved after one month,which was 2. 05 times of 4. 38 g·L-1 dry weight cultivated in a triangular flask. The content of echinacoside cultivated in a bioreactor was 14. 08 mg g -1 DW, which was 2. 4 times of cultivated roots. The contents of chlorogenic acid, chicoric acid and total caffeic acid derivatives were

  1. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil.

    Science.gov (United States)

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2016-04-01

    A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. PMID:26838445

  2. Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography.

    Science.gov (United States)

    Es'haghi, Zarrin; Golsefidi, Mazyar Ahmadi; Saify, Ali; Tanha, Ali Akbar; Rezaeifar, Zohre; Alian-Nezhadi, Zahra

    2010-04-23

    A new design of hollow fiber solid-liquid phase microextraction (HF-SLPME) was developed for the determination of caffeic acid in medicinal plants samples as Echinacea purpure. The membrane extraction with sorbent interface used in this research is a three-phase supported liquid membrane consisting of an aqueous (donor phase), organic solvent/nano sorbent (membrane) and aqueous (acceptor phase) system operated in direct immersion sampling mode. The multi-walled carbon nanotube dispersed in the organic solvent is held in the pores of a porous membrane supported by capillary forces and sonification. It is in contact with two aqueous phases: the donor phase, which is the aqueous sample, and the acceptor phase, usually an aqueous buffer. All microextraction experiments were supported using an Accurel Q3/2 polypropylene hollow fiber membrane (600 microm I.D., 200 microm wall thicknesses, and 0.2 microm pore size). The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of an acidic analyte into one single extract. In order to obtain high enrichment and extraction efficiency of the analyte using this novel technique, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.0001-50 microg/L), repeatability, low limits of detection (0.00005 microg/L) and excellent enrichment (EF=2108). PMID:20227700

  3. Retinoic acid receptor agonist Am80 inhibits CXCL2 production from microglial BV-2 cells via attenuation of NF-κB signaling.

    Science.gov (United States)

    Takaoka, Yuichiro; Takahashi, Moeka; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-09-01

    Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia. PMID:27351827

  4. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT down-regulated, and normal maize plants

    Directory of Open Access Journals (Sweden)

    Martinant Jean-Pierre

    2008-06-01

    Full Text Available Abstract Background Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3 mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT gene. Results Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225, and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying and ear (younger lignifying internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. Conclusion Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the

  5. Comparison of 2 culture media, cornmeal agar incorporating caffeic acid and black rice agar, to selectively isolate Cryptococcus neoformans%两种新型隐球菌选择性培养基的比较研究

    Institute of Scientific and Technical Information of China (English)

    陶星辰; 尚秋菊; 罗宗龙; 杨静; 代陆娇; 苏鸿雁

    2014-01-01

    目的 比较咖啡酸玉米琼脂培养基(caffeic acid cornmeal agar medium,CACA)和黑米琼脂培养基(black rice agar medium)对鸽粪中新型隐球菌的分离效果. 方法 用无菌竹签从鸽舍随机采取鸽粪标本,取0.6g与10 ml无菌生理盐水制成悬液,然后按每个平板100μl分别接种咖啡酸玉米琼脂培养基和黑米琼脂培养基,肉眼观察菌落形态、颜色,光学显微镜下观察菌体形态,同时用特异性引物CN4和CN5扩增新型隐球菌URA基因,分别统计两种培养基中出现阳性菌株的平板数目. 结果 黑米琼脂培养基中新型隐球菌菌落呈棕黄色,外观湿润,状似胶汁.共分离获得23株新型隐球菌,检出率32.86%.CACA中新型隐球菌菌落较黑米琼脂培养基上的菌落小,褐色,干燥.共分离出11株新型隐球菌,检出率为15.71%.黑米琼脂培养基的检出率与CACA比较差异有统计学意义(P<0.05),且丝状真菌覆盖性生长的平板数目少于CACA,污染程度低于CACA;通过墨汁染色,在光学显微镜下观察新型隐球菌菌体呈圆形或卵圆形,外有宽厚荚膜,PCR扩增得到了目的条带产物. 结论 黑米琼脂培养基作为新型隐球菌的选择性培养基其分离培养效果(检出效果和检出率)优于CACA.

  6. COMPARISON OF GUIZOTIA ABYSSINICA SEED AGAR WITH CAFFEIC ACID CORNMEAL AGAR TO SELECTIVELY ISOLATE CRYPTOCOCCUS NEOFORMANS%对两种新生隐球菌选择性培养基的比较研究

    Institute of Scientific and Technical Information of China (English)

    李安生; 吕桂霞; 沈永年; 陈伟; 吴绍熙

    2001-01-01

    比较鸟籽琼脂(GASA,Guizotia abyssinica seed agar)和咖啡酸玉米琼脂(CACA,Caffeic acidcommeal agar)对新生变种和格特变种的培养效果,再同时用两种培养基分离鸽粪和澳洲赤桉标本中的新生隐球菌.结果表明,CACA对新生隐球菌的培养和选择性分离效果与GASA相同,能够用于新生隐球菌的选择性分离.

  7. Reversible helix sense inversion in surface-grafted poly(beta-phenethyl-L-aspartate) films

    NARCIS (Netherlands)

    Luijten, Jeroen; Vorenkamp, Eltjo J.; Schouten, Arend J.

    2007-01-01

    The reversible manipulation of the helix screw sense in surface-grafted poly(beta-phenethyl-L-aspartate) (PPELA) films by means of external stimuli was investigated. Ringopening polymerization of beta-phenethyl-L-aspartate N-carboxyanhydride initiated from primary amino-functionalized silicon and qu

  8. Reversible Helix Sense Inversion in Surface-Grafted Poly(β-phenethyl-L-aspartate) Films

    NARCIS (Netherlands)

    Luijten, Jeroen; Vorenkamp, Eltjo J.; Schouten, Arend J.

    2007-01-01

    The reversible manipulation of the helix screw sense in surface-grafted poly(β-phenethyl-L-aspartate) (PPELA) films by means of external stimuli was investigated. Ringopening polymerization of β-phenethyl-L-aspartate N-carboxyanhydride initiated from primary amino-functionalized silicon and quartz s

  9. Thermolysis of surface-immobilized phenethyl phenyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Hitsman, V.M.

    1991-01-01

    Our research has focused on modeling the constraints on free-radical reactions that might be imposed in coal as a consequence of its cross-linked macromolecular structure by covalently bonding diphenylalkanes to an inert silica surface. A surface-immobilized phenethyl phenyl ether ({approx}PhCH{sub 2}CH{sub 2}POh, or {approx}PPE-3) has been prepared as a model for ether linkages in lignin by the condensation of p-HOPhCH{sub 2}CH{sub 2}OPh with the surface hydroxyls of a high purity fumed silica. Thermolysis of {approx}PPE-3 at saturation surface coverage at 375{degree}C produces {approx}PhCH = CH{sub 2} and PhOH as the major products which are consistent with the proposed free-radical chain mechanism for the decomposition of fluid-phase phenethyl phenyl ether. However, significant quantities of {approx}PhCH{sub 3} and PhCHO (ca. 18% of the products) are produced indicating the emergence of a new reaction pathway on the surface. The mechanism for the decomposition of {approx}PPE-3 will be discussed in light of this new information. 18 refs., 1 fig.

  10. Comparison of caffeic acid contents in tetraploidy taraxacum officinale and diplontic taraxacum dissectum%四倍体药蒲公英和二倍体山西多裂蒲公英中咖啡酸含量的比较

    Institute of Scientific and Technical Information of China (English)

    刘红霞; 高培芳; 赵晓明; 张金桐

    2009-01-01

    A high performance liquid chromatographic method was established for determination of caffeic acid contents in tetraploidy taraxacum officinale and diplontic taraxacum dissectum. An Appollo C18 column (150mm×4. 6mm, 5μ) was used with CH_3OH-PB (pH4. 0, 23:77) as mobile phase, detection at 327nm, column temperature of 40℃ , and flow rate of 0. 9mL/min. The results showed that the caffeic acid content in tetraploidy taraxacum officinale was 0. 29%, and in diplontic taraxacam dissectum it was only 0. 105%). The former was 176. 1% higher than the latter. The comparison is helpful for promoting high quality tetraploidy strain.%本文采用四倍体药蒲公英和二倍体多裂蒲公英为材料,通过HPLC法测定并比较两种蒲公英中咖啡酸的含量,以大力推广产量高,抗逆性强,药用活性成分高的优质多倍体蒲公英新品种.HPLC所采用的色谱柱为Apollo C18柱(150mm×4.6mm,5μm),流动相为甲醇-磷酸盐缓冲液(pH4.0)(23: 77);柱温40℃;流速0.9mL/min,检测波长为327nm.二倍体山西多裂蒲公英中咖啡酸含量仅为0.105%,四倍体药蒲公英中咖啡酸含量高达0.29%,比前者多176.1%.四倍体药蒲公英中咖啡酸含量高,是一种值得推广的优质多倍体蒲公英新品种.

  11. Clicked Cinnamic/Caffeic Esters and Amides as Radical Scavengers and 5-Lipoxygenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Jérémie A. Doiron

    2014-01-01

    Full Text Available 5-Lipoxygenase (5-LO is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a–h and amides 9a–h as well as caffeic esters 15a–h and amides 16a–h were synthesized by Cu(I-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10–20 μM. Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

  12. Evaluation of ethyl N-(2-phenethyl) carbamate analogues as biofilm inhibitors of methicillin resistant Staphylococcus aureus.

    Science.gov (United States)

    Stephens, Matthew D; Yodsanit, Nisakorn; Melander, Christian

    2016-07-12

    A small molecule library consisting of 45 compounds was synthesized based on the bacterial metabolite ethyl N-(2-phenethyl) carbamate. Screening of the compounds revealed a potent analogue capabale of inhibiting several strains of Methicillin Resistant S. aureus biofilms with low to moderate micromolar IC50 values. PMID:27341658

  13. Support vector machine for SAR/QSAR of phenethyl-amines

    Institute of Scientific and Technical Information of China (English)

    Bing NIU; Wen-cong LU; Shan-sheng YANG; Yu-dong CAI; Guo-zheng LI

    2007-01-01

    Aim: To discriminate 32 phenethyl-amines between antagonists and agonists,and predict the activities of these compounds. Methods: The support vectormachine (SVM) is employed to investigate the structure-activity relationship(SAR)/quantitative structure-activity relationship (QSAR) of phenethyl-aminesbased on molecular descriptors. Results: By using the leave-one-out cross-vali-dation (LOOCV) test, 1 optimal SAR and 2 optimal QSAR models for agonists andantagonists were attained. The accuracy of prediction for the classification ofphenethyl-amines by using the LOOCV test is 91.67%, and the accuracy of predic-tion for the classification of phenethyl-amines by using the independent test is100%; the results are better than those of the Fisher, the artificial neural network(ANN), and the K-nearest neighbor models for this real world data. The RMSE(root mean square error)of antagonists' QSAR model is 0.5881, and the RMSE ofagonists' QSAR model is 0.4779, which are better than those of the multiple linearregression, partial least squares, and ANN models for this real world data.Conclusion: The SVM can be used to investigate the SAR and QSAR of phenethyl-amines and could be a promising tool in the field of SAR/QSAR research.

  14. Oxidized Caffeic Acid Cross-linked Whey Protein Films: Thermal Properties, Light Transmittance, Water Barrier Properties and in vitro Digestibility%氧化咖啡酸交联乳清蛋白膜的热学、光学特性及水汽渗透率、消化率研究

    Institute of Scientific and Technical Information of China (English)

    王耀松; 熊幼翎; 陈洁

    2012-01-01

    采用氧化咖啡酸作为交联剂,研究其对乳清蛋白交联所成膜的热、光、水汽渗透和消化等功能特性。咖啡酸溶液经氧化后以质量分数2%和4%的量(以蛋白量为基础)加入到6g/100mL、90℃热变性的乳清蛋白溶液(pH8.0),采用铺展法制备蛋白膜。利用SDS—PAGE、差示扫描量热法、热重技术等方法来表征氧化咖啡酸对乳清蛋白的交联性和膜功能性的影响。结果表明:氧化咖啡酸主要通过促进二硫键和部分非还原共价键交联蛋白,使蛋白成膜的热稳定性提高。此外,这种交联处理能显著降低膜材料的光通透率和透明性,但对水汽渗透率无显著性降低作用。体外消化实验结果显示较高质量分数的氧化咖啡酸处理可显著降低膜的消化性。%Oxidized caffeic acid (OCA) was employed to induce cross-linking in whey protein-based films. The thermal properties, light transmittance, water barrier properties, and in vitro digestibility of the resultant whey protein films were analyzed. OCA at 2% and 4% (based on protein content) application levels was incorporated into 6 g/100 mL heat-denatured (90 ℃) whey protein isolate (WPI) solutions before casting to form films. The protein cross-linking behavior and film functionality were characterized by electrophoresis, differential scanning calorimetry (DSC), and thermogravimetry. The results showed that OCA promoted whey protein cross-linking primarily via disulfide bonds and partial non-reducible covalent bonds, leading to an improved thermal stability of the resultant films. OCA treatment significantly lowered the light transmittance and transparency, but slightly reduced the water vapor permeability (WVP) of the films. The in vitro digestion experiments carried out using pepsin and pancreatin showed that hydrolysis of the films was inhibited when higher concentrations of OCA were incorporated.

  15. Cloning and Characterization of a Caffeic Acid O-methyltransferase Gene(COMT) from Hevea brasiliensis%一个橡胶树咖啡酸甲基转移酶基因(COMT)的克隆和表达分析

    Institute of Scientific and Technical Information of China (English)

    戚继艳; 方永军; 龙翔宇; 唐朝荣

    2013-01-01

    咖啡酸甲基转移酶(COMT)是木质素合成途径的关键酶,在植物抗逆反应中发挥重要作用.本研究基于本实验室己建立的橡胶树(Hevea brasiliensis)胶乳EST数据库,对组装后序列(Contig)检索并设计引物,利用PCR技术克隆到一个橡胶树COMT基因,命名为HbCOMT(GenBank登录号为GI:443908530).该基因全长1926 bp,由4个外显子和3个内含子组成,编码368个氨基酸,预测蛋白的分子量为40.58kD,等电点为5.46,具有植物O-甲基转移酶的典型特征.系统进化分析显示HbCOMT1蛋白与蓖麻(Ricinus communis)和葡萄(Vitis vinifera)的COMT聚为一组,其他11种植物的COMT则另成一组.基因表达分析显示HbCOMT1在胶乳中的表达量最高,其次是叶片和树皮,花、芽中的表达量较低,种子中几乎不表达.同时,HbCOMT1基因在胶乳中的表达量随割次增加明显上升,显著受伤害诱导,受死皮调控,但对乙烯利应答不明显.本研究首次从橡胶树中克隆了一个COMT基因,了解了其基因结构与表达特性,推测该基因可能参与乳管的胁迫应答和排胶调控,为深入揭示该基因功能提供基础资料.%Caffeic acid O-methyltransferase (COMT) catalyzes the preferential formation of syringyl (S) monolignol subunits,and acts as a key enzyme in lignin synthesis.COMT is implicated in multiple physiological processes in plants,e.g.the functioning of plant vasculature,and defense responses to biotic and abiotic stresses.Up to now,no literature has been available in the cloning and characterization of COMT genes in Hevea brasiliensis (para rubber tree).Previously,we showed that the levels of a COMT protein increased markedly with tapping in the latex of reopened rubber trees.The expressions of this COMT protein correlated well with the patterns of tapping-enhanced latex yields.Here,by searching the assembled latex EST library (20126 high-quality Sanger ESTs,with average length of 575 bp),a contig annotated as COMT was

  16. Electrochemical behavior of antioxidants: Part 3. Electrochemical studies of caffeic Acid–DNA interaction and DNA/carbon nanotube biosensor for DNA damage and protection

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2016-05-01

    Full Text Available Multi-walled carbon nanotubes-modified glassy carbon electrode biosensor was used for electrochemical studies of caffeic acid–dsDNA interaction in phosphate buffer solution at pH 2.12. Caffeic acid, CAF, shows a well-defined cyclic voltammetric wave. Its anodic peak current decreases and the peak potential shifts positively on the addition of dsDNA. This behavior was ascribed to an interaction of CAF with dsDNA giving CAF–dsDNA complex by intercalative binding mode. The apparent binding constant of CAF–dsDNA complex was determined using amperometric titrations. The oxidative damage caused to DNA was detected using the biosensor. The damage caused by the reactive oxygen species, hydroxyl radical (·−OH generated by the Fenton system on the DNA-biosensor was detected. It was found that CAF has the capability of scavenging the hydroxide radical and protecting the DNA immobilized on the GCE surface.

  17. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Science.gov (United States)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  18. 作为抗粥样硬化症的抗氧化剂的发展%Development of Antioxidants as Anti-Atherosclerotic Agents

    Institute of Scientific and Technical Information of China (English)

    Ming-Shi Shiao; Li-Ling Chu; Elaine Lin; Lily Chiu

    1997-01-01

    Antioxidants capable of inhibiting LDL oxidation may reduce atherosclerosis. Many Chinese herbs on blood stasis contain antioxidants to inhibit LDL oxidation. Caffeic acid phenethyl ester and several caffeic acid -containing analogues more potent than probucol have been identified.We conclude that lipophilic antioxidants which can incorporate into LDL with their antioxidative functionalities being exposed ahead of the bis- allylic sites of PUFA in LDL are most favorable.

  19. The Novel Pyrrolidine Nor-Lobelane Analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] Inhibits VMAT2 Function, Methamphetamine-Evoked Dopamine Release, and Methamphetamine Self-Administration in RatsS⃞

    Science.gov (United States)

    Beckmann, Joshua S.; Siripurapu, Kiran B.; Nickell, Justin R.; Horton, David B.; Denehy, Emily D.; Vartak, Ashish; Crooks, Peter A.; Bardo, Michael T.

    2010-01-01

    Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [3H]dihydrotetrabenazine binding and [3H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [3H]nicotine and [3H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [3H]dihydrotetrabenazine binding (Ki = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [3H]dopamine uptake (Ki = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC50 = 1.8 ± 0.2 μM; Imax = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel pharmacotherapies for

  20. The novel pyrrolidine nor-lobelane analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] inhibits VMAT2 function, methamphetamine-evoked dopamine release, and methamphetamine self-administration in rats.

    Science.gov (United States)

    Beckmann, Joshua S; Siripurapu, Kiran B; Nickell, Justin R; Horton, David B; Denehy, Emily D; Vartak, Ashish; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T

    2010-12-01

    Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [(3)H]dihydrotetrabenazine binding and [(3)H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [(3)H]nicotine and [(3)H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [(3)H]dihydrotetrabenazine binding (K(i) = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [(3)H]dopamine uptake (K(i) = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC(50) = 1.8 ± 0.2 μM; I(max) = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel

  1. Watercress and Water Quality: The Effect of Phenethyl Isothiocyanate on the Mating Behaviour of Gammarus pulex

    Directory of Open Access Journals (Sweden)

    Melanie J. Dixon

    2011-01-01

    Full Text Available Watercress releases phenethyl isothiocyanate (PEITC upon wounding as a defence against herbivores. PEITC levels released from watercress farms are elevated due to cropping, washing, and processing and are thought to lead to adverse effects on Gammarus pulex in chalk streams. This study elucidates the sublethal effect of PEITC on reproductive behaviour of G. pulex, employing ex situ tests to investigate the disruption of precopular pairing under conditions simulating in situ exposure. Mean time to separation of precopular pairs was 89 ± 6 minutes for watercress wash water (1 g watercress per litre water and 81 ± 15 minutes for pure PEITC (1 μL/L. Re-exposure to watercress wash water to simulate the pulsed operation at a watercress farm did not alter behavioural response. The repeated interruption of reproductive behaviour under in situ conditions would impair long-term reproductive success and could explain in part low abundance of G. pulex downstream of watercress farms.

  2. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  3. Computational Study of Bond Dissociation Enthalpies for Lignin Model Compounds. Substituent Effects in Phenethyl Phenyl Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Beste, Ariana [ORNL; Buchanan III, A C [ORNL

    2009-01-01

    Lignin is an abundant natural resource that is a potential source of valuable chemicals. Improved understanding of the pyrolysis of lignin occurs through the study of model compounds for which phenethyl phenyl ether (PhCH2CH2OPh, PPE) is the simplest example representing the dominant -O-4 ether linkage. The initial step in the thermal decomposition of PPE is the homolytic cleavage of the oxygen-carbon bond. The rate of this key step will depend on the bond dissociation enthalpy, which in turn will depend on the nature and location of relevant substituents. We used modern density functional methods to calculate the oxygen-carbon bond dissociation enthalpies for PPE and several oxygen substituted derivatives. Since carbon-carbon bond cleavage in PPE could be a competitive initial reaction under high temperature pyrolysis conditions, we also calculated substituent effects on these bond dissociation enthalpies. We found that the oxygen-carbon bond dissociation enthalpy is substantially lowered by oxygen substituents situated at the phenyl ring adjacent to the ether oxygen. On the other hand, the carbon-carbon bond dissociation enthalpy shows little variation with different substitution patterns on either phenyl ring.

  4. Phenethyl isothiocyanate induces apoptosis and inhibits cell proliferation and invasion in Hep-2 laryngeal cancer cells.

    Science.gov (United States)

    Dai, Meng-Yuan; Wang, Yan; Chen, Chen; Li, Fen; Xiao, Bo-Kui; Chen, Shi-Ming; Tao, Ze-Zhang

    2016-05-01

    The dietary compound phenethyl isothiocyanate (PEITC), an important tumoricidal component found in cruciferous vegetables, exhibits strong anticancer and chemopreventive effects in a variety of tumors. However, its role in human laryngeal cancer is unclear. The aim of the present study was to investigate whether PEITC exhibits anticancer properties in human laryngeal carcinoma Hep-2 cells in vitro and to identify the potential molecular mechanisms. The results showed that treatment of Hep-2 cells with PEITC significantly inhibited cell proliferation in a dose- and time-dependent manner, promoted apoptosis with concurrent G2/M cell cycle arrest and inhibited cell invasion in a dose-dependent manner. These effects were accompanied by significant alterations in the expression levels of key proteins associated with pro-survival signaling pathways, including PI3K, Akt, ERK, NF-κB, Bcl, Bax, cyclin B, CDK4 and CDK6. Importantly, these effects were not reflected in 16HBE normal human bronchial epithelial cells, suggesting a safe range of treatment concentrations between 0 and 10 µM PEITC. In summary, PEITC exhibited significant anticancer effects against human laryngeal cancer cells in vitro with low toxicological impact on normal bronchial epithelial cells. This was achieved through dysregulation of key proteins involved in the occurrence and development of tumors, thereby offering a valuable contribution to future strategies for the treatment and screening of patients with laryngocarcinoma. PMID:26986926

  5. Induction of Epoxide Hydrolase, Glucuronosyl Transferase, and Sulfotransferase by Phenethyl Isothiocyanate in Male Wistar Albino Rats

    Directory of Open Access Journals (Sweden)

    Ahmad Faizal Abdull Razis

    2014-01-01

    Full Text Available Phenethyl isothiocyanate (PEITC is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin. The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT, N-acetyltransferase (NAT, glucuronosyl transferase (UDP, and epoxide hydrolase (EH following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06 µmol/g (low dose, i.e., dietary intake, 0.6 µmol/g (medium dose, and 6.0 µmol/g (high dose, and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention.

  6. Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures

    Directory of Open Access Journals (Sweden)

    Chan Daniel K

    2012-07-01

    Full Text Available Abstract Background High mortality rates in ovarian cancer are largely a result of resistance to currently used chemotherapies. Expanding therapies with a variety of drugs has the potential to reduce this high mortality rate. Metformin and phenethyl isothiocyanate (PEITC are both potentially useful in ovarian cancer, and they are particularly attractive because of their safety. Methods Cell proliferation of each drug and drug combination was evaluated by hemacytometry with Trypan blue exclusion or Sytox green staining for cell death. Levels of total and cleaved PARP were measured by Western blot. General cellular and mitochondrial reactive oxygen species were measured by flow cytometry and live cell confocal microscopy with the fluorescent dyes dihydroethidine and MitoSOX. Results Individually, metformin and PEITC each show inhibition of cell growth in multiple ovarian cancer cell lines. Alone, PEITC was also able to induce apoptosis, whereas metformin was primarily growth inhibitory. Both total cellular and mitochondrial reactive oxygen species were increased when treated with either metformin or PEITC. The growth inhibitory effects of metformin were reversed by methyl succinate supplementation, suggesting complex I plays a role in metformin's anti-cancer mechanism. PEITC's anti-cancer effect was reversed by N-acetyl-cysteine supplementation, suggesting PEITC relies on reactive oxygen species generation to induce apoptosis. Metformin and PEITC together showed a synergistic effect on ovarian cancer cell lines, including the cisplatin resistant A2780cis. Conclusions Here we show that when used in combination, these drugs are effective in both slowing cancer cell growth and killing ovarian cancer cells in vitro. Furthermore, the combination of these drugs remains effective in cisplatin resistant cell lines. Novel combinations such as metformin and PEITC show promise in expanding ovarian cancer therapies and overcoming the high incidence of

  7. Notch activation by phenethyl isothiocyanate attenuates its inhibitory effect on prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Su-Hyeong Kim

    Full Text Available Phenethyl isothiocyanate (PEITC is a promising cancer chemopreventive component of edible cruciferous vegetables with in vivo efficacy against prostate cancer in experimental rodents. Cancer chemopreventive response to PEITC is characterized by its ability to inhibit multiple oncogenic signaling pathways, including nuclear factor-κB, Akt, and androgen receptor. The present study demonstrates, for the first time, that PEITC treatment activates Notch signaling in malignant as well as normal human prostate cells. Exposure of human prostate cancer cells (LNCaP, PC-3, and DU145 and a normal human prostate epithelial cell line (PrEC to PEITC resulted in cleavage (active form of Notch1 and Notch2, and increased transcriptional activity of Notch. In PC-3 and LNCaP cells, PEITC treatment caused induction of Notch ligands Jagged1 and Jagged2 (PC-3, overexpression of γ-secretase complex components Presenilin1 and Nicastrin (PC-3, nuclear enrichment of cleaved Notch2, and/or up-regulation of Notch1, Notch2, Jagged1, and/or Jagged2 mRNA. PEITC-induced apoptosis in LNCaP and PC-3 cells was significantly attenuated by RNA interference of Notch2, but not by pharmacological inhibition of Notch1. Inhibition of PC-3 and LNCaP cell migration resulting from PEITC exposure was significantly augmented by knockdown of Notch2 protein as well as pharmacological inhibition of Notch1 activation. Nuclear expression of cleaved Notch2 protein was significantly higher in PC-3 xenografts from PEITC-treated mice and dorsolateral prostates from PEITC-fed TRAMP mice compared with respective control. Because Notch signaling is implicated in epithelial-mesenchymal transition and metastasis, the present study suggests that anti-metastatic effect of PEITC may be augmented by a combination regimen involving a Notch inhibitor.

  8. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Science.gov (United States)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  9. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Science.gov (United States)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  10. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond

    Directory of Open Access Journals (Sweden)

    Ling-Na Wang

    2016-06-01

    Full Text Available Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  11. Acute and subacute effects of tobacco alkaloids, tobacco-specific nitrosamines and phenethyl isothiocyanate on N'-nitrosonornicotine metabolism in rats

    International Nuclear Information System (INIS)

    N'-Nitrosonornicotine (NNN) was the first tobacco-specific nitrosamine (TSNA) identified as carcinogen in tobacco smoke, but no data exist on in vivo interactions between NNN and other tobacco alkaloids, TSNA or phenethyl isothiocyanate (PEITC) which have been demonstrated in various studies on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Acute effects on NNN metabolism were tested in male Fischer F344 rats injected s.c. with 30 nmol/kg body weight (bw) [5-3H]NNN either alone or simultaneously with 15 μmol/kg bw nicotine, nornicotine, anatabine, or anabasine, 150 μmol/kg bw cotinine, 3 μmol/kg bw myosmine, or 300 nmol/kg bw of either N'-nitrosoanatabine or N'-nitrosoanabasine. Another group of rats was fed a diet supplemented with PEITC at 1 μmol/g diet starting 24 h before NNN treatment. Within 24 h more than 80% and about 10% of the radioactivity was excreted with urine and feces, respectively. Urinary metabolites were separated by reversed-phase radio-HPLC and identified by co-chromatography with UV standards. In two sets of experiments with control rats treated with NNN only, 4-hydroxy-4-(3-pyridyl)butanoic acid (hydroxy acid, 44.4/44.8%), 4-oxo-4-(3-pyridyl)butanoic acid (keto acid, 32.4/31.5%), NNN-N-oxide (5.0/3.8%), 4-(3-pyridyl)butane-1,4-diol (diol, 1.1/1.0%) and norcotinine (2.3/1.0%) were consistently detected besides unmetabolised NNN (4.7/3.3%). Co-treatment with nicotine, cotinine, nornicotine and PEITC shifted the contribution of the two major metabolites significantly in favor of hydroxy acid (108-113% of control) as compared to keto acid (86-90% of control). The same treatments also increased norcotinine (135-170% of control). These changes are consistent with a decreased metabolic activation of NNN. In subacute studies rats received NNN in drinking water for 4 weeks at a daily dose of 30 nmol/kg bw with or without nornicotine at 15 μmol/kg bw or myosmine at 3 μmol/kg bw. On the last day of the experiment all rats received [5-3H

  12. Differential metabolism of hydroxycinnamic acids by two Brettanomyces bruxellensis strains grown in red wines

    Science.gov (United States)

    Hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acids, respectively) are found in red wines in varying concentrations depending on cultivars and other factors. While some Brettanomyces form volatile phenols...

  13. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    Science.gov (United States)

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  14. Role of carbon-carbon phenyl migration in the pyrolysis mechanism of β-O-4 lignin model compounds: phenethyl phenyl ether and α-hydroxy phenethyl phenyl ether.

    Science.gov (United States)

    Beste, Ariana; Buchanan, A C

    2012-12-20

    We investigate phenyl shift and subsequent β-scission reactions for PhCHXCH·OPh [X = H, OH], which are part of the pyrolysis mechanism of phenethyl phenyl ether (PPE) and α-hydroxy PPE. PPE and its derivatives are model compounds for the most common linkage in lignin, the β-O-4 linkage. We use density functional theory to locate transition states and equilibrium structures and kinetic Monte Carlo in combination with transition-state theory for kinetic simulations. Oxygen-carbon and carbon-carbon phenyl shift reactions proceed through cyclic intermediates with similar barriers. However, while subsequent β-scission of the oxygen-carbon shift products proceeds with virtually no barrier, the activation energy for β-scission of the carbon-carbon shift products exceeds 15 kcal/mol. We found that about 15% of β-radical conversion can be attributed to carbon-carbon shift for PPE and α-hydroxy PPE at 618 K. Whereas the oxygen-carbon shift reaction has been established as an integral part of the pyrolysis mechanism of PPE and its derivatives, participation of the carbon-carbon shift reaction has not been shown previously.

  15. Pyrolysis of Phenethyl Phenyl Ether Tethered in Mesoporous Silica. Effects of Confinement and Surface Spacer Molecules on Product Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kidder, Michelle [ORNL; Chaffe, Alan [Monash University, Australia; Nguyen, M [Monash University, Australia; Buchanan III, A C [ORNL

    2011-01-01

    There has been expanding interest in exploring porous metal oxides as a confining environment for organic molecules resulting in altered chemical and physical properties including chemical transformations. In this paper, we examine the pyrolysis behavior of phenethyl phenyl ether (PPE) confined in mesoporous silica by covalent tethers to the pore walls as a function of tether density and the presence of co-tethered surface spacer molecules of varying structure (biphenyl, naphthyl, octyl, and hexadecyl). The PPE pyrolysis product selectivity, which is determined by two competitive free-radical pathways cycling through the two aliphatic radical intermediates (PhCH CH2OPh and PhCH2CH OPh), is shown to be dramatically different from that measured in the liquid phase as well as for PPE tethered to the exterior surface of nonporous silica nanoparticles. Tailoring the pore surface with spacer molecules further alters the selectivity such that the PPE reaction channel involving a molecular rearrangement (O-C phenyl shift in PhCH2CH OPh), which accounts for 25 % of the products in the liquid phase, can be virtually eliminated under pore confinement conditions. The origin of this change in selectivity is discussed in the context of steric constraints on the rearrangement path, confinement effects, pore surface curvature, and hydrogen bonding of PPE with residual surface silanols supplemented by nitrogen physisorption data and molecular dynamics simulations.

  16. N-Phenethyl caffeamide and photodamage: protecting skin by inhibiting type I procollagen degradation and stimulating collagen synthesis.

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chen, Chien-Wen; Lin, Tzu-Yu; Kuo, Yueh-Hsiung

    2014-10-01

    Skin is mainly damaged by genetic and environmental factors such as ultraviolet (UV) light and pollutants. UV light is a well-known factor that causes various types of skin damage and premature aging. Reactive oxygen species (ROS) are commonly involved in the pathogenesis of skin damage by activating the metalloproteinases that break down type I collagen. This study investigated the antioxidant and antiphotodamage activity and mechanisms of N-phenethyl caffeamide (K36) in human skin fibroblasts. The results indicated that K36 demonstrated strong 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, which dose-dependently reduced the production of UVB-induced intracellular ROS in human dermal fibroblasts. K36 prevented UVB-irradiation-induced type I collagen degradation by inhibiting the expression of matrix metalloproteins-1, -3, and -9 and the phosphorylation of mitogen-activated protein (MAP) kinases. Furthermore, K36 elevated collagen synthesis in skin fibroblasts by inhibiting UVB-induced Smad7 overexpression. K36 downregulated the expression of the transcription factor, activator protein-1 (AP-1). Our results indicated that K36 exhibited antioxidant properties and prevented skin collagen degradation caused by UV exposure and the stimulation of collagen synthesis, which suggests the potential use of K36 in preventing photodamage.

  17. The FEMA GRAS assessment of phenethyl alcohol, aldehyde, acid, and related acetals and esters used as flavor ingredients

    NARCIS (Netherlands)

    Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; Wagner, B.M.

    2005-01-01

    This publication is the ninth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of int

  18. Preparative separation of polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin coupled with preparative high performance liquid chromatography.

    Science.gov (United States)

    Li, Aifeng; Xuan, Hongzhuan; Sun, Ailing; Liu, Renmin; Cui, Jichun

    2016-02-15

    In this study, a preparative separation method was developed for isolation of eleven polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin (MAR) coupled with preparative high performance liquid chromatography (PHPLC). Water-soluble fraction of Chinese propolis was first "prefractioned" using MAR, which yielded four subfractions. The four subfractions were then isolated by PHPLC with an isocratic elution of methanol-water. Finally, eleven polyphenols were purified from Chinese propolis including caffeic acid, ferulic acid, isoferulic acid, 3,4-dimethoxy cinnamic acid, pinobanksin, caffeic acid benzyl ester, caffeic acid phenethyl ester, apigenin, pinocembrin, chrysin and galangin. The purities of the compounds were determined by HPLC and the chemical structures were confirmed by UV and NMR analysis. The method developed was simple, effective, rapid, scalable and economical, and it was a promising basis for large-scale preparation of multiple components from natural products.

  19. Antifungal drug discovery through the study of invertebrate model hosts

    OpenAIRE

    Pukkila-Worley, R.; Holson, E.; Wagner, F.; Mylonakis, E.

    2009-01-01

    There is an urgent need for new antifungal agents that are both effective and non-toxic in the therapy of systemic mycoses. The model nematode Caenorhabditis elegans has been used both to elucidate evolutionarily conserved components of host-pathogen interactions and to screen large chemical libraries for novel antimicrobial compounds. Here we review the use of C. elegans models in drug discovery and discuss caffeic acid phenethyl ester, a novel antifungal agent identified using an in vivo sc...

  20. The Potential Role of Honey and its Polyphenols in Preventing Heart Diseases: A Review

    OpenAIRE

    Khalil, M I; Sulaiman, S A

    2010-01-01

    Honey is rich in phenolic compounds, which act as natural antioxidants and are becoming increasingly popular because of their potential role in contributing to human health. A wide range of phenolic constituents is present in honey like quercetin, caffeic acid phenethyl ester (CAPE), acacetin, kaempferol, galangin which have promising effect in the treatment of cardiovascular diseases. Many epidemiological studies have shown that regular intake of phenolic compounds is associated with reduced...

  1. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Rogério Barbosa Lima

    Full Text Available Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H, guaiacyl (G and syringyl (S monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway in a growth chamber for 24 h. In general, the results showed that 1 cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2 cinnamic and p-coumaric acids increased p-hydroxyphenyl (H monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G content, and sinapic acid increased sinapyl (S content; 3 when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H, cinnamic acid reduced H, G and S contents; and 4 when applied in conjunction with 3,4-(methylenedioxycinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL, p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  2. Simultaneous detection of seven phenolic acids in Danshen injection using HPLC with ultraviolet detector

    Institute of Scientific and Technical Information of China (English)

    Jin-zhong XU; Jie SHEN; Yi-yu CHENG; Hai-bin QU

    2008-01-01

    A high-performance liquid chromatographic (HPLC) method with ultraviolet (UV) detector had been developed for simultaneous quantification of danshensu, protocatechuie aldehyde, caffeic acid, salvianolic acid D, rosmarinic acid, salvianolic acid B and salvianolic acid A in Danshen injection. According to the UV spectra of these components, three detection wavelengths have been selected as follows: 280 nm for danshensu and protocatechuic aldehyde, 326 nm for caffeic acid, salvianolic acid D and rosmarinic acid, 286 nm for salvianolic acid B and salvianolic acid A. The limit of detection (LOD) was improved to be in the range of 0.008~0.160 μg/ml. Moreover, excellent linear behavior over the investigated concentration range was observed, with R>0.999 for all the analytes.

  3. Phenolic acids in leaves of Secamone afzelii (Rhoem.) Schult. (Asclepiadaceae)

    OpenAIRE

    Renata Nowak; Sławomir Kawka

    2014-01-01

    The analysis of the sets of free and liberated by hydrolysis phenolic acids in the leaves of, Secamone afzelii (Rhoem.) Schult. was conducted by 2D-TLC and RP-HPLC methods. Sixteen phenolic acids were identified: chlorogenic, gallic, protocatechuic, homoprotacatechuic, caffeic, gentysic, α-resorcylic, p-hydroxyphenylacetic, p-hydroxybenzoic, p-coumaric, o-hydroxyphenylacetic, syryngic, vanillic, synapic, ferulic and salicylic. By means of the RP-HPLC the contents of major phenolic acids was d...

  4. The shikimic acid: an important metabolite for the Aglianico del Vulture wines

    OpenAIRE

    Pasquale Tamborra; Dina Bolettieri; Michele Latorraca; Michela Tamborra; Fiorella Paradiso; Michele Savino

    2014-01-01

    Shikimic acid is a precursor for the biosynthesis of aromatic amino acids and flavonoids (anthocyanins, tannins and flavonols). In the pharmaceutical industry, it is obtained by extraction of star anise from China, and at a yield of 3-7% it is used for the production of antiviral drug, e.g. oseltamivir. Unlike flavonoids which are only present in the grape skins, shikimic acid is present in the juice together with hydroxycinnamil tartaric acids (caffeic, ferulic and p-coumaric acid). Therefor...

  5. Bioactive Caffeic Glycoside Ester and Antimicrobial Activity of Various Extracts from the Leaf of Stachytarpheta angustifolia Mill Vahl (Verbenaceae

    Directory of Open Access Journals (Sweden)

    M. Mohammed

    2013-09-01

    Full Text Available This study examines the extraction and isolation of the Caffeic glycoside ester Compound 1. [mp222-224 0C], C29H26O15, [M]+624.594 (EIMS from the n-BuoH soluble fraction of the ethanolic extract of S. angustifolia (verbenaceae. It was characterized on the basis of spectral analysis (UV, FTIR, 1and 2D NMR techniques as –β-(31, 41- dihydroxyphenyl -ethyl-O-α-L- rhamnopyranosyl- (1-3-β-D- (4-O-Caffeoyl -glucopyranoside. Antimicrobial properties of Compound 1 and other extracts were tested against some microorganisms namely Staphylococcus aureus, Streptococcus pyogenes, Proteus vulgari,Pseudomonas aeruginosa, Klebsiella pneumoniaer, Escherichia coli, Salmonella typhi Bacillus subtilis, Penicillium digitatum, Candida albicans, Aspergillus niger, Fusarium oxysorum and Penicillium nototum. The antimicrobial sensitivity test indicated that the extract inhibited the growth of Staphylococcus aureus, Streptococcus pyogenes Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi, Penicillium digitatum, Candida albicans and Penicillium nototum with 30mm, 29mm, 35mm, 34mm, 36mm, 28mm, 24mm, 25mm while the highest activity of caffeic glycoside ester was exhibited by the n-BuoH fraction against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi with34mm, 36mm and 36mm respectively.

  6. Simultaneous quantification and validation of caffeoylquinic acids and flavonoids in Hemistepta lyrata and peroxynitrite-scavenging activity.

    Science.gov (United States)

    Nugroho, Agung; Lim, Sang-Cheol; Byeon, Jeong Su; Choi, Jae Sue; Park, Hee-Juhn

    2013-03-25

    Traditionally, Hemistepta lyrata is consumed as a mountainous vegetable or a medicinal herb to treat inflammation, fever, hemorrhage, and hemorrhoids. In order to provide the scientific evidence of traditional uses of this plant, we identified and quantified thirteen active substances (caffeic acid, chlorogenic acid, and 3,5-di-O-caffeoylquinic acid as caffeoylquinic acids; apigenin, isorhoifolin, acacetin, linarin, diosmetin, diosmin, pectolinarigenin, and pectolinarin as flavones or their glycosides; kaempferol 3-O-rutinoside and rutin as flavonol glycosides) from H. lyrata and evaluated their peroxynitrite-scavenging activity. The chromatographic separation was performed on a Capcell Pak C18 column (5μm, 250mm×4.6mm i.d.) with a gradient elution of 0.05% TFA (trifluoroacetic acid) and 0.05% TFA in MeOH-CH(3)CN (60:40). Validation of HPLC methods on the linearity, LOD, LOQ, intra-day and inter-day variabilities, recovery, and repeatability proved that this method is selective, sensitive, precise, accurate, and reproducible. In peroxynitrite-scavenging assay, caffeic acid derivatives (chlorogenic acid, caffeic acid, and 3,5-di-O-caffeoylquinic acid) exhibited relatively lower IC(50) values than other substances tested. And HPLC simultaneous quantification showed that the 70% MeOH extract and the BuOH fraction contain a higher quantity of caffeic acid derivatives (17.82 and 30.09mg/g, consecutively). Therefore, caffeic acid derivatives could be the main contributors to the peroxynitrite-scavenging activity of H. lyrata than other phenolic substances.

  7. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T

    OpenAIRE

    Rodríguez, Héctor; Landete, José María; Rivas, Blanca de las; Muñoz, Rosario

    2008-01-01

    Phenolic acids account for almost one third of the dietary phenols and are associated with organoleptic, nutritional and antioxidant properties of foods. This study was undertaken to assess the ability of Lactobacillus plantarum CECT 748T to metabolize 19 food phenolic acids. Among the hydroxycinnamic acids studied, only p-coumaric, caffeic, ferulic and m-coumaric acids were metabolized by L. plantarum. Cultures of L. plantarum produced ethyl and vinyl derivatives from p-coumaric and...

  8. Matrix solid-phase dispersion for the liquid chromatographic determination of phenolic acids in Melissa officinalis.

    Science.gov (United States)

    Ziaková, Alica; Brandsteterová, Eva; Blahová, Eva

    2003-01-01

    Matrix solid-phase dispersion (MSPD) was used for sample preparation of plant material (Melissa officinalis, Lemon Balm) prior to liquid chromatography of rosmarinic, caffeic and protocatechuic acids, phenolic compounds present in this herb. Different MSPD sorbents and various elution agents were tested and the optimal extraction conditions determined with the aim to obtain extraction recoveries greater than 90% for all analytes. PMID:12568390

  9. The cellular protective effects of rosmarinic acid: from bench to bedside.

    Science.gov (United States)

    Nabavi, Seyed Fazel; Tenore, Gian Carlo; Daglia, Maria; Tundis, Rosa; Loizzo, Monica Rosa; Nabavi, Seyed Mohammad

    2015-01-01

    Rosemary (Rosmarinus officinalis L.) is one of the most common household herbs, used as spices in a variety of foods, and employed in traditional medicine for its healing properties. Rosemary is a rich source of active antioxidant constituents such as phenolic diterpenes, flavonoids and phenolic acids. Caffeic acid and rosmarinic acid are the most important bioactive constituents. Rosmarinic acid is the ester of caffeic acid and 3,4-dihydroxyphenyllactic acid and is widely identified in different plant species. Chemical structure of rosmarinic acid contains two phenolic rings: one of them is derived from phenylalanine via caffeic acid and the other from tyrosine via dihydroxyphenyl-lactic acid. Its large-scale production is obtained from plant cell cultures of Coleus blumei Benth. It is easily absorbed through gastrointestinal tract as well as the skin. Rosmarinic acid is one of the most important and well known natural antioxidant compounds, which possesses neuroprotective effects in different models of neuroinflammation, neurodegeneration, as well as chemicalinduced neurotoxicity and oxidative stress. Therefore, in present review, we aim to discuss about chemistry, sources, biotechnological production and neuroprotective actions of rosmarinic acid with emphasis on its possible molecular mechanisms of neuroprotection. PMID:25578431

  10. Structural Basis for the Inhibition of a Phospholipase A2-Like Toxin by Caffeic and Aristolochic Acids.

    Directory of Open Access Journals (Sweden)

    Carlos A H Fernandes

    Full Text Available One of the main challenges in toxicology today is to develop therapeutic alternatives for the treatment of snake venom injuries that are not efficiently neutralized by conventional serum therapy. Venom phospholipases A2 (PLA2s and PLA2-like proteins play a fundamental role in skeletal muscle necrosis, which can result in permanent sequelae and disability. This leads to economic and social problems, especially in developing countries. In this work, we performed structural and functional studies with Piratoxin-I, a Lys49-PLA2 from Bothropspirajai venom, complexed with two compounds present in several plants used in folk medicine against snakebites. These ligands partially neutralized the myotoxic activity of PrTX-I towards binding on the two independent sites of interaction between Lys49-PLA2 and muscle membrane. Our results corroborate the previously proposed mechanism of action of PLA2s-like and provide insights for the design of structure-based inhibitors that could prevent the permanent injuries caused by these proteins in snakebite victims.

  11. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection.

    Science.gov (United States)

    Mattila, Pirjo; Kumpulainen, Jorma

    2002-06-19

    A high-performance liquid chromatographic (HPLC) method with diode-array detection (DAD) was used to identify and quantify free and total phenolic acids (m-hydroxybenzoic acid, p-hydroxybenzoic acid, protocatechuic acid, gallic acid, vanillic acid, syringic acid, o-coumaric acid, m-coumaric acid, p-coumaric acid, caffeic acid, ferulic acid, sinapic acid, chlorogenic acid, and ellagic acid) in plant foods. Free phenolic acids were extracted with a mixture of methanol and 10% acetic acid. Bound phenolic acids were liberated using first alkaline and then acid hydrolysis followed by extraction with diethyl ether/ethyl acetate (1:1). All fractions were quantified separately by HPLC. After HPLC quantification, results of alkali and acid hydrolysates were calculated to represent total phenolic acids. Ellagic acid was quantified separately after long (20 h) acid hydrolysis. The methods developed were effective for the determination of phenolic acids in plant foods. DAD response was linear for all phenolic acids within the ranges evaluated, with correlation coefficients exceeding 0.999. Coefficients of variation for 4-8 sample replicates were consistently below 10%. Recovery tests of phenolic acids were performed for every hydrolysis condition using several samples. Recoveries were generally good (mean >90%) with the exceptions of gallic acid and, in some cases, caffeic acid samples. PMID:12059140

  12. Determination of major phenolic acids, phenolic diterpenes and triterpenes in Rosemary (Rosmarinus Officinalis L.) by gas chromatography and mass spectrometry:

    OpenAIRE

    Vončina, Ernest; Doleček, Valter; Islamčević Razboršek, Maša; Brodnjak-Vončina, Darinka

    2007-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous identification and quantification of seven major phenolic and terpenic compounds in Rosmarinus officinalis L. was developed. The compounds were identified as trimethylsilyl (TMS) derivatives of phenolic acids (caffeic and rosmarinic acid), phenolic diterpene (carnosic acid), and pentacyclic triterpenes (ursolic, oleanolic, betulinic acid and betulin). These compounds have been identified by retention time and compari...

  13. Phenolic Acids Composition of Fruit Extracts of Ber (Ziziphus mauritiana L., var. Golo Lemai)

    OpenAIRE

    LUTHRIA, DEVANAND L.; Muhammad Iqbal Bhanger; Ayaz Ali Memon; Najma Memon

    2012-01-01

    Fruits of Ziziphus mauritiana L. (ber) are consumed in fresh and dried/processed form in many countries across Asia including Pakistan. In the present study, we analyzed the composition of total phenolic acids (free, soluble-bound and insoluble-bound) from ber fruit extracts by applying a pressurized liquid base hydrolysis extraction (PLBHE) using Dionium cells. Nine phenolic acids (protocatechuic, p-hydroxybenzoic, ferulic, chlorogenic, vanillic, caffeic, vanillin, o- and p-coumaric acids) w...

  14. Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosus L.) Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry

    OpenAIRE

    Fujia Chen; Xiaohua Long; Zhaopu Liu; Hongbo Shao; Ling Liu

    2014-01-01

    Plant phenolics can have applications in pharmaceutical and other industries. To identify and quantify the phenolic compounds in Helianthus tuberosus leaves, qualitative analysis was performed by a reversed phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) and quantitative analysis by HPLC. Ten chlorogenic acids (CGAs) were identified (3-o-caffeoylquinic acid, two isomers of caffeoylquinic acid, caffeic acid, p-coumaroyl-quinic acid, feruloylquini...

  15. Study on the role and mechanism of phenethyl isothiocyanate on apoptosis of breast cancer cell line MCF-7%异硫氰酸苯乙酯对人乳腺癌MCF-7细胞凋亡作用及机制研究

    Institute of Scientific and Technical Information of China (English)

    孙娜

    2013-01-01

    目的 探讨异硫氰酸苯乙酯诱导人乳腺癌MCF-7细胞凋亡的作用及其可能的机制.方法 以不同浓度异硫氰酸苯乙酯处理人乳腺癌MCF-7细胞,应用MTS法观察异硫氰酸苯乙酯对MCF-7细胞的抑制率,流式细胞术检测异硫氰酸苯乙酯对细胞凋亡、细胞周期以及活性氧表达的影响.结果 将不同浓度的异硫氰酸苯乙酯作用于MCF-7细胞72 h后,抑制了MCF-7细胞的增殖,其IC50为15.2 μmol·L-1;以10 和20 μmol·L-1的异硫氰酸苯乙酯作用MCF-7细胞24 h后,细胞出现凋亡现象,细胞周期阻滞在G2/M期,并造成细胞氧化损伤.结论 异硫氰酸苯乙酯能够促进人乳腺癌MCF-7细胞凋亡,影响细胞周期,其作用机制可能与异硫氰酸苯乙酯可造成肿瘤细胞氧化损伤有关.%Objective To investigate the effect and mechanism of phenethyl isothiocyanate (PEITC) on apoptosis of breast cancer cell line MCF-7. Methods After treating of MCF-7 cells with different concentrations of phenethyl isothiocyanate, we used MTS assay to investigate the inhibition ratio of phenethyl isothiocyanate on MCF-7 cells,flow cytometry to investigate the effect of 10 and 20 μmol · L-1 phenethyl isothiocyanate on apoptosis,cell cycle and reactive oxygen. Results The phenethyl isothiocyanate could inhibit MCF-7 cells proliferation. After the treatment with phenethyl isothiocyanate 72 h later,the IC50 of phenethyl isothiocyanate was 15. 2 μmol·L-1; Affer treated with 10 and 20 μmol·L-1 phenethyl isothiocyanate for 24 h,MCF-7cells,appeared the apoptosis, cell cycle change and oxidative damage. Conclusion Phenethyl isothiocyanate could promote the apoptosis of MCF-7 cells and affect the cell cycle. Its mechanism may involve the oxidative damage of tumor cells.

  16. Free and bound cinnamic acid derivatives in corsica sweet blond oranges.

    Science.gov (United States)

    Carrera, Eric; El Kebir, Mohamed Vall Ould; Jacquemond, Camille; Luro, François; Lozano, Yves; Gaydou, Emile M

    2010-03-01

    Total determination of cinnamic acids (CA), including hydroxycinnamic acid derivatives is generally not accurate since, during hydrolysis, a possible degradation of dihydroxy CA such as caffeic acid could occur. Evaluations of CA (ferulic, p-coumaric, sinapic, cinnamic and caffeic acids) before and after hydrolysis have been undertaken using standards and either with or without addition of ascorbic acid and EDTA. The method was then applied to the determination of free and bound CA in five blond cultivars (Navelina, Washington navel, Pera, Salustiana and Valencia late) of sweet oranges [Citrus sinensis (L.) Osb.]. Four parts of the fruits (peel juice, flavedo, albedo and juice) have been investigated. Results show that CA are mainly bound (86% up to 92%) in the four fruit parts. The mean of total CA contents was found to be higher in peel juice (1.5 g kg(-1)) in comparison with flavedo (0.7 g kg(-1)), albedo (0.1 g kg(-1)) and juice (0.6 g kg(-1)). Free and bound ferulic acid represented 55-70% of CA in juices, followed by p-coumaric acid (20%), sinapic acid (10%) and caffeic acid (9%). Total contents of each CA in the four fruit parts are discussed and show the potential interest in orange peel wastes. PMID:20420324

  17. Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential.

    Science.gov (United States)

    Xiao, Dong; Lew, Karen L; Zeng, Yan; Xiao, Hui; Marynowski, Stanley W; Dhir, Rajiv; Singh, Shivendra V

    2006-11-01

    The present study was undertaken to gain insights into the molecular mechanism of apoptosis induction by phenethyl isothiocyanate (PEITC), which is a cancer chemopreventive constituent of cruciferous vegetables, using PC-3 human prostate cancer cells as a model. The PEITC-induced cell death in PC-3 cells was associated with disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria to the cytosol and generation of reactive oxygen species (ROS), which were blocked in the presence of a combined mimetic of superoxide dismutase and catalase (Euk134). Ectopic expression of Bcl-xL, whose protein level is reduced markedly on treatment of PC-3 cells with PEITC, conferred partial protection against PEITC-induced apoptosis only at higher drug concentrations (>10 microM). Administration of 12 micromol PEITC/day (Monday through Friday) by oral gavage significantly retarded growth of PC-3 xenografts in athymic mice. For instance, 31 days after the initiation of PEITC administration, the average tumor volume in control mice (721 +/- 153 mm3) was approximately 2-fold higher compared with mice receiving 12 micromol PEITC/day. The PEITC-mediated inhibition of PC-3 xenograft growth was associated with induction of Bax and Bid proteins. In conclusion, the present study indicates that the PEITC-induced apoptosis in PC-3 cells is mediated by ROS-dependent disruption of the mitochondrial membrane potential and regulated by Bax and Bid. PMID:16774948

  18. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    Science.gov (United States)

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer. PMID:27375275

  19. Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: role of GSTM1 genotype and CYP3A4 gene expression.

    Science.gov (United States)

    Gross-Steinmeyer, Kerstin; Stapleton, Patricia L; Tracy, Julia H; Bammler, Theo K; Strom, Stephen C; Eaton, David L

    2010-08-01

    Primary cultures of human hepatocytes were used to investigate whether the dietary isothiocyanates, sulforaphane (SFN), and phenethyl isothiocyanate (PEITC) can reduce DNA adduct formation of the hepatocarcinogen aflatoxin B(1) (AFB). Following 48 h of pretreatment, 10 and 50 microM SFN greatly decreased AFB-DNA adduct levels, whereas 25muM PEITC decreased AFB-DNA adducts in some but not all hepatocyte preparations. Microarray and quantitative reverse transcriptase (RT)-PCR analyses of gene expression in SFN and PEITC-treated hepatocytes demonstrated that SFN greatly decreased cytochrome P450 (CYP) 3A4 mRNA but did not induce the expression of either glutathione S-transferase (GST) M1 or GSTT1. The protective effects of SFN required pretreatment; cotreatment of hepatocytes with SFN and AFB in the absence of pretreatment had no effect on AFB-DNA adduct formation. When AFB-DNA adduct formation was evaluated by GST genotype, the presence of one or two functional alleles of GSTM1 was associated with a 75% reduction in AFB-DNA adducts, compared with GSTM1 null. In conclusion, these results demonstrate that the inhibition of AFB-DNA adduct formation by SFN is dependent on changes in gene expression rather than direct inhibition of catalytic activity. Transcriptional repression of genes involved in AFB bioactivation (CYP3A4 and CYP1A2), but not transcriptional activation of GSTs, may be responsible for the protective effects of SFN. Although GSTM1 expression was not induced by SFN, the presence of a functional GSTM1 allele can afford substantial protection against AFB-DNA damage in human liver. The downregulation of CYP3A4 by SFN may have important implications for drug interactions. PMID:20442190

  20. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    Science.gov (United States)

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.

  1. Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece.

    Directory of Open Access Journals (Sweden)

    Eliana Spilioti

    Full Text Available The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively. p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey. We further examined the antioxidant potential (ORAC assay of the extracts, their ability to influence viability of prostate cancer (PC-3 and breast cancer (MCF-7 cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC. ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001, p-hydroxybenzoic acid (p<0.01, vanillic acid (p<0.05, caffeic acid (p<0.01, p-coumaric acid (p<0.001 and their total phenolic content (p<0.001. Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively. Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively. In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and

  2. Development of Blood-Brain Barrier Permeable Nitrocatechol-Based Catechol O-Methyltransferase Inhibitors with Reduced Potential for Hepatotoxicity.

    Science.gov (United States)

    Silva, Tiago; Mohamed, Tarek; Shakeri, Arash; Rao, Praveen P N; Martínez-González, Loreto; Pérez, Daniel I; Martínez, Ana; Valente, Maria João; Garrido, Jorge; Uriarte, Eugenio; Serrão, Paula; Soares-da-Silva, Patrício; Remião, Fernando; Borges, Fernanda

    2016-08-25

    Recent efforts have been focused on the development of centrally active COMT inhibitors, which can be valuable assets for neurological disorders such as Parkinson's disease, due to the severe hepatotoxicity risk associated with tolcapone. New nitrocatechol COMT inhibitors based on naturally occurring caffeic acid and caffeic acid phenethyl ester were developed. All nitrocatechol derivatives displayed potent inhibition of peripheral and cerebral COMT within the nanomolar range. Druglike derivatives 13, 15, and 16 were predicted to cross the blood-brain barrier in vitro and were significantly less toxic than tolcapone and entacapone when incubated at 50 μM with rat primary hepatocytes. Moreover, their unique acidity and electrochemical properties decreased the chances of formation of reactive quinone-imines and, as such, the potential for hepatotoxicity. The binding mode of 16 confirmed that the major interactions with COMT were established via the nitrocatechol ring, allowing derivatization of the side chain for future lead optimization efforts.

  3. Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee.

    Science.gov (United States)

    Zhu, Bao Ting; Wang, Pan; Nagai, Mime; Wen, Yujing; Bai, Hyoung-Woo

    2009-01-01

    In the present study, we investigated the inhibitory effect of three catechol-containing coffee polyphenols, chlorogenic acid, caffeic acid and caffeic acid phenethyl ester (CAPE), on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E(2) and 4-OH-E(2), respectively) catalyzed by the cytosolic catechol-O-methyltransferase (COMT) isolated from human liver and placenta. When human liver COMT was used as the enzyme, chlorogenic acid and caffeic acid each inhibited the O-methylation of 2-OH-E(2) in a concentration-dependent manner, with IC(50) values of 1.3-1.4 and 6.3-12.5 microM, respectively, and they also inhibited the O-methylation of 4-OH-E(2), with IC(50) values of 0.7-0.8 and 1.3-3.1 microM, respectively. Similar inhibition pattern was seen with human placental COMT preparation. CAPE had a comparable effect as caffeic acid for inhibiting the O-methylation of 2-OH-E(2), but it exerted a weaker inhibition of the O-methylation of 4-OH-E(2). Enzyme kinetic analyses showed that chlorogenic acid and caffeic acid inhibited the human liver and placental COMT-mediated O-methylation of catechol estrogens with a mixed mechanism of inhibition (competitive plus noncompetitive). Computational molecular modeling analysis showed that chlorogenic acid and caffeic acid can bind to human soluble COMT at the active site in a similar manner as the catechol estrogen substrates. Moreover, the binding energy values of these two coffee polyphenols are lower than that of catechol estrogens, which means that coffee polyphenols have higher binding affinity for the enzyme than the natural substrates. This computational finding agreed perfectly with our biochemical data.

  4. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    Science.gov (United States)

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature.

  5. 3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-κB Activation in BV2 Microglial Cells

    OpenAIRE

    Lee, Jae-Won; Bae, Chang Jun; Choi, Yong-Jun; Kim, Song-In; Kim, Nam-Ho; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo; Chun, Wanjoo

    2012-01-01

    Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as neuronal protection against excitotoxicity and anti-inflammatory property, the biological activity of 3,4,5-trihydroxycinnamic acid (THC), a derivative of hydroxycinnamic acids, has not been clearly examined. The objective of the present study is to evaluate the anti-inflammatory effects of THC on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. THC significantly...

  6. Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers.

    Science.gov (United States)

    Simonovska, Breda; Vovk, Irena; Andrensek, Samo; Valentová, Katerina; Ulrichová, Jitka

    2003-10-17

    Thin-layer chromatographic (TLC) screening of crude extracts of dried leaves and tubers of yacon (Smallanthus sonchifolius, Asteraceae) and products of acid hydrolysis of tubers on the silica gel HPTLC plates using the developing solvents ethyl acetate-formic acid-water (85:10:15, v/v/v) and n-hexane-ethyl acetate-formic acid (20:19:1, v/v/v) proved the presence of chlorogenic, caffeic and ferulic acid. These phenolic acids were isolated from the crude extract of yacon leaves by preparative TLC, and identified after elution by HPLC/MS, as well as by direct injection of the crude extract into the HPLC/MS system. Acid hydrolysis of tubers released the increased amount of phenolic acids (e.g. caffeic acid and ferulic acid), flavonoid quercetin and an unidentified flavonoid, which was detected by TLC analysis. Ferulic acid, isomers of dicaffeoylquinic acid and still an unidentified derivative of chlorogenic acid (Mr = 562) as constituents of yacon leaves and ferulic acid as constituent of yacon tubers are reported here for the first time. These acids gave significant contribution to the radical scavenging activity detected directly on the TLC plate sprayed with 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:14601830

  7. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    Science.gov (United States)

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml−1 for two of the three test organisms). PMID:17616609

  8. Induction of lung lesions in Wistar rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate

    International Nuclear Information System (INIS)

    The development of effective chemopreventive agents against cigarette smoke-induced lung cancer could be greatly facilitated by suitable laboratory animal models, such as animals treated with the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the current study, we established a novel lung cancer model in Wistar rats treated with NNK. Using this model, we assessed the effects of two chemopreventive agents, aspirin and phenethyl isothiocyanate (PEITC), on tumor progression. First, rats were treated with a single-dose of NNK by intratracheal instillation; control rats received iodized oil. The animals were then sacrificed on the indicated day after drug administration and examined for tumors in the target organs. PCNA, p63 and COX-2 expression were analyzed in the preneoplastic lung lesions. Second, rats were treated with a single-dose of NNK (25 mg/kg body weight) in the absence or presence of aspirin and/or PEITC in the daily diet. The control group received only the vehicle in the regular diet. The animals were sacrificed on day 91 after bronchial instillation of NNK. Lungs were collected and processed for histopathological and immunohistochemical assays. NNK induced preneoplastic lesions in lungs, including 33.3% alveolar hyperplasia and 55.6% alveolar atypical dysplasia. COX-2 expression increased similarly in alveolar hyperplasia and alveolar atypical dysplasia, while PCNA expression increased more significantly in the latter than the former. No p63 expression was detected in the preneoplastic lesions. In the second study, the incidences of alveolar atypical dysplasia were reduced to 10%, 10% and 0%, respectively, in the aspirin, PEITC and aspirin and PEITC groups, compared with 62.5% in the carcinogen-treated control group. COX-2 expression decreased after dietary aspirin or aspirin and PEITC treatment. PCNA expression was significantly reduced in the aspirin and PEITC group. (1) A single dose of 25 mg/kg body weight

  9. Effect of two graded doses of whole-body X-irradiation and radioprotection by the use of S-phenethyl formamidino 4(N-ethyl isothioamide) morpholine dihydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S.S.; Chaturvedi, P.K.; Pandeya, S.N.

    1983-10-01

    The protection offered by a newly synthesized compound (S-phenethyl-formamidino-4(N-ethyl isothioamide) morpholine dihydrochloride) against radiation effects on DNA, RNA and protein biosynthetic processes in the brain, and on metabolites of 5-HT and nor-adrenalin, i.e., 5-HIAA and VMA, in the urine, including the radiobiological damage to thyroid and testes, was evaluated. The use of the compound prior to irradiation prevented radiation-induced changes in the thyroid and testes. The radiation-induced alterations in the pattern of DNA, RNA, protein in the brain, and in 5-HIAA and VMA in urine could be averted by treatment with this compound prior to each dose of X-irradiation.

  10. Spectroscopic analysis (FT-IR, FT-Raman and NMR) and molecular docking study of ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate

    Science.gov (United States)

    El-Azab, Adel S.; Jalaja, K.; Abdel-Aziz, Alaa A.-M.; Al-Obaid, Abdulrahman M.; Sheena Mary, Y.; Yohannan Panicker, C.; Van Alsenoy, C.

    2016-09-01

    The vibrational wavenumbers, molecular structure, MEP, NLO, NBO and HOMO, LUMO analysis of Ethyl 2-(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-ylthio)-acetate (EPDA) were reported. The change in electron density in the antibonding orbitals and stabilization energies have been calculated by NBO analysis to give clear evidence of stabilization in the hyperconjugation of hydrogen bonded interaction. The difference in HOMO and LUMO energy support the charge transfer interaction within the molecule. NMR studies and Fukui functions are also reported. From molecular electrostatic potential plot it is evident that the negative charge covers the carbonyl groups, phenyl rings and the positive region is over the CH2 groups with the acetate group. Molecular docking studies shows that the title compound forms a stable complex with pyrrole inhibitor and gives a binding affinity value of -8.3 kcal/mol and the results suggest that the compound might exhibit inhibitory activity against pyrrole inhibitor.

  11. Analysis of phenolic acids in barley by high-performance liquid chromatography.

    Science.gov (United States)

    Yu, J; Vasanthan, T; Temelli, F

    2001-09-01

    Phenolic acids from 30 barley varieties (combination of hulled/hulless/two-row/six-row/regular/waxy) were investigated by HPLC following four different sample treatments: (a) simple hot water extraction, (b) extraction after acid hydrolysis, (c) acid plus alpha-amylase hydrolysis, and (d) acid plus alpha-amylase plus cellulase hydrolysis treatments. The benzoic acid (p-hydroxybenzoic, vanillic, and protocatechuic acids) and cinnamic acid derivatives (coumaric, caffeic, ferulic, and chlorogenic acids) were identified, and some of the phenolic acids were quantified after each above-mentioned treatment. The data indicated that a combination of sequential acid, alpha-amylase, and cellulase hydrolysis treatments might be applicable for release of more phenolic acids from barley. PMID:11559137

  12. Minor iridoids from Scutellaria albida ssp albida. Inhibitory potencies on lipoxygenase, linoleic acid lipid peroxidation and antioxidant activity of iridoids from Scutellaria sp

    DEFF Research Database (Denmark)

    Gousiadou, Chrysoula; Gotfredsen, Charlotte Held; Matsa, Marina;

    2013-01-01

    examined for their inhibitory potency on lipoxygenase and lipid peroxidation, as well as their antioxidant activity, in comparison to known antioxidants e. g. caffeic acid, nordihydroguaretic acid (NDGA) and trolox. AAPH, DPPH and soybean lipoxygenase (LOX) assays were used for the tests....... This investigation led to interesting observations considering the Structure-Activity Relationship. According to our results, the presence of a p-coumaroyl group optimized and even dramatically changed the biological responses of the investigated iridoids...

  13. Interaction of milk whey protein with common phenolic acids

    Science.gov (United States)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  14. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family.

    Science.gov (United States)

    Zgórka, G; Głowniak, K

    2001-08-01

    Ten species belonging to the family Lamiaceae and representing the most popular medicinal plants used in Polish phytotherapy were examined for the content of free phenolic acids (PhAs). Two depsides, rosmarinic and chlorogenic acids, as well as eight simple PhAs, protocatechuic, gentisic, p-hydroxybenzoic, caffeic, vanillic, syringic, p-coumaric and ferulic acids, in different qualitative and quantitative proportions depending on the plant examined were determined by the rapid, selective and accurate method combining solid-phase extraction and high-performance liquid chromatography. PMID:11451645

  15. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    OpenAIRE

    Michel D. Santos; Norberto P. Lopes; Yassuko Iamamoto

    2008-01-01

    This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III) tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  16. HPLC-ESI-MS/MS analysis of oxidized di-caffeoylquinic acids generated by metalloporphyrin-catalyzed reactions

    Directory of Open Access Journals (Sweden)

    Michel D. Santos

    2008-01-01

    Full Text Available This paper reports an HPLC-ESI-MS/MS investigation on the oxidation of 3,5- and 4,5- dicaffeoylquinic acid using iron(III tetraphenylporphyrin chloride as catalyst. Two major mono-oxidised products of the quinic acid moiety have been identified for both compounds. However, only the 4,5-derivative afforded two different tri-oxo products. Thus, it seems that the oxidation pattern depends on the number and positions of the caffeic acid moieties present in caffeoylquinic acid molecules.

  17. Determination the concentration of the N-acetylcysteine conjugate of phenethyl isothiocyanate in healthy human urine by HPLC%高效液相色谱法测定健康人尿液中苯乙基异硫氰酸酯乙酸半胱氨酸缀合物的浓度

    Institute of Scientific and Technical Information of China (English)

    许译升; 郑枫; 刘红霞

    2011-01-01

    目的 建立高效液相色谱法测定健康人尿液中苯乙基异硫氰酸酯乙酰半胱氨酸缀合物的浓度.方法 色谱柱为Sepax Amethyst-C18柱,流动相为0.2%磷酸水溶液-甲醇(35:65),流量:1 mL ·min-1,紫外检测波长250 nm;氯雷他定为内标.结果 尿液中代谢物在0.8~64.0μg · mL-1内线性关系良好,回归方程为γ =0.08χ-1.28×10-3(n=8,γ=0.9982),提取回收率大于80%,批内和批间精密度RSD < 10%.结论 该方法可用于测定人尿液中苯乙基异硫氰酸酯乙酰半胱氨酸缀合物的浓度.%Objective To establish a HPLC method for the determination the concentration of N - acetylcysteine conjugate of phenethyl isothio-cyanate (PEITC - NAC) in healthy human urine. Methods Separation was carried on a Sepax Amethyst - C18 and the mobile phase was consisted of 0. 2% phosphoric acid - methanol (35: 65) with the flow rate of 1 mL ? Min"1. The detection wavelength was 250 nm. Results A good linearity was demonstrated between 0. 8 - 64. 0 u,g ? mL"1 by linear e-quation y =0. 08* - 1. 28 x 10"3 (n = 8, y = 0. 9982 ) . The within -batch and between - batch deviation was showed by RSD < 10%. Conclusion The method can be applied for the determination the concentration of PEITC - NAC in human urine.

  18. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    Science.gov (United States)

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  19. Influence of Electromagnetic Fields on Bone Fracture in Rats: Role of CAPE

    Institute of Scientific and Technical Information of China (English)

    EKREM CICEK; OSMAN GOKALP; REMZI VAROL; GOKHAN CESUR

    2009-01-01

    Objective To study the effects of radiation emitted by mobile phones on bone strength and caffeic acid phenethyl ester (CAPE) on the changes induced by radiation. Methods Forty-eight Sprague-Dawley rats were divided into five groups. Rats in the control group (first group) were left within the experimental setup for 30 min/day for 28 days without radiation exposure. Nine hundred MHz radiation group was broke down into 2 subgroups (group 1/2). Both subgroups were exposed to radiation for 28 days (30 min/day). The next group was also divided into 2 subgroups (group 3/4). Each was exposed to 1800 MHz of radiation for 28 days (30 min/day). The third and fifth groups were also treated with CAPE for 28 days. Treatment groups received ip caffeic acid phenethyl ester (10 μmol/kg per day) before radiation session. Bone fracture was analyzed. Results Breaking force, bending strength, and total fracture energy decreased in the irradiated groups but increased in the treatment groups. Conclusion Radiation and CAPE can significantly improve bone.

  20. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    Science.gov (United States)

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes.

  1. Lignin and Fiber digestibility in Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase Downregulated Alfalfa

    Science.gov (United States)

    Alfalfa (Medicago sativa L.) is one of the most important forages in the United States. Increasing alfalfa fiber digestibility would improve forage management and ration formulation flexibility. Currently, growers and breeders rely on near infrared spectroscopy (NIRS) to predict forage quality tra...

  2. Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages

    OpenAIRE

    Búfalo, Michelle Cristiane; Ferreira, Isabel; Costa, Gustavo; Francisco, Vera; Liberal, Joana; Cruz, Maria Teresa; Lopes, Maria Celeste; Batista, Maria Teresa; Sforcin, José Maurício

    2013-01-01

    Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its i...

  3. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.

    Science.gov (United States)

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-04-01

    Polymer-confined ionic liquids were used for the separation of phenolic acids from natural plant extract by utilizing an anion-exchange mechanism. They were synthesized using molecular imprinting technique to reduce non-directional ion-ion interactions during anion-exchange and other interactions with interference substances that could decrease selectivity. A suitable sorbent for phenolic acid separation could be identified based on the adsorption behaviors of phenolic acids on different polymer-confined ionic liquids. Thus, the developed ionic liquid-based molecularly imprinted anion-exchange polymer (IMAP) achieved high recovery rates by solid-phase extraction of phenolic acids from Salicornia herbacea L. extract: 90.1% for protocatechuic acid, 95.5% for ferulic acid and 96.6% for caffeic acid. Moreover, the phenolic acids were separable from each other by repeated solid phase extraction cycles. The proposed method could be used to separate other phenolic acids or organic acids from complex samples. PMID:21903215

  4. Application of anion-exchange imidazolium silica for the multiphase dispersive extraction of phenolic acids.

    Science.gov (United States)

    Bi, Wentao; Row, Kyung Ho

    2013-08-01

    This paper reports the application of a multiphase dispersive extraction method to the extraction, separation, and determination of the phenolic acids from Salicornia herbacea L. using silica-confined ionic liquids as sorbents. A suitable sorbent for phenolic acid extraction and separation was first identified based on the adsorption behavior of the phenolic acids on different silica-confined ionic liquids. The sample was then mixed with the optimized sorbent and solvent to achieve multiphase dispersive extraction. The sample/sorbent ratio was optimized using theoretical calculations from the adsorption isotherm and experiments. After transferring the supernatant to an empty cartridge, an SPE process was used to separate the three phenolic acids from the other interference. Through systematic optimization, the optimal conditions produced high recovery rates of protocatechuic acid (91.20%), caffeic acid (94.03%), and ferulic acid (91.33%). Overall, the proposed method is expected to have wide applicability. PMID:23861179

  5. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  6. 过山蕨中有机酸类化学成分%Chemical constituents of organic acid part from Camptosorus sibiricus Rupr.

    Institute of Scientific and Technical Information of China (English)

    李宁; 李铣; 杨世林

    2006-01-01

    目的研究过山蕨(Camptosorus sibiricus Rupr.)中有机酸类化学成分.方法采用反复硅胶柱层析分离纯化,通过理化常数测定和光谱分析鉴定其化学结构.结果从过山蕨中分离得到了11个有机酸类化合物,即咖啡酸(caffeic acid,1)、香豆酸(courmaric acid,2)、原儿茶酸(protocate-chuic acid,3)、对羟基苯甲酸(4-hydroxybenzoic acid,4)、异香草酸(isovanillic acid,5)、2,4-二羟基苯甲酸(2,4-dihydroxybenzoic acid,6)、肉桂酸(cinnamic acid,7)、丁二酸(succinic acid,8)、棕榈酸(palmitic acid,9)、香豆酸4-O-β-D-吡喃葡萄糖苷(trans-p-coumaric acid-4-O-β-D-glucopyranoside,10)、咖啡酸4-O-β-D-吡喃葡萄糖苷(caffeic acid-4-O-β-D-glucopyranoside,11).结论化合物2~11,均为首次从该属植物中分离得到.

  7. Phenolic acids of native species of the Rosa L. genus in Poland

    Directory of Open Access Journals (Sweden)

    W. Krzaczek

    2015-05-01

    Full Text Available Phenolic acids were identified in the leaves of 23 species of native roses and their quantitative proportions were determined by the method of two-dimensional paper chromatography. The common occurrence of ellagic and gallic acid in roses was confirmed and so was the regular presence of protocatechuic, caffeic, gentisic, p-hydroxybenzoic, p-hydroxyphenylacetic, p-cumaric, syringic, vanillic, ferulic and salicylic acids. A small amount of isoferulic acid was noted only in Rosa gizellae Borb. and R. eglanteria L. var. comosa (Ripart Du Mortier. Homoprotocatechuic acid was revealed only in the species of the Rosa rubiginosa and Rosa tomentosa groups from the Caninae section. The taxonomically limited occurrence of some phenolic acids points to the systematic differentiating value of the latter within one genus.

  8. Conversion of hydroxycinnamic acids into volatile phenols in a synthetic medium and in red wine by Dekkera bruxellensis

    Directory of Open Access Journals (Sweden)

    Maria João Cabrita

    2012-03-01

    Full Text Available The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD was used to quantify the phenolic acids, and gas chromatography (GC coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS. The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.

  9. HPLC method validated for the simultaneous analysis of cichoric acid and alkamides in Echinacea purpurea plants and products

    DEFF Research Database (Denmark)

    Mølgaard, Per; Johnsen, Søren; Christensen, Peter;

    2003-01-01

    A reversed-phase high-performance liquid chromatography (HPLC) method has been developed to determine caffeic acid derivatives, for example, cichoric acid, and alkamides in plant parts and herbal products of Echinacea purpurea. The method consists of an extraction procedure whereby the hydrophilic...... phenolics as well as the lipophilic alkamides are released from the samples, followed by the analytical HPLC procedure for quantitative determination of these compounds. The method is the first one validated for the determination of these two groups of compounds in the same procedure. Naringenin has been...

  10. 苯乙基异硫氰酸盐对不同孕期大鼠的影响%Effect of phenethyl isothiocyanate given at different duration of gestation on the outcome of pregnancy in rats

    Institute of Scientific and Technical Information of China (English)

    刘海波; 支媛; 耿桂英; 于洲; 徐海滨

    2011-01-01

    目的 研究孕期不同阶段给予苯乙基异硫氰酸盐(PEITC)对大鼠受孕的影响及其胚胎毒性作用.方法 采用霍恩氏法进行大鼠经口急性毒性实验,分别于孕0-6天(着床前)和孕7-16天(着床后)给予PEITC 0、15、60和120mg/kg,观察孕鼠的一般生理体征,记录体重变化;孕16天(着床前)和孕20天(着床后)观察着床数、活胎数、吸收胎数等,并记录着床点数;称量胎重、胎盘重量和母体的肝脏、肾脏和脾脏重量.结果 PEITC对雌性大鼠的LD为1.47g/kg;着床前给予PEITC,随着剂量的增加母鼠体重、着床数和活胎数均下降;着床后给予PEITC,随着剂量增加,活胎数下降,吸收胎数上升,且60、120mg/kg组胚胎重量、胎盘重量与对照组均显著性下降;着床前、后PEITC对母体脏器均无显著性毒性作用.结论 PEITC对着床前后孕鼠均具有一定的胚胎毒性,该实验中其对大鼠妊娠的未观察到作用剂量(NOEAL)为15mg/kg.%Objective To investigate the effect of phenethyl isothiocyanate (PEITC) on fetal development and embryotoxicity in rats. Methods Acute oral toxicity was conducted by Horn method. PEITC suspended in Tween-80 water was administered orally once a day to pregnant rats in the gestation day 0 - 6 ( pre-implantation ) and 7 - 16 (post-implantation) at the doses of 15, 60 and 120 mg/kg, respectively. On the gestation day 16 or 21, the number of live fetuses, reabsorbed fetuses and implanted sites were counted. The placental weights, fetal weights and organ weights were also recorded. Results The LD50 of PEITC for female rats was 1.47g/kg. The maternal body weight gain and the number of implanted and live fetuses were decreased with the increase of PEITC dosage given during pre-implantation period. There was also a dose-dependent effect of PEITC given during post-implantation period on fetal weight/growth and placental weight. No toxicity on the organ weight of pregnant rats was observed. Conclusion

  11. Inhibition profile of a series of phenolic acids on bovine lactoperoxidase enzyme.

    Science.gov (United States)

    Sarikaya, S Beyza Ozturk; Sisecioglu, Melda; Cankaya, Murat; Gulcin, İlhami; Ozdemir, Hasan

    2015-06-01

    Lactoperoxidase (LPO) catalyzes the oxidation of numerous of organic and inorganic substrates by hydrogen peroxide. It has very vital activity in the innate immune system by decreasing or stopping the activation of the bacteria in milk and mucosal secretions. This study's purpose was to investigate in vitro effect of some phenolic acids (ellagic, gallic, ferulic, caffeic, quercetin, p-coumaric, syringic, catechol and epicatechin) on the purified LPO. This enzyme was purified from milk by using different methods such as Amberlite CG-50 resin, CM-Sephadex C-50 ion-exchange and Sephadex G-100 gel filtration chromatography. LPO was purified 28.7-fold with a yield of 20.03%. We found phenolic acids have inhibition effects on bovine LPO enzyme to different concentrations. Our study showed lower concentrations of caffeic acid, ferulic acid and quercetin exhibited much higher inhibitory effect on enzyme, so these three of them were clearly a more potent inhibitor than the others were. All of compounds were non-competitive inhibitors.

  12. Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Laura Zambonin

    2012-01-01

    Full Text Available Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL, whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach.

  13. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  14. Release of Propolis Phenolic Acids from Semisolid Formulations and Their Penetration into the Human Skin In Vitro

    Directory of Open Access Journals (Sweden)

    Modestas Žilius

    2013-01-01

    Full Text Available Antioxidant and free radical scavenging effects are attributed to phenolic compounds present in propolis, and when delivered to the skin surface and following penetration into epidermis and dermis, they can contribute to skin protection from damaging action of free radicals that are formed under UV and premature skin aging. This study was designed to determine the penetration of phenolic acids and vanillin into the human skin in vitro from experimentally designed vehicles. Results of the study demonstrated the ability of propolis phenolic acids (vanillic, coumaric, caffeic, and ferulic acids and vanillin to penetrate into skin epidermis and dermis. The rate of penetration and distribution is affected both by physicochemical characteristics of active substances and physical structure and chemical composition of semisolid vehicle. Vanillin and vanillic acid demonstrated relatively high penetration through epidermis into dermis where these compounds were concentrated, coumaric and ferulic acids were uniformly distributed between epidermis and dermis, and caffeic acid slowly penetrated into epidermis and was not determined in dermis. Further studies are deemed relevant for the development of semisolid topically applied systems designed for efficient delivery of propolis antioxidants into the skin.

  15. A New Homogenizing Technology to Obtain Rosmarinic Acid from Perilla Oil Meal

    Institute of Scientific and Technical Information of China (English)

    TANG Wei-zhuo; LIU Yan-ze; ZHAO Yu-qing

    2012-01-01

    Objective To optimize the extraction technology of the active component,rosmarinic acid,an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid,in perilla oil meal for the first time by a new homogenizing technology called smashing tissue extraction (STE).Methods Orthogonal design was used to optimize the extraction condition.The content of rosmarinic acid was quantified from the methanol crude extract with the help of HPLC.Results The optimization of STE process to get rosmarinic acid from the perilla oil meal was the ratio of liquid to solid material at 10∶1 and the power of extraction at 150 V,extracting twice (2 min for each time).Conclusion STE could be applied to extracting the active ingredients from the oil meals due to its high extraction efficiency.This new homogenizing technology has advantages on saving extraction time,raising extraction efficiency,and maintaining the temperature sensitive constituents.

  16. Changes of phenolic acids and antioxidant activities during potherb mustard (Brassica juncea, Coss.) pickling.

    Science.gov (United States)

    Fang, Zhongxiang; Hu, Yuxia; Liu, Donghong; Chen, Jianchu; Ye, Xingqian

    2008-06-01

    Phenolic acids in potherb mustard (Brassica juncea, Coss.) were determined and the effects of pickling methods on the contents of total free phenolic acids, total phenolic acids, total phenolics, and antioxidant activities were investigated. Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, and sinapic acid were identified in the present study. The contents of total free phenolic acids, total phenolic acids and total phenolics in fresh potherb mustard were 84.8±0.58μg/g dry weight (DW), 539±1.36μg/g DW, and 7.95±0.28mg/g DW, respectively. The total free phenolic acids increased during the pickling processes, but the total phenolic acids, total phenolics, and antioxidant activities decreased. However, after 5 weeks of fermentation, all the pickling methods retained over 70% of total phenolic contents and above 65% of antioxidant capacities. The results indicated that pickling processes were relatively good methods for the preservation of phenolic acids and antioxidants for potherb mustard. PMID:26065739

  17. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji Janeshawari; Hansen, Esben Halkjær; Kannangara, Rubini Maya;

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes......-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression...

  18. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market.

    Science.gov (United States)

    Trandafir, Ion; Nour, Violeta; Ionica, Mira Elena

    2013-03-01

    In the present study a simple and highly sensitive RP-HPLC method has been established for simultaneous determination of chlorogenic acid, caffeic acid, vanillic acid and caffeine in coffee samples. The method has been applied to eight different coffees available on the Romanian market which were previously analysed concerning the total polyphenols content and antioxidant capacity. Reduction of the DPPH radical was used to determine the antioxidant capacity of the coffee extracts while the total polyphenols content was determined by spectrophotometry (Folin Ciocalteu's method). The total polyphenols content ranged from 1.98 g GAE/100 g to 4.19 g GAE/100 g while the caffeine content ranged from 1.89 g/100 g to 3.05 g/100 g. A large variability was observed in chlorogenic acid content of the investigated coffee samples which ranged between 0.6 and 2.32 g/100 g.

  19. A ¹H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica cv Ataulfo) and Papaya (Carica papaya cv Maradol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) Free Radicals.

    Science.gov (United States)

    López-Martínez, Luis M; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R; González-Aguilar, Gustavo A

    2015-01-01

    The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic.

  20. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    Science.gov (United States)

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes. PMID:27052717

  1. The Blocking Effect of Phenolic Acid on N—Nitrosomorholine Formation in vitro

    Institute of Scientific and Technical Information of China (English)

    LIPING; WANGHuai-Zhou; 等

    1994-01-01

    Phenolic acid(PAs) are widely found in many daily consumed vegetables and fruits.The inhibitory effects of PAs on N-nitrosomorpholine(NMOR)formation in vitro under simulated gastric juice condition were studied.The results showed that the inhibitory potncy of thirteen varieties of PAs differed greatly,which may be related to their chemical structures;the blockine rate(BR)of different kinds of PAs were as follows:caffeic acid,92.5%;tannic acid,90.0%;gallic acid,86.8%;sinapinic acid,86.2%;ferulic acid,81.1%;chlorogenic acid,69.4%;gentisic acid,69.2%;syringic acid,62.1%;protocatechuic acid,56.0%;p-coumaric acid,52.5%;vannilic acid,35.4%;moreover,p-hydroxybenzoic acid and m-coumaric acid had the least blocking effect or even slight catalyzing effect.The results also demonstrated that amounts of NMOR formed were negatively correlated with molar ratio of PAs to nitrite and that the optimum pH for inhibition was betwwen 2 and 3 .

  2. Flavonoids and phenolic acids of Nepeta cataria L. var. citriodora (Becker) Balb. (Lamiaceae).

    Science.gov (United States)

    Modnicki, Daniel; Tokar, Magdalena; Klimek, Barbara

    2007-01-01

    Luteolin 7-O-glucuronide, luteolin 7-O-glucurono-(1-->6)-glucoside, apigenin 7-O-glucuronide as well as free aglycones luteolin and apigenin have been isolated from lemon catnip herb (Nepeta cataria L. var citriodora). Luteolin 7-O-glucurono-(1-->6)-glucoside is probably a new compound, for the first time described. Two minor constituents of flavonoid fraction have been identified as apigenin 7-O-glucoside and luteolin 7-O-glucoside by means of HPLC method. The percentage of total flavonoids determined by use of spectrophotometric method was in the range from 0.30 to 0.46% of dry mass. In phenolic acid fraction, caffeic, rosmarinic and p-coumaric acids have been identified. Total amount of phenolic acids determined by spectrophotometric method was in the range of 0.75% to 1.4 % and the content of rosmarinic acid quantified by HPLC method fluctuated in the wide range from 0.06% to 0.15% depending on the sample. The results of the investigations showed that the composition of flavonoid compounds and phenolic acids in lemon catnip are similar to those in lemon balm (Melissa officinalis L.). The amount of flavonoids are similar in both plants, and the percentage of rosmarinic acid is about ten times lower in lemon catnip than in lemon balm. The presence of luteolin, apigenin and their glycosides, caffeic acid as well as the previously described terpenoids (ursolic acid, citral, nerol. geraniol) suggests the possibility of the use of lemon catnip herb as a constituent of phytopharmaceutical preparations with mild sedative, antispasmodic, antioxidative and antiinflammatory action. PMID:17695148

  3. Acidic electrolyzed water efficiently improves the flavour of persimmon (Diospyros kaki L. cv. Mopan) wine.

    Science.gov (United States)

    Zhu, Wanqi; Zhu, Baoqing; Li, Yao; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2016-04-15

    The ability of acidic (AcW) and alkaline electrolyzed waters (AlW) to improve the flavour of persimmon (Diospyros kaki L.) wine was evaluated. Wines made with AcW (WAcW) were significantly better than wines made with AlW or pure water (PW) in aroma, taste, and colour. Volatile analysis showed that WAcW has high alcohol and ester contents, including 2-phenylethanol, isopentanol, isobutanol, ethyl dodecanoate, phenethyl acetate, and butanedioic acid diethyl ester. The total amino acid content of persimmon slurry soaked with AcW reached 531.2 mg/l, which was much higher than those of the slurries soaked in AlW (381.3 mg/l) and PW (182.7 mg/l). The composition of major amino acids in the AcW-soaked slurry may contribute to the strong ester flavour of WAcW. This is the first report to suggest that electrolyzed functional water (EFW) can be used to improve wine flavour, leading to the possible use of EFW in food processing.

  4. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships.

    Science.gov (United States)

    Zhang, Lu; Tu, Zong-Cai; Yuan, Tao; Wang, Hui; Xie, Xing; Fu, Zhi-Feng

    2016-10-01

    Sweet potato (Ipomoea batatas) leaf (SPL) is an underused commercial vegetable with considerable bio-activities. By means of DPPH scavenging ability and α-glucosidase inhibitory oriented isolation, 9 and 7 compounds were isolated and identified, respectively. Among them, trans-N-(p-coumaroyl)tyramine (1), trans-N-feruloyltyramine (2), cis-N-feruloyltyramine (3), 4,5-feruloylcourmaoylquinic acid (8), caffeic acid ethyl ester (10), 7-hydroxy-5-methoxycoumarin (11), 7,3'-dimethylquercetin (13) and indole-3-carboxaldehyde (15), were firstly identified from SPL, and four of them (1, 2, 3 and 10) were firstly identified from genus Ipomoea. Phenethyl cinnamides and 3,4,5-triCQA exhibited the strongest α-glucosidase inhibition, while 3,4,5-triCQA and diCQAs were the dominant antioxidants. Structure-activity relationship revealed that higher caffeoylation of quinic acid and lower methoxylation of flavonols resulted in stronger antioxidant activity, and methylation and cis-configuration structure of phenethyl cinnamides weaken the α-glucosidase inhibition. Aforementioned results could help to explain the antioxidant activity and anti-diabetic activity of SPL, and provide theoretical basis for its further application. PMID:27132824

  5. Determination of caffeic acid and fernlic acid in Shengma Gancao Decoction by HPLC%HPLC法同时测定升麻甘草汤中咖啡酸和阿魏酸的含量

    Institute of Scientific and Technical Information of China (English)

    王晶亭; 孙清

    2011-01-01

    目的 建立升麻甘草汤的质童标准控制方法.方法 色谱柱Diamonsil C18 (250 nun ×4.6 mm,5μm),流动相:甲醇-0.1 mol· L-1醋酸铵-冰醋酸(20:80:1);流速:1.0 mL· min-1;检测波长:310 nm.结果 咖啡酸在0.2-4mg·L-1浓度范围内呈良好的线性关系,平均回收率为103.6%(n=9);阿魏酸在1~10mg·L-1浓度范围内呈良好的线性关系,平均回收率为104.3% (n = 9).结论 本法简便、灵敏、准确,可有效控制升麻甘草汤的质量.

  6. Evaluation of hepatocyteprotective and anti-hepatitis B virus properties of Cichoric acid from Cichorium intybus leaves in cell culture.

    Science.gov (United States)

    Zhang, Hong-Li; Dai, Ling-Hao; Wu, Yi-Hang; Yu, Xiao-Ping; Zhang, Yong-Yong; Guan, Rong-Fa; Liu, Tao; Zhao, Jun

    2014-01-01

    Hepatitis B is the most common serious liver infection in the world. To date, there is still no complete cure for chronic hepatitis B. Natural caffeic acid analogues possess prominent antiviral activity, especially anti-hepatitis B virus (HBV) and anti-human immunodeficiency virus effects. Cichoric acid is a caffeic acid derivative from Cichorium intybus. In the study, the anti-hepatitis B property of cichoric acid was evaluated by the D-galactosamine (D-GalN)-induced normal human HL-7702 hepatocyte injury model, the duck hepatitis B virus (DHBV)-infected duck fetal hepatocytes and the HBV-transfected cell line HepG2.2.15 cells, respectively. The results showed that cichoric acid attenuated significantly D-GalN-induced HL-7702 hepatocyte injury at 10-100 µg/mL and produced a maximum protection rate of 56.26%. Moreover, cichoric acid at 1-100 µg/mL inhibited markedly DHBV DNA replication in infected duck fetal hepatocytes. Also, cichoric acid at 10-100 µg/mL reduced significantly the hepatitis B surface and envelope antigen levels in HepG2.2.15 cells and produced the maximum inhibition rates of 79.94% and 76.41%, respectively. Meanwhile, test compound at 50-100 µg/mL inhibited markedly HBV DNA replication. In conclusion, this study verifies the anti-hepatitis B effect of cichoric acid from Cichorium intybus leaves. In addition, cichoric acid could be used to design the antiviral agents. PMID:24759764

  7. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  8. Phenolic Acids Composition of Fruit Extracts of Ber (Ziziphus mauritiana L., var. Golo Lemai

    Directory of Open Access Journals (Sweden)

    Devanand L. Luthria

    2012-12-01

    Full Text Available Fruits of Ziziphus mauritiana L. (ber are consumed in fresh and dried/processed form in many countries across Asia including Pakistan. In the present study, we analyzed the composition of total phenolic acids (free, soluble-bound and insoluble-bound from ber fruit extracts by applying a pressurized liquid base hydrolysis extraction (PLBHE using Dionium cells. Nine phenolic acids (protocatechuic, p-hydroxybenzoic, ferulic, chlorogenic, vanillic, caffeic, vanillin, o- and p-coumaric acids were extracted, separated, and quantified by HPLC-DAD. Identification of phenolic acids was achieved by comparison of retention times, ultraviolet, and mass spectral data with authentic commercial standards. Results showed that p-coumaric acid (3719 ± 22 µg/g was the predominant phenolic acid extracted from ber samples. In addition, four phenolic acids, namely p-hydroxybenzoic (2187 ± 71 µg/g, vanillin (2128 ± 20 µg/g, ferulic (2629 ± 96 µg/g, and o-coumaric acids (2569 ± 41 µg/g were obtained in intermediate amounts from dried Ziziphus mauritiana L. fruit. The total phenolic acids content was determined as 18231 ± 306 µg/g dry matter basis (DMB. This study indicates that ber fruit is a good natural source of phenolic acids and that PLBHE can be used for the assay of phenolic acids.

  9. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.

    Science.gov (United States)

    Asther, Michèle; Estrada Alvarado, Maria Isabel; Haon, Mireille; Navarro, David; Asther, Marcel; Lesage-Meessen, Laurence; Record, Eric

    2005-01-12

    Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.

  10. Investigations on some metabolites of Tecoma stans Juss. callus tissue. Part III. Chromatographical search for iridoids, phenolic acids, terpenoids and sugars

    Directory of Open Access Journals (Sweden)

    Barbara Dohnal

    2015-05-01

    Full Text Available Tissus cultures of Tecoma stans Juss. cultivated on modified Murashige-Skoog medium (RT-k were phytochemically analysed by means of chromatographical methods (PC, TLC. The following products were found as metabolites: phenolic acids - chlorogenics, caffeic, ferulic, vanillic, o-coumaric and sinapic; steroids - β-sitosterol; triterpenes - ursolic and oleanolic acids, α-amyrine; sugars - glucose, fructose, sucrose, xylose. Meso-inositol was isolated in 0.8% yield. In intact plant leaves, some differences concerning the content and/or number of individual compounds were observed, namely: lack of sinapic acid and occurrence of p-coumaric acid, lower content of β-sitosterol, lack of oleanolic acid, occurrence of β-amyrine and of one unidentified triterpenoid, lack of xylose, occurrence of maltose, raffinose, and stachiose. The level of mesoinositol inn leaves was distincly lower than in the callus tissues. Neither in callus tissues nor in leaves iridoid glycosides were found.

  11. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum).

    Science.gov (United States)

    Valiñas, Matías Ariel; Lanteri, María Luciana; ten Have, Arjen; Andreu, Adriana Balbina

    2015-05-20

    Potato (Solanum tuberosum L.) is a good source of dietary antioxidants. Chlorogenic acid (CGA) and caffeic acid (CA) are the most abundant phenolic acid antioxidants in potato and are formed by the phenylpropanoid pathway. A number of CGA biosynthetic routes that involve hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and/or hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) have been proposed, but little is known about their path in potato. CA production requires a caffeoyl shikimate esterase (CSE), and CA serves as a substrate of lignin precursor ferulic acid via the action of caffeic/5-hydroxyferulic acid O-methyltransferase (COMT I). CGA is precursor of caffeoyl-CoA and, via caffeoyl-CoA O-methyltransferase (CCoAOMT), of feruloyl-CoA. Feruloyl-CoA is required for lignin and suberin biosynthesis, crucial for tuber development. Here, metabolite and transcript levels of the mentioned and related enzymes, such as cinnamate 4-hydroxylase (C4H), were determined in the flesh and skin of fresh and stored tubers. Metabolite and transcript levels were higher in skin than in flesh, irrespective of storage. CGA and CA production appear to occur via p-coumaroyl-CoA, using HQT and CSE, respectively. HCT is likely involved in CGA remobilization toward suberin. The strong correlation between CGA and CA, the correspondence with C4H, HQT, CCoAOMT2, and CSE, and the negative correlation of HCT and COMT I in potato tubers suggest a major flux toward suberin. PMID:25921651

  12. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    Science.gov (United States)

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (p<0.05) were observed in both peel and pulp. The levels of total phenolic acids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms. PMID:27542479

  13. A study of the IR spectra of the copigments of malvin chloride with organic acids

    Directory of Open Access Journals (Sweden)

    ZORAN P. NEDIC

    2001-07-01

    Full Text Available The infrared spectra of the copigments of malvin with several organic acids: caffeic, ferulic, sinapic, chlorogenic, and tannic, were analyzed in order to elucidate the bonding of the molecules in the copigments. It was established that copigmentation is realized through hydrogen bonding between malvin molecules and the acids under study. The infrared spectra reveal that two groups of hydrogen bonds are formed, which include interactions of different molecular structures: hydroxy groups (bands around 3500 cm–1 and oxonium ions of the molecules (bands below 3000 cm–1. The formed hydrogen bonds were found to be of different strengths. The strengths of the hydrogen bonds were tentatively correlated with thermodynamic properties of the corresponding copigmentation reactions.

  14. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment.

    Science.gov (United States)

    Escriche, Isabel; Kadar, Melinda; Juan-Borrás, Marisol; Domenech, Eva

    2014-01-01

    Total antioxidant activity, physicochemical parameters, and the profile of flavonoids and phenolic acid compounds were evaluated for: their ability to distinguish between the botanical origins of four types of Spanish honey, the impact of industrial thermal treatment, and the effect of the year of collection. Citrus honey had the lowest levels of all the analysed variables, then rosemary and polyfloral, and honeydew the highest ones. Botanical origin affects the profile of flavonoids and phenolic compounds sufficiently to permit discrimination thanks to the predominance of particular compounds such as: hesperetin (in citrus honey); kaempferol, chrysin, pinocembrin, caffeic acid and naringenin (in rosemary honey) and myricetin, quercetin, galangin and particularly p-coumaric acid (in honeydew honey). The impact of industrial thermal treatments is lower than the expected variability as a consequence of the year of collection, though neither factor has enough influence to alter these constituent compounds to the point of affecting the discrimination of honey by botanical origin. PMID:24001823

  15. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids.

    Science.gov (United States)

    Cai, Shengbao; Wang, Ou; Wang, Mengqian; He, Jianfeng; Wang, Yong; Zhang, Di; Zhou, Feng; Ji, Baoping

    2012-07-25

    The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

  16. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, M.F.; Landbo, Anne-Katrine Regel; Christensen, L.P.;

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... neither 5-5-diFA nor 8- 5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 muM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts was significantly...... correlated with their total content of monomeric and dimeric hydroxycinnamates, and the rye bran extract was the most potent. The data suggest that especially rye bran provides a source of dietary phenolic antioxidants that may have potential health effects....

  17. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Landbo, A K; Christensen, L P;

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts was...... significantly correlated with their total content of monomeric and dimeric hydroxycinnamates, and the rye bran extract was the most potent. The data suggest that especially rye bran provides a source of dietary phenolic antioxidants that may have potential health effects. Udgivelsesdato: 2001-Aug...

  18. Comparison of Phenolic Acids and Flavan-3-ols During Wine Fermentation of Grapes with Different Harvest Times

    Directory of Open Access Journals (Sweden)

    Qing-Hua Zhang

    2009-02-01

    Full Text Available To explore the effects of harvest time on phenolic compounds during wine fermentation, grape berries (Vitis vinifera L. cv. Vidal were harvested at 17.5, 22.8 and 37.2º Brix and were used to make dry wine, semi-sweet wine and icewine with low alcohol levels, respectively. Phenolic acids and flavan-3-ols were assayed during the fermentation of wines by means of reverse phase-high performance liquid chromatography (RP-HPLC. The results showed that concentrations of most of the phenolic acids and flavan-3-ol in musts increased with harvest time delay and higher total levels of these species were detected in all wines, compared with those measured before fermentation (the total phenolic acid content in wines was 1.5-2.0 fold that of in musts. Except for p-coumaric acid and (--epicatechin, other phenolic acids and flavan-3-ols had similar variation patterns (wave-like rise during fermentation in dry wine and semi-sweet wine. However, some detected compounds, including gentisic acid, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid and sinapic acid showed obviously different trends from the other two wines in the icewine making process. It is thus suggested that the harvest time has a decisive effect on phenols in final wines and influences the evolution of phenolic acids and flavan-3-ols during wine fermentation.

  19. Arabidopsis CDS blastp result: AK069960 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-60 ...

  20. Arabidopsis CDS blastp result: AK064768 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-112 ...

  1. Arabidopsis CDS blastp result: AK061551 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  2. Arabidopsis CDS blastp result: AK104764 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  3. Arabidopsis CDS blastp result: AK098998 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 8e-57 ...

  4. Arabidopsis CDS blastp result: AK061859 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-100 ...

  5. Molecularly imprinted polymer for chlorogenic acid by modified precipitation polymerization and its application to extraction of chlorogenic acid from Eucommia ulmodies leaves.

    Science.gov (United States)

    Miura, Chitose; Li, Hui; Matsunaga, Hisami; Haginaka, Jun

    2015-10-10

    Molecularly imprinted polymers (MIPs) for chlorogenic acid (CGA) were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer, divinylbenzene as a crosslinker and methanol or dimethylsulfoxide as a co-solvent. The prepared MIPs were microspheres with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high and low affinity sites, were formed on the MIP. The retention and molecular-recognition properties of the prepared MIP were evaluated using a mixture of water and acetonitrile as a mobile phase in hydrophilic interaction chromatography. With an increase of acetonitrile content, the retention factor of CGA was increased on the MIP. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of CGA on the MIP. The MIP had a specific molecular-recognition ability for CGA, while other related compounds, such as caffeic acid, gallic acid, protocatechuic acid and vanillic acid, could not be recognized by the MIP. Furthermore, the MIP for CGA was successfully applied for extraction of CGA in the leaves of Eucommia ulmodies. PMID:26037163

  6. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids.

    Science.gov (United States)

    Klaassen, Curtis D; Cui, Julia Yue

    2015-10-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target.

  7. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    Science.gov (United States)

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid. PMID:23107679

  8. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    Science.gov (United States)

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid.

  9. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations

    Science.gov (United States)

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona

    2016-06-01

    In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.

  10. Studies of Phenolic acid Constituents from the Whole Plant of Sarcandra Glabra%肿节风酚酸类化学成分研究

    Institute of Scientific and Technical Information of China (English)

    黎雄; 张玉峰; 杨柳; 冯怡; 刘奕明; 曾星

    2012-01-01

    目的 研究肿节风全草中酚酸类化学成分.方法 利用硅胶柱色谱、凝胶柱色谱、开放ODS柱色谱及制备液相等分离技术,通过理化性质和波谱数据分析进行结构鉴定.结果 从肿节风70%乙醇提取物中共分离出15个酚酸类成分,其结构鉴定为原儿茶酸(1),咖啡酸(2),5-O-caffeoylshikimic acid(3),4-O-caffeoyl-shikimic acid(4),3-O-caffeoylshikimic acid(5),迷迭香酸(6),迷迭香酸甲酯(7),迷迭香酸-4-O-β-D-葡萄糖(8),3-0-咖啡酰基奎宁酸(9),5-0-咖啡酰基奎宁酸(10),4-0-咖啡酰基奎宁酸(11),3-甲氧基-4-羟基苯甲酸(12),丁香酸(13),咖啡酸乙酯(14),vinyl caffeate( 15).结论 化合物4,5,10,14,15为该属内首次分离得到,其中化合物5核磁数据为首次报道.%Objective To study the phenolic acid constituents from the whole plant of Sarcandra glabra. Methods Silica gel column chromalography, Sephadex LH-20, reverse phase ODS column chromatography and preparative HPLC were used to isolate the compounds whose structures were elucidated based on their physical characteristics and spectroscopic data. Results Fifteen penolic compounds were isolated from 70 % ethyl alcohol extrat of Sarcandra glabra, and they were identified as protocatechuic acid(1), caffeic acid(2), 5-O-caffeoylshikimic acid(3), 4-0-eaffeoylshikimie acid (4), 3-O-caffeoylshikimic acid (5), rosmarinie acid (6), rosmarinic acid methyl esler(7), rosmarinic acid 4-0-B-D-glucopyrannoside(8), 3-O-caffeoylquinic acid(9), 5-O-caffeoylquinic acid(10), 4-O-caffeoylquinic acid (11), 3-methoxy-4-hydroxybenzoic acid( 12), caryophyllic acid( 13), caffeic acid ethyl ester (14), vinyl caffeate(15), respectively. Conclusion Compounds 4, 5, 10, 14 and 15 have been isolated from this genus for the first time, and the NMR data of compound 5 is firstly reported.

  11. Assay of phenolic compounds from four species of ber (Ziziphus mauritiana L.) fruits: comparison of three base hydrolysis procedure for quantification of total phenolic acids.

    Science.gov (United States)

    Memon, Ayaz Ali; Memon, Najma; Bhanger, Muhammad Iqbal; Luthria, Devanand L

    2013-08-15

    The present study was undertaken to investigate the flavonoid profile in four species of ber (Ziziphus mauritiana Lamk.) fruit. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, quercetin 3'-O-galactoside, quercetin 3'-O-glucoside, quercetin 3'-O-rhamnoside, quercetin 3'-O-pentosylhexoside, quercetin 3-O-6'malonylglucoside, quercetin 3'-O-malonylglucoside, luteolin 7-O-6'malonylglucoside, luteolin 7-O-malonylglucoside, myricetin 3-O-galactoside, and naringenin tri glycoside. This is the first report on extraction of nine additional flavonoids from the ber fruits. In addition, we also compared the impact of three different base hydrolysis techniques namely ultrasonic assisted base hydrolysis (UABH), microwave assisted base hydrolysis (MWABH), and pressurised liquid assisted base hydrolysis (PLABH) for the quantification of total phenolic acids. Nine phenolic acids, protocatechuic acid, p-hydroxybenzoic acid, ferulic acid, chlorogenic acid, vanillic acid, caffeic acid, vanillin, ortho- and para-coumaric acids, were identified and quantified. The three major phenolic acids identified in all four ber species were p-coumaric acid, vanillin and ferulic acids. Higher amounts (pacids in all cultivars were obtained with the PLABH technique as compared to other two procedures (UABH and MWABH). PMID:23561136

  12. Caffeic acids from roots of Arctium lappa and their neuroprotective activity%牛蒡根中咖啡酸类化学成分及其神经保护活性研究

    Institute of Scientific and Technical Information of China (English)

    白俊鹏; 胡晓龙; 蒋晓文; 田星; 赵庆春

    2015-01-01

    目的 研究牛蒡Arctium lappa根中咖啡酸类化学成分及其神经保护活性.方法 采用硅胶、C18反相硅胶、SephadexLH-20、AB-8大孔树脂柱色谱以及制备HPLC等方法对咖啡酸类化合物及类似物进行分离纯化,通过波谱学方法鉴定其结构,并采用MTT法对分离得到的化合物进行抗谷氨酸诱导神经母细胞瘤SH-SY5Y细胞株神经损伤的活性评价.结果 从牛蒡根55%乙醇提取物中分离得到8个咖啡酸类化合物,分别鉴定为l,5-O-二咖啡酰-3-O-(4-苹果酸甲酯)-奎宁酸(1)、3,5-二咖啡酰奎宁酸甲酯(2)、3,4-二咖啡酰奎宁酸甲酯(3)、4,5-二咖啡酰奎宁酸甲酯(4)、(2D-1,4-dimethyl-2-[(4-hydroxyphenyl)methyl]-2-butenedioicacid (5)、绿原酸甲酯(6)、咖啡酸甲酯(7)、3,4,3’,4’-tetrahydroxy-δ-truxinate (8),经活性测试发现此类化合物均具有较好的神经保护活性.结论 牛蒡根的抗谷氨酸诱导神经损伤的活性与其含有的咖啡酸类化合物有关;化合物1为新化合物,化合物5为新天然产物,化合物2~4、6、7为首次从该植物中分离得到,化合物8为首次从该属植物中分离得到.

  13. Quantitatively metabolic profiles of salvianolic acids in rats after gastric-administration of Salvia miltiorrhiza extract.

    Science.gov (United States)

    Liu, Zhanli; Zheng, Xunyang; Guo, Yanlei; Qin, Weihan; Hua, Lei; Yang, Yong

    2016-09-01

    Salvianolic acids, the well-known active components in Salvia miltiorrhiza, have been shown to possess markedly pharmacological activities. However, due to the complex in vivo course after administration, the pharmacologically active forms are still poorly understood. In present study, we evaluated the stability of eight major salvianolic acids from Danshen extract under different chemical and physiological conditions. We also quantitatively explained the absorption, metabolism and excretion of these salvianolic acids in rats after gastric-administration, which was carried out by simultaneously determining the amounts of salvianolic acids and their metabolites in the rat gastrointestinal contents, gastrointestinal mucosa, plasma, bile and urine. We found that: 1) protocatechuic aldehyde (PAL) was much stable whether in acidic environment (pH4.0) or in alkaline environment (pH8.0), while other salvianolic acids were stable in acidic environment and instable in alkaline environment; 2) PAL, salvianoli acid A (SAA) and salvianolic acid B (SAB) were instable whether in rat stomach or in small intestine, while other salvianolic acids were stable in rat stomach and instable in small intestine; 3) after gastric-administration, except PAL and Danshensu (DSS), other phenolic acids would be metabolized into DSS and caffeic acid (CA) in the rat gastrointestinal tract before absorption, and only free and glucuronidated PAL, CA and DSS were detected in rat plasma, bile and urine. In conclusion, it was the free and glucuronidated PAL, CA and DSS rather than the prototypes of other salvianolic acids that were present in plasma with considerable concentrations after gastric-administration. PMID:27370098

  14. Folic Acid

    Science.gov (United States)

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  15. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Science.gov (United States)

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  16. Solvent effects on focused microwave assisted extraction of polyphenolic acids from Eucommia ulmodies.

    Science.gov (United States)

    Li, Hui; Chen, Bo; Nie, Lihua; Yao, Shouzhuo

    2004-01-01

    An open microwave-assisted extraction system was used to extract gallic acid, protocatechuic acid, chlorogenic acid and caffeic acid from Eucommia ulmodies. The effect of extraction variables, especially solvent, on the recoveries of these polyphenolic compounds was investigated using factorial design. As extracting solvent for these compounds, methanol produced a higher recovery than pure water. For straight chain alcohol solvents, the lower the carbon number, the higher the recoveries of the polyphenolic acids. The optimal ratio of methanol:water:glacial acetic acid in the solvent mixture used in microwave-assisted extraction was 2:8:0.3 (v/v) and this solvent could be directly used as the mobile phase in HPLC separation without additional intermittent treatment as reported in literature. The extraction under the condition of 50% microwave power and 30 s irradiation at a solvent:sample ratio of 10 (mL/g) was found to be the most advantageous. The repeatability test of extraction and chromatographic analysis was satisfactory for the analysis of these polyphenolic compounds. PMID:15508835

  17. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Science.gov (United States)

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  18. Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography.

    Science.gov (United States)

    Ganzera, Markus; Egger, Christoph; Zidorn, Christian; Stuppner, Hermann

    2008-05-01

    Arnica montana preparations have been used in Europe for centuries to treat skin disorders. Among the biologically active ingredients in the flower heads of the plant are sequiterpenes, flavonoids and phenolic acids. For the simultaneous determination of compounds belonging to the latter two groups a micellar electrokinetic capillary chromatography (MEKC) method was developed and validated. By using an electrolyte solution containing 50 mM borax, 25 mM sodium dodecyl sulfate and 30% of acetonitrile the separation of seven flavonoids and four caffeic acid derivatives was feasible in less than 20 min. The optimized system was validated for repeatability (sigma(rel) or = 0.9996), and then successfully applied to assay several plant samples. In all of them the most dominant flavonoid was found to be quercetin 3-O-glucuronic acid, whereas 3,5-dicaffeoylquinic acid was the major phenolic acid; the total content of flavonoids and phenolic acids varied in the samples from 0.60 to 1.70%, and 1.03 to 2.24%, respectively.

  19. Amino acids

    Science.gov (United States)

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  20. 过山蕨中有机酸类化学成分研究%Chemical constituents of organic acid part from Camptosorus sibiricus

    Institute of Scientific and Technical Information of China (English)

    李宁; 李铣; 冯志国; 李雪征; 张鹏

    2007-01-01

    目的 研究过山蕨Camptosorus sibiricus中有机酸类化学成分.方法 采用反复硅胶柱色谱分离纯化,通过理化常数测定和光谱分析鉴定其化学结构.结果 从过山蕨中分离得到了10个有机酸类化合物,即11,12,15-三羟基-13-烯十八碳酸(11,12,15-trihydroxy-13-en-octadecenoic acid Ⅰ)、咖啡酸(caffeic acid,Ⅱ)、香豆酸(courmaric acid,Ⅲ)、原儿茶酸(protocatechuic acid,Ⅳ)、对羟基苯甲酸(4-hydroxybenzoic acid,Ⅴ)、异香草酸(isovanillic acid,Ⅵ)、2,4-二羟基苯甲酸(2,4-dihydroxybenzoic acid,Ⅶ)、肉桂酸(cinnamic acid,Ⅷ)、丁二酸(succinic acid,Ⅸ)、棕榈酸(palmitic acid,Ⅹ).结论 化合物Ⅰ为新化合物,将其命名为过山蕨酸(camptosoric acid),化合物Ⅲ~Ⅹ均为首次从该属植物中分离得到.

  1. Mathematical Evaluation of the Amino Acid and Polyphenol Content and Antioxidant Activities of Fruits from Different Apricot Cultivars

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2011-09-01

    Full Text Available Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L. cultivated in Lednice (climatic area T4, South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin, was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis. The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

  2. Determination of phenolic acids in olive oil by capillary electrophoresis.

    Science.gov (United States)

    Buiarelli, Francesca; Di Berardino, Sonia; Coccioli, Franco; Jasionowska, Renata; Russo, Mario Vincenzo

    2004-01-01

    A CZE method for the separation and quantitation of phenolic acids (cinnamic, syringic, p-coumaric, vanillic, caffeic, 3,4-dihydroxyphenylacetic, protocatechuic), extracted from extra virgin olive oil, was developed. The sample preparation involved the LLE and SPE extraction methods. CE separation was performed in a fused silica capillary of I.D.= 50microm using as a BGE 40 mM borate buffer at pH=9.2. The separation voltage was 18kV with corresponding current of 27-28 microA. Detection was accomplished with UV-detector at lambda=200nm. The proposed method was fully validated. A good repeatability of migration time (RSD% ranged from 0.81 to 1.63) and of corrected peak area (RSD% from 2.89 to 5.77) was obtained. The linearity of detector response in the range from 5 to 50 ppm was checked, obtaining the correlation coefficient R2 values in the range: 0.9919-0.9997. Some phenolic acids in real oil samples were detected and quantified with the proposed method. PMID:15506620

  3. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Kristina Ramanauskiene

    2016-01-01

    Full Text Available Lemon balm (Melissa officinalis L. has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h. RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  4. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Chongming Wu

    Full Text Available Chlorogenic acid (CGA is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/- mice and its potential mechanism. ApoE(-/- mice were fed a cholesterol-rich diet without (control or with CGA (200 and 400 mg/kg or atorvastatin (4 mg/kg for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.

  5. Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases.

    Science.gov (United States)

    Klejdus, B; Vacek, J; Lojková, L; Benesová, L; Kubán, V

    2008-06-27

    Complete separation of aglycones and glucosides of selected isoflavones (genistin, genistein, daidzin, daidzein, glycitin, glycitein, ononin, sissotrin, formononetin, and biochanin A) was possible in 1.5 min using an ultrahigh-pressure liquid chromatography (U-HPLC) on a different particular chemically modified stationary phases with a particle size under 2 microm. In addition, selected separation conditions for simultaneous determination of isoflavones together with a group of phenolic acids (gallic, protocatechuic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, and sinapic acid) allowed separation of all 19 compounds in 1.9 min. Separations were conducted on a non-polar reversed phase (C(18)) and also on more polar phases with cyanopropyl or phenyl groups using a gradient elution with a mobile phase consisting of 0.3% aqueous acetic acid and methanol. Chromatographic peaks were characterised using parameters such as resolution, symmetry, selectivity, etc. Individual substances were identified and quantified using UV-vis diode array detector at wavelength 270 nm. Limits of detection (3S/N) were in the range 200-400 pg ml(-1). Proposed U-HPLC technique was used for separation of isoflavones and phenolic acids in samples of plant materials (Trifolium pratense, Glycine max, Pisum sativum and Ononis spinosa) after acid hydrolysis of the samples and modified Soxhlet extraction. PMID:18501366

  6. Synthesis and Antioxidant Activity of Polyhydroxylated trans-Restricted 2-Arylcinnamic Acids

    Directory of Open Access Journals (Sweden)

    Mitko Miliovsky

    2015-02-01

    Full Text Available A series of sixteen polyhydroxylated trans-restricted 2-arylcinnamic acid analogues 3a–p were synthesized through a one-pot reaction between homophthalic anhydrides and various aromatic aldehydes, followed by treatment with BBr3. The structure of the newly synthesized compounds was confirmed by spectroscopic methods and the configuration around the double bond was unequivocally estimated by means of gated decoupling 13C-NMR spectra. It was shown that the trans-cinnamic acid fragment incorporated into the target compounds’ structure ensures the cis-configuration of the stilbene backbone and prevents further isomerization along the carbon–carbon double bond. The antioxidant activity of compounds 3a–p was measured against 1,1-diphenyl-2-picrylhydrazyl (DPPH●, hydroxyl (OH● and superoxide (O2●▬ radicals. The results obtained showed that the tested compounds possess higher activities than natural antioxidants such as protocatechuic acid, caffeic acid and gallic acid. Moreover, it was shown that a combination of two different and independently acting fragments of well-known pharmacological profiles into one covalently bonded hybrid molecule evoke a synergistic effect resulting in higher than expected activity. To rationalize the apparent antioxidant activity and to establish the mechanism of action, a SAR analysis and DFT quantum chemical computations were also performed.

  7. Nephroprotective effect of date fruit extract against dichloroacetic acid exposure in adult rats.

    Science.gov (United States)

    El Arem, Amira; Thouri, Amira; Zekri, Mouna; Saafi, Emna Behija; Ghrairi, Fatma; Zakhama, Abdelfattah; Achour, Lotfi

    2014-03-01

    The aim of this study was to investigate the protective effects of aqueous date extract (ADE) on dichloroacetic acid (DCA)-induced nephrotoxicity. In vitro, total phenolic content estimated in the ADE were 417.71mg gallic acid equivalents/100g fresh weights (FW), while total flavonoid and tannins contents were 285.23 and 73.65mg catechin equivalents/100g FW, respectively. The ADE has strong scavenging activity. Ferulic, caffeic and p-coumaric acids are the major's compounds. Nephrotoxicity was induced in male Wistar rats by the administration of 0.5 and 2g/L DCA as drinking water. Some of these rats received also by gavage ADE (4mL/kg) before the administration of DCA. After two months of experiment, DCA administration caused elevated levels of renal MDA, significant depletion of GSH levels, altered the antioxidant enzyme activities and deteriorated the renal functions as assessed by the increased plasma urea, uric acid and creatinine levels compared to control rats. The treatment with the ADE significantly normalized the increased plasma levels of creatinine, urea and uric acid, reduced the elevated MDA levels, significantly normalized the antioxidant enzyme activities and GSH level and restored the altered kidney histology in rats treated with DCA. Therefore, it was speculated that ADE protects rats from kidney damage through its antioxidant capacity.

  8. Hydroxycinnamic acid bound arabinoxylans from millet brans-structural features and antioxidant activity.

    Science.gov (United States)

    Bijalwan, Vandana; Ali, Usman; Kesarwani, Atul Kumar; Yadav, Kamalendra; Mazumder, Koushik

    2016-07-01

    Hydroxycinnamic acid bound arabinoxylans (HCA-AXs) were extracted from brans of five Indian millet varieties and response surface methodology was used to optimize the extraction conditions. The optimal condition to obtain highest yield of millet HCA-AXs was determined as follows: time 61min, temperature 66°C, ratio of solvent to sample 12ml/g. Linkage analysis indicated that hydroxycinnamic acid bound arabinoxylan from kodo millet (KM-HCA-AX) contained comparatively low branched arabinoxylan consisting of 14.6% mono-substituted, 1.2% di-substituted and 41.2% un-substituted Xylp residues. The HPLC analysis of millet HCA-AXs showed significant variation in the content of three major bound hydroxycinnamic acids (caffeic, p-coumaric and ferulic acid). The antioxidant activity of millet HCA-AXs were evaluated using three in vitro assay methods (DPPH, FRAP and β-carotene linoleate emulsion assays) which suggested both phenolic acid composition and structural characteristics of arabinoxylans could be correlated to their antioxidant potential, the detailed structural analysis revealed that low substituted KM-HCA-AX exhibited relatively higher antioxidant activity compared to other medium and highly substituted HCA-AXs from finger (FM), proso (PM), barnyard (BM) and foxtail (FOXM) millet. PMID:27050114

  9. Phenolic content, antioxidant activities and stimulatory roles of citrus fruits on some lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Irkin Reyhan

    2015-01-01

    Full Text Available In this study, phenolic compounds and antioxidant activities in citrus fruits and their peels were determined, and their stimulatory roles on some lactic acid bacteria were investigated. Phenolic compounds in citrus fruits such as mandarin, lemon, orange and grapefruit were determined either in the juices or in the peel extracts. Total phenolic content was determined in a spectrophotometer at 685 nm using the adapted Folin-Ciocalteu method. Total flavonoid content was measured using LC/MS (liquid chromatography-mass spectrometry. The effects of the fruit juices and peel extracts on the selected lactic acid bacteria (Lactobacillus delbrueckii NRRL B5448, Lb. casei NRRL B1922, Lb. acidophilus NRRL B4495 were investigated. The tested lactic acid bacteria were significantly affected by chlorogenic acid, hesperidin, naringin and caffeic acid compared to the control samples (P≤0.05. Antioxidant properties of fruit samples were also measured using the DPPH (2,2-diphenyl-1-picrylhydrazyl method. The phenolics positively affected the metabolism of bacteria, with the stimulatory effects of the assayed samples being influenced by the phenolic profile.

  10. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction.

    Science.gov (United States)

    Irakli, Maria N; Samanidou, Victoria F; Biliaderis, Costas G; Papadoyannis, Ioannis N

    2012-10-01

    Whole cereal grains are a good source of phenolic acids associated with reduced risk of chronic diseases. This paper reports the development and validation of a high-performance liquid chromatography-diode array detection (HPLC-DAD) method for the determination of phenolic acids in cereals in either free or bound form. Extraction of free phenolic acids and clean-up was performed by an optimised solid-phase extraction (SPE) protocol on Oasis HLB cartridges using aqueous methanol as eluant. The mean recovery of analytes ranged between 84% and 106%. Bound phenolic acids were extracted using alkaline hydrolysis with mean recoveries of 80-95%, except for gallic acid, caffeic acid and protocatechuic acid. Both free and bound phenolic extracts were separated on a Nucleosil 100 C18 column, 5 μm (250 mm × 4.6 mm) thermostated at 30 °C, using a linear gradient elution system consisting of 1% (v/v) acetic acid in methanol. Method validation was performed by means of linearity, accuracy, intra-day and inter-day precision and sensitivity. Detection limits ranged between 0.13 and 0.18 μg/g. The method was applied to the analysis of free and bound phenolic acids contents in durum wheat, bread wheat, barley, oat, rice, rye, corn and triticale. PMID:25005991

  11. Folic Acid

    Science.gov (United States)

    ... found naturally in some foods, including leafy vegetables, citrus fruits, beans (legumes), and whole grains. Folic acid ... mcg of folic acid every day for good health. But older adults need to be sure they ...

  12. Breeding for Chlorogenic Acid Content in Eggplant: Interest and Prospects

    Directory of Open Access Journals (Sweden)

    Mariola PLAZAS

    2013-05-01

    Full Text Available Chlorogenic acid (5-O-caffeoyl-quinic acid; CGA is an ester of caffeic acid and (--quinic acid with many beneficial properties for human health, such as anti-oxidant, anti-inflammatory, cardioprotective, anti-carcinogenic, anti-obesity, and anti-diabetic properties. This has raised an interest for the development of new crop cultivars with increased CGA content. One of the crops with higher CGA content is eggplant (Solanum melongena. There is a wide diversity for CGA content in cultivated eggplant germplasm, which is influenced by the fruit developmental stage, storage conditions, and environmental factors. Therefore, appropriate experimental designs are required for an efficient breeding. Several strategies are proposed for breeding for high CGA content such as intraspecific variation, selection among accessions, development of hybrids and lines with good agronomic and commercial characteristics, or introgression of the high CGA trait in élite lines. Some wild relatives, like S. incanum, present higher CGA contents than those of eggplant. Interspecific hybridization can be used to introgress favorable alleles from the wild species into the genetic background of cultivated eggplant. Fruit flesh browning, as a result of CGA oxidation by polyphenol oxidases, could be a side effect of increasing the CGA content in eggplant. However, experimental results indicate that the relationship between CGA content and fruit flesh browning is low or moderate. Furthermore, selection for low polyphenol oxidase activity might result in reduced fruit flesh browning. Overall, the available data suggest that the development of eggplant cultivars with improved functional quality resulting from a higher CGA content is feasible.

  13. Biotransformation and improved enzymatic extraction of chlorogenic acid from coffee pulp by filamentous fungi.

    Science.gov (United States)

    Torres-Mancera, María Teresa; Baqueiro-Peña, Itzamná; Figueroa-Montero, Arturo; Rodríguez-Serrano, Gabriela; González-Zamora, Eduardo; Favela-Torres, Ernesto; Saucedo-Castañeda, Gerardo

    2013-01-01

    The highest enzymatic extraction of covalent linked chlorogenic (36.1%) and caffeic (CA) (33%) acids from coffee pulp (CP) was achieved by solid-state fermentation with a mixture of three enzymatic extracts produced by Aspergillus tamarii, Rhizomucor pusillus, and Trametes sp. Enzyme extracts were produced in a practical inexpensive way. Synergistic effects on the extraction yield were observed when more than one enzyme extract was used. In addition, biotransformation of chlorogenic acid (ChA) by Aspergillus niger C23308 was studied. Equimolar transformation of ChA into CA and quinic acids (QA) was observed during the first 36 h in submerged culture. Subsequently, after 36 h, equimolar transformation of CA into protocatechuic acid was observed; this pathway is being reported for the first time for A. niger. QA was used as a carbon source by A. niger C23308. This study presents the potential of using CP to produce enzymes and compounds such as ChA with biological activities.

  14. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.

    Science.gov (United States)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  15. Biotransformation and improved enzymatic extraction of chlorogenic acid from coffee pulp by filamentous fungi.

    Science.gov (United States)

    Torres-Mancera, María Teresa; Baqueiro-Peña, Itzamná; Figueroa-Montero, Arturo; Rodríguez-Serrano, Gabriela; González-Zamora, Eduardo; Favela-Torres, Ernesto; Saucedo-Castañeda, Gerardo

    2013-01-01

    The highest enzymatic extraction of covalent linked chlorogenic (36.1%) and caffeic (CA) (33%) acids from coffee pulp (CP) was achieved by solid-state fermentation with a mixture of three enzymatic extracts produced by Aspergillus tamarii, Rhizomucor pusillus, and Trametes sp. Enzyme extracts were produced in a practical inexpensive way. Synergistic effects on the extraction yield were observed when more than one enzyme extract was used. In addition, biotransformation of chlorogenic acid (ChA) by Aspergillus niger C23308 was studied. Equimolar transformation of ChA into CA and quinic acids (QA) was observed during the first 36 h in submerged culture. Subsequently, after 36 h, equimolar transformation of CA into protocatechuic acid was observed; this pathway is being reported for the first time for A. niger. QA was used as a carbon source by A. niger C23308. This study presents the potential of using CP to produce enzymes and compounds such as ChA with biological activities. PMID:23341203

  16. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.

    Science.gov (United States)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-06-19

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.

  17. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    Science.gov (United States)

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts. PMID:26803763

  18. Effect of milk on the urinary excretion of microbial phenolic acids after cocoa powder consumption in humans.

    Science.gov (United States)

    Urpi-Sarda, Mireia; Llorach, Rafael; Khan, Nasiruddin; Monagas, Maria; Rotches-Ribalta, Maria; Lamuela-Raventos, Rosa; Estruch, Ramon; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2010-04-28

    Health effects of cocoa flavonols depend on their bioavailability, which is strongly influenced by the food matrix and the degree of flavanol polymerization. The effect of milk on the bioavailability of cocoa flavanoids considering phase II metabolites of epicatechin has been the subject of considerable debate. This work studies the effect of milk at the colonic microbial metabolism level of the nonabsorbed flavanol fraction that reaches the colon and is metabolized by the colonic microbiota into various phenolic acids. Twenty-one human volunteers followed a diet low in polyphenols for at least 48 h before taking, in a random order, 40 g of cocoa powder dissolved either in 250 mL of whole milk or in 250 mL of water. Urine samples were collected before the intake and during three different periods (0-6, 6-12, and 12-24 h). Phenolic acids were analyzed by LC-MS/MS after solid-phase extraction. Of the 15 metabolites assessed, the excretion of 9 phenolic acids was affected by the intake of milk. The urinary concentration of 3,4-dihydroxyphenylacetic, protocatechuic, 4-hydroxybenzoic, 4-hydroxyhippuric, hippuric, caffeic, and ferulic acids diminished after the intake of cocoa with milk, whereas urinary concentrations of vanillic and phenylacetic acids increased. In conclusion, milk partially affects the formation of microbial phenolic acids derived from the colonic degradation of procyanidins and other compounds present in cocoa powder. PMID:20222713

  19. Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant.

    Science.gov (United States)

    Saad, Engy M; Madbouly, Adel; Ayoub, Nahla; El Nashar, Rasha Mohamed

    2015-06-01

    Molecularly imprinted polymer (MIP) was synthesized and applied for the extraction of chicoric acid from Chicory herb (Chicorium intybus L.). A computational study was developed to find a suitable template to functional monomer molar ratio for MIP preparations. The molar ratio was chosen based on the comparison of the binding energy of the complexes between the template and functional monomers. Based on the computational results, eight different polymers were prepared using chicoric acid as the template. The MIPs were synthesized in a non-covalent approach via thermal free-radical polymerization, using two different polymerization methods, bulk and suspension. Batch rebinding experiments were performed to evaluate the binding properties of the imprinted polymers. The best results were obtained with a MIP prepared using bulk polymerization with 4-vinylpyridine (4-VP) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker with a molar ratio of 1:4:20. The best MIP showed selective binding ability toward chicoric acid in the presence of the template's structural analogues, caffeic acid, caftaric acid and chlorogenic acid. PMID:26002213

  20. Methyl Jasmonate and Salicylic Acid Induced Oxidative Stress and Accumulation of Phenolics in Panax ginseng Bioreactor Root Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Kee-Yoeup Paek

    2007-03-01

    Full Text Available To investigate the enzyme variations responsible for the synthesis of phenolics, 40 day-old adventitious roots of Panax ginseng were treated with 200 μM methyl jasmonate (MJ or salicylic acid (SA in a 5 L bioreactor suspension culture (working volume 4 L. Both treatments caused an increase in the carbonyl and hydrogen peroxide (H2O2 contents, although the levels were lower in SA treated roots. Total phenolic, flavonoid, ascorbic acid, non-protein thiol (NPSH and cysteine contents and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical reducing activity were increased by MJ and SA. Fresh weight (FW and dry weight (DW decreased significantly after 9 days of exposure to SA and MJ. The highest total phenolics (62%, DPPH activity (40%, flavonoids (88%, ascorbic acid (55%, NPSH (33%, and cysteine (62% contents compared to control were obtained after 9 days in SA treated roots. The activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, substrate specific peroxidases (caffeic acid peroxidase, quercetin peroxidase and ferulic acid peroxidase were higher in MJ treated roots than the SA treated ones. Increased shikimate dehydrogenase, chlorogenic acid peroxidase and β-glucosidase activities and proline content were observed in SA treated roots than in MJ ones. Cinnamyl alcohol dehydrogenase activity remained unaffected by both MJ and SA. These results strongly indicate that MJ and SA induce the accumulation of phenolic compounds in ginseng root by altering the phenolic synthesis enzymes.

  1. Phenolcarboxylic acids from medicinal herbs exert anticancer effects through disruption of COX-2 activity.

    Science.gov (United States)

    Tao, Li; Wang, Sheng; Zhao, Yang; Sheng, Xiaobo; Wang, Aiyun; Zheng, Shizhong; Lu, Yin

    2014-09-25

    Integrated research of herbs and formulas characterized by functions of promoting blood circulation and removing blood stasis is one of the most active fields in traditional Chinese medicine. This paper strives to demonstrate the roles of a homologous series of phenolcarboxylic acids from these medicinal herbs in cancer treatment via targeting cyclooxygenase-2 (COX-2), a well-recognized mediator in tumorigenesis. We selected thirteen typical phenolcarboxylic acids (benzoic acid derivatives, cinnamic acid derivatives and their dehydration-condensation products), and found gallic acid, caffeic acid, danshensu, rosmarinic acid and salvianolic acid B showed 50% inhibitory effects on hCOX-2 activity and A549 cells proliferation. 2D-quantitative method was introduced to describe the potential structural features that contributed to certain bioactivities. We also found these compounds underwent responsible hydrogen bonding to Arg120 and Ser353 in COX-2 active site residues. We further extensively focused on danshensu [d-(+)-β-(3,4-dihydoxy-phenylalanine)] or DSS, which exerted COX-2 dependent anticancer manner. Both genetic and pharmacological inhibition of COX-2 could enhance the ability of DSS inhibiting A549 cells growth. Additionally, COX-2/PGE2/ERK signaling axis was essential for the anticancer effect of DSS. Furthermore, combined treatment with DSS and celecoxib could produce stronger anticancer effects in experimental lung metastasis of A549 cells in vivo. All these findings indicated that phenolcarboxylic acids might possess anticancer effects through jointly targeting COX-2 activity in cancer cells and provided strong evidence in cancer prevention and therapy for the herbs characterized by blood-activating and stasis-resolving functions in clinic. PMID:24916702

  2. The shikimic acid: an important metabolite for the Aglianico del Vulture wines

    Directory of Open Access Journals (Sweden)

    Pasquale Tamborra

    2014-12-01

    Full Text Available Shikimic acid is a precursor for the biosynthesis of aromatic amino acids and flavonoids (anthocyanins, tannins and flavonols. In the pharmaceutical industry, it is obtained by extraction of star anise from China, and at a yield of 3-7% it is used for the production of antiviral drug, e.g. oseltamivir. Unlike flavonoids which are only present in the grape skins, shikimic acid is present in the juice together with hydroxycinnamil tartaric acids (caffeic, ferulic and p-coumaric acid. Therefore, their content in white wines may not be negligible and their presence may explain the epidemiological studies that showed a reduced incidence of cardiovascular diseases also in people with moderate white wine consumption. The content of shikimic acid has been used to characterize wines. In southern Italy it has been used to distinguish Aglianico grape, which holds medium-high content, from Negroamaro, Primitivo and Uva di Troia grapes who have rather lower levels. It could be useful also to distinguish Fiano di Avellino (high value from Fiano Minutolo (low value. However, results of a recent work showed that the shikimic acid content decreases significantly during the ripening of the grapes and therefore its content in wine is strongly influenced by the harvest period. Finally, in a recent paper it was highlighted the increase in shikimic acid content at the end of fermentation in an Aglianico del Vulture wine, produced in the area of Rapolla (PZ, Italy municipality during the 2013 harvest. These last experimental results explain why the values of shikimic acid were lower in grapes and surprisingly higher in wines produced in the 2011 and 2012 harvest.

  3. Identification and Quantification of Flavonoids and Phenolic Acids in Burr Parsley (Caucalis platycarpos L., Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ana Mornar

    2009-07-01

    Full Text Available A sensitive method coupling high-performance liquid chromatography (HPLC with diode-array detector (DAD and electrospray ionization mass spectrometry (MS was optimized for the separation and identification of phenolic acids, flavonoid glycosides and flavonoid aglycones in the extract of burr parsley (Caucalis platycarpos L.. Fragmentation behavior of flavonoid glycosides and phenolic acids were investigated using ion trap mass spectrometry in negative electrospray ionization. The MS, MSn and UV data together with HPLC retention time (TR of phenolic acids and flavonoids allowed structural characterization of these compounds. Caffeoylquinic acid (CQA isomers, p-coumaroyl-quinic acids (p-CoQA, feruloylquinic acids (FQA, dicaffeoylquinic acids (diCQA, luteolin-7-O-rutinoside, apigenin-7-O-rutinoside as well as isolated chrysoeriol-7-O-rutinoside have been identified as constituents of C. platycarpos for the first time. An accurate, precise and sensitive LC-DAD method for quantification of four phenolic acids (3-O-caffeoylquinic, caffeic, p-coumaric, o-coumaric acid, four flavonoid glycosides (luteolin-7-O-glucoside, apigenin-7-O-glucoside, quercetin-3-O-galactoside, quercetin-3-O-rhamnoside, and three flavonoid aglycones (luteolin, apigenin, chrysoeriol in C. platycarpos extract was validated in terms of linearity, limit of detection, limit of quantification, precision and accuracy. 3-O-caffeoylquinic acid was the predominant phenolic acid and luteolin-7-O-glucoside was the predominant flavonoid glycoside.

  4. Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC-DAD-ESI-MS.

    Science.gov (United States)

    Inbaraj, B Stephen; Lu, H; Kao, T H; Chen, B H

    2010-02-01

    A high-performance liquid chromatography-diode array detection-mass spectrometry method with electrospray ionization mode (HPLC-DAD-ESI-MS) was developed for simultaneous determination of phenolic acids and flavonoids in fruits of Lycium barbarum Linnaeus, a widely used traditional Chinese herb possessing vital biological activity. Both phenolic acids and flavonoids were extracted with 50% ethanol and purified using a polymeric solid phase extraction cartridge followed by HPLC-DAD-ESI-MS analysis. By employing a Vydac C18 column, a total of 52 phenolic acids and flavonoids were separated within 70min using a gradient mobile phase of 0.5% (v/v) formic acid in water and acetonitrile-water (94:6, v/v) with flow rate at 1mL/min, column temperature at 30 degrees C and detection wavelength at 280nm. Of 52 compounds, 15 phenolic acids and flavonoids were positively identified based on both absorption and mass spectra, with the remaining 37 tentatively identified by comparison of absorption spectra with reported values in the literature. Internal standards 3-hydroxybenzoic acid and hesperidin were used for quantitation of phenolic acids and flavonoids, respectively. Among the 15 positively identified compounds, quercetin-rhamno-di-hexoside was present in largest mass fraction (438.6microg/g), followed by quercetin-3-O-rutinoside (281.3microg/g), dicaffeoylquinic acid isomers (250.1microg/g), chlorogenic acid (237.0microg/g), quercetin-di-(rhamnohexoside) (117.5microg/g), quercetin-di-(rhamno)-hexoside (116.8mug/g), kaempferol-3-O-rutinoside (97.7microg/g), isorhamnetin-3-O-rutinoside (72.1microg/g), p-coumaric acid (64.0microg/g), caffeic acid (23.7microg/g) and vanillic acid (22.8microg/g). PMID:19819093

  5. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    Science.gov (United States)

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  6. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte;

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid...... with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid...

  7. Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosus L. Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fujia Chen

    2014-01-01

    Full Text Available Plant phenolics can have applications in pharmaceutical and other industries. To identify and quantify the phenolic compounds in Helianthus tuberosus leaves, qualitative analysis was performed by a reversed phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS and quantitative analysis by HPLC. Ten chlorogenic acids (CGAs were identified (3-o-caffeoylquinic acid, two isomers of caffeoylquinic acid, caffeic acid, p-coumaroyl-quinic acid, feruloylquinic acid, 3,4-dicaffeoyquinic acid, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid by comparing their retention times, UV-Vis absorption spectra, and MS/MS spectra with standards. In addition, four other phenolic compounds, including caffeoyl glucopyranose, isorhamnetin glucoside, kaempferol glucuronide, and kaempferol-3-o-glucoside, were tentatively identified in Helianthus tuberosus leaves for the first time. The 3-o-caffeoylquinic acid (7.752 mg/g DW, 4,5-dicaffeoylquinic acid (5.633 mg/g DW, and 3,5-dicaffeoylquinic acid (4.900 mg/g DW were the major phenolic compounds in leaves of Helianthus tuberosus cultivar NanYu in maturity. The variations in phenolic concentrations and proportions in Helianthus tuberosus leaves were influenced by genotype and plant growth stage. Cultivar NanYu had the highest concentration of phenolic compounds, in particular 3-o-caffeoylquinic acid and 4,5-dicaffeoylquinic acid compared with the other genotypes (wild accession and QingYu. Considering various growth stages, the concentration of total phenolics in cultivar NanYu was higher at flowering stage (5.270 mg/g DW than at budding and tuber swelling stages. Cultivar NanYu of Helianthus tuberosus is a potential source of natural phenolics that may play an important role in the development of pharmaceuticals.

  8. Analysis of phenolic acids of Jerusalem artichoke (Helianthus tuberosus L.) responding to salt-stress by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Chen, Fujia; Long, Xiaohua; Liu, Zhaopu; Shao, Hongbo; Liu, Ling

    2014-01-01

    Plant phenolics can have applications in pharmaceutical and other industries. To identify and quantify the phenolic compounds in Helianthus tuberosus leaves, qualitative analysis was performed by a reversed phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) and quantitative analysis by HPLC. Ten chlorogenic acids (CGAs) were identified (3-o-caffeoylquinic acid, two isomers of caffeoylquinic acid, caffeic acid, p-coumaroyl-quinic acid, feruloylquinic acid, 3,4-dicaffeoyquinic acid, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid) by comparing their retention times, UV-Vis absorption spectra, and MS/MS spectra with standards. In addition, four other phenolic compounds, including caffeoyl glucopyranose, isorhamnetin glucoside, kaempferol glucuronide, and kaempferol-3-o-glucoside, were tentatively identified in Helianthus tuberosus leaves for the first time. The 3-o-caffeoylquinic acid (7.752 mg/g DW), 4,5-dicaffeoylquinic acid (5.633 mg/g DW), and 3,5-dicaffeoylquinic acid (4.900 mg/g DW) were the major phenolic compounds in leaves of Helianthus tuberosus cultivar NanYu in maturity. The variations in phenolic concentrations and proportions in Helianthus tuberosus leaves were influenced by genotype and plant growth stage. Cultivar NanYu had the highest concentration of phenolic compounds, in particular 3-o-caffeoylquinic acid and 4,5-dicaffeoylquinic acid compared with the other genotypes (wild accession and QingYu). Considering various growth stages, the concentration of total phenolics in cultivar NanYu was higher at flowering stage (5.270 mg/g DW) than at budding and tuber swelling stages. Cultivar NanYu of Helianthus tuberosus is a potential source of natural phenolics that may play an important role in the development of pharmaceuticals. PMID:25302328

  9. Possible involvement of phospholipase C and protein kinase C in stimulatory actions of L-leucine and its keto acid, alpha-ketoisocaproic acid, on protein synthesis in RLC-16 hepatocytes.

    Science.gov (United States)

    Yagasaki, Kazumi; Morisaki-Tsuji, Naoko; Miura, Atsuhito; Funabiki, Ryuhei

    2002-11-01

    Effects of leucine and related compounds on protein synthesis were studied in RLC-16 hepatocytes. The incorporation of [(3)H] tyrosine into cellular protein was measured as an indexof protein synthesis. In leucine-depleted RLC-16 cells, L-leucineand its keto acid, alpha-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipase A(2) and C canceled stimulatory actions of L-leucine and KIC on protein synthesis, suggesting a possible involvement of either arachidonic acid metabolism by phospholipase A(2), cyclooxygenase or lipoxygenase, or phosphatidylinositol degradation by phospholipase C in the stimulatory actions of L-leucine and KIC.Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of protein kinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in RLC-16 cells via activation of phospholipase C and production of diacylglycerol and inositol triphosphate from phosphatidylinositol, which in turn activate protein kinase C. PMID:19003115

  10. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock 'GiSelA 5' leafy cuttings.

    Science.gov (United States)

    Trobec, Mateja; Stampar, Franci; Veberic, Robert; Osterc, Gregor

    2005-05-01

    The relationship between the phenol composition of rooting zones and rootability was studied in the first days after the establishment of cuttings. The trial included two different types of cuttings (basal and terminal). Additionally, the influence of exogenously applied auxin (IBA) was observed. The best rooting results (55.6%) were achieved with terminal IBA treated cuttings, while only 1.9% of basal cuttings formed roots. The auxin treatment increased the root formation in terminal, but not in basal cuttings. Low rooting rate of basal cuttings was probably due to higher lignification rate of the basal tissue which can represent a mechanical barrier for root emergence. When measuring phenolic compounds and cinnamic acid, terminal cuttings contained higher (rutin, vanillic acid, (-)-epicatechin, caffeic acid and sinapinic acid) or equal concentrations of detected phenols as basal cuttings, while applied auxin did not influence the level of any of discussed phenolics, neither of cinnamic acid. It is to assume that cuttings for starting of root induction phase should contain certain levels of several phenolic compounds, but higher influence on rooting success is to be ascribed to the impact of the auxin level. During the time of the experiment concentrations of monophenols sinapinic acid and vanillic acid rapidly decreased. This decrease was more pronounced in terminal cuttings, which might have a better mechanism of lowering those two compounds to which a negative influence on rooting is ascribed. Fluctuations and differences between treatments of other phenolics were not significant enough to influence the rooting process.

  11. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions

    Directory of Open Access Journals (Sweden)

    Ningjian Liang

    2015-12-01

    Full Text Available Chlorogenic acids (CGAs are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1 the relative composition of different CGA isomers present in coffee beverages; (2 analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3 description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  12. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.

    Science.gov (United States)

    Liang, Ningjian; Kitts, David D

    2015-12-25

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  13. Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species

    Institute of Scientific and Technical Information of China (English)

    Ilkay Erdogan Orhan; Nilgun Ozturk; Bilge Sener

    2015-01-01

    Objective: To explore some Fumaria species which were recorded to be traditionally used against malaria and other protozoal diseases. Methods: Consequently, in the current study, antiprotozoal effect of the ethanol extracts obtained from five Fumaria species (Fumaria densiflora, Fumaria cilicica, Fumaria rostellata, Fumaria kralikii, and Fumaria parviflora) was investigated against the parasites; Plasmodium falciparum (malaria) and Trypanosoma bruceirhodesiense (human African trypanosomiasis) at 0.81 and 4.85 μg/mL concentrations. Results: Among them, Fumaria densiflora extract exerted the highest antiplasmodial (93.80%) and antitrypanasomal effect (55.40%), while the ethanol extracts of Fumaria kralikii (43.45%) and Fumaria rostellata (41.65%) showed moderate activity against Plasmodium falciparum. Besides, phenolic acid contents of the extracts were analyzed using high performance liquid chromatography (HPLC) and trans-cinnamic (4.32 mg/g) and caffeic (3.71 mg/g) acids were found to be the dominant phenolic acids in Fumaria densiflora. Conclusions: According to our results, Fumaria densiflora deserve further study for its promising antiprotozoal activity.

  14. Comprehensive Study of Mediterranean (Croatian) Propolis Peculiarity: Headspace, Volatiles, Anti-Varroa-Treatment Residue, Phenolics, and Antioxidant Properties.

    Science.gov (United States)

    Jerković, Igor; Marijanović, Zvonimir; Kuś, Piotr M; Tuberoso, Carlo I G

    2016-02-01

    Eight propolis samples from Croatia were analyzed in detail, to study the headspace, volatiles, anti-Varroa-treatment residue, phenolics, and antioxidant properties. The samples exhibited high qualitative/quantitative variability of the chemical profiles, total phenolic content (1,589.3-14,398.3 mg GAE (gallic acid equivalent)/l EtOH extract), and antioxidant activity (11.1-133.5 mmol Fe(2+) /l extract and 6.2-65.3 mmol TEAC (Trolox® equivalent antioxidant capacity)/l extract). The main phenolics quantified by HPLC-DAD at 280 and 360 nm were vanillin, p-coumaric acid, ferulic acid, chrysin, galangin, and caffeic acid phenethyl ester. The major compounds identified by headspace solid-phase microextraction (HS-SPME), simultaneous distillation extraction (SDE), and subsequent GC-FID and GC/MS analyses were α-eudesmol (up to 19.9%), β-eudesmol (up to 12.6%), γ-eudesmol (up to 10.5%), benzyl benzoate (up to 28.5%), and 4-vinyl-2-methoxyphenol (up to 18.1%). Vanillin was determined as minor constituent by SDE/GC-FID/MS and HPLC-DAD. The identified acaricide residue thymol was ca. three times more abundant by HS-SPME/GC-FID/MS than by SDE/GC-FID/MS and was not detected by HPLC-DAD. PMID:26880433

  15. [Gastric Acid].

    Science.gov (United States)

    Ruíz Chávez, R

    1996-01-01

    Gastric acid, a product of parietal cells secretion, full fills multiple biological roles which are absolutely necessary to keep corporal homeostasis. The production of the acid depends upon an effector cellular process represented in the first step by histamine, acetilcholine and gastrin, first messengers of the process. These interact with specific receptors than in sequence activate second messengers -cAMP and the calcium-calmodulin system- which afterwards activate a kinase. An specific protein is then phosphorilated by this enzyme, being the crucial factor that starts the production of acid. Finally, a proton bomb, extrudes the acid towards the gastric lumen. The secretion process mentioned above, is progressive lyactivated in three steps, two of which are stimulators -cephalic and gastric phases- and the other one inhibitor or intestinal phase. These stages are started by mental and neurological phenomena -thought, sight, smell or memory-; by food, drugs or other ingested substances; and by products of digestion. Changes in regulation of acid secretion, in the structure of gastro-duodenal mucosal barrier by a wide spectrum of factors and agents including food, drugs and H. pylori, are the basis of acid-peptic disease, entity in which gastric acid plays a fundamental role. From the therapeutic point of view, so at the theoretical as at the practical levels, t is possible to interfere with the secretion of acid by neutralization of some of the steps of the effector cellular process. An adequate knowledge of the basics related to gastric acid, allows to create strategies for the clinical handling of associated pathology, specifically in relation to peptic acid disease in all of the known clinical forms. PMID:12165790

  16. Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from Aspergillus niger.

    Science.gov (United States)

    Benoit, Isabelle; Asther, Michèle; Bourne, Yves; Navarro, David; Canaan, Stéphane; Lesage-Meessen, Laurence; Herweijer, Marga; Coutinho, Pedro M; Asther, Marcel; Record, Eric

    2007-09-01

    The full-length gene that encodes the chlorogenic acid hydrolase from Aspergillus niger CIRM BRFM 131 was cloned by PCR based on the genome of the strain A. niger CBS 513.88. The complete gene consists of 1,715 bp and codes for a deduced protein of 512 amino acids with a molecular mass of 55,264 Da and an acidic pI of 4.6. The gene was successfully cloned and overexpressed in A. niger to yield 1.25 g liter(-1), i.e., 330-fold higher than the production of wild-type strain A. niger CIRM BRFM131. The histidine-tagged recombinant ChlE protein was purified to homogeneity via a single chromatography step, and its main biochemical properties were characterized. The molecular size of the protein checked by mass spectroscopy was 74,553 Da, suggesting the presence of glycosylation. ChlE is assembled in a tetrameric form with several acidic isoforms with pIs of around 4.55 and 5.2. Other characteristics, such as optimal pH and temperature, were found to be similar to those determined for the previously characterized chlorogenic acid hydrolase of A. niger CIRM BRFM 131. However, there was a significant temperature stability difference in favor of the recombinant protein. ChlE exhibits a catalytic efficiency of 12.5 x 10(6) M(-1) s(-1) toward chlorogenic acid (CGA), and its ability to release caffeic acid from CGA present in agricultural by-products such as apple marc and coffee pulp was clearly demonstrated, confirming the high potential of this enzyme.

  17. Interaction of chlorogenic acids and quinides from coffee with human serum albumin.

    Science.gov (United States)

    Sinisi, Valentina; Forzato, Cristina; Cefarin, Nicola; Navarini, Luciano; Berti, Federico

    2015-02-01

    Chlorogenic acids and their derivatives are abundant in coffee and their composition changes between coffee species. Human serum albumin (HSA) interacts with this family of compounds with high affinity. We have studied by fluorescence spectroscopy the specific binding of HSA with eight compounds that belong to the coffee polyphenols family, four acids (caffeic acid, ferulic acid, 5-O-caffeoyl quinic acid, and 3,4-dimethoxycinnamic acid) and four lactones (3,4-O-dicaffeoyl-1,5-γ-quinide, 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, and 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide), finding dissociation constants of the albumin-chlorogenic acids and albumin-quinides complexes in the micromolar range, between 2 and 30μM. Such values are comparable with those of the most powerful binders of albumin, and more favourable than the values obtained for the majority of drugs. Interestingly in the case of 3,4-O-dicaffeoyl-1,5-γ-quinide, we have observed the entrance of two ligand molecules in the same binding site, leading up to a first dissociation constant even in the hundred nanomolar range, which is to our knowledge the highest affinity ever observed for HSA and its ligands. The displacement of warfarin, a reference drug binding to HSA, by the quinide has also been demonstrated.

  18. A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis.

    Science.gov (United States)

    Nieter, Annabel; Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G

    2015-03-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.

  19. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus.

    Science.gov (United States)

    Barrientos, Leticia; Herrera, Christian L; Montenegro, Gloria; Ortega, Ximena; Veloz, Jorge; Alvear, Marysol; Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A

    2013-01-01

    Propolis is a non-toxic natural substance with multiple pharmacological properties including anti-cancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC) was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 μg mL(-1)). Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them.

  20. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus

    Directory of Open Access Journals (Sweden)

    Leticia Barrientos

    2013-01-01

    Full Text Available Propolis is a non-toxic natural substance with multiple pharmacological properties including anticancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 µgmL-1. Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them.

  1. Simultaneous Determination of Rosmarinic Acid,Caffeic Acid and Ferulic Acid in Water-soluble Extract of Rosemary by LC/MS/MS%高效液相色谱-串联质谱法同时测定水溶性迷迭香提取物中迷迭香酸、阿魏酸和咖啡酸的含量

    Institute of Scientific and Technical Information of China (English)

    许高燕; 刘莹雯; 银董红

    2006-01-01

    本文建立了一种同时快速测定水溶性迷迭香提取物中迷迭香酸、阿魏酸和咖啡酸含量的高效液相色谱-串联质谱(HPLC/MS/MS)分析方法.以甲醇和0.1%乙酸铵溶液为HPLC的流动相;MS/MS使用多反应监测(MRM)扫描方式,在3 min内可完成迷迭香酸、阿魏酸和咖啡酸三种化合物的分离分析.上述三种分析物在5~500ng/mL范围内线性良好(r>0.999);检出限均低于5.0 ng/mL.本法操作简便、分析速度快、灵敏度高,可用于水溶性迷迭香提取物中迷迭香酸、阿魏酸和咖啡酸含量的测定.

  2. In Vitro Gender-Dependent Inhibition of Porcine Cytochrome P450 Activity by Selected Flavonoids and Phenolic Acids

    Directory of Open Access Journals (Sweden)

    Bo Ekstrand

    2015-01-01

    Full Text Available We investigated gender-related differences in the ability of selected flavonoids and phenolic compounds to modify porcine hepatic CYP450-dependent activity. Using pools of microsomes from male and female pigs, the inhibition of the CYP families 1A, 2A, 2E1, and 3A was determined. The specific CYP activities were measured in the presence of the following selected compounds: rutin, myricetin, quercetin, isorhamnetin, p-coumaric acid, gallic acid, and caffeic acid. We determined that myricetin and isorhamnetin competitively inhibited porcine CYP1A activity in the microsomes from both male and female pigs but did not affect the CYP2A and CYP2E1. Additionally, isorhamnetin competitively inhibited CYP3A in both genders. Noncompetitive inhibition of CYP3A activity by myricetin was observed only in the microsomes from male pigs, whereas CYP3A in female pigs was not affected. Quercetin competitively inhibited CYP2E1 and CYP1A activity in the microsomes from male pigs and irreversibly CY3A in female pigs. No effect of quercetin on CYP2E1 was observed in the microsomes from female pigs. Neither phenolic acids nor rutin affected CYP450 activities. Taken together, our results suggest that the flavonoids myricetin, isorhamnetin, and quercetin may affect the activities of porcine CYP1A, CYP3A, and CYP2E1 in a gender-dependent manner.

  3. 香青兰酚酸性化学成分的研究%Phenolic Acid Constituents from Dracocephalum moldavica

    Institute of Scientific and Technical Information of China (English)

    吴小军; 宋建晓; 赵爱华; 贾伟

    2011-01-01

    从香青兰(Dracocephalum moldavica L.)乙醇提取物乙酸乙酯部位中分离得到8个酚酸性化合物,经过理化性质、波谱分析及文献对照,分别鉴定为amburoside A(1)、阿魏酸(2)、咖啡酸(3)、迷迭香酸(4)、迷迭香酸甲酯(5)、木犀草素(6)、山奈酚(7)和β-胡萝卜苷(8).其中化合物1~5为首次从该植物中分离得到.%To investigate the Phenolic acid constituents of Dracocephalum moldavica L, eight compounds were isolated and purified by silica gel and Sephadex LH-20 column chromatography. The compound structures were identified as amburoside A ( 1 ), ferulic acid ( 2 ), caffeic acid (3), rosmarinic acid ( 4 ), methyl rosmarinate ( 5 ), luteolin ( 6 ),kaempferol (7) ,and β-daucosterol (8) based on their spectral data. Among them,compounds 1-5 were obtained from this plant for the first time.

  4. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    Science.gov (United States)

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass. PMID:26059194

  5. AcEST: DK961166 [AcEST

    Lifescience Database Archive (English)

    Full Text Available _POPKI Caffeic acid 3-O-methyltransferase 3 OS=Po... 72 2e-12 sp|Q41086|COMT2_POPTM Caffeic acid 3-O-methyltransferase 2 OS=Po....sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po... 72 2e-12 sp|Q43046|COMT1_POPKI Caffeic a...cid 3-O-methyltransferase 1 OS=Po... 72 2e-12 sp|Q8LL87|COMT1_COFCA Caffeic acid

  6. Determination of Flavonoids, Phenolic Acids, and Xanthines in Mate Tea (Ilex paraguariensis St.-Hil.

    Directory of Open Access Journals (Sweden)

    Mirza Bojić

    2013-01-01

    Full Text Available Raw material, different formulations of foods, and dietary supplements of mate demands control of the content of bioactive substances for which high performance thin layer chromatography (TLC, described here, presents simple and rapid approach for detections as well as quantification. Using TLC densitometry, the following bioactive compounds were identified and quantified: chlorogenic acid (2.1 mg/g, caffeic acid (1.5 mg/g, rutin (5.2 mg/g, quercetin (2.2 mg/g, and kaempferol (4.5 mg/g. The results obtained with TLC densitometry for caffeine (5.4 mg/g and theobromine (2.7 mg/g show no statistical difference to the content of total xanthines (7.6 mg/g obtained by UV-Vis spectrophotometry. Thus, TLC remains a technique of choice for simple and rapid analysis of great number of samples as well as a primary screening technique in plant analysis.

  7. AcEST: BP918348 [AcEST

    Lifescience Database Archive (English)

    Full Text Available IBA Caffeic acid 3-O-methyltransferase 2 OS=Oc... 59 7e-09 sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po....-08 sp|Q43046|COMT1_POPKI Caffeic acid 3-O-methyltransferase 1 OS=Po... 57 3e-08 sp|Q8LL87|COMT1_COFCA Caffe...S=Rosa... 56 7e-08 sp|Q43047|COMT3_POPKI Caffeic acid 3-O-methyltransferase 3 OS=Po....09|COMT1_MAIZE Caffeic acid 3-O-methyltransferase OS=Zea ... 58 2e-08 sp|Q41086|COMT2_POPTM Caffeic acid 3-O...-methyltransferase 2 OS=Po... 58 2e-08 sp|P28002|COMT1_MEDSA Caffeic acid 3-O-methyltransferase OS=Medi... 5

  8. Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection.

    Science.gov (United States)

    Irakli, Maria N; Samanidou, Victoria F; Biliaderis, Costas G; Papadoyannis, Ioannis N

    2012-07-01

    An analytical method based on an optimized solid-phase extraction procedure and followed by high-performance liquid chromatography (HPLC) separation with diode array detection was developed and validated for the simultaneous determination of phenolic acids (gallic, protocatechuic, 4-hydroxy-benzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, and cinnamic acids), flavanols (catechin and epicatechin), flavonols (myricetin, quercetin, kaempferol, quercetin-3-O-glucoside, hyperoside, and rutin), flavones (luteolin and apigenin) and flavanones (naringenin and hesperidin) in rice flour (Oryza sativa L.). Chromatographic separation was carried out on a PerfectSil Target ODS-3 (250 mm × 4.6 mm, 3 μm) column at temperature 25°C using a mobile phase, consisting of 0.5% (v/v) acetic acid in water, methanol, and acetonitrile at a flow rate 1 mL min(-1) , under gradient elution conditions. Application of optimum extraction conditions, elaborated on both Lichrolut C(18) and Oasis HLB cartridges, have led to extraction of phenolic acids and flavonoids from rice flour with mean recoveries 84.3-113.0%. The developed method was validated in terms of linearity, accuracy, precision, stability, and sensitivity. Repeatability (n = 5) and inter-day precision (n = 4) revealed relative standard deviation (RSD) acids and flavonoids in pigmented (red and black rice) and non-pigmented rice (brown rice) samples. PMID:22761138

  9. Characterization of Flavonoids and Phenolic Acids in Myrcia bella Cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS Combined with NMR

    Directory of Open Access Journals (Sweden)

    Anne L. Dokkedal

    2013-07-01

    Full Text Available The leaves of Myrcia DC. ex Guill species are used in traditional medicine and are also exploited commercially as herbal drugs for the treatment of diabetes mellitus. The present work aimed to assess the qualitative and quantitative profiles of M. bella hydroalcoholic extract, due to these uses, since the existing legislation in Brazil determines that a standard method must be developed in order to be used for quality control of raw plant materials. The current study identified eleven known flavonoid-O-glycosides and six acylated flavonoid derivatives of myricetin and quercetin, together with two kaempferol glycosides and phenolic acids such as caffeic acid, ethil galate, gallic acid and quinic acid. In total, 24 constituents were characterized, by means of extensive preparative chromatographic analyses, along with MS and NMR techniques. An HPLC-PAD-ESI-IT-MS and FIA-ESI-IT-MSn method were developed for rapid identification of acylated flavonoids, flavonoid-O-glycosides derivatives of myricetin and quercetin and phenolic acids in the hydroalcoholic M. bella leaves extract. The FIA-ESI-IT-MS techinique is a powerful tool for direct and rapid identification of the constituents after isolation and NMR characterization. Thus, it could be used as an initial method for identification of authentic samples concerning quality control of Myrcia spp extracts.

  10. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil.

    Science.gov (United States)

    Lima, Marcos Dos Santos; Silani, Igor de Souza Veras; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Biasoto, Aline Camarão Telles; Pereira, Giuliano Elias; Bordignon-Luiz, Marilde T; Ninow, Jorge Luiz

    2014-10-15

    The phenolic compounds, organic acids and the antioxidant activity were determined for grape juice samples from new Brazilian varieties grown in the Sub-middle São Francisco Valley in the Northeast Region of Brazil. The results showed that the Brazilian grape juices have high antioxidant activity, which was significantly correlated with the phenolic compounds catechin, epicatechin gallate, procyanidin B1, rutin, gallic acid, caffeic acid, p-coumaric acid, pelargonidin-3-glucoside, cyanidin-3-glucoside, cyaniding-3,5-diglucoside and delphinidin-3-glucoside. The produced juice samples showed higher concentrations of trans-resveratrol than those observed in juices made from different varieties of grapes from traditional growing regions. Organic acids concentrations were similar to those of juices produced from other classical varieties. It was demonstrated that it is possible to prepare juices from grapes of new varieties grown in the Northeast of Brazil containing a high content of bioactive compounds and typical characteristics of the tropical viticulture practised in the Sub-middle São Francisco Valley.

  11. Optimization of a method for determination of phenolic acids in exotic fruits by capillary electrophoresis.

    Science.gov (United States)

    Fukuji, Tatiana S; Tonin, Fernando G; Tavares, Marina F M

    2010-01-20

    In this work, the separation of nine phenolic acids (benzoic, caffeic, chlorogenic, p-coumaric, ferulic, gallic, protocatechuic, syringic, and vanillic acid) was approached by a 3(2) factorial design in electrolytes consisting of sodium tetraborate buffer (STB) in the concentration range of 10-50 mmol L(-1) and methanol in the volume percentage of 5-20%. Derringer's desirability functions combined globally were tested as response functions. An optimal electrolyte composed by 50 mmol L(-1) tetraborate buffer at pH 9.2, and 7.5% (v/v) methanol allowed baseline resolution of all phenolic acids under investigation in less than 15 min. In order to promote sample clean up, to preconcentrate the phenolic fraction and to release esterified phenolic acids from the fruit matrix, elaborate liquid-liquid extraction procedures followed by alkaline hydrolysis were performed. The proposed methodology was fully validated (linearity from 10.0 to 100 microg mL(-1), R(2)>0.999; LOD and LOQ from 1.32 to 3.80 microg mL(-1) and from 4.01 to 11.5 microg mL(-1), respectively; intra-day precision better than 2.8% CV for migration time and 5.4% CV for peak area; inter-day precision better than 4.8% CV for migration time and 4.8-11% CV for peak area; recoveries from 81% to 115%) and applied successfully to the evaluation of phenolic contents of abiu-roxo (Chrysophyllum caimito), wild mulberry growing in Brazil (Morus nigra L.) and tree tomato (Cyphomandra betacea). Values in the range of 1.50-47.3 microg g(-1) were found, with smaller amounts occurring as free phenolic acids. PMID:19545963

  12. [Effect of drying methods on monoterpenes, phenolic acids and flavonoids in Mentha haplocalyx].

    Science.gov (United States)

    Zhu, Shao-qing; Zhu, Zhen-hua; Guo, Sheng; Zhao, Yu-yang; Lu, Xue-jun; Sha, Xiu-xiu; Qian, Da-wei; Duan, Jin-ao

    2015-12-01

    To provide a scientific basis for the selection of the appropriate drying method for Mentha Haplocalyx Herba (MHH), determine 2 monoterpenes, 4 phenolic acids and 5 flavonoids in MHH by GC-MS and UPLC-TQ-MS methods, and investigate the effects of the drying methods on the changes in contents of these analytes. The qualities of products obtained with different drying methods were evaluated by the multivariate statistical method of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Results showed that the drying methods had the greatest impact on menthol, caffeic acid, and rosemary acid, which were followed by chlorogenic acid and diosmetin-7-O-glucoside. The contents in these analytes processed with hot-air-drying method were higher than those with microwave-drying and infrared-drying methods at the same temperatures. The contents in these analytes processed under low temperature (40-45 °C) were higher than those under higher temperature (60-70 °C). Above all, the contents in phenolic acids processed with microwave fixation (exposed under microwave at 100 °C for several minutes) were obviously higher than those of not being processed, showing an inhibition of some enzymes in samples after fixation. The TOPSIS evaluation showed that the variable temperature drying method of 'Hot-Air 45-60 °C' was the most suitable approach for the primary drying processing of MHH. The results could provide the scientific basis for the selection of appropriate drying method for MHH, and helpful reference for the primary drying proces of herbs containing volatile chemical components. PMID:27245035

  13. [Effect of drying methods on monoterpenes, phenolic acids and flavonoids in Mentha haplocalyx].

    Science.gov (United States)

    Zhu, Shao-qing; Zhu, Zhen-hua; Guo, Sheng; Zhao, Yu-yang; Lu, Xue-jun; Sha, Xiu-xiu; Qian, Da-wei; Duan, Jin-ao

    2015-12-01

    To provide a scientific basis for the selection of the appropriate drying method for Mentha Haplocalyx Herba (MHH), determine 2 monoterpenes, 4 phenolic acids and 5 flavonoids in MHH by GC-MS and UPLC-TQ-MS methods, and investigate the effects of the drying methods on the changes in contents of these analytes. The qualities of products obtained with different drying methods were evaluated by the multivariate statistical method of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Results showed that the drying methods had the greatest impact on menthol, caffeic acid, and rosemary acid, which were followed by chlorogenic acid and diosmetin-7-O-glucoside. The contents in these analytes processed with hot-air-drying method were higher than those with microwave-drying and infrared-drying methods at the same temperatures. The contents in these analytes processed under low temperature (40-45 °C) were higher than those under higher temperature (60-70 °C). Above all, the contents in phenolic acids processed with microwave fixation (exposed under microwave at 100 °C for several minutes) were obviously higher than those of not being processed, showing an inhibition of some enzymes in samples after fixation. The TOPSIS evaluation showed that the variable temperature drying method of 'Hot-Air 45-60 °C' was the most suitable approach for the primary drying processing of MHH. The results could provide the scientific basis for the selection of appropriate drying method for MHH, and helpful reference for the primary drying proces of herbs containing volatile chemical components.

  14. Stearic Acid

    Science.gov (United States)

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  15. Perfluorooctanoic acid

    NARCIS (Netherlands)

    P. de Voogt

    2014-01-01

    Perfluorooctanoic acid (PFOA, 335-67-1) is used in fluoropolymer production and firefighting foams and persists in the environment. Human exposure to PFOA is mostly through the diet. PFOA primarily affects the liver and can cause developmental and reproductive toxic effects in test animals.

  16. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

    Science.gov (United States)

    Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis. PMID:27433029

  17. Optimization of Extraction Conditions for the Total Flavonoids and Phenolic Acid of Lycopi Herba by Orthogonal Design%正交试验法筛选泽兰总黄酮及酚酸类成分的提取工艺

    Institute of Scientific and Technical Information of China (English)

    黄樱华; 黄月纯; 魏刚; 刘东辉; 陈慕媛; 陈国留

    2011-01-01

    Objective To study the optimum extraction process of the total flavonoids and phenolic acid and caffeic acid from the Lycopi Herba.Methods The effect of the concentration of ethanol, extraction time duration, extraction time and alcohol amount were investigated by the orthonogal design with the content of tiliroside as the chemical reference.Results The optimum extraction condition was established as follows: with 15 times ethanol concentration 50%, extracting 2 hours for three times.Conclusion The method is simple and feasible, and is the optimum extraction process of the total flavohoids, phenolic acid and caffeic acid from Lycopus Lucidus.%目的 研究泽兰总黄酮及酚酸类成分的最佳提取工艺.方法 以总黄酮及酚酸、咖啡酸舍量为指标,采用L(3)正交试验,考察提取溶媒、提取次数、提取时间、溶媒用量因素时提取的影响,确定泽兰最佳提取工艺.结果 以15倍量的50%乙醇为溶媒,回流提取3次,每次2 h为最佳提取条件.结论 本提取工艺方法简单、合理,是泽兰黄酮及酚酸类成分的最佳提取工艺.

  18. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  19. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times

    Directory of Open Access Journals (Sweden)

    Katya Carbone

    2016-07-01

    Full Text Available Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates, bioactive compounds (total polyphenols and flavan-3-ols, HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH• and ABTS+• assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  20. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times.

    Science.gov (United States)

    Carbone, Katya; Fiordiponti, Luciano

    2016-01-01

    Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH(•) and ABTS(+•) assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines. PMID:27455227

  1. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    Science.gov (United States)

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  2. Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3'-hydroxylase from carrot (Daucus carota L.) cell suspension cultures

    International Nuclear Information System (INIS)

    Microsomal preparations from carrot (Daucus carota L.) cell suspension cultures catalyze the formation of trans-5-O-caffeoyl-D-quinate (chlorogenate) from trans-5-O-(4-coumaroyl)-D-quinate. trans-5-O-(4-Coumaroyl)shikimate is converted to about the same extent to trans-5-O-caffeoylshikimate. trans-4-O-(4-Coumaroyl)-D-quinate, trans-3-O-(4-coumaroyl)-D-quinate, trans-4-coumarate, and cis-5-O-(4-coumaroyl)-D-quinate do not act as substrates. The reaction is strictly dependent on molecular oxygen and on NADPH as reducing cofactor. NADH and ascorbic acid cannot substitute for NADPH. Cytochrome c, Tetcyclacis, and carbon monoxide inhibit the reaction suggesting a cytochrome P-450-dependent mixed-function monooxygenase. Competition experiments as well as induction and inhibition phenomena indicate that there is only one enzyme species which is responsible for the hydroxylation of the 5-O-(4-coumaric) esters of both D-quinate and shikimate. The activity of this enzyme is greatly increased by in vivo irradiation of the cells with blue/uv light. We conclude that the biosynthesis of the predominant caffeic acid conjugates in carrot cells occurs via the corresponding 4-coumaric acid esters. Thus, in this system, 5-O-(4-coumaroyl)-D-quinate can be seen as the final intermediate in the chlorogenic acid pathway

  3. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    Science.gov (United States)

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects. PMID:27392152

  4. 不同产地和不同部位亚贡叶总酚酸含量测定%Determination of Total Phenolic Acid in Yacon Leaves ( Smallanthus Sonchifolius ) from Different Habitats and Different Parts

    Institute of Scientific and Technical Information of China (English)

    赵河新; 何凡; 潘红艳; 王晓菲; 窦德强

    2011-01-01

    Objective: To determinate the total phenolic acid in the leaves of yacon which from different habits and different parts by different control samples.Method: The content of total phenolic acid in the leaves of yacon was determined by UV spectrophotometry with chlorogenic acid and caffeic acid as control samples.Results: The content of total phenolic acid in the leaves of yacon which from different places and different parts changes obviously.Conclusion: The content of total phenolic acid can be used as one of the indexes for the quality control and quantitative analysis of yacon leaves ( Smallanthus sonchifolius ).%目的:采用不同对照品测定不同产地及不同部位的亚贡叶中总酚酸的含量.方法:选用绿原酸和咖啡酸为对照品,利用紫外分光光度计通过测定吸光度计算不同产地及不同部位的亚贡叶中总酚酸的含量.结果:不同产地及不同部位亚贡叶中总酚酸的含量有所差异.结论:亚贡叶总酚酸的含量测定可作为亚贡叶的质量控制和定量分析指标之一.

  5. Hydrofluoric acid poisoning

    Science.gov (United States)

    Fluorhydric acid ... stomach, or intestine have holes (perforations) from the acid. ... Hydrofluoric acid is especially dangerous. The most common accidents involving hydrofluoric acid cause severe burns on the skin ...

  6. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    Science.gov (United States)

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice

  7. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    Science.gov (United States)

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).

  8. Synthesis of a graphitic carbon nitride nanocomposite with magnetite as a sorbent for solid phase extraction of phenolic acids

    International Nuclear Information System (INIS)

    We have developed a facile in-situ growth method for the deposition of magnetite (Fe3O4) particles on the surface of a graphitic carbon nitride (g-C3N4) nanosheet. The material was characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The high affinity of g-C3N4 for phenolic acids in combination with the magnetism of Fe3O4 provides an efficient means for magnetic solid phase extraction. The adsorption, desorption and recoveries were examined. Under optimized conditions, the method has limits of detection in the range from 17.5–42.6 ng mL−1 (at an S/N of 3), and precisions from 2.8–3.8 % (for n = 5). The method was successfully applied to the determination of protocatechuic, caffeic, and ferulic acids in Salicornia herbacea L. plant extracts. Recoveries ranged from 92.4–99.5 %. (author)

  9. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells.

    Science.gov (United States)

    Zhu, Di; Wang, Yutang; Du, Qingwei; Liu, Zhigang; Liu, Xuebo

    2015-12-30

    Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects. PMID:26592089

  10. Understanding Acid Rain

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  11. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    Directory of Open Access Journals (Sweden)

    Mateusz Stoszko

    2016-01-01

    Full Text Available Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4+ T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal.

  12. Anti-inflammatory and antibacterial profiles of selected compounds found in South African propolis

    Directory of Open Access Journals (Sweden)

    S. Buthelezi

    2010-02-01

    Full Text Available Propolis is a complex resinous substance manufactured by honey bees to scaffold and protect the hive against pathogens. Although it has been widely used for its medicinal properties, it is unknown whether the activity depends on the concentrations of specific constituents or on potentiation between these. This study describes (1 the individual topical anti-inflammatory activities of selected flavonoids commonly found in propolis, and (2 their antibacterial activities, alone or in combination with the non-flavonoid caffeic acid phenethyl ester (CAPE. For the anti-inflammatory activities, the reduction in croton oil-induced oedema in a mouse model, after topical application of quercetin and galangin for 3 h, was more than 50%, while after 6 h of treatment the reduction was less then 50%. By contrast, the suppressive activity of luteolin was about 30% and 50%, for treatments of 3 h and 6 h, respectively. The maximum inhibition of the growth of Staphylococcus aureus by each of CAPE, eriodictyol and quercetin was about 20%, while luteolin was inactive. When combined with CAPE, potentiation of the antibacterial effect was observed in the case of luteolin, but antagonism was observed when combined with either eriodictyol or quercetin. The propolis flavonoids each appear to have significant anti-inflammatory activity while their antibacterial activities are somewhat weaker and significant only when luteolin was combined with CAPE.

  13. In vitro inflammation inhibition model based on semi-continuous toll-like receptor biosensing.

    Directory of Open Access Journals (Sweden)

    Jin-Woo Jeon

    Full Text Available A chemical inhibition model of inflammation is proposed by semi-continuous monitoring the density of toll-like receptor 1 (TLR1 expressed on mammalian cells following bacterial infection to investigate an in vivo-mimicked drug screening system. The inflammation was induced by adding bacterial lysate (e.g., Pseudomonas aeruginosa to a mammalian cell culture (e.g., A549 cell line. The TLR1 density on the same cells was immunochemically monitored up to three cycles under optimized cyclic bacterial stimulation-and-restoration conditions. The assay was carried out by adopting a cell-compatible immunoanalytical procedure and signal generation method. Signal intensity relative to the background control obtained without stimulation was employed to plot the standard curve for inflammation. To suppress the inflammatory response, sodium salicylate, which inhibits nuclear factor-κB activity, was used to prepare the standard curve for anti-inflammation. Such measurement of differential TLR densities was used as a biosensing approach discriminating the anti-inflammatory substance from the non-effector, which was simulated by using caffeic acid phenethyl ester and acetaminophen as the two components, respectively. As the same cells exposed to repetitive bacterial stimulation were semi-continuously monitored, the efficacy and toxicity of the inhibitors may further be determined regarding persistency against time. Therefore, this semi-continuous biosensing model could be appropriate as a substitute for animal-based experimentation during drug screening prior to pre-clinical tests.

  14. The effect of CAPE on lipid peroxidation and nitric oxide levels in the plasma of rats following thermal injury.

    Science.gov (United States)

    Hoşnuter, Mübin; Gürel, Ahmet; Babucçu, Orhan; Armutcu, Ferah; Kargi, Eksal; Işikdemir, Ahmet

    2004-03-01

    Both experimental and clinical studies have shown that oxygen-derived free radicals rise in the plasma after thermal injury and participate in the pathogenesis of tissue damage. Hence, various antioxidant molecules have been used in treatment of burn injury both experimentally and clinically. Caffeic acid phenethyl ester (CAPE), an active component of propolis from honeybee hives, is known to have potent antioxidant property. The purpose of the present study was to investigate the effects of CAPE on oxidative stress in plasma of burned rats. Experiment was designed in three groups of rats with 20% full-thickness burn: (a) sham burn (n = 7); (b) burn only (n = 22); (c) burn + treatment with CAPE (n = 22). Plasma levels of malondialdehyde (MDA), nitric oxide (NO) and the activities of xanthine oxidase (XO), and superoxide dismutase (SOD) were used as both bio-indicators of oxidant status and determinant of antioxidant effect of CAPE. They were assessed by biochemical methods at 1st, 3rd, 7th, and 14th post-burn days. In conclusion, CAPE was shown to possess antioxidant activity by saving SOD activity, preventing XO activity and decreasing the levels of MDA, and NO. Our study showed that CAPE may be beneficial in burn injury.

  15. Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents.

    Science.gov (United States)

    Patel, Seema

    2016-01-01

    Propolis is a bee-metabolized resinous substance (bee glue) from plant sap and gums. It has been in usage as a healing agent since antiquity, yet has not garnered global popularity as a health promoter. Its biological effects, which range from antimicrobial, antioxidant, anti-inflammatory, antidiabetic, dermatoprotective, anti-allergic, laxative and immunomodulatory to anticancer, have been validated. Propolis has shown efficacy against brain, head and neck, skin, breast, liver, pancreas, kidney, bladder, prostate, colon and blood cancers. The inhibition of matrix metalloproteinases, anti-angiogenesis, prevention of metastasis, cell-cycle arrest, induction of apoptosis and moderation of the chemotherapy-induced deleterious side effects have been deduced as the key mechanisms of cancer manipulation. The components conferring antitumor potentials have been identified as caffeic acid phenethyl ester, chrysin, artepillin C, nemorosone, galangin, cardanol, etc. These compounds target various genetic and biochemical pathways of cancer progression. Depending on the botanical sources and the geographical origin, biological activities of propolis vary. Despite phenomenal development in cancer research, conventional therapy falls short in complete malignancy management. The findings obtained so far build hope that propolis as a complementary medicine may address the lacunae. This review documents the recent advances and scope of amendement in cancer remediation with adequate emphasis on the mechanistic aspect of propolis. PMID:25723108

  16. Use of antioxidants in urinary tract infection.

    Science.gov (United States)

    Allameh, Zahra; Salamzadeh, Jamshid

    2016-01-01

    Pyelonephritis is an inflammatory process, and oxidative stress plays a major role in it. Anti-inflammatory or antioxidant therapy given concomitantly with antibiotics should lower the risk of postpyelonephritic scarring. As the lack of review studies in the use of antioxidants in urinary tract infections was detected, this study was designed. We conducted a review of available articles in PubMed and Google Scholar with a simple review, using keywords of "antioxidant" and "pyelonephritis" with all their possible synonyms and combinations. Only interventional studies were collected. There were neither limitations on time, nor the location of the study, type of subjects, administration rout of the antioxidant drug, and the antioxidant drug used. After studying the abstracts or in some cases the full text of articles, they were categorized based on the type of antioxidant, type and number of subjects, rout of administration, dosing, duration of treatment, year of publication of the paper, and the results. A total of 66 articles published from 1991 to 2015 were found by studying just the title of the papers. Studying the abstracts reduced this number to 51 studies. Antioxidants used for this condition were Vitamins A, E, and C, cytoflavin, caffeic acid phenethyl ester, ebselen, allopurinol, melatonin, N-acetylcysteine, oleuropein, montelukast, oxytocin, ozon, dapsone, pentoxifyllin, tadalafil, bilirubin, cranberry, meloxicam, L-carnitine, colchicine, perfluoran, methylprednisolone, and dexamethasone. Studies show that antioxidants are capable of reducing oxidative stress and can be used effectively along with antibiotics to reduce the scar formation. PMID:27162800

  17. Okadaic acid

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H; Severinsen, Mai C K

    2014-01-01

    was studied at the electron microscopic level using the membrane-impermeable marker Ruthenium Red (RR). Like FM dye, RR was taken up into TWEEs and multivesicular bodies (MVBs). However, OA induced the formation of a large number of lamellar bodies (LBs), a type of lysosome-related organelles. LBs...... hyper protein phosphorylation, but no detectable loss of cell polarity or cytoskeletal integrity of the enterocytes. Using a fluorescent membrane marker, FM dye, endocytosis from the brush border was affected by the toxin. Although constitutive uptake into subapical terminal web-localized early...... in acidic organelles, implying a different toxic mechanism of action. We propose that rapid induction of LBs, an indicator of phospholipidosis, should be included in the future toxicity profile of OA....

  18. Dehydroabietic acid

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rao

    2009-10-01

    Full Text Available The title compound [systematic name: (1R,4aS,10aR-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent molecules exist in the asymmetric unit. In each molecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by intermolecular O—H...O hydrogen bonds.

  19. The phenolic acids of Agen prunes (dried plums) or Agen prune juice concentrates do not account for the protective action on bone in a rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Léotoing, Laurent; Wauquier, Fabien; Davicco, Marie-Jeanne; Lebecque, Patrice; Gaudout, David; Rey, Stéphane; Vitrac, Xavier; Massenat, Laurent; Rashidi, Salim; Wittrant, Yohann; Coxam, Véronique

    2016-02-01

    Dietary supplementation with dried plum (DP) has been shown to protect against and reverse established osteopenia in ovariectomized rodents. Based on in vitro studies, we hypothesized that DP polyphenols may be responsible for that bone-sparing effect. This study was designed to (1) analyze whether the main phenolic acids of DP control preosteoblast proliferation and activity in vitro; (2) determine if the polyphenolic content of DP or DP juice concentrate is the main component improving bone health in vivo; and (3) analyze whether DP metabolites directly modulate preosteoblast physiology ex vivo. In vitro, we found that neochlorogenic, chlorogenic, and caffeic acids induce the proliferation and repress the alkaline phosphatase activity of primary preosteoblasts in a dose-dependent manner. In vivo, low-chlorogenic acid Agen prunes (AP) enriched with a high-fiber diet and low-chlorogenic acid AP juice concentrate prevented the decrease of total femoral bone mineral density induced by estrogen deficiency in 5-month-old female rats and positively restored the variations of the bone markers osteocalcin and deoxypyridinoline. Ex vivo, we demonstrated that serum from rats fed with low-chlorogenic acid AP enriched with a high-fiber diet showed repressed proliferation and stimulated alkaline phosphatase activity of primary preosteoblasts. Overall, the beneficial action of AP on bone health was not dependent on its polyphenolic content.

  20. The phenolic acids of Agen prunes (dried plums) or Agen prune juice concentrates do not account for the protective action on bone in a rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Léotoing, Laurent; Wauquier, Fabien; Davicco, Marie-Jeanne; Lebecque, Patrice; Gaudout, David; Rey, Stéphane; Vitrac, Xavier; Massenat, Laurent; Rashidi, Salim; Wittrant, Yohann; Coxam, Véronique

    2016-02-01

    Dietary supplementation with dried plum (DP) has been shown to protect against and reverse established osteopenia in ovariectomized rodents. Based on in vitro studies, we hypothesized that DP polyphenols may be responsible for that bone-sparing effect. This study was designed to (1) analyze whether the main phenolic acids of DP control preosteoblast proliferation and activity in vitro; (2) determine if the polyphenolic content of DP or DP juice concentrate is the main component improving bone health in vivo; and (3) analyze whether DP metabolites directly modulate preosteoblast physiology ex vivo. In vitro, we found that neochlorogenic, chlorogenic, and caffeic acids induce the proliferation and repress the alkaline phosphatase activity of primary preosteoblasts in a dose-dependent manner. In vivo, low-chlorogenic acid Agen prunes (AP) enriched with a high-fiber diet and low-chlorogenic acid AP juice concentrate prevented the decrease of total femoral bone mineral density induced by estrogen deficiency in 5-month-old female rats and positively restored the variations of the bone markers osteocalcin and deoxypyridinoline. Ex vivo, we demonstrated that serum from rats fed with low-chlorogenic acid AP enriched with a high-fiber diet showed repressed proliferation and stimulated alkaline phosphatase activity of primary preosteoblasts. Overall, the beneficial action of AP on bone health was not dependent on its polyphenolic content. PMID:26574736

  1. Analysis of phenolic acids as chloroformate derivatives using solid phase microextraction-gas chromatography.

    Science.gov (United States)

    Citová, Ivana; Sladkovský, Radek; Solich, Petr

    2006-07-28

    In the presented study, a simple and original procedure of phenolic acids derivatization treated by ethyl and methyl chloroformate performed in an aqueous media consisting of acetonitrile, water, methanol/ethanol and pyridine has been modified and optimized. Seven phenolic acid standards-caffeic, ferulic, gallic, p-coumaric, protocatechuic, syringic and vanillic were derivatized into corresponding methyl/ethyl esters and subsequently determined by the means of gas chromatography connected to the flame-ionisation detector (FID). Some selected validation parameters as linearity, detection and quantitation limits and peak area repeatability were valued. The total time of gas chromatography (GC) analysis was 24 min for methyl chloroformate and 30 min for ethyl chloroformate derivatization. The more suitable methyl chloroformate derivatization was used for further experiments on the possibility of multiple pre-concentration by the direct solid phase microextraction technique (SPME). For this purpose, polyacrylate (PA), polydimethylsiloxane (PDMS), carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibres were tested and the extraction conditions concerning time of extraction, temperature and time of desorption were optimized. The most polar PA fibre gave the best results under optimal extraction conditions (50 min extraction time, 25 degrees C extraction temperature and 10 min desorption time). As a result, the total time of SPME-GC analysis was 74 min and an increase in method sensitivity was reached. The limits of quantitation (LOQ) of p-coumaric, ferulic, syringic and vanillic acid esters after SPME pre-concentration were 0.02, 0.17, 0.2 and 0.2 microg mL(-1), respectively, showing approximately 10 times higher sensitivity in comparison with the original GC method. PMID:17723529

  2. Effect of Chlorogenic Acid on Melanogenesis of B16 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Hao-Rong Li

    2014-08-01

    Full Text Available Chlorogenic acid (CGA, the ester formed between caffeic acid and l-quinic acid, is a widespread phenolic compound. It is part of the human diet, found in foods such as coffee, apples, pears, etc. CGA is also was widely used in cosmetics, but the effects of CGA on melanogenesis are unknown. In this study, we analyzed the effects of CGA on cell proliferation, melanin content and tyrosinase of B16 murine melanoma cells. Additionally, the enzymatic reactions of CGA in B16 melanoma cells lytic solution were detected by UV spectrophotometry. Results showed CGA at 30 and 60 μM significantly suppresses cell proliferation. 8-MOP at 100 μM significantly promotes cell proliferation, but CGA can counter this. Incubated for 24 h, CGA (500 μM improves melanogenesis while suppressing tyrosinase activity in B16 melanoma cells or 8-methoxypsoralen (8-MOP co-incubated B16 melanoma cells. After 12 h, B16 melanoma cell treatment with CGA leads to an increase in melanin accumulation, however, after 48 h there is a decrease in melanin production which correlates broadly with a decrease in tyrosinase activity. CGA incubated with lytic solution 24 h turned brown at 37 °C. The formation of new products (with a maximum absorption at 295 nm is associated with reduction of CGA (maximum absorption at 326 nm. Therefore, CGA has its two sidesroles in melanogenesis of B16 melanoma cells. CGA is a likely a substrate of melanin, but the metabolic product(s of CGA may suppress melanogenesis in B16 melanoma cells by inhibiting tyrosinase activity.

  3. Chemical profile and seasonal variation of phenolic acid content in bastard balm (Melittis melissophyllum L., Lamiaceae).

    Science.gov (United States)

    Skrzypczak-Pietraszek, Ewa; Pietraszek, Jacek

    2012-07-01

    Melittis melissophyllum L. is an old medicinal plant. Nowadays it is only used in the folk medicine but formerly it has been applied in the official medicine as a natural product described in French Pharmacopoeia. M. melissophyllum herbs used in our studies were collected from two localities in Poland in May and September. Methanolic plant extracts were purified by means of solid-phase extraction and then analysed by HPLC-DAD for their phenolic acid profile. Eleven compounds were identified in all plant samples and quantitatively analysed as: protocatechuic, chlorogenic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic, sinapic, o-coumaric and cinnamic acid. Plant materials contained free and bound phenolic acids. The main compounds were: p-hydroxybenzoic acid (30.21-54.16 mg/100 g dw and 37.04-56.75 mg/100 g dw, free and bound, respectively) and p-coumaric acid (40.48-80.55 mg/100 g dw and 28.09-40.85 mg/100 g dw, free and bound, respectively). The highest amounts of the investigated compounds were found in all samples collected in September, e.g. p-hydroxybenzoic acid (September 51.72-54.16 mg/100 g dw vs. May 30.21-34.07 mg/100 g dw), p-coumaric acid (September 77.14-80.55 mg/100 g dw vs. May 40.48-43.2 5mg/100 g dw). Multivariate statistical and data mining techniques, such as cluster analysis (CA) and principal component analysis (PCA), were used to characterize the sample populations according to the geographical localities, vegetation period and compound form (free or bound). To the best of our knowledge we report for the first time the results of quantitative analysis of M. melissophyllum phenolic acids and seasonal variation of their content. Plant herbs are usually collected at flowering for plant derived medical preparations. Our results show that it is not always the optimal time for the highest contents of active compounds. PMID:22513117

  4. Retarded acid emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Fast, C.R.; Rixe, F.H.; Duffield, E.L. Jr.

    1972-08-01

    Compositions for use in acidizing hydrocarbon-bearing formations are described. Retarded acid emulsions of prolonged stability make it possible for the acid in this form to be displaced substantial distances out into the formation before becoming spent. The action of acid emulsions for use in acidizing hydrocarbon-bearing formations is prolonged by employing as the principal emulsifying agent an amine salt of dodecylbenzene sulfonic acid. Acid emulsions employing the amine salt of dodecylbenzene sulfonic acid exhibit greater stability than those employing the free acid. (8 claims)

  5. Flavonoids derived from Abelmoschus esculentus attenuatesUV-B Induced cell damage in human dermal fibroblasts throughNrf2-ARE pathway

    Directory of Open Access Journals (Sweden)

    Juilee Patwardhan

    2016-01-01

    Abbreviations used:ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid, AO: Acridine orange, ANOVA: Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picryl hydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, qPCR: Quantitative polymerase chain reaction

  6. Acid Lipase Disease

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage Disease, ... Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs when ...

  7. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  8. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1.

    Science.gov (United States)

    Ziamajidi, Nasrin; Khaghani, Shahnaz; Hassanzadeh, Gholamreza; Vardasbi, Safura; Ahmadian, Shahram; Nowrouzi, Azin; Ghaffari, Seyed Mahmood; Abdirad, Afshin

    2013-08-01

    We evaluated the effect of chicory (Cichorium intybus L.) seed extract (CI) on hepatic steatosis caused by early and late stage diabetes in rats (in vivo), and induced in HepG2 cells (in vitro) by BSA-oleic acid complex (OA). Different dosages of CI (1.25, 2.5 and 5 mg/ml) were applied along with OA (1 mM) to HepG2 cells, simultaneously and non-simultaneously; and without OA to ordinary non-steatotic cells. Cellular lipid accumulation and glycerol release, and hepatic triglyceride (TG) content were measured. The expression levels of sterol regulatory element-binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptor alpha (PPARα) were determined. Liver samples were stained with hematoxylin and eosin (H&E). Significant histological damage (steatosis-inflammation-fibrosis) to the cells and tissues and down-regulation of SREBP-1c and PPARα genes that followed steatosis induction were prevented by CI in simultaneous treatment. In non-simultaneous treatment, CI up-regulated the expression of both genes and restored the normal levels of the corresponding proteins; with a greater stimulating effect on PPARα, CI acted as a PPARα agonist. CI released glycerol from HepG2 cells, and targeted the first and the second hit phases of hepatic steatosis. A preliminary attempt to characterize CI showed caffeic acid, chlorogenic acid, and chicoric acid, among the constituents. PMID:23603006

  9. Potent protection of Danshensu(β-3,4-dihydroxyphenyl-lactic acid)against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain

    Institute of Scientific and Technical Information of China (English)

    Jingen Shen; Lijian Yu; Rundi Ma; Yongping Zhang; Xiaoyu Zhang; Juanzhi Fang; Tingxi Yu

    2010-01-01

    Recent studies have demonstrated that ferulic acid[3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid]and sodium ferulate produce protective effects against glutamate-induced neurotoxicity in adult mice.Danshensu(β-3,4-dihydroxyphenyl-lactic acid)has a similar molecular structure and pharmacological action to caffeic acid.This study aimed to validate the protection conferred by Danshensu against excitotoxic effects of maternal intragastric administration of monosodium glutamate at late stages of pregnancy in the developing mouse fetal brain.Behavioral tests,as well as histopathological and immunohistochemical examination of hippocampi were performed in filial mice.Results revealed that maternal intragastric administration of excessive monosodium glutamate(1.0,2.0,4.0 g/kg body weight)at a late stage of pregnancy resulted in a series of behavioral disorders(hyperactivity,lesions of learning and memory,and disturbance in cooperation of movement ability under high-altitude stress),histopathological impairment(neuronal edema,degeneration,necrosis,and hyperplasia)and molecular cellular biological changes(upregulated expression of N-methyI-D-aspartate receptor type 1 and neuropeptide Y in the hippocampal region of the brain of the filial mice from mothers treated with monosodium glutamate).Simultaneous administration of sodium Danshensu partially reversed the effects of monosodium glutamate on the above mentioned phenomena.These findings indicate that sodium Danshensu exhibits obvious protective effects on the excitotoxicity of monosodium glutamate.

  10. POLYELEOSTEARIC ACID VESICLES

    Institute of Scientific and Technical Information of China (English)

    LI Zichen; XIE Ximng; FAN Qinghua; FANG Yifei

    1992-01-01

    α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solutionofeleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was demonstrated by electron microscopic observation and bromothymol blue encapsulation experiments. Polymerizations of the eleostearic acids in the formed vesicles carried out by UV irradiation produced poly-α-eleostearic acid and poly-β-eleostearic acid vesicles.

  11. AcEST: DK956129 [AcEST

    Lifescience Database Archive (English)

    Full Text Available OS=Chryso... 39 0.026 sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po....yltransferase OS=Cath... 37 0.058 sp|Q43046|COMT1_POPKI Caffeic acid 3-O-methyltransferase 1 OS=Po... 36 0.1...Q43047|COMT3_POPKI Caffeic acid 3-O-methyltransferase 3 OS=Po... 35 0.29 sp|P46484|COMT1_EUCGU Caffeic acid ...3-O-methyltransferase OS=Euca... 35 0.38 sp|Q41086|COMT2_POPTM Caffeic acid 3-O-methyltransferase 2 OS=Po......feic acid 3-O-methyltransferase OS=Ipo... 39 0.18 tr|Q1JUZ5|Q1JUZ5_IPONI Caffeic

  12. AcEST: DK957190 [AcEST

    Lifescience Database Archive (English)

    Full Text Available nsferase OS=Clar... 86 1e-16 sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po...... 82 2e-15 sp|Q43046|COMT1_POPKI Caffeic acid 3-O-methyltransferase 1 OS=Po... 80 7e-15 sp|O81...O-methyltransferase 3 OS=Po... 78 4e-14 sp|Q43609|COMT1_PRUDU Caffeic acid 3-O-methyltransferase OS=Prun... ..._COFCA Caffeic acid 3-O-methyltransferase OS=Coff... 75 2e-13 sp|Q41086|COMT2_POPTM Caffeic acid 3-O-methyltransferase 2 OS=Po....8|Q1JUZ8_IPONI Caffeic acid 3-O-methyltransferase OS=Ipo... 78 4e-13 tr|Q1JUZ5|Q1

  13. AcEST: DK958984 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 3-O-methyltransferase OS=Clar... 99 2e-20 sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po...... 99 3e-20 sp|Q43046|COMT1_POPKI Caffeic acid 3-O-methyltransferase 1 OS=Po... 97 7e-20 sp|O81646|COMT1_CAPC...|COMT3_POPKI Caffeic acid 3-O-methyltransferase 3 OS=Po... 92 2e-18 sp|Q8GU25|COMT1_ROSCH Caffeic acid 3-O-m...ethyltransferase OS=Rosa... 92 2e-18 sp|Q41086|COMT2_POPTM Caffeic acid 3-O-methyltransferase 2 OS=Po....0|Q5IDE0_PINTA Caffeate O-methyltransferase (Fragment) O... 92 3e-17 tr|Q1JUZ8|Q1JUZ8_IPONI Caffeic acid 3-O

  14. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  15. Arabidopsis CDS blastp result: AK287689 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-23 ...

  16. Arabidopsis CDS blastp result: AK240736 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-22 ...

  17. Arabidopsis CDS blastp result: AK241705 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-11 ...

  18. Arabidopsis CDS blastp result: AK287483 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-37 ...

  19. Kinetics and mechanism of protection of thymine from sulphate radical anion under anoxic conditions

    Indian Academy of Sciences (India)

    M Sudha Swaraga; M Adinarayana

    2003-04-01

    The rates of photooxidation of thymine in presence of peroxydisulphate (PDS) have been determined by measuring the absorbance of thymine at 264 nm spectrophotometrically. The rates and the quantum yields () of oxidation of thymine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of thymine suggesting that caffeic acid acts as an efficient scavenger of SO$^{\\bullet -}_{4}$ and protects thymine from it. Sulphate radical anion competes for thymine as well as for caffeic acid. The rate constant of sulphate radical anion with caffeic acid has been calculated to be 1.24 × 1010 dm3 mol-1 s-1. The quantum yields of photooxidation of thymine have been calculated from the rates of oxidation of thymine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cl) assuming caffeic acid acting only as a scavenger of SO$^{\\bullet -}_{4}$ radicals show that exptl values are lower than cl values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for SO$^{\\bullet-}_{4}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the thymine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  20. Establishment and characterization of a Satureja khuzistanica Jamzad (Lamiaceae) cell suspension culture: a new in vitro source of rosmarinic acid.

    Science.gov (United States)

    Sahraroo, Amir; Mirjalili, Mohammad Hossein; Corchete, Purificación; Babalar, Mesbah; Fattahi Moghadam, Mohammad Reza

    2016-08-01

    An in vitro approach to the production of rosmarinic acid (RA), a medicinally important caffeic acid ester, in a cell suspension culture (CSC) of Satureja khuzistanica Jamzad (Lamiaceae) has been investigated for the first time. The CSC was established from friable calli derived from shoot tip explants in Gamborg's B5 liquid medium supplemented with 30 g/L sucrose, 20 mg/L L-glutamine, 200 mg/L casein hydrolysate, 5 mg/L benzyladenine (BA) and 1 mg/L indole-3-butyric acid (IBA). The effect of nitrogen source (KNO3 and (NH4)2SO4) and their different concentrations on the fresh and dry weight (g/L), as well as RA content (mg/g dry weight) were measured. CSC growth measurements indicated a maximum specific cell growth rate of 1.5/day, a doubling time of 7.6 days and a high percentage of cell viability (96.4 %) throughout the growth cycle. Maximum cell fresh weight (353.5 g/L), dry weight (19.7 g/L) and RA production (180.0 mg/g) were attained at day 21 of culture. Cell growth and RA content were affected by nitrogen deficiency. Media containing 8.3 mM of total nitrogen (¼ of B5 standard medium) led to a minimum cell fresh weight (243.0 g/L), dry weight (17.4 g/L) and RA content (38.0 mg/g) after 21 days. The established CSC provided useful material for further optimization experiments aimed at a large-scale production of RA. PMID:26264595

  1. Effects of Environmental pH on Antioxidant Interactions between Rosmarinic Acid and α-Tocopherol in Oil-in-Water (O/W) Emulsions.

    Science.gov (United States)

    Kittipongpittaya, Ketinun; Panya, Atikorn; Phonsatta, Natthaporn; Decker, Eric A

    2016-08-31

    Antioxidant regeneration could be influenced by various factors such as antioxidant locations and pH conditions. The effects of environmental pH on the antioxidant interaction between rosmarinic acid and α-tocopherol in oil-in-water (O/W) emulsions were investigated. Results showed that the combined antioxidants at pH 7 exhibited the strongest synergistic antioxidant activity in comparison with the combinations at other pH conditions as indicated by the interaction index. A drop in pH from 7 to 3 resulted in a reduction in the synergistic effect. However, in the case of pH 3, an additive effect was obtained. Moreover, the effect of the pH on the regeneration of α-tocopherol by rosmarinic acid in heterogeneous Tween 20 solutions was studied using EPR spectrometer. The same was true for the regeneration efficiency, where the reaction at pH 7 exhibited the highest regeneration efficiency of 0.3 mol of α-tocopheroxyl radicals reduced/mol of phenolics. However, the study on depletions of rosmarinic acid and α-tocopherol revealed that the formation of caffeic acid, an oxidative degradation product of rosmarinic acid, could be involved in enhancing the antioxidant activity observed at pH 7 rather than the antioxidant regeneration. This study has highlighted that the importance of pH-dependent antioxidant interactions does not solely rely on antioxidant regeneration. In addition, the formation of other oxidative products from an antioxidant should be taken into account. PMID:27494424

  2. Acid Thunder: Acid Rain and Ancient Mesoamerica

    Science.gov (United States)

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  3. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOx). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H2SO4) and nitric acids (HNO3), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  4. Plasma amino acids

    Science.gov (United States)

    Plasma amino acids is a screening test done on infants that looks at the amounts of amino ... Laboratory error High or low amounts of individual plasma amino acids must be considered with other information. ...

  5. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Science.gov (United States)

    2013-04-03

    ... AGENCY 40 CFR Part 180 Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic...: This regulation establishes an exemption from the requirement of a tolerance for residues of castor oil... residues of castor oil, polymer with adipic acid, linoleic acid, oleic acid and ricinoleic acid on food...

  6. The Acid Rain Reader.

    Science.gov (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  7. Acid Rain Study Guide.

    Science.gov (United States)

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  8. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie;

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form fr...

  9. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  10. Cleavage of nucleic acids

    Science.gov (United States)

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  11. Acidizing carbonate reservoirs with chlorocarboxylic acid salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.F.; Templeton, C.C.

    1978-10-31

    A carbonate reservoir is acidized slowly by injecting an aqueous solution of a chlorocarboxylic acid salt so that the rate of the acidization is limited to the rate at which an acid is formed by the hydrolyzing of the chlorocarboxylate ions. The rate at which a chlorocarboxylic acid salt hydrolyzes to form an acid provides the desired rate of acid-release. A more complete acid-base reaction by chloroacetic acid, as compared to formic, acetic, and proprionic, is due to its being a much stronger acid. The pKa of chloroacetic acid is 2.86, whereas that of formic acid is 3.75, and that of acetic acid is 4.75. The pKa of a solution of a weak acid is the pH exhibited when the concentration of undissociated acid equals the concentration of the acid anion. 14 claims.

  12. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  13. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  14. Microorganisms for producing organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  15. Acid-Base Homeostasis.

    Science.gov (United States)

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  16. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10−6 mol L−1 were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity

  17. Analysis of organic acids and phenols of interest in the wine industry using Langmuir–Blodgett films based on functionalized nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); García-Cabezón, C. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); García-Hernández, C.; Bramorski, C. [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain); Blanco-Val, Y.; Martín-Pedrosa, F. [Department of Materials Science, Engineers School, Universidad de Valladolid (Spain); Kawai, T. [Department of Industrial Chemistry, Tokyo University of Science (Japan); Saja, J.A. de [Department of Condensed Matter Physics, Universidad de Valladolid (Spain); Rodríguez-Méndez, M.L., E-mail: mluz@eii.uva.es [Department of Inorganic Chemistry, Engineers School, Universidad de Valladolid (Spain)

    2015-01-01

    Highlights: • For the first time functionalized NPs immobilized in LB films have been used as voltammetric sensors. • Films showed excellent electrocatalytic properties toward phenols and acids found in wines. • Improved performance is due to combination of electrocatalytic NPs with the high surface/volume of LB films. • The potential applications in the wine industry have been evidenced. - Abstract: A chemically modified electrode consisting of Langmuir–Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (S{sub DOD}AuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The S{sub DOD}AuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10{sup −6} mol L{sup −1} were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio

  18. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  19. Citric Acid Alternative to Nitric Acid Passivation

    Science.gov (United States)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  20. Docosahexaenoic Acid Neurolipidomics

    OpenAIRE

    Niemoller, Tiffany D.; Bazan, Nicolas G.

    2009-01-01

    Mediator lipidomics is a field of study concerned with the characterization, structural elucidation and bioactivity of lipid derivatives generated by enzymatic activity. Omega-3 fatty acids have beneficial effects for vision, brain function, cardiovascular function, and immune-inflammatory responses. Docosahexaenoic acid [DHA; 22:6(n-3)], the most abundant essential omega-3 fatty acid in the human body, is selectively enriched and avidly retained in the central nervous system as an acyl chain...

  1. Propolis, A Hope for the Future in Treating Resistant Periodontal Pathogens

    Science.gov (United States)

    Rashid, Maryam; Tipu, Hamid N

    2016-01-01

    Introduction: Periodontitis is one of the most common causes of tooth loss worldwide. Recently, special attention has been paid to natural medication for its treatment. For this purpose, propolis (bee glue) activity has also been investigated. Its antibacterial properties are mainly attributed to flavonones pinocembrin, flavonols galangin and to the caffeic acid phenethyl ester. This study is aimed at evaluating the antimicrobial effects of propolis from Pakistan on 35 clinical isolates of pigmented anaerobic periodontal pathogens. Methods: This study was conducted in the Microbiology department, University of Health Sciences, Lahore, Pakistan. Pathogens included were Porphyromonas asaccharolytica (n=9), Porphyromonas gingivalis (n=13), Prevotella intermedia (n=9), Prevotella melaninogenica (n=4). Minimum inhibitory concentration (MIC) to three antibiotics was obtained by E-test method. All strains were sensitive to amoxicillin plus clavulanic acid and metronidazole, but 100% of P asaccharolytica and P melaninogenica strains displayed intermediate resistance to tetracycline while 69.2% P gingivalis and 100% P intermedia strains exhibited complete resistance to tetracycline. Screening for antibacterial activity of propolis extract was done by agar well diffusion assay, and all strains were found sensitive to ethanolic extract of propolis. Results: MIC was obtained by agar incorporation technique with values ranging from 0.064 to 0.512 mg/ml. It was also noticed that percentage yield of ethanolic extract of propolis prepared from ultrasonic extraction method was higher compared to extract obtained with maceration. Conclusion: These results indicate that propolis from this region has potent antimicrobial activity against pigmented anaerobic periodontal pathogens. Taking into consideration the increasing resistance in anaerobic bacteria, this effective antimicrobial activity of propolis gives hope in the treatment of oral cavity diseases. PMID:27563508

  2. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells.

    Science.gov (United States)

    Catchpole, Owen; Mitchell, Kevin; Bloor, Stephen; Davis, Paul; Suddes, Amanda

    2015-10-01

    New Zealand propolis is a "European" type propolis obtained by honey bees mainly from exudates of poplar. European type propolis is known to have anti-inflammatory and anti-cancer properties and this activity has been attributed to some of the main constituents such as chrysin and CAPE (caffeic acid phenethyl ester). As part of our studies on how New Zealand propolis might benefit gastro-intestinal health, we carried out in vitro bioactivity-guided fractionation of "Bio30™" propolis using both anti-inflammatory (TNF-α, COX-1, COX-2) and anti-colon cancer (DLD-1 colon cancer cell viability) assays; and determined the phenolic compounds responsible for the activity. The New Zealand wax-free Bio30™ propolis tincture solids had very high levels of the dihydroflavonoids pinocembrin and pinobanksin-3-O-acetate, and high levels of the dimethylallyl, benzyl and 3-methyl-3-butenyl caffeates relative to CAPE. The DLD-1 assays identified strong anti-proliferative activity associated with these components as well as chrysin, galangin and CAPE and a number of lesser known or lower concentration compounds including benzyl ferulate, benzyl isoferulate, pinostrobin, 5-phenylpenta-2,4-dienoic acid and tectochrysin. The phenolic compounds pinocembrin, pinobanksin-3-O-acetate, tectochrysin, dimethylallyl caffeate, 3-methyl-3-butenyl caffeate, benzyl ferulate and benzyl isoferulate also showed good broad spectrum activity in anti-proliferative assays against three other gastro-intestinal cancer cell lines; HCT-116 colon carcinoma, KYSE-30 oesophageal squamous cancer, and NCI-N87 gastric carcinoma. Activity is also observed in anti-inflammatory assays although it appears to be limited to one of the first cytokines in the inflammatory cascade, TNF-α. PMID:26347954

  3. The acid rain primer

    International Nuclear Information System (INIS)

    Acid rain continues to be a major problem in North America, and particularly in eastern Canada. This report introduced the topic of acid rain and discussed its formation, measurement, sources, and geographic distribution. The major sources of sulphur dioxide in Canada are smelting metals, burning coal for electrical power generation, industrial emissions (e.g., pulp and paper, petroleum and aluminum industry), and oil and gas extraction and refining. In Canada, the largest source of nitrogen oxide is the burning of fossil fuels by the transportation sector. Problem areas for acid rain in Canada were identified. The effects of acid rain were examined on lakes and aquatic ecosystems, forests and soils, human-made structures and materials, human health, and on visibility. Acid rain policies and programs were then presented from a historical and current context. Ecosystem recovery from acid rain was discussed with reference to acid rain monitoring, atmospheric response to reductions in acid-causing emissions, and ecosystem recovery of lakes, forests, and aquatic ecosystems. Challenges affecting ecosystem recovery were also presented. These challenges include drought and dry weather, decrease of base cations in precipitation, release of sulphate previously stored in soil, mineralization and immobilization of sulphur/sulphates. Last, the report discussed what still needs to be done to improve the problem of acid rain as well as future concerns. These concerns include loss of base cations from forested watersheds and nitrogen deposition and saturation. 21 refs., 2 tabs., 17 figs

  4. USGS Tracks Acid Rain

    Science.gov (United States)

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  5. THIN-LAYER SEPARATION OF CITRIC ACID CYCLE INTERMEDIATES, LACTIC ACID, AND THE AMINO ACID TAURINE

    Science.gov (United States)

    This paper describes a two-dimensional mixed-layer method for separating citric acid cycle intermediates, lactic acid and the amino acid taurine. The method cleanly separates all citric acid cycle intermediates tested, excepting citric acid and isocitric acid. The solvents are in...

  6. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides ( ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  7. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Locked nucleic acid

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Sørensen, Mads D; Wengel, Jesper;

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic...

  9. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  10. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  11. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  12. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Uric acid - blood

    Science.gov (United States)

    ... High levels of uric acid can sometimes cause gout or kidney disease. You may have this test if you have had or are about to have certain types of chemotherapy. Rapid weight loss, which may occur with such treatments, can increase the amount of uric acid in ...

  14. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  15. Carbolic acid poisoning

    Science.gov (United States)

    ... you to. If the person swallowed the carbolic acid, give them water or milk right away, if a provider tells ... well someone does depends on how much carbolic acid they swallowed and how quickly they receive treatment. The faster medical help is given, the better ...

  16. Neurotoxicity of Folic Acid

    NARCIS (Netherlands)

    Amsterdam van JGC; Jansen EHJM; A Opperhuizen; TOX

    2004-01-01

    The present review summarises the neurotoxicological effects of folic acid. Some studies in animals have shown that folic acid is neurotoxic and epileptogenic when applied directly to the brain. One poorly controlled and not further reproduced study from 1970 reported neurotoxic symptoms like malais

  17. Salicylic Acid Topical

    Science.gov (United States)

    ... skin blemishes in people who have acne. Topical salicylic acid is also used to treat skin conditions that involve scaling or overgrowth of skin ... water for 15 minutes.Do not apply topical salicylic acid to skin that is broken, red, swollen, irritated, or infected. ...

  18. Fusidic acid in dermatology

    DEFF Research Database (Denmark)

    Schöfer, Helmut; Simonsen, Lene

    1995-01-01

    Studies on the clinical efficacy of fusidic acid in skin and soft-tissue infections (SSTIs), notably those due to Staphylococcus aureus, are reviewed. Oral fusidic acid (tablets dosed at 250 mg twice daily, or a suspension for paediatric use at 20 mg/kg/day given as two daily doses) has shown good...... efficacy and tolerability. Similarly, plain fusidic acid cream or ointment used two or three times daily in SSTIs such as impetigo are clinically and bacteriologically effective, with minimal adverse events. Combination formulations of fusidic acid with 1% hydrocortisone or 0.1% betamethasone achieve...... excellent results in infected eczema by addressing both inflammation and infection. A new lipid-rich combination formulation provides an extra moisturizing effect. Development of resistance to fusidic acid has remained generally low or short-lived and can be minimized by restricting therapy to no more than...

  19. 21 CFR 172.860 - Fatty acids.

    Science.gov (United States)

    2010-04-01

    ... acid, caprylic acid, lauric acid, myristic acid, oleic acid, palmitic acid, and stearic acid. (b) The... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and...

  20. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Eun, J.B.; Wierenga, P.A.; Gruppen, H.

    2009-01-01

    Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by different oxidised phenolic compounds including caffeic acid, ferulic acid and tannic acid at different concentrations were investigated. Oxidised phenolic compounds were covalently attached to gelatin as indica

  1. Gluconic acid production.

    Science.gov (United States)

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  2. Sonoran propolis and some of its chemical constituents inhibit in vitro growth of Giardia lamblia trophozoites.

    Science.gov (United States)

    Alday-Provencio, Samuel; Diaz, Gabriela; Rascon, Lucila; Quintero, Jael; Alday, Efrain; Robles-Zepeda, Ramón; Garibay-Escobar, Adriana; Astiazaran, Humberto; Hernandez, Javier; Velazquez, Carlos

    2015-06-01

    Propolis is a cereus resin with a complex chemical composition that possesses a wide range of biological activities. The aim of this study was to evaluate the in vitro anti-Giardia lamblia activity of Sonoran propolis collected from three different areas of Sonoran Desert in northwestern Mexico (Caborca, Pueblo de Alamos, and Ures) and some of its chemical constituents. Additionally, we also analyzed the seasonal effect on the anti-G. lamblia activity of propolis. G. lamblia trophozoite cultures were treated with different concentrations of Sonoran propolis or chemical compounds during 48 h cell proliferation and cell viability were determined. Ures propolis showed the highest inhibitory activity against G. lamblia (IC50 63.8 ± 7.1 µg/mL) in a dose-dependent manner (Ures > Pueblo de Alamos > Caborca). Season had a significant effect on the in vitro anti-G. lamblia activity of Ures propolis. Summer propolis showed the highest inhibitory effect on the G. lamblia trophozoite growth (IC50 23.8 ± 2.3 µg/mL), followed by propolis collected during winter (IC50 59.2 ± 34.7 µg/mL), spring (IC50 102.5 ± 15.3 µg/mL), and autumn (IC50 125.0 ± 3.1 µg/mL). Caffeic acid phenethyl ester, an Ures propolis exclusive constituent, had the highest growth-inhibitory activity towards G. lamblia [IC50 63.1 ± 0.9 µg/mL (222.1 ± 3.2 µM)]. To our knowledge, this is the first study showing that caffeic acid phenethyl ester possesses antiparasitic activity against G. lamblia. Naringenin [IC50 125.7 ± 20.7 µg/mL (461.8 ± 76.3 µM)], hesperetin [IC50 149.6 ± 24.8 µg/mL (494.9 ± 82.2 µM)], and pinocembrin [IC50 174.4 ± 26.0 µg/mL (680.6 ± 101.7 µM)] showed weak anti-G. lamblia activity. On the other hand, chrysin and rutin did not show significant antiparasitic activity. In conclusion, our results suggest that Sonoran propolis and some of its chemical constituents had inhibitory effects on the

  3. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    , chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids......Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also...

  4. [Hydrofluoric acid burns].

    Science.gov (United States)

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  5. Difficult Decisions: Acid Rain.

    Science.gov (United States)

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  6. Folic acid in diet

    Science.gov (United States)

    ... green leafy vegetables Dried beans and peas (legumes) Citrus fruits and juices Fortified means that vitamins have ... A.D.A.M. Editorial team. Related MedlinePlus Health Topics Folic Acid Browse the Encyclopedia A.D. ...

  7. Omega-6 Fatty Acids

    Science.gov (United States)

    ... are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of ... in black currant seed, borage seed, and evening primrose oils. Omega-6 fatty acids are used for ...

  8. Acid rain: An overview

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of the effects of acid rain and related processes, sources, issues, corrective actions, research, current law, potential solutions, political solutions,...

  9. Stomach acid test

    Science.gov (United States)

    Gastric acid secretion test ... The test is done after you have not eaten for a while so fluid is all that remains in ... injected into your body. This is done to test the ability of the cells in the stomach ...

  10. Citric acid urine test

    Science.gov (United States)

    ... usually done while you are on a normal diet. Ask your provider for more information. ... acidosis and a tendency to form calcium kidney stones. The ... acid levels: A high carbohydrate diet Estrogen therapy Vitamin D

  11. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  12. Amino Acid Metabolism Disorders

    Science.gov (United States)

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  13. Azelaic Acid Topical

    Science.gov (United States)

    ... pores and by decreasing production of keratin, a natural substance that can lead to the development of ... acid controls acne and rosacea but does not cure these conditions. It may take 4 weeks or ...

  14. Matrix metalloproteinase gene expressions might be oxidative stress targets in gastric cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Salih Gencer; Anil Cebeci; Meliha Burcu Irmak-Yazicioglu

    2013-01-01

    Objective:Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer.We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H2O2) exposure on the expression patterns of MMP-1,MMP-3,MMP-7,MMP-9,MMP-10,MMP-11,MMP-12,MMP-14,MMP-15,MMP-17,MMP-23,MMP-28,and β-catenin genes.Methods:The mRNA transcripts in the cells were determined by RT-PCR.Following H2O2 exposure,oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diacetate (DCFH-DA).Caffeic acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR.Results:The expressions of MMP-1,MMP-7,MMP-14,MMP-15,MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased.Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H2O2 exposure.β-catenin,a transcription factor for many genes including MMPs,also displayed decreased levels of expression in both of the cell lines following CAPE treatment.Conclusions:Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress.

  15. Protectants against microwave irradiation: research advances%微波辐射防护药物的研究进展

    Institute of Scientific and Technical Information of China (English)

    王亚男; 周喆; 王升启

    2013-01-01

    微波辐射可致机体发生氧化应激,使氧化产物增多和抗氧化酶活性降低,甚至引起机体组织病理学改变.药物防护可以减轻微波辐射导致的氧化应激损伤,并对微波辐射所致组织病理学改变有所改善.近年来研究的抗微波辐射药物主要有卡尼汀、褪黑激素、咖啡酸苯乙酯、绿茶及其提取物、银杏叶提取物、阿的平,以及中成药芩丹扶正胶囊和安多霖等.本文综述了微波辐射对机体的氧化损伤机制,以及微波辐射防护药物的研究现状.%Microwave radiation can lead to oxidative stress, which may increase oxidation products, reduce activity of antioxi-dant enzymes and even cause pathological changes. Protectants against microwave irradiation can reverse these injuries and alleviate the pathological changes, which include carnitine, melatonin, caffeic acid phenethyl ester, green tea and its extract, Ginkgo biloba extract, quinacrine, and traditional Chinese formulae such as Qindanfuzheng and Anduolin, etc. In this paper, the mechanism of oxidative injury induced by microwave radiation and research progress in protectants are reviewed.

  16. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  17. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  18. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  19. Method for isolating nucleic acids

    Science.gov (United States)

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  20. Acidification and Acid Rain

    Science.gov (United States)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  1. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  2. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  3. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele;

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  4. EFFECT OF ACIDITY ON ACID-SENSITIVE UV CURING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Qi-dao Chen; Bing Wu; Xiao-yin Hong

    1999-01-01

    By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required.However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.

  5. Chemistry and electrochemistry in trifluoroacetic acid. Comparison with acetic acid

    International Nuclear Information System (INIS)

    As the trifluoroacetic acid is, with the acetic acid, one of most often used carboxylic acids as solvent, notably in organic chemistry, this research thesis addresses some relatively simple complexing and redox reactions to highlight the peculiar feature of this acid, and to explain its very much different behaviour with respect to acetic acid. The author develops the notion of acidity level in solvents of low dielectric constant. The second part addresses a specific solvent: BF3(CH3COOH)2. The boron trifluoride strengthens the acidity of acetic acid and modifies its chemical and physical-chemical properties. In the third part, the author compares solvent properties of CF3COOH and CH3COOH. Noticed differences explain why the trifluoroacetic acid is a more interesting reaction environment than acetic acid for reactions such as electrophilic substitutions or protein solubilisation

  6. Determination of Sialic Acids by Acidic Ninhydrin Reaction

    Directory of Open Access Journals (Sweden)

    Yao,Kenzabroh

    1987-12-01

    Full Text Available A new acidic ninhydrin method for determining free sialic acids is described. The method is based on the reaction of sialic acids with Gaitonde's acid ninhydrin reagent 2 which yields a stable color with an absorption maximum at 470 nm. The standard curve is linear in the range of 5 to 500 nmol of N-acetylneuraminic acid per 0.9 ml of reaction mixture. The reaction was specific only for sialic acids among the various sugars and sugar derivatives examined. Some interference of this method by cysteine, cystine and tryptophan was noted, although their absorption maxima differed from that of sialic acids. The interference by these amino acids was eliminated with the use of a small column of cation-exchange resin. The acidic ninhydrin method provides a simple and rapid method for the determination of free sialic acids in biological materials.

  7. Domoic Acid Epileptic Disease

    Directory of Open Access Journals (Sweden)

    John S. Ramsdell

    2014-03-01

    Full Text Available Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis.

  8. A Demonstration of Acid Rain

    Science.gov (United States)

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  9. Amino acid analysis.

    Science.gov (United States)

    Crabb, J W; West, K A; Dodson, W S; Hulmes, J D

    2001-05-01

    Amino acid analysis (AAA) is one of the best methods to quantify peptides and proteins. Two general approaches to quantitative AAA exist, namely, classical postcolumn derivatization following ion-exchange chromatography and precolumn derivatization followed by reversed-phase HPLC (RP-HPLC). Excellent instrumentation and several specific methodologies are available for both approaches, and both have advantages and disadvantages. This unit focuses on picomole-level AAA of peptides and proteins using the most popular precolumn-derivatization method, namely, phenylthiocarbamyl amino acid analysis (PTC-AAA). It is directed primarily toward those interested in establishing the technology with a modest budget. PTC derivatization and analysis conditions are described, and support and alternate protocols describe additional techniques necessary or useful for most any AAA method--e.g., sample preparation, hydrolysis, instrument calibration, data interpretation, and analysis of difficult or unusual residues such as cysteine, tryptophan, phosphoamino acids, and hydroxyproline. PMID:18429107

  10. Biodegradation of cyanuric acid.

    Science.gov (United States)

    Saldick, J

    1974-12-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO(2) and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand.

  11. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  12. Calorimetry of Nucleic Acids.

    Science.gov (United States)

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  13. [Nicotinic acid and nicotinamide].

    Science.gov (United States)

    Kobayashi, M; Shimizu, S

    1999-10-01

    Nicotinic acid and nicotinamide are called niacin. They are the antipellagra vitamin essential to many animals for growth and health. In human being, niacin is believed necessary together with other vitamins for the prevention and cure of pellagra. Niacin is widely distributed in nature; appreciable amounts are found in liver, fish, yeast and cereal grains. Nicotinamide is a precursor of the coenzyme NAD and NADP. Some of the most understood metabolic processes that involve niacin are glycolysis, fatty acid synthesis and respiration. Niacin is also related to the following diseases: Hartnup disease; blue diaper syndrome; tryptophanuria; hydroxykynureninuria; xanthurenic aciduria; Huntington's disease. PMID:10540864

  14. Whither Acid Rain?

    OpenAIRE

    Peter Brimblecombe

    2000-01-01

    Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and s...

  15. 2-arylureidobenzoic acids

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Nielsen, Elsebet Ø; Peters, Dan;

    2003-01-01

    A series of 2-arylureidobenzoic acids (AUBAs) was prepared by a short and effective synthesis, and the pharmacological activity at glutamate receptors was evaluated in vitro and in vivo. The compounds showed noncompetitive antagonistic activity at the kainate receptor subtype GluR5. The most potent...... on the benzoic acid moiety (ring A), whereas ring B tolerated a variety of substituents, but with a preference for lipophilic substituents. The most potent compounds had a 4-chloro substituent on ring A and 3-chlorobenzene (6b), 2-naphthalene (8h), or 2-indole (8k) as ring B and had IC(50) values of 1.3, 1...

  16. NITRIC ACID PICKLING PROCESS

    Science.gov (United States)

    Boller, E.R.; Eubank, L.D.

    1958-08-19

    An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum

  17. Whither Acid Rain?

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2000-01-01

    Full Text Available Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  18. Polyunsaturated fatty acids and inflammation

    OpenAIRE

    Calder Philip C

    2004-01-01

    The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites) and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and ...

  19. Fatty acids of Thiobacillus thiooxidans.

    Science.gov (United States)

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  20. Lactic acid bacterial cell factories for gamma-aminobutyric acid.

    Science.gov (United States)

    Li, Haixing; Cao, Yusheng

    2010-11-01

    Gamma-aminobutyric acid is a non-protein amino acid that is widely present in organisms. Several important physiological functions of gamma-aminobutyric acid have been characterized, such as neurotransmission, induction of hypotension, diuretic effects, and tranquilizer effects. Many microorganisms can produce gamma-aminobutyric acid including bacteria, fungi and yeasts. Among them, gamma-aminobutyric acid-producing lactic acid bacteria have been a focus of research in recent years, because lactic acid bacteria possess special physiological activities and are generally regarded as safe. They have been extensively used in food industry. The production of lactic acid bacterial gamma-aminobutyric acid is safe and eco-friendly, and this provides the possibility of production of new naturally fermented health-oriented products enriched in gamma-aminobutyric acid. The gamma-aminobutyric acid-producing species of lactic acid bacteria and their isolation sources, the methods for screening of the strains and increasing their production, the enzymatic properties of glutamate decarboxylases and the relative fundamental research are reviewed in this article. And the potential applications of gamma-aminobutyric acid-producing lactic acid bacteria were also referred to.

  1. Acid Rain Classroom Projects.

    Science.gov (United States)

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  2. The Acid Rain Game.

    Science.gov (United States)

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  3. The Acid Rain Debate.

    Science.gov (United States)

    Oates-Bockenstedt, Catherine

    1997-01-01

    Details an activity designed to motivate students by incorporating science-related issues into a classroom debate. Includes "The Acid Rain Bill" and "Position Guides" for student roles as committee members, consumers, governors, industry owners, tourism professionals, senators, and debate directors. (DKM)

  4. Koetjapic acid chloroform hemisolvate

    Directory of Open Access Journals (Sweden)

    Z. D. Nassar

    2010-06-01

    Full Text Available The asymmetric unit of the title compound, C30H46O4·0.5CHCl3, consists of one koetjapic acid [systematic name: (3R,4aR,4bS,7S,8S,10bS,12aS-7-(2-carboxyethyl-3,4b,7,10b,12a-pentamethyl-8-(prop-1-en-2-yl-1,2,3,4,4a,4b,5,6,7,8,9,10,10b,11,12,12a-hexadecahydrochrysene-3-carboxylic acid] molecule and one half-molecule of chloroform solvent, which is disordered about a twofold rotation axis. The symmetry-independent component is further disordered over two sites, with occupancies of 0.30 and 0.20. The koetjapic acid contains a fused four-ring system, A/B/C/D. The A/B, B/C and C/D junctions adopt E/trans/cis configurations, respectively. The conformation of ring A is intermediate between envelope and half-chair and ring B adopts an envelope conformation whereas rings C and D adopt chair conformations. A weak intramolecular C—H...O hydrogen bond is observed. The koetjapic acid molecules are linked into dimers by two pairs of intermolecular O—H...O hydrogen bonds. The dimers are stacked along the c axis.

  5. Acid Rain Investigations.

    Science.gov (United States)

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  6. Lactic acid and lactates

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.

    2010-01-01

    This review aims to integrate the present state of knowledge on lactate metabolism in human and mammalian physiology as far as it could be subject to nutritional interventions. An integrated view on the nutritional, metabolic and physiological aspects of lactic acid and lactates might open a perspec

  7. Hyaluronic Acid Assays

    DEFF Research Database (Denmark)

    Itenov, Theis Skovsgaard; Kirkby, Nikolai S; Bestle, Morten H;

    2015-01-01

    BACKGROUD: Hyaluronic acid (HA) is proposed as a marker of functional liver capacity. The aim of the present study was to compare a new turbidimetric assay for measuring HA with the current standard method. METHODS: HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme...

  8. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  9. Acid Ceramidase in Melanoma

    DEFF Research Database (Denmark)

    Realini, Natalia; Palese, Francesca; Pizzirani, Daniela;

    2016-01-01

    Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphing...

  10. Zoledronic Acid Injection

    Science.gov (United States)

    ... blood cells that produce substances needed to fight infection)] or by cancer that began in another part of the body but has spread to the bones. Zoledronic acid (Zometa) is not cancer chemotherapy, and it will not slow or stop the ...

  11. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  12. Origin of fatty acids

    International Nuclear Information System (INIS)

    The appearance of fatty acids and membranes is one of the most important events of the prebiotic world because genesis of life required the compartmentalization of molecules. Membranes allowed cells to become enriched with molecules relevant for their evolution and gave rise to gradients convertible into energy. By virtue of their hydrophobic/hydrophilic interface, membranes developed certain enzymatic activities impossible in the aqueous phase. A prebiotic cell is an energy unit but it is also an information unit. It has a past, a present and a future. The biochemistry of fatty acids involves acetylCoA, malonylCoA and an enzyme, acyl synthetase, which joins both molecules. After substitution of the acetyl group in place of the carboxyl group of malonyl derivatives, the chain is reduced and dehydrated to crotonyl derivatives. These molecules can again react with malonylCoA to form unsaturated chain; they can also undergo a new reduction step to form butyryl derivatives which can react with malonylCoA to form a longer aliphatic chain. The formation of malonylCoA consumes ATP. The reduction step needs NADPH and proton. Dehydration requires structural information because the reduction product is chiral (D configuration). It is unlikely that these steps were possible in a prebiotic environment. Thus we have to understand how fatty acids could appear in the prebiotic era. This hypothesis about the origin of fatty acids is based on the chemistry of sulfonium ylides and sulfonium salts. The most well-known among these molecules are S-melthyl-methionine and S-adenosyl methionine. The simplest sulfonium cation is the trimethylsulfonium cation. Chemists have evidence that these products can produce olefin when they are heated or flashed with UV light in some conditions. I suggest that these volatile products can allow the formation of fatty acids chains in atmospheric phase with UV and temperature using methanol as starting material. Different synthetic pathways will be

  13. Potentiometric determination of peroxodisulfuric acid during electrolysis sulfuric acid

    Directory of Open Access Journals (Sweden)

    Fedor Malchik

    2013-09-01

    Full Text Available Was proposed two potentiometric methods for determining peroxodisulfuric acid during electrolysis of sulfuric acid (potentiometric titration method and direct potentiometry, based on its interaction with a known excess of a solution Fe2+.

  14. Arterial Blood Carbonic Acid Inversely Determines Lactic and Organic Acids

    OpenAIRE

    Aiken, Christopher Geoffrey Alexander

    2013-01-01

    Objective: To establish that arterial blood carbonic acid varies inversely with lactic acid in accordance with bicarbonate exchanging for lactate across cell membranes through the anion exchange mechanism to maintain the Gibbs-Donnan equilibrium.

  15. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis. PMID:27349116

  16. Boswellic acid inhibits expression of acid sphingomyelinase in intestinal cells

    Directory of Open Access Journals (Sweden)

    Duan Rui-Dong

    2009-12-01

    Full Text Available Abstract Background Boswellic acid is a type of triterpenoids with antiinflammatory and antiproliferative properties. Sphingomyelin metabolism generates multiple lipid signals affecting cell proliferation, inflammation, and apoptosis. Upregulation of acid sphingomyelinase (SMase has been found in several inflammation-related diseases such as inflammatory bowel diseases, atherosclerosis, and diabetes. Methods The present study is to examine the effect of 3-acetyl-11-keto-β-boswellic acids (AKBA, a potent boswellic acid, on acid SMase activity and expression in intestinal cells. Both transformed Caco-2 cells and non-transformed Int407 cells were incubated with AKBA. After incubation, the change of acid SMase activity was assayed biochemically, the enzyme protein was examined by Western blot, and acid SMase mRNA was quantified by qPCR. Results We found that AKBA decreased acid SMase activity in both intestinal cell lines in dose and time dependent manners without affecting the secretion of the enzyme to the cell culture medium. The effect of AKBA was more effective in the fetal bovine serum-free culture medium. Among different types of boswellic acid, AKBA was the most potent one. The inhibitory effect on acid SMase activity occurred only in the intact cells but not in cell-free extract in the test tubes. At low concentration, AKBA only decreased the acid SMase activity but not the quantity of the enzyme protein. However, at high concentration, AKBA decreased both the mass of acid SMase protein and the mRNA levels of acid SMase in the cells, as demonstrated by Western blot and qPCR, respectively. Under the concentrations decreasing acid SMase activity, AKBA significantly inhibited cell proliferation. Conclusion We identified a novel inhibitory effect of boswellic acids on acid SMase expression, which may have implications in human diseases and health.

  17. Simultaneous determination of 6 phenolic acids in coffee beans by reversed-phase high performance liquid chromatography%反相高效液相色谱法同时测定咖啡豆中的6种酚酸类化合物

    Institute of Scientific and Technical Information of China (English)

    龙文静; 张盛; 袁玲; 李银花; 刘仲华

    2011-01-01

    A method of reversed-phase high performance liquid chromatography coupled with diode array detection ( HPLC-DAD ) was established for the simultaneous determination of 6 phenolic acids in green coffee beans. These phenolic acids are caffeic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,5-O-dicaffeoylquinic acid and 4,5-Odicaffeoylquinic acid. The separation was achieved using a Kromasil C18 column (200 mm ×4. 6 mm, 5 μm) under the gradient elution with the mobile phases of acetonitrile and 0. 1% (v/v) formic acid/water. The 6 phenolic acids were well separated within 45 min. The recoveries were from 90. 76% to 104. 73% with the relative standard deviations between 0. 7% and 3.9%.The method is simple, rapid and highly sensitive, suitable for the simultaneous determination of 6 phenolic acids and quality control of coffee beans.%建立了同时测定咖啡豆中6种酚酸类化合物(咖啡酸、3-咖啡酰奎尼酸、4-咖啡酰奎尼酸、5-咖啡酰奎尼酸、3,5-二咖啡酰奎尼酸、4,5-二咖啡酰奎尼酸)的反相高效液相色谱测定方法.采用Kromasil C柱(200 mm×4.6mm,5 μm),以乙腈和0.1%甲酸水溶液为流动相进行梯度洗脱,二极管阵列检测器检测,45 min内可对6种目标物进行同时检测,且各化合物都能达到基线分离.经测定,样品中6种酚酸类化合物的加标回收率为90.76%~104.73%,相对标准偏差为0.7%~3.9%.该法简便、快速、灵敏度高,适用于咖啡豆中6种酚酸类化合物的同时分析以及咖啡豆原料与制品的质量控制和综合评价.

  18. Physicochemical properties, phenolic acids and volatile compounds of oil extracted from dry alhydwan (Boerhavia elegana Choisy seeds

    Directory of Open Access Journals (Sweden)

    Al-Farga, A.

    2015-09-01

    Full Text Available In this study, the chemical composition, physicochemical properties, phenolic acids and volatile compounds of alhydwan (Boerhavia elegana Choisy seed oil were evaluated. The crude oil content was 11.49%, ash 6.88%, moisture 6.12%, protein content 14.60%, total carbohydrate 24.77% and fiber 36.13%. The oil contain a high quantity of unsaturated fatty acids (74.63 mg·100 g−1 with oleic (C18:1 (57.77%, palmitic (C16:0 (18.65% and linoleic (C18:2 (12.88% acids as the most abundant. The relative density was 0.88 and the iodine value 105.59. The color analysis showed a value of 28.33 Y+1.43 R. The oil also had a high relative oxidative stability. The tocol composition showed that α-tocotrienol, γ-tocopherol and γ-tocotrienol were in a higher concentration than the rest. Seven phenolic acids (caffeic, vanillic, galic, p-coumaric, ascorbic, cinnamic and ferulic were detected, with ascorbic acid as the predominant one (5.44 mg·100 g−1. In relation to the volatile composition, 48 compounds were found with Z-10-Pentadecen-1-ol (56.73%; Hexadecenoic acid, Z-11- (18.52%; 9,12-Octadecadienoic acid (Z,Z- (3.93% and 9,12-Octadecadienoic acid (Z,Z-, 2-hydroxy-1-(hydroxymethyl ethyl ester (3.04% as the most abundant. These findings demonstrated the potential of alhydwan seeds to be used as a good source of quality edible oil.En este estudio se ha determinado la composición química, las propiedades físico-químicas, ácidos fenólicos y compuestos volátiles de aceites de semillas de alhydwan (Boerhavia elegana Choisy. Las semillas contenían un 11.49% de aceite, 6.88% de cenizas, 6,12% de humedad, 14.60% de proteínas, 24.77% de carbohidratos totales y 36.13% de fibra. El aceite contiene 74,63 mg·100 g−1 de ácidos grasos insaturados, con oleico (C18: 1 (57,77%, palmítico (C16: 0 (18,65% y linoleico (C18: 2 (12,88% como los más abundantes. La densidad relativa fue de 0,88 y el índice de yodo de 105,59. El análisis del color mostró un valor de

  19. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  20. [Progress in glucaric acid].

    Science.gov (United States)

    Qiu, Yuying; Fang, Fang; Du, Guocheng; Chen, Jian

    2015-04-01

    Glucaric acid (GA) is derived from glucose and commonly used in chemical industry. It is also considered as one of the "Top value-added chemicals from biomass" as carbohydrate monomers to produce various synthetic polymers and bioenergy. The demand for GA in food manufacture is increasing. GA has also attracted public attentions due to its therapeutic uses such as regulating hormones, increasing the immune function and reducing the risks of cancers. Currently GA is produced by chemical oxidation. Research on production of GA via microbial synthesis is still at preliminary stage. We reviewed the advances of glucaric acid applications, preparation and quantification methods. The prospects on production of GA by microbial fermentation were also discussed. PMID:26380405

  1. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2007-01-01

    Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness.......Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness....

  2. Retinoic acid and cancer treatment

    OpenAIRE

    Chen, Mei-Chih; Hsu, Shih-Lan; Lin, Ho; Yang, Tsung-Ying

    2014-01-01

    Retinoic acid which belongs to the retinoid class of chemical compounds is an important metabolite of vitamin A in diets. It is currently understood that retinoic acid plays important roles in cell development and differentiation as well as cancer treatment. Lung, prostate, breast, ovarian, bladder, oral, and skin cancers have been demonstrated to be suppressed by retinoic acid. Our results also show that low doses and high doses of retinoic acid may respectively cause cell cycle arrest and a...

  3. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  4. Pantothenic acid biosynthesis in zymomonas

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  5. An Umbrella for Acid Rain.

    Science.gov (United States)

    Randal, Judith

    1979-01-01

    The Environmental Protection Agency has awarded several grants to study effects of and possible solutions to the problem of "acid rain"; pollution from atmospheric nitric and sulfuric acids. The research program is administered through North Carolina State University at Raleigh and will focus on biological effects of acid rain. (JMF)

  6. Self-neutralizing well acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, E.A.; Scheuerman, R.F.

    1974-07-30

    A process for acidizing a subterranean region by contacting it with an acidic solution is improved by dissolving in the solution a pH-increasing reactant that subsequently adjusts the pH of the solution to a selected relatively neutral value. Urea is an example of the acid neutralizer. (10 claims)

  7. Acid Rain Limits Global Warming

    Institute of Scientific and Technical Information of China (English)

    Will Knight; 张林玲

    2004-01-01

    @@ Acid rain restricts global warming by reducing methane① emissions from natural wetland areas, suggests a global climate study. Acid rain is the result of industrial pollution,which causes rainwater to carry small quantities of acidic compoumds② such as sulphuric and nitric acid③. Contaminated rainwater can upset rivers and lakes, killing fish and other organisms and also damage plants, trees and buildings.

  8. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup;

    2014-01-01

    -negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  9. Heterogeneous uptake of amines by citric acid and humic acid.

    Science.gov (United States)

    Liu, Yongchun; Ma, Qingxin; He, Hong

    2012-10-16

    Heterogeneous uptake of methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) onto citric acid and humic acid was investigated using a Knudsen cell reactor coupled to a quadrupole mass spectrometer at 298 K. Acid-base reactions between amines and carboxylic acids were confirmed. The observed uptake coefficients of MA, DMA, and TMA on citric acid at 298 K were measured to be 7.31 ± 1.13 × 10(-3), 6.65 ± 0.49 × 10(-3), and 5.82 ± 0.68 × 10(-3), respectively, and showed independence of sample mass. The observed uptake coefficients of MA, DMA, and TMA on humic acid at 298 K increased linearly with sample mass, and the true uptake coefficients of MA, DMA, and TMA were measured to be 1.26 ± 0.07 × 10(-5), 7.33 ± 0.40 × 10(-6), and 4.75 ± 0.15 × 10(-6), respectively. Citric acid, having stronger acidity, showed a higher reactivity than humic acid for a given amine; while the steric effect of amines was found to govern the reactivity between amines and citric acid or humic acid.

  10. Molecular interaction of pinic acid with sulfuric acid

    DEFF Research Database (Denmark)

    Elm, Jonas; Kurtén, Theo; Bilde, Merete;

    2014-01-01

    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated...... from the corresponding ΔG values. The first two additions of sulfuric acid to pinic acid are found to be favorable with ΔG values of -9.06 and -10.41 kcal/mol. Addition of a third sulfuric acid molecule is less favorable and leads to a structural rearrangement forming a bridged sulfuric acid-pinic acid...... cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures...

  11. Ionic liquid supported acid-catalysed esterification of lauric acid

    International Nuclear Information System (INIS)

    Ionic Liquid (IL) based on 1-n-butyl-3-methylimidazolium bis(trifluoro methylsulfonyl)imide (BMI.NTf2) under acidic condition was used as catalyst for the esterification reaction of fatty acid. Various acids namely sulphuric acid, perchloric acid, p-toulene sulphonic acid and various chloride salts such as zinc chloride (ZnCl2) and iron (III) chloride (FeCl3) immobilized in ionic liquid BMI.NTf2 gave acidic ILs. These acidic ILs were tested as catalysts for esterification reactions. Esterification of alcohol (methanol) with fatty acid (lauric acid) using ionic liquid BMI.NTf2 combined with H2SO4 (BMI.NTf2(H2SO4)) gave high activity (>85 %) and selectivity (100 %) observed over a period of 2 hours reaction with reaction temperature 70 degree Celsius. The ester became easily separated due to IL forming biphasic with product after the reaction where ester accumulated as the upper phase and IL with water produced after reaction at lower phase. Catalytic activities comparison also be studied between acidic ionic liquid BMI.NTf2 with acidic ionic liquid ChCl.2ZnCl2 and conventional acid catalyst. These ILs were characterised by using FTIR, NMR and TGA. Results from FTIR were showed no significant difference between ILs with ILs in acidic condition. The TGA curve show BMI.NTf2 thermals decomposition is ≥400 degree Celsius but when BMI.NTf2 combination with H2SO4, TGA curve show weight loss increase and becomes unstable. The advantages of ILs as catalyst are clean process and green chemistry due to its behaviour such as non-volatile, no loss of solvent through evaporation and reduced environmentally impact. This ILs-catalyst system can be recycle for further reaction. (author)

  12. Microbial transformations of isocupressic acid.

    Science.gov (United States)

    Lin, S J; Rosazza, J P

    1998-07-01

    Microbial transformations of the labdane-diterpene isocupressic acid (1) with different microorganisms yielded several oxygenated metabolites that were isolated and characterized by MS and NMR spectroscopic analyses. Nocardia aurantia (ATCC 12674) catalyzed the cleavage of the 13,14-double bond to yield a new nor-labdane metabolite, 2. Cunninghamella elegans (-) (NRRL 1393) gave 7beta-hydroxyisocupressic acid (3) and labda-7,13(E)-diene-6beta,15, 17-triol-19-oic acid (4), and Mucor mucedo (ATCC 20094) gave 2alpha-hydroxyisocupressic acid (5) and labda-8(17),14-diene-2alpha, 13-diol-19-oic acid (6).

  13. Invasive cleavage of nucleic acids

    Science.gov (United States)

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  14. Polyunsaturated fatty acids and inflammation

    Directory of Open Access Journals (Sweden)

    Calder Philip C.

    2004-01-01

    Full Text Available The n-6 polyunsaturated fatty acid arachidonic acid gives rise to the eicosanoid family of inflammatory mediators (prostaglandins, leukotrienes and related metabolites and through these regulates the activities of inflammatory cells, the production of cytokines and the various balances within the immune system. Fish oil and oily fish are good sources of long chain n-3 polyunsaturated fatty acids. Consumption of these fatty acids decreases the amount of arachidonic acid in cell membranes and so available for eicosanoid production. Thus, n-3 polyunsaturated fatty acids act as arachidonic acid antagonists. Components of both natural and acquired immunity, including the production of key inflammatory cytokines, can be affected by n-3 polyunsaturated fatty acids. Although some of the effects of n-3 fatty acids may be brought about by modulation of the amount and types of eicosanoids made, it is possible that these fatty acids might elicit some of their effects by eicosanoid-independent mechanisms. Such n-3 fatty acid-induced effects may be of use as a therapy for acute and chronic inflammation, and for disorders that involve an inappropriately-activated immune response.

  15. Mycophenolic Acid in Silage

    Science.gov (United States)

    Schneweis, Isabell; Meyer, Karsten; Hörmansdorfer, Stefan; Bauer, Johann

    2000-01-01

    We examined 233 silage samples and found that molds were present in 206 samples with counts between 1 × 103 and 8.9 × 107 (mean, 4.7 × 106) CFU/g. Mycophenolic acid, a metabolite of Penicillium roqueforti, was detected by liquid chromatography-mass spectrometry in 74 (32%) of these samples at levels ranging from 20 to 35,000 (mean, 1,400) μg/kg. This compound has well-known immunosuppressive properties, so feeding with contaminated silage may promote the development of infectious diseases in livestock. PMID:10919834

  16. Synthesis of aminoaldonic acids

    DEFF Research Database (Denmark)

    Jørgensen, Christel Thea

    With the aim of synthesising aminoaldonic acids, two 2-acetamido-2-deoxyaldonolactones with D-galacto (6) and D-arabino (11) configuration were prepared from acetylated sugar formazans in analogy with a known procedure. Empolying the same procedure to acetylated sugar phenylhydrazones gave mixtures...... and 82, respectively. The aminolactone 84 was converted into the corresponding amino sugar 89.With the aim of synthesising substrates for the Pictet-Spengler reaction three 4-aldehydo acetamidodideoxytetronolactones 92, 97 and 103 were prepared by periodate cleavage of the corresponding hexonolactones...

  17. Nucleic Acid Vaccines

    Institute of Scientific and Technical Information of China (English)

    LU Shan

    2004-01-01

    @@ Anew method of immunization was discovered in the early 1990s. Several research groups independently demonstrated that direct inoculation of DNA plasmids coding for a specific protein antigen could elicit immune responses against that antigen[1-4].Since in theory the mRNA molecules also have the potential to be translated into the protein antigen, this vaccination approach was officially named by WHO as the nucleic acid vaccination even though the term DNA vaccine has been used more commonly in the literature. This novel approach is considered the fourth generation of vaccines after live attenuated vaccines, killed or inactivated vaccines and recombinant protein based subunit vaccines.

  18. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-04-01

    Full Text Available Phenolic and flavonoid compounds are secondary metabolites of plants which possess various activities such as anti-inflammatory, analgesic, anti-diabetes and anticancer effects. It has been established that these compounds can scavenge free radicals produced in the body. Because of this ability, not only the plants containing phenolic and flavonoid compounds but also, the pure compounds are used in medicinal products for prevention and treatment of many disorders. Considering that the golden aim of the pharmaceutical industries is using the most effective compounds with lower concentrations, determination of the best combination of the compounds with synergistic effects is important. In the present study, synergistic antioxidant effects of four phenolic compounds including caffeic acid, gallic acid, rosmarinic acid, chlorogenic acid and two flavonoids,  rutin and quercetin, have been investigated by FRAP (Ferric Reducing Antioxidant Power method. The synergistic effect was assessed by comparing the experimental antioxidant activity of the mixtures with calculated theoretical values and the interactions of the compounds were determined. The results showed that combination of gallic acid and caffeic acid demonstrated considerable synergistic effects (137.8% while other combinations were less potent. Among examined substances, rutin was the only one which had no effect on the other compounds. The results of ternary combinations of compounds demonstrated antagonistic effects in some cases. This was more considerable in mixture of rutin, caffeic acid, rosmarinic acid (-21.8%, chlorogenic acid, caffeic acid, rosmarinic acid (-20%, rutin, rosmarinic acid, gallic acid (-18.5% and rutin, chlorogenic acid, caffeic acid (-15.8%, while, combination of quercetin, gallic acid, caffeic acid (59.4% and quercetin, gallic acid, rutin (55.2% showed the most synergistic effects. It was concluded that binary and ternary combination of quercetin, rutin, caffeic acid

  19. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    OpenAIRE

    B. Syama Sundar; P.S.Radhakrishna murti

    2014-01-01

    Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation wi...

  20. Growth of nitric acid hydrates on thin sulfuric acid films

    Science.gov (United States)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-05-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1 - 3 × 10-4 Torr H2O and 1 - 2.5 × 10-6 Torr HNO3) and subjected to cooling and heating cycles. FTIR spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.