WorldWideScience

Sample records for caffeic acid phenethyl

  1. Stability of caffeic acid phenethyl amide (CAPA) in rat plasma.

    Science.gov (United States)

    Yang, John; Kerwin, Sean M; Bowman, Phillip D; Stavchansky, Salomon

    2012-05-01

    A validated C₁₈ reverse-phase HPLC method with UV detection at 320 nm was developed and used for the stability evaluation of caffeic acid phenethyl amide (CAPA) and caffeic acid phenethyl ester (CAPE) in rat plasma. CAPA is the amide derivative of CAPE, a naturally occurring polyphenolic compound that has been found to be active in a variety of biological pathways. CAPA has been shown to protect endothelial cells against hydrogen peroxide-induced oxidative stress to a similar degree to CAPE. CAPE has been reported to be rapidly hydrolyzed in rat plasma via esterase enzymes. CAPA is expected to display a longer half-life than CAPE by avoiding hydrolysis via plasma esterases. The stability of CAPA and CAPE in rat plasma was investigated at three temperatures. The half-lives for CAPA were found to be 41.5, 10 and 0.82 h at 25, 37 and 60 °C, respectively. The half-lives for CAPE were found to be 1.95, 0.35 and 0.13 h at 4, 25 and 37 °C, respectively. The energy of activation was found to be 22.1 kcal/mol for CAPA and 14.1 kcal/mol for CAPE. A more stable compound could potentially extend the beneficial effects of CAPE.

  2. Caffeic acid phenethyl ester prevents apoptotic cell death in the developing rat brain after pentylenetetrazole-induced status epilepticus.

    Science.gov (United States)

    Yiş, Uluç; Topçu, Yasemin; Özbal, Seda; Tuğyan, Kazım; Bayram, Erhan; Karakaya, Pakize; Yilmaz, Osman; Kurul, Semra Hız

    2013-11-01

    Population-based studies suggest that seizure incidence is highest during the first year of life, and early-life seizures frequently result in the development of epilepsy and behavioral alterations later in life. The early-life insults like status epilepticus often lead to epileptogenesis, a process in which initial brain injury triggers cascades of molecular, cellular, and network changes and eventually spontaneous seizures. Caffeic acid phenethyl ester is an active component of propolis obtained from honeybees and has neuroprotective properties. The aim of this study was to investigate whether caffeic acid phenethyl ester exerts neuroprotective effects on the developing rat brain after status epilepticus. Twenty-one dams reared Wistar male rats, and 21-day-old rats were divided into three groups: control group, pentylenetetrazole-induced status epilepticus group, and caffeic acid phenethyl ester-treated group. Status epilepticus was induced on the first day of experiment. Caffeic acid phenethyl ester injections (30 mg/kg intraperitoneally) started 40 min after the tonic phase of status epilepticus was reached, and the injections of caffeic acid phenethyl ester were repeated over 5 days. Rats were sacrificed, and brain tissues were collected on the 5th day of experiment after the last injection of caffeic acid phenethyl ester. Apoptotic cell death was evaluated. Histopathological examination showed that caffeic acid phenethyl ester significantly preserved the number of neurons in the CA1, CA3, and dentate gyrus regions of the hippocampus and the prefrontal cortex. It also diminished apoptosis in the hippocampus and the prefrontal cortex. In conclusion, this experimental study suggests that caffeic acid phenethyl ester administration may be neuroprotective in status epilepticus in the developing rat brain.

  3. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis.

    Science.gov (United States)

    Grunberger, D; Banerjee, R; Eisinger, K; Oltz, E M; Efros, L; Caldwell, M; Estevez, V; Nakanishi, K

    1988-03-15

    The honeybee hive product, propolis, is a folk medicine employed for treating various ailments. Many important pharmaceutical properties have been ascribed to propolis, including anti-inflammatory, antiviral, immunostimulatory and carcinostatic activities. Propolis extracts have provided an active component identified as caffeic acid phenethyl ester (CAPE), which was readily prepared in one step. Differential cytotoxicity has been observed in normal rat/human versus transformed rat/human melanoma and breast carcinoma cell lines in the presence of CAPE.

  4. Development and validation of an LCMS method to determine the pharmacokinetic profiles of caffeic acid phenethyl amide and caffeic acid phenethyl ester in male Sprague-Dawley rats.

    Science.gov (United States)

    Yang, John; Bowman, Phillip D; Kerwin, Sean M; Stavchansky, Salomon

    2014-02-01

    A validated LCMS method was developed for the quantitative determination of caffeic acid phenethyl amide (CAPA) and caffeic acid phenethyl ester (CAPE) from rat plasma. Separation was achieved using a reverse-phase C12 HPLC column (150 × 2.00 mm, 4 µm) with gradient elution running water (A) and acetonitrile (B). Mass spectrometry was performed with electrospray ionization in negative mode. This method was used to determine the pharmacokinetic profiles of CAPA and CAPE in male Sprague-Dawley rats following intravenous bolus administration of 5, 10 and 20 mg/kg of CAPA and 20 mg/kg of CAPE. The pharmacokinetic analysis suggests the lack of dose proportionality in the dose range of 5-20 mg/kg of CAPA. Total clearance values for CAPA ranged from 45 to 156 mL/min and decreased with increasing dose of CAPA. The volume of distribution for CAPA ranged from 17,750 to 52,420 mL, decreasing with increasing dose. The elimination half-life for CAPA ranged from 243.1 to 295.8 min and no statistically significant differences were observed between dose groups in the range of 5-20 mg/kg (p > 0.05). The elimination half-life for CAPE was found to be 92.26 min.

  5. Inhibitory effects of caffeic acid phenethyl ester derivatives on replication of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Hui Shen

    Full Text Available Caffeic acid phenethyl ester (CAPE has been reported as a multifunctional compound. In this report, we tested the effect of CAPE and its derivatives on hepatitis C virus (HCV replication in order to develop an effective anti-HCV compound. CAPE and CAPE derivatives exhibited anti-HCV activity against an HCV replicon cell line of genotype 1b with EC50 values in a range from 1.0 to 109.6 µM. Analyses of chemical structure and antiviral activity suggested that the length of the n-alkyl side chain and catechol moiety are responsible for the anti-HCV activity of these compounds. Caffeic acid n-octyl ester exhibited the highest anti-HCV activity among the tested derivatives with an EC50 value of 1.0 µM and an SI value of 63.1 by using the replicon cell line derived from genotype 1b strain Con1. Treatment with caffeic acid n-octyl ester inhibited HCV replication of genotype 2a at a similar level to that of genotype 1b irrespectively of interferon signaling. Caffeic acid n-octyl ester could synergistically enhance the anti-HCV activities of interferon-alpha 2b, daclatasvir, and VX-222, but neither telaprevir nor danoprevir. These results suggest that caffeic acid n-octyl ester is a potential candidate for novel anti-HCV chemotherapy drugs.

  6. Can propolis and caffeic acid phenethyl ester be promising agents against cyclophosphamide toxicity?

    Science.gov (United States)

    Akyol, Sumeyya; Gulec, Mehmet Akif; Erdemli, Haci Kemal; Akyol, Omer

    2016-01-01

    Propolis is a mixture having hundreds of polyphenols including caffeic acid phenethyl ester (CAPE). They have been using in several medical conditions/diseases in both in vitro and in vivo experimental setup. Cyclophosphamide (CP) has been used to treat a broad of malignancies including Hodgkin’s and non-Hodgkin’s lymphoma, Burkitt’s lymphoma, chronic lymphocytic leukemia, Ewing’s sarcoma, breast cancer, testicular cancer, etc. It may cause several side effects after treatment. In this mini review, the protective effects of propolis and CAPE were compared each other in terms of effectiveness against CP-induced injuries. PMID:27069732

  7. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    Directory of Open Access Journals (Sweden)

    Martin J. G. Hébert

    2015-01-01

    Full Text Available Two novel boron compounds containing caffeic acid phenethyl ester (CAPE derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE.

  8. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2015-03-01

    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  9. Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties.

    Science.gov (United States)

    Göçer, Hülya; Gülçin, Ilhami

    2011-12-01

    Caffeic acid phenethyl ester (CAPE), a plant polyphenolic concentrated in honeybee propolis, has been found to be biologically active in a variety of pathways. The aim of this study was to determine the antioxidant activity of CAPE using different methods such as total antioxidant activity by the thiocyanate method, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid radicals, 1,1-diphenyl-2-picryl-hydrazyl free radicals, N,N-dimethyl-p-phenylenediamine dihydrochloride radicals and superoxide anion radicals scavenging activities, reducing power and ferrous ions (Fe(2+)) chelating activities. CAPE showed 97.9% inhibition on lipid peroxidation of linoleic acid emulsion. On the other hand, butylated hydroxyanisole, butylated hydroxytoluene, α-tocopherol and trolox indicated an inhibition of 87.3, 97.6, 75.3 and 90.3% on peroxidation in the same system, respectively.

  10. Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin.

    Science.gov (United States)

    Russo, A; Longo, R; Vanella, A

    2002-11-01

    Propolis, a natural product produced by the honeybee, has been used for thousands of years in folk medicine for several purposes. The extract contains amino acids, phenolic acids, phenolic acid esters, flavonoids, cinnamic acid, terpenes and caffeic acid. It possesses several biological activities such as antiinflammatory, immunostimulatory, antiviral and antibacterial. The exact mode of physiological or biochemical mechanisms responsible for the medical effects, however, is yet to be determined. In this work, we have investigated the antioxidant activity of a propolis extract deprived of caffeic acid phenethyl ester (CAPE). In addition, the activity of CAPE and galangin was also examined. Propolis extract (with and without CAPE) and its active components showed a dose-dependent free radical scavenging effect, a significant inhibition of xanthine oxidase activity, and an antilipoperoxidative capacity. Propolis extract with CAPE was more active than propolis extract without CAPE. CAPE, used alone, exhibited a strong antioxidant activity, higher than galangin. The experimental evidence, therefore, suggests that CAPE plays an important role in the antioxidant activity of propolis.

  11. Cytoprotective Effect of Caffeic Acid Phenethyl Ester (CAPE) and Catechol Ring-Fluorinated CAPE Derivatives Against Menadione-Induced Oxidative Stress in Human Endothelial Cells

    Science.gov (United States)

    2006-03-31

    chlorogenic acid , and rosmari- nic acid did not display any cytoprotective effect in this assay at 15 lM (data not shown). Within the same pas- sage of HUVEC...Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative...accepted 13 March 2006 Available online 31 March 2006 Abstract—Caffeic acid phenethyl ester (CAPE), a natural polyphenolic compound with many

  12. Antiviral Properties of Caffeic Acid Phenethyl Ester and Its Potential Application

    Directory of Open Access Journals (Sweden)

    Haci Kemal Erdemli

    2015-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is found in variety of plants and well known active ingredient of the honeybee propolis. CAPE showed anti-inflammatory, anticarcinogenic, antimitogenic, antiviral and immunomodulatory properties in several studies. The beneficial effects of CAPE on different health issues attracted scientists to make more studies on CAPE. Specifically, the anti-viral effects of CAPE and its molecular mechanisms may reveal the important properties of virus-induced diseases. CAPE and its targets may have important roles to design new therapeutics and understand the molecular mechanisms of virus related diseases. In this mini-review, we summarize the antiviral effects of CAPE under the light of medical and chemical literature. [J Intercult Ethnopharmacol 2015; 4(4.000: 344-347

  13. Antiviral properties of caffeic acid phenethyl ester and its potential application.

    Science.gov (United States)

    Erdemli, Hacı Kemal; Akyol, Sumeyya; Armutcu, Ferah; Akyol, Omer

    2015-01-01

    Caffeic acid phenethyl ester (CAPE) is found in a variety of plants and well-known the active ingredient of the honeybee propolis. CAPE showed anti-inflammatory, anticarcinogenic, antimitogenic, antiviral, and immunomodulatory properties in several studies. The beneficial effects of CAPE on different health issues attracted scientists to make more studies on CAPE. Specifically, the anti-viral effects of CAPE and its molecular mechanisms may reveal the important properties of virus-induced diseases. CAPE and its targets may have important roles to design new therapeutics and understand the molecular mechanisms of virus-related diseases. In this mini-review, we summarize the antiviral effects of CAPE under the light of medical and chemical literature.

  14. Future opportunities in preventing ototoxicity: Caffeic acid phenethyl ester may be a candidate (Review).

    Science.gov (United States)

    Akyol, Sumeyya; Isik, Bunyamin; Altuntas, Aynur; Erden, Gonul; Cakmak, Ozlem; Kurşunlu, S Fatih; Adam, Bahattin; Akyol, Omer

    2015-09-01

    Caffeic acid phenethyl ester (CAPE) is an important active component of propolis, which is derived from honeybee hives. It has received increasing attention in a variety of medical and pharmaceutical research, due to its anti‑oxidant, antiproliferative, anti‑inflammatory, antiviral and antifungal activity, in addition to its antineoplastic properties. Besides the use of CAPE as an antioxidant and anti‑inflammatory agent in a number of in vivo studies of ear disease, its beneficial effects have been reported in the treatment of cancer, arthritis, allergies, heart disease, diabetes, kidney disease, liver disease and neurological disease. CAPE influences a number of biochemical pathways, as well as several targets involved in ear diseases, in particular, in ototoxicity. The protective effects of CAPE in ototoxicity, which may be induced by a number factors, including lipopolysaccharides, hydrogen peroxide and streptomycin, are evaluated and discussed in the present review.

  15. Caffeic acid phenethyl ester: its protective role against certain major eye diseases.

    Science.gov (United States)

    Akyol, Sumeyya; Ugurcu, Veli; Balci, Mehmet; Gurel, Ayse; Erden, Gonul; Cakmak, Ozlem; Akyol, Omer

    2014-11-01

    As an effective compound found mainly in the honeybee product propolis, caffeic acid phenethyl ester (CAPE) has been commonly utilized as a medicine and remedial agent, in a number of countries. Specifically, it might inhibit nuclear factor kappa B at micromolar concentrations and demonstrate antioxidant, antineoplastic, antiproliferative, cytostatic, antiviral, antibacterial, antifungal, and anti-inflammatory features. This review article summarizes the recent progress regarding the favorable effects of CAPE on a number of eye disease models, including cataract and posterior capsule opacification, corneal diseases, retina and optic nerve-related diseases, ischemia/reperfusion injury of retina, inflammation and infection-related diseases. CAPE has been found to exhibit promising efficacy, with minimal adverse effects, in animal and cell culture studies of several eye diseases.

  16. Effect of caffeic acid phenethyl ester on bone formation in the expanded inter-premaxillary suture

    Directory of Open Access Journals (Sweden)

    Kazancioglu HO

    2015-12-01

    Full Text Available Hakki Oguz Kazancioglu,1 Sertac Aksakalli,2 Seref Ezirganli,1 Muhammet Birlik,2 Mukaddes Esrefoglu,3 Ahmet Hüseyin Acar1 1Department of Oral and Maxillofacial Surgery, 2Department of Orthodontics, Faculty of Dentistry, 3Department of Histology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey Background: Narrow maxilla is a common problem in orthodontics and dentofacial orthopedics. To solve this problem, a procedure called rapid maxillary expansion (RME has been used. However, relapse tendency is a major problem of RME. Although relapse tendency is not clearly understood, various treatment procedures and new application has been investigated. The present study aimed to investigate the possible effectiveness of caffeic acid phenethyl ester (CAPE on new bone formation in rat midpalatal suture after RME.Materials and methods: Twenty male Sprague Dawley rats were used in this study. The animals were randomly divided into two groups as control and CAPE group. In CAPE group, CAPE was administered systemically via intraperitoneal injection. RME procedure was performed on all animals. For this purpose, the springs were placed on the maxillary incisors of rats and activated for 5 days. After then, the springs were removed and replaced with short lengths of rectangular retaining wire for consolidation period of 15 days. At the end of the study, histomorphometric analysis was carried out to assess of new bone formation.Results: New bone formation was significantly greater in CAPE group than the control group (P<0.05. CAPE enhances new bone formation in midpalatal suture after RME.Conclusion: These results show that CAPE may decrease the time needed for retention. Keywords: rapid maxillary expansion, bone formation, caffeic acid phenethyl ester, midpalatal suture, histopathology

  17. Molecular Characterization and Enhancement of Anticancer Activity of Caffeic Acid Phenethyl Ester by γ Cyclodextrin

    Science.gov (United States)

    Wadhwa, Renu; Nigam, Nupur; Bhargava, Priyanshu; Dhanjal, Jaspreet Kaur; Goyal, Sukriti; Grover, Abhinav; Sundar, Durai; Ishida, Yoshiyuki; Terao, Keiji; Kaul, Sunil C

    2016-01-01

    Caffeic Acid Phenethyl Ester (CAPE) is a key component in New Zealand propolis, known for a variety of health promoting and therapeutic potentials. We investigated the molecular mechanism of anticancer and anti-metastasis activities of CAPE. cDNA array performed on the control and CAPE-treated breast cancer cells revealed activation of DNA damage signaling involving upregulation of GADD45α and p53 tumor suppressor proteins. Molecular docking analysis revealed that CAPE is capable of disrupting mortalin-p53 complexes. We provide experimental evidence and demonstrate that CAPE induced disruption of mortalin-p53 complexes led to nuclear translocation and activation of p53 resulting in growth arrest in cancer cells. Furthermore, CAPE-treated cells exhibited downregulation of mortalin and several other key regulators of cell migration accountable for its anti-metastasis activity. Of note, we found that whereas CAPE was unstable in the culture medium (as it gets degraded into caffeic acid by secreted esterases), its complex with gamma cyclodextrin (γCD) showed high efficacy in anti-tumor and anti-metastasis assays in vitro and in vivo (when administered through either intraperitoneal or oral route). The data proposes that CAPE-γCD complex is a potent anti-cancer and anti-metastasis reagent. PMID:27698914

  18. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2015-03-01

    Full Text Available Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE, a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS, cyclooxygenase (COX-2 and the production of nitric oxide (NO. Administration of CAPE resulted in increased expressions of hemeoxygenase (HO-1and erythropoietin (EPO in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.

  19. Antioxidant Properties of Caffeic acid Phenethyl Ester and 4-Vinylcatechol in Stripped Soybean Oil.

    Science.gov (United States)

    Jia, Cai-Hua; Wang, Xiang-Yu; Qi, Jin-Feng; Hong, Soon-Taek; Lee, Ki-Teak

    2016-01-01

    Caffeic acid was used to synthesize 4-vinylcatechol (4-VC) by thermal decarboxylation and to prepare caffeic acid phenethyl ester (CAPE) by esterification reaction. The identities of synthesized products were confirmed by (1)H NMR. Antioxidative activities of 4-VC and CAPE were compared with α-tocopherol and BHT in stripped soybean oil at 60 °C under the dark. To evaluate the degrees of oxidation at different concentrations and combinations, peroxide value (PV) and (1)H NMR were performed. From the results of PV, the formation of primary oxidation products (i.e., hydroperoxides) in stripped soybean oil containing 200 ppm CAPE was the slowest. The relative oxidation degree of 200 ppm CAPE (9.5%) was lower than other samples on 9 d. Similar results were obtained by (1)H NMR analysis. After 15 d of storage, levels of conjugated diene forms and aldehydes of 200 ppm CAPE sample (57.3 and 0.9 mmol/mol oil) were also lower than other treatments. In addition, 4-VC and α-tocopherol were found to have a synergistic antioxidant effect.

  20. Effects of caffeic acid phenethyl ester on proliferation of vascular smooth muscle cells in rats

    Institute of Scientific and Technical Information of China (English)

    Gang Yang; Chao Chang; YuQing Wang; Yibo Feng; ShuLing Rong

    2006-01-01

    Objective: To investigate the inhibitory effect of caffeic acid phenethyl ester(CAPE) on the proliferation of vascular smooth muscle cells (VSMC) activated by lipopolysaccharide (LPS) and to clarify its mechanism. Methods: VSMC activated by LPS (1 mg·L-1) were treated with CAPE at different concentrations. The inhibitory effects of CAPE on the proliferation of VSMC were determined by methabenzthiazuron(MTT) colorimetry. The effects of CAPE on the expression of proliferating cell nuclear antigen (PCNA) and Survivin protein in VSMC were evaluated by immunocytochemistry staining technique (SABC method). Cell cycle was analyzed by flow cytometry(FCM) with propidium iodide (PI) labeling method. The relative expression level of Survivin mRNA was measured with real-time quantified RT-PCR technique. Results: CAPE exerted significant inhibitory effects on. proliferation of VSMC at concentrations ranging from 5 mg·L-1 to 80 mg·L-1, decreased the rate of cells positive for PCNA and Survivin protein and repressed the expression of Survivin mRNA in a dose- and time-dependent manner (P < 0.05).FCM analysis displayed that CAPE up-regulated the ratio of G0/G1 stages and reduced the percentage of VSMC in S stage (P <0.05). Conclusion: CAPE can significantly inhibit the proliferation of VSMC activated by LPS in a dose- and time-dependent manner, which may be carried out through regulating cell cycle and repressing the expression of PCNA and Survivin.

  1. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes

    Science.gov (United States)

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  2. Caffeic Acid Phenethyl Ester Regulates PPAR’s Levels in Stem Cells-Derived Adipocytes

    Directory of Open Access Journals (Sweden)

    Luca Vanella

    2016-01-01

    Full Text Available Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ, considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape, isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration.

  3. Therapeutic effect of caffeic acid phenethyl ester on cerulein-induced acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Mehmet Buyukberber; M Cemil Savas; Cahit Bagci; Mehmet Koruk; Murat T Gulsen; Ediz Tutar; Tugba Bilgic; Nurdan (O) Ceylan

    2009-01-01

    AIM: To evaluate the therapeutic role of caffeic acid phenethyl ester (CAPE) in a rat model of ceruleaninduced acute pancreatitis (AP). METHODS: Seventy male Wistar albino rats were divided into seven groups. Acute edematous pancreatitis was induced by subcutaneous cerulein injection (20 μg/kg) four times at 1-h intervals. CAPE (30 mg/kg) was given by subcutaneous injection at the beginning (CAPE 1 group) and 12 h after the last cerulein injection (CAPE 2 group). Serum amylase, lipase, white blood cell count, and tumor necrosis factor (TNF)-α levels were measured, and pancreatic histopathology was assessed. RESULTS: In the AP group, amylase and lipase levels were found to be elevated and the histopathological evaluation showed massive edema and inflammation of the pancreas, with less fatty necrosis when compared with sham and control groups. Amylase and lipase levels and edema formation decreased significantly in the CAPE therapy groups (P < 0001); especially in the CAPE 2 group, edema was improved nearly completely (P = 0001). Inflammation and fatty necrosis were partially recovered by CAPE treatment. The pathological results and amylase level in the placebo groups were similar to those in the AP group. White blood cell count and TNF-α concentration was nearly the same in the CAPE and placebo groups. CONCLUSION: CAPE may be useful agent in treatment of AP but more experimental and clinical studies are needed to support our observation of beneficial effects of CAPE before clinical usage of this agent.

  4. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats.

    Science.gov (United States)

    Barros Silva, R; Santos, N A G; Martins, N M; Ferreira, D A S; Barbosa, F; Oliveira Souza, V C; Kinoshita, A; Baffa, O; Del-Bel, E; Santos, A C

    2013-03-13

    Caffeic acid phenethyl ester (CAPE) is a botanical compound abundant in honeybees' propolis. It has anti-inflammatory, antiviral, antioxidant, immunomodulatory and antitumor properties. Its beneficial effects against neurodegenerative diseases, including Parkinson's disease, have also been suggested and some mechanisms have been proposed. Mitochondrial damage and oxidative stress are critical events in neurodegeneration. Release of cytochrome c from mitochondria to cytosol and the downstream activation of caspase-3 have been suggested as targets of the protective mechanism of CAPE. Most of the studies addressing the protective effect of CAPE have been performed in cell culture. This is the first study to demonstrate the protective effect of CAPE against the dopaminergic neuronal loss induced by 6-hydroxydopamine (6-OHDA) in rats. It also demonstrates, for the first time, the inhibitory effect of CAPE on mitochondrial permeability transition (MPT), a mediator of neuronal death that triggers cytochrome c release and caspase-3 activation. Scavenging of reactive oxygen species (ROS) and metal chelation was demonstrated in the brain-affected areas of the rats treated with 6-OHDA and CAPE. Additionally, we demonstrated that CAPE does not affect brain mitochondrial function. Based on these findings and on its ability to cross the blood-brain barrier, CAPE is a promising compound to treat Parkinson's and other neurodegenerative diseases.

  5. The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity.

    Science.gov (United States)

    Noelker, Carmen; Bacher, Michael; Gocke, Petra; Wei, Xing; Klockgether, Thomas; Du, Yansheng; Dodel, Richard

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta. 6-Hydroxydopamine (6-OHDA) is specific to dopaminergic neurons in intrastriatal rodent models. It induces neuronal death either via uncoupling mitochondrial oxidative phosphorylation resulting in energy deprivation or alternatively, is associated with its ability to produce hydrogen peroxide, hydroxyl and superoxide radicals. Caffeic acid phenethyl ester (CAPE), an antioxidant flavanoid, has antiviral, anti-inflammatory, antioxidant, and immunomodulatory properties. Recent studies have shown that CAPE has also a neuroprotective effects in ischemia and low potassium-induced neuronal apoptotic models. In cerebellar granule neurons CAPE significantly blocks 6-OHDA mediated cell death (70 microM) in a dose-dependent manner. Furthermore, CAPE was able to modulate the Ca(2+)-induced release of cyctochrome c in isolated liver mitochondria. Caspase-3 activation following 6-OHDA treatment was markedly inhibited in the presence of CAPE. Although the molecular mechanisms associated with CAPE's neuroprotective effects remain to be elucidated in more detail, our results clearly demonstrate a considerable neuroprotective effect of CAPE. Since a mitochondrial insult is a major cause for the degeneration of nigral neurons in PD, we hypothesize that propolis derivatives, in particular CAPE, may have a neuroprotective effect on those cells and may be a promising drug candidate to be taken into in vivo models of PD.

  6. Protective Effects of Intralipid and Caffeic Acid Phenethyl Ester on Nephrotoxicity Caused by Dichlorvos in Rats

    Directory of Open Access Journals (Sweden)

    Muhammet Murat Celik

    2015-01-01

    Full Text Available The protective effects of Caffeic Acid Phenethyl Ester (CAPE and intralipid (IL on nephrotoxicity caused by acute Dichlorvos (D toxicity were investigated in this study. Forty-eight Wistar Albino rats were divided into 7 groups as follows: Control, D, CAPE, intralipid, D + CAPE, D + IL, and D + CAPE + IL. When compared to D group, the oxidative stress index (OSI values were significantly lower in Control, CAPE, and D + IL + CAPE groups. When compared to D + IL + CAPE group, the TOS and OSI values were significantly higher in D group (P<0.05. When mitotic cell counts were assessed in the renal tissues, it was found that mitotic cell count was significantly higher in the D group while it was lower in the D + CAPE, D + IL, and D + IL + CAPE groups when compared to the control group (P<0.05. Also, immune reactivity showed increased apoptosis in D group and low profile of apoptosis in the D + CAPE group when compared to the Control group. The apoptosis level was significantly lower in D + IL + CAPE compared to D group (P<0.05 in the kidneys. As a result, we concluded that Dichlorvos can be used either alone or in combination with CAPE and IL as supportive therapy or as facilitator for the therapeutic effect of the routine treatment in the patients presenting with pesticide poisoning.

  7. In vivo and in vitro antıneoplastic actions of caffeic acid phenethyl ester (CAPE): therapeutic perspectives.

    Science.gov (United States)

    Akyol, Sumeyya; Ozturk, Gulfer; Ginis, Zeynep; Armutcu, Ferah; Yigitoglu, M Ramazan; Akyol, Omer

    2013-01-01

    Cancer prevention and treatment strategies have attracted increasing interest. Caffeic acid phenethyl ester (CAPE), an active component of propolis extract, specifically inhibits NF-κB at μM concentrations and shows ability to stop 5-lipoxygenase-catalyzed oxygenation of linoleic acid and arachidonic acid. Previous studies have demonstrated that CAPE exhibits antioxidant, antiinflammatory, antiproliferative, cytostatic, antiviral, antibacterial, antifungal, and, most improtantly, antineoplastic properties. The primary goal of the present review is to summarize and critically evaluate the current knowledge regarding the anticancer effect of CAPE in different cancer types.

  8. Effects of caffeic acid phenethyl ester on palatal mucosal defects and tooth extraction sockets

    Directory of Open Access Journals (Sweden)

    Günay A

    2014-10-01

    Full Text Available Ahmet Günay,1 Osman Fatih Arpağ,2 Serhat Atilgan,3 Ferhan Yaman,3 Yusuf Atalay,4 İzzet Acikan3 1Department of Periodontology, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey; 2Department of Periodontology, Faculty of Dentistry, Mustafa Kemal University, Hatay, Turkey; 3Department of Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey; 4Department of Maxillofacial Surgery, Faculty of Dentistry, Kocatepe University, Afyon, Turkey Aim: The purpose of this study was to evaluate the effects of caffeic acid phenethyl ester (CAPE on palatal mucosal defects and tooth extraction sockets in an experimental model.Materials and methods: Forty-two male Sprague-Dawley rats with a mean age of 7 weeks and weighing 280–490 g were used in this study. The rats were randomly divided into two groups: group A (the control group, n=21 and group B (the experimental group, n=21. Under anesthesia with ketamine (8 mg/100 g, intraperitoneally, palatal mucosal defects were created and tooth extraction was performed in the rats in groups A and B. Group A received no treatment, whereas group B received CAPE. CAPE was injected daily (10 µmol/kg, intraperitoneally. The rats were killed on days 7, 14, and 30 after the procedures. Palatal mucosa healing and changes in bone tissue and fibrous tissue were evaluated histopathologically.Result: Pairwise comparisons showed no statistically significant difference between days 7 and 14 in either group (P>0.05. At day 30, bone healing was significantly better in group B (CAPE than in group A (control (P<0.05. Fibrinogen levels at day 30 were significantly higher in group A (control than in group B (CAPE (P<0.05. Pairwise comparisons showed no statistically significant difference in palatal mucosa healing levels between days 7 and 14 in both groups (P>0.05.Conclusion: In conclusion, the findings of this study suggest that CAPE can significantly improve tooth socket healing. Keywords: caffeic

  9. Caffeic acid phenethyl ester modulates aflatoxin B1-induced hepatotoxicity in rats.

    Science.gov (United States)

    Akçam, Mustafa; Artan, Reha; Yilmaz, Aygen; Ozdem, Sebahat; Gelen, Tekinalp; Nazıroğlu, Mustafa

    2013-12-01

    Aflatoxin B1 (AFB1) is the most potent of the mycotoxins and is widely observed in nutrition abnormalities. There are some studies suggesting oxidative stress-induced toxic changes on liver related to AFB1 toxicity. The aim of the present study was to evaluate whether antioxidant caffeic acid phenethyl ester (CAPE) relieves oxidative stress in AFB1-induced liver injury in rat. Twenty-four male rats were equally divided into three groups. The first group was used as a control. The second group received three doses of AFB1. The three doses of CAPE were given to constitute the third group with doses of AFB1. After 10 days of experiment, liver and serum samples were taken from all animals. Serum gamma glutamyl transferase (GGT), alkaline phosphatase (ALP), glutathione s-transferase (GST), nitric oxide (NO) and sulfhydryl values were higher in the AFB1 group than in control, whereas serum GGT, ALP, GST and NO values were decreased by in the AFB1 + CAPE group than in AFB1 group. Liver GST, total oxidant capacity, sulfhydryl, apoptosis index and ischemia-modified albumin values were higher in the AFB1 group than in control, whereas the GST activity and apoptosis index were lower in the AFB1 + CAPE group than in the AFB1 group. There were histopathological degeneration and apoptosis in hepatocytes of AFB1 group. The findings were totally recovered by CAPE administration. In conclusion, we observed that AFB1 caused oxidative and nitrosative hepatoxicity to hepatocytes in the rat. However, CAPE induced protective effects on the AFB1-induced hepatoxicity by modulating free radical production, biochemical values and histopathological alterations.

  10. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; De-Bing Xiang; Yu-Jun He; Zeng-Peng Li; Xiao-Hua Wu; Jiang-Hong Mou; Hua-Liang Xiao; Qing-Hong Zhang

    2005-01-01

    AIM: To study the effect of caffeic acid phenethyl ester (CAPE)on proliferation, cell cycle, apoptosis and expression of β-catenin in cultured human colorectal cancer (CRC) cell line HCT116.METHODS: HCT116 cells were treated with CAPE at serial concentrations of 80, 40, 20, 10, 5, 2.5 mg/L. The proliferative status of HCT116 cells was measured by using methabenzthiazuron (MTT) assay. Cell cycle was analyzed by using flow cytometry (FCM) with propidium iodide (PI) labeling method. The rate of apoptosis was detected by using FCM with annexin V-FITC and PI double labeling method.β-catenin levels were determined by Western blotting.β-catenin localization in HCT116 was determined by indirect i mmunofluorescence.RESULTS: After HCT116 cells were exposed to CAPE (80,40, 20, 10, 5, and 2.5 mg/L) for 24, 48, 72, 96 h, CAPE displayed a strong growth inhibitory effect in a dose- and time-dependent manner against HCT116 cells. FCM analysis showed that the ratio of G0/G1 phase cells increased, S phase ratio decreased and apoptosis rate increased after HCT116 cells were exposed to CAPE (10, 5, and 2.5 mg/L)for 24 h. CAPE treatment was associated with decreased cytoplasmic β-catenin, nuclear β-catenin and a concurrent increase in β-catenin protein expression at cell-cell junctions.CONCLUSION: CAPE could inhibit HCT116 cell proliferation and induce cell cycle arrest and apoptosis. Decreased β-catenin protein expression may mediate the anti-proliferative effects of CAPE.

  11. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice.

    Science.gov (United States)

    Park, Jae Hyun; Lee, Jong Kwon; Kim, Hyung Soo; Chung, Seung Tae; Eom, Juno H; Kim, Kyung A; Chung, Se Jin; Paik, Soon Young; Oh, Hye Young

    2004-03-01

    Caffeic acid phenethyl ester (CAPE), an the active component of propolis, is known to have anticarcinogenic, antiviral and various biological activities; however, the effect of CAPE on the immunomodulatory activity in vivo remains unknown. We have investigated the effect of CAPE on the immune system in female Balb/c mice. CAPE (0, 5, 10, 20 mg/kg) was given to mice orally for 14 days. Immunomodulatory activity was evaluated by assessment of body and organ weight, lymphocyte blastogenesis, plaque-forming cell (PFC) assay, lymphocyte subpopulation by flow cytometry and cytokine production. Even though the change of body weight was not observed in CAPE-administered group, thymus weight and/or cellularity of thymus and spleen are decreased at the all dose groups of CAPE (5, 10, 20 mg/kg). On the other hand, CAPE had no effect on B lymphocyte proliferation induced by lipopolysaccharide (LPS) but increased T lymphocyte blastogenesis induced by concanavalin A (Con A) at the dose of 20 mg/kg. In the case of lymphocyte subpopulation, the population of T and B cells was not changed but CD4(+) T cell subsets are significantly increased in exposure to CAPE. The antibody responses to T lymphocyte dependent antigen, sheep red blood cell and keyhole limpet hemocyanin (KLH) were increased more than 10 mg/kg in CAPE-treated group. Likewise, the cytokine, IL-2, IL-4 and IFN-gamma were significantly increased at the dose of 20 mg/kg CAPE group. These results suggest that CAPE could have immunomodulatory effects in vivo.

  12. Induction of Cell Cycle Arrest and Apoptotic Response of Head and Neck Squamous Carcinoma Cells (Detroit 562) by Caffeic Acid and Caffeic Acid Phenethyl Ester Derivative

    Science.gov (United States)

    Tanasiewicz, Marta

    2017-01-01

    Natural polyphenols have been observed to possess antiproliferative properties. The effects, including apoptotic potential of bioactive phenolic compounds, caffeic acid (CA) and its derivative caffeic acid phenethyl ester (CAPE), on cell proliferation and apoptosis in human head and neck squamous carcinoma cells (HNSCC) line (Detroit 562) were investigated and compared. Cancer cells apoptosis rates and cell cycle arrests were analysed by flow cytometry. Exposure to CA and CAPE was found to result in a dose-dependent decrease in the viability of Detroit 562 cells at different levels. CA/CAPE treatment did significantly affect the viability of Detroit 562 cells (MTT results). CAPE-mediated loss of viability occurred at lower doses and was more pronounced, with the concentrations which inhibit the growth of cells by 50% estimated at 201.43 μM (CA) and 83.25 μM (CAPE). Dead Cell Assay with Annexin V labelling demonstrated that CA and CAPE treatment of Detroit 562 cells resulted in an induction of apoptosis at 50 μM and 100 μM doses. The rise of mainly late apoptosis was observed for 100 μM dose and CA/CAPE treatment did affect the distribution of cells in G0/G1 phase. A combination of different phenolic compounds, potentially with chemotherapeutics, could be considered as an anticancer drug. PMID:28167973

  13. Protective effects of caffeic acid and caffeic acid phenethyl ester against acrolein-induced neurotoxicity in HT22 mouse hippocampal cells.

    Science.gov (United States)

    Huang, Yingjuan; Jin, Minghua; Pi, Rongbiao; Zhang, Junjie; Chen, Meihui; Ouyang, Ying; Liu, Anmin; Chao, Xiaojuan; Liu, Peiqing; Liu, Jun; Ramassamy, Charles; Qin, Jian

    2013-02-22

    Acrolein-induced oxidative stress is hypothesized to involve in the etiology of Alzheimer's disease (AD). Caffeic acid (CA) and caffeic acid phenethyl ester (CAPE) have antioxidative and neuroprotective properties. The present study investigated the protective effects of CA/CAPE on acrolein-induced oxidative neuronal toxicity. HT22 mouse hippocampal cells were pretreated with CA/CAPE and then exposed to acrolein. Cell viability, intracellular reactive oxygen species (ROS), and glutathione (GSH) level were measured. MAPKs and Akt/GSK3β signaling proteins as well as α/β-secretase of amyloid protein precursor were assayed by Western blotting. Pretreatment with CA/CAPE significantly attenuated acrolein-induced neurotoxicity, ROS accumulation, and GSH depletion. Further study suggested that CA/CAPE showed protective effects against acrolein by modulating MAPKs and Akt/GSK3β signaling pathways. Moreover, CA/CAPE restored the changes of β-secretase (BACE-1) and/or activation of α-secretase (ADAM-10) induced by acrolein. These findings suggest that CA/CAPE may provide a promising approach for the treatment of acrolein-related neurodegenerative diseases, such as AD.

  14. The potential usage of caffeic acid phenethyl ester (CAPE) against chemotherapy-induced and radiotherapy-induced toxicity.

    Science.gov (United States)

    Akyol, Sumeyya; Ginis, Zeynep; Armutcu, Ferah; Ozturk, Gulfer; Yigitoglu, M Ramazan; Akyol, Omer

    2012-07-01

    Protection of the patients against the side effects of chemotherapy and radiotherapy regimens has attracted increasing interest of clinicians and practitioners. Caffeic acid phenethyl ester (CAPE), which is extracted from the propolis of honeybee hives as an active component, specifically inhibits nuclear factor κB at micromolar concentrations and show ability to stop 5-lipoxygenase-catalysed oxygenation of linoleic acid and arachidonic acid. CAPE has antiinflammatory, antiproliferative, antioxidant, cytostatic, antiviral, antibacterial, antifungal and antineoplastic properties. The purpose of this review is to summarize in vivo and in vitro usage of CAPE to prevent the chemotherapy-induced and radiotherapy-induced damages and side effects in experimental animals and to develop a new approach for the potential usage of CAPE in clinical trial as a protective agent during chemotherapy and radiotherapy regimens.

  15. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    Directory of Open Access Journals (Sweden)

    Sumeyya Akyol

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R. In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility.

  16. Caffeic acid phenethyl ester as a protective agent against nephrotoxicity and/or oxidative kidney damage: a detailed systematic review.

    Science.gov (United States)

    Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Hasgul, Rukiye; Cakmak, Ozlem; Akyol, Omer

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R). In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility.

  17. Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquids:Effect of Specific Ions and Reaction Parameters

    Institute of Scientific and Technical Information of China (English)

    王俊; 李晶; 张磊霞; 顾双双; 吴福安

    2013-01-01

    Caffeic acid phenethyl ester (CAPE) is a rare, naturally occurring phenolic food additive. This work systematically reported fundamental data on conversion of caffeic acid (CA), yield of CAPE, and reactive selectiv-ity during the lipase-catalyzed esterification process of CA and phenylethanol (PE) in ionic liquids (ILs). Sixteen ILs were selected as the reaction media, and the relative lipase-catalyzed synthesis properties of CAPE were meas-ured in an effort to enhance the yield of CAPE with high selectivity. The results indicated that ILs containing weakly coordinating anions and cations with adequate alkyl chain length improved the synthesis of CAPE. [Emim][Tf2N] was selected as the optimal reaction media. The optimal parameters were as follows by response surface methodology (RSM):reaction temperature, 84.0 °C;mass ratio of Novozym 435 to CA, 14︰1;and molar ratio of PE to CA, 16︰1. The highest reactive selectivity of CAPE catalyzed by Novozym 435 in [Emim][Tf2N] reached 64.55%(CA conversion 98.76%and CAPE yield 63.75%, respectively). Thus, lipase-catalyzed esterifica-tion in ILs is a promising method suitable for CAPE production.

  18. Enhancement of Lipase-catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquid with DMSO Co-solvent☆

    Institute of Scientific and Technical Information of China (English)

    Shuangshuang Gu; Jun Wang; Xianbin Wei; Hongsheng Cui; Xiangyang Wu; Fuan Wu

    2014-01-01

    Caffeic acid phenethyl ester (CAPE) is a natural and rare ingredient with several biological activities, but its indus-trial production using lipase-catalyzed esterification of caffeic acid (CA) and 2-phenylethanol (PE) in ionic liquids (ILs) is hindered by low substrate concentrations and long reaction time. To set up a high-efficiency bioprocess for production of CAPE, a novel dimethyl sulfoxide (DMSO)–IL co-solvent system was established in this study. The 2%(by volume) DMSO–[Bmim][Tf2N] system was found to be the best medium with higher substrate solu-bility and conversion of CA. Under the optimum conditions, the substrate concentration of CA was raised 8-fold, the reaction time was reduced by half, and the conversion reached 96.23%. The kinetics follows a ping-pong bi-bi mechanism with inhibition by PE, with kinetic parameters as follows:Vmax=0.89 mmol · min−1 · g−1, Km,CA=42.9 mmol · L−1, Km,PE=165.7 mmol · L−1, and Ki,PE=146.2 mmol · L−1. The results suggest that the DMSO co-solvent effect has great potential to enhance the enzymatic synthesis efficiency of CAPE in ILs.

  19. Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout.

    Science.gov (United States)

    Lee, Hye Eun; Yang, Gabsik; Kim, Nam Doo; Jeong, Seongkeun; Jung, Yunjin; Choi, Jae Young; Park, Hyun Ho; Lee, Joo Young

    2016-12-09

    Gouty arthritis is caused by the deposition of uric acid crystals, which induce the activation of NOD-like receptor family, pyrin domain containing 3(NLRP3) inflammasome. The NLRP3 inflammasome, composed of NLRP3, the adaptor protein ASC, and caspase-1, is closely linked to the pathogenesis of various metabolic diseases including gouty arthritis. We investigated whether an orally administrable inhibitor of NLRP3 inflammasome was effective for alleviating the pathological symptoms of gouty arthritis and what was the underlying mechanism. In primary mouse macrophages, caffeic acid phenethyl ester(CAPE) blocked caspase-1 activation and IL-1β production induced by MSU crystals, showing that CAPE suppresses NLRP3 inflammasome activation. In mouse gouty arthritis models, oral administration of CAPE suppressed MSU crystals-induced caspase-1 activation and IL-1β production in the air pouch exudates and the foot tissues, correlating with attenuation of inflammatory symptoms. CAPE directly associated with ASC as shown by SPR analysis and co-precipitation, resulting in blockade of NLRP3-ASC interaction induced by MSU crystals. Our findings provide a novel regulatory mechanism by which small molecules harness the activation of NLRP3 inflammasome by presenting ASC as a new target. Furthermore, the results suggest the preventive or therapeutic strategy for NLRP3-related inflammatory diseases such as gouty arthritis using orally available small molecules.

  20. Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout

    Science.gov (United States)

    Lee, Hye Eun; Yang, Gabsik; Kim, Nam Doo; Jeong, Seongkeun; Jung, Yunjin; Choi, Jae Young; Park, Hyun Ho; Lee, Joo Young

    2016-01-01

    Gouty arthritis is caused by the deposition of uric acid crystals, which induce the activation of NOD-like receptor family, pyrin domain containing 3(NLRP3) inflammasome. The NLRP3 inflammasome, composed of NLRP3, the adaptor protein ASC, and caspase-1, is closely linked to the pathogenesis of various metabolic diseases including gouty arthritis. We investigated whether an orally administrable inhibitor of NLRP3 inflammasome was effective for alleviating the pathological symptoms of gouty arthritis and what was the underlying mechanism. In primary mouse macrophages, caffeic acid phenethyl ester(CAPE) blocked caspase-1 activation and IL-1β production induced by MSU crystals, showing that CAPE suppresses NLRP3 inflammasome activation. In mouse gouty arthritis models, oral administration of CAPE suppressed MSU crystals-induced caspase-1 activation and IL-1β production in the air pouch exudates and the foot tissues, correlating with attenuation of inflammatory symptoms. CAPE directly associated with ASC as shown by SPR analysis and co-precipitation, resulting in blockade of NLRP3-ASC interaction induced by MSU crystals. Our findings provide a novel regulatory mechanism by which small molecules harness the activation of NLRP3 inflammasome by presenting ASC as a new target. Furthermore, the results suggest the preventive or therapeutic strategy for NLRP3-related inflammatory diseases such as gouty arthritis using orally available small molecules. PMID:27934918

  1. Morphological changes of apoptosis and cytotoxic effects induced by Caffeic acid phenethyl ester in AGS human gastric cancer cell line

    Directory of Open Access Journals (Sweden)

    Amini-Sarteshnizi Nematollah

    2014-04-01

    Full Text Available Introduction: Gastric cancer is the fourth prevalent cancer and the second reason for cancer-associated mortalities worldwide. Caffeic acid phenethyl ester (CAPE is one of the main medicinal components of propolis. The aim of this study was to investigate the morphological apoptotic changes and cytotoxic effects of CAPE in human gastric adenocarcinoma cell line (AGS cell. Methods: AGS human gastric cancer cell line was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM medium in vitro. Cytotoxic effects and morphological changes induced by 72 h treatment with CAPE at different concentrations on AGS cells were investigated by MTT assay test and inverted microscope, respectively. Results: CAPE in a concentration dependent fashion reduced viability of AGS cells. IC50 was obtained approximately 10 μM at 72 h treatment. Also, CAPE induced concentration-dependent morphological apoptotic changes and promoted complete apoptosis program in AGS human gastric cancer cell line. Conclusion: Our results strongly suggest that CAPE stimulates apoptotic process and leads to cell death. Therefore, CAPE could be useful in developing chemotherapeutic agents for treating human gastric cancer.

  2. Fibrinolytic Activity and Dose-Dependent Effect of Incubating Human Blood Clots in Caffeic Acid Phenethyl Ester: In Vitro Assays

    Directory of Open Access Journals (Sweden)

    Abuzar Elnager

    2015-01-01

    Full Text Available Background. Caffeic acid phenethyl ester (CAPE has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM. After 3 hours, D-dimer (DD levels and WB clot weights were measured for each concentration. Thromboelastography (TEG parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM. The 50% effective dose (ED50 of CAPE (based on DD was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted.

  3. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    Science.gov (United States)

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  4. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    Directory of Open Access Journals (Sweden)

    Aburrahman Gun

    2016-01-01

    Full Text Available Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS. HFCS (6 weeks, 30% fed with drinking water caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  5. Attenuating effects of caffeic acid phenethyl ester with intralipid on hepatotoxicity of chlorpyrifos in the case of rats

    Directory of Open Access Journals (Sweden)

    Recep Dokuyucu

    2016-12-01

    Full Text Available Background: Chlorpyrifos (CPF, insecticide widely used in agriculture, may cause poisonings in the case of humans. As a result, there is a large amount of treatment research underway to focus on the possibility of chlorpyrifos induced poisonings. The aim of this study has been to evaluate the effects of caffeic acid phenethyl ester (CAPE and intralipid (IL on hepatotoxicity induced by chlorpyrifos in the case of rats. Material and Methods: The rats in this study were treated with CPF (10 mg/kg body weight (b.w., orally, CAPE (10 μmol/kg b.w., intraperitoneally, IL (18.6 ml/kg b.w., orally, CPF+CAPE, CPF+IL, and CPF+CAPE+IL. The plasma total oxidant capacity (TOC, total antioxidant capacity (TAC were measured and the oxidative stress index (OSI was calculated. Liver histopathology and immunohistochemical staining were performed. Results: Chlorpyrifos statistically significantly decreased the TAC levels in the rats’ plasma and increased the apoptosis and the TOC and OSI levels. In the chlorpyrifos induced liver injury, CAPE and CAPE+IL significantly decreased the plasma OSI levels and the apoptosis, and significantly increased the plasma TAC levels. Conclusions: This study revealed that CAPE and CAPE+IL attenuate chlorpyrifos induced liver injuries by decreasing oxidative stress and apoptosis. Med Pr 2016;67(6:743–749

  6. Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats.

    Science.gov (United States)

    Ilhan, Atilla; Akyol, Omer; Gurel, Ahmet; Armutcu, Ferah; Iraz, Mustafa; Oztas, Emin

    2004-08-01

    Because oxidative damage has been known to be involved in inflammatory and autoimmune-mediated tissue destruction, modulation of oxygen free radical production represents a new approach to the treatment of inflammatory and autoimmune diseases. Central nervous system tissue is particularly vulnerable to oxidative damage, suggesting that oxidation plays an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Caffeic acid phenethyl ester (CAPE), an active component of honeybee propolis, has been determined to have antioxidant, anti-inflammatory, antiviral, and anticancer activities. We have previously reported that CAPE inhibits ischemia-reperfusion injury and oxidative stress in rabbit spinal cord tissue. The present study, therefore, examined effects of CAPE on oxidative tissue damage in EAE in rats. Treatment with CAPE significantly inhibited reactive oxygen species (ROS) production induced by EAE, and ameliorated clinical symptoms in rats. These results suggest that CAPE may exert its anti-inflammatory effect by inhibiting ROS production at the transcriptional level through the suppression of nuclear factor kappaB activation, and by directly inhibiting the catalytic activity of inducible nitric oxide synthase.

  7. Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mi-Sook Lee

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST and forced swim (FST tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234, resulting in an increased pGR(S220/S234 ratio. We also observed negative correlations between pGR(S220/(S234 and p38 mitogen-activated protein kinase (p38MAPK phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function.

  8. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of hepatic stellate cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Wen-Xing Zhao; Jing Zhao; Chong-Li Liang; Bing Zhao; Rong-Qing Pang; Xing-Hua Pan

    2003-01-01

    AIM: To investigate the role of nuclear factor-κB (NF-κB)inhibitor caffeic acid phenethy1 ester (CAPE) in the proliferation, collagen synthesis and apoptosis of hepatic stellate cells (HSCs) of rats. METHODS: The HSCs from rats were isolated and cultured in Dulbecco's Modified Eagle's Medium (DMEM) and treated with CAPE. The proliferation and collagen synthesis of HSCs were determined by 3H-TdR and 3H-proline incorporation respectively, and the expression of type Ⅰ, Ⅲ procollagen genes was further explored byin situ hybridization. Apoptosis cell indices (AIs) were examined using terminal deoxynucleotidyl transferase- mediated DIG-dUTP nick end labeling (TUNEL). RESULTS: Tn activated HSC in culture, CAPE significantly inhibited 3H-TdR and 3H-proline incorporation by HSCs at concentrations of 5 μmol/L and 10 μmol/L respectively. CAPE also reduced the type I procollagen gene expression (P<0.05)at higher concentration. Apoptosis of HSC was induced by CAPE and the AIs were time-and dose-dependently increased from 2.82+0.73 % to 7.66±1.25 % at 12 h (P<0.01) and from 3.15±0.88 % to 10.6L±2.88 % at 24 h (P<0.01). CONCLUSION: CAPE inhibits proliferation and collagen synthesis of HSC at lower concentration and induces HSC apoptosis at higher concentration.

  9. Protective effects of caffeic acid phenethyl ester against acute radiation-induced hepatic injury in rats.

    Science.gov (United States)

    Chu, JianJun; Zhang, Xiaojun; Jin, Liugen; Chen, Junliang; Du, Bin; Pang, Qingfeng

    2015-03-01

    Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. The current study was intended to evaluate the protective effect of CAPE against the acute radiation-induced liver damage in rats. Male Sprague-Dawley rats were intraperitoneally administered with CAPE (30 mg/kg) for 3 consecutive days before exposing them to a single dose of 30 Gy of β-ray irradiation to upper abdomen. We found that pretreatment with CAPE significantly decreased the serum levels of alanine aminotransferase and aspartate aminotransferase and increased the activity of superoxide dismutase and glutathione. Histological evaluation further confirmed the protection of CAPE against radiation-induced hepatotoxicity. TUNEL assay showed that CAPE pretreatment inhibited hepatocyte apoptosis. Moreover, CAPE inhibited the nuclear transport of NF-κB p65 subunit, decreased the level of tumor necrosis factor-α, nitric oxide and inducible nitric oxide synthase. Taken together, these results suggest that pretreatment with CAPE offers protection against radiation-induced hepatic injury.

  10. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells.

    Science.gov (United States)

    Jin, Un-Ho; Song, Kwon-Ho; Motomura, Muneo; Suzuki, Ikukatsu; Gu, Yeun-Hwa; Kang, Yun-Jeong; Moon, Tae-Chul; Kim, Cheorl-Ho

    2008-03-01

    Caffeic acid phenyl ester (CAPE), a biologically active ingredient of propolis, has several interesting biological properties including antioxidant, anti-inflammatory, antiviral, immunostimulatory, anti-angiogenic, anti-invasive, anti-metastatic and carcinostatic activities. Recently, several groups have reported that CAPE is cytotoxic to tumor cells but not to normal cells. In this study, we investigated the mechanism of CAPE-induced apoptosis in human myeloid leukemia U937 cells. Treatment of U937 cells with CAPE decreased cell viability in a dose-dependent and time-dependent manner. DNA fragmentation assay revealed the typical ladder profile of oligonucleosomal fragments in CAPE-treated U937 cells. In addition, as evidenced by the nuclear DAPI staining experiment, we observed that the nuclear condensation, a typical phenotype of apoptosis, was found in U937 cells treated with 5 microg/ml of CAPE. Therefore, it was suggested that CAPE is a potent agent inducing apoptosis in U937 cells. Apoptotic action of the CAPE was accompanied by release of cytochrome C, reduction of Bcl-2 expression, increase of Bax expression, activation/cleavage of caspase-3 and activation/cleavage of PARP in U937 cells, but not by Fas protein, an initial mediator in the death signaling, or by phospho-eIF2 alpha and CHOP, crucial mediators in ER-mediated apoptosis. From the results, it was concluded that CAPE induces the mitochondria-mediated apoptosis but not death receptors- or ER-mediated apoptosis in U937 cells.

  11. A single dose of caffeic acid phenethyl ester prevents initiation in a medium-term rat hepatocarcinogenesis model

    Institute of Scientific and Technical Information of China (English)

    Claudia Esther Carrasco-Legleu; Yesennia Sánchez-Pérez; Lucrecia Márquez-Rosado; Samia Fattel-Fazenda; Evelia Arce-Popoca; Sergio Hernández-García; Saú1 Villa-Trevi(n)o

    2006-01-01

    AIM:To study of the effect of caffeic acid phenethyl ester (CAPE) on the initiation period in a medium-term assay of hepatocarcinogenesis.METHODS: Male Wistar rats were subjected to a carcinogenic treatment (CT) and sacrificed at 25th d;altered hepatic foci (AHF) were generated efficiently.To a second group of rats a single 20 mg/kg doses of CAPE was given 12 h before initiation with CT and were sacrificed at 25th d. We evaluated the expression of preneoplastic markers as y-glutamyltranspeptidase (GGT) and glutathione S-transferase type pi protein (GSTp) by histochemistry, RT-PCR and Western blot analyses, respectively. We measured thiobarbituric acid reactive substances (TBARS) in homogenates of liver and used Unscheduled DNA Synthesis (UDS) assay by incorporation of [3H] thymidine (3HdT) in primary hepatocyte cultures (PHC).RESULTS:At 25th d after CT CAPE reduced the observed increase of GGT+AHF by 84% and liver expression of ggt mRNA by 100%. In case of the GSTp protein, the level was reduced by 90%. As indicative of oxidative stress generated by diethylnitrosamine (DEN) 12 h after its administration, we detected a 68% increase of TBARS.When CAPE was administered before DEN, it completely protected from liver TBARS induction. To have an indication of the sole effect of CAPE on initiation, two carcinogens were tested in a UDS assay in PHC, we used methyl-n-nitrosoguanidine as a direct carcinogen and DEN, as indirect carcinogen. In this assay, genotoxic damage caused by carcinogens was abolished at 5μM CAPE concentration.CONCLUSION:Our results demonstrated that CAPE possesses anti-genotoxic and antineoplastic capabilities,by an anti-oxidative and free-radical scavenging mechanism.

  12. Oxidative stress in testicular tissues of rats exposed to cigarette smoke and protective effects of caffeic acid phenethyl ester

    Institute of Scientific and Technical Information of China (English)

    Hüseyin Ozyurt; Hidir Pekmez; Bekir Suha Parlaktas; Ilter Kus; Birsen Ozyurt; Mustafa Sarsllmaz

    2006-01-01

    Aim: To show the oxidative stress after cigarette smoke exposure in rat testis and to evaluate the effects of caffeic acid phenethyl ester (CAPE). Methods: Twenty-one rats were divided into three groups of seven. Animals in Group Ⅰwere used as control. Rats in Group Ⅱ were exposed to cigarette smoke only (4 x 30 min/d) and rats in Group Ⅲall the rats were killed and the levels of nitric oxide (NO) and anti-oxidant enzymes such as superoxide-dismutase,catalase and glutathione peroxidase (GSH-Px) and the level of malondialdehyde were studied in the testicular tissues of rats with spectrophotometric analysis. Results: There was a significant increase in catalase and superoxide-dismutase activities in Group Ⅱ when compared to the controls, but the levels of both decreased after CAPE administration in Group Ⅲ. GSH-Px activity was decreased in Group Ⅱ but CAPE caused an elevation in GSH-Px activity in Group Ⅲ.The difference between the levels of GSH-Px in Group Ⅰ and Group Ⅱ was significant, but the difference between groups Ⅱ and Ⅲ was not significant. Elevation of malondialdehyde after smoke exposure was significant and CAPE caused a decrease to a level which was not statistically different to the control group. A significantly increased level of NO after exposure to smoke was reversed by CAPE administration and the difference between NO levels in groups Ⅰ and Ⅲ was statistically insignificant. Conclusion: Exposure to cigarette smoke causes changes in the oxidative enzyme levels in rat testis, but CAPE can reverse these harmful effects.

  13. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ping Lin

    Full Text Available Caffeic acid phenethyl ester (CAPE treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.

  14. Evaluation of the effect of Chrysin and Caffeic acid phenethyl ester on eIF4E expression in AGS cell line

    Directory of Open Access Journals (Sweden)

    Abolhasani Marziyeh

    2014-04-01

    Full Text Available Introduction: The Ras/Akt/mTORC1 signal transduction pathways play a critical role in regulating translation and converge on initiation factor eukaryotic translation initiation factor 4E (eIF4E which is overexpressed in various malignancies. In the current study we aimed to assess the effect of chrysin and caffeic acid phenethyl ester (CAPE on eIF4E expression level in human stomach cancer AGS cell line. Methods: AGS cells were treated with 15, 20, 30 and 40 μM concentration of chrysin and CAPE separately, then eIF4E expression was evaluated in treated cells using real time-PCR method. Results: A significant decrease in eIF4E expression in the cells following 40 μM chrysin treatment was observed (p<0.05. There was a significant decrease in CAPE-treated cells in a dose dependent manner. Indeed the cells treated with 30 and 40 μM concentrations of CAPE, showed a significant decline in eIF4E expression (p<0.05. Conclusion: Our results suggest that CAPE and chrysin may be useful as a potential therapeutic agent for treatment of gastric cancers with an elevated eIF4E expression level.

  15. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  16. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells.

    Science.gov (United States)

    Lee, Yean-Jang; Kuo, Hsing-Chun; Chu, Chia-Yih; Wang, Chau-Jong; Lin, Wan-Chyi; Tseng, Tsui-Hwa

    2003-12-15

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has many biological and pharmacological activities including antioxidant, anti-inflammation, antiviral action, and anticancer effect. Our previous studies showed that CAPE exhibited significant cytotoxicity in oral cancer cells. Herein we further investigated the cytotoxicity potential of CAPE and the mechanism of its action in C6 glioma cells. The data exhibited that C6 glioma cells underwent internucleosomal DNA fragmentation 24 hr after the treatment of CAPE (50 microM). The proportion of C6 glioma cells with hypodiploid nuclei was increased to 24% at 36 hr after the exposure. Further results showed that CAPE induced the release of cytochrome c from mitochondria into cytosol, and the activation of CPP32. CAPE application also enhanced the expression of p53, Bax, and Bak. Finally, the potential signaling components underlying CAPE induction of apoptosis were elucidated. We found that CAPE activated extracellular signal-regulated kinase (ERKs) and p38 mitogen-activated protein kinase (p38 MAPK) in C6 glioma cells. More importantly, p38 kinase formed a complex with p53 after the treatment of CAPE for 0.5 hr. The expression of p53, phospho-serine 15 of p53, and Bax, and inactivate form of CPP32 was suppressed by a pretreatment of a specific p38 MAPK inhibitor, SB203580. The resultant data suggest that p38 MAPK mediated the CAPE-induced p53-dependent apoptosis in C6 glioma cells.

  17. Caffeic Acid Phenethyl Ester: A Review of Its Antioxidant Activity, Protective Effects against Ischemia-reperfusion Injury and Drug Adverse Reactions.

    Science.gov (United States)

    Tolba, Mai F; Omar, Hany A; Azab, Samar S; Khalifa, Amani E; Abdel-Naim, Ashraf B; Abdel-Rahman, Sherif Z

    2016-10-02

    Propolis, a honey bee product, has been used in folk medicine for centuries for the treatment of abscesses, canker sores and for wound healing. Caffeic acid phenethyl ester (CAPE) is one of the most extensively investigated active components of propolis which possess many biological activities, including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-cancer effects. CAPE is a polyphenolic compound characterized by potent antioxidant and cytoprotective activities and protective effects against ischemia-reperfusion (I/R)-induced injury in multiple tissues such as brain, retina, heart, skeletal muscles, testis, ovaries, intestine, colon, and liver. Furthermore, several studies indicated the protective effects of CAPE against chemotherapy-induced adverse drug reactions (ADRs) including several antibiotics (streptomycin, vancomycin, isoniazid, ethambutol) and chemotherapeutic agents (mitomycin, doxorubicin, cisplatin, methotrexate). Due to the broad spectrum of pharmacological activities of CAPE, this review makes a special focus on the recently published data about CAPE antioxidant activity as well as its protective effects against I/R-induced injury and many adverse drug reactions.

  18. Caffeic acid phenethyl ester attenuates liver fibrosis via inhibition of TGF-β1/Smad3 pathway and induction of autophagy pathway.

    Science.gov (United States)

    Yang, Ning; Dang, Shuangsuo; Shi, Juanjuan; Wu, Fengping; Li, Mei; Zhang, Xin; Li, Yaping; Jia, Xiaoli; Zhai, Song

    2017-02-10

    Caffeic acid phenethyl ester (CAPE) has been reported to possess the hepatoprotective effect. This study was to investigate the mechanism underlying CAPE against liver fibrosis in a liver fibrosis model induced by toxic carbon tetrachloride (CCl4) in male Sprague-Dawley rats and in vitro in CAPE (5 μM, 10 μM, 15 μM) treated hepatic stellate cells (HSC-T6). We found that CAPE treatment remarkably attenuated CCl4-induced liver fibrosis by blocking the activation of HSCs as determined by the expression alternation of transforming growth factor (TGF)-β1, phosphorylated Smad3 (p-Smad3), collage I, α-smooth muscle actin (α-SMA), matrix metalloproteinases (MMPs) 2, tissue inhibitor of matrix metalloproteinases (TIMPs) 1. The hepatoprotective effects of CAPE were also associated with upregulation of autophasomes in HSCs as determined by transmission electron microscopy (TEM) detection. The in vitro study further confrimed that CAPE attenuated liver fibrogenesis via inducing authophagic markers including LC3, ATG5, Beclin 1 expressions, while inhibiting AKT/mTOR signaling in HSC-T6 cells. Thus, the protective effects of CAPE against liver fibrosis might due to the inhibition of TGF-β1/Smad3 signaling and induction of authophagy in HSCs.

  19. Caffeic Acid Phenethyl Ester and Ethanol Extract of Propolis Induce the Complementary Cytotoxic Effect on Triple-Negative Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-05-01

    Full Text Available Chemotherapy of breast cancer could be improved by bioactive natural substances, which may potentially sensitize the carcinoma cells’ susceptibility to drugs. Numerous phytochemicals, including propolis, have been reported to interfere with the viability of carcinoma cells. We evaluated the in vitro cytotoxic activity of ethanol extract of propolis (EEP and its derivative caffeic acid phenethyl ester (CAPE towards two triple-negative breast cancer (TNBC cell lines, MDA-MB-231 and Hs578T, by implementation of the MTT and lactate dehydrogenase (LDH assays. The morphological changes of breast carcinoma cells were observed following exposure to EEP and CAPE. The IC50 of EEP was 48.35 µg∙mL−1 for MDA-MB-23 cells and 33.68 µg∙mL−1 for Hs578T cells, whereas the CAPE IC50 was 14.08 µM and 8.01 µM for the MDA-MB-231 and Hs578T cell line, respectively. Here, we report that propolis and CAPE inhibited the growth of the MDA-MB-231 and Hs578T lines in a dose-dependent and exposure time-dependent manner. EEP showed less cytotoxic activity against both types of TNBC cells. EEP and, particularly, CAPE may markedly affect the viability of breast cancer cells, suggesting the potential role of bioactive compounds in chemoprevention/chemotherapy by potentiating the action of standard anti-cancer drugs.

  20. Caffeic Acid Phenethyl Ester Inhibits Oral Cancer Cell Metastasis by Regulating Matrix Metalloproteinase-2 and the Mitogen-Activated Protein Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chih-Yu Peng

    2012-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, an active component extracted from honeybee hives, exhibits anti-inflammatory and anticancer activities. However, the molecular mechanism by which CAPE affects oral cancer cell metastasis has yet to be elucidated. In this study, we investigated the potential mechanisms underlying the effects of CAPE on the invasive ability of SCC-9 oral cancer cells. Results showed that CAPE attenuated SCC-9 cell migration and invasion at noncytotoxic concentrations (0 μM to 40 μM. Western blot and gelatin zymography analysis findings further indicated that CAPE downregulated matrix metalloproteinase-2 (MMP-2 protein expression and inhibited its enzymatic activity. CAPE exerted its inhibitory effects on MMP-2 expression and activity by upregulating tissue inhibitor of metalloproteinase-2 (TIMP-2 and potently decreased migration by reducing focal adhesion kinase (FAK phosphorylation and the activation of its downstream signaling molecules p38/MAPK and JNK. These data indicate that CAPE could potentially be used as a chemoagent to prevent oral cancer metastasis.

  1. Effect of propolis and caffeic acid phenethyl ester (CAPE) on NFκB activation by HTLV-1 Tax.

    Science.gov (United States)

    Shvarzbeyn, Jenny; Huleihel, Mahmoud

    2011-06-01

    HTLV-1 is the etiological agent of aggressive malignancy of the CD4(+) T-cells, adult T-cell leukemia (ATL), and other severe clinical disorders. The viral Tax protein is a key factor in HTLV-1 pathogenicity. A major part of Tax oncogenic potential is accounted for by its capacity of inducing the transcriptional activity of the NFκB factors, which regulate the expression of numerous cellular genes. Propolis (PE), a natural product produced by honeybees, has been used for a long time in folk medicine. One of PE active components, caffeic acid phenylethyl ester (CAPE), was well characterized and found to be a potent inhibitor of NFκB activation. Therefore, the aim of this study was to pursue the possibility of blocking Tax oncogenic effects by treatment with these natural products. Human T-cell lines were used in this study since these cells are the main targets of HTLV-1 infections. We tried to determine which step of Tax-induced NFκB activation is blocked by these products. Our results showed that both tested products substantially inhibited the activation of NFκB-dependent promoter by Tax. However, only PE could efficiently inhibit also the Tax-induced activation of SRF- and CREB-dependent promoters. Our results showed also that PE and CAPE strongly prevented both Tax binding to IκBα and its induced degradation by Tax. However, both products did not interfere in the nuclear transport of Tax or NFκB proteins.

  2. Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2017-01-01

    Full Text Available It is widely believed that lipases in ionic liquids (ILs possess higher enzyme activity, stability and selectivity; however, reaction equilibrium is always limited by product inhibition, and the product is difficult to separate from non-volatile ILs using distillation. To solve this problem, using trialkylphosphine oxide (TOPO as a complexing agent, a novel biphase of reactive solvent and IL was firstly reported for caffeic acid phenethyl ester (CAPE production from methyl caffeate (MC and 2-phenylethanol (PE catalyzed by lipase via transesterification. The effects of the reaction parameters and their action mechanism were investigated, and the inhibition of CAPE against bacterial wilt pathogen Ralstonia solanacearum was firstly measured. The MC conversion of 98.83% ± 0.76% and CAPE yield of 96.29% ± 0.07% were obtained by response surface methodology in the 25 g/L TOPO-cyclohexane/[Bmim][Tf2N] (1:1, v/v; the complex stoichiometry calculation and FTIR spectrum confirmed that the reversible hydrogen-bond complexation between TOPO and caffeates significantly enhances the cooperative effect of two phases on the lipase-catalyzed reaction. The temperature was reduced by 14 °C; the MC concentration increased by 3.33-fold; the ratio of catalyst to donor decreased by 4.5-fold; and Km decreased 1.08-fold. The EC50 of CAPE against R. solanacearum was 0.17–0.75 mg/mL, suggesting that CAPE is a potential in vitro inhibitor of plant pathogenic bacteria.

  3. Comparative analysis of the protective effects of caffeic acid phenethyl ester (CAPE) on pulmonary contusion lung oxidative stress and serum copper and zinc levels in experimental rat model.

    Science.gov (United States)

    Sırmalı, Mehmet; Solak, Okan; Tezel, Cagatay; Sırmalı, Rana; Ginis, Zeynep; Atik, Dilek; Agackıran, Yetkin; Koylu, Halis; Delibas, Namık

    2013-01-01

    The aim of this study was to investigate the effects of caffeic acid phenethyl ester (CAPE) in the lungs by biochemical and histopathological analyses in an experimental isolated lung contusion model. Eighty-one male Sprague-Dawley rats were used. The animals were divided randomly into four groups: group 1 (n = 9) was defined as without contusion and without CAPE injection. Group 2 (n = 9) was defined as CAPE 10 μmol/kg injection without lung contusion. Group 3 (n = 36) was defined as contusion without CAPE-administrated group which consisted of four subgroups that were created according to analysis between days 0, 1, 2, and 3. Group 4 (n = 27) was defined as CAPE 10 μmol/kg administrated after contusion group divided into three subgroups according to analysis on days 1, 2, and 3. CAPE 10 μmol/kg was injected intraperitoneally 30 min after trauma and on days 1 and 2. Blood samples were obtained to measure catalase (CAT) and superoxide dismutase (SOD) activities and level of malondialdehyde (MDA) and for blood gas analysis. Trace elements such as zinc and copper were measured in serum. The lung tissue was also removed for histopathological examination. Isolated lung contusion increased serum and tissue SOD and CAT activities and MDA levels (p  0.05). CAPE also had a significant beneficial effect on blood gases (p  0.05). CAPE appears to be effective in protecting against severe oxidative stress and tissue damage caused by pulmonary contusion in an experimental setting. Therefore, we conclude that administration of CAPE may be used for a variety of conditions associated with pulmonary contusion. Clinical use of CAPE may have the advantage of prevention of pulmonary contusion.

  4. Propolis and its Active Component, Caffeic Acid Phenethyl Ester (CAPE), Modulate Breast Cancer Therapeutic Targets via an Epigenetically Mediated Mechanism of Action.

    Science.gov (United States)

    Omene, Coral; Kalac, Matko; Wu, Jing; Marchi, Enrica; Frenkel, Krystyna; O'Connor, Owen A

    2013-10-21

    Alternative remedies for cancer treatment is a multi-billion dollar industry. In particular, breast cancer (BC) patients use alternative and natural remedies more frequently than patients with other malignancies. Propolis is an example of a honeybee-produced naturopathic formulation, contents of which differ by geographic location. It is readily available, affordable, and in use safely since ancient times globally. Caffeic acid phenethyl ester (CAPE) is a major active component in propolis and is thought to be responsible for its varied properties, including antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory and anticancer. CAPE is effective in many models of human cancer, including BC as we have previously shown. CAPE affects genes associated with tumor cell growth and survival, angiogenesis and chemoresistance. We demonstrate that these are related in part to CAPE's role as a histone deacetylase inhibitor, a class of drugs designated as epigenetic agents that modulate the activities of oncogenes and tumor suppressor genes. CAPE and propolis, cause an accumulation of acetylated histone proteins in MCF-7 (ER+) and MDA-MB-231 (ER-/PR-/Her2-) cells with associated decreases in ER and PR in MCF-7 cells, and upregulation of ER and decrease in EGFR in MDA-231 cells. In addition, these products reduced activated phosphorylated Her2 protein in SKBR3 (Her2 +) cells. Interestingly, propolis, when normalized for CAPE content, appears to be more potent than CAPE alone similarly to the greater effects of complete foods than isolated components. These data provide a potential mechanistic basis for one of the oldest naturopathic agents used in medicine and cancer treatment.

  5. Caffeic acid phenethyl ester modifies the Th1/Th2 balance in ileal mucosa after γ-irradiation in the rat by modulating the cytokine pattern

    Institute of Scientific and Technical Information of China (English)

    Olivier Grémy; Marc Benderitter; Christine Linard

    2006-01-01

    AIM: To pharmacologically modulate Th polarization in the ileum exposed to ionizing radiation by using the immuno-modulatory/apoptotic properties of Caffeic Acid Phenethyl Ester (CAPE).METHODS: Rats received CAPE (30 mg/kg) treatment ip 15 min prior to intestinal 10 Gy γ-irradiation and once a day for a 6 d period after irradiation. Expression of genes implicated in Th differentiation in ileal mucosa (IL-23/IL12Rβ2), Th cytokine responses (IFN-γ, IL-2, IL-4, IL-13),Th migratory behaviour (CXCR3, CCR5, CCR4), Th signailing suppressors (SOCS1, SOCS3), transcription factor (T-Bet, GATA-3) and apoptosis (FasL/Fas, TNF/TNFR,XIAP, Bax, caspase-3) was analyzed by RT-PCR 6 h and 7 d post-irradiation. CD4+ and TUNEL positive cells were visualized by immunostaining.RESULTS: The expression of Th1-related cytokine/chemokine receptors (IFN-γ, IL-2, CXCR3, CCR5) was repressed at 7 d post-irradiation while Th2 cell cytokine/chemokines (IL-4, IL-13, CCR4) were not repressed or even upregulated. The irradiation-induced Th2 profile was confirmed by the upregulation of both Th2-specific transcription factor GATA-3 and SOCS3. Although an apoptosis event occurred 6 h after 10 Gy of intestinal γ-irradiation, apoptotic mediator analysis showed a tendency to apoptotic resistance 7 d post-irradiation. CAPE amplified apoptotic events at 6h and normalized Bax/FasL expressions at 7 d.CONCLUSION: CAPE prevented the ileal Th2 immune response by modulating the irradiation-influenced cytokine environment and apoptosis.

  6. Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.

    Science.gov (United States)

    Jia, Cai-Hua; Shin, Jung-Ah; Lee, Ki-Teak

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) and 4-vinylcatechol (4-VC) were prepared for studying their antioxidative activities in emulsion. Oil-in-water emulsions of stripped soybean oil containing 200 ppm of CAPE, 4-VC, or α-tocopherol were stored at 40 °C in the dark for 50 days, and proton nuclear magnetic resonance ((1)H NMR) was used to identify and quantify the oxidation products. Emulsion droplet sizes, peroxide values, and levels of primary oxidation products (i.e., hydroperoxides) and secondary oxidation products (i.e., aldehydes) were determined. The results showed that CAPE (200 ppm) and 4-VC (200 ppm) had significantly greater antioxidant activities on the oxidation of stripped soybean oil-in-water emulsions than α-tocopherol (200 ppm). The peroxide values of CAPE (8.4 mequiv/L emulsion) and 4-VC (15.0 mequiv/L emulsion) were significantly lower than that of α-tocopherol (33.4 mequiv/L emulsion) (p < 0.05) on 36 days. In addition, the combinations of CAPE + α-tocopherol (100 + 100 ppm) or 4-VC + α-tocopherol (100 + 100 ppm) had better antioxidant activities than α-tocopherol (200 ppm). For CAPE + α-tocopherol, 4-VC + α-tocopherol, and α-tocopherol, the amounts of conjugated diene forms were 16.67, 13.72, and 16.32 mmol/L emulsion, and the concentrations of aldehydes were 2.15, 1.13, and 4.26 mmol/L emulsion, respectively, after 50 days of storage.

  7. Ameliorating Role of Caffeic Acid Phenethyl Ester (CAPE Against Methotrexate-Induced Oxidative Stress in the Sciatic Nerve, Spinal Cord and Brain Stem Tissues of Rats

    Directory of Open Access Journals (Sweden)

    Ertuğrul Uzar

    2010-03-01

    Full Text Available OBJECTIVE: Methotrexate (MTX-associated neurotoxicity is an important clinical problem in cancer patients, but the mechanisms of MTX-induced neurotoxicity are not yet known exactly. The aims of this study were (1 to investigate the possible role of malondialdehyde (MDA, superoxide dismutase (SOD enzyme, glutathione peroxidase (GSH-Px and catalase (CAT in the pathogenesis of MTX-induced neurotoxicity and (2 to determine whether there is a putative protective effect of caffeic acid phenethyl ester (CAPE on MTX-induced neurotoxicity in the spinal cord, brainstem and sciatic nerve of rats. METHODS: A total of 19 adult Wistar male rats were divided into three experimental groups. Group I, control group; Group II, MTX-treated group; and Group III, MTX + CAPE-treated group. MTX was administered to the MTX and MTX + CAPE groups intraperitoneally (IP with a single dose of 20 mg/kg on the second day of the experiment. CAPE was administered to the MTX + CAPE group IP with a dose of 10 μmol/kg for 7 days. RESULTS: In the sciatic nerve and spinal cord tissue, CAT and GSH-Px activities were increased in the MTX group in comparison with the control group. CAPE treatment with MTX significantly decreased CAT and GSH-Px activities in the neuronal tissues of rats in comparison with the MTX group. In the spinal cord and brainstem tissues, SOD activity in the MTX group was decreased in comparison with the control group, but in the sciatic nerve, there was no significant difference. In the spinal cord and brainstem of rats, SOD activity was increased in the CAPE + MTX group when compared with the MTX group. The level of MDA was higher in the MTX group than in the control group. CAPE administration with MTX injection caused a significant decrease in MDA level when compared with the MTX group. CONCLUSION: These results reveal that MTX increases oxidative stress in the sciatic nerve, spinal cord and brainstem of rats and that CAPE has a preventive effect on the

  8. Protective role of caffeic acid phenethyl ester and erdosteine on activities of purine-catabolizing enzymes and level of nitric oxide in red blood cells of isoniazid-administered rats.

    Science.gov (United States)

    Yilmaz, H R; Uz, E; Gökalp, O; Ozçelik, N; Ciçek, E; Ozer, M K

    2008-09-01

    The aim of this experimental study was to investigate the possible role of nitric oxide (NO) and the activities of adenosine deaminase (ADA) and xanthine oxidase (XO) in the pathogenesis of isoniazid (INH)-induced oxidative damage in red blood cells (RBCs), and also to show the effect of caffeic acid phenethyl ester (CAPE) and erdosteine, antioxidants, in decreasing this toxicity. A total of 25 adult male rats were divided into four experimental groups as follows: control group (n = 7), INH-treated group (n = 6), INH + CAPE-treated group (n = 6), and INH + erdosteine-treated group (n = 6). INH, INH-CAPE, and INH-erdosteine-treated groups were treated orally with INH 50 mg/kg daily and with the tap water for 15 days. Control group was given only tap water. CAPE was intraperitoneally injected for 15 days at a dose of 10 micromol/kg. Erdosteine was treated orally for 15 days at a dose of 10 mg/kg/day. The injection of INH led to a significant increase in the activities of ADA, XO, and NO levels in RBCs of rats. Co-treatment with CAPE caused a significant decrease in the activities of ADA and XO and the levels of NO in RBCs. In addition, co-treatment with erdosteine caused a significant decrease in the activities of ADA and XO and the levels of NO in RBCs. The results of this study showed that ADA, XO, and NO may play an important role in the pathogenesis of INH-induced oxidative stress in RBCs. CAPE and erdosteine may have protective potential in this process and they may become a promising drug in the prevention of this undesired side effect of INH.

  9. Anticancer Activities of Substituted Cinnamic Acid Phenethyl Esters on Human Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIShu-chun; LIHui; ZHANGFa; LIZhong-jun; CUIJing-rong

    2003-01-01

    Caffeic acid phenethyl ester (CAPE) and sixteen substituted cinnamic acid phenethyl esters were prepared via conventional procedures in order to test their in vitro anticancer activities by either MTT assay or SRB assay on six different human cancer cell lines. The results indicated that in the concentration of 10μmol·L-1 the lead compmuM CAPE possessed anficancer activities against human HL-60, Bel-7402, and Hela cell lines, and two other compounds possessed potent anticancer activities against Bel-7402 and Hela cell lines.

  10. Protective effect of caffeic acid phenethyl ester on liver damage in rats%咖啡酸苯乙酯对实验性肝损伤大鼠的保护作用

    Institute of Scientific and Technical Information of China (English)

    翟嵩; 党双锁; 王秀芳; 李亚萍; 王文俊; 赵丰

    2011-01-01

    目的 探讨不同给药途径及不同剂量咖啡酸苯乙酯(CAPE)对四氯化碳(CCl4)等复合因素诱导大鼠肝损伤的保护作用.方法 选取95只雄性SD大鼠,随机分为9组,A:正常对照组;B:溶剂对照组,皮下注射橄榄油,腹腔注射10%乙醇;C:单纯模型组,腹腔注射10%乙醇;D:维生素E组,腹腔注射维生素E 10 mg/kg,1次/d;E~I:CAPE(10%乙醇溶液)干预组:腹腔注射3 mg/kg、6 mg/kg和12 mg/kg,1次/d;灌胃12mg/kg和24mg/kg,1次/d.C~I组均予以40% CCl4橄榄油溶液皮下注射、30%乙醇灌胃以及高脂饲料作为单一饲料,同时给予对应药物干预.共10周.末次染毒48 h后处死大鼠,采血并计算肝、脾和双肾系数,检测血清TBil、ALT、AST等肝功能指标.肝组织行常规HE染色.结果 CAPE各剂量组与单纯模型组相比,大鼠血清TBil、ALT和AST水平均有不同程度降低,且随CAPE剂量增大,TBil水平降低越明显;其中CAPE( 12 mg/kg腹腔注射和24mg/kg灌胃)两个组效果最好,其TBil水平与正常对照组对比,差异无统计学意义(P>0.05).CAPE不同给药方式比较显示,在本课题选择的剂量范围内,CAPE腹腔注射组的ALT及AST水平下降明显,好于灌胃组,CAPE(12 mg/kg腹腔注射)组与灌胃两个剂量组分别比较,P值均小于0.05.结论 CAPE经腹腔注射或灌胃途径给药均可不同程度改善CCl4复合因素所致肝损伤,且优于维生素E组.经比较不同给药方式的效果发现,在所观察的剂量范围内,CAPE经腹腔注射的保肝作用较灌胃给药好,同时在3~12 mg/kg剂量范围内呈剂量依赖性.%Objective To evaluate the protective effects of different doses of caffeic acid phenethyl ester (CAPE), which was given by intraperitoneal injection and oral route respectively, in rats with liver damage. Methods Ninety-five Sprague-Dawley male rats were randomly divided into nine groups as follows: normal group, solvent control group, model group, the drug groups

  11. Antioxidative effect of caffeic acid phenethyl ester on chronic liver injury in rats%咖啡酸苯乙酯对实验性肝损伤大鼠的抗氧化作用

    Institute of Scientific and Technical Information of China (English)

    王秀芳; 党双锁; 翟嵩; 李亚萍; 王文俊; 赵丰

    2011-01-01

    目的 探讨蜂胶提取物咖啡酸苯乙酯(CAPE)对四氯化碳(CC14)等复合因素诱导的肝损伤大鼠的抗氧化作用.方法 取95只健康雄性SD大鼠,随机分为9组.A:正常对照组;B:溶剂对照组,皮下注射橄榄油、腹腔注射10%乙醇,纯水灌胃;C:单纯模型组,腹腔注射10%乙醇;D:维生素E组,10 mg/kg,腹腔注射,1次/d;E-I:CAPE(10%乙醇溶液)干预组:腹腔注射,3 mg/kg、6 mg/kg 和12 mg/kg;灌胃,12 mg/kg和24 mg/kg,1次/d.C-I组均予以40%CC14橄榄油溶液皮下注射、30%乙醇灌胃,高脂饲料作为单一饲料.同时每组给予对应药物处理10周.实验第10周处死大鼠.测定肝组织匀浆中氧化应激指标:丙二醛(MDA)、谷胱甘肤(GSH)水平以及过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活力.肝组织标本行常规HE、Van Gieson染色.结果 与单纯模型组的各项氧化应激指标相比较,腹腔注射CAPE 6,12 mg/kg 两剂量组的肝组织中MDA含量明显降低、GSH水平升高、CAT和SOD活力增加(P<0.05).腹腔注射CAPE 12 mg/kg组对组对肝脏氧化应激指标的改善程度比灌胃给药两个剂量组好(P<0.05).腹腔注射CAPE 12 mg/kg 组经HE和VG染色观察可见小部分区域肝细胞炎症坏死,少量纤维增生.较单纯模型组肝损伤程度轻.结论 CAPE可以抑制脂质过氧化,提高肝脏抗氧化能力.在本课题观察的剂量范围内,CAPE腹腔给药的抗氧化作用好于灌胃给药途径.%Objective To evaluate the antioxidative effect of caffeic acid phenethyl ester (CAPE) on the liver injury induced by carbon tetrachloride ( CCl4 ) et al. Methods Ninety - five Sprague - Dawley male rats were divided randomly into nine groups as follows: A: normal control, B:solvent control ( injected olive oil via the s.c. route and 10% alcohol via the peritoneum, water was administered orally once a day), C:model control( 10% alcohol via the i.p. once a day), D:VitE group (dissolved in olive oil; 10mg/kg, i.p. once a day) and E

  12. 咖啡酸苯乙酯预防去势小鼠骨质疏松的研究%The prevention of caffeic acid phenethyl ester on osteoporosis in ovariectomized mice

    Institute of Scientific and Technical Information of China (English)

    段王平; 向川; 秦迎泽; 李琦; 徐家科; 卫小春

    2015-01-01

    目的 观察梯度浓度咖啡酸苯乙酯(CAPE)腹腔注射预防骨质疏松的效果.方法 12周龄C57BL/6J雌性小鼠60只,随机分为实验组42只,对照组18只.实验组将小鼠双侧卵巢切除,对照组仅将卵巢周围部分脂肪组织切除.实验组又随机分为磷酸盐缓冲液(PBS)组(18只)、CAPE 0.5 mg组(12只)、CAPE 1.0 mg组(12只).分别在切除卵巢术后给予腹腔注射PBS溶液、CAPE 0.5 mg/kg及1.0 mg/kg.对照组给予等量PBS腹腔注射,每周2次.每周称小鼠体质量1次.术后1、4、7周处死小鼠,每组每个时间点6只小鼠.通过酶联免疫吸附试验(ELISA)检测小鼠血清雌二醇、碱性磷酸酶(ALP)、核因子-κB受体活化因子配基(RANKL)水平变化.通过实时荧光定量聚合酶链反应(FQ-PCR)方法分析小鼠股骨组织RANKL、骨保护素(OPG)和碱性磷酸酶(ALP)mRNA水平的变化.结果 实验组小鼠切除卵巢后,体质量均明显增加,且实验组小鼠血清中雌激素水平与对照组比较均明显降低(P<0.05).1周时,与对照组(711.08 ±292.86) ng/L比较,PBS组小鼠血清RANKL水平(1 031.90±188.51) ng/L明显增高(P<0.05),ALP(23.61±14.44) U/L较对照组(86.61±35.29) U/L明显降低(P<0.05).4周时,与PBS组比较,CAPE 0.5 mg组和1.0mg组小鼠血清ALP、RANKL水平明显升高(P<0.05),且以1.0 mg组升高更为明显.FQ-PCR结果显示切除卵巢1周时,PBS组小鼠RANKL mRNA表达(5.50±2.81)较对照组(0.97±0.28)明显升高(P<0.05).4周时,与PBS组比较,CAPE 0.5 mg组和1.0 mg组RANKL、ALP和OPG表达明显增高.结论 去势小鼠术后早期骨重建异常活跃,后期趋于平缓.低浓度CAPE可促进血清和骨组织OPG、ALP的表达,达到预防绝经后骨质疏松的目的.%Objective To evaluate the prevention of caffeic acid phenethyl ester (CAPE) on the osteoporosis in ovariectomized mice.Methods 60 female 12-week old C57BL/6J mice were prepared and evenly divided into two groups.The 42 mice were ovariectomized

  13. Caffeic Acid, a versatile pharmacophore: an overview.

    Science.gov (United States)

    Touaibia, M; Jean-François, J; Doiron, J

    2011-07-01

    The caffeic acid scaffold, which is abundant in nature, is extremely versatile and is found in a number of biologically active molecules. The purpose of this review is to provide an overview of the pharmacological activity of synthetic caffeic acid analogs including recent reports of anti-inflammatory, anti-cancer, and antiviral activities of these compounds.

  14. Chlorogenic acid and caffeic acid are absorbed in humans

    OpenAIRE

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the absorption of chlorogenic acid and caffeic acid in humans are lacking. We determined the absorption of chlorogenic acid and caffeic acid in a cross-over study with 4 female and 3 male healthy ileo...

  15. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, M.R.; Hollman, P.C.H.; Katan, M.B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  16. Bioactive caffeic acid esters from Glycyrrhiza glabra.

    Science.gov (United States)

    Dey, Surajit; Deepak, Mundkinajeddu; Setty, Manjunath; D'Souza, Prashanth; Agarwal, Amit; Sangli, Gopal Krishna

    2009-01-01

    Thin layer chromatography bioautography (using DPPH spray reagent) guided fractionation of Glycyrrhiza glabra led to the isolation of two caffeic acid derivative esters, viz. eicosanyl caffeate (1) and docosyl caffeate (2). The two compounds exhibited potent elastase inhibitory activity, with IC(50) values of 0.99 microg mL(-1) and 1.4 microg mL(-1) for 1 and 2, respectively. The compounds also showed moderate antioxidant activity in DPPH and ABTS scavenging assays. The results indicate a possible role of caffeic acid derivatives, in addition to flavonoids in the anti-ulcer properties of G. glabra.

  17. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex

    Directory of Open Access Journals (Sweden)

    Lin Yuheng

    2012-04-01

    Full Text Available Abstract Background Caffeic acid (3,4-dihydroxycinnamic acid is a natural phenolic compound derived from the plant phenylpropanoid pathway. Caffeic acid and its phenethyl ester (CAPE have attracted increasing attention for their various pharmaceutical properties and health-promoting effects. Nowadays, large-scale production of drugs or drug precursors via microbial approaches provides a promising alternative to chemical synthesis and extraction from plant sources. Results We first identified that an Escherichia coli native hydroxylase complex previously characterized as the 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H was able to convert p-coumaric acid to caffeic acid efficiently. This critical enzymatic step catalyzed in plants by a membrane-associated cytochrome P450 enzyme, p-coumarate 3-hydroxylase (C3H, is difficult to be functionally expressed in prokaryotic systems. Moreover, the performances of two tyrosine ammonia lyases (TALs from Rhodobacter species were compared after overexpression in E. coli. The results indicated that the TAL from R. capsulatus (Rc possesses higher activity towards both tyrosine and L-dopa. Based on these findings, we further designed a dual pathway leading from tyrosine to caffeic acid consisting of the enzymes 4HPA3H and RcTAL. This heterologous pathway extended E. coli native tyrosine biosynthesis machinery and was able to produce caffeic acid (12.1 mg/L in minimal salt medium. Further improvement in production was accomplished by boosting tyrosine biosynthesis in E. coli, which involved the alleviation of tyrosine-induced feedback inhibition and carbon flux redirection. Finally, the titer of caffeic acid reached 50.2 mg/L in shake flasks after 48-hour cultivation. Conclusion We have successfully established a novel pathway and constructed an E. coli strain for the production of caffeic acid. This work forms a basis for further improvement in production, as well as opens the possibility of microbial synthesis

  18. Novel Caffeic Acid Nanocarrier: Production, Characterization, and Release Modeling

    Directory of Open Access Journals (Sweden)

    Milad Fathi

    2013-01-01

    Full Text Available This paper deals with the development of novel nanocarriers using layer by layer carbohydrate coating of caffeic acid loaded solid lipid nanoparticles (SLNs to improve stability and colon delivery of the poorly water-soluble caffeic acid. Three biopolymers (chitosan, alginate, and pectin in different concentrations (0.1, 0.25, and 0.5% were electrostatically coated over the SLN surface. The size and zeta potential of produced nanocarriers were measured using photon correlation spectroscopy. Mathematical models (i.e., zero-order, first-order, Higuchi, Ritger-Peppas, reciprocal powered time, Weibull, and quadratic models were used to describe the release and kinetic modeling in gastrointestinal solution (GIS. Also, antioxidant activity of caffeic acid during the release in GIS was investigated using DPPH and reducing activity methods. The prepared treatments coated by alginate-chitosan as well as pectin-chitosan coated SLN at the concentration of 0.1% showed nanosized bead; the latter efficiently retarded the release of caffeic acid in gastric media up to 2.5 times higher than that of SLN. Zeta potential values of coated samples were found to significantly increase in comparison to SLN indicating the higher stability of produced nanocarriers. Antioxidant activity of caffeic acid after gastric release did not result in the same trend as observed for caffeic acid release from different treatments; however, in line with less caffeic acid release in the intestine solution by the effect of coating, lower antioxidant activity was determined at the end stage of the experiment.

  19. Caffeic Acid Derivatives in Dried Lamiaceae and Echinacea purpurea Products

    Science.gov (United States)

    The concentrations of caffeic acid derivatives within Lamiaceae and Echinacea (herb, spice, tea, and dietary supplement forms) readily available in the U.S. marketplace (n=72) were determined. After the first identification of chicoric acid in Ocimum basilicum (basil), the extent to which chicoric a...

  20. 5-Caffeoylquinic acid and caffeic acid orally administered suppresses P-selectin expression on mouse platelets

    Science.gov (United States)

    Caffeic acid and 5-caffeoylquinic acid are a naturally occurring phenolic acid and its ester found in human diets. In this paper, potential effects of caffeic acid and 5-caffeoylquinic acid found in coffee and other plant sources on platelet activation were studied via investigating P-selectin expre...

  1. Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats.

    Science.gov (United States)

    Anwar, Javed; Spanevello, Roselia Maria; Pimentel, Victor Camera; Gutierres, Jessié; Thomé, Gustavo; Cardoso, Andreia; Zanini, Daniela; Martins, Caroline; Palma, Heloisa Einloft; Bagatini, Margarete Dulce; Baldissarelli, Jucimara; Schmatz, Roberta; Leal, Cláudio Alberto Martins; da Costa, Pauline; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina

    2013-06-01

    This study evaluated the effects of caffeic acid on ectonucleotidase activities such as NTPDase (nucleoside triphosphate diphosphohydrolase), Ecto-NPP (nucleotide pyrophosphatase/phosphodiesterase), 5'-nucleotidase and adenosine deaminase (ADA) in platelets and lymphocytes of rats, as well as in the profile of platelet aggregation. Animals were divided into five groups: I (control); II (oil); III (caffeic acid 10 mg/kg); IV (caffeic acid 50 mg/kg); and V (caffeic acid 100 mg/kg). Animals were treated with caffeic acid diluted in oil for 30 days. In platelets, caffeic acid decreased the ATP hydrolysis and increased ADP hydrolysis in groups III, IV and V when compared to control (P<0.05). The 5'-nucleotidase activity was decreased, while E-NPP and ADA activities were increased in platelets of rats of groups III, IV and V (P<0.05). Caffeic acid reduced significantly the platelet aggregation in the animals of groups III, IV and V in relation to group I (P<0.05). In lymphocytes, the NTPDase and ADA activities were increased in all groups treated with caffeic acid when compared to control (P<0.05). These findings demonstrated that the enzymes were altered in tissues by caffeic acid and this compound decreased the platelet aggregation suggesting that caffeic acid should be considered a potentially therapeutic agent in disorders related to the purinergic system.

  2. Synthesis, preliminary bioevaluation and computational analysis of caffeic acid analogues.

    Science.gov (United States)

    Liu, Zhiqian; Fu, Jianjun; Shan, Lei; Sun, Qingyan; Zhang, Weidong

    2014-05-16

    A series of caffeic acid amides were designed, synthesized and evaluated for anti-inflammatory activity. Most of them exhibited promising anti-inflammatory activity against nitric oxide (NO) generation in murine macrophage RAW264.7 cells. A 3D pharmacophore model was created based on the biological results for further structural optimization. Moreover, predication of the potential targets was also carried out by the PharmMapper server. These amide analogues represent a promising class of anti-inflammatory scaffold for further exploration and target identification.

  3. Effects of caffeic acid on learning deficits in a model of Alzheimer's disease.

    Science.gov (United States)

    Wang, Yunliang; Wang, Yutong; Li, Jinfeng; Hua, Linlin; Han, Bing; Zhang, Yuzhen; Yang, Xiaopeng; Zeng, Zhilei; Bai, Hongying; Yin, Honglei; Lou, Jiyu

    2016-09-01

    Caffeic acid is a type of phenolic acid and organic acid. It is found in food (such as tomatoes, carrots, strawberries, blueberries and wheat), beverages (such as wine, tea, coffee and apple juice) as well as Chinese herbal medicines. In the present study, we examined the effects of caffeic acid on learning deficits in a rat model of Alzheimer's disease (AD). The rats were randomly divided into three groups: i) control group, ii) AD model group and iii) caffeic acid group. Caffeic acid significantly rescued learning deficits and increased cognitive function in the rats with AD as demonstrated by the Morris water maze task. Furthermore, caffeic acid administration resulted in a significant decrease in acetylcholinesterase activity and nitrite generation in the rats with AD compared with the AD model group. Furthermore, caffeic acid suppressed oxidative stress, inflammation, nuclear factor‑κB‑p65 protein expression and caspase‑3 activity as well as regulating the protein expression of p53 and phosphorylated (p-)p38 MAPK expression in the rats with AD. These experimental results indicate that the beneficial effects of caffeic acid on learning deficits in a model of AD were due to the suppression of oxidative stress and inflammation through the p38 MAPK signaling pathway.

  4. Preparation of MIP-based QCM nanosensor for detection of caffeic acid.

    Science.gov (United States)

    Gültekin, Aytaç; Karanfil, Gamze; Kuş, Mahmut; Sönmezoğlu, Savaş; Say, Rıdvan

    2014-02-01

    In the present work, a new caffeic acid imprinted quartz crystal microbalance (QCM) nanosensor has been designed for selective assignation of caffeic acid in plant materials. Methacrylamidoantipyrine-iron(III) [MAAP-Fe(III)] as metal-chelating monomer has been used to prepare selective molecular imprinted polymer (MIP). MIP film for detection of caffeic acid has been developed on QCM electrode and selectivity experiments and analytical performance of caffeic acid imprinted QCM nanosensor has been studied. The caffeic acid imprinted QCM nanosensor has been characterized by AFM. After the characterization studies, imprinted and non-imprinted nanosensors was connected to QCM system for studies of connection of the target molecule, selectivity and the detection of amount of target molecule in real samples. The detection limit was found to be 7.8 nM. The value of Langmuir constant (b) (4.06 × 10(6)) that was acquired using Langmuir graph demonstrated that the affinity of binding sites was strong. Also, selectivity of prepared caffeic acid imprinted nanosensor was found as being high compared to chlorogenic acid. Finally, the caffeic acid levels in plant materials was determined by the prepared QCM nanosensor.

  5. Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2011-12-01

    Full Text Available BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well. METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL-tumor necrosis factor alpha (TNF-α-macrophage colony stimulating factor (M-CSF-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells. Tartrate resistant acid phosphatase (TRAP staining was performed and TRAP-positive polynucleated cells (PNCs were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System. RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis. KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α.

  6. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain.

    Science.gov (United States)

    Huang, Qin; Lin, Yuheng; Yan, Yajun

    2013-12-01

    Caffeic acid is a plant-specific phenylpropanoic acid with multiple health-improving effects reported, and its therapeutic derivatives have also been studied throughout the last decade. To meet its market need and achieve high-level production, microbial production of caffeic acid approaches have been developed in metabolically engineered Escherichia coli. In our previous work, we have established the first artificial pathway that realized de novo production of caffeic acid using E. coli endogenous 4-hydroxyphenylacetate 3-hydroxylase (4HP3H). In this work, we exploited the catalytic potential of 4HPA3H in the whole-cell bioconversion study and produced 3.82 g/L (461.12 mg/L/OD) caffeic acid from p-coumaric acid, a direct precursor. We further engineered a phenylalanine over-producer into a tyrosine over-producer and then introduced the artificial pathway. After adjusting the expression strategy and optimizing the inoculants timing, de novo production of caffeic acid reached 766.68 mg/L. Both results from the direct precursor and simple carbon sources represent the highest titers of caffeic acid from microbial production so far.

  7. Protective role of caffeic acid on lambda cyhalothrin-induced changes in sperm characteristics and testicular oxidative damage in rats.

    Science.gov (United States)

    Abdallah, Fatma Ben; Fetoui, Hamadi; Zribi, Nassira; Fakhfakh, Feiza; Keskes, Leila

    2012-08-01

    The synthetic pyrethroids are expected to cause deleterious effects on most of the organs and especially on the male reproductive system. The current study was performed to assess the adverse effect of lambda cyhalothrin (LC) on reproductive organs and fertility in male rats and to evaluate the protective role of caffeic acid phenethyl ester (CAPE) in alleviating the detrimental effect of LC on male fertility. A total of 48 male rats were divided into 4 groups (12 rats each): control group received distilled water ad libitum and 1 ml of vehicle solution given intraperitoneally (i.p.); CAPE-treated group received a single i.p. dose of CAPE (10 μmol kg⁻¹ day⁻¹); LC-treated group received 668 ppm of LC through drinking water; and CAPE + LC-treated group received an i.p. injection of CAPE (10 μmol kg⁻¹ day⁻¹) 12 h before the LC administration. The experiment was conducted for 10 consecutive weeks. LC caused a significant increase in testicular malondialdehyde, catalase, superoxide dismutase, glutathione-S-transferase activities, and sperm abnormalities and a significant reduction in testicular glutathione concentration, sperm count, sperm motility, and a live sperm percentage. Conversely, treatment with CAPE improved the reduction in the sperm characteristics, LC-induced oxidative damage of testes and the testicular histopathological alterations. Results indicate that LC exerts significant harmful effects on the male reproductive system and that CAPE reduced the deleterious effects of LC on male fertility.

  8. Quantitative analysis of caffeic and ferulic acids in oatmeal. Comparison of a conventional method with a stable isotope dilution assay.

    Science.gov (United States)

    Guth, H; Grosch, W

    1994-09-01

    [13C]Caffeic acid and [13C]ferulic acid were synthesized and then used as internal standards for the determination of these acids (free and esterified) in oatmeal. A comparative study indicated that 84% of the ferulic acid, but only 32% of the caffeic acid, which is more susceptible to oxidation than the former, could be found by a conventional analytical approach.

  9. Simultaneous determination of chlorogenic acid, caffeic acid, alantolactone and isoalantolactone in Inula helenium by HPLC.

    Science.gov (United States)

    Wang, Jin; Zhao, Yong-ming; Zhang, Man-li; Shi, Qing-wen

    2015-04-01

    A rapid and sensitive high-performance liquid chromatographic (HPLC) method was developed for the simultaneous separation and determination of chlorogenic acid, caffeic acid, alantolactone and isoalantolactone in Inula helenium. The HPLC separation was performed on an Elite Hypersil C18 column (200 × 4.6 mm i.d., 5 µm particle size) with a gradient elution of solvent A (acetonitrile) and solvent B (0.1% phosphoric acid in water) at a flow rate of 1.0 mL/min. Detection was monitored at 225 nm. The recovery of chlorogenic acid ranged from 95.6 to 107.7%, the recovery of caffeic acid ranged from 95.4 to 104.2%, the recovery of alantolactone ranged from 95.8 to 100.8% and the recovery of isoalantolactone ranged from 96.5 to 102.3%. The retention times for chlorogenic acid, caffeic acid, alantolactone and isoalantolactone were 5.2, 7.1, 25.6 and 26.6 min with the limits of detection of 0.069, 0.021, 0.039 and 0.051 µg/mL, respectively. Relative standard deviation for the intra-day and inter-day was ≤2.5%. The validated method is reliable for the routine control of these four compounds in I. helenium.

  10. Preparation and characterization of SPION functionalized via caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Baykal, A. [Department of Chemistry, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Amir, Md., E-mail: mda.fatih@gmail.com [Department of Chemistry, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Günerb, S. [Department of Physics, Fatih University, B.Çekmece, 34500 Istanbul (Turkey); Sözeri, H. [TUBITAK-UME, National Metrology Institute, 41470 Gebze, Kocaeli (Turkey)

    2015-12-01

    Caffeic acid coated superparamagnetic iron oxide nanoparticles (SPION-CFA) was synthesized by reflux method. The structural, spectroscopic and magnetic properties were studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and Vibrating sample magnetometer (VSM) techniques. Thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of CA on the surface of SPION. The theoretical analyzes performed on recorded room temperature VSM spectrum confirmed the formation of superparamagnetic nature of SPION-CFA. The particle size dependent Langevin function was applied to determine the average magnetic particle dimension (D{sub mag}) around 11.93 nm. In accordance, the average crystallite and particle sizes were obtained as 11.40 nm and ~12.00 nm from XRD and TEM measurements. The extrapolated specific saturation magnetization (σ{sub s}) is 44.11 emu/g and measured magnetic moment is 1.83 µ{sub B}. These parameters assign small order of magnetization for NPs with respect to bulk Fe{sub 3}O{sub 4}. Magnetic anisotropy was offered as uniaxial and calculated effective anisotropy constant (K{sub eff}) is 34.82×10{sup 4} Erg/g. The size-dependent saturation magnetization suggests the existence of a magnetically inactive layer as 1.035 nm for SPION-CFA. - Highlights: • The effects of CFA on the microstructure and magnetic properties of SPION have been investigated. • Product was structurally and magnetically characterized. • Product presented superparamagnetic behavior at room temperature.

  11. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  12. Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid

    Science.gov (United States)

    Seo, Yu Seon; Ahn, Eun-Young; Park, Jisu; Kim, Tae Yoon; Hong, Jee Eun; Kim, Kyeongsoon; Park, Yohan; Park, Youmie

    2017-01-01

    In this study, various concentrations of caffeic acid (CA) were used to synthesize gold nanoparticles (CA-AuNPs) in order to evaluate their catalytic activity in the 4-nitrophenol reduction reaction. To facilitate catalytic activity, caffeic acid was removed by centrifugation after synthesizing CA-AuNPs. The catalytic activity of CA-AuNPs was compared with that of centrifuged CA-AuNPs ( cf-CA-AuNPs). Notably, cf-CA-AuNPs exhibited up to 6.41-fold higher catalytic activity compared with CA-AuNPs. The catalytic activity was dependent on the caffeic acid concentration, and the lowest concentration (0.08 mM) produced CA-AuNPs with the highest catalytic activity. The catalytic activities of both CA-AuNPs and cf-CA-AuNPs decreased with increasing caffeic acid concentration. Furthermore, a conversion yield of 4-nitrophenol to 4-aminophenol in the reaction mixture was determined to be 99.8% using reverse-phase high-performance liquid chromatography. The product, 4-aminophenol, was purified from the reaction mixture, and its structure was confirmed by 1H-NMR. It can be concluded that the removal of the reducing agent, caffeic acid in the present study, significantly enhanced the catalytic activity of CA-AuNPs in the 4-nitrophenol reduction reaction.

  13. Biochemical mechanism of Caffeic Acid Phenylethyl Ester (CAPE) selective toxicity towards melanoma cell lines

    OpenAIRE

    Kudugunti, Shashi K.; Vad, Nikhil M.; Whiteside, Amanda J.; Naik, Bhakti U.; Yusuf, Mohd. A.; Srivenugopal, Kalkunte S.; Moridani, Majid Y.

    2010-01-01

    In the current work, we investigated the in-vitro biochemical mechanism of caffeic acid phenylethyl ester (CAPE) toxicity and eight hydroxycinnamic/caffeic acid derivatives in-vitro, using tyrosinase enzyme as a molecular target in human SK-MEL-28 melanoma cells. Enzymatic reaction models using tyrosinase/O2 and HRP/H2O2 were used to delineate the role of one- and two-electron oxidation. Ascorbic acid (AA), NADH and GSH depletion were used as markers of quinone formation and oxidative stress ...

  14. Activity of caffeic acid in different fish lipid matrices: A review

    DEFF Research Database (Denmark)

    Medina, Isabel; Undeland, Ingrid; Larsson, Karin

    2012-01-01

    Caffeic acid, a hydroxycinnamic acid common in different vegetable sources, has been employed as a natural antioxidant for inhibiting oxidation of fish lipids present in different food matrices. The aim of this review is to discuss the mechanisms involved in the antioxidative and prooxidative...

  15. Antioxidative effect of lipophilized caffeic acid in fish oil enriched mayonnaise and milk

    DEFF Research Database (Denmark)

    Alemán, Mercedes; Bou, Ricard; Guardiola, Francesc

    2015-01-01

    The antioxidative effect of lipophilized caffeic acid was assessed in two different fish oil enriched food products: mayonnaise and milk. In both emulsion systems, caffeic acid esterified with fatty alcohols of different chain lengths (C1–C20) were better antioxidants than the original phenolic...... (methyl) or longer (octadecyl) alkyl chains. Whereas in fish oil enriched milk emulsions the most effective caffeates were those with shorter alkyl chains (methyl and butyl) rather than the ones with medium and long chains (octyl, dodecyl, hexadecyl and eicosyl). These results demonstrate that there might...... be an optimum alkyl chain length for each phenolipid in each type of emulsion systems....

  16. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    Indian Academy of Sciences (India)

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  17. The timing of caffeic acid treatment with cisplatin determines sensitization or resistance of ovarian carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    R. Sirota

    2017-04-01

    The use of caffeic acid as adjuvant for cisplatin should be carefully examined due to different pharmacokinetic profiles of caffeic acid and cisplatin. Thus, it is questionable if the two agents can reach the tumors at the right time frame in vivo.

  18. Adsorption of Acid Red 114 onto Fe3O4@Caffeic acid recycable magnetic nanocomposite

    OpenAIRE

    YILDIZ, Aylin

    2016-01-01

    In this study, the adsorption capacity of caffeic acid (CFA) functionalized Fe3O4 magnetic recyclable nanocomposite (Fe3O4@CFA MNCs) for removal of industrial dye Acid Red 114 (AR 114) was investigated. The max. adsorption (qm) of the Fe3O4@CFA MNCs for AR114 was 333 mg/g without pH correction of the solution. Compared with other studies these adsorbent possess very adsorption capacity for AR114 dye. The adsorption isotherm data and the process of adsorption kinetics were fitted using the Lan...

  19. [Anti-inflammatory effect of Urtica dioica folia extract in comparison to caffeic malic acid].

    Science.gov (United States)

    Obertreis, B; Giller, K; Teucher, T; Behnke, B; Schmitz, H

    1996-01-01

    Urtica dioica extract is a traditionary used adjuvant therapeutic in rheumatoid arthritis. The antiphlogistic effects of the urtica dioica folia extract IDS 23 (Extractum Urticae dioicae foliorum) and the main phenolic ingredient caffeic malic acid were tested concerning the inhibitory potential on biosynthesis of arachidonic acid metabolites in vitro. The caffeic malic acid was isolated from Urtica folia extract using gel exclusion- and high performance liquid chromatography and identified by mass spectroscopy and nuclear magnetic resonance. Concerning the 5-lipoxygenase products IDS 23 showed a partial inhibitory effect. The isolated phenolic acid inhibited the synthesis of the leukotriene B4 in a concentration dependent manner. The concentration for halfmaximal inhibition (IC50) was 83 microns/ml in the used assay. IDS 23 showed a strong concentration dependent inhibition of the synthesis of cyclooxygenase derived reactions. The IC50 were 92 micrograms/ml for IDS 23 and 38 micrograms/ml for the caffeic malic acid. Calculating the content in IDS 23 the caffeic malic acid is a possible but not the only active ingredient of the plant extract in the tested assay systems. It is demonstrated that the phenolic component showed a different enzymatic target compared with IDS 23. The antiphlogistic effects observed in vitro may give an explanation for the pharmacological and clinical effects of IDS 23 in therapie of rheumatoid diseases.

  20. Determination of caffeic acid in root and rhizome of Black cohosh (Cimicifuga racemosa (L. Nutt.

    Directory of Open Access Journals (Sweden)

    Zapala Karolina

    2014-06-01

    Full Text Available Cimicifuga racemosa, is a plant with a diverse and long history of medicinal use. Caffeic acid, bioactive compound, which often occurs with other polyphenols can influence the biological activity of this plant. The aim of our work was quantitative analysis of caffeic acid in roots and rhizomes of two varieties of C. racemosa. Analysis was performed by HPLC method. The extracts were separated on C18 reversed-phase column using mixture of methanol, water and formic acid (25:75:0.5 v/v/v as a mobile phase. The flow rate of eluent was 1.0 ml·min-1. The obtained validation parameters such as linearity, linear regression equation and precision expressed as a relative standard deviation were adequate for quantitative determination. Caffeic acid was found in all tested extracts. The highest total amount of caffeic acid was determined in C. racemosa var. racemosa (255.3 μg·g-1 while its concentration in C. racemosa var. cordifolia was significantly lower (213.0 μg·g-1.

  1. Grape skins (Vitis vinifera L.) catalyze the in vitro enzymatic hydroxylation of p-coumaric acid to caffeic acid

    DEFF Research Database (Denmark)

    Arnous, Anis; Meyer, Anne S.

    2009-01-01

    The ability of grape skins to catalyze in vitro conversion of p-coumaric acid to the more potent antioxidant caffeic acid was studied. Addition of different concentrations of p-coumaric to red grape skins (Cabernet Sauvignon) resulted in formation of caffeic acid. This caffeic acid formation (Y......) correlated positively and linearly to p-coumaric acid consumption (X): Y = 0.5 X + 9.5; R 2 = 0.96, P skin concentrations, indicated that the grape skins harboured an o......-hydroxylation activity, proposedly a monophenol- or a flavonoid 3′-monooxygenase activity (EC 1.14.18.1 or EC 1.14.13.21). The K m of this crude o-hydroxylation activity in the red grape skin was 0.5 mM with p-coumaric acid....

  2. Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Yu ZHOU; San-hua FANG; Yi-lu YE; Li-sheng CHU; Wei-ping ZHANG; Meng-ling WANG; Er-qing WEI

    2006-01-01

    Aim: To investigate the effects of caffeic acid on early and delayed injuries after focal cerebral ischemia in rats, and the possible relation to 5-lipoxygenase inhibition. Methods: Transient focal cerebral ischemia was induced by middle cerebral artery occlusion in Sprague-Dawley rats. Caffeic acid (10 and 50 mg/kg) was ip injected for 5 d after ischemia. The brain injuries were observed, and the levels of cysteinyl leukotrienes and leukotriene B4 in the brain tissue were measured. Results: Caffeic acid (50 mg/kg) ameliorated neurological dysfunction and neuron loss, and decreased infarct volume 24 h after ischemia; it attenuated brain atrophy, infarct volume, and particularly astrocyte proliferation 14 d after ischemia. In addition, it reduced the production of leukotrienes (5-lipoxygenase metabolites) in the ischemic hemispheres 3 h and 7 d after ischemia. Conclusion: Caffeic acid has protective effect on both early and delayed injuries after focal cerebral ischemia in rats; and this effect may partly relate to 5-lipoxygenase inhibition.

  3. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

    Science.gov (United States)

    Deshmukh, Rahul; Kaundal, Madhu; Bansal, Vikas; Samardeep

    2016-07-01

    Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (plearning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD.

  4. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    Science.gov (United States)

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  5. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf

    Directory of Open Access Journals (Sweden)

    Lee Uk

    2011-06-01

    Full Text Available Abstract Background Since oxidative stress has been implicated in a neurodegenerative disease such as Alzheimer's disease (AD, natural antioxidants are promising candidates of chemopreventive agents. This study examines antioxidant and neuronal cell protective effects of various fractions of the methanolic extract of Erigeron annuus leaf and identifies active compounds of the extract. Methods Antioxidant activities of the fractions from Erigeron annuus leaf were examined with [2,2-azino-bis(3-ethylbenz thiazoline-6-sulfonic acid diammonium salt] (ABTS and ferric reducing antioxidant power (FRAP assays. Neuroprotective effect of caffeic acid under oxidative stress induced by H2O2 was investigated with [3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide] (MTT and lactate dehydrogenase (LDH assays. Results This study demonstrated that butanol fraction had the highest antioxidant activity among all solvent fractions from methanolic extract E. annuus leaf. Butanol fraction had the highest total phenolic contents (396.49 mg of GAE/g. Caffeic acid, an isolated active compound from butanol fraction, showed dose-dependent in vitro antioxidant activity. Moreover, neuronal cell protection against oxidative stress induced cytotoxicity was also demonstrated. Conclusion Erigeron annuus leaf extracts containing caffeic acid as an active compound have antioxidative and neuroprotective effects on neuronal cells.

  6. Effect of Caffeic Acid and Low-Power Laser Light Co-Exposure on Viability of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Gheibi

    2015-08-01

    Full Text Available Background The resistance of Pseudomonas aeruginosa to antibiotics is a big problem, especially in burns and wound infections. Laser irradiation affects microorganisms by denaturing their proteins, which involves changes in the chemical or physical properties of the protein. Objectives The aim of this study was to investigate the effect of caffeic acid and low-power laser light co-exposure on Pseudomonas aeruginosa isolated from burn wounds. Materials and Methods Ten bacterial samples were collected from patients with burn wound infections at Shahid Motahhari medical center of Tehran. The He-Ne laser was used in this study with output power of 2 mW. Results The data significantly indicated that both the caffeic acid and laser treatment alone reduced the number of colony-forming units compared to control cultures. Co-exposure of bacterial suspensions to caffeic acid and laser at three time points showed the following number of colony-forming units 240.23 ± 60.15, 148.13 ± 52.66 and 84.57 ± 35, respectively. The best concentrations of caffeic acid to achieve countable colonies were 1.5 and 1.75 mM. At the concentration of 1.5 mM of caffeic acid, the number of colonies significantly reduced to 280.78 ± 59 (P = 0.008 while at 1.75 mM the number of colonies reduced to 234.07 ± 72.28 (P = 0.0001. Conclusions Caffeic acid treatment reduced bacterial growth and resulted in a decreased number of colony formation. The simultaneous effect of caffeic acid and laser at three time courses showed a synergic effect in reducing colony formation compared to the control and caffeic acid, and laser alone.

  7. Bioavailability of Echinacea Constituents: Caco-2 Monolayers and Pharmacokinetics of the Alkylamides and Caffeic Acid Conjugates

    Directory of Open Access Journals (Sweden)

    R. Lehmann

    2005-10-01

    Full Text Available Many studies have been done over the years to assess the effectiveness of Echinacea as an immunomodulator. We have assessed the potential bioavailability of alkyl- amides and caffeic acid conjugates using Caco-2 monolayers and compared it to their actual bioavailability in a Phase I clinical trial. The caffeic acid conjugates permeated poorly through the Caco-2 monolayers. Alkylamides were found to diffuse rapidly through Caco-2 monolayers. Differences in diffusion rates for each alkylamide correlated to structural variations, with saturation and N-terminal methylation contributing to decreases in diffusion rates. Alkylamide diffusion is not affected by the presence of other constituents and the results for a synthetic alkylamide were in line with those for alkylamides found in an ethanolic Echinacea preparation. We examined plasma from healthy volunteers for 12 hours after ingestion of Echinacea tablets manufactured from an ethanolic liquid extract. Caffeic acid conjugates could not be identified in any plasma sample at any time after tablet ingestion. Alkylamides were detected in plasma 20 minutes after tablet ingestion and for each alkylamide, pharmacokinetic profiles were devised. The data are consistent with the dosing regimen of one tablet three times daily and supports their usage as the primary markers for quality Echinacea preparations.

  8. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice.

    Science.gov (United States)

    Bocco, B M; Fernandes, G W; Lorena, F B; Cysneiros, R M; Christoffolete, M A; Grecco, S S; Lancellotti, C L; Romoff, P; Lago, J H G; Bianco, A C; Ribeiro, M O

    2016-03-01

    Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model.

  9. Mechanism and kinetics in reactions of caffeic acid with radicals by pulse radiolysis and calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xifeng; Cai, Zhongli; Katsumura, Yosuke [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab

    2000-03-01

    The interaction of caffeic acid with e{sub aq}{sup -}, (CH{sub 3}){sub 2}(OH) CCH{sub 2}{sup {center_dot}}, CO{sub 2}{sup {center_dot}}{sup -}, H{sup {center_dot}}, {center_dot}OH and N{sub 3}{sup {center_dot}} radicals were studied by {gamma}-, pulse radiolysis and molecular orbital calculation. UV-visible spectra of electron/{center_dot}OH adducts, semi-quinone radicals of caffeic ions, and the stable products from the reactions were derived. The rate constants were determined. The attacked sites and the most favorable structures of the transient radicals were predicted. Reaction mechanisms were proposed. (author)

  10. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.

    Science.gov (United States)

    Lee, Won Jun; Zhu, Bao Ting

    2006-02-01

    We studied the modulating effects of caffeic acid and chlorogenic acid (two common coffee polyphenols) on the in vitro methylation of synthetic DNA substrates and also on the methylation status of the promoter region of a representative gene in two human cancer cells lines. Under conditions that were suitable for the in vitro enzymatic methylation of DNA and dietary catechols, we found that the presence of caffeic acid or chlorogenic acid inhibited in a concentration-dependent manner the DNA methylation catalyzed by prokaryotic M.SssI DNA methyltransferase (DNMT) and human DNMT1. The IC50 values of caffeic acid and chlorogenic acid were 3.0 and 0.75 microM, respectively, for the inhibition of M.SssI DNMT-mediated DNA methylation, and were 2.3 and 0.9 microM, respectively, for the inhibition of human DNMT1-mediated DNA methylation. The maximal in vitro inhibition of DNA methylation was approximately 80% when the highest concentration (20 microM) of caffeic acid or chlorogenic acid was tested. Kinetic analyses showed that DNA methylation catalyzed by M.SssI DNMT or human DNMT1 followed the Michaelis-Menten curve patterns. The presence of caffeic acid or chlorogenic acid inhibited DNA methylation predominantly through a non-competitive mechanism, and this inhibition was largely due to the increased formation of S-adenosyl-L-homocysteine (SAH, a potent inhibitor of DNA methylation), resulting from the catechol-O-methyltransferase (COMT)-mediated O-methylation of these dietary catechols. Using cultured MCF-7 and MAD-MB-231 human breast cancer cells, we also demonstrated that treatment of these cells with caffeic acid or chlorogenic acid partially inhibited the methylation of the promoter region of the RARbeta gene. The findings of our present study provide a general mechanistic basis for the notion that a variety of dietary catechols can function as inhibitors of DNA methylation through increased formation of SAH during the COMT-mediated O-methylation of these dietary

  11. Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing.

    Science.gov (United States)

    Di Carlo, Gabriella; Curulli, Antonella; Toro, Roberta G; Bianchini, Chiara; De Caro, Tilde; Padeletti, Giuseppina; Zane, Daniela; Ingo, Gabriel M

    2012-03-27

    In this work, colloidal gold nanoparticles (AuNPs) stabilized into a chitosan matrix were prepared using a green route. The synthesis was carried out by reducing Au(III) to Au(0) in an aqueous solution of chitosan and different organic acids (i.e., acetic, malonic, or oxalic acid). We have demonstrated that by varying the nature of the acid it is possible to tune the reduction rate of the gold precursor (HAuCl(4)) and to modify the morphology of the resulting metal nanoparticles. The use of chitosan, a biocompatible and biodegradable polymer with a large number of amino and hydroxyl functional groups, enables the simultaneous synthesis and surface modification of AuNPs in one pot. Because of the excellent film-forming capability of this polymer, AuNPs-chitosan solutions were used to obtain hybrid nanocomposite films that combine highly conductive AuNPs with a large number of organic functional groups. Herein, Au-chitosan nanocomposites are successfully proposed as sensitive and selective electrochemical sensors for the determination of caffeic acid, an antioxidant that has recently attracted much attention because of its benefits to human health. A linear response was obtained over a wide range of concentration from 5.00 × 10(-8) M to 2.00 × 10(-3) M, and the limit of detection (LOD) was estimated to be 2.50 × 10(-8) M. Moreover, further analyses have demonstrated that a high selectivity toward caffeic acid can be achieved without interference from catechin or ascorbic acid (flavonoid and nonphenolic antioxidants, respectively). This novel synthesis approach and the high performances of Au-chitosan hybrid materials in the determination of caffeic acid open up new routes in the design of highly efficient sensors, which are of great interest for the analysis of complex matrices such as wine, soft drinks, and fruit beverages.

  12. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids.

    Science.gov (United States)

    Luís, Ângelo; Silva, Filomena; Sousa, Sónia; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Staphylococcus aureus is a Gram-positive pathogen which is able to form biofilms, exhibiting a more pronounced resistance to antibiotics and disinfectants. The hurdles posed in eradicating biofilms have driven the search for new compounds able to fight these structures. Phenolic compounds constitute one of the most numerous and ubiquitous group of plant secondary metabolites with many biological activities. The aim of the present work was to study the potential antimicrobial and antibiofilm properties of gallic, caffeic, and chlorogenic acids against S. aureus as well to elucidate its mechanism of action. It was concluded that the phenolic acids studied in this work have antistaphylococcal properties. For instance, gallic acid is able to influence the adhesion properties of S. aureus. The phenolic acids tested were also able to inhibit the production of α-hemolysin by this microorganism, with the exception of chlorogenic acid. Regarding its mechanism of action, caffeic acid interferes with the stability of the cell membrane and with the metabolic activity of the cells of S. aureus.

  13. [Study on determination of caffeic acid, chlorogenic acid in rat plasma and their pharmacokinetics with LC-MS/MS].

    Science.gov (United States)

    Dai, Guo-Liang; Ma, Shi-Tang; Liu, Shi-Jia; Cheng, Xiao-Gui; Zang, Yu-Xin; Ju, Wen-Zheng; Tan, Heng-Shan

    2013-11-01

    To establish a LC-MS/MS method to determine caffeic acid, chlorogenic acid in rat plasma and study their pharmacokinetics in rats. Six Sprague-Dawley rats were intravenously injected with 4 mL x kg(-1) of Dengzhanxixin injection, respectively. Their drug plasma concentration was determined by LC-MS/MS, with tinidazole as an internal standard. The pharmacokinetic parameters were calculated by DAS 1.0. The linear concentration ranges of caffeic acid, and chlorogenic acid were 2-128 microg x L(-1) (r = 0.998 1) and 3-384 microg x L(-1) (r = 0.998 7), respectively. The methodological test showed conformance to the requirements. The intraday and inter-day variable coefficients were both less than 10.0%, indicating that both of legitimate precise and accuracy were in conformity with the requirements of biological sample analysis. For caffeic acid, the pharmacokinetic parameter t1/2beta AUC0-t, and CL were (130.91 +/- 38.77) min, (4.89 +/- 0.96) mg x min x L(-1) and (0.12 +/- 0.02) L x min(-1) x kg(-1), respectively. For chlorogenic acid, the pharmacokinetic parameter t1/2beta , AUC0-t, and CL were (49.38 +/- 8.85) min, (9.54 +/- 0.95) mg x min x L(-1) and (0.09 +/- 0.003) L x min(-1) x kg(-1), respectively. The LC-MS/MS analysis method established in this study was proved to be so accurate and sensitive that it can be applied to the pharmacokinetic study of caffeic acid and chlorogenic acid.

  14. Effect of caffeic acid esters on carcinogen-induced mutagenicity and human colon adenocarcinoma cell growth.

    Science.gov (United States)

    Rao, C V; Desai, D; Kaul, B; Amin, S; Reddy, B S

    1992-11-16

    Propolis, a honey bee hive product, is thought to exhibit a broad spectrum of activities including antibiotic, antiviral, anti-inflammatory and tumor growth inhibition; some of the observed biological activities may be due to caffeic acid (cinnamic acid) esters that are present in propolis. In the present study we synthesized three caffeic acid esters, namely methyl caffeate (MC), phenylethyl caffeate (PEC) and phenylethyl dimethylcaffeate (PEDMC) and tested them against the 3,2'-dimethyl-4-aminobiphenyl, (DMAB, a colon and mammary carcinogen)-induced mutagenicity in Salmonella typhimurium strains TA 98 and TA 100. Also, the effect of these agents on the growth of human colon adenocarcinoma, HT-29 cells and activities of ornithine decarboxylase (ODC) and protein tyrosine kinase (PTK) was studied. Mutagenicity was induced in Salmonella typhimurium strains TA 98 and TA 100 plus S9 activation using 5 and 10 micrograms DMAB and antimutagenic activities of 0-150 microM MC, 0-60 microM PEC and 0-80 microM PEDMC were determined. The results indicate that MC, PEC and PEDMC were not mutagenic in the Salmonella tester system. DMAB-induced mutagenicity was significantly inhibited with 150 microM MC, 40-60 microM PEC and 40-80 microM PEDMC in both tester systems. Treatment of HT-29 colon adenocarcinoma cells with > 150 microM MC, 30 microM PEC and 20 microM PEDMC significantly inhibited the cell growth and syntheses of RNA, DNA and protein. ODC and PTK activities were also inhibited in HT-29 cells treated with different concentrations of MC, PEC and PEDMC. These results demonstrate that caffeic acid esters which are present in Propolis possess chemopreventive properties when tested in short-term assay systems.

  15. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin

    Science.gov (United States)

    Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

    2010-10-01

    The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

  16. Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guizhen; Zhu, Tao; Lei, Yingjie [Tianjin University of Technology, Tianjin (China)

    2015-10-15

    A series of deep eutectic solvents (DESs) were prepared using glycerol and choline chloride (ChCl), and Fourier transform infrared spectrometer (FT-IR) was used to analyze the spectra of glycerol, choline chloride and DESs based on glycerol and choline chloride. Then DESs were used as the additives of mobile phase to optimize chromatographic behavior of caffeic acid in high performance liquid chromatography (HPLC). A 17-run Box-Behnken design (BBD) was employed to evaluate effect of DESs as additives by analyzing the maximum theoretical plate number. Three factors, reaction temperature (60 .deg. C, 80 .deg. C, 100 .deg. C), molar ratio of glycerol and choline chloride (2 : 1, 3 : 1, 4 : 1, n/n), and volume percent of additives (0.05%, 0.10%, 0.15%, v/v), were investigated in BBD. The optimum experiment condition was that of reaction temperature (80 .deg. C), molar ratio of glycerol and ChCl (3 : 1, n/n), and volume percent of additive (0.10%, v/v). The mean chromatographic theoretical plate number of the caffeic acid this condition was 1567.5, and DESs as additives shorten the retention time and modify the chromatogram shape, proving DESs as additives for effective theoretical plate number and column efficiency in HPLC.

  17. Homogeneous and heterogeneous degradation of caffeic acid using photocatalysis driven by UVA and solar light.

    Science.gov (United States)

    Yáñez, Eliana; Santander, Paola; Contreras, David; Yáñez, Jorge; Cornejo, Lorena; Mansilla, Héctor D

    2016-01-01

    Waste water from the wine industry is characterized by a high concentration of dissolved organic matter and the presence of natural phenolic compounds with low biodegradability. High concentrations of phenolic compounds may cause environmental pollution and risks to human health. In this article caffeic acid (CA) was used as a model compound of wine effluent because it is refractory to the conventional wastewater treatments. The oxidation of caffeic acid in water solution (0.01 g L(-1)) by heterogeneous photocatalysis and photo-Fenton reaction was studied using UVA. The optimal conditions for each treatment were performed by multivariate experimental design. The optimal conditions for heterogeneous photocatalysis were pH 5.3 and 0.9 g L(-1) TiO2. In the case of photo-Fenton treatment, optimized variable were 82.4 μmol L(-1) of Fe(2+) and 558.6 μmol L(-1) of H2O2. The degradation profiles of CA were monitored by UV-Vis, HPLC, TOC and COD. To reach 90% of CA removal, 40 and 2 min of reaction, respectively, were required by heterogeneous and photo-Fenton processes, respectively. For comparison purposes, the reactions were also performed under solar light. The use of solar light does not change the efficiency of the photo-Fenton reaction, yet the performance of the heterogeneous process was significantly improved, reaching 90% of degradation in 15 min.

  18. Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres.

    Science.gov (United States)

    Schmutz, A; Jenny, T; Amrhein, N; Ryser, U

    1993-03-01

    The fibres of the green-lint mutant (Lg) of cotton (Gossypium hirsutum L.) are suberized and contain a large proportion of wax. The unidentified components of the wax were separated into a colourless fluorescent fraction and a yellow pigmented fraction. Using ultraviolet spectroscopy and nuclear-magneticresonance ((1)H-NMR) spectroscopy, esterified trans-caffeic acid was identified as the only phenolic component in the colourless fraction. This fraction was further purified and was shown to contain caffeic acid esterified to fatty acids (mainly ω-hydroxy fatty acids), and glycerol in molar ratios of 4∶5∶5. When 2-aminoindan-2-phosphonic acid (AIP), an inhibitor of phenylalanine ammonia-lyase (EC 4. 3. 1. 5.) was added to ovules cultured in vitro, at the beginning of secondary wall formation, the fibres remained white and the colourless caffeic-acid derivative and the yellow compounds could no longer be detected by ultraviolet spectroscopy. Fibres grown in the presence of AIP were also examined in the electron microscope. Secondary cell walls were present in the treated fibres, but the electron-opaque suberin layers were replaced by apparently empty spaces. This result indicates that cinnamic-acid derivatives are covalently linked to suberin and have a structural role within the polymer or are involved in anchoring the polymer to the cellulosic secondary wall. Purified cell walls of green cotton fibres contained about 1% (of the dry weight) of bound glycerol, 0.9% of the glycerol being extractable with the wax fraction and 0.1% remaining in the cell-wall residue. The corresponding values for white fibres were 0.03% (total), 0.02% (wax), and 0.01% (cell-wall residue). Fibres synthesizing their secondary walls in the presence of AIP contained about normal amounts of bound glycerol in the wax fraction, but glycerol accumulation in the cell-wall residue was inhibited by about 95%. These observations indicate that glycerol is an important constituent of cotton

  19. Preparation and spectral investigation of inclusion complex of caffeic acid with hydroxypropyl-beta-cyclodextrin.

    Science.gov (United States)

    Zhang, Min; Li, Jinxia; Zhang, Liwei; Chao, Jianbin

    2009-01-01

    The inclusion complexation behavior of caffeic acid (CA) with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was studied by UV-vis, fluorescence spectroscopy and nuclear magnetic resonance spectroscopy (NMR). Experimental conditions including the concentration of HP-beta-CD and media acidity were investigated in detail. The result suggested HP-beta-CD was more suitable for including CA in acidity solution. The binding contants (K) of the inclusion complexes were determined by linear regression analysis and the inclusion ratio was found to be 1:1. The water solubility of CA was increased by inclusion with HP-beta-CD according to the phase-solubility diagram. The spatial configuration of complex has been proposed based on (1)H NMR and two-dimensional (2D) NMR, the result suggested that CA was entrapped inside the hydrophobic core of HP-beta-CD with the lipophilic aromatic ring and the portion of ethylene.

  20. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.

  1. Caffeic Acid Phenethyl Ester Loaded PLGA Nanoparticles: Effect of Various Process Parameters on Reaction Yield, Encapsulation Efficiency, and Particle Size

    Directory of Open Access Journals (Sweden)

    Serap Derman

    2015-01-01

    Full Text Available CAPE loaded PLGA nanoparticles were prepared using the oil in water (o/w single emulsion solvent evaporation methods. Five different processing parameters including initial CAPE amount, initial PLGA amount, PVA concentration in aqueous phase, PVA volume, and solvent type were screened systematically to improve encapsulation of hydrophobic CAPE molecule, simultaneously minimize particle size, and raise the reaction yield. Obtained results showed that the encapsulation efficiency of the nanoparticles significantly increased with the increase of the initial CAPE amount (p<0.05 and particle size (p<0.05. Furthermore, the particle size is significantly influenced by initial polymer amount (p<0.05 and surfactant concentration (p<0.05. By the optimization of process parameters, the nanoparticles produced 70±6% reaction yield, 89±3% encapsulation efficiency, -34.4±2.5 mV zeta potential, and 163±2 nm particle size with low polydispersity index 0.119±0.002. The particle size and surface morphology of optimized nanoparticles were studied and analyses showed that the nanoparticles have uniform size distribution, smooth surface, and spherical shape. Lyophilized nanoparticles with different CAPE and PLGA concentration in formulation were examined for in vitro release at physiological pH. Interestingly, the optimized nanoparticles showed a high (83.08% and sustained CAPE release (lasting for 16 days compared to nonoptimized nanoparticle.

  2. Cytoprotection of Human Endothelial Cells From Menadione Cytotoxicity by Caffeic Acid Phenethyl Ester: The Role of Heme Oxygenase-1

    Science.gov (United States)

    2008-06-08

    cells (HUVEC) to evaluate potential gene expression involvement. CAPE exhibited dose- dependent cytoprotection of HUVEC. A gene screen with...highly induced (8.25-fold) by CAPE compared to DMSO control. To validate this particular microarray screening result, quantitative real-time RT-PCR was...the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. The Journal of Biological Chemistry 279, 8919–8929. Minami, T

  3. Molecular cloning, characterization and expression of the caffeic acid O-methyltransferase (COMT) ortholog from kenaf (Hibiscus cannabinus)

    Science.gov (United States)

    We cloned the full-length of the gene putatively encoding caffeic acid O-methyltransferase (COMT) from kenaf (Hibiscus cannabinus L.) using degenerate primers and the RACE (rapid amplification of cDNA ends) method. Kenaf is an herbaceous and rapidly growing dicotyledonous plant with great potential ...

  4. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    Science.gov (United States)

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  5. Caffeic acid inhibits the formation of 1-hydroxyethyl radical in the reaction mixture of rat liver microsomes with ethanol partly through its metal chelating activity.

    Science.gov (United States)

    Ikeda, Hideyuki; Kimura, Yuka; Masaki, Miho; Iwahashi, Hideo

    2011-05-01

    Effect of caffeic acid on the formation of 1-hydroxyethyl radicals via the microsomal ethanol-oxidizing system pathway was examined. The electron spin resonance spin trapping showed that 1-hydroxyethyl radicals form in the control reaction mixture which contained 0.17 M ethanol, 1 mg protein/ml rat river microsomes, 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone, 5 mM nicotinamide adenine dinucleotide phosphate and 30 mM phosphate buffer (pH 7.4). When the electron spin resonance spectra of the control reaction mixtures with caffeic acid were measured, caffeic acid inhibited the formation of 1-hydroxyethyl radicals in a concentration dependent manner. Gallic acid, dopamine, l-dopa, chlorogenic acid and catechin also inhibited the formation of 1-hydroxyethyl radicals. Above results indicated that the catechol moiety is essential to the inhibitory effect. Caffeic acid seems to chelate of iron ion at the catechol moiety. Indeed, the inhibitory effect by caffeic acid was greatly diminished in the presence of desferrioxamine, a potent iron chelator which removes iron ion in the Fe (III)-caffeic acid complex. Since Fe (III)-desferrioxamine complex is active for the 1-hydroxyethyl radicals formation, caffeic acid inhibits the formation of 1-hydroxyethyl radicals in the reaction mixture partly through its metal chelating activity.

  6. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: a novel candidate for food-drug interaction.

    Science.gov (United States)

    Uwai, Yuichi; Ozeki, Yukihiro; Isaka, Tomonori; Honjo, Hiroaki; Iwamoto, Kikuo

    2011-01-01

    Several kinds of food have been shown to influence the absorption and metabolism of drugs, although there is little information about their effect on the renal excretion of drugs. In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effects of chlorogenic acid, caffeic acid and quinic acid, which are contained in coffee, fruits and vegetables, on human organic anion transporters hOAT1 and hOAT3; these transporters mediate renal tubular uptake of anionic drugs from blood. Injection of hOAT1 and hOAT3 cRNA into oocytes stimulated uptake of typical substrates of hOAT1 and hOAT3 (p-aminohippurate and estrone sulfate, respectively); among the three compounds tested, caffeic acid most strongly inhibited these transporters. The apparent 50% inhibitory concentrations of caffeic acid were estimated to be 16.6 µM for hOAT1 and 5.4 µM for hOAT3. Eadie-Hofstee plot analysis showed that caffeic acid inhibited both transporters in a competitive manner. In addition to the transport of p-aminohippurate and estrone sulfate, that of antifolates and antivirals was inhibited by caffeic acid. These findings show that caffeic acid has inhibitory potential against hOAT1 and hOAT3, suggesting that renal excretion of their substrates could be affected in patients consuming a diet including caffeic acid.

  7. Stabilization effects of naringenin and caffeic acid on γ-irradiatedEPDM

    Science.gov (United States)

    Zaharescu, T.; Jipa, S.; Mantsch, A.; Henderson, D.

    2013-03-01

    The stabilization of ethylene-propylene diene rubber (EPDM) with naringenin and caffeic acid is studied. The selected concentrations were 0.25, 0.50 and 1 phr. The degradation was performed by γ-irradiation. The protective effect of these antioxidants was investigated by isothermal chemiluminescence at 170 °C and FTIR spectroscopy. The synergetic action of these compounds and metallic selenium was also revealed. The exceptional contribution provided by these phenolic stabilizers is characterized by three kinetic parameters: initial CL intensity, oxidation induction time and maximum period of degradation. The radiation stability of stabilized EPDM is efficiently depicted by induction periods which are the minimum 6times longer for unirradiated samples and 2-50 times longer for 50 kGy-irradiated specimens than pristineEPDM.

  8. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase.

    Science.gov (United States)

    Li, Huaijun Michael; Rotter, David; Hartman, Thomas G; Pak, Fulya E; Havkin-Frenkel, Daphna; Belanger, Faith C

    2006-06-01

    The biosynthesis of many plant secondary compounds involves the methylation of one or more hydroxyl groups, catalyzed by O-methyltransferases (OMTs). Here, we report the characterization of two OMTs, Van OMT-2 and Van OMT-3, from the orchid Vanilla planifolia Andrews. These enzymes catalyze the methylation of a single outer hydroxyl group in substrates possessing a 1,2,3-trihydroxybenzene moiety, such as methyl gallate and myricetin. This is a substrate requirement not previously reported for any OMTs. Based on sequence analysis these enzymes are most similar to caffeic acid O-methyltransferases (COMTs), but they have negligible activity with typical COMT substrates. Seven of 12 conserved substrate-binding residues in COMTs are altered in Van OMT-2 and Van OMT-3. Phylogenetic analysis of the sequences suggests that Van OMT-2 and Van OMT-3 evolved from the V. planifolia COMT. These V. planifolia OMTs are new instances of COMT-like enzymes with novel substrate preferences.

  9. Way toward "dietary pesticides": molecular investigation of insecticidal action of caffeic acid against Helicoverpa armigera.

    Science.gov (United States)

    Joshi, R S; Wagh, T P; Sharma, N; Mulani, F A; Sonavane, U; Thulasiram, H V; Joshi, R; Gupta, V S; Giri, A P

    2014-11-12

    Bioprospecting of natural molecules is essential to overcome serious environmental issues and pesticide resistance in insects. Here we are reporting insights into insecticidal activity of a plant natural phenol. In silico and in vitro screening of multiple molecules supported by in vivo validations suggested that caffeic acid (CA) is a potent inhibitor of Helicoverpa armigera gut proteases. Protease activity and gene expression were altered in CA-fed larvae. The structure-activity relationship of CA highlighted that all the functional groups are crucial for inhibition of protease activity. Biophysical studies and molecular dynamic simulations revealed that sequential binding of multiple CA molecules induces conformational changes in the protease(s) and thus lead to a significant decline in their activity. CA treatment significantly inhibits the insect's detoxification enzymes, thus intensifying the insecticidal effect. Our findings suggest that CA can be implicated as a potent insecticidal molecule and explored for the development of effective dietary pesticides.

  10. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    Science.gov (United States)

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA.

  11. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    Science.gov (United States)

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins.

  12. Effect of added caffeic acid and tyrosol on the fatty acid and volatile profiles of camellia oil following heating.

    Science.gov (United States)

    Haiyan, Zhong; Bedgood, Danny R; Bishop, Andrea G; Prenzler, Paul D; Robards, Kevin

    2006-12-13

    Camellia oil is widely used in some parts of the world partly because of its high oxidative stability. The effect of heating a refined camellia oil for 1 h at 120 degrees C or 2 h at 170 degrees C with exogenous antioxidant, namely, caffeic acid and tyrosol, was studied. Parameters used to assess the effect of heating were peroxide and K values, volatile formation, and fatty acid profile. Of these, volatile formation was the most sensitive index of change as seen in the number of volatiles and the total area count of volatiles in gas chromatograms. Hexanal was generally the dominant volatile in treated and untreated samples with a concentration of 2.13 and 5.34 mg kg(-1) in untreated oils heated at 120 and 170 degrees C, respectively. The hexanal content was significantly reduced in heated oils to which tyrosol and/or caffeic acid had been added. Using volatile formation as an index of oxidation, tyrosol was the more effective antioxidant of these compounds. This is contradictory to generally accepted antioxidant structure-activity relationships. Changes in fatty acid profiles after heating for up to 24 h at 180 degrees C were not significant.

  13. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    Directory of Open Access Journals (Sweden)

    Francesca Selmin

    2015-01-01

    Full Text Available This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C. By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE, suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%. Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs.

  14. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate

    OpenAIRE

    Rodrigues, Joana Lúcia; Araújo, R. G.; Prather, Kristala L. J.; Kluskens, Leon; Rodrigues, L. R.

    2015-01-01

    Curcuminoids are phenylpropanoids with high pharmaceutical potential. Herein, we report an engineered artificial pathway in Escherichia coli to produce natural curcuminoids through caffeic acid. Arabidopsis thaliana 4-coumaroyl-CoA ligase (4CL1) and Curcuma longa diketide-CoA synthase (DCS) and curcumin synthase (CURS1) were used to produce curcuminoids and 70 mg/L of curcumin was obtained from ferulic acid. Bisdemethoxycurcumin and demethoxycurcumin were also produced, but in lower concentra...

  15. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate

    OpenAIRE

    Rodrigues, Joana L.; Kluskens, Leon D.; Ligia R Rodrigues; Araujo, Rafael G.; Prather, Kristala L. Jones

    2014-01-01

    Curcuminoids are phenylpropanoids with high pharmaceutical potential. Herein, we report an engineered artificial pathway in Escherichia coli to produce natural curcuminoids through caffeic acid. Arabidopsis thaliana 4-coumaroyl-CoA ligase and Curcuma longa diketide-CoA synthase (DCS) and curcumin synthase (CURS1) were used to produce curcuminoids and 70 mg/L of curcumin was obtained from ferulic acid. Bisdemethoxycurcumin and demethoxycurcumin were also produced, but in lower concentrations, ...

  16. Validation of HPLC-UV Assay of Caffeic Acid in Emulsions.

    Science.gov (United States)

    Spagnol, Caroline Magnani; Isaac, Vera Lucia Borges; Corrêa, Marcos Antonio; Salgado, Hérida Regina Nunes

    2016-03-01

    An accurate, sensitive, precise and rapid reversed-phase high-performance liquid chromatographic method was successfully developed and validated for the determination of caffeic acid (CA) in emulsions. The best separation was achieved on a 250 × 4.6 mm, 5.0 µm particle size RP18 XDB Waters column using ethanol and purified water (40:60 v/v) adjusted to pH 2.5 with acetic acid as the mobile phase at a flow rate of 0.7 mL/min. Ultraviolet detection was performed at 325 nm at ambient column temperature (25°C). The method was linear over the concentration range of 10-60 µg/mL (r(2) = 0.9999) with limits of detection and quantification of 1.44 and 4.38 µg/mL, respectively. CA was subjected to oxidation, acid, base and neutral degradation, as well as photolysis and heat as stress conditions. There were no interfering peaks at or near the retention time of CA. The method was applied to the determination of CA in standard and pharmaceutical products with excellent recoveries. The method is applicable in the quality control of CA.

  17. Caffeic acid and quercetin exert caspases-independent apoptotic effects on Leishmania major promastigotes, and reactivate the death of infected phagocytes derived from BALB/c mice

    Directory of Open Access Journals (Sweden)

    Radia Belkhelfa-Slimani

    2017-04-01

    Conclusions: The leishmanicidal effect of caffeic acid and quercetin on promastigotes and amastigotes, as well as reactivation of infected phagocytes apoptosis, suggested a potential therapeutic role against cutaneous leishmaniasis.

  18. Caffeic acid, a phyto polyphenol mitigates fluoride induced hepatotoxicity in rats: A possible mechanism.

    Science.gov (United States)

    Kanagaraj, Vishnu Vignesh; Panneerselvam, Lakshmikanthan; Govindarajan, Vimal; Ameeramja, Jaishabanu; Perumal, Ekambaram

    2015-01-01

    Fluoride induced hepatotoxicity has been extensively studied in both humans and animals. However, the mechanism underlying in the hepatotoxicity of experimental fluorosis remains obscure. The severity of fluoride toxicity was reduced by oral administration of certain plant derived antioxidants. Caffeic acid (CA) a polyphenolic compound has diverse range of pharmacological activity in the biological system. Therefore, the present study was aimed to investigate the protective mechanism of CA, against fluoride induced hepatotoxicity in rats. The rats were treated with 300 ppm of NaF via drinking water ad libitum alone and in combination with CA at a dose of 50 mg/kg daily for 30 days by oral intubation. CA treatment significantly prevented fluoride induced hepatic damage as evident from the histopathological studies and declined levels of serum fluoride and liver marker enzymes. A significant decrease in the levels of enzymatic (SOD2, CAT, GPx, and GSTpi class) and nonenzymatic (GSH and Vitamin C) antioxidants along with increased ROS, lipid peroxidation, protein carbonyl content, and nitrate levels by fluoride were also prevented in these groups. In addition, CA inhibits fluoride induced apoptosis by altering the Bax and caspase-3p20 expressions. Further, fluoride induced upregulation of Nox4, p38α MAPK, Hsp60, and downregulation of Hsp27 are the indicators for the detection of oxidative damage, apoptosis, and mitochondrial stress was also modulated by CA. These findings reveal that CA supplementation has a protective effect against fluoride induced hepatotoxicity in rats.

  19. Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans.

    Science.gov (United States)

    Rungsimakan, Supattra; Rowan, Michael G

    2014-12-01

    Three diterpenoids, 1-oxomicrostegiol (1), viroxocin (2), viridoquinone (3), were isolated from the roots of Salvia viridis L. cvar. Blue Jeans. Five known diterpenoids, microstegiol (4), 7α-acetoxy-14-hydroxy-8,13-abietadiene-11,12-dione (5; 7-O-acetylhorminone tautomer), 7α,14-dihydroxy-8,13-abietadiene-11,12-dione (6; horminone tautomer), ferruginol and salvinolonyl 12-methyl ether (7) were also found in the roots together with 1-docosyl ferulate (8), and a mixture of 2-(4'-alkoxyphenyl) ethyl alkanoates (9). Two lupane triterpenoids, 2α-acetoxy-lup-20(29)-en-3β-ol (10), and 3β-acetoxy-lup-20(29)-en-2α-ol (11) were found in the aerial parts together with known compounds, lup-20(29)-ene-2α,3β-diol (12), ursolic acid, oleanolic acid, β-sitosterol and β-sitosterol glucoside. A known phenylpropanoid, trans-verbascoside (or acteoside; 13), was the main constituent in the polar fraction of the aerial part, and it is now reported in the genus Salvia for the first time. Other polyphenolic compounds were cis-verbascoside (14), leucosceptoside A (15), martynoside (16), caffeic acid, 6-O-caffeoyl-glucose (18), rosmarinic acid, salidroside, luteolin-7-O-α-rhamnopyranosyl-(1→6)-β-galactopyranoside, luteolin-7-O-β-galactopyranoside, luteolin-7-O-α-rhamnopyranosyl-(1→6)-β-glucopyranoside, luteolin-7-O-β-glucopyranoside, and apigenin-7-O-β-glucopyranoside. The structures were determined by 1D-, 2D-NMR and HR-ESI-MS techniques. Compounds 6, 10, ferruginol, ursolic acid and oleanolic acid exhibited antibacterial activity against Enterococcus faecalis (ATCC 775) with MIC 50 μM, 25 μM, 50 μM, 12.5 μM, 12.5 μM respectively. Ferruginol, ursolic acid and oleanolic acid were also active against Staphylococcus aureus (ATCC 6571), and Bacillus cereus (ATCC 2599) with MIC 12.5-50 μM. 4 was also active against S.aureus (ATCC 6571) with MIC 50 μM. These values are consistent with previous studies on the antimicrobial activity of Salvia diterpenoids.

  20. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    Science.gov (United States)

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.

  1. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro.

    Science.gov (United States)

    Nasr Bouzaiene, Nouha; Kilani Jaziri, Soumaya; Kovacic, Hervé; Chekir-Ghedira, Leila; Ghedira, Kamel; Luis, José

    2015-11-05

    Reactive oxygen species are well-known mediators of various biological responses. In this study, we examined the effect of three phenolic acids, caffeic, coumaric and ferulic acids, on superoxide anion production, adhesion and migration of human lung (A549) and colon adenocarcinoma (HT29-D4) cancer cell lines. Proliferation of both tumor cells was inhibited by phenolic acids. Caffeic, coumaric and ferulic acids also significantly inhibited superoxide production in A549 and HT29-D4 cells. Superoxide anion production decreased by 92% and 77% at the highest tested concentration (200 µM) of caffeic acid in A549 and HT29-D4 cell lines respectively. Furthermore, A549 and HT29-D4 cell adhesion was reduced by 77.9% and 79.8% respectively at the higher tested concentration of ferulic acid (200 µM). Migration assay performed towards A549 cell line, revealed that tested compounds reduced significantly cell migration. At the highest concentration tested (200 µM), the covered surface was 7.7%, 9.5% and 35% for caffeic, coumaric or ferulic acids, respectively. These results demonstrate that caffeic, coumaric and ferulic acids may participate as active ingredients in anticancer agents against lung and colon cancer development, at adhesion and migration steps of tumor progression.

  2. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    Directory of Open Access Journals (Sweden)

    Thiago C Genaro-Mattos

    Full Text Available Caffeic acid (CA is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its

  3. Genomic study of the absorption mechanism of p-coumaric acid and caffeic acid of extract of Ananas comosus L. leaves.

    Science.gov (United States)

    Dang, Yun-jie; Zhu, Chun-yan

    2015-03-01

    Cardiac disease has emerged as the leading cause of death worldwide, and food rich in phenolic acids has drawn much attention as sources of active substances of hypolipidemic drug. Ananas comosus L. (pineapple) is one of the most popular tropical and subtropical fruits. Isolated from pineapple leaves, EAL(Extract of Ananas Comosus L. Leaves) is rich in phenolic acids, such as p-coumaric acid, caffeic acid, and other phenolics, highly relevant to the putative cardiovascular-protective effects, which suggests its potential to be a new plant medicine for treatment of cardiac disease, but little is known about absorption, distribution, metabolism, and excretion of EAL in animals or human beings. In this study, we employed cDNA microarray, Caco-2 cell lines, and rat intestinal model to explore the absorption behavior of p-coumaric acid and caffeic acid in EAL. The permeation of 2 substances was concentration and time dependent. Results also indicated that monocarboxylic acid transporter was involved in the transepithelial transport of p-coumaric acid and caffeic acid.

  4. A Comparative Study of the Radical-scavenging Activity of the Phenolcarboxylic Acids Caffeic Acid, p-Coumaric Acid, Chlorogenic Acid and Ferulic Acid, With or Without 2-Mercaptoethanol, a Thiol, Using the Induction Period Method

    OpenAIRE

    Seiichiro Fujisawa; Yoshinori Kadoma

    2008-01-01

    Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione), a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME), as a substitute for GSH, was investigated by the induction period (IP) method for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2'-azobisisobutyronitrile...

  5. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice

    Directory of Open Access Journals (Sweden)

    Hsu Cheng-chin

    2009-08-01

    Full Text Available Abstract Background Caffeic acid (CA and ellagic acid (EA are phenolic acids naturally occurring in many plant foods. Cardiac protective effects of these compounds against dyslipidemia, hypercoagulability, oxidative stress and inflammation in diabetic mice were examined. Methods Diabetic mice were divided into three groups (15 mice per group: diabetic mice with normal diet, 2% CA treatment, or 2% EA treatment. One group of non-diabetic mice with normal diet was used for comparison. After 12 weeks supplement, mice were sacrificed, and the variation of biomarkers for hypercoagulability, oxidative stress and inflammation in cardiac tissue of diabetic mice were measured. Results The intake of CA or EA significantly increased cardiac content of these compounds, alleviated body weight loss, elevated plasma insulin and decreased plasma glucose levels in diabetic mice (p p p p p p p Conclusion These results support that CA and EA could provide triglyceride-lowering, anti-coagulatory, anti-oxidative, and anti-inflammatory protection in cardiac tissue of diabetic mice. Thus, the supplement of these agents might be helpful for the prevention or attenuation of diabetic cardiomyopathy.

  6. Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles.

    Science.gov (United States)

    Seo, Yu Seon; Cha, Song-Hyun; Yoon, Hye-Ran; Kang, Young-Hwa; Park, Youmie

    2015-04-01

    The sustainable synthesis of gold nanoparticles from gold ions was conducted with caffeic acid as a green reducing agent. The formation of gold nanoparticles was confirmed by spectroscopic and microscopic methods. Spherical nanoparticles with an average diameter of 29.99 ± 7.43 nm were observed in high- resolution transmission electron microscopy and atomic force microscopy images. The newly prepared gold nanoparticles exhibited catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. This system enables the preparation of green catalysts using plant natural products as reducing agents, which fulfills the growing need for sustainability initiatives.

  7. A study of esterification of caffeic acid with methanol using p-toluenesulfonic acid as a catalyst

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2013-01-01

    Full Text Available Caffeic acid (CA can be considered as an important natural antioxidant. However, the low solubility and stability of CA in various solvent systems is a major limiting factor governing the overall application in the lipid industry, so the synthesis of methyl caffeate (MCusing CA and methanol is a feasible way to improve its lipophilicity. Here, the reaction conditions and kinetic parameters for the synthesis of MC using p-toluenesulfonic acid (PTSA as a catalyst were firstly investigated, and the product was confirmed byliquid chromatography-mass spectrometry (LC-MS,Fourier transform infrared spectroscopy (FTIR, nuclear magnetic resonance (NMR, and melting point analysis. The highest yield of MC catalyzed by PTSA reached 84.0% under the optimum conditions as follows: molar ratio of methanol to CA of 20:1, reaction temperature of 65°C, mass ratio of catalyst to substrate of 8 %, and reaction time of 4 h. The esterification kinetics of CA and methanol is described by the pseudo-homogeneous second order reversible model, the relationship between temperature and the forward rate constant is k1 = exp (358.7 - 2111/T, and the activation energy is 17.5 kJ mol-1. These results indicated that the PTSA possesses high catalytic activity in the synthesis of MC, which is an efficient catalyst suitable for MC production in the chemical industry.

  8. Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.G.; Zubovits, J.T.; Wong, S.T.; Molinari, L.M.; Ali, S.

    1989-02-01

    Teratogenicity of the anticonvulsant drug phenytoin is thought to involve its bioactivation by cytochromes P-450 to a reactive arene oxide intermediate. We hypothesized that phenytoin also may be bioactivated to a teratogenic free radical intermediate by another enzymatic system, prostaglandin synthetase. To evaluate the teratogenic contribution of this latter pathway, an irreversible inhibitor of prostaglandin synthetase, acetylsalicylic acid (ASA), 10 mg/kg intraperitoneally (ip), was administered to pregnant CD-1 mice at 9:00 AM on Gestational Days 12 and 13, 2 hr before phenytoin, 65 mg/kg ip. Other groups were pretreated 2 hr prior to phenytoin administration with either the antioxidant caffeic acid or the free radical spin trapping agent alpha-phenyl-N-t-butylnitrone (PBN). Caffeic acid and PBN were given ip in doses that respectively were up to 1.0 to 0.05 molar equivalents to the dose of phenytoin. Dams were killed on Day 19 and the fetuses were assessed for teratologic anomalies. A similar study evaluated the effect of ASA on the in vivo covalent binding of radiolabeled phenytoin administered on Day 12, in which case dams were killed 24 hr later on Day 13. ASA pretreatment produced a 50% reduction in the incidence of fetal cleft palates induced by phenytoin (p less than 0.05), without significantly altering the incidence of resorptions or mean fetal body weight. Pretreatment with either caffeic acid or PBN resulted in dose-related decreases in the incidence of fetal cleft palates produced by phenytoin, with maximal respective reductions of 71 and 82% at the highest doses of caffeic acid and PBN (p less than 0.05).

  9. A comparative study of the radical-scavenging activity of the phenolcarboxylic acids caffeic acid, p-coumaric acid, chlorogenic acid and ferulic acid, with or without 2-mercaptoethanol, a thiol, using the induction period method.

    Science.gov (United States)

    Kadoma, Yoshinori; Fujisawa, Seiichiro

    2008-10-15

    Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione), a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME), as a substitute for GSH, was investigated by the induction period (IP) method for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R(.)) and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO(.)) using differential scanning calorimetry (DSC). Upon PhCOO(. )radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant) for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R(.) radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (k(inh)/k(p)) declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME) mixture (1:1 molar ratio) (A) to the calculated IP (the simple sum of phenol acid antioxidant and ME) (B) was investigated. Upon R(.) scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO(.) scavenging, the corresponding mixture was A/B acid or chlorogenic acid/ME mixture was approximately 1. The reported beneficial antioxidant, anti-inflammatory and anticancer effects of caffeic

  10. A Comparative Study of the Radical-scavenging Activity of the Phenolcarboxylic Acids Caffeic Acid, p-Coumaric Acid, Chlorogenic Acid and Ferulic Acid, With or Without 2-Mercaptoethanol, a Thiol, Using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2008-10-01

    Full Text Available Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione, a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME, as a substitute for GSH, was investigated by the induction period (IP method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R. and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO. using differential scanning calorimetry (DSC. Upon PhCOO. radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R. radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (kinh/kp declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME mixture (1:1 molar ratio (A to the calculated IP (the simple sum of phenol acid antioxidant and ME (B was investigated. Upon R. scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO. scavenging, the corresponding mixture was A/B < 1, particularly the latter was 0.7, suggesting an antagonistic effect. Upon both radicals scavenging, the A/B for the ferulic acid or chlorogenic acid

  11. Additions of caffeic acid, ascorbyl palmitate or gamma-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jacobsen, Charlotte

    2009-01-01

    The objectives of the study were to investigate the effects of caffeic acid, ascorbyl palmitate and gamma-tocopherol on protection of fish oil-enriched energy bars against lipid oxidation during storage for 10 weeks at room temperature. The lipophilic gamma-tocopherol reduced lipid oxidation during......, or the hydrophilic caffeic acid, or the amphiphilic ascorbyl palmitate at concentrations of 75, 150 and 300 mu g/g fish oil. Prooxidative effects were observed as an increase in the formation of lipid hydroperoxides and volatile secondary oxidation products, as well as the development of rancid off...

  12. Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Giovannini, L; Migliori, M; Filippi, C; Origlia, N; Panichi, V; Falchi, M; Bertelli, A A E; Bertelli, A

    2002-01-01

    The objective of this study was to assess whether tyrosol and caffeic acid are able to inhibit lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha release. TNF is one of the most important cytokines involved in inflammatory reactions. The results show that both tyrosol and caffeic acid are able to inhibit LPS-induced TNF-alpha release from human monocytes, even at low doses. Their mechanisms of action are discussed and we conclude that high doses of the two compounds are not required to achieve effective inhibition of inflammatory reactions due to TNF-alpha release.

  13. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    Science.gov (United States)

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization.

  14. Equilibrium adsorption of caffeic, chlorogenic and rosmarinic acids on cationic cross-linked starch with quaternary ammonium groups.

    Science.gov (United States)

    Simanaviciute, Deimante; Klimaviciute, Rima; Rutkaite, Ramune

    2017-02-01

    In the present study, the equilibrium adsorption of caffeic acid (CA) and its derivatives, namely, chlorogenic (CGA) and rosmarinic (RA) acids on cationic cross-linked starch (CCS) with degree of substitution of quaternary ammonium groups of 0.42 have been investigated in relation to the structure and acidity of phenolic acids. The Langmuir, Freundlich and Dubinin-Radushkevich adsorption models have been used to describe the equilibrium adsorption of CA, CGA and RA from their initial solutions and solutions having the equimolar amount of NaOH at different temperatures. In the case of adsorption from the initial solutions of acids the values of adsorption parameters were closely related to the dissociation constants of investigated acids. According to the increasing effectiveness of adsorption, phenolic acids could be arranged in the following order: CAacids solutions changed their sorption properties which became mostly related to the acids structure.

  15. DJ-1 plays an important role in caffeic acid-mediated protection of the gastrointestinal mucosa against ketoprofen-induced oxidative damage.

    Science.gov (United States)

    Cheng, Yu-Ting; Ho, Cheng-Ying; Jhang, Jhih-Jia; Lu, Chi-Cheng; Yen, Gow-Chin

    2014-10-01

    Ketoprofen is widely used to alleviate pain and inflammation in clinical medicine; however, this drug may cause oxidative stress and lead to gastrointestinal (GI) ulcers. We previously reported that nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in protecting cells against reactive oxygen species, and it facilitates the prevention of ketoprofen-induced GI mucosal ulcers. Recent reports suggested that Nrf2 becomes unstable in the absence of DJ-1/PARK7, attenuating the activity of Nrf2-regulated downstream antioxidant enzymes. Thus, increasing Nrf2 translocation by DJ-1 may represent a novel means for GI protection. In vitro, caffeic acid increases the nuclear/cytosolic Nrf2 ratio and the mRNA expression of the downstream antioxidant enzymes, ϒ-glutamyl cysteine synthetase, glutathione peroxidase, glutathione reductase, and heme oxygenase-1, by activating the JNK/p38 pathway in Int-407 cells. Moreover, knockdown of DJ-1 also reversed caffeic acid-induced nuclear Nrf2 protein expression in a JNK/p38-dependent manner. Our results also indicated that treatment of Sprague-Dawley rats with caffeic acid prior to the administration of ketoprofen inhibited oxidative damage and reversed the inhibitory effects of ketoprofen on the antioxidant system and DJ-1 protein expression in the GI mucosa. Our observations suggest that DJ-1 plays an important role in caffeic acid-mediated protection against ketoprofen-induced oxidative damage in the GI mucosa.

  16. Amine-modified SBA-15 and MCF mesoporous molecular sieves as promising sorbents for natural antioxidant. Modeling of caffeic acid adsorption.

    Science.gov (United States)

    Moritz, Michał; Geszke-Moritz, Małgorzata

    2016-04-01

    This work presents a detailed study of caffeic acid adsorption on mesoporous SBA-15 and MCF silicas functionalized with (3-aminopropyl)triethoxysilane (APTES) and 3-[2-(aminoethylamino)propyl]trimethoxysilane (AEAPTMS). Synthesized mesoporous adsorbents were characterized using different analytical techniques such as N2 sorption, XRD, TEM, SEM and FT-IR. The adsorption studies of caffeic acid were conducted in various organic solvents. Moreover, the effect of water content in 2-propanol-water mixture on adsorption efficiency was investigated. The experimental data were best fitted to the Langmuir equation, followed by the Temkin, Dubinin-Radushkevich and Freundlich models. The maximum adsorption capacity values calculated from the Langmuir model demonstrated that SBA-15 and MCF silicas modified with AEAPTMS revealed better adsorption properties toward caffeic acid (192.3 and 161.3mg/g, respectively) as compared to the materials modified with APTES (125.0 and 113.6 mg/g, respectively). The obtained results indicate that both SBA-15 and MCF silicas functionalized with AEAPTMS and APTES are promising materials for the entrapment of caffeic acid.

  17. Determination of the structure and catalytic mechanism of Sorghum bicolor caffeic acid O-methyltransferase and the structural impact of three brown midrib12 mutations

    Science.gov (United States)

    With S-adenosylmethionine (SAM) acting as the methyl donor, caffeic acid O-methyltransferase from Sorghum bicolor (SbCOMT) methylates the 5-hydroxyl group of its preferred substrate, 5-hydroxyconiferaldehyde, to form sinapaldehyde. In order to determine the mechanism of SbCOMT and understand the red...

  18. Quaternized chitosan/κ-carrageenan/caffeic acid-coated poly(3-hydroxybutyrate) fibrous materials: Preparation, antibacterial and antioxidant activity.

    Science.gov (United States)

    Ignatova, Milena; Manolova, Nevena; Rashkov, Iliya; Markova, Nadya

    2016-11-20

    Novel fibrous materials with antioxidant and antibacterial properties from poly(3-hydroxybutyrate) (PHB), quaternized chitosan (QCh), κ-carrageenan (Car) and caffeic acid (CA) were obtained. These materials were prepared by applying electrospinning or electrospinning in conjunction with dip-coating and polyelectrolyte complex (PEC) formation. It was found that the CA release depended on the fiber composition. X-ray diffraction analysis (XRD) and differential scanning calorimetry (DSC) revealed that CA incorporated in the fibers was in the amorphous state, whereas CA included in the coating was in the crystalline state. In contrast to the neat PHB mats, the CA-containing mats and the PEC QCh/Car-coated mats were found to kill the Gram-positive bacteria S. aureus and the Gram-negative bacteria E. coli and were effective in suppressing the adhesion of pathogenic bacteria S. aureus. Enhancement of the antioxidant activity of the fibrous materials containing both CA and QCh/Car coating was observed.

  19. Caffeic Acid Reduces the Viability and Migration Rate of Oral Carcinoma Cells (SCC-25 Exposed to Low Concentrations of Ethanol

    Directory of Open Access Journals (Sweden)

    Arkadiusz Dziedzic

    2014-10-01

    Full Text Available Alcohol increases the risk of carcinoma originated from oral epithelium, but the biological effects of ultra-low doses of ethanol on existing carcinoma cells in combination with natural substances are still unclear. A role for ethanol (EtOH, taken in small amounts as an ingredient of some beverages or mouthwashes to change the growth behavior of established squamous cell carcinoma, has still not been examined sufficiently. We designed an in vitro study to determine the effect of caffeic acid (CFA on viability and migration ability of malignant oral epithelial keratinocytes, exposed to ultra-low concentrations (maximum 100 mmol/L EtOH. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-dimethyltetrazolium bromide and LDH (lactate dehydrogenase assays were used to assess the cytotoxic effect of EtOH/CFA and the viability of squamous carcinoma SCC-25 cells (ATCC CRL-1628, mobile part of the tongue. Tested EtOH concentrations were: 2.5, 5, 10, 25, 50, and 100 mmol/L, along with an equal CFA concentration of 50 μmol/L. Carcinoma cells’ migration was investigated by monolayer “wound” healing assay. We demonstrated that very low concentrations of EtOH ranging between 2.5 and 10 mmol/L may induce the viability of oral squamous cell carcinoma cells, while the results following addition of CFA reveal an antagonistic effect, attenuating pro-proliferative EtOH activity. The migration rate of oral squamous carcinoma cells can be significantly inhibited by the biological activity of caffeic acid.

  20. Down-regulation of the Caffeic acid O-methyltransferase Gene in Switchgrass Reveals a Novel Monolignol Analog

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Standaert, Robert F [ORNL; Engle, Nancy L [ORNL; Martin, Madhavi Z [ORNL; Sangha, Amandeep K [ORNL; Parks, Jerry M [ORNL; Smith, Jeremy C [ORNL; Samuel, Reichel [ORNL; Pu, Yunqiao [ORNL; Ragauskas, A J [Georgia Institute of Technology; Hamilton, Choo Yieng [ORNL; Fu, Chunxiang [Noble Foundation; Wang, Zeng-Yu [Noble Foundation; Davison, Brian H [ORNL; Dixon, Richard A [Noble Foundation; Mielenz, Jonathan R [ORNL

    2012-01-01

    Down-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography-mass spectrometry-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors, confirming the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. Although there was no indication that iso-sinapyl alcohol was integrated into the cell wall, diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth.

  1. Formation of nitric oxide, ethyl nitrite and an oxathiolone derivative of caffeic acid in a mixture of saliva and white wine.

    Science.gov (United States)

    Takahama, Umeo; Tanaka, Mariko; Hirota, Sachiko

    2010-03-01

    Reactions of salivary nitrite with components of wine were studied using an acidic mixture of saliva and wine. The formation of nitric oxide (NO) in the stomach after drinking wine was observed. The formation of NO was also observed in the mixture (pH 3.6) of saliva and wine, which was prepared by washing the oral cavity with wine. A part of the NO formation in the stomach and the oral cavity was due to the reduction of salivary nitrite by caffeic and ferulic acids present in wine. Ethyl nitrite produced by the reaction of salivary nitrite and ethyl alcohol in wine also contributed to the formation of NO. In addition to the above reactions, caffeic acid in wine could be transformed to the oxathiolone derivative, which might have pharmacological functions. The results obtained in this study may help in understanding the effects of drinking wine on human health.

  2. Simultaneous determination of protocatechuic acid, syringin, chlorogenic acid, caffeic acid, liriodendrin and isofraxidin in Acanthopanax senticosus Harms by HPLC-DAD.

    Science.gov (United States)

    Li, Qing; Jia, Ying; Xu, Liang; Wang, Xiaohui; Shen, Zhenduo; Liu, Yulei; Bi, Kaishun

    2006-03-01

    A high performance liquid chromatography (HPLC) method was developed for the first time to quantify simultaneously the six major active ingredients in Acanthopanax senticosus (Rupr. et Maxim.) Harms, namely protocatechuic acid, syringin, chlorogenic acid, caffeic acid, liriodendrin and isofraxidin. The analysis was performed by a reverse phase gradient elution with an aqueous mobile phase (containing 0.05% phosphoric acid) modified by acetonitrile and diode-array multiple-wavelength UV detector (DAD). Six regression equations showed good linear relationships between the peak area of each marker and concentration. The recoveries of the markers listed above were 92.3%, 93.9%, 90.3%, 93.1%, 94.3% and 90.7%, respectively. The relative standard deviation of intra-day and inter-day were less than 2.7% and 3.1%, respectively. This method was validated for specificity, accuracy, precision and limits of quantification. Medicinal materials of ten commercial brands were analyzed and found to contain different amounts of the six bioactive markers. The method developed can be used for the quality control of Acanthopanax senticosus (Rupr. et Maxim.) Harms.

  3. Structure-Activity Relationships in the Cytoprotective Effect of Caffeic Acid Phenethyl Ester (CAPE) and Fluorinated Derivatives: Effects on Heme Oxygenase-1 Induction and Antioxidant Activities

    Science.gov (United States)

    2010-03-09

    requirement for a catechol moiety for antioxidant functions and total methylation abolished the free radical scavenging ability of the analogues. The...Hishikawa, K., Nakaki, T., Fujita, T., 2005. Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice... flavonoids . Free Radical Biology & Medicine 20, 331–342. Wakabayashi, N., Dinkova-Kostova, A.T., Holtzclaw, W.D., Kang, M.I., Kobayashi, A., Yamamoto, M

  4. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    Science.gov (United States)

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  5. Determination of caffeic acid in Cirsium setosum by HPCE%HPCE 法测定小蓟中咖啡酸含量

    Institute of Scientific and Technical Information of China (English)

    刘学杰; 陈晓健

    2015-01-01

    目的:建立高效毛细管电泳法测定小蓟中咖啡酸的含量。方法采用石英毛细管柱,以硼砂溶液为缓冲液,运用电泳法测定小蓟中咖啡酸的含量。结果咖啡酸进样量在0.121~0.968μg 范围内(r =0.9990)线性关系良好,平均回收率为96.33%。结论本方法专属性强,灵敏度高,重复性好,可用于小蓟中咖啡酸的含量测定。%Objective To establish an HPCE method for the determination of caffeic acid in Cirsium setosum. Methods Using quartz capillary column,borax solution for buffer solution,the content of coffeic acid in Cirsium setosum was deter-mined by electrophoresis. Results The linear range of caffeic acid was 0. 121 ~ 0. 968 μg(r = 0. 999 0),the average re-covery was 96. 33%. Conclusion This method had a strong specificity,high sensitivity and fine reproducibility and can be used as a method for the determination of caffeic acid in Cirsium setosum.

  6. Poly(3-hydroxybutyrate)/caffeic acid electrospun fibrous materials coated with polyelectrolyte complex and their antibacterial activity and in vitro antitumor effect against HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ignatova, Milena G. [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia (Bulgaria); Manolova, Nevena E., E-mail: manolova@polymer.bas.bg [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia (Bulgaria); Rashkov, Iliya B. [Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St, Bl. 103A, BG-1113 Sofia (Bulgaria); Markova, Nadya D. [Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Bl. 26, BG-1113 Sofia (Bulgaria); Toshkova, Reneta A.; Georgieva, Ani K.; Nikolova, Elena B. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev St, bl. 25, BG-1113 Sofia (Bulgaria)

    2016-08-01

    The purpose of this work was to investigate the possibility for the preparation of new poly(3-hydroxybutyrate) (PHB)/poly(ethylene glycol) (PEG)-based fibrous materials containing natural phenolic compound caffeic acid (CA) of diverse architectures, as well as to study the impact of the fiber composition on the in vitro CA release profile and on the biological properties of the fibrous materials. The application of the one-pot electrospinning enabled the fabrication of nanofibrous materials from PHB and PEG loaded with the CA. Materials with targeted design were obtained by coating with polyelectrolyte complex of alginate (Alg) and N,N,N-trimethylchitosan (TMCh). Three different processing paths were used to obtain coated mats: (i) with CA incorporated in the PHB/PEG core; (ii) with CA embedded in the Alg layer; and (iii) with CA included in the TMCh layer. The in vitro release of CA was modulated by controlling the composition and the architecture of the nanofibrous mats. The performed microbiological screening and MTT cell viability studies revealed that in contrast to the bare mats, the CA-containing nanofibrous materials were effective in suppressing the growth of the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli and displayed good cytotoxicity against human cervical HeLa tumor cells. In addition, the proliferation of murine spleen lymphocytes and peritoneal macrophages was increased by the prepared CA-containing nanofibrous materials. The obtained materials are promising for antibacterial wound dressing applications as well as for application in local treatment of cervical tumors. - Highlights: • New caffeic acid-loaded materials from PHB and PEG were prepared by electrospinning. • Different design is achieved by coating and formation of polyelectrolyte complexes. • The control on the architecture of the mats enables modulating caffeic acid release. • The caffeic acid-loaded mats suppress the growth of

  7. Caffeic Acid Derivatives in Market Available Lamiaceae and Echinacea purpurea Products

    Science.gov (United States)

    Fresh basil leaves contain chicoric acid, the principal phenolic compound of Echinacea purpurea and purportedly the active ingredient in its dietary supplements. Our group discovered and first reported chicoric acid in basil. This following study examined the distribution of chicoric acid within the...

  8. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase.

    Science.gov (United States)

    Byeon, Yeong; Back, Kyoungwhan

    2016-08-01

    Melatonin is a well-known bioactive molecule produced in animals and plants and a well-studied natural compound. Two enzymatic steps are required for the biosynthesis of melatonin from serotonin. First, serotonin N-acetyltransferase (SNAT) catalyzes serotonin to N-acetylserotonin (NAS) followed by the action of N-acetylserotonin O-methyltransferase (ASMT), resulting in the synthesis of O-methylated NAS, also known as melatonin. Attempts to document melatonin production in Escherichia coli have been unsuccessful to date due to either low enzyme activity or inactive ASMT expression. Here, we employed caffeic acid O-methyltransferase (COMT) instead of ASMT, as COMT is a multifunctional enzyme that has ASMT activity as well. Among several combinations of dual expression cassettes, recombinant E. coli that expressed sheep SNAT with rice COMT produced a high quantity of melatonin, which was measured in a culture medium (1.46 mg/L in response to 1 mM serotonin). This level was several orders of magnitude higher than that produced in transgenic rice and tomato overexpressing sheep SNAT and ASMT, respectively. This heterologous expression system can be widely employed to screen various putative SNAT or ASMT genes from animals and plants as well as to overproduce melatonin in various useful microorganisms.

  9. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog

    Directory of Open Access Journals (Sweden)

    Tschaplinski Timothy J

    2012-09-01

    Full Text Available Abstract Background Down-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography–mass spectrometry (GCMS-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors. Results GCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples. Conclusions Down-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para

  10. In vitro permeation through porcine buccal mucosa of caffeic acid phenetyl ester (CAPE) from a topical mucoadhesive gel containing propolis.

    Science.gov (United States)

    Ceschel, G C; Maffei, P; Sforzini, A; Lombardi Borgia, S; Yasin, A; Ronchi, C

    2002-11-01

    Recent studies have shown that propolis has on the oral cavity appreciable antibacterial, antifungal and antiviral actions, as well as anti-inflammatory, anaesthetic and cytostatic properties. In light of these studies, an assessment of the diffusion and permeation of caffeic acid phenetyl ester (CAPE) through porcine buccal mucosa was considered useful as a possible application in the stomatological field. To do so, a mucoadhesive topical gel was prepared to apply to the buccal mucosa. The gel was formulated in such a way as to improve the solubility of the propolis, conducting to an increase of the flux. The mucosal permeation of CAPE from the formulation was evaluated using Franz cells, with porcine buccal mucosa as septum between the formulation (donor compartment) and the receptor phase chamber. The diffusion through the membrane was determined by evaluating the amount of CAPE present in the receiving solution, the flux and the permeation coefficient (at the steady state) in the different formulations at set intervals. Qualitative and quantitative determinations were done by HPLC analysis. From the results, CAPE allowed a high permeability coefficient in comparison to the coefficient of other molecules, as expected from its physical-chemical structure. Moreover, the developed gel improved the CAPE flux approximately 35 times more with respect to an ethanol solution formulated at the same gel concentration. The developed gel was also tested in order to evaluate the mucoadhesive behaviour and comfort in vivo on 10 volunteers in a period of 8 h. The in vivo evaluation of mucoadhesive gel revealed adequate comfort and non-irritancy during the period of study and it was well accepted by the volunteers.

  11. Caffeic Acid Cyclohexylamide Rescues Lethal Inflammation in Septic Mice through Inhibition of IκB Kinase in Innate Immune Process

    Science.gov (United States)

    Choi, Jun Hyeon; Park, Sun Hong; Jung, Jae-Kyung; Cho, Won-Jea; Ahn, Byeongwoo; Yun, Cheong-Yong; Choi, Yong Pyo; Yeo, Jong Hun; Lee, Heesoon; Hong, Jin Tae; Han, Sang-Bae; Kim, Youngsoo

    2017-01-01

    Targeting myeloid differentiation protein 2 (MD-2) or Toll-like receptor 4 (TLR4) with small molecule inhibitor rescues the systemic inflammatory response syndrome (SIRS) in sepsis due to infection with Gram-negative bacteria but not other microbes. Herein, we provided IκB kinase β (IKKβ) in innate immune process as a molecular target of caffeic acid cyclohexylamide (CGA-JK3) in the treatment of polymicrobial TLR agonists-induced lethal inflammation. CGA-JK3 ameliorated E. coli lipopolysaccharide (LPS, MD-2/TLR4 agonist)-induced endotoxic shock, cecal ligation and puncture (CLP)-challenged septic shock or LPS plus D-galactosamine (GalN)-induced acute liver failure (ALF) in C57BL/6J mice. As a molecular basis, CGA-JK3 inhibited IKKβ-catalyzed kinase activity in a competitive mechanism with respect to ATP, displaced fluorescent ATP probe from the complex with IKKβ, and docked at the ATP-binding active site on the crystal structure of human IKKβ. Furthermore, CGA-JK3 inhibited IKKβ-catalyzed IκB phosphorylation, which is an axis leading to IκB degradation in the activating pathway of nuclear factor-κB (NF-κB), in macrophages stimulated with TLR (1/2, 2/6, 4, 5, 7, 9) agonists from Gram-positive/negative bacteria and viruses. CGA-JK3 consequently interrupted IKKβ-inducible NF-κB activation and NF-κB-regulated expression of TNF-α, IL-1α or HMGB-1 gene, thereby improving TLRs-associated redundant inflammatory responses in endotoxemia, polymicrobial sepsis and ALF. PMID:28145460

  12. Caffeic Acid Inhibits the Formation of 7-Carboxyheptyl Radicals from Oleic Acid under Flavin Mononucleotide Photosensitization by Scavenging Singlet Oxygen and Quenching the Excited State of Flavin Mononucleotide

    Directory of Open Access Journals (Sweden)

    Marie Asano

    2014-08-01

    Full Text Available We examined the effects of caffeic acid (CA and related compounds on 7-carboxyheptyl radical formation. This analysis was performed using a standard D2O reaction mixture containing 4.3 mM oleic acid, 25 μM flavin mononucleotide (FMN, 160 mM phosphate buffer (pH 7.4, 10 mM cholic acid, 100 mM α-(4-pyridyl-1-oxide-N-tert-butylnitrone, and 1 mM Fe(SO42(NH42 during irradiation with 7.8 J/cm2 at 436 nm. 7-Carboxyheptyl radical formation was inhibited by CA, catechol, gallic acid, chlorogenic acid, ferulic acid, noradrenalin, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, and 4-hydroxybenzoic acid. Quinic acid, benzoic acid, and p-anisic acid had no effect on radical formation. These results suggest that a phenol moiety is essential for these inhibitory effects. The fluorescence intensity of FMN decreased by 69% ± 2% after CA addition, suggesting that CA quenches the singlet excited state of FMN. When 1 mM CA was added to a standard reaction mixture containing 25 μM FMN, 140 mM phosphate buffer (pH 7.4, and 10 mM 4-oxo-2,2,6,6-tetramethylpiperidine, the electron spin resonance signal of 4-oxo-2,2,6,6-tetramethylpiperidinooxy disappeared. This finding suggests that singlet oxygen was scavenged completely by CA. Therefore, CA appears to inhibit 7-carboxyheptyl radical formation by scavenging singlet oxygen and quenching the excited state of FMN.

  13. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro.

    Science.gov (United States)

    Oboh, Ganiyu; Agunloye, Odunayo M; Akinyemi, Ayodele J; Ademiluyi, Adedayo O; Adefegha, Stephen A

    2013-02-01

    This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO(4), sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO(4), sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.

  14. Separation of chlorogenic acid and concentration of trace caffeic acid from natural products by pH-zone-refining countercurrent chromatography.

    Science.gov (United States)

    Lu, Yuanyuan; Dong, Genlai; Gu, Yanxiang; Ito, Yoichiro; Wei, Yun

    2013-07-01

    Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH-zone-refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4 OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH-zone-refining CCC, a slightly polar two-phase solvent system composed of methyl-tert-butyl-ether/acetonitrile/n-butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4 OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH-zone-refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos.

  15. Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments.

    Science.gov (United States)

    Belay, Abebe; Libnedengel, Ermias; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-02-01

    The effects of solvent polarity on absorption and fluorescence spectra of biologically active compounds (chlorogenic acid (CGA) and caffeic acids (CA)) have been investigated. In both spectra pronounced solvatochromic effects were observed with shift of emission peaks larger than the corresponding UV-vis electronic absorption spectra. From solvatochromic theory the ground and excited-state dipole moments were determined experimentally and theoretically. The differences between the excited and ground state dipole moment determined by Bakhshiev, Kawski-Chamma-Viallet and Reichardt equations are quite similar. The ground and excited-state dipole moments were determined by theoretical quantum chemical calculation using density function theory (DFT) method (Gaussian 09) and were also similar to the experimental results. The HOMO-LUMO energy band gaps for CGA and CFA were calculated and found to be 4.1119 and 1.8732 eV respectively. The results also indicated the CGA molecule is more stable than that of CFA. It was also observed that in both compounds the excited state possesses a higher dipole moment than that of the ground state. This confirms that the excited state of the hydroxycinnamic compounds is more polarized than that of the ground state and therefore is more sensitive to the solvent.

  16. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    Directory of Open Access Journals (Sweden)

    Estefanía Burgos-Morón

    2016-07-01

    Full Text Available Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2 also play an important role in the development of a variety of cancers (e.g., bladder cancer in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay and DNA damage (γ-H2AX and 53BP1 focus assay induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee.

  17. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    Science.gov (United States)

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-01-01

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778

  18. The role of cyclodextrins in ORAC-fluorescence assays. antioxidant capacity of tyrosol and caffeic acid with hydroxypropyl-β-cyclodextrin.

    Science.gov (United States)

    García-Padial, Marcos; Martínez-Ohárriz, María Cristina; Navarro-Blasco, Iñigo; Zornoza, Arantza

    2013-12-18

    Tyrosol and caffeic acid are biophenols that contribute to the beneficial properties of virgin olive oil. The influence of hydroxypropyl-β-cyclodextrin (HPβ-CD) on their respective antioxidant capacities was analyzed. The ORAC antioxidant activity of tyrosol (expressed as μM Trolox equivalents/μM Tyrosol) was 0.83 ± 0.03 and it increased up to 1.20 ± 0.11 in the presence of 0.8 mM HPβ-CD. However, the ORAC antioxidant activity of caffeic acid experienced no change. The different effect of HPβ-CD on each compound was discussed. In addition, the effect of increasing concentrations of different cyclodextrins in the development of ORAC-fluorescence (ORAC-FL) assays was studied. The ORAC signal was higher for HPβ-CD, followed by Mβ-CD, β-CD, γ-CD and finally α-CD. These results could be explained by the formation of inclusion complexes with fluorescein.

  19. Synthesis of Caffeic Acid Amides Bearing 2,3,4,5-Tetra-hydrobenzo[b][1,4]dioxocine Moieties and Their Biological Evaluation as Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Ji-Wen Yuan

    2014-06-01

    Full Text Available A series of caffeic acid amides D1-D17 bearing 2,3,4,5-tetrahydrobenzo-[b][1,4]dioxocine units has been synthesized and their biological activities evaluated for potential antiproliferative and EGFR inhibitory activity. Of all the compounds studied, compound D9 showed the most potent inhibitory activity (IC50 = 0.79 μM for HepG2 and IC50 = 0.36 μM for EGFR. The structures of compounds were confirmed by 1H-NMR, ESI-MS and elemental analysis. Among all, the structure of compound D9 ((E-N-(4-ethoxyphenyl-3-(2,3,4,5-tetrahydrobenzo[b][1,4]dioxocin-8-ylacrylamide was also determined by single-crystal X-ray diffraction analysis. Compound D9 was found to be a potential antitumor agent according to biological activity, molecular docking, apoptosis assay and inhibition of HepG2.

  20. 反相高效液相色谱法同时测定荨麻中绿原酸和咖啡酸%RP-HPLC determination of chlorogenic acid and caffeic acid in Urtica fissa E.Pritz.

    Institute of Scientific and Technical Information of China (English)

    李小平; 张菁华

    2012-01-01

    目的 建立荨麻中绿原酸和咖啡酸含量测定的方法.方法 色谱柱:Betasil C18(150 mm×4.6 mm,5 μm),流动相为甲醇(A)-0.5%三氟乙酸(B)梯度洗脱,流速:1.0 mL/min,柱温:30℃,检测波长:323 nm.结果 分别在4.8~96.0 μg/mL和0.23~4.60 μg/mL范围内绿原酸和咖啡酸呈良好的线性关系,方法回收率分别为100.5%、98.1%.结论 该方法简便、快速、准确,可用于荨麻质量的控制.%Objective To develop the HPLC method to determine the proportion of chlorogenic acid and caffeic acid in Urtica fissa E. Pritz.. Methods Betasil C18 (150 mmx4.6 mm. 5 (μm) was used, the mobile phase was acetonitrile-0.5%THF with gradient elution at the flow rate of 1.0 mL/min, the column and temperature was 30℃, the absorbance was monitored at 323 nm. Results The linear range was 4.8-96.0 μg/mL for chlorogenic acid and 0.23-4.60 μg/mL for caffeic acid. The average recoveries (n - 6) of chlorogenic acid and caffeic acid were 100.5% and 98.1%, respectively. Conclusion The method is found to be simple and accurate for quality control of Urtica fissa E. Pritz.

  1. 毛细管电泳-电化学检测Vc银翘片中的有效成分%Determination of Chlorogenic Acid, Caffeic Acid and Vitamin C in Vc-Yinqiao Pill by Capillary Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)

    彭友元; 楚清脆; 叶建农

    2003-01-01

    @@ Vc银翘解毒片是常用的中成药,由金银花、连翘、甘草等中药组成,具有辛凉解表、清热解毒的功能.咖啡酸(chlorogenic acid)和绿原酸(caffeic acid)为其主要有效成分.绿原酸具有抗菌、利胆、止血等药理作用,咖啡酸为绿原酸的水解产物.

  2. Caffeic Acid Expands Anti-Tumor Effect of Metformin in Human Metastatic Cervical Carcinoma HTB-34 Cells: Implications of AMPK Activation and Impairment of Fatty Acids De Novo Biosynthesis

    Science.gov (United States)

    Tyszka-Czochara, Malgorzata; Konieczny, Pawel; Majka, Marcin

    2017-01-01

    The efficacy of cancer treatments is often limited and associated with substantial toxicity. Appropriate combination of drug targeting specific mechanisms may regulate metabolism of tumor cells to reduce cancer cell growth and to improve survival. Therefore, we investigated the effects of anti-diabetic drug Metformin (Met) and a natural compound caffeic acid (trans-3,4-dihydroxycinnamic acid, CA) alone and in combination to treat an aggressive metastatic human cervical HTB-34 (ATCC CRL­1550) cancer cell line. CA at concentration of 100 µM, unlike Met at 10 mM, activated 5'-adenosine monophosphate-activated protein kinase (AMPK). What is more, CA contributed to the fueling of mitochondrial tricarboxylic acids (TCA) cycle with pyruvate by increasing Pyruvate Dehydrogenase Complex (PDH) activity, while Met promoted glucose catabolism to lactate. Met downregulated expression of enzymes of fatty acid de novo synthesis, such as ATP Citrate Lyase (ACLY), Fatty Acid Synthase (FAS), Fatty Acyl-CoA Elongase 6 (ELOVL6), and Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells. In conclusion, CA mediated reprogramming of glucose processing through TCA cycle via oxidative decarboxylation. The increased oxidative stress, as a result of CA treatment, sensitized cancer cells and, acting on cell biosynthesis and bioenergetics, made HTB-34 cells more susceptible to Met and successfully inhibited neoplastic cells. The combination of Metformin and caffeic acid to suppress cervical carcinoma cells by two independent mechanisms may provide a promising approach to cancer treatment. PMID:28230778

  3. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells.

    Science.gov (United States)

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto

    2017-02-20

    Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H₂O₂)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H₂O₂-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H₂O₂-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  4. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2017-02-01

    Full Text Available Chlorogenic acid (CHA and caffeic acid (CA are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK. Additionally, upstream of IKK, protein kinase D (PKD was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells.

  5. Catechol Groups Enable Reactive Oxygen Species Scavenging-Mediated Suppression of PKD-NFkappaB-IL-8 Signaling Pathway by Chlorogenic and Caffeic Acids in Human Intestinal Cells

    Science.gov (United States)

    Shin, Hee Soon; Satsu, Hideo; Bae, Min-Jung; Totsuka, Mamoru; Shimizu, Makoto

    2017-01-01

    Chlorogenic acid (CHA) and caffeic acid (CA) are phenolic compounds found in coffee, which inhibit oxidative stress-induced interleukin (IL)-8 production in intestinal epithelial cells, thereby suppressing serious cellular injury and inflammatory intestinal diseases. Therefore, we investigated the anti-inflammatory mechanism of CHA and CA, both of which inhibited hydrogen peroxide (H2O2)-induced IL-8 transcriptional activity. They also significantly suppressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcriptional activity, nuclear translocation of the p65 subunit, and phosphorylation of IκB kinase (IKK). Additionally, upstream of IKK, protein kinase D (PKD) was also suppressed. Finally, we found that they scavenged H2O2-induced reactive oxygen species (ROS) and the functional moiety responsible for the anti-inflammatory effects of CHA and CA was the catechol group. Therefore, we conclude that the presence of catechol groups in CHA and CA allows scavenging of intracellular ROS, thereby inhibiting H2O2-induced IL-8 production via suppression of PKD-NF-κB signaling in human intestinal epithelial cells. PMID:28230729

  6. Caffeic Acid Inhibits UVB-induced Inflammation and Photocarcinogenesis Through Activation of Peroxisome Proliferator-activated Receptor-γ in Mouse Skin.

    Science.gov (United States)

    Balupillai, Agilan; Prasad, Rajendra N; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugham, Mohana; Govindasamy, Kanimozhi; Gunaseelan, Srithar

    2015-11-01

    In this study, the effect of caffeic acid (CA) on both acute and chronic UVB-irradiation-induced inflammation and photocarcinogenesis was investigated in Swiss albino mice. Animals were exposed to 180 mJ cm(-2) of UVB once daily for 10 consecutive days and thrice weekly for 30 weeks for acute and chronic study respectively. UVB exposure for 10 consecutive days showed edema formation, increased lipid peroxidation and decreased antioxidant status with activation of inflammatory molecules such as TNF-α, IL-6, COX-2 and NF-κB. However, CA (15 mg per kg.b.wt.) administration before each UVB exposure decreased lipid peroxidation, inflammatory markers expression and enhanced antioxidant status probably through the activation of peroxisome proliferator-activated receptors (PPARγ) in the mice skin. PPARγ is considered a potential target for photochemoprevention because it inhibits UVB-mediated inflammatory responses. In this study, UVB exposure for 30 weeks caused squamous cell carcinoma and upregulation of iNOS, VEGF and TGF-β and downregulation of p53 and tumor incidence in the mice skin. Both topical (CAT) and intraperitoneal (CAIP) treatment before each UVB exposure downregulates iNOS, VEGF, TGF-β, upregulates p53 and reduces tumors multiplicity in the mice skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through activation of anti-inflammatory transcription factor PPARγ in the mice.

  7. Synthesis,antibacterial and antioxidant activity of caffeic acid vitamin C ester%咖啡酸维生素C酯的合成、抑菌活性和抗氧化性研究

    Institute of Scientific and Technical Information of China (English)

    刘菊香; 范广璞; 刘长春

    2012-01-01

    A facile one-pot method for synthesis of caffeic acid vitamin C ester via Knoevenagel condensation and esterification from 3,4-dihydroxybenzaldehyde,malonate and vitamin C were studied.Antibacterial and antioxidant activity of caffeic acid vitamin C ester were determined.In the presence of SO2-4/ZrO2 catalyst,caffeic acid was synthesized by Knoevenagel condensation of 3,4-dihydroxybenzaldehyde with malonate,then esterified with vitamin C to give caffeic acid vitamin C ester in 85.1% yield.The structure of target compound was confirmed by1H NMR and IR spectrum.The antibacterial tests indicated that caffeic acid vitamin C ester exhibited good inhibition activity on Staphylococcus aureus,Escherichia coli,Bacillus subtilis,Saccharomyces cerevisiae,Penicillium chrysogenum,Aspergillus flavus and Aspergillus niger.And the inhibition activity of caffeic acid vitamin C ester on bacteria and yeast were much higher than those on mould.The antioxidant tests indicated that caffeic acid vitamin C ester could efficiently scavenge DPPH free radical and hydroxyl free radical,which was significantly higher than that of vitamin C.%研究了以3,4-二羟基苯甲醛、丙二酸和维生素C为原料,经过Knoevenagel缩合和直接酯化一锅法合成咖啡酸维生素C酯的方法,并考察了咖啡酸维生素C酯的抑菌活性和抗氧化性。在催化剂SO42-/ZrO2的作用下,3,4-二羟基苯甲醛与丙二酸首先发生Knoevenagel缩合生成咖啡酸,产物不需要分离,加入维生素C继续进行酯化反应,以85.1%的产率得到了咖啡酸维生素C酯,产物结构用1HNMR和IR进行确证。抑菌活性实验表明,咖啡酸维生素C酯对金黄色葡萄球菌、大肠杆菌、枯草杆菌、酿酒酵母、青霉、黄曲霉和黑曲霉均有较强的抑制作用,对细菌和酵母的抑制作用高于霉菌。抗氧化性实验表明,咖啡酸维生素C酯可以有效清除DPPH自由基和羟基自由基,清除效果明显好于维生素C。

  8. 电沉积咖啡酸玻碳修饰电极对抗坏血酸的催化氧化%Electrocatalytic Oxidation of AA at GCE Modified by Electrodeposited Films of Caffeic Acid

    Institute of Scientific and Technical Information of China (English)

    任旺; 罗红群; 李念兵

    2005-01-01

    A stable electroactive thin film of poly(caffeic acid) has been deposited on the surface of a glassy carbon electrode(GCE) by potentiostatic technique in a pH 7.0 phosphate buffer containing caffeic acid. The poly(caffeic acid)/glassy carbon electrode is easy to be prepared with good stability and reproducibility. The voltammetric behavior of ascorbic acid(AA) at the poly(caffeic acid) modified glassy carbon electrode was studied by cyclic voltammetry. It has been found that the catalytic current depends on the concentration and pH of ascorbic acid. At pH 7.7,the oxidation peak current of ascorbic acid on the modified electrode is the maximum. The oxidation peak current is proportional to the ascorbic acid concentration in the range of 4.0 × 10-5 to 2.0 × 10-2 mol/L and the detection limit for ascorbic acid is 1.0× 10-5 mol/L. The proposed method can be applied to the determination of ascorbic acid in practical tablet samples with simplicity, rapidness and accurate results.%在pH=7.0的磷酸缓冲溶液中采用电沉积技术将咖啡酸修饰于玻碳电极表面制备了一层稳定的薄膜,该修饰电极制备简单,稳定性良好.用循环伏安法研究了抗坏血酸在修饰电极上的电化学行为,其氧化峰电流与抗坏血酸的浓度和pH值有关,当pH值达到7.7时,抗坏血酸在修饰电极上的氧化峰电流最大,氧化峰电流与抗坏血酸浓度在4.0×10-5~2.0×10-2mol/L范围成良好的线性关系,检测限为1.0×10-5mol/L,方法简单、快速、准确,可应用于抗坏血酸药片的检测.

  9. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd. Iljin for the Production of Biomass and Caffeic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Ewa Skała

    2015-01-01

    Full Text Available The aim of the study was to obtain transformed roots of Rhaponticum carthamoides and evaluate their phytochemical profile. Hairy roots were induced from leaf explants by the transformation of Agrobacterium rhizogenes strains A4 and ATCC 15834. The best response (43% was achieved by infection with A4 strain. The effects of different liquid media (WPM, B5, SH with full and half-strength concentrations of macro- and micronutrients on biomass accumulation of the best grown hairy root line (RC3 at two different lighting conditions (light or dark were investigated. The highest biomass (93 g L−1 of the fresh weight after 35 days was obtained in WPM medium under periodic light. UPLC-PDA-ESI-MS3 and HPLC-PDA analyses of 80% aqueous methanol extracts from the obtained hairy roots revealed the presence of eleven caffeoylquinic acids and their derivatives and five flavonoid glycosides. The production of caffeoylquinic acids and their derivatives was elevated in hairy roots grown in the light. Only light-grown hairy roots demonstrated the capability for the biosynthesis of such flavonoid glycosides as quercetagetin, quercetin, luteolin, and patuletin hexosides. Chlorogenic acid, 3,5-di-O-caffeoylquinic acid and a tentatively identified tricaffeoylquinic acid derivative were detected as the major compounds present in the transformed roots.

  10. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    Science.gov (United States)

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  11. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls

    Science.gov (United States)

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants’ response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis. PMID:26569488

  12. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines.

    Science.gov (United States)

    Sirota, R; Gibson, D; Kohen, R

    2015-01-01

    In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes. In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells. The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes. We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity. In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H2O2 produced by the catechol group. On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment.

  13. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol.

    Science.gov (United States)

    Jung, Je Hyeong; Altpeter, Fredy

    2016-09-01

    Sugarcane (Saccharum spp. hybrids) is a prime crop for commercial biofuel production. Advanced conversion technology utilizes both, sucrose accumulating in sugarcane stems as well as cell wall bound sugars for commercial ethanol production. Reduction of lignin content significantly improves the conversion of lignocellulosic biomass into ethanol. Conventional mutagenesis is not expected to confer reduction in lignin content in sugarcane due to its high polyploidy (x = 10-13) and functional redundancy among homo(eo)logs. Here we deploy transcription activator-like effector nuclease (TALEN) to induce mutations in a highly conserved region of the caffeic acid O-methyltransferase (COMT) of sugarcane. Capillary electrophoresis (CE) was validated by pyrosequencing as reliable and inexpensive high throughput method for identification and quantitative characterization of TALEN mediated mutations. Targeted COMT mutations were identified by CE in up to 74 % of the lines. In different events 8-99 % of the wild type COMT were converted to mutant COMT as revealed by pyrosequencing. Mutation frequencies among mutant lines were positively correlated to lignin reduction. Events with a mutation frequency of 99 % displayed a 29-32 % reduction of the lignin content compared to non-transgenic controls along with significantly reduced S subunit content and elevated hemicellulose content. CE analysis displayed similar peak patterns between primary COMT mutants and their vegetative progenies suggesting that TALEN mediated mutations were faithfully transmitted to vegetative progenies. This is the first report on genome editing in sugarcane. The findings demonstrate that targeted mutagenesis can improve cell wall characteristics for production of lignocellulosic ethanol in crops with highly complex genomes.

  14. Reuse of Organomineral Substrate Waste from Hydroponic Systems as Fertilizer in Open-Field Production Increases Yields, Flavonoid Glycosides, and Caffeic Acid Derivatives of Red Oak Leaf Lettuce (Lactuca sativa L.) Much More than Synthetic Fertilizer.

    Science.gov (United States)

    Dannehl, Dennis; Becker, Christine; Suhl, Johanna; Josuttis, Melanie; Schmidt, Uwe

    2016-09-28

    Effects of organic waste from a hydroponic system added with minerals (organomineral fertilizer) and synthetic fertilizer on major polyphenols of red oak leaf lettuce using HPLC-DAD-ESI-MS(3) were investigated. Interestingly, contents of the main flavonoid glycosides and caffeic acid derivatives of lettuce treated with organomineral fertilizer were equal to those synthesized without soil additives. This was found although soil nutrient concentrations, including that of nitrogen, were much lower without additives. However, lettuce treated with synthetic fertilizer showed a significant decrease in contents of caffeic acid derivatives and flavonoid glycosides up to 78.3 and 54.2%, respectively. It is assumed that a negative effect of a high yield on polyphenols as described in the growth-differentiation balance hypothesis can be counteracted by (i) a higher concentration of Mg or (ii) optimal physical properties of the soil structure. Finally, the organomineral substrate waste reused as fertilizer and soil improver resulted in the highest yield (+78.7%), a total fertilizer saving of 322 kg ha(-1) and waste reduction in greenhouses.

  15. Determination of Caffeic Acid, Ferulic Acid , Rosmarinic Acid in Rosmarinus officinalis by HPLC with Changing Ultraviolet-visible Wavelength%HPLC波长切换法同时测定迷迭香中咖啡酸、阿魏酸和迷迭香酸的含量

    Institute of Scientific and Technical Information of China (English)

    王珲; 张振秋

    2011-01-01

    目的:建立迷迭香中咖啡酸、阿魏酸和迷迭香酸的含量测定方法,为其质量标准的研究提供科学依据.方法:采用高效液相色谱切换波长法同时测定咖啡酸、阿魏酸、迷迭香酸的含量.色谱条件为phenomsil C18(4.6 mm×250 mm,5 μm)分析柱进行测定,流动相甲醇-0.1%磷酸水溶液(32∶68);流速1.0 mL·min-1,检测波长0~20 min为323 nm,20~30 min为316 nm,30 min为329 nm.结果:此方法线性良好,咖啡酸,阿魏酸和迷迭香酸的平均加样回收率分别为103.7%,99.5%,101.7%;RSD分别为1.5%,1.2%,1.5%.结论:本方法简便,准确,重复性好,可做为迷迭香质量控制的定性依据.%Objective :To establish the method for determining the content of caffeic acid, ferulic acid, rosmarinic acid in Rosmarinus officinalis for its quality standards to provide the scientific basis for the study. Caffeic acid, ferulic acid,rosmarinic acid were determined by HPLC simultaneously with changing ultraviolet-visible wavelength. Chromatographic condition was composed of C18 (4.6 mm × 250 mm, 5 μm) , mobile phase methanol -0. 1% phosphoric acid (32∶68); Flow rate was 1.0 mL· min - 1; the detection wavelength of caffeic acid at 323 nm,Ferulic acid at 316 nm and rosmarinic acid at 329 nm. the isolation effect among caffeic acid, ferulic acid, and rosmarinic acid showed good linear correlation, the average recoveries were 103.7% ,99.5%, 101.7% ;RSD were 1.5% , 1.2% , 1.5%. the method and was convenient,accurate and good reappearance,It can be used as quantity basis of the quality control of R. officinalis.

  16. 白色紫锥菊不定根诱导及咖啡酸衍生物积累研究%Induction of adventitious roots of Echinacea pallida and accumulation of caffeic acid derivatives

    Institute of Scientific and Technical Information of China (English)

    吴春华; 黄韬; 崔锡花; 白基烨

    2012-01-01

    以白色紫锥菊试管苗子叶为外植体,研究了植物生长素2,4-D,IAA,IBA,NAA对不定根诱导以及IBA浓度对液体悬浮培养中不定根的生长及咖啡酸衍生物积累的影响,并进行了生物反应器培养.结果表明,对白色紫锥不定根诱导最适合植物生长素是IBA1.0mg· L-1,不定根诱导数目达到22.5根/培养皿.液体悬浮培养中IBA 1.0 mg·L-1最适合不定根生长及咖啡酸衍生物的积累.白色紫锥菊不定根在5L气升式生物反应器中培养30 d后可获得8.98 g· L-1干重,是三角瓶悬浮培养干重4.38 g·L-1的2.05倍;生物反应器培养的不定根中紫锥菊苷质量分数为14.08 mg·g-1(干重),是栽培根的2.4倍;氯原酸,菊苣酸,总咖啡酸衍生物含量是栽培根的4.0 ~25.6倍.该研究为大量生产紫锥菊药品可提供富含紫锥菊苷等咖啡酸衍生物的高品质生物医学药材.%Objective:To investigate the effect of auxins 2,4-D, IAA, IBA, NAA on induction of adventitious roots as well as that of IBA concentrations on the growth of adventitious roots and the accumulation of caffeic acid derivatives, with test-tube seedling leaves Echinacea pallida as the explant,and cultivate adventitious roots in bioreactors. Result: 1.0 mg·L-1 IBA was found the best for the induction of adventitious roots,with the numer of induced adventitious roots up to 22. 5 in each culture dish. Among different concentrations for suspension cultivation of IBA tested, 1. 0 mg·L-1lBA was found the most suitable for the growth of adventitious roots and the accumulation of caffeic acid derivatives. In a 5 L balloon type bubble bioreactor,8. 98 g·L-1 dry weight was achieved after one month,which was 2. 05 times of 4. 38 g·L-1 dry weight cultivated in a triangular flask. The content of echinacoside cultivated in a bioreactor was 14. 08 mg g -1 DW, which was 2. 4 times of cultivated roots. The contents of chlorogenic acid, chicoric acid and total caffeic acid derivatives were

  17. Simultaneous determination of gallic acid, chlorogenic acid and caffeic acid contents in Ganmao'an granules by HPLC method%用HPLC法同时测定感冒安颗粒中没食子酸、绿原酸及咖啡酸的含量

    Institute of Scientific and Technical Information of China (English)

    陈方剑; 宋洪杰; 高鸿彬; 王志君; 傅芃; 陆松伟; 袁文琳

    2012-01-01

    目的:建立用HPLC法同时测定感冒安颗粒中没食子酸、绿原酸及咖啡酸的含量.方法:采用Kromasil C18色谱柱(150 mm×4.6 mm,5 μm);流动相:乙腈(A)-0.4%磷酸溶液(B),梯度洗脱:0~7.50 minA相2%,7.50~~ 7.51 min A相2%→12%,7.51~ 25.00 min A相12%;流速:0.8 ml/min;柱温:室温;检测波长:272 nm(没食子酸)、327 nm(绿原酸和咖啡酸).结果:没食子酸在0.27~~8.64 μg/ml范围内线性关系良好(r=0.999 9),平均回收率为100.14%,RSD为1.66%(n=9);绿原酸在1.00~32.00μg/ml范围内线性关系良好(r=0.999 7),平均回收率为98.10%,RSD为2.38%(n=9);咖啡酸在0.30~ 9.60 μg/ml范围内线性关系良好(r=0.999 8),平均回收率为100.48%,RSD为2.28%(n=9).结论:该方法准确、灵敏,专属性强,重现性好,对感冒安颗粒质量控制标准的提高具有参考意义.%Objective: To establish a HPLC method for simultaneous determination of gallic acid, chlorogenic acid and caffeic acid contents in Ganmao'an granules. Methods: The separation column of Kromasil C18 (150 mm×4. 6 mm, 5 μm) was used,acetonitrile (A)-0. 4% phosphoric acid(B) was applied as the mobile phase with gradient elution: 0-7. 50 min 2% A, 7. 50-7. 51 min 2%→12% A,7. 51-25. 00 min 12% A. The flow rate was 0. 8 ml/min. The column temperature was room temperature. The detection wavelengths were 272 nm for gallic acid,327 nm for chlorogenic acid and caffeic acid. Results: The linear ranges of gallic acid,chlorogen-ic acid and caffeic acid were 0. 27-8. 64 μg/ml(r=0. 999 9), 1. 00-32. 00 μg/ml(r=0. 999 7) and 0. 30-9. 60 μg/ml(r=0. 999 8), respectively. The average recoveries of gallic acid, chlorogenic acid and caffeic acid were 100. 14%,RSD 1. 66%(n=9), 98. 10%, RSD 2. 38%(n=9) and 100. 48%,RSD 2. 28%(n=9) .respectively. Conclusion; The method is accurate,sensitive,selective and reproducible, and could provide the reference for the improvement of quality control standard of Ganmao

  18. Activity of chalcones derived from 2,4,5-trimethoxybenzaldehyde against Meloidogyne exigua and in silico interaction of one chalcone with a putative caffeic acid 3-O-methyltransferase from Meloidogyne incognita.

    Science.gov (United States)

    Nunes, Alexandro Silva; Campos, Vicente Paulo; Mascarello, Alessandra; Stumpf, Taisa Regina; Chiaradia-Delatorre, Louise Domenghini; Machado, Alan Rodrigues Teixeira; Santos Júnior, Helvécio Martins; Yunes, Rosendo Augusto; Nunes, Ricardo José; Oliveira, Denilson Ferreira

    2013-12-01

    Meloidogyne exigua is a parasitic nematode of plants that causes great losses to coffee farmers. In an effort to develop parasitic controls, 154 chalcones were synthesized and screened for activity against this nematode. The best results were obtained with (2E)-1-(4'-nitrophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (6) with a 50% lethal concentration (LC50) of 171 μg/ml against M. exigua second-stage juveniles, in comparison to the commercially-available nematicide carbofuran which had an LC50 of 260 μg/ml under the same conditions. When coffee plants were used, 6 reduced the nematode population to ~50% of that observed in control plants. To investigate the mechanism of action of 6, an in silico study was carried out, which indicated that 6 may act against M. exigua through inhibition of a putative caffeic acid 3-O-methyltransferase homodimer, the amino acid sequence of which was determined by examining the genome of Meloidogyne incognita.

  19. Phenethyl Isothiocyanate in Breast Cancer Prevention

    Science.gov (United States)

    2005-08-01

    Nutritional Diets and consists of AIN93G diet (using corn oil instead of soy oil ) with or without 6 ltmol/gm PEITC (formulated in powder form, stored in...and II drug metabolizing enzymes and aflatoxin B 1 metabolism. Carcinogenesis 1997; 18(9):1729-38. 47. Murphy SE, Johnson LM, Losey LM, Carmella SG...mediated apoptosis induced by anticarcinogenic isothiocyanates. J Biol Chem 1998;273(3): 1769-75. 54. Huang C MW-y. Essential role of p53 in Phenethyl

  20. 高效液相色谱法测定蒲地蓝消炎片中咖啡酸、绿原酸的含量%High performance liquid chromatography in determination on contents of caffeic acid and chlorogenic acid in Pudilan Xiaoyan Tablets

    Institute of Scientific and Technical Information of China (English)

    邵礼梅; 李延雪; 王云龙

    2011-01-01

    目的:采用高效液相色谱法测定蒲地蓝消炎片中咖啡酸、绿原酸的含量.方法:采用Agilent ZORBAX SB-C(18)色谱柱(4.6mm×250 mm,5μm),以甲醇-乙腈-0.05%磷酸溶液为流动相(5:5:90),检测波长:328nm,流速:0.8ml/min,进样量:10μl,柱温:35℃.结果:咖啡酸、绿原酸的线性范围分别为2.162~25.944 μg/ml(r=1.0000,n=7)、0.6072~7.2864μg/ml(r=1.0000,n=7),平均回收率分别为98.29%(RSD为0.48%)、98.36%(RSD为0.81%).结论:所建立的方法快速、简便、准确,可用于蒲地蓝消炎片的质量控制.%Objective: To develop the High performance liquid chromatography (HPLC) for the determination on contents of caffeic acid and chlorogenic acid in Pudilan Xiaoyan Tablets.Methods: The separation was performed on an Agilent ZORBAX SB-C18 column (4.6 mm×250 mm, 5 μm) with methanol-acetonitrile-0.05% phosphoric acid (5∶5∶90) as mobile phase.The detective UV wavelength was at 328 nm, the flow rate was 0.8 ml/min, the column temperature was 35℃.Results: The quantitative line range of caffeic acid and chlorogenic acid were 2.162-25.944 μg/ml (r=1.000 0, n=l) and 0.607 2-7.286 4 μg/ml (r=1.000 0, n=7) respectively; the average recoveries of caffeic acid and chlorogenic acid were 98.29% (RSD=0.48%), 98.36% (RSD=0.81%).Conclusion: The method is rapid, simple and accurate, and can be applied for the quality control of Pudilan Xiaoyan Tablets.

  1. Photocatalytic degradation of 2-phenethyl-2-chloroethyl sulfide in liquid and gas phases.

    Science.gov (United States)

    Vorontsov, Alexandre V; Panchenko, Alexander A; Savinov, Evgueni N; Lion, Claude; Smirniotis, Panagiotis G

    2002-12-01

    This work explores the ability of photocatalysis to decontaminate water and air from chemical warfare agent mustard using its simulant 2-phenethyl 2-chloroethyl sulfide (PECES). PECES like mustard slowly dissolves in water with hydrolysis, forming 2-phenethyl 2-hydroxyethyl sulfide (PEHES). Irradiation of TiO2 suspension containing PECES with the unfiltered light of a mercury lamp (lambda > or = 254 nm) decomposed all PECES mostly via photolysis. Reaction under filtered light (lambda > 300 nm) proceeds mainly photocatalytically and requires longer time. Sulfur from starting PECES is completely transformed into sulfuric acid at the end of the reaction. Detected volatile, nonvolatile, surface products, and the suggested scheme of degradation are reported. The main volatile products are styrene and benzaldehyde, nonvolatile--hydroxylated PEHES, surface--2-phenethyl disulfide. Photolysis of PECES produced the same set of volatile products as photocatalysis. Photocatalytic degradation of gaseous PECES in air results in its mineralization but is accompanied by TiO2 deactivation. The highest rate of mineralization with minimum deactivation was observed at about room temperature and a water concentration of 27,500 ppm. No gaseous products except CO2 were detected. The main extracted surface product was styrene. It was concluded that PECES photocatalytic degradation proceeds mainly via C-S bond cleavage and further oxidation of the products. Hydrolysis of the C-S bond was detected only in gas-phase photocatalytic degradation. The quantum efficiency of gas-phase degradation (0.28%) was much higher than that of liquid-phase degradation (0.008%). The results demonstrate the ability of photocatalysis to decontaminate an aqueous and especially an air environment

  2. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT down-regulated, and normal maize plants

    Directory of Open Access Journals (Sweden)

    Martinant Jean-Pierre

    2008-06-01

    Full Text Available Abstract Background Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3 mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT gene. Results Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225, and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying and ear (younger lignifying internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. Conclusion Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the

  3. Comparison of 2 culture media, cornmeal agar incorporating caffeic acid and black rice agar, to selectively isolate Cryptococcus neoformans%两种新型隐球菌选择性培养基的比较研究

    Institute of Scientific and Technical Information of China (English)

    陶星辰; 尚秋菊; 罗宗龙; 杨静; 代陆娇; 苏鸿雁

    2014-01-01

    目的 比较咖啡酸玉米琼脂培养基(caffeic acid cornmeal agar medium,CACA)和黑米琼脂培养基(black rice agar medium)对鸽粪中新型隐球菌的分离效果. 方法 用无菌竹签从鸽舍随机采取鸽粪标本,取0.6g与10 ml无菌生理盐水制成悬液,然后按每个平板100μl分别接种咖啡酸玉米琼脂培养基和黑米琼脂培养基,肉眼观察菌落形态、颜色,光学显微镜下观察菌体形态,同时用特异性引物CN4和CN5扩增新型隐球菌URA基因,分别统计两种培养基中出现阳性菌株的平板数目. 结果 黑米琼脂培养基中新型隐球菌菌落呈棕黄色,外观湿润,状似胶汁.共分离获得23株新型隐球菌,检出率32.86%.CACA中新型隐球菌菌落较黑米琼脂培养基上的菌落小,褐色,干燥.共分离出11株新型隐球菌,检出率为15.71%.黑米琼脂培养基的检出率与CACA比较差异有统计学意义(P<0.05),且丝状真菌覆盖性生长的平板数目少于CACA,污染程度低于CACA;通过墨汁染色,在光学显微镜下观察新型隐球菌菌体呈圆形或卵圆形,外有宽厚荚膜,PCR扩增得到了目的条带产物. 结论 黑米琼脂培养基作为新型隐球菌的选择性培养基其分离培养效果(检出效果和检出率)优于CACA.

  4. Simultaneous determination of chlorogenic acid,caffeic acid,puerarin,daidzin in Xiaoer Jiebiao Granules by HPLC%HPLC法同时测定小儿解表颗粒中绿原酸、咖啡酸、葛根素、大豆苷的含量

    Institute of Scientific and Technical Information of China (English)

    何海雁; 张叶; 刘宏明

    2016-01-01

    Objective To simultaneous determine the contents of chlorogenic acid,caffeic acid,puerarin,daidzin in Xi-aoer Jiebiao Granules by HPLC. Methods Agilent Zorbax XDB - C18 column(4. 6 mm × 250 mm,5 μm)was adopted with acetonitrile - 0. 1% phosphoric acid as the mobile phases by gradient elution. The column temperature was 40 ℃ . The de-tection wavelength was changed. Results The linear ranges of chlorogenic acid,caffeic acid,puerarin,daidzin were 0. 051 46 ~ 1. 029 2 μg,0. 024 70 ~ 0. 494 0 μg,0. 050 57 ~ 1. 011 4 μg,0. 008 292 ~ 0. 165 8 μg,respectively. The aver-age recoveries were between 98. 77% ~ 99. 98% with RSDs less than 2. 00% . Conclusion The method was accurate,sen-sitive,reproducible,it can be used for the overall assessment of the quality of Xiaoer Jiebiao Granules.%目的:高效液相色谱法同时测定小儿解表颗粒中绿原酸、咖啡酸、葛根素、大豆苷、升麻苷、黄芩苷、黄芩素和汉黄芩素的含量。方法采用 Agilent Zorbax XDB - C18色谱柱(4.6 mm ×250 mm,5μm),乙腈-0.1%磷酸水溶液梯度洗脱,柱温为40℃,采用变换波长法。结果绿原酸、咖啡酸、葛根素、大豆苷分别在0.05146~1.0292μg、0.02470~0.4940μg、0.05057~1.0114μg、0.008292~0.1658μg 范围内与峰面积均有较好的线性关系,平均加样回收率在98.77%~99.98%范围内,RSD 均小于2.00%。结论该方法准确高,重复性好,为小儿解表颗粒更好的控制药品质量提供了科学依据。

  5. COMPARISON OF GUIZOTIA ABYSSINICA SEED AGAR WITH CAFFEIC ACID CORNMEAL AGAR TO SELECTIVELY ISOLATE CRYPTOCOCCUS NEOFORMANS%对两种新生隐球菌选择性培养基的比较研究

    Institute of Scientific and Technical Information of China (English)

    李安生; 吕桂霞; 沈永年; 陈伟; 吴绍熙

    2001-01-01

    比较鸟籽琼脂(GASA,Guizotia abyssinica seed agar)和咖啡酸玉米琼脂(CACA,Caffeic acidcommeal agar)对新生变种和格特变种的培养效果,再同时用两种培养基分离鸽粪和澳洲赤桉标本中的新生隐球菌.结果表明,CACA对新生隐球菌的培养和选择性分离效果与GASA相同,能够用于新生隐球菌的选择性分离.

  6. Reversible Helix Sense Inversion in Surface-Grafted Poly(β-phenethyl-L-aspartate) Films

    NARCIS (Netherlands)

    Luijten, Jeroen; Vorenkamp, Eltjo J.; Schouten, Arend J.

    2007-01-01

    The reversible manipulation of the helix screw sense in surface-grafted poly(β-phenethyl-L-aspartate) (PPELA) films by means of external stimuli was investigated. Ringopening polymerization of β-phenethyl-L-aspartate N-carboxyanhydride initiated from primary amino-functionalized silicon and quartz s

  7. Reversible helix sense inversion in surface-grafted poly(beta-phenethyl-L-aspartate) films

    NARCIS (Netherlands)

    Luijten, Jeroen; Vorenkamp, Eltjo J.; Schouten, Arend J.

    2007-01-01

    The reversible manipulation of the helix screw sense in surface-grafted poly(beta-phenethyl-L-aspartate) (PPELA) films by means of external stimuli was investigated. Ringopening polymerization of beta-phenethyl-L-aspartate N-carboxyanhydride initiated from primary amino-functionalized silicon and qu

  8. Thermolysis of surface-immobilized phenethyl phenyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Hitsman, V.M.

    1991-01-01

    Our research has focused on modeling the constraints on free-radical reactions that might be imposed in coal as a consequence of its cross-linked macromolecular structure by covalently bonding diphenylalkanes to an inert silica surface. A surface-immobilized phenethyl phenyl ether ({approx}PhCH{sub 2}CH{sub 2}POh, or {approx}PPE-3) has been prepared as a model for ether linkages in lignin by the condensation of p-HOPhCH{sub 2}CH{sub 2}OPh with the surface hydroxyls of a high purity fumed silica. Thermolysis of {approx}PPE-3 at saturation surface coverage at 375{degree}C produces {approx}PhCH = CH{sub 2} and PhOH as the major products which are consistent with the proposed free-radical chain mechanism for the decomposition of fluid-phase phenethyl phenyl ether. However, significant quantities of {approx}PhCH{sub 3} and PhCHO (ca. 18% of the products) are produced indicating the emergence of a new reaction pathway on the surface. The mechanism for the decomposition of {approx}PPE-3 will be discussed in light of this new information. 18 refs., 1 fig.

  9. Comparison of caffeic acid contents in tetraploidy taraxacum officinale and diplontic taraxacum dissectum%四倍体药蒲公英和二倍体山西多裂蒲公英中咖啡酸含量的比较

    Institute of Scientific and Technical Information of China (English)

    刘红霞; 高培芳; 赵晓明; 张金桐

    2009-01-01

    A high performance liquid chromatographic method was established for determination of caffeic acid contents in tetraploidy taraxacum officinale and diplontic taraxacum dissectum. An Appollo C18 column (150mm×4. 6mm, 5μ) was used with CH_3OH-PB (pH4. 0, 23:77) as mobile phase, detection at 327nm, column temperature of 40℃ , and flow rate of 0. 9mL/min. The results showed that the caffeic acid content in tetraploidy taraxacum officinale was 0. 29%, and in diplontic taraxacam dissectum it was only 0. 105%). The former was 176. 1% higher than the latter. The comparison is helpful for promoting high quality tetraploidy strain.%本文采用四倍体药蒲公英和二倍体多裂蒲公英为材料,通过HPLC法测定并比较两种蒲公英中咖啡酸的含量,以大力推广产量高,抗逆性强,药用活性成分高的优质多倍体蒲公英新品种.HPLC所采用的色谱柱为Apollo C18柱(150mm×4.6mm,5μm),流动相为甲醇-磷酸盐缓冲液(pH4.0)(23: 77);柱温40℃;流速0.9mL/min,检测波长为327nm.二倍体山西多裂蒲公英中咖啡酸含量仅为0.105%,四倍体药蒲公英中咖啡酸含量高达0.29%,比前者多176.1%.四倍体药蒲公英中咖啡酸含量高,是一种值得推广的优质多倍体蒲公英新品种.

  10. Clicked Cinnamic/Caffeic Esters and Amides as Radical Scavengers and 5-Lipoxygenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Jérémie A. Doiron

    2014-01-01

    Full Text Available 5-Lipoxygenase (5-LO is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a–h and amides 9a–h as well as caffeic esters 15a–h and amides 16a–h were synthesized by Cu(I-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10–20 μM. Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

  11. 咖啡酸片治疗甲亢药所致白细胞减少症疗效观察%Curative Effect Observation of Caffeic Acid Tablets Therapeutic Drug-inducleod Leukopenia by Druy Treatment of Hyperthyroi-dism

    Institute of Scientific and Technical Information of China (English)

    吴春农

    2015-01-01

    Objective To observe the effect of oral Caffeic acid Tablets treatment of hyperthyroidism drug induced sec-ondary leukopenia clinical curative effect. Methods We selected 30 cases of oral hyperthyroidism drugs ( including methimazole and propylthiouracil) lead to secondary patients with leukopenia,Among the 20 cases of oral methimazole, 10 cases of propylthio-uracil were randomly divided into 2 groups, 15 cases in each group. Take medicine before blood was normal in hyperthyroidism, one group was given Coffee acid 0. 2, tid,The control group oral batyl alcohol 50mg, TID, VB410mg, tid,After medication,, re-view the blood white cells at 5 days, 7 days, 10 days, 14 days, respectively, to observe the improved degree. Results Oral Cof-fee acid group of white blood cell recovery time ( average 7 days) was significantly shorter than the control group ( mean 13 days, and the same time after taking the white cells in the ascending degree is obviously higher than that of control group, the total effi-ciency of two groups had significant difference ( P<0. 05 ) . Conclusion Oral Caffeic acid Tablets treatment to reduce disease curative effect of hyperthyroidism drug induced leukocyte, safety.%目的 观察口服咖啡酸片治疗甲亢药所致继发性白细胞减少症临床疗效. 方法 选取30例口服甲亢药(包括甲巯咪唑及丙硫氧嘧啶)导致继发性白细胞减少的患者,其中口服甲巯咪唑者20例,丙硫氧嘧啶者10例,随机分为2组,每组15例,服甲亢药前血常规均正常,治疗组给予咖啡酸0. 2g/次,3 次/d,对照组口服鲨肝醇50mg/次,3 次/d, VB410mg, 3次/d,分别于服药后5、7、10、14d复查血常规,观察白细胞提升程度. 结果 口服咖啡酸组白细胞恢复时间(平均7d)明显短于对照组(平均13d),并且服药后相同时间内白细胞提升程度明显大于对照组,两组总有效率差异有统计学意义(P<0. 05). 结论 口服咖啡酸片治疗甲亢药所致白细胞减少症疗效确切安全.

  12. 谷胱甘肽在咖啡酸修饰碳糊电极上的电催化氧化及电分析方法%Electrocatalytic oxidation of glutathione at caffeic acid modified carbon paste electrode and its electrochemical determination

    Institute of Scientific and Technical Information of China (English)

    张艳梅; 段成茜; 高作宁

    2011-01-01

    目的:研究了谷胱甘肽(还原型,glutathione,GSH)在咖啡酸(Caffeic acid,CFA)修饰碳糊电极(CFA/CPE)上的电催化氧化行为和电化学分析方法.方法:循环伏安法(CV),计时电流法(CA)和线性扫描伏安法(LSV).结果:GSH在碳糊电极(CPE)上的直接电化学氧化过程十分迟缓,CFA/CPE对GSH电化学氧化具有良好的催化作用.同时测定了GSH在CFA/CPE上的电极过程动力学参数,用LSV法测得催化氧化峰电流与GSH在5.0×10-5~1.0×10-3 mol·L-1浓度范围内呈良好线性关系,线性回归方程为Ipa(μA) =2.003c (10-3 mol·L-1)+3.448,r=0.9989,检出限为4.0×10-5 mol·L-1.结论:CFA/CPE对GSH电化学氧化具有良好的催化作用,该方法可用于市售还原型谷胱甘肽药物含量的电化学定量测定.%Objective:Electrocatalytic oxidation behaviors and electrochemical determination of glutathione(GSH) at carbon paste electrode (CPE) and caffeic acid modified carbon paste electrode ( CFA/CPE ) were investigated. Methods:Cyclic voltammetry(CV) ,chronoamperometry(CA) and linear sweep voltammetry(LSV). Results;It was found that glutathione itself showed a poor electrochemical response at carbon paste electrode (CPE) , the electrochemical behaviors could be greatly enhanced by using CFA/CPE,which enables a sensitive electrochemical determination of the substrate glutathione. The kinetic parameters of the reaction were evaluated. The catalytic oxidation peak currents of glutathione versus its concentration had a good linear relationship in the concentration range of 5. 0 x 10-5 ~ 1.0 x 10-3 mol·L-1 with the correlation coefficient of 0. 9989, and the detection limit of 4. 0 x 10-5 mol ·L-1 by LSV. Conclusion:CFA/CPE can catalyze the oxidation of GSH well. Furthermore,the proposed method can be applied in the electrochemical determination of glutathione content with real samples with the simple manipulation.

  13. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms.

    Science.gov (United States)

    Gupta, Parul; Wright, Stephen E; Kim, Sung-Hoon; Srivastava, Sanjay K

    2014-12-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.

  14. Simultaneous determination of chlorogenic acid, caffeic acid and caffeine in hydroalcoholic and aqueous extracts of Ilex paraguariensis by HPLC and correlation with antioxidant capacity of the extracts by DPPH· reduction Determinação simultânea de ácido clorogênico, ácido caféico e cafeína, no extrato aquoso e hidroalcoólico de Ilex paraguariensis por CLAE e correlação com a capacidade antioxidante dos extratos por redução do DPPH·

    Directory of Open Access Journals (Sweden)

    Diogo Pineda Rivelli

    2007-06-01

    Full Text Available A new high performance liquid chromatographic method has been established for simultaneous determination of chlorogenic acid, caffeic acid and caffeine in hydroalcoholic and aqueous extracts of Ilex paraguariensis. Analytical curves showed good linear regression in the concentration ranges 0.49-7.8 µg/mL for chlorogenic acid, 0.25-3.9 µg/mL for caffeic acid and 0.244-7.8 µg/mL for caffeine. Reduction of the DPPH· radical was used to determine the antioxidant capacity of the extracts. Our method for the simultaneous determination of chlorogenic acid, caffeic acid and caffeine was highly sensitive, having lower detection and quantitation limits than other papers that used similar methodology.Um novo método de cromatografia líquida de alta eficiência foi desenvolvido para a determinação simultânea de ácido clorogênico, ácido caféico e cafeína no extrato hidroalcoólico e aquoso de Ilex paraguariensis. As curvas de calibração mostraram boa regressão linear nas faixas de concentração 0,49-7,8 µg/mL para o ácido clorogênico, 0,25-3,9 µg/mL para ácido caféico e 0,244-7,8 µg/mL para cafeína. A redução do radical DPPH· foi usada para determinar a capacidade antioxidante dos extratos. Nosso método para a determinação simultânea de ácido caféico, ácido clorogênico e cafeína foi altamente sensível, possuindo limites de detecção e de quantificação menores do que em outros trabalhos que empregaram metodologias semelhantes.

  15. Support vector machine for SAR/QSAR of phenethyl-amines

    Institute of Scientific and Technical Information of China (English)

    Bing NIU; Wen-cong LU; Shan-sheng YANG; Yu-dong CAI; Guo-zheng LI

    2007-01-01

    Aim: To discriminate 32 phenethyl-amines between antagonists and agonists,and predict the activities of these compounds. Methods: The support vectormachine (SVM) is employed to investigate the structure-activity relationship(SAR)/quantitative structure-activity relationship (QSAR) of phenethyl-aminesbased on molecular descriptors. Results: By using the leave-one-out cross-vali-dation (LOOCV) test, 1 optimal SAR and 2 optimal QSAR models for agonists andantagonists were attained. The accuracy of prediction for the classification ofphenethyl-amines by using the LOOCV test is 91.67%, and the accuracy of predic-tion for the classification of phenethyl-amines by using the independent test is100%; the results are better than those of the Fisher, the artificial neural network(ANN), and the K-nearest neighbor models for this real world data. The RMSE(root mean square error)of antagonists' QSAR model is 0.5881, and the RMSE ofagonists' QSAR model is 0.4779, which are better than those of the multiple linearregression, partial least squares, and ANN models for this real world data.Conclusion: The SVM can be used to investigate the SAR and QSAR of phenethyl-amines and could be a promising tool in the field of SAR/QSAR research.

  16. Cloning and Analysis of Caffeic Acid O-methyltransferase Gene( SmCOMT1 ) from Salvia miltiorrhiza Bge.%丹参咖啡酸-O-甲基转移酶基因(SmCOMT1)的克隆及其分析

    Institute of Scientific and Technical Information of China (English)

    宋银; 王东浩; 吴锦斌; 周露; 王国栋; 王喆之

    2012-01-01

    According to the sequencing result of caffeic acid 0-methyltransferase from Salvia miltiorrhiza tran-scriptome database analysis, its specific primers were designed. By RT-PCR method, a novel COMT gene was i-solated from 5. miltiorrhiza, and named as SmCOMTl ( Genebank accession number; JF693491). SmCOMTl, with full-length cDNA of 1 158 bp, includes an open reading frame of 1 095 bp which encodes a 364 amino acids polypeptide. Furthermore, a length of 2 275 bp sequence was also cloned by PCR from genomic DNA of S. miltiorrhiza . The genomic DNA of SmCOMTl, aligned with cDNA, contains four exons and three introns in the encoding region. The results of amino acid sequence analysis shows that deduced amino acid polypeptide contains all the conserved element of COMT family and it is highly homologous to COMT proteins from the same family of Ocimum basilicum with 89% identity. Phylogenetic tree analysis also indicates that SmCOMTl is more related to the genetic relationship of COMT in dicotyledonous plants. Quantitative RT-PCR analysis revealed that SmCOMTl was expressed in different organs, and was highly expressed in stem, and could be induced by methyl jasmonate (MeJA) and pathogen. These results showed that SmCOMTl might be pathogen-responsive gene in plant defenses.%依据丹参转录组数据库得到的咖啡酸-O-甲基转移酶基因序列设计特异性引物,采用RT-PCR方法从丹参分离得到一个新的COMT基因,命名为SmCOMTI(GenBank注册号为JF693491).该基因cDNA全长1158 bp,包含一个长为1095 bp的开放阅读框,编码364个氨基酸.SmCOMT1 gDNA序列长2275 bp,包含4个外显子和3个内含子.序列分析结果表明,SmCOMT1编码的多肽具有COMT的序列保守元件,与同科植物罗勒COMT编码的多肽高度同源,同源性达到89%.系统进化树分析表明,SmCOMT1与双子叶植物的COMT亲缘关系较近.qRT-PCR 结果表明,SmCOMT1基因在丹参不同组织器官中差异表达,其中茎中的表达量最高,并

  17. Oxidized Caffeic Acid Cross-linked Whey Protein Films: Thermal Properties, Light Transmittance, Water Barrier Properties and in vitro Digestibility%氧化咖啡酸交联乳清蛋白膜的热学、光学特性及水汽渗透率、消化率研究

    Institute of Scientific and Technical Information of China (English)

    王耀松; 熊幼翎; 陈洁

    2012-01-01

    采用氧化咖啡酸作为交联剂,研究其对乳清蛋白交联所成膜的热、光、水汽渗透和消化等功能特性。咖啡酸溶液经氧化后以质量分数2%和4%的量(以蛋白量为基础)加入到6g/100mL、90℃热变性的乳清蛋白溶液(pH8.0),采用铺展法制备蛋白膜。利用SDS—PAGE、差示扫描量热法、热重技术等方法来表征氧化咖啡酸对乳清蛋白的交联性和膜功能性的影响。结果表明:氧化咖啡酸主要通过促进二硫键和部分非还原共价键交联蛋白,使蛋白成膜的热稳定性提高。此外,这种交联处理能显著降低膜材料的光通透率和透明性,但对水汽渗透率无显著性降低作用。体外消化实验结果显示较高质量分数的氧化咖啡酸处理可显著降低膜的消化性。%Oxidized caffeic acid (OCA) was employed to induce cross-linking in whey protein-based films. The thermal properties, light transmittance, water barrier properties, and in vitro digestibility of the resultant whey protein films were analyzed. OCA at 2% and 4% (based on protein content) application levels was incorporated into 6 g/100 mL heat-denatured (90 ℃) whey protein isolate (WPI) solutions before casting to form films. The protein cross-linking behavior and film functionality were characterized by electrophoresis, differential scanning calorimetry (DSC), and thermogravimetry. The results showed that OCA promoted whey protein cross-linking primarily via disulfide bonds and partial non-reducible covalent bonds, leading to an improved thermal stability of the resultant films. OCA treatment significantly lowered the light transmittance and transparency, but slightly reduced the water vapor permeability (WVP) of the films. The in vitro digestion experiments carried out using pepsin and pancreatin showed that hydrolysis of the films was inhibited when higher concentrations of OCA were incorporated.

  18. Cloning and Characterization of a Caffeic Acid O-methyltransferase Gene(COMT) from Hevea brasiliensis%一个橡胶树咖啡酸甲基转移酶基因(COMT)的克隆和表达分析

    Institute of Scientific and Technical Information of China (English)

    戚继艳; 方永军; 龙翔宇; 唐朝荣

    2013-01-01

    咖啡酸甲基转移酶(COMT)是木质素合成途径的关键酶,在植物抗逆反应中发挥重要作用.本研究基于本实验室己建立的橡胶树(Hevea brasiliensis)胶乳EST数据库,对组装后序列(Contig)检索并设计引物,利用PCR技术克隆到一个橡胶树COMT基因,命名为HbCOMT(GenBank登录号为GI:443908530).该基因全长1926 bp,由4个外显子和3个内含子组成,编码368个氨基酸,预测蛋白的分子量为40.58kD,等电点为5.46,具有植物O-甲基转移酶的典型特征.系统进化分析显示HbCOMT1蛋白与蓖麻(Ricinus communis)和葡萄(Vitis vinifera)的COMT聚为一组,其他11种植物的COMT则另成一组.基因表达分析显示HbCOMT1在胶乳中的表达量最高,其次是叶片和树皮,花、芽中的表达量较低,种子中几乎不表达.同时,HbCOMT1基因在胶乳中的表达量随割次增加明显上升,显著受伤害诱导,受死皮调控,但对乙烯利应答不明显.本研究首次从橡胶树中克隆了一个COMT基因,了解了其基因结构与表达特性,推测该基因可能参与乳管的胁迫应答和排胶调控,为深入揭示该基因功能提供基础资料.%Caffeic acid O-methyltransferase (COMT) catalyzes the preferential formation of syringyl (S) monolignol subunits,and acts as a key enzyme in lignin synthesis.COMT is implicated in multiple physiological processes in plants,e.g.the functioning of plant vasculature,and defense responses to biotic and abiotic stresses.Up to now,no literature has been available in the cloning and characterization of COMT genes in Hevea brasiliensis (para rubber tree).Previously,we showed that the levels of a COMT protein increased markedly with tapping in the latex of reopened rubber trees.The expressions of this COMT protein correlated well with the patterns of tapping-enhanced latex yields.Here,by searching the assembled latex EST library (20126 high-quality Sanger ESTs,with average length of 575 bp),a contig annotated as COMT was

  19. 作为抗粥样硬化症的抗氧化剂的发展%Development of Antioxidants as Anti-Atherosclerotic Agents

    Institute of Scientific and Technical Information of China (English)

    Ming-Shi Shiao; Li-Ling Chu; Elaine Lin; Lily Chiu

    1997-01-01

    Antioxidants capable of inhibiting LDL oxidation may reduce atherosclerosis. Many Chinese herbs on blood stasis contain antioxidants to inhibit LDL oxidation. Caffeic acid phenethyl ester and several caffeic acid -containing analogues more potent than probucol have been identified.We conclude that lipophilic antioxidants which can incorporate into LDL with their antioxidative functionalities being exposed ahead of the bis- allylic sites of PUFA in LDL are most favorable.

  20. Chicoric Acid Found in Basil (Ocimum basilicum L.) Leaves

    Science.gov (United States)

    This is the first report to identify the presence of chicoric acid (cichoric acid; also known as dicaffeoyltartaric acid) in basil leaves. Rosmarinic acid, chicoric acid, and caftaric acid (in the order of most abundant to least; all derivatives of caffeic acid) were identified in fresh basil leaves...

  1. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    Science.gov (United States)

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  2. In Vitro and In Vivo Effects of Phenethyl Isothiocyanate Treatment on Vimentin Protein Expression in Cancer Cells

    OpenAIRE

    Sakao, Kozue; Hahm, Eun-Ryeong; Singh, Shivendra V.

    2013-01-01

    We have shown previously that cancer prevention by cruciferous vegetable constituent phenethyl isothiocyanate (PEITC) in a transgenic mouse model of prostate cancer is associated with induction of E-cadherin protein expression. Because suppression of E-cadherin protein concomitant with induction of mesenchymal markers (e.g., vimentin) is a biochemical hallmark of epithelial-mesenchymal transition, a process implicated in cancer metastasis, we hypothesized that PEITC treatment was likely to su...

  3. Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells

    OpenAIRE

    Wang, Dan; Upadhyaya, Bijaya; Liu, Yi; Knudsen, David; Dey, Moul

    2014-01-01

    Background The cytokine TRAIL (tumor necrotic factor-related apoptosis-inducing ligand) selectively induces apoptosis in cancer cells, but cancer stem cells (CSCs) that contribute to cancer-recurrence are frequently TRAIL-resistant. Here we examined hitherto unknown effects of the dietary anti-carcinogenic compound phenethyl isothiocyanate (PEITC) on attenuation of proliferation and tumorigenicity and on up regulation of death receptors and apoptosis in human cervical CSC. Methods Cancer stem...

  4. The Novel Pyrrolidine Nor-Lobelane Analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] Inhibits VMAT2 Function, Methamphetamine-Evoked Dopamine Release, and Methamphetamine Self-Administration in RatsS⃞

    Science.gov (United States)

    Beckmann, Joshua S.; Siripurapu, Kiran B.; Nickell, Justin R.; Horton, David B.; Denehy, Emily D.; Vartak, Ashish; Crooks, Peter A.; Bardo, Michael T.

    2010-01-01

    Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [3H]dihydrotetrabenazine binding and [3H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [3H]nicotine and [3H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [3H]dihydrotetrabenazine binding (Ki = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [3H]dopamine uptake (Ki = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC50 = 1.8 ± 0.2 μM; Imax = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel pharmacotherapies for

  5. The novel pyrrolidine nor-lobelane analog UKCP-110 [cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride] inhibits VMAT2 function, methamphetamine-evoked dopamine release, and methamphetamine self-administration in rats.

    Science.gov (United States)

    Beckmann, Joshua S; Siripurapu, Kiran B; Nickell, Justin R; Horton, David B; Denehy, Emily D; Vartak, Ashish; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T

    2010-12-01

    Both lobeline and lobelane attenuate methamphetamine self-administration in rats by decreasing methamphetamine-induced dopamine release via interaction with vesicular monoamine transporter-2 (VMAT2). A novel derivative of nor-lobelane, cis-2,5-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-110), and its trans-isomers, (2R,5R)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-111) and (2S,5S)-trans-di-(2-phenethyl)-pyrrolidine hydrochloride (UKCP-112), were evaluated for inhibition of [(3)H]dihydrotetrabenazine binding and [(3)H]dopamine uptake by using a rat synaptic vesicle preparation to assess VMAT2 interaction. Compounds were evaluated for inhibition of [(3)H]nicotine and [(3)H]methyllycaconitine binding to assess interaction with the major nicotinic receptor subtypes. In addition, compounds were evaluated for inhibition of methamphetamine-evoked endogenous dopamine release by using striatal slices. The most promising compound, UKCP-110, was evaluated for its ability to decrease methamphetamine self-administration and methamphetamine discriminative stimulus cues and for its effect on food-maintained operant responding. UKCP-110, UKCP-111, and UKCP-112 inhibited [(3)H]dihydrotetrabenazine binding (K(i) = 2.66 ± 0.37, 1.05 ± 0.10, and 3.80 ± 0.31 μM, respectively) and had high potency inhibiting [(3)H]dopamine uptake (K(i) = 0.028 ± 0.001, 0.046 ± 0.008, 0.043 ± 0.004 μM, respectively), but lacked affinity at nicotinic receptors. Although the trans-isomers did not alter methamphetamine-evoked dopamine release, UKCP-110 inhibited (IC(50) = 1.8 ± 0.2 μM; I(max) = 67.18 ± 6.11 μM) methamphetamine-evoked dopamine release. At high concentrations, UKCP-110 also increased extracellular dihydroxyphenylacetic acid. It is noteworthy that UKCP-110 decreased the number of methamphetamine self-infusions, while having no effect on food-reinforced behavior or the methamphetamine stimulus cue. Thus, UKCP-110 represents a new lead in the development of novel

  6. Induction of Epoxide Hydrolase, Glucuronosyl Transferase, and Sulfotransferase by Phenethyl Isothiocyanate in Male Wistar Albino Rats

    Directory of Open Access Journals (Sweden)

    Ahmad Faizal Abdull Razis

    2014-01-01

    Full Text Available Phenethyl isothiocyanate (PEITC is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin. The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT, N-acetyltransferase (NAT, glucuronosyl transferase (UDP, and epoxide hydrolase (EH following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06 µmol/g (low dose, i.e., dietary intake, 0.6 µmol/g (medium dose, and 6.0 µmol/g (high dose, and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention.

  7. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  8. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether.

    Science.gov (United States)

    Jarvis, Mark W; Daily, John W; Carstensen, Hans-Heinrich; Dean, Anthony M; Sharma, Shantanu; Dayton, David C; Robichaud, David J; Nimlos, Mark R

    2011-02-03

    The pyrolysis of 2-phenethyl phenyl ether (PPE, C(6)H(5)C(2)H(4)OC(6)H(5)) in a hyperthermal nozzle (300-1350 °C) was studied to determine the importance of concerted and homolytic unimolecular decomposition pathways. Short residence times (time-of-flight mass spectrometry (PIMS). Detection of phenoxy radical, cyclopentadienyl radical, benzyl radical, and benzene suggest the formation of product by the homolytic scission of the C(6)H(5)C(2)H(4)-OC(6)H(5) and C(6)H(5)CH(2)-CH(2)OC(6)H(5) bonds. The detection of phenol and styrene suggests decomposition by a concerted reaction mechanism. Phenyl ethyl ether (PEE, C(6)H(5)OC(2)H(5)) pyrolysis was also studied using PIMS and using cryogenic matrix-isolated infrared spectroscopy (matrix-IR). The results for PEE also indicate the presence of both homolytic bond breaking and concerted decomposition reactions. Quantum mechanical calculations using CBS-QB3 were conducted, and the results were used with transition state theory (TST) to estimate the rate constants for the different reaction pathways. The results are consistent with the experimental measurements and suggest that the concerted retro-ene and Maccoll reactions are dominant at low temperatures (below 1000 °C), whereas the contribution of the C(6)H(5)C(2)H(4)-OC(6)H(5) homolytic bond scission reaction increases at higher temperatures (above 1000 °C).

  9. Computational Study of Bond Dissociation Enthalpies for Lignin Model Compounds. Substituent Effects in Phenethyl Phenyl Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Beste, Ariana [ORNL; Buchanan III, A C [ORNL

    2009-01-01

    Lignin is an abundant natural resource that is a potential source of valuable chemicals. Improved understanding of the pyrolysis of lignin occurs through the study of model compounds for which phenethyl phenyl ether (PhCH2CH2OPh, PPE) is the simplest example representing the dominant -O-4 ether linkage. The initial step in the thermal decomposition of PPE is the homolytic cleavage of the oxygen-carbon bond. The rate of this key step will depend on the bond dissociation enthalpy, which in turn will depend on the nature and location of relevant substituents. We used modern density functional methods to calculate the oxygen-carbon bond dissociation enthalpies for PPE and several oxygen substituted derivatives. Since carbon-carbon bond cleavage in PPE could be a competitive initial reaction under high temperature pyrolysis conditions, we also calculated substituent effects on these bond dissociation enthalpies. We found that the oxygen-carbon bond dissociation enthalpy is substantially lowered by oxygen substituents situated at the phenyl ring adjacent to the ether oxygen. On the other hand, the carbon-carbon bond dissociation enthalpy shows little variation with different substitution patterns on either phenyl ring.

  10. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Science.gov (United States)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  11. Dietary Phenethyl Isothiocyanate Alters Gene Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Young Jin Moon

    2011-01-01

    Full Text Available Phenethyl isothiocyanate (PEITC, a component in cruciferous vegetables, can block chemical carcinogenesis in animal models. Our objective was to determine the effect of treatment with PEITC on gene expression changes in MCF-7 human breast cancer cells in order to evaluate potential mechanisms involved in its chemopreventive effects. MCF-7 cells were treated for 48 hours with either PEITC (3 μM or the vehicle. Total RNA was extracted from cell membrane preparations, and labeled cDNA's representing the mRNA pool were reverse-transcribed directly from total RNA isolated for use in the microarray hybridizations. Two specific human GE Array Kits (Superarray Inc. that both contain 23 marker genes, related to signal transduction pathways or cancer/tumor suppression, plus 2 housekeeping genes (β-actin and GAPDH, were utilized. Arrays from treated and control cells (n=4 per group were evaluated using a Student's t-test. Gene expression was significantly induced for tumor protein p53 (p53, cyclin-dependent kinase inhibitor 1C (p57 Kip2, breast cancer Type 2 early onset (BRCA2, cAMP responsive element binding protein 2 (ATF-2, interleukin 2 (IL-2, heat shock 27 KD protein (hsp27, and CYP19 (aromatase. Induction of p57 Kip2, p53, BRCA2, IL-2, and ATF-2 would be expected to decrease cellular proliferation and increase tumor suppression and/or apoptosis. PEITC treatment produced significant alterations in some genes involved in tumor suppression and cellular proliferation/apoptosis that may be important in explaining the chemopreventive effects of PEITC.

  12. Notch activation by phenethyl isothiocyanate attenuates its inhibitory effect on prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Su-Hyeong Kim

    Full Text Available Phenethyl isothiocyanate (PEITC is a promising cancer chemopreventive component of edible cruciferous vegetables with in vivo efficacy against prostate cancer in experimental rodents. Cancer chemopreventive response to PEITC is characterized by its ability to inhibit multiple oncogenic signaling pathways, including nuclear factor-κB, Akt, and androgen receptor. The present study demonstrates, for the first time, that PEITC treatment activates Notch signaling in malignant as well as normal human prostate cells. Exposure of human prostate cancer cells (LNCaP, PC-3, and DU145 and a normal human prostate epithelial cell line (PrEC to PEITC resulted in cleavage (active form of Notch1 and Notch2, and increased transcriptional activity of Notch. In PC-3 and LNCaP cells, PEITC treatment caused induction of Notch ligands Jagged1 and Jagged2 (PC-3, overexpression of γ-secretase complex components Presenilin1 and Nicastrin (PC-3, nuclear enrichment of cleaved Notch2, and/or up-regulation of Notch1, Notch2, Jagged1, and/or Jagged2 mRNA. PEITC-induced apoptosis in LNCaP and PC-3 cells was significantly attenuated by RNA interference of Notch2, but not by pharmacological inhibition of Notch1. Inhibition of PC-3 and LNCaP cell migration resulting from PEITC exposure was significantly augmented by knockdown of Notch2 protein as well as pharmacological inhibition of Notch1 activation. Nuclear expression of cleaved Notch2 protein was significantly higher in PC-3 xenografts from PEITC-treated mice and dorsolateral prostates from PEITC-fed TRAMP mice compared with respective control. Because Notch signaling is implicated in epithelial-mesenchymal transition and metastasis, the present study suggests that anti-metastatic effect of PEITC may be augmented by a combination regimen involving a Notch inhibitor.

  13. Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures

    Directory of Open Access Journals (Sweden)

    Chan Daniel K

    2012-07-01

    Full Text Available Abstract Background High mortality rates in ovarian cancer are largely a result of resistance to currently used chemotherapies. Expanding therapies with a variety of drugs has the potential to reduce this high mortality rate. Metformin and phenethyl isothiocyanate (PEITC are both potentially useful in ovarian cancer, and they are particularly attractive because of their safety. Methods Cell proliferation of each drug and drug combination was evaluated by hemacytometry with Trypan blue exclusion or Sytox green staining for cell death. Levels of total and cleaved PARP were measured by Western blot. General cellular and mitochondrial reactive oxygen species were measured by flow cytometry and live cell confocal microscopy with the fluorescent dyes dihydroethidine and MitoSOX. Results Individually, metformin and PEITC each show inhibition of cell growth in multiple ovarian cancer cell lines. Alone, PEITC was also able to induce apoptosis, whereas metformin was primarily growth inhibitory. Both total cellular and mitochondrial reactive oxygen species were increased when treated with either metformin or PEITC. The growth inhibitory effects of metformin were reversed by methyl succinate supplementation, suggesting complex I plays a role in metformin's anti-cancer mechanism. PEITC's anti-cancer effect was reversed by N-acetyl-cysteine supplementation, suggesting PEITC relies on reactive oxygen species generation to induce apoptosis. Metformin and PEITC together showed a synergistic effect on ovarian cancer cell lines, including the cisplatin resistant A2780cis. Conclusions Here we show that when used in combination, these drugs are effective in both slowing cancer cell growth and killing ovarian cancer cells in vitro. Furthermore, the combination of these drugs remains effective in cisplatin resistant cell lines. Novel combinations such as metformin and PEITC show promise in expanding ovarian cancer therapies and overcoming the high incidence of

  14. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Science.gov (United States)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  15. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond

    Directory of Open Access Journals (Sweden)

    Ling-Na Wang

    2016-06-01

    Full Text Available Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  16. Diversity of (dihydro) hydroxycinnamic acid conjugates in Colombian potato tubers

    NARCIS (Netherlands)

    Narvaez Cuenca, C.E.; Vincken, J.P.; Zheng, Chaoya; Gruppen, H.

    2013-01-01

    In potato tuber, caffeic acid (the predominant hydroxycinnamic acid (HCA)), its conjugates (HCAcs; i.e. chlorogenic acid (ChA), crypto-ChA, and neo-ChA), and anthocyanin-linked HCAs have been extensively described in the literature. In contrast, only little information is available on the occurrence

  17. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond

    OpenAIRE

    2016-01-01

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylq...

  18. Differential metabolism of hydroxycinnamic acids by two Brettanomyces bruxellensis strains grown in red wines

    Science.gov (United States)

    Hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acids, respectively) are found in red wines in varying concentrations depending on cultivars and other factors. While some Brettanomyces form volatile phenols...

  19. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    Science.gov (United States)

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  20. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  1. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    Science.gov (United States)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  2. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance?

    Science.gov (United States)

    Gautier, Hélène; Diakou-Verdin, Vicky; Bénard, Camille; Reich, Maryse; Buret, Michel; Bourgaud, Frédéric; Poëssel, Jean Luc; Caris-Veyrat, Catherine; Génard, Michel

    2008-02-27

    The objective of this study was to understand the respective impact of ripening stage, temperature, and irradiance on seasonal variations of tomato fruit quality. During ripening, concentrations in reducing sugars, carotenes, ascorbate, rutin, and caffeic acid derivates increased, whereas those in titratable acidity, chlorophylls, and chlorogenic acid content decreased. Fruit temperature and irradiance affected final fruit composition. Sugars and acids (linked to fruit gustative quality) were not considerably modified, but secondary metabolites with antioxidant properties were very sensitive to fruit environment. Increased fruit irradiance enhanced ascorbate, lycopene, beta-carotene, rutin, and caffeic acid derivate concentrations and the disappearance of oxidized ascorbate and chlorophylls. Increasing the temperature from 21 to 26 degrees C reduced total carotene content without affecting lycopene content. A further temperature increase from 27 to 32 degrees C reduced ascorbate, lycopene, and its precursor's content, but enhanced rutin, caffeic acid derivates, and glucoside contents. The regulation by light and temperature of the biosynthesis pathways of secondary metabolites is discussed.

  3. THE BIOSYNTHESIS OF HYDROXYBENZOIC ACIDS IN HIGHER PLANTS

    Science.gov (United States)

    methylating protocatechuic to vanillic acid or hydroxylating it to yield gallic acid . Demethoxylation of sinapic and dehydroxylation of caffeic acid occurred in...Radioactive para-hydroxybenzoic, vanillic and syringic acids were shown to be synthesized in a variety of plants from the corresponding...hydroxycinnamic acids labelled in the beta-position. Decarboxylation of the hydroxybenzoic acids indicated that nearly all the activity was contained in the

  4. Phenylpropanoid acid esters from Korean propolis and their antioxidant activities.

    Science.gov (United States)

    Lee, In-Kyoung; Han, Myung-Suk; Kim, Dae-Won; Yun, Bong-Sik

    2014-08-01

    Ten phenylpropanoic acid esters were isolated from an ethanolic extract of Korean propolis. Their structures were elucidated by spectroscopic methods including NMR and ESI-MS. Caffeic acid esters with catechol moiety exhibited significant ABTS and DPPH radical scavenging activity and protective effect against DNA damage by a Fenton reaction.

  5. Incorporation of Chlorogenic Acids in Coffee Brew Melanoidins

    NARCIS (Netherlands)

    Bekedam, E.K.; Schols, H.A.; Boekel, van T.; Smit, G.

    2008-01-01

    The incorporation of chlorogenic acids (CGAs) and their subunits quinic and caffeic acids (QA and CA) in coffee brew melanoidins was studied. Fractions with different molecular weights, ionic charges, and ethanol solubilities were isolated from coffee brew. Fractions were saponified, and the release

  6. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain

    Directory of Open Access Journals (Sweden)

    Kang Sun-Young

    2012-12-01

    Full Text Available Abstract Background The phenylpropanoid metabolites are an extremely diverse group of natural products biosynthesized by plants, fungi, and bacteria. Although these compounds are widely used in human health care and nutrition services, their availability is limited by regional variations, and isolation of single compounds from plants is often difficult. Recent advances in synthetic biology and metabolic engineering have enabled artificial production of plant secondary metabolites in microorganisms. Results We develop an Escherichia coli system containing an artificial biosynthetic pathway that yields phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, from simple carbon sources. These artificial biosynthetic pathways contained a codon-optimized tal gene that improved the productivity of 4-coumaric acid and ferulic acid, but not caffeic acid in a minimal salt medium. These heterologous pathways extended in E. coli that had biosynthesis machinery overproducing tyrosine. Finally, the titers of 4-coumaric acid, caffeic acid, and ferulic acid reached 974 mg/L, 150 mg/L, and 196 mg/L, respectively, in shake flasks after 36-hour cultivation. Conclusions We achieved one gram per liter scale production of 4-coumaric acid. In addition, maximum titers of 150 mg/L of caffeic acid and 196 mg/L of ferulic acid were achieved. Phenylpropanoic acids, such as 4-coumaric acid, caffeic acid, and ferulic acid, have a great potential for pharmaceutical applications and food ingredients. This work forms a basis for further improvement in production and opens the possibility of microbial synthesis of more complex plant secondary metabolites derived from phenylpropanoic acids.

  7. Role of carbon-carbon phenyl migration in the pyrolysis mechanism of β-O-4 lignin model compounds: phenethyl phenyl ether and α-hydroxy phenethyl phenyl ether.

    Science.gov (United States)

    Beste, Ariana; Buchanan, A C

    2012-12-20

    We investigate phenyl shift and subsequent β-scission reactions for PhCHXCH·OPh [X = H, OH], which are part of the pyrolysis mechanism of phenethyl phenyl ether (PPE) and α-hydroxy PPE. PPE and its derivatives are model compounds for the most common linkage in lignin, the β-O-4 linkage. We use density functional theory to locate transition states and equilibrium structures and kinetic Monte Carlo in combination with transition-state theory for kinetic simulations. Oxygen-carbon and carbon-carbon phenyl shift reactions proceed through cyclic intermediates with similar barriers. However, while subsequent β-scission of the oxygen-carbon shift products proceeds with virtually no barrier, the activation energy for β-scission of the carbon-carbon shift products exceeds 15 kcal/mol. We found that about 15% of β-radical conversion can be attributed to carbon-carbon shift for PPE and α-hydroxy PPE at 618 K. Whereas the oxygen-carbon shift reaction has been established as an integral part of the pyrolysis mechanism of PPE and its derivatives, participation of the carbon-carbon shift reaction has not been shown previously.

  8. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    Science.gov (United States)

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  9. N-Phenethyl caffeamide and photodamage: protecting skin by inhibiting type I procollagen degradation and stimulating collagen synthesis.

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chen, Chien-Wen; Lin, Tzu-Yu; Kuo, Yueh-Hsiung

    2014-10-01

    Skin is mainly damaged by genetic and environmental factors such as ultraviolet (UV) light and pollutants. UV light is a well-known factor that causes various types of skin damage and premature aging. Reactive oxygen species (ROS) are commonly involved in the pathogenesis of skin damage by activating the metalloproteinases that break down type I collagen. This study investigated the antioxidant and antiphotodamage activity and mechanisms of N-phenethyl caffeamide (K36) in human skin fibroblasts. The results indicated that K36 demonstrated strong 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, which dose-dependently reduced the production of UVB-induced intracellular ROS in human dermal fibroblasts. K36 prevented UVB-irradiation-induced type I collagen degradation by inhibiting the expression of matrix metalloproteins-1, -3, and -9 and the phosphorylation of mitogen-activated protein (MAP) kinases. Furthermore, K36 elevated collagen synthesis in skin fibroblasts by inhibiting UVB-induced Smad7 overexpression. K36 downregulated the expression of the transcription factor, activator protein-1 (AP-1). Our results indicated that K36 exhibited antioxidant properties and prevented skin collagen degradation caused by UV exposure and the stimulation of collagen synthesis, which suggests the potential use of K36 in preventing photodamage.

  10. In vitro and in vivo effects of phenethyl isothiocyanate treatment on vimentin protein expression in cancer cells.

    Science.gov (United States)

    Sakao, Kozue; Hahm, Eun-Ryeong; Singh, Shivendra V

    2013-01-01

    We have shown previously that cancer prevention by cruciferous vegetable constituent phenethyl isothiocyanate (PEITC) in a transgenic mouse model of prostate cancer is associated with induction of E-cadherin protein expression. Because suppression of E-cadherin protein concomitant with induction of mesenchymal markers (e.g., vimentin) is a biochemical hallmark of epithelial-mesenchymal transition, a process implicated in cancer metastasis, we hypothesized that PEITC treatment was likely to suppress vimentin protein expression. Contrary to this prediction, exposure of human breast (MDA-MB-231) and prostate cancer cells (PC-3 and DU145) to PEITC resulted in a dose-dependent increase in vimentin protein level, which was observed as early as 6 h posttreatment and persisted for the duration of the experiment (24 h). RNA interference of vimentin resulted in a modest augmentation of PEITC-mediated inhibition of MDA-MB-231 and PC-3 cell migration as well as cell viability. Furthermore, the PEITC-induced apoptosis was moderately increased upon siRNA knockdown of vimentin protein in MDA-MB-231 and PC-3 cells. To our surprise, PEITC treatment caused a marked decrease in vimentin protein expression in breast and prostate carcinoma in vivo in transgenic mouse models, although the difference was statistically significant only in the breast carcinomas. The present study highlights the importance of in vivo correlative studies for validation of the in vitro mechanistic observations.

  11. Pyrolysis of Phenethyl Phenyl Ether Tethered in Mesoporous Silica. Effects of Confinement and Surface Spacer Molecules on Product Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kidder, Michelle [ORNL; Chaffe, Alan [Monash University, Australia; Nguyen, M [Monash University, Australia; Buchanan III, A C [ORNL

    2011-01-01

    There has been expanding interest in exploring porous metal oxides as a confining environment for organic molecules resulting in altered chemical and physical properties including chemical transformations. In this paper, we examine the pyrolysis behavior of phenethyl phenyl ether (PPE) confined in mesoporous silica by covalent tethers to the pore walls as a function of tether density and the presence of co-tethered surface spacer molecules of varying structure (biphenyl, naphthyl, octyl, and hexadecyl). The PPE pyrolysis product selectivity, which is determined by two competitive free-radical pathways cycling through the two aliphatic radical intermediates (PhCH CH2OPh and PhCH2CH OPh), is shown to be dramatically different from that measured in the liquid phase as well as for PPE tethered to the exterior surface of nonporous silica nanoparticles. Tailoring the pore surface with spacer molecules further alters the selectivity such that the PPE reaction channel involving a molecular rearrangement (O-C phenyl shift in PhCH2CH OPh), which accounts for 25 % of the products in the liquid phase, can be virtually eliminated under pore confinement conditions. The origin of this change in selectivity is discussed in the context of steric constraints on the rearrangement path, confinement effects, pore surface curvature, and hydrogen bonding of PPE with residual surface silanols supplemented by nitrogen physisorption data and molecular dynamics simulations.

  12. Preparative separation of polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin coupled with preparative high performance liquid chromatography.

    Science.gov (United States)

    Li, Aifeng; Xuan, Hongzhuan; Sun, Ailing; Liu, Renmin; Cui, Jichun

    2016-02-15

    In this study, a preparative separation method was developed for isolation of eleven polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin (MAR) coupled with preparative high performance liquid chromatography (PHPLC). Water-soluble fraction of Chinese propolis was first "prefractioned" using MAR, which yielded four subfractions. The four subfractions were then isolated by PHPLC with an isocratic elution of methanol-water. Finally, eleven polyphenols were purified from Chinese propolis including caffeic acid, ferulic acid, isoferulic acid, 3,4-dimethoxy cinnamic acid, pinobanksin, caffeic acid benzyl ester, caffeic acid phenethyl ester, apigenin, pinocembrin, chrysin and galangin. The purities of the compounds were determined by HPLC and the chemical structures were confirmed by UV and NMR analysis. The method developed was simple, effective, rapid, scalable and economical, and it was a promising basis for large-scale preparation of multiple components from natural products.

  13. Redefining the structure-activity relationships of 2,6-methano-3-benzazocines. 5. Opioid receptor binding properties of N-((4'-phenyl)-phenethyl) analogues of 8-CAC.

    Science.gov (United States)

    VanAlstine, Melissa A; Wentland, Mark P; Cohen, Dana J; Bidlack, Jean M

    2007-12-01

    A series of aryl-containing N-monosubstituted analogues of the lead compound 8-[N-((4'-phenyl)-phenethyl)]-carboxamidocyclazocine were synthesized and evaluated to probe a putative hydrophobic binding pocket of opioid receptors. Very high binding affinity to the mu opioid receptor was achieved though the N-(2-(4'-methoxybiphenyl-4-yl)ethyl) analogue of 8-CAC. High binding affinity to mu and very high binding affinity to kappa opioid receptors was observed for the N-(3-bromophenethyl) analogue of 8-CAC. High binding affinity to all three opioid receptors were observed for the N-(2-naphthylethyl) analogue of 8-CAC.

  14. The FEMA GRAS assessment of phenethyl alcohol, aldehyde, acid, and related acetals and esters used as flavor ingredients

    NARCIS (Netherlands)

    Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; Wagner, B.M.

    2005-01-01

    This publication is the ninth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of int

  15. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1.

    Science.gov (United States)

    Bolloskis, Michael P; Carvalho, Fabiana P; Loo, George

    2016-04-15

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases.

  16. Phenethyl isothiocyanate suppresses EGF-stimulated SAS human oral squamous carcinoma cell invasion by targeting EGF receptor signaling.

    Science.gov (United States)

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Amagaya, Sakae; Lin, Yung-Chang; Yang, Jai-Sing

    2013-08-01

    Phenethyl isothiocyanate (PEITC) is a natural compound that is involved in chemoprevention as well as inhibition of cell growth and induction of apoptosis in several types of cancer cells. Previous studies have revealed that PEITC suppresses the invasion of AGS gastric and HT-29 colorectal cancer cells. However, the effects of PEITC on the metastasis of SAS oral cancer cells remain to be determined. Our results showed that PEITC treatment inhibited the invasion of EGF-stimulated SAS cells in a concentration-dependent manner, but appeared not to affect the cell viability. The expression and enzymatic activities of matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) were suppressed by PEITC. Concomitantly, we observed an increase in the protein expression of both tissue inhibitor of metalloproteinase-1 (TIMP-1) and -2 (TIMP-2) in treated cells. Furthermore, PEITC treatments decreased the protein phosphorylation of epidermal growth factor receptor (EGFR) and downstream signaling proteins including PDK1, PI3K (p85), AKT, phosphorylated IKK and IκB to inactivate NF-κB for the suppression of MMP-2 and MMP-9 expression. In addition, PEITC can trigger the MAPK signaling pathway through the increase in phosphorylated p38, JNK and ERK in treated cells. Our data indicate that PEITC is able to inhibit the invasion of EGF-stimulated SAS oral cancer cells by targeting EGFR and its downstream signaling molecules and finally lead to the reduced expression and enzymatic activities of both MMP-2 and MMP-9. These results suggest that PEITC is promising for the therapy of oral cancer metastasis.

  17. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Rogério Barbosa Lima

    Full Text Available Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H, guaiacyl (G and syringyl (S monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway in a growth chamber for 24 h. In general, the results showed that 1 cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2 cinnamic and p-coumaric acids increased p-hydroxyphenyl (H monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G content, and sinapic acid increased sinapyl (S content; 3 when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H, cinnamic acid reduced H, G and S contents; and 4 when applied in conjunction with 3,4-(methylenedioxycinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL, p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  18. Simultaneous detection of seven phenolic acids in Danshen injection using HPLC with ultraviolet detector

    Institute of Scientific and Technical Information of China (English)

    Jin-zhong XU; Jie SHEN; Yi-yu CHENG; Hai-bin QU

    2008-01-01

    A high-performance liquid chromatographic (HPLC) method with ultraviolet (UV) detector had been developed for simultaneous quantification of danshensu, protocatechuie aldehyde, caffeic acid, salvianolic acid D, rosmarinic acid, salvianolic acid B and salvianolic acid A in Danshen injection. According to the UV spectra of these components, three detection wavelengths have been selected as follows: 280 nm for danshensu and protocatechuic aldehyde, 326 nm for caffeic acid, salvianolic acid D and rosmarinic acid, 286 nm for salvianolic acid B and salvianolic acid A. The limit of detection (LOD) was improved to be in the range of 0.008~0.160 μg/ml. Moreover, excellent linear behavior over the investigated concentration range was observed, with R>0.999 for all the analytes.

  19. Phenolic acids in the flowers and leaves of Grindelia robusta Nutt. and Grindelia squarrosa Dun. (Asteraceae).

    Science.gov (United States)

    Nowak, Sławomira; Rychlińska, Izabela

    2012-01-01

    2D-TLC and RP-HPLC methods were applied to qualitatively determinate free phenolic acids and those liberated by acid and alkaline hydrolysis in the flowers and leaves of G. robusta and G. squarrosa. The presence of eleven phenolic acids, namely: caffeic, chlorogenic, p-coumaric, p-hydroxybenzoic, ferulic, gallic, protocatechuic, vanillic salicylic, p-hydroxyphenylacetic and ellagic acids was determined. Quantitative estimate of phenolic acids, expressed as caffeic acid, has been analyzed by the method described in the Polish Pharmacopoeia VIII. The content of phenolic acids in G. robusta reached 7.33 mg/g and 6.23 mg/g for flowers and leaves, respectively. The flowers and leaves of G. squarrosa were characterized by similar level of phenolic acids, namely 6.81 mg/g and 6.59 mg/g, respectively.

  20. Simultaneous quantification and validation of caffeoylquinic acids and flavonoids in Hemistepta lyrata and peroxynitrite-scavenging activity.

    Science.gov (United States)

    Nugroho, Agung; Lim, Sang-Cheol; Byeon, Jeong Su; Choi, Jae Sue; Park, Hee-Juhn

    2013-03-25

    Traditionally, Hemistepta lyrata is consumed as a mountainous vegetable or a medicinal herb to treat inflammation, fever, hemorrhage, and hemorrhoids. In order to provide the scientific evidence of traditional uses of this plant, we identified and quantified thirteen active substances (caffeic acid, chlorogenic acid, and 3,5-di-O-caffeoylquinic acid as caffeoylquinic acids; apigenin, isorhoifolin, acacetin, linarin, diosmetin, diosmin, pectolinarigenin, and pectolinarin as flavones or their glycosides; kaempferol 3-O-rutinoside and rutin as flavonol glycosides) from H. lyrata and evaluated their peroxynitrite-scavenging activity. The chromatographic separation was performed on a Capcell Pak C18 column (5μm, 250mm×4.6mm i.d.) with a gradient elution of 0.05% TFA (trifluoroacetic acid) and 0.05% TFA in MeOH-CH(3)CN (60:40). Validation of HPLC methods on the linearity, LOD, LOQ, intra-day and inter-day variabilities, recovery, and repeatability proved that this method is selective, sensitive, precise, accurate, and reproducible. In peroxynitrite-scavenging assay, caffeic acid derivatives (chlorogenic acid, caffeic acid, and 3,5-di-O-caffeoylquinic acid) exhibited relatively lower IC(50) values than other substances tested. And HPLC simultaneous quantification showed that the 70% MeOH extract and the BuOH fraction contain a higher quantity of caffeic acid derivatives (17.82 and 30.09mg/g, consecutively). Therefore, caffeic acid derivatives could be the main contributors to the peroxynitrite-scavenging activity of H. lyrata than other phenolic substances.

  1. Bioactive Caffeic Glycoside Ester and Antimicrobial Activity of Various Extracts from the Leaf of Stachytarpheta angustifolia Mill Vahl (Verbenaceae

    Directory of Open Access Journals (Sweden)

    M. Mohammed

    2013-09-01

    Full Text Available This study examines the extraction and isolation of the Caffeic glycoside ester Compound 1. [mp222-224 0C], C29H26O15, [M]+624.594 (EIMS from the n-BuoH soluble fraction of the ethanolic extract of S. angustifolia (verbenaceae. It was characterized on the basis of spectral analysis (UV, FTIR, 1and 2D NMR techniques as –β-(31, 41- dihydroxyphenyl -ethyl-O-α-L- rhamnopyranosyl- (1-3-β-D- (4-O-Caffeoyl -glucopyranoside. Antimicrobial properties of Compound 1 and other extracts were tested against some microorganisms namely Staphylococcus aureus, Streptococcus pyogenes, Proteus vulgari,Pseudomonas aeruginosa, Klebsiella pneumoniaer, Escherichia coli, Salmonella typhi Bacillus subtilis, Penicillium digitatum, Candida albicans, Aspergillus niger, Fusarium oxysorum and Penicillium nototum. The antimicrobial sensitivity test indicated that the extract inhibited the growth of Staphylococcus aureus, Streptococcus pyogenes Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi, Penicillium digitatum, Candida albicans and Penicillium nototum with 30mm, 29mm, 35mm, 34mm, 36mm, 28mm, 24mm, 25mm while the highest activity of caffeic glycoside ester was exhibited by the n-BuoH fraction against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi with34mm, 36mm and 36mm respectively.

  2. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Science.gov (United States)

    Phenolic compounds at high concentrations are known to form insoluble complexes with proteins. We hypothesized that this complex formation could interfere with Western blot and ELISA assays for peanut allergens. To verify this, three simple phenolic compounds (ferulic, caffeic, and chlorogenic acids...

  3. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    Science.gov (United States)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  4. Dietary phenolic acids and ascorbic acid: Influence on acid-catalyzed nitrosative chemistry in the presence and absence of lipids.

    Science.gov (United States)

    Combet, Emilie; El Mesmari, Aziza; Preston, Tom; Crozier, Alan; McColl, Kenneth E L

    2010-03-15

    Acid-catalyzed nitrosation and production of potentially carcinogenic nitrosative species is focused at the gastroesophageal junction, where salivary nitrite, derived from dietary nitrate, encounters the gastric juice. Ascorbic acid provides protection by converting nitrosative species to nitric oxide (NO). However, NO may diffuse into adjacent lipid, where it reacts with O(2) to re-form nitrosative species and N-nitrosocompounds (NOC). In this way, ascorbic acid promotes acid nitrosation. Using a novel benchtop model representing the gastroesophageal junction, this study aimed to clarify the action of a range of water-soluble antioxidants on the nitrosative mechanisms in the presence or absence of lipids. Caffeic, ferulic, gallic, or chlorogenic and ascorbic acids were added individually to simulated gastric juice containing secondary amines, with or without lipid. NO and O(2) levels were monitored by electrochemical detection. NOC were measured in both aqueous and lipid phases by gas chromatography-tandem mass spectrometry. In the absence of lipids, all antioxidants tested inhibited nitrosation, ranging from 35.9 + or - 7.4% with gallic acid to 93 + or - 0.6% with ferulic acid. In the presence of lipids, the impact of each antioxidant on nitrosation was inversely correlated with the levels of NO they generated (R(2) = 0.95, pascorbic acid promoted nitrosation, whereas ferulic and caffeic acids markedly inhibited nitrosation.

  5. Determination of major phenolic acids, phenolic diterpenes and triterpenes in Rosemary (Rosmarinus Officinalis L.) by gas chromatography and mass spectrometry:

    OpenAIRE

    Vončina, Ernest; Doleček, Valter; Islamčević Razboršek, Maša; Brodnjak-Vončina, Darinka

    2007-01-01

    A gas chromatographic-mass spectrometric (GC-MS) method for the simultaneous identification and quantification of seven major phenolic and terpenic compounds in Rosmarinus officinalis L. was developed. The compounds were identified as trimethylsilyl (TMS) derivatives of phenolic acids (caffeic and rosmarinic acid), phenolic diterpene (carnosic acid), and pentacyclic triterpenes (ursolic, oleanolic, betulinic acid and betulin). These compounds have been identified by retention time and compari...

  6. Structural Basis for the Inhibition of a Phospholipase A2-Like Toxin by Caffeic and Aristolochic Acids.

    Directory of Open Access Journals (Sweden)

    Carlos A H Fernandes

    Full Text Available One of the main challenges in toxicology today is to develop therapeutic alternatives for the treatment of snake venom injuries that are not efficiently neutralized by conventional serum therapy. Venom phospholipases A2 (PLA2s and PLA2-like proteins play a fundamental role in skeletal muscle necrosis, which can result in permanent sequelae and disability. This leads to economic and social problems, especially in developing countries. In this work, we performed structural and functional studies with Piratoxin-I, a Lys49-PLA2 from Bothropspirajai venom, complexed with two compounds present in several plants used in folk medicine against snakebites. These ligands partially neutralized the myotoxic activity of PrTX-I towards binding on the two independent sites of interaction between Lys49-PLA2 and muscle membrane. Our results corroborate the previously proposed mechanism of action of PLA2s-like and provide insights for the design of structure-based inhibitors that could prevent the permanent injuries caused by these proteins in snakebite victims.

  7. Synthesis of β-methylene phenethyl alcohol%β-亚甲基苯乙醇的合成工艺

    Institute of Scientific and Technical Information of China (English)

    奚强; 冯薇伟; 胡杨; 余利民; 陈建

    2013-01-01

    To improve the yield of the β-methylene phenethyl alcohol and avoid the disadvantages including harsh conditions,hard to control the reaction process,difficult purification and low yield in the present routes,an approach to synthesize β-methylene phenethyl alcohol was investigated with phenylacetaldehyde as the raw material by methylenation and hydrogen transfer reaction.The effects of molar ratio of material,amount of catalyst and reaction temperature on the yield of the product were discussed.the yield of β-methylene phenethyl alcohol reached 86 % with purity of over 98.5 % when the methylenation was carried out at 50 ℃ for 16 h and ratio of n(plenylacetaldehyde) ∶ n(formaldehyde) ∶n(organic amine salt)=1 ∶ 1.2 ∶ 0.2,formaldehyde,isopropanol and water were distilled from the reaction liquid by vacuum evaporation and the intermediate product was directly used without further purification; the hydrogen transfer reaction was carried out at 60-65 ℃ for 12 h with n(intermediate):n(aluminum isopropoxide)=1 ∶ 0.1,the concentrate was extracted by ethyl acetate and water.The structure of the product was confirmed by 1H NMR.This process has the characteristics of mild reaction conditions,simple operation,easy to be isolated and purified,high total yield,which is feasible for industrialization.%针对β-亚甲基苯乙醇合成工艺中反应条件较苛刻、操作较复杂、产物难分离纯化和总收率偏低的问题,以苯乙醛为原料,经亚甲基化反应和均相氢转移还原反应两步合成了β-亚甲基苯乙醇.分别考察了两步反应投料比、催化剂的用量和反应温度等条件对产物收率的影响.结果表明,亚甲基化反应在50℃,投料比为n(苯乙醛)∶n(甲醛)∶n(二甲胺盐酸盐)=1∶1.2∶0.2的条件下反应16h最佳,反应液经减压蒸出甲醛、异丙醇和水,中间产物无需进一步纯化,直接用于还原反应;氢转移还原反应于60~65℃下反应12 h,投料比n(α-亚

  8. Acidic-alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: Molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Tong, Xiaoxue; Pilgaard, Bo

    2016-01-01

    to homogeneity and subsequently characterized. CtFae was active towards synthetic esters of ferulic, p-coumaric, and caffeic acids, as well as towards wide range of p-nitrophenyl substrates. Its temperature and pH optima were 55 °C and pH 6.0, respectively. Enzyme rare features were broad pH optimum, high...

  9. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model.

    Science.gov (United States)

    Stan, Silvia D; Singh, Shivendra V; Whitcomb, David C; Brand, Randall E

    2014-01-01

    Pancreatic cancer is often diagnosed at an advanced stage and it has a poor prognosis that points to an increased need to develop effective chemoprevention strategies for this disease. We examined the ability of phenethyl isothiocyanate (PEITC), a naturally occurring isothiocyanate found in cruciferous vegetables, to inhibit the growth of pancreatic cancer cells in vitro and in a MIAPaca2 xenograft animal model. Exposure to PEITC inhibited pancreatic cancer cell growth in a dose-dependent manner, with an IC50 of approximately 7 μmol/L. PEITC treatment induced G2/M phase cell cycle arrest, downregulated the antiapoptotic proteins Bcl-2 and Bcl-XL, upregulated the proapoptotic protein Bak, and suppressed Notch 1 and 2 levels. In addition, treatment with PEITC induced cleavage of poly-(ADP-ribose) polymerase and led to increased cytoplasmic histone-associated DNA fragmentation and subdiploid (apoptotic) fraction in pancreatic cancer cells. Oral administration of PEITC suppressed the growth of pancreatic cancer cells in a MIAPaca2 xenograft animal model. Our data show that PEITC exerts its inhibitory effect on pancreatic cancer cells through several mechanisms, including G2/M phase cell cycle arrest and induction of apoptosis, and supports further investigation of PEITC as a chemopreventive agent for pancreatic cancer.

  10. Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Chou, Yu-Cheng; Chang, Meng-Ya; Wang, Mei-Jen; Liu, Hsin-Chung; Chang, Shu-Jen; Harnod, Tomor; Hung, Chih-Huang; Lee, Hsu-Tung; Shen, Chiung-Chyi; Chung, Jing-Gung

    2017-01-01

    Glioblastoma is the most common and aggressive primary brain malignancy. Phenethyl isothiocyanate (PEITC), a member of the isothiocyanate family, can induce apoptosis in many human cancer cells. Our previous study disclosed that PEITC induces apoptosis through the extrinsic pathway, dysfunction of mitochondria, reactive oxygen species (ROS)-induced endoplasmic reticulum (ER) stress, and intrinsic (mitochondrial) pathway in human brain glioblastoma multiforme (GBM) 8401 cells. To the best of our knowledge, we first investigated the effects of PEITC on the genetic levels of GBM 8401 cells in vitro. PEITC may induce G0/G1 cell-cycle arrest through affecting the proteins such as cdk2, cyclin E, and p21 in GBM 8401 cells. Many genes associated with cell-cycle regulation of GBM 8401 cells were changed after PEITC treatment: 48 genes were upregulated and 118 were downregulated. The cell-division cycle protein 20 (CDC20), Budding uninhibited by benzimidazole 1 homolog beta (BUB1B), and cyclin B1 were downregulated, and clusterin was upregulated in GBM 8401 cells treated with PEITC. These changes of gene expression can provide the effects of PEITC on the genetic levels and potential biomarkers for glioblastoma. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 176-187, 2017.

  11. New multifunctional surfactants from natural phenolic acids.

    Science.gov (United States)

    Centini, Marisanna; Rossato, Maria Sole; Sega, Alessandro; Buonocore, Anna; Stefanoni, Sara; Anselmi, Cecilia

    2012-01-11

    Several new multifunctional molecules derived from natural sources such as amino acids and hydroxycinnamic acids were synthesized. They exhibit various activities such as emulsifying, UV-protecting, and radical scavenging, thereby conforming to the latest requirements for cosmetic ingredients. The synthesis comprises only a few steps: (i) the amino acid, the acid groups of which are protected by esterification, is coupled with ferulic or caffeic acid; (ii) the p-hydroxyl group of the cinnamic derivative reacts with dodecyl bromide in the presence of potassium carbonate (the resulting compounds are highly lipophilic and tested as water/oil (W/O) emulsifiers); (iii) these molecules, by deprotonating the acid groups of the amino acids, with successive salification, are more hydrophilic, with stronger O/W emulsifying properties. The new multifunctional surfactants might prove useful for the treatment of multiple skin conditions, including loss of cellular antioxidants, damage from free radicals, damage from UV, and others.

  12. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    OpenAIRE

    A. Jayanegara

    2009-01-01

    Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids) at two different levels (2 and 5 mM) added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, orga...

  13. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Christensen, L P; Meyer, A S;

    2000-01-01

    of the analyzed components were observed among the different rye varieties and also between different harvest years. However, the content of phenolic acids in the analyzed rye varieties was narrow compared to cereals such as wheat and barley. The concentration of ferulic acid, the most abundant phenolic acid......The contents of pnenolic acids and ferulic acid dehydrodimers were quantified by HPLC analysis after alkaline hydrolysis in kernels of 17 rye (Secale cereale L.) varieties grown in one location in Denmark during 1997 and 1998. Significant variations (P ... ranged from 900 to 1170 microgram g(-1) dry matter. The content in sinapic acid ranged from 70 to 140 microgram g(-1) dry matter, p-coumaric acid ranged from 40 to 70 microgram g(-1) dry matter, and caffeic, p-hydroxybenzoic, protocatechuic, and vanillic acids were all detected in concentrations less...

  14. Development of Blood-Brain Barrier Permeable Nitrocatechol-Based Catechol O-Methyltransferase Inhibitors with Reduced Potential for Hepatotoxicity.

    Science.gov (United States)

    Silva, Tiago; Mohamed, Tarek; Shakeri, Arash; Rao, Praveen P N; Martínez-González, Loreto; Pérez, Daniel I; Martínez, Ana; Valente, Maria João; Garrido, Jorge; Uriarte, Eugenio; Serrão, Paula; Soares-da-Silva, Patrício; Remião, Fernando; Borges, Fernanda

    2016-08-25

    Recent efforts have been focused on the development of centrally active COMT inhibitors, which can be valuable assets for neurological disorders such as Parkinson's disease, due to the severe hepatotoxicity risk associated with tolcapone. New nitrocatechol COMT inhibitors based on naturally occurring caffeic acid and caffeic acid phenethyl ester were developed. All nitrocatechol derivatives displayed potent inhibition of peripheral and cerebral COMT within the nanomolar range. Druglike derivatives 13, 15, and 16 were predicted to cross the blood-brain barrier in vitro and were significantly less toxic than tolcapone and entacapone when incubated at 50 μM with rat primary hepatocytes. Moreover, their unique acidity and electrochemical properties decreased the chances of formation of reactive quinone-imines and, as such, the potential for hepatotoxicity. The binding mode of 16 confirmed that the major interactions with COMT were established via the nitrocatechol ring, allowing derivatization of the side chain for future lead optimization efforts.

  15. Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee.

    Science.gov (United States)

    Zhu, Bao Ting; Wang, Pan; Nagai, Mime; Wen, Yujing; Bai, Hyoung-Woo

    2009-01-01

    In the present study, we investigated the inhibitory effect of three catechol-containing coffee polyphenols, chlorogenic acid, caffeic acid and caffeic acid phenethyl ester (CAPE), on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E(2) and 4-OH-E(2), respectively) catalyzed by the cytosolic catechol-O-methyltransferase (COMT) isolated from human liver and placenta. When human liver COMT was used as the enzyme, chlorogenic acid and caffeic acid each inhibited the O-methylation of 2-OH-E(2) in a concentration-dependent manner, with IC(50) values of 1.3-1.4 and 6.3-12.5 microM, respectively, and they also inhibited the O-methylation of 4-OH-E(2), with IC(50) values of 0.7-0.8 and 1.3-3.1 microM, respectively. Similar inhibition pattern was seen with human placental COMT preparation. CAPE had a comparable effect as caffeic acid for inhibiting the O-methylation of 2-OH-E(2), but it exerted a weaker inhibition of the O-methylation of 4-OH-E(2). Enzyme kinetic analyses showed that chlorogenic acid and caffeic acid inhibited the human liver and placental COMT-mediated O-methylation of catechol estrogens with a mixed mechanism of inhibition (competitive plus noncompetitive). Computational molecular modeling analysis showed that chlorogenic acid and caffeic acid can bind to human soluble COMT at the active site in a similar manner as the catechol estrogen substrates. Moreover, the binding energy values of these two coffee polyphenols are lower than that of catechol estrogens, which means that coffee polyphenols have higher binding affinity for the enzyme than the natural substrates. This computational finding agreed perfectly with our biochemical data.

  16. Analgesic activity and pharmacological characterization of N-[1-phenylpyrazol-3-yl]-N-[1-(2-phenethyl)-4-piperidyl] propenamide, a new opioid agonist acting peripherally.

    Science.gov (United States)

    Goicoechea, Carlos; Sánchez, Eva; Cano, Carolina; Jagerovic, Nadine; Martín, Maria Isabel

    2008-10-24

    We previously reported the synthesis of three new opioid agonists as well as their in vitro and in vivo activity [Girón, R., Abalo, R., Goicoechea, C., Martín, M.I., Callado, L.F., Cano, C., Goya, P., Jagerovic, N. 2002. Synthesis and opioid activity of new fentanyl analogs. Life Sci. 71, 1023-1034]. One of them, N-[1-phenylpyrazol-3-yl]-N-[1-(2-phenethyl)-4-piperidyl)] propenamide (IQMF-4), showed an interesting antinociceptive activity. Intraperitoneally (i.p.) administered, it was as effective as fentanyl or morphine, being less potent than fentanyl but more so than morphine. The aim of the present work was to evaluate its antinociceptive effect by different routes of administration, using the hot plate test, and to investigate possible side effects, such as tolerance and withdrawal, in vitro, using the myenteric plexus-longitudinal muscle strip preparation from guinea pig ileum, and in vivo, using the hot plate test. IQMF-4 was more potent than morphine when administered per os (p.o.), but less potent when administered intracerebroventricularly (i.c.v.). By both routes, fentanyl is more potent that IQMF-4. When IQMF-4 was administered i.p., naloxone methiodide, a peripherally acting antagonist, was able to completely block its antinociceptive effect, whereas, after i.c.v. administration, the blockade was only partial. An interesting feature of the new compound is that it induces tolerance in vitro but not in vivo. Moreover, though in vitro withdrawal was not different from fentanyl or morphine, in vivo withdrawal symptoms were significantly less frequent in mice treated with IQMF-4 than in those treated with morphine or fentanyl. Although more assays are required, these results show that IQMF-4 appears to be a potent analgesic compound with an interesting peripheral component, and reduced ability to induce dependence.

  17. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    Science.gov (United States)

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.

  18. The effects of phenethyl isothiocyanate, N-acetylcysteine and green tea on tobacco smoke-induced lung tumors in strain A/J mice.

    Science.gov (United States)

    Witschi, H; Espiritu, I; Yu, M; Willits, N H

    1998-10-01

    Male and female strain A/J mice were exposed to a mixture of cigarette sidestream and mainstream smoke at a chamber concentration of total suspended particulates of 82.5 mg/m3. Exposure time was 6 h/day, 5 days/week for 5 months. The animals were allowed to recover for another 4 months in filtered air before sacrifice and lung tumor count. Male animals were fed either 0.2% N-acetylcysteine (NAC) or 0.05% phenethyl isothiocyanate (PEITC) in diet AIN-76A with 5% corn oil added. Female animals received normal laboratory chow and were given a 1.25% extract of green tea in the drinking water. Corresponding control groups were fed diets without NAC or PEITC or given plain tap water. Exposure to tobacco smoke increased lung tumor multiplicity to 1.1-1.6 tumors/lung, significantly higher than control values (0.5-1.0 tumors/lung). None of the putative chemopreventive agents (NAC, PEITC or green tea extract) had a protective effect. In positive control experiments, PEITC significantly reduced both lung tumor multiplicity and incidence in mice treated with the tobacco smoke-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In mice treated with three different doses of urethan and fed NAC in the diet, a significant reduction in lung tumor multiplicity was found only at one dose level. Green tea extract did not reduce lung tumor multiplicity in animals treated with a single dose of NNK. It was concluded that successful chemoprevention of tobacco smoke-induced lung tumorigenesis might require administration of several chemopreventive agents rather than just a single one.

  19. Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1.

    Science.gov (United States)

    Hu, Jing; Straub, Jonathan; Xiao, Dong; Singh, Shivendra V; Yang, Hsin-Sheng; Sonenberg, Nahum; Vatsyayan, Jaya

    2007-04-15

    Phenethyl isothiocyanate (PEITC), a constituent of many edible cruciferous vegetables, exerts significant protection against chemically induced cancer in animal models and inhibits growth of cancer cells in culture and in vivo by causing cell cycle arrest and apoptosis induction. In this study, we report a novel response to PEITC involving the regulation of translation initiation at pharmacologically achievable concentrations. Treatment of human colorectal cancer HCT-116 cells and human prostate cancer PC-3 cells, but not a normal prostate epithelial cell line (PrEC), with PEITC caused an increase in expression of the eukaryotic translation initiation factor 4E (eIF4E) binding protein (4E-BP1) and inhibition of 4E-BP1 phosphorylation. Results from pull-down assay using 7-methyl-GTP Sepharose 4B beads indicated that PEITC treatment reduced cap-bound eIF4E, confirming that increased 4E-BP1 expression and inhibition of 4E-BP1 phosphorylation indeed reduced the availability of eIF4E for translation initiation. Accordingly, results from in vivo translation using luciferase reporter assay indicated that PEITC treatment inhibited cap-dependent translation, in particular the translation of mRNA with secondary structure (stem-loop structure). Ectopic expression of eIF4E prevented PEITC-induced translation inhibition and conferred significant protection against PEITC-induced apoptosis. These results indicate that PEITC modulates availability of eIF4E for translation initiation leading to inhibition of cap-dependent translation. The present study also suggests that inhibition of cap-dependent translation may be an important mechanism in PEITC-induced apoptosis.

  20. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    Science.gov (United States)

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature.

  1. Metabolism of fructophilic lactic acid bacteria isolated from Apis mellifera L. bee-gut: a focus on the phenolic acids as external electron acceptors.

    Science.gov (United States)

    Filannino, Pasquale; Di Cagno, Raffaella; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-09-16

    Fructophilic lactic acid bacteria (FLAB) are strongly associated to the gastrointestinal tract (GIT) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GIT of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of Apulia region (Italy). Almost all the isolates showed fructophilic tendencies, which were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray, targeting 190 carbon sources, was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic or gallic acids, as electron acceptors was investigated in fructose based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by 4 FLAB, showing the highest phenolic acid reductase activity, was investigated in glucose based medium supplemented with p-coumaric acid. Metabolic responses observed through phenotypic microarray suggested that FLAB may use p-coumaric acid as external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid.

  2. Metabolite Profiles of Lactic Acid Bacteria in Grass Silage▿

    Science.gov (United States)

    Broberg, Anders; Jacobsson, Karin; Ström, Katrin; Schnürer, Johan

    2007-01-01

    The metabolite production of lactic acid bacteria (LAB) on silage was investigated. The aim was to compare the production of antifungal metabolites in silage with the production in liquid cultures previously studied in our laboratory. The following metabolites were found to be present at elevated concentrations in silos inoculated with LAB strains: 3-hydroxydecanoic acid, 2-hydroxy-4-methylpentanoic acid, benzoic acid, catechol, hydrocinnamic acid, salicylic acid, 3-phenyllactic acid, 4-hydroxybenzoic acid, (trans, trans)-3,4-dihydroxycyclohexane-1-carboxylic acid, p-hydrocoumaric acid, vanillic acid, azelaic acid, hydroferulic acid, p-coumaric acid, hydrocaffeic acid, ferulic acid, and caffeic acid. Among these metabolites, the antifungal compounds 3-phenyllactic acid and 3-hydroxydecanoic acid were previously isolated in our laboratory from liquid cultures of the same LAB strains by bioassay-guided fractionation. It was concluded that other metabolites, e.g., p-hydrocoumaric acid, hydroferulic acid, and p-coumaric acid, were released from the grass by the added LAB strains. The antifungal activities of the identified metabolites in 100 mM lactic acid were investigated. The MICs against Pichia anomala, Penicillium roqueforti, and Aspergillus fumigatus were determined, and 3-hydroxydecanoic acid showed the lowest MIC (0.1 mg ml−1 for two of the three test organisms). PMID:17616609

  3. Metabolism of chicoric acid by rat liver microsomes and bioactivity comparisons of chicoric acid and its metabolites.

    Science.gov (United States)

    Liu, Qian; Wang, Yutang; Xiao, ChunXia; Wu, Wanqiang; Liu, Xuebo

    2015-06-01

    Chicoric acid has recently become a hot research topic due to its potent bioactivities. However, there are few studies relevant to this acid's pharmacokinetic characteristics and the pharmacological activities of its metabolites. To compare the abilities of chicoric acid and its metabolites in scavenging free radicals and their effects on the viability of 3T3-L1 preadipocytes, an in vitro study of the metabolism of chicoric acid in rat liver microsomes was performed using liquid tandem mass spectrometry (HPLC-MS/MS). The results indicated that caffeic acid and caftaric acid were the hepatic phase I metabolites of chicoric acid. These three compounds had strong capacities for scavenging free radicals and had been demonstrated to increase intracellular ROS levels in 3T3-L1 preadipocytes, thereby reducing cell vitality. Finally, the pharmacological activities of chicoric acid were significantly stronger than those of its metabolites within a certain concentration range.

  4. Induction of lung lesions in Wistar rats by 4-(methylnitrosamino-1-(3-pyridyl-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate

    Directory of Open Access Journals (Sweden)

    Xia Dong

    2007-05-01

    Full Text Available Abstract Background The development of effective chemopreventive agents against cigarette smoke-induced lung cancer could be greatly facilitated by suitable laboratory animal models, such as animals treated with the tobacco-specific lung carcinogen 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. In the current study, we established a novel lung cancer model in Wistar rats treated with NNK. Using this model, we assessed the effects of two chemopreventive agents, aspirin and phenethyl isothiocyanate (PEITC, on tumor progression. Methods First, rats were treated with a single-dose of NNK by intratracheal instillation; control rats received iodized oil. The animals were then sacrificed on the indicated day after drug administration and examined for tumors in the target organs. PCNA, p63 and COX-2 expression were analyzed in the preneoplastic lung lesions. Second, rats were treated with a single-dose of NNK (25 mg/kg body weight in the absence or presence of aspirin and/or PEITC in the daily diet. The control group received only the vehicle in the regular diet. The animals were sacrificed on day 91 after bronchial instillation of NNK. Lungs were collected and processed for histopathological and immunohistochemical assays. Results NNK induced preneoplastic lesions in lungs, including 33.3% alveolar hyperplasia and 55.6% alveolar atypical dysplasia. COX-2 expression increased similarly in alveolar hyperplasia and alveolar atypical dysplasia, while PCNA expression increased more significantly in the latter than the former. No p63 expression was detected in the preneoplastic lesions. In the second study, the incidences of alveolar atypical dysplasia were reduced to 10%, 10% and 0%, respectively, in the aspirin, PEITC and aspirin and PEITC groups, compared with 62.5% in the carcinogen-treated control group. COX-2 expression decreased after dietary aspirin or aspirin and PEITC treatment. PCNA expression was significantly reduced in the aspirin and PEITC

  5. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy.

    Science.gov (United States)

    Stalmach, Angélique; Steiling, Heike; Williamson, Gary; Crozier, Alan

    2010-09-01

    The intestinal absorption and metabolism of 385 micromol chlorogenic acids following a single intake of 200 mL of instant coffee by human volunteers with an ileostomy was investigated. HPLC-MS(3) analysis of 0-24h post-ingestion ileal effluent revealed the presence of 274+/-28 micromol of chlorogenic acids and their metabolites accounting for 71+/-7% of intake. Of the compounds recovered, 78% comprised parent compounds initially present in the coffee, and 22% were metabolites including free and sulfated caffeic and ferulic acids. Over a 24h period after ingestion of the coffee, excretion of chlorogenic acid metabolites in urine accounted for 8+/-1% of intake, the main compounds being ferulic acid-4-O-sulfate, caffeic acid-3-O-sulfate, isoferulic acid-3-O-glucuronide and dihydrocaffeic acid-3-O-sulfate. In contrast, after drinking a similar coffee, urinary excretion by humans with an intact colon corresponded to 29+/-4% of chlorogenic acid intake. This difference was due to the excretion of higher levels of dihydroferulic acid and feruloylglycine together with sulfate and glucuronide conjugates of dihydrocaffeic and dihydroferulic acids. This highlights the importance of colonic metabolism. Comparison of the data obtained in the current study with that of Stalmach et al. facilitated elucidation of the pathways involved in post-ingestion metabolism of chlorogenic acids and also helped distinguish between compounds absorbed in the small and the large intestine.

  6. Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol.

    Science.gov (United States)

    Gul, Zulfiye; Demircan, Celaleddin; Bagdas, Deniz; Buyukuysal, Rifat Levent

    2016-08-01

    The effectiveness of chlorogenic acid and its main metabolites, caffeic and quinic acids, against oxidative stress was investigated. Resveratrol, another natural phenolic compound, was also tested for comparison. Rat cortical slices were incubated with 200 μM H2O2 for 1 h, and alterations in oxidative stress parameters, such as 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the production of both malondialdehyde (MDA) and reactive oxygen species (ROS), were assayed in the absence or presence of phenolic compounds. Additionally, the effectiveness of chlorogenic acid and other compounds on H2O2-induced increases in fluorescence intensities were also compared in slice-free incubation medium. Although quinic acid failed, chlorogenic and caffeic acids significantly ameliorated the H2O2-induced decline in TTC staining intensities. Although resveratrol also caused an increase in staining intensity, its effect was not dose-dependent; the high concentrations of resveratrol tested in the present study (10 and 100 μM) further lessened the staining of the slices. Additionally, all phenolic compounds significantly attenuated the H2O2-induced increases in MDA and ROS levels in cortical slices. When the IC50 values were compared to H2O2-induced alterations, chlorogenic acid was more potent than either its metabolites or resveratrol for all parameters studied under these experimental conditions. In slice-free experimental conditions, on the other hand, chlorogenic and caffeic acids significantly attenuated the fluorescence emission enhanced by H2O2 with a similar order of potency to that obtained in slice-containing physiological medium. These results indicate that chlorogenic acid is a more potent phenolic compound than resveratrol and its main metabolites caffeic and quinic acids against H2O2-induced alterations in oxidative stress parameters in rat cortical slices.

  7. Effect of two graded doses of whole-body X-irradiation and radioprotection by the use of S-phenethyl formamidino 4(N-ethyl isothioamide) morpholine dihydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S.S.; Chaturvedi, P.K.; Pandeya, S.N.

    1983-10-01

    The protection offered by a newly synthesized compound (S-phenethyl-formamidino-4(N-ethyl isothioamide) morpholine dihydrochloride) against radiation effects on DNA, RNA and protein biosynthetic processes in the brain, and on metabolites of 5-HT and nor-adrenalin, i.e., 5-HIAA and VMA, in the urine, including the radiobiological damage to thyroid and testes, was evaluated. The use of the compound prior to irradiation prevented radiation-induced changes in the thyroid and testes. The radiation-induced alterations in the pattern of DNA, RNA, protein in the brain, and in 5-HIAA and VMA in urine could be averted by treatment with this compound prior to each dose of X-irradiation.

  8. Interaction of milk whey protein with common phenolic acids

    Science.gov (United States)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  9. Synthesis of chlorogenic acid and p-coumaroyl shikimates from glucose using engineered Escherichia coli.

    Science.gov (United States)

    Cha, Mi Na; Kim, Hyeon Jeong; Kim, Bong Gyu; Ahn, Joong-Hoon

    2014-08-01

    Chlorogenic acid and hydroxylcinnamoyl shikimates are major dietary phenolics as well as antioxidants, with recently discovered biological, activities including protection against chemotheraphy side effects and prevention of cardiovascular disease and cancer. Certain fruits and vegetables produce these compounds, although a microbial system can also be utilized for synthesis of chlorogenic acid and hydroxylcinnamoyl shikimates. In this study, we engineered Escherichia coli to produce chlorogenic acid and p-coumaroyl shikimates from glucose. For the synthesis of chlorogenic acid, two E. coli strains were used; one strain for the synthesis of caffeic acid from glucose and the other strain for the synthesis of chlorogenic acid from caffeic acid and quinic acid. The final yield of chlorogenic acid using this approach was approximately 78 mg/l. To synthesize p-coumaroyl shikimates, wild-type E. coli as well as several mutants were tested. Mutant E. coli carrying deletions in three genes (tyrR, pheA, and aroL) produced 236 mg/l of p-coumaroyl shikimates.

  10. Influence of Electromagnetic Fields on Bone Fracture in Rats: Role of CAPE

    Institute of Scientific and Technical Information of China (English)

    EKREM CICEK; OSMAN GOKALP; REMZI VAROL; GOKHAN CESUR

    2009-01-01

    Objective To study the effects of radiation emitted by mobile phones on bone strength and caffeic acid phenethyl ester (CAPE) on the changes induced by radiation. Methods Forty-eight Sprague-Dawley rats were divided into five groups. Rats in the control group (first group) were left within the experimental setup for 30 min/day for 28 days without radiation exposure. Nine hundred MHz radiation group was broke down into 2 subgroups (group 1/2). Both subgroups were exposed to radiation for 28 days (30 min/day). The next group was also divided into 2 subgroups (group 3/4). Each was exposed to 1800 MHz of radiation for 28 days (30 min/day). The third and fifth groups were also treated with CAPE for 28 days. Treatment groups received ip caffeic acid phenethyl ester (10 μmol/kg per day) before radiation session. Bone fracture was analyzed. Results Breaking force, bending strength, and total fracture energy decreased in the irradiated groups but increased in the treatment groups. Conclusion Radiation and CAPE can significantly improve bone.

  11. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    Science.gov (United States)

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  12. Simultaneous Determination of Trigonelline, Caffeine, Chlorogenic Acid and Their Related Compounds in Instant Coffee Samples by HPLC Using an Acidic Mobile Phase Containing Octanesulfonate.

    Science.gov (United States)

    Arai, Kana; Terashima, Hiroyuki; Aizawa, Sen-ichi; Taga, Atsushi; Yamamoto, Atsushi; Tsutsumiuchi, Kaname; Kodama, Shuji

    2015-01-01

    In order to analyze trigonelline, caffeine, chlorogenic acid, and their related compounds simultaneously, an HPLC method using an InertSustain C18 column and a mobile phase containing octanesulfonate as an ion-pairing reagent under an acidic condition was developed. The optimum mobile phase conditions were determined to be 0.1% phosphoric acid, 4 mM octanesulfonate, and 15% methanol at 35°C. Using the proposed method, trigonelline, nicotinic acid, caffeine, theophylline, chlorogenic acid, and caffeic acid in ten instant coffee samples were analyzed. These analytes except for theophylline were detected in all samples. An increase in the caffeine content in instant coffee samples tended to decrease in both trigonelline and chlorogenic acid contents, and the trigonelline content was found to be correlated well with the chlorogenic acid content (R(2) = 0.887).

  13. Determination the concentration of the N-acetylcysteine conjugate of phenethyl isothiocyanate in healthy human urine by HPLC%高效液相色谱法测定健康人尿液中苯乙基异硫氰酸酯乙酸半胱氨酸缀合物的浓度

    Institute of Scientific and Technical Information of China (English)

    许译升; 郑枫; 刘红霞

    2011-01-01

    目的 建立高效液相色谱法测定健康人尿液中苯乙基异硫氰酸酯乙酰半胱氨酸缀合物的浓度.方法 色谱柱为Sepax Amethyst-C18柱,流动相为0.2%磷酸水溶液-甲醇(35:65),流量:1 mL ·min-1,紫外检测波长250 nm;氯雷他定为内标.结果 尿液中代谢物在0.8~64.0μg · mL-1内线性关系良好,回归方程为γ =0.08χ-1.28×10-3(n=8,γ=0.9982),提取回收率大于80%,批内和批间精密度RSD < 10%.结论 该方法可用于测定人尿液中苯乙基异硫氰酸酯乙酰半胱氨酸缀合物的浓度.%Objective To establish a HPLC method for the determination the concentration of N - acetylcysteine conjugate of phenethyl isothio-cyanate (PEITC - NAC) in healthy human urine. Methods Separation was carried on a Sepax Amethyst - C18 and the mobile phase was consisted of 0. 2% phosphoric acid - methanol (35: 65) with the flow rate of 1 mL ? Min"1. The detection wavelength was 250 nm. Results A good linearity was demonstrated between 0. 8 - 64. 0 u,g ? mL"1 by linear e-quation y =0. 08* - 1. 28 x 10"3 (n = 8, y = 0. 9982 ) . The within -batch and between - batch deviation was showed by RSD < 10%. Conclusion The method can be applied for the determination the concentration of PEITC - NAC in human urine.

  14. Design, synthesis and in vitro evaluation of a series of α-substituted phenylpropanoic acid PPARγ agonists to further investigate the stereochemistry-activity relationship.

    Science.gov (United States)

    Ohashi, Masao; Nakagome, Izumi; Kasuga, Jun-Ichi; Nobusada, Hiromi; Matsuno, Kenji; Makishima, Makoto; Hirono, Shuichi; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2012-11-01

    We previously demonstrated that the α-benzylphenylpropanoic acid-type PPARγ-selective agonist 6 exhibited a reversed stereochemistry-activity relationship, that is, the (R)-enantiomer is a more potent PPARγ agonist than the (S)-enantiomer, compared with structurally similar α-ethylphenylpropanoic acid-type PPAR agonists. Here, we designed, synthesized and evaluated the optically active α-cyclohexylmethylphenylpropanoic acid derivatives 7 and α-phenethylphenylpropanoic acid derivatives 8, respectively. Interestingly, α-cyclohexylmethyl derivatives showed reversal of the stereochemistry-activity relationship [i.e., (R) more potent than (S)], like α-benzyl derivatives, whereas α-phenethyl derivatives showed the 'normal' relationship [(S) more potent than (R)]. These results suggested that the presence of a branched carbon atom at the β-position with respect to the carboxyl group is a critical determinant of the reversed stereochemistry-activity relationship.

  15. Role of bifidobacteria in the hydrolysis of chlorogenic acid.

    Science.gov (United States)

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-02-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds.

  16. Chlorogenic acids from green coffee extract are highly bioavailable in humans.

    Science.gov (United States)

    Farah, Adriana; Monteiro, Mariana; Donangelo, Carmen M; Lafay, Sophie

    2008-12-01

    Chlorogenic acids (CGA) are cinnamic acid derivatives with biological effects mostly related to their antioxidant and antiinflammatory activities. Caffeoylquinic acids (CQA) and dicaffeoylquinic acids (diCQA) are the main CGA found in nature. Because green coffee is a major source of CGA, it has been used for production of nutraceuticals. However, data on the bioavailability of CGA from green coffee in humans are inexistent. The present study evaluated the pharmacokinetic profile and apparent bioavailability of CGA in plasma and urine of 10 healthy adults for 8 h after the consumption of a decaffeinated green coffee extract containing 170 mg of CGA. Three CQA, 3 diCQA, and caffeic, ferulic, isoferulic, and p-coumaric acids were identified in plasma by HPLC-Diode Array Detector-MS after treatment. Over 30% (33.1 +/- 23.1%) of the ingested cinnamic acid moieties were recovered in plasma, including metabolites, with peak levels from 0.5 to 8 h after treatment. CGA and metabolites identified in urine after treatment were 4-CQA, 5-CQA, and sinapic, p-hydroxybenzoic, gallic, vanillic, dihydrocaffeic, caffeic, ferulic, isoferulic, and p-coumaric acids, totaling 5.5 +/- 10.6% urinary recovery of the ingested cinnamic and quinic acid moiteties. This study shows that the major CGA compounds present in green coffee are highly absorbed and metabolized in humans.

  17. Potentiation of vasoconstrictor response and inhibition of endothelium-dependent vasorelaxation by gallic acid in rat aorta.

    Science.gov (United States)

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2002-08-01

    In the isolated rat thoracic aorta, gallic acid potentiated the vasoconstrictor response to phenylephrine. The potentiation produced by gallic acid was absent in endothelium-denuded arteries. The potentiation was abolished by N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, and slightly attenuated by an addition of L-arginine, while indomethacin or BQ610 had no effect. The potentiation of response to phenylephrine was not found for structural modifications of gallic acid, except for caffeic acid. Gallic acid also inhibited vasorelaxation induced by acetylcholine, sodium nitroprusside or prostacyclin, especially that by acetylcholine. The effect on vasorelaxation induced by acetylcholine was decreased by esterification of the carboxy group of gallic acid, and in the absence or by the methylation of the o-dihydroxy group. Caffeic acid inhibited the vasorelaxation, though the effect was smaller than that of gallic acid. These findings indicate that gallic acid produces a potentiation of contractile response and inhibition of vasorelaxant responses, probably through inactivation of nitric oxide (NO), in which endothelially produced NO is principally involved, and that the modification of functional groups of the gallic acid molecule abolishes the potentiation of contractile response and attenuates the inhibition of vasorelaxant responses.

  18. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates.

    Science.gov (United States)

    Fritsch, Caroline; Heinrich, Veronika; Vogel, Rudi F; Toelstede, Simone

    2016-08-01

    Sunflower flour provides a high content of protein with a well-balanced amino acid composition and is therefore regarded as an attractive source for protein. The use for human nutrition is hindered by phenolic compounds, mainly chlorogenic acid, which can lead under specific circumstances to undesirable discolorations. In this study, growth behavior and degradation ability of chlorogenic acid of four lactic acid bacteria were explored. Data suggested that significant higher fermentation performances on sunflower flour as compared to sunflower protein concentrate were reached by Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus gasseri and Bifidobacterium animalis subsp. lactis. In fermentation with the latter two strains reduced amounts of chlorogenic acid were observed in sunflower flour (-11.4% and -19.8%, respectively), which were more pronounced in the protein concentrate (-50.7% and -95.6%, respectively). High tolerances against chlorogenic acid and the cleavage product quinic acid with a minimum inhibitory concentration (MIC) of ≥20.48 mg/ml after 48 h were recorded for all strains except Bifidobacterium animalis subsp. lactis, which was more sensitive. The second cleavage compound, caffeic acid revealed a higher antimicrobial potential with MIC values of 0.64-5.12 mg/ml. In this proof of concept study, degradation versus inhibitory effect suggest the existence of basic mechanisms of interaction between phenolic acids in sunflower and lactic acid bacteria and a feasible way to reduce the chlorogenic acid content, which may help to avoid undesired color changes.

  19. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    Science.gov (United States)

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.

  20. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji Janeshawari; Hansen, Esben Halkjær; Kannangara, Rubini Maya;

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes...

  1. 咖啡酸代谢物的抗肾炎活性分析%Biotechnological Analysis of Caffeic Acid Metabolites Possessing Potent Anti-nephritic Activity

    Institute of Scientific and Technical Information of China (English)

    Yulia V. Inyushkina; Konstantin V. Kiselev; Victor P. Bulgakov

    2008-01-01

    在研究治疗肾功能紊乱植物的细胞培养时,建立了一个Eritrichium sericeum的E-4愈伤组织株系,发现此株系可产生大量的咖啡酸代谢物、(一)-rabdosiin(1.8%干重)和迷迭香酸(4.6%干重),通过诱导(一)一rabdosiin的含量提高至4.1%(干重).将E-4愈伤组织喂服Masugi肾炎大鼠,结果发现,与对照组(未喂服E-4愈伤组织的Masugi肾炎大鼠)相比,处理组(喂服E-4愈伤组织)中的大鼠出现如下症状:尿多、排泄物中肌氨酸酐降低、尿蛋白水平降低;当对照组中所有大鼠都出现疼痛症状时,处理组中仍有约,4的大鼠表现出健康状况良好.以上结果表明,E-4株系具有缓解肾炎症状的潜在功能.此外,利用富含多酚的roIC转基因的细胞株系,研究了愈伤组织中咖啡酸代谢物的诱导合成机制.结果发现,在rloC转基因的E.sericeum愈伤组织中,咖啡酸代谢物的高产与迷迭香酸生物合成中的关键基因CYP98A3的高表达有关.

  2. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrucci, Rita [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)]. E-mail: rita.petrucci@uniroma1.it; Astolfi, Paola [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Greci, Lucedio [Dipartimento di Scienze dei Materiali e della Terra, Universita Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona (Italy); Firuzi, Omidreza [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Saso, Luciano [Dipartimento di Farmacologia delle Sostanze Naturali e Fisiologia Generale, Universita di Roma ' La Sapienza' , p.le Aldo Moro 5, I-00185 Rome (Italy); Marrosu, Giancarlo [Dipartimento di Ingegneria Chimica M.M.P.M., Universita di Roma ' La Sapienza' , via del Castro Laurenziano 7, I-00161 Rome (Italy)

    2007-02-01

    Electrochemical and chemical oxidation of hydroxycinnamic acids (HCAs) was studied to investigate the mechanisms occurring in their antioxidant activities in a protons poor medium. Electrolyses and chemical reactions were followed on-line by monitoring the UV-spectral changes with time; final solutions were analysed by HPLC-MS. Anodic oxidation of mono- and di-HCAs, studied by cyclic voltammetry and controlled potential electrolyses, occurs via a reversible one-step two-electrons process, yielding the corresponding stable phenoxonium cation. A cyclization product was also proposed, as supported by ESR studies. Chemical oxidation with lead dioxide leads to different oxidation products according to the starting substrate. Di-HCAs like chlorogenic and rosmarinic acids and the ethyl ester of caffeic acid gave the corresponding neutral o-quinones, while mono-HCAs like cumaric, ferulic and sinapinic acids yielded the corresponding unstable neutral phenoxyl radical, as supported by the formation of dimerization products evidenced by HPLC-MS. In the case of caffeic acid, traces of the dimerization product suggest that the neutral phenoxyl radical may competitively undergo dimerization or decomposition of the neutral quinone. Chemical oxidation of HCAs was also followed by ESR spectroscopy: the di-HCAs radical anions were generated and detected, whereas among the mono-HCAs only the phenoxyl radical of the sinapinic acid was recorded.

  3. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  4. 过山蕨中有机酸类化学成分%Chemical constituents of organic acid part from Camptosorus sibiricus Rupr.

    Institute of Scientific and Technical Information of China (English)

    李宁; 李铣; 杨世林

    2006-01-01

    目的研究过山蕨(Camptosorus sibiricus Rupr.)中有机酸类化学成分.方法采用反复硅胶柱层析分离纯化,通过理化常数测定和光谱分析鉴定其化学结构.结果从过山蕨中分离得到了11个有机酸类化合物,即咖啡酸(caffeic acid,1)、香豆酸(courmaric acid,2)、原儿茶酸(protocate-chuic acid,3)、对羟基苯甲酸(4-hydroxybenzoic acid,4)、异香草酸(isovanillic acid,5)、2,4-二羟基苯甲酸(2,4-dihydroxybenzoic acid,6)、肉桂酸(cinnamic acid,7)、丁二酸(succinic acid,8)、棕榈酸(palmitic acid,9)、香豆酸4-O-β-D-吡喃葡萄糖苷(trans-p-coumaric acid-4-O-β-D-glucopyranoside,10)、咖啡酸4-O-β-D-吡喃葡萄糖苷(caffeic acid-4-O-β-D-glucopyranoside,11).结论化合物2~11,均为首次从该属植物中分离得到.

  5. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    Science.gov (United States)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  6. Conversion of hydroxycinnamic acids into volatile phenols in a synthetic medium and in red wine by Dekkera bruxellensis

    Directory of Open Access Journals (Sweden)

    Maria João Cabrita

    2012-03-01

    Full Text Available The conversion of p-coumaric acid, ferulic acid, and caffeic acid into 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol was studied in Dekkera bruxellensis ISA 1791 under defined conditions in a synthetic medium and in a red wine. Liquid chromatography (HPLC-DAD was used to quantify the phenolic acids, and gas chromatography (GC coupled to a FID detector was used to quantify volatile phenols using a novel analytical methodology that does not require sample derivatization. Identification was achieved by gas chromatography-mass detection (GC-MS. The results show that phenolic acids concentration decreases while volatile phenols concentration increases. The proportion of caffeic acid taken up by Dekkera bruxellensis is lower than that for p-coumaric or ferulic acid; therefore less 4-ethylcatechol is formed. More important, 4-ethylcathecol synthesis by Dekkera bruxellensis in wine has never been demonstrated so far. These results contribute decisively to a better understanding of the origin of the volatile phenols in wines. The accumulation of these compounds in wine is nowadays regarded as one of the key factors of quality control.

  7. Biotransformation of ferulic acid by Lactobacillus acidophilus KI and selected Bifidobacterium strains

    Directory of Open Access Journals (Sweden)

    Anna Jakubczyk

    2010-03-01

    Full Text Available Background. Lactic acid bacteria (LAB were pointed out to produce ferulic acid esterase. Except the release of phenolic acids from esterified forms, it was postulated that the biotransformations of these compounds can occur during the bacterial growth. In the presented work, the biotransformation of ferulic acid by Lactobacillus acidophilus K1 and three Bifidibacterium strains (B. animalis Bi30, B. catenulatum KD 14 and B. longum KN 29 was studied. Material and methods. The microorganisms were grown in media containing methyl esters of phenolic acids as carbon sources. The feruloyl esterase activity as well as the contents of phenolic acids in supernatants were estimated using HPLC-DAD. Results. The enzyme activity was evaluated using methyl ferulate exclusively, but p-coumaric acid and another chromatographic peak (probably caffeic acid, but its identity was not positively confirmed by the DAD analysis were present in reaction mixtures containing the supernatants of Lactobacillus acidophilus K1 cultivars with methyl p-cou­marate or methyl syringate. Both peaks of p-coumaric acid and another phenolic compound were also present in the solutions containing the supernatants of B. catenulatum and B. longum grown in the presence of methyl vanillate and the supernatants of B. animalis Bi30 grown using methyl p-coumarate, methyl syringate or methyl vanillate. Conclusions. The results suggest a distinct ability of the studied LAB strains to transform free ferulic acid yielding p-coumaric acid and probably caffeic acid although no mechanism involved in this transformation was proposed and closer characterised in the frames of this work.

  8. HPLC method validated for the simultaneous analysis of cichoric acid and alkamides in Echinacea purpurea plants and products

    DEFF Research Database (Denmark)

    Mølgaard, Per; Johnsen, Søren; Christensen, Peter;

    2003-01-01

    A reversed-phase high-performance liquid chromatography (HPLC) method has been developed to determine caffeic acid derivatives, for example, cichoric acid, and alkamides in plant parts and herbal products of Echinacea purpurea. The method consists of an extraction procedure whereby the hydrophilic...... phenolics as well as the lipophilic alkamides are released from the samples, followed by the analytical HPLC procedure for quantitative determination of these compounds. The method is the first one validated for the determination of these two groups of compounds in the same procedure. Naringenin has been...

  9. Inhibition profile of a series of phenolic acids on bovine lactoperoxidase enzyme.

    Science.gov (United States)

    Sarikaya, S Beyza Ozturk; Sisecioglu, Melda; Cankaya, Murat; Gulcin, İlhami; Ozdemir, Hasan

    2015-06-01

    Lactoperoxidase (LPO) catalyzes the oxidation of numerous of organic and inorganic substrates by hydrogen peroxide. It has very vital activity in the innate immune system by decreasing or stopping the activation of the bacteria in milk and mucosal secretions. This study's purpose was to investigate in vitro effect of some phenolic acids (ellagic, gallic, ferulic, caffeic, quercetin, p-coumaric, syringic, catechol and epicatechin) on the purified LPO. This enzyme was purified from milk by using different methods such as Amberlite CG-50 resin, CM-Sephadex C-50 ion-exchange and Sephadex G-100 gel filtration chromatography. LPO was purified 28.7-fold with a yield of 20.03%. We found phenolic acids have inhibition effects on bovine LPO enzyme to different concentrations. Our study showed lower concentrations of caffeic acid, ferulic acid and quercetin exhibited much higher inhibitory effect on enzyme, so these three of them were clearly a more potent inhibitor than the others were. All of compounds were non-competitive inhibitors.

  10. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  11. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium.

    Science.gov (United States)

    Alberto, María R; de Nadra, María C Manca; Arena, Mario E

    2012-01-01

    The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI) of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC), found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively) and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively). ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  12. Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Laura Zambonin

    2012-01-01

    Full Text Available Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL, whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach.

  13. Release of Propolis Phenolic Acids from Semisolid Formulations and Their Penetration into the Human Skin In Vitro

    Directory of Open Access Journals (Sweden)

    Modestas Žilius

    2013-01-01

    Full Text Available Antioxidant and free radical scavenging effects are attributed to phenolic compounds present in propolis, and when delivered to the skin surface and following penetration into epidermis and dermis, they can contribute to skin protection from damaging action of free radicals that are formed under UV and premature skin aging. This study was designed to determine the penetration of phenolic acids and vanillin into the human skin in vitro from experimentally designed vehicles. Results of the study demonstrated the ability of propolis phenolic acids (vanillic, coumaric, caffeic, and ferulic acids and vanillin to penetrate into skin epidermis and dermis. The rate of penetration and distribution is affected both by physicochemical characteristics of active substances and physical structure and chemical composition of semisolid vehicle. Vanillin and vanillic acid demonstrated relatively high penetration through epidermis into dermis where these compounds were concentrated, coumaric and ferulic acids were uniformly distributed between epidermis and dermis, and caffeic acid slowly penetrated into epidermis and was not determined in dermis. Further studies are deemed relevant for the development of semisolid topically applied systems designed for efficient delivery of propolis antioxidants into the skin.

  14. 苯乙基异硫氰酸盐对不同孕期大鼠的影响%Effect of phenethyl isothiocyanate given at different duration of gestation on the outcome of pregnancy in rats

    Institute of Scientific and Technical Information of China (English)

    刘海波; 支媛; 耿桂英; 于洲; 徐海滨

    2011-01-01

    目的 研究孕期不同阶段给予苯乙基异硫氰酸盐(PEITC)对大鼠受孕的影响及其胚胎毒性作用.方法 采用霍恩氏法进行大鼠经口急性毒性实验,分别于孕0-6天(着床前)和孕7-16天(着床后)给予PEITC 0、15、60和120mg/kg,观察孕鼠的一般生理体征,记录体重变化;孕16天(着床前)和孕20天(着床后)观察着床数、活胎数、吸收胎数等,并记录着床点数;称量胎重、胎盘重量和母体的肝脏、肾脏和脾脏重量.结果 PEITC对雌性大鼠的LD为1.47g/kg;着床前给予PEITC,随着剂量的增加母鼠体重、着床数和活胎数均下降;着床后给予PEITC,随着剂量增加,活胎数下降,吸收胎数上升,且60、120mg/kg组胚胎重量、胎盘重量与对照组均显著性下降;着床前、后PEITC对母体脏器均无显著性毒性作用.结论 PEITC对着床前后孕鼠均具有一定的胚胎毒性,该实验中其对大鼠妊娠的未观察到作用剂量(NOEAL)为15mg/kg.%Objective To investigate the effect of phenethyl isothiocyanate (PEITC) on fetal development and embryotoxicity in rats. Methods Acute oral toxicity was conducted by Horn method. PEITC suspended in Tween-80 water was administered orally once a day to pregnant rats in the gestation day 0 - 6 ( pre-implantation ) and 7 - 16 (post-implantation) at the doses of 15, 60 and 120 mg/kg, respectively. On the gestation day 16 or 21, the number of live fetuses, reabsorbed fetuses and implanted sites were counted. The placental weights, fetal weights and organ weights were also recorded. Results The LD50 of PEITC for female rats was 1.47g/kg. The maternal body weight gain and the number of implanted and live fetuses were decreased with the increase of PEITC dosage given during pre-implantation period. There was also a dose-dependent effect of PEITC given during post-implantation period on fetal weight/growth and placental weight. No toxicity on the organ weight of pregnant rats was observed. Conclusion

  15. A New Homogenizing Technology to Obtain Rosmarinic Acid from Perilla Oil Meal

    Institute of Scientific and Technical Information of China (English)

    TANG Wei-zhuo; LIU Yan-ze; ZHAO Yu-qing

    2012-01-01

    Objective To optimize the extraction technology of the active component,rosmarinic acid,an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid,in perilla oil meal for the first time by a new homogenizing technology called smashing tissue extraction (STE).Methods Orthogonal design was used to optimize the extraction condition.The content of rosmarinic acid was quantified from the methanol crude extract with the help of HPLC.Results The optimization of STE process to get rosmarinic acid from the perilla oil meal was the ratio of liquid to solid material at 10∶1 and the power of extraction at 150 V,extracting twice (2 min for each time).Conclusion STE could be applied to extracting the active ingredients from the oil meals due to its high extraction efficiency.This new homogenizing technology has advantages on saving extraction time,raising extraction efficiency,and maintaining the temperature sensitive constituents.

  16. Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain.

    Science.gov (United States)

    Ma, Yuping; Wang, Xiaoyu; Nie, Xueling; Zhang, Zhan; Yang, Zongcan; Nie, Cong; Tang, Hongzhi

    2016-08-01

    In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.

  17. Flavanols from green tea and phenolic acids from coffee: critical quantitative evaluation of the pharmacokinetic data in humans after consumption of single doses of beverages.

    Science.gov (United States)

    Williamson, Gary; Dionisi, Fabiola; Renouf, Mathieu

    2011-06-01

    Coffee contains a complex mixture of chlorogenic acids, which are mainly ferulic and caffeic acids ester-linked to quinic acid. Green tea contains flavanols, mainly (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC) and (-)-epicatechin (EC). For healthy humans, we identified seven studies on green tea in liquid form and five on coffee beverage reporting single-dose plasma pharmacokinetics. Weighted averages, based on the number of subjects, and elimination of outliers, allowed estimation of some pharmacokinetic parameters. After consumption of an "average" cup of green tea containing 112 mg of (-)-epigallocatechin gallate, 51 mg of EGC and 15 mg of EC in 200 mL, the predicted C(max) values (total free and sulfate/glucuronide conjugates) in plasma are 125, 181 and 76 nM, respectively, together with 94 nM methyl-EGC and 51 nM methyl-EC (standard deviation <20%). After consumption of an "average" cup of coffee (160 mg total chlorogenic acids (0.46 mmol)/200 mL), predicted C(max) values of caffeic, ferulic, isoferulic, dihydrocaffeic and dihydroferulic acids are 114, 96, 50, 384 and 594 nM, respectively (too few studies to calculate standard deviation). Most studies report a very low amount of intact chlorogenic acids in plasma, with one exception. More studies on absorption of chlorogenic acids from coffee are required, including dose-response studies.

  18. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview

    Directory of Open Access Journals (Sweden)

    José Teixeira

    2013-01-01

    Full Text Available Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs obtained so far.

  19. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini;

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes......-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression...

  20. Antioxidant capacity, phenolic acids and caffeine contents of some commercial coffees available on the Romanian market.

    Science.gov (United States)

    Trandafir, Ion; Nour, Violeta; Ionica, Mira Elena

    2013-03-01

    In the present study a simple and highly sensitive RP-HPLC method has been established for simultaneous determination of chlorogenic acid, caffeic acid, vanillic acid and caffeine in coffee samples. The method has been applied to eight different coffees available on the Romanian market which were previously analysed concerning the total polyphenols content and antioxidant capacity. Reduction of the DPPH radical was used to determine the antioxidant capacity of the coffee extracts while the total polyphenols content was determined by spectrophotometry (Folin Ciocalteu's method). The total polyphenols content ranged from 1.98 g GAE/100 g to 4.19 g GAE/100 g while the caffeine content ranged from 1.89 g/100 g to 3.05 g/100 g. A large variability was observed in chlorogenic acid content of the investigated coffee samples which ranged between 0.6 and 2.32 g/100 g.

  1. A ¹H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica cv Ataulfo and Papaya (Carica papaya cv Maradol and 1,1-diphenyl-2-picrylhydrazyl (DPPH Free Radicals.

    Directory of Open Access Journals (Sweden)

    Luis M López-Martínez

    Full Text Available The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids and papaya (caffeic, ferulic and p-coumaric acids, and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT and Single Electron Transfer (SET. The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic.

  2. A ¹H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica cv Ataulfo) and Papaya (Carica papaya cv Maradol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) Free Radicals.

    Science.gov (United States)

    López-Martínez, Luis M; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R; González-Aguilar, Gustavo A

    2015-01-01

    The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic.

  3. A 1H NMR Investigation of the Interaction between Phenolic Acids Found in Mango (Manguifera indica cv Ataulfo) and Papaya (Carica papaya cv Maradol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) Free Radicals

    Science.gov (United States)

    López-Martínez, Luis M.; Santacruz-Ortega, Hisila; Navarro, Rosa-Elena; Sotelo-Mundo, Rogerio R.; González-Aguilar, Gustavo A.

    2015-01-01

    The benefits of phenolic acids on human health are very often ascribed to their potential to counteract free radicals to provide antioxidant protection. This potential has been attributed to their acidic chemical structure, which possesses hydroxyl groups in different positions. Phenolic acids can interact between themselves and exhibit an additive, antagonistic or synergistic effect. In this paper, we used 1H NMR to analyze the interactions and mechanisms that are present in major phenolic acids found in mango (gallic, protocatechuic, chlorogenic and vanillic acids) and papaya (caffeic, ferulic and p-coumaric acids), and the DPPH radical was used to evaluate the effect of the antioxidant mixtures. The interactions were found to occur via hydrogen bonds between the -OH and -COOH groups. Moreover, the phenolic acids exhibit two types of mechanisms for the neutralization of the DPPH radical. According to the results, these two mechanisms are Hydrogen Atom Transfer (HAT) and Single Electron Transfer (SET). The ability of the phenolic acid to neutralize the DPPH radical decreases in the following order in mango: gallic > chlorogenic > protocatechuic > vanillic. Moreover, within the acids found in papaya, the order was as follows: caffeic > p-coumaric > ferulic. PMID:26559189

  4. The Blocking Effect of Phenolic Acid on N—Nitrosomorholine Formation in vitro

    Institute of Scientific and Technical Information of China (English)

    LIPING; WANGHuai-Zhou; 等

    1994-01-01

    Phenolic acid(PAs) are widely found in many daily consumed vegetables and fruits.The inhibitory effects of PAs on N-nitrosomorpholine(NMOR)formation in vitro under simulated gastric juice condition were studied.The results showed that the inhibitory potncy of thirteen varieties of PAs differed greatly,which may be related to their chemical structures;the blockine rate(BR)of different kinds of PAs were as follows:caffeic acid,92.5%;tannic acid,90.0%;gallic acid,86.8%;sinapinic acid,86.2%;ferulic acid,81.1%;chlorogenic acid,69.4%;gentisic acid,69.2%;syringic acid,62.1%;protocatechuic acid,56.0%;p-coumaric acid,52.5%;vannilic acid,35.4%;moreover,p-hydroxybenzoic acid and m-coumaric acid had the least blocking effect or even slight catalyzing effect.The results also demonstrated that amounts of NMOR formed were negatively correlated with molar ratio of PAs to nitrite and that the optimum pH for inhibition was betwwen 2 and 3 .

  5. The use of TLC-DPPH* test with image processing to study direct antioxidant activity of phenolic acid fractions of selected Lamiaceae family species.

    Science.gov (United States)

    Cieśla, Łukasz; Staszek, Dorota; Kowalska, Teresa; Waksmundzka-Hajnos, Monika

    2013-01-01

    TLC coupled with 2,2-diphenyl-1-picrylhydrazyl staining was used to analyze phenolic acid fractions of selected Salvia and Thymus species. Documented videoscans were processed by means of an image processing program. This is the first time that free phenolic acids fractions, as well as fractions containing phenolic acids derived from basic and acidic hydrolysis, have been analyzed and compared for selected sage and thyme species. The analyzed samples along with caffeic acid (CA; standard) were chromatographed on silica gel plates with toluene-ethyl acetate-formic acid (60 + 40 + 1, v/v/v) mobile phase. The extracts were investigated with respect to the activity of CA. It was found that CA was most abundant in the fractions derived from basic hydrolysis. This compound was not detected in any of the fractions obtained after acidic hydrolysis. S. officinalis and S. triloba have similar free radical scavenging activity fingerprints obtained for all the analyzed fractions.

  6. Acidic electrolyzed water efficiently improves the flavour of persimmon (Diospyros kaki L. cv. Mopan) wine.

    Science.gov (United States)

    Zhu, Wanqi; Zhu, Baoqing; Li, Yao; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2016-04-15

    The ability of acidic (AcW) and alkaline electrolyzed waters (AlW) to improve the flavour of persimmon (Diospyros kaki L.) wine was evaluated. Wines made with AcW (WAcW) were significantly better than wines made with AlW or pure water (PW) in aroma, taste, and colour. Volatile analysis showed that WAcW has high alcohol and ester contents, including 2-phenylethanol, isopentanol, isobutanol, ethyl dodecanoate, phenethyl acetate, and butanedioic acid diethyl ester. The total amino acid content of persimmon slurry soaked with AcW reached 531.2 mg/l, which was much higher than those of the slurries soaked in AlW (381.3 mg/l) and PW (182.7 mg/l). The composition of major amino acids in the AcW-soaked slurry may contribute to the strong ester flavour of WAcW. This is the first report to suggest that electrolyzed functional water (EFW) can be used to improve wine flavour, leading to the possible use of EFW in food processing.

  7. Aspartic acid

    Science.gov (United States)

    Aspartic acid is a nonessential amino acids . Amino acids are building blocks of proteins. "Nonessential" means that our ... this amino acid from the food we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps ...

  8. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Science.gov (United States)

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  9. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Directory of Open Access Journals (Sweden)

    Zongsuo Liang

    Full Text Available Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA, gibberellin (GA and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  10. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system.

    Science.gov (United States)

    Srivastava, Shivani; Conlan, Xavier A; Cahill, David M; Adholeya, Alok

    2016-11-01

    Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.

  11. Antimicrobial activity of Iranian propolis and its chemical composition

    Directory of Open Access Journals (Sweden)

    Yaghoubi M.J.

    2007-04-01

    Full Text Available The objective of this study was to investigate the antimicrobial activity of ethanol extract of Iranian propolis on some microorganisms using disc diffusion method. The chemical composition of the propolis was also investigated using thin layer chromatography and spectrophotometric methods. Ethanol extract of propolis showed activity only against Gram-positives and fungi, whereas no activity was observed against Gram-negatives. Thin layer chromatography screening revealed the presence of pinocembrine, caffeic acid, kaempferol, phenethyl caffeate, chrysin, and galangin in Iranian propolis. The total flavonoid and phenolic contents were 7.3% and 36%, respectively, which suggests that the strong antimicrobial activity of Iranian propolis may be due to high levels of phenolic and flavonoid compounds.

  12. Spectroscopic investigation of herpes simplex viruses infected cells and their response to antiviral therapy

    Science.gov (United States)

    Erukhimovitch, Vitaly; Talyshinsky, Marina; Souprun, Yelena; Huleihel, Mahmoud

    2006-07-01

    In the present study, we used microscopic Fourier transform infrared spectroscopy (FTIR) to evaluate the antiviral activity of known antiviral agents against herpes viruses. The antiviral activity of Caffeic acid phenethyl ester (CAPE) (which is an active compound of propolis) against herpes simplex type 1 and 2 was examined in cell culture. The advantage of microscopic FTIR spectroscopy over conventional FTIR spectroscopy is that it facilitates inspection of restricted regions of cell culture or tissue. Our results showed significant spectral differences at early stages of infection between infected and non-infected cells, and between infected cells treated with the used antiviral agent and those not treated. In infected cells, there was a considerable increase in phosphate levels. Our results show that treatment with used antiviral agent considerably abolish the spectral changes induced by the viral infection. In addition, it is possible to track by FTIR microscopy method the deferential effect of various doses of the drug.

  13. Diterpenoid Tanshinones and Phenolic Acids from Cultured Hairy Roots of Salvia miltiorrhiza Bunge and Their Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Peiqin Li

    2011-03-01

    Full Text Available Four diterpenoid tanshinones and three phenolic acids were isolated from the crude ethanol extract of the cultured hairy roots of Salvia miltiorrhiza Bunge by bioassay-guided fractionation. By means of physicochemical and spectrometric analysis, they were identified as tanshinone ΙΙA (1, tanshinone Ι (2, cryptotanshinone (3, dihydrotanshinone Ι (4, rosmarinic acid (5, caffeic acid (6, and danshensu (7. These compounds were evaluated to show a broad antimicrobial spectrum of activity on test microorganisms including eight bacterial and one fungal species. Among the four tanshinones, cryptotanshinone (3 and dihydrotanshinone Ι (4 exhibited stronger antimicrobial activity than tanshinone ΙΙA (1 and tanshinone Ι (2. The results indicated that the major portion of the antimicrobial activity was due to the presence of tanshinones and phenolic acids in S. miltiorrhiza hairy roots, which could be used as the materials for producing antimicrobial agents for use in agricultural practice in the future.

  14. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids.

    Science.gov (United States)

    Koschorreck, Katja; Richter, Sven M; Ene, Augusta B; Roduner, Emil; Schmid, Rolf D; Urlacher, Vlada B

    2008-05-01

    A new laccase gene (cotA) was cloned from Bacillus licheniformis and expressed in Escherichia coli. The recombinant protein CotA was purified and showed spectroscopic properties, typical for blue multi-copper oxidases. The enzyme has a molecular weight of approximately 65 kDa and demonstrates activity towards canonical laccase substrates 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). Kinetic constants KM and kcat for ABTS were of 6.5+/-0.2 microM and 83 s(-1), for SGZ of 4.3+/-0.2 microM and 100 s(-1), and for 2,6-DMP of 56.7+/-1.0 microM and 28 s(-1). Highest oxidizing activity towards ABTS was obtained at 85 degrees C. However, after 1 h incubation of CotA at 70 degrees C and 80 degrees C, a residual activity of 43% and 8%, respectively, was measured. Furthermore, oxidation of several phenolic acids and one non-phenolic acid by CotA was investigated. CotA failed to oxidize coumaric acid, cinnamic acid, and vanillic acid, while syringic acid was oxidized to 2,6-dimethoxy-1,4-benzoquinone. Additionally, dimerization of sinapic acid, caffeic acid, and ferulic acid by CotA was observed, and highest activity of CotA was found towards sinapic acid.

  15. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.

    Science.gov (United States)

    Asther, Michèle; Estrada Alvarado, Maria Isabel; Haon, Mireille; Navarro, David; Asther, Marcel; Lesage-Meessen, Laurence; Record, Eric

    2005-01-12

    Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.

  16. The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during Springtime ozone depletion in Antarctica.

    Science.gov (United States)

    Ruhland, Christopher T; Xiong, Fusheng S; Clark, W Dennis; Day, Thomas A

    2005-01-01

    We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm) on the growth, biomass production and phenylpropanoid concentrations of Deschampsia antarctica during the springtime ozone depletion season at Palmer Station, along the Antarctic Peninsula. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B either by 83% (reduced UV-B) or by 12% (near-ambient UV-B) over the 63 day experiment (7 November 1998-8 January 1999) when ozone depletion averaged 17%. Plants growing under near-ambient UV-B had 41% and 40% lower relative growth rates and net assimilation rates, respectively, than those under reduced UV-B. The former plants produced 50% less total biomass as a result of having 47% less aboveground biomass. The reduction in aboveground biomass was a result of a 29% lower leaf elongation rate resulting in shorter leaves and 59% less total leaf area in plants grown under reduced UV-B. p-Coumaric, caffeic and ferulic acids were the major hydroxycinnamic acids, and luteolin derivatives were the major flavonoids in both insoluble and soluble leaf extracts. Concentrations of insoluble p-coumaric and caffeic acid and soluble ferulic acids were 38%, 48% and 60% higher, respectively, under near-ambient UV-B than under reduced UV-B. There were no UV-B effects on concentrations of insoluble or soluble flavonoids.

  17. Simultaneous qualitative and quantitative analysis of phenolic acids and flavonoids for the quality control of Apocynum venetum L. leaves by HPLC-DAD-ESI-IT-TOF-MS and HPLC-DAD.

    Science.gov (United States)

    An, Haijuan; Wang, Hong; Lan, Yuexiang; Hashi, Yuki; Chen, Shizhong

    2013-11-01

    A reliable method based on high performance liquid chromatography-diode array detector-electrospray ionization-ion trap-time of flight-mass spectrometry (HPLC-DAD-ESI-IT-TOF-MS) was developed for the identification of phenolic acids and flavonoids in Apocynum venetum L. leaves and its adulterant, Pocynum hendersonii (Hook. f.) Woodson leaves. A total of 21 compounds were identified or tentatively identified, including 4 phenolic acids and 17 flavonoids. 3-O-caffeoylquinic acid (3-CQA) and caffeic acid were detected for the first time in A. venetum leaves; 4-O-caffeoylquinic acid (4-CQA), 3-CQA, caffeic acid, quercetin-3-O-(6"-O-malonyl)-galactoside, quercetin-3-O-(6"-O-malonyl)-glucoside, kaempferol-3-O-(6"-O-malonyl)-glucoside, kaempferol-3-O-(6"-O-acetyl)-glucoside, and kaempferol-3-O-dihexoside were detected for the first time in P. hendersonii leaves. Cluster analysis was employed to analyze 24 batches of A. venetum leaves and 5 batches of P. hendersonii leaves collected from various regions in China. The analysis, which was based on the 21 compounds, indicated that profiles of these compounds were distinct between the two species, and among A. venetum leaf samples from different origins. 18 of these 21 compounds were selected as the markers and simultaneously analyzed by HPLC-DAD for the first time. The quantitative analytical method was validated and subsequently applied to the comprehensive quality evaluation of 24 batches of A. venetum leaves.

  18. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    Science.gov (United States)

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons.

  19. Investigations on some metabolites of Tecoma stans Juss. callus tissue. Part III. Chromatographical search for iridoids, phenolic acids, terpenoids and sugars

    Directory of Open Access Journals (Sweden)

    Barbara Dohnal

    2015-01-01

    Full Text Available Tissus cultures of Tecoma stans Juss. cultivated on modified Murashige-Skoog medium (RT-k were phytochemically analysed by means of chromatographical methods (PC, TLC. The following products were found as metabolites: phenolic acids - chlorogenics, caffeic, ferulic, vanillic, o-coumaric and sinapic; steroids - β-sitosterol; triterpenes - ursolic and oleanolic acids, α-amyrine; sugars - glucose, fructose, sucrose, xylose. Meso-inositol was isolated in 0.8% yield. In intact plant leaves, some differences concerning the content and/or number of individual compounds were observed, namely: lack of sinapic acid and occurrence of p-coumaric acid, lower content of β-sitosterol, lack of oleanolic acid, occurrence of β-amyrine and of one unidentified triterpenoid, lack of xylose, occurrence of maltose, raffinose, and stachiose. The level of mesoinositol inn leaves was distincly lower than in the callus tissues. Neither in callus tissues nor in leaves iridoid glycosides were found.

  20. Catabolism of coffee chlorogenic acids by human colonic microbiota.

    Science.gov (United States)

    Ludwig, Iziar A; Paz de Peña, Maria; Concepción, Cid; Alan, Crozier

    2013-01-01

    Several studies have indicated potential health benefits associated with coffee consumption. These benefits might be ascribed in part to the chlorogenic acids (CGAs), the main (poly)phenols in coffee. The impact of these dietary (poly)phenols on health depends on their bioavailability. As they pass along the gastrointestinal tract, CGAs are metabolized extensively and it is their metabolites rather than the parent compounds that predominate in the circulatory system. This article reports on a study in which after incubation of espresso coffee with human fecal samples, high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to monitor CGA breakdown and identify and quantify the catabolites produced by the colonic microflora. The CGAs were rapidly degraded by the colonic microflora and over the 6-h incubation period, 11 catabolites were identified and quantified. The appearance of the initial degradation products, caffeic and ferulic acids, was transient, with maximum quantities at 1 h. Dihydrocaffeic acid, dihydroferulic acid, and 3-(3'-hydroxyphenyl)propionic acid were the major end products, comprising 75-83% of the total catabolites, whereas the remaining 17-25% consisted of six minor catabolites. The rate and extent of the degradation showed a clear influence of the composition of the gut microbiota of individual volunteers. Pathways involved in colonic catabolism of CGAs are proposed and comparison with studies on the bioavailability of coffee CGAs ingested by humans helped distinguish between colonic catabolites and phase II metabolites of CGAs.

  1. A study of the IR spectra of the copigments of malvin chloride with organic acids

    Directory of Open Access Journals (Sweden)

    ZORAN P. NEDIC

    2001-07-01

    Full Text Available The infrared spectra of the copigments of malvin with several organic acids: caffeic, ferulic, sinapic, chlorogenic, and tannic, were analyzed in order to elucidate the bonding of the molecules in the copigments. It was established that copigmentation is realized through hydrogen bonding between malvin molecules and the acids under study. The infrared spectra reveal that two groups of hydrogen bonds are formed, which include interactions of different molecular structures: hydroxy groups (bands around 3500 cm–1 and oxonium ions of the molecules (bands below 3000 cm–1. The formed hydrogen bonds were found to be of different strengths. The strengths of the hydrogen bonds were tentatively correlated with thermodynamic properties of the corresponding copigmentation reactions.

  2. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids.

    Science.gov (United States)

    Cai, Shengbao; Wang, Ou; Wang, Mengqian; He, Jianfeng; Wang, Yong; Zhang, Di; Zhou, Feng; Ji, Baoping

    2012-07-25

    The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

  3. Distribution of Major Chlorogenic Acids and Related Compounds in Brazilian Green and Toasted Ilex paraguariensis (Maté) Leaves.

    Science.gov (United States)

    Lima, Juliana de Paula; Farah, Adriana; King, Benjamin; de Paulis, Tomas; Martin, Peter R

    2016-03-23

    Ilex paraguariensis (maté) is one of the best sources of chlorogenic acids (CGA) in nature. When leaves are toasted, some isomers are partly transformed into 1,5-γ-quinolactones (CGL). Both CGA and CGL are important contributors to the brew's flavor and are thought to contribute to human health. In this study, we quantified 9 CGA, 2 CGL, and caffeic acid in 20 samples of dried green and toasted maté that are commercially available in Brazil. Total CGA content in green maté varied from 8.7 to 13.2 g/100 g, dry weight (dw). Caffeic acid content varied from 10.8 to 13.5 mg/100 g dw, respectively. Content in toasted maté varied from 1.5 to 4.6 g/100 g and from 1.5 to 7.2 mg/100 g dw, respectively. Overall, caffeoylquinic acid isomers (CQA) were the most abundant CGA in both green and toasted maté, followed by dicaffeoylquinic acids (diCQA) and feruloylquinic acids (FQA). These classes accounted for 58.5%, 40.0%, and 1.5% of CGA, respectively, in green maté and 76.3%, 20.7%, and 3.0%, respectively, in toasted maté. Average contents of 3-caffeoylquinolactone (3-CQL) and 4-caffeoylquinolactone (4-CQL) in commercial toasted samples were 101.5 mg/100 g and 61.8 mg/100 g dw, respectively. These results show that, despite overall losses during the toasting process, CGA concentrations are still substantial in toasted leaves, compared to other food sources of CGA and phenolic compounds in general. In addition to evaluating commercial samples, investigation of changes in CGA profile and formation of 1,5-γ-quinolactones was performed in experimental maté toasting.

  4. Arabidopsis CDS blastp result: AK069960 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-60 ...

  5. Arabidopsis CDS blastp result: AK064768 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-112 ...

  6. Arabidopsis CDS blastp result: AK061551 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  7. Arabidopsis CDS blastp result: AK104764 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 2e-67 ...

  8. Arabidopsis CDS blastp result: AK098998 [KOME

    Lifescience Database Archive (English)

    Full Text Available thyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltrans...T1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 8e-57 ...

  9. Arabidopsis CDS blastp result: AK061859 [KOME

    Lifescience Database Archive (English)

    Full Text Available ethyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to O-methyltran...MT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-100 ...

  10. Comparison of Phenolic Acids and Flavan-3-ols During Wine Fermentation of Grapes with Different Harvest Times

    Directory of Open Access Journals (Sweden)

    Qing-Hua Zhang

    2009-02-01

    Full Text Available To explore the effects of harvest time on phenolic compounds during wine fermentation, grape berries (Vitis vinifera L. cv. Vidal were harvested at 17.5, 22.8 and 37.2º Brix and were used to make dry wine, semi-sweet wine and icewine with low alcohol levels, respectively. Phenolic acids and flavan-3-ols were assayed during the fermentation of wines by means of reverse phase-high performance liquid chromatography (RP-HPLC. The results showed that concentrations of most of the phenolic acids and flavan-3-ol in musts increased with harvest time delay and higher total levels of these species were detected in all wines, compared with those measured before fermentation (the total phenolic acid content in wines was 1.5-2.0 fold that of in musts. Except for p-coumaric acid and (--epicatechin, other phenolic acids and flavan-3-ols had similar variation patterns (wave-like rise during fermentation in dry wine and semi-sweet wine. However, some detected compounds, including gentisic acid, p-hydroxybenzoic acid, caffeic acid, p-coumaric acid and sinapic acid showed obviously different trends from the other two wines in the icewine making process. It is thus suggested that the harvest time has a decisive effect on phenols in final wines and influences the evolution of phenolic acids and flavan-3-ols during wine fermentation.

  11. Ag+ as a More Effective Elicitor for Production of Tanshinones than Phenolic Acids in Salvia miltiorrhiza Hairy Roots

    Directory of Open Access Journals (Sweden)

    Bingcong Xing

    2014-12-01

    Full Text Available Phenolic acids and tanshinones are two groups of bioactive ingredients in Salvia miltiorrhiza Bunge. As a heavy metal elicitor, it has been reported that Ag+ can induce accumulations of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. In this study, the effects of Ag+ treatment on accumulations of six phenolic acids and four tanshinones in S. miltiorrhiza hairy roots were investigated. To further elucidate the molecular mechanism, expressions of key genes involved in the biosynthesis of these ingredients were also detected. The results showed that although the total phenolic acids content was almost not affected by Ag+, accumulations of rosmarinic acid (RA, caffeic acid and ferulic acid were significantly increased, while accumulations of salvianolic acid B (LAB, danshensu (DSU and cinnamic acid were decreased. We speculate that LAB probably derived from the branch pathway of DSU biosynthesis. Contents of four tanshinones were enhanced by Ag+ and their accumulations were more sensitive to Ag+ than phenolic acids. Genes in the upstream biosynthetic pathways of these ingredients responded to Ag+ earlier than those in the downstream biosynthetic pathways. Ag+ probably induced the whole pathways, upregulated gene expressions from the upstream pathways to the downstream pathways, and finally resulted in the enhancement of ingredient production. Compared with phenolic acids, tanshinone production was more sensitive to Ag+ treatments. This study will help us understand how secondary metabolism in S. miltiorrhiza responds to elicitors and provide a reference for the improvement of the production of targeted compounds in the near future.

  12. Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots.

    Science.gov (United States)

    Xing, Bingcong; Yang, Dongfeng; Guo, Wanli; Liang, Zongsuo; Yan, Xijun; Zhu, Yonghong; Liu, Yan

    2014-12-24

    Phenolic acids and tanshinones are two groups of bioactive ingredients in Salvia miltiorrhiza Bunge. As a heavy metal elicitor, it has been reported that Ag+ can induce accumulations of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. In this study, the effects of Ag+ treatment on accumulations of six phenolic acids and four tanshinones in S. miltiorrhiza hairy roots were investigated. To further elucidate the molecular mechanism, expressions of key genes involved in the biosynthesis of these ingredients were also detected. The results showed that although the total phenolic acids content was almost not affected by Ag+, accumulations of rosmarinic acid (RA), caffeic acid and ferulic acid were significantly increased, while accumulations of salvianolic acid B (LAB), danshensu (DSU) and cinnamic acid were decreased. We speculate that LAB probably derived from the branch pathway of DSU biosynthesis. Contents of four tanshinones were enhanced by Ag+ and their accumulations were more sensitive to Ag+ than phenolic acids. Genes in the upstream biosynthetic pathways of these ingredients responded to Ag+ earlier than those in the downstream biosynthetic pathways. Ag+ probably induced the whole pathways, upregulated gene expressions from the upstream pathways to the downstream pathways, and finally resulted in the enhancement of ingredient production. Compared with phenolic acids, tanshinone production was more sensitive to Ag+ treatments. This study will help us understand how secondary metabolism in S. miltiorrhiza responds to elicitors and provide a reference for the improvement of the production of targeted compounds in the near future.

  13. Impact of dose on the bioavailability of coffee chlorogenic acids in humans.

    Science.gov (United States)

    Stalmach, Angélique; Williamson, Gary; Crozier, Alan

    2014-08-01

    Single servings of coffee beverage containing low (412 μmol), medium (635 μmol) and high (795 μmol) amounts of chlorogenic acids were administered to eleven healthy volunteers in a double-blind randomised controlled trial. Analysis of plasma and urine collected for 24 h revealed the presence of 12 metabolites in plasma and 16 metabolites in urine, principally in the form of sulphates, and to a lesser extent glucuronides of caffeic, ferulic, dihydrocaffeic and dihydroferulic acids, as well as intact feruloylquinic and caffeoylquinic acids, and sulphated caffeoylquinic acid lactones. Median values of peak plasma concentrations after increasing doses of chlorogenic acids were 1088, 1526 and 1352 nM. In urine the median amounts of metabolites excreted after 24 h following consumption of the three coffees were 101, 160 and 125 μmol, accounting for 24%, 25% and 16% of the doses ingested. Peak plasma concentration and urinary excretion values showed trends towards a reduced bioavailability of chlorogenic acids associated with the highest dose ingested, when expressed as percentages of intake. Potential biomarkers of coffee intake were identified as feruloylquinic acids and sulphated caffeoylquinic acid lactones in plasma and urine with positive moderate to strong coefficients of determination for peak plasma concentrations (0.60-0.81) and amounts excreted in urine (0.36-0.73) (P < 0.05).

  14. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids.

    Science.gov (United States)

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Manole, Gheorghe; Supuran, Claudiu T

    2013-04-01

    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.

  15. Biotransformation of 4,5-O-dicaffeoylquinic acid methyl ester by human intestinal flora and evaluation on their inhibition of NO production and antioxidant activity of the products.

    Science.gov (United States)

    Yang, Xiu-Wei; Wang, Nan; Li, Wei; Xu, Wei; Wu, Shuai

    2013-05-01

    4,5-O-Dicaffeoylquinic acid methyl ester (1) was anaerobically incubated with human intestinal flora and four biotransformation products (2-5) were obtained. Their structures were elucidated as 3,4-O-dicaffeoylquinic acid methyl ester (2), 3-hydroxyphenylpropionic acid (3), trans-caffeic acid (4) and 3,4-dihydroxyphenylpropionic acid (5) on the basis of their spectroscopic data. Using high-performance liquid chromatography equipped with a diode array detector, chromatographic separation of 1-5 was performed on an analytical C18 column. The time course of the biotransformation was studied to probe into the biotransformation mechanism of 1 by human intestinal flora. In addition, the inhibitory activity of the parent compound 1 and its four main biotransformation products 2-5 on the inhibition of nitric oxide production induced by lipopolysaccharide in macrophage cell line RAW 264.7 and their DPPH free radical-scavenging activity in cell-free bioassay system were estimated.

  16. Molecularly imprinted polymer for chlorogenic acid by modified precipitation polymerization and its application to extraction of chlorogenic acid from Eucommia ulmodies leaves.

    Science.gov (United States)

    Miura, Chitose; Li, Hui; Matsunaga, Hisami; Haginaka, Jun

    2015-10-10

    Molecularly imprinted polymers (MIPs) for chlorogenic acid (CGA) were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer, divinylbenzene as a crosslinker and methanol or dimethylsulfoxide as a co-solvent. The prepared MIPs were microspheres with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high and low affinity sites, were formed on the MIP. The retention and molecular-recognition properties of the prepared MIP were evaluated using a mixture of water and acetonitrile as a mobile phase in hydrophilic interaction chromatography. With an increase of acetonitrile content, the retention factor of CGA was increased on the MIP. In addition to shape recognition, hydrophilic interactions seem to work for the recognition of CGA on the MIP. The MIP had a specific molecular-recognition ability for CGA, while other related compounds, such as caffeic acid, gallic acid, protocatechuic acid and vanillic acid, could not be recognized by the MIP. Furthermore, the MIP for CGA was successfully applied for extraction of CGA in the leaves of Eucommia ulmodies.

  17. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids.

    Science.gov (United States)

    Klaassen, Curtis D; Cui, Julia Yue

    2015-10-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target.

  18. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    Science.gov (United States)

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid.

  19. Incorporation of chlorogenic acids in coffee brew melanoidins.

    Science.gov (United States)

    Bekedam, E Koen; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2008-03-26

    The incorporation of chlorogenic acids (CGAs) and their subunits quinic and caffeic acids (QA and CA) in coffee brew melanoidins was studied. Fractions with different molecular weights, ionic charges, and ethanol solubilities were isolated from coffee brew. Fractions were saponified, and the released QA and CA were quantified. For all melanoidin fractions, it was found that more QA than CA was released. QA levels correlated with melanoidin levels, indicating that QA is incorporated in melanoidins. The QA level was correlated with increasing ionic charge of the melanoidin populations, suggesting that QA may contribute to the negative charge and consequently is, most likely, not linked via its carboxyl group. The QA level correlated with the phenolic acid group level, as determined by Folin-Ciocalteu, indicating that QA was incorporated to a similar extent as the polyphenolic moiety from CGA. The QA and CA released from brew fractions by enzymes confirmed the incorporation of intact CGAs. Intact CGAs are proposed to be incorporated in melanoidins upon roasting via CA through mainly nonester linkages. This complex can be written as Mel=CA-QA, in which Mel represents the melanoidin backbone, =CA represents CA nonester-linked to the melanoidin backbone, and -QA represents QA ester-linked to CA. Additionally, a total of 12% of QA was identified in coffee brew, whereas only 6% was reported in the literature so far. The relevance of the additional QA on coffee brew stability is discussed.

  20. Effects of structural differences on the NMR chemical shifts in cinnamic acid derivatives: Comparison of GIAO and GIPAW calculations

    Science.gov (United States)

    Szeleszczuk, Łukasz; Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Wawer, Iwona

    2016-06-01

    In this article we report the results of combined theoretical and experimental structural studies on cinnamic acid derivatives (CADs), one of the main groups of secondary metabolites present in various medicinal plant species and food products of plant origin. The effects of structural differences in CADs on their spectroscopic properties were studied in detail by both: solid-state NMR and GIAO/GIPAW calculations. Theoretical computations were used in order to perform signal assignment in 13C CP/MAS NMR spectra of the cinnamic, o-coumaric, m-coumaric, p-coumaric, caffeic, ferulic, sinapic and 3,4-dimethoxycinnamic acids, and to evaluate the accuracy of GIPAW and GIAO methodology.

  1. Combination of chlorogenic acid and salvianolic acid B protects against polychlorinated biphenyls-induced oxidative stress through Nrf2.

    Science.gov (United States)

    Chen, Lijun; Li, Yuan; Yin, Wenqin; Shan, Wenqi; Dai, Jinfeng; Yang, Ye; Li, Lei

    2016-09-01

    Caffeic acid derivatives (CADs) are well-known phytochemicals with multiple physiological and pharmacological activities. This study aimed to investigate the combined protective effects of CADs on PCB126-induced liver damages and oxidative stress in mice. Here, we used chemiluminescence and chose chlorogenic acid (CGA), salvianolic acid B (Sal B) as the best antioxidants. Then, mice were intragastrically administered with 60mg/kg/d CGA, Sal B, and CGA plus Sal B (1:1) for 3 weeks before exposing to 0.05mg/kg/d PCB126 for 2 weeks. We found that pretreatment with CGA, Sal B, and CGA plus Sal B effectively attenuated liver injury and cytotoxicity caused by PCB126, but improved the expressions of superoxide dismutase (SOD), glutathione reduced (GSH), heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf2), CGA plus Sal B especially, was found to have the best effects that indicated a synergetic protective effect. Taken together, as the Nrf2 regulates the cyto-protective response by up-regulating the expression of antioxidant genes, we suggested that CGA plus Sal B had a combined protection on PCB126-induced tissue damages and that the Nrf2 signaling might be involved.

  2. Anti-inflammatory gallic Acid and wedelolactone are G protein-coupled receptor-35 agonists.

    Science.gov (United States)

    Deng, Huayun; Fang, Ye

    2012-01-01

    G protein-coupled receptor-35 (GPR35) has been shown to be a target of the asthma drugs cromolyn disodium and nedocromil sodium. Gallic acid and caffeic acids are reported to modulate allergic reactions via unknown mode(s) of action. Here we attempt to elucidate whether both phenolic acids share a common mode of action with the two asthma drugs. Label-free dynamic mass redistribution (DMR) assays showed that both phenolic acids triggered robust DMR signals in HT-29 cells, whose characteristics were similar to that of cromolyn disodium. Both phenolic acids resulted in detectable β-arrestin translocation signals in an engineered U2OS cell line stably expressing a C-terminal-modified GPR35, but with lower efficacy than cromolyn disodium. Antiallergic wedelolactone was found to be a potent β-arrestin-biased GPR35 agonist. These results suggest that certain anti-inflammatory phytochemicals including gallic acid and wedelolactone may modulate inflammatory allergic action via their agonism at GPR35. GPR35 may represent a target for the treatment of allergic disorders including asthma.

  3. Influence of natural humic acids and synthetic phenolic polymers on fibrinolysis

    Science.gov (United States)

    Klöcking, Hans-Peter

    The influence of synthetic and natural phenolic polymers on the release of plasminogen activator was studied in an isolated, perfused, vascular preparation (pig ear). Of the tested synthetic phenolic polymers, the oxidation products of caffeic acid (KOP) and 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), at a concentration of 50 µg/ml perfusate, were able to increase the plasminogen activator activity by 70%. The oxidation products of chlorogenic acid (CHOP), hydrocaffeic acid (HYKOP), pyrogallol (PYROP) and gallic acid (GALOP), at the same concentration, exerted no influence on the release of plasminogen activator. Of the naturally occurring humic acids, the influence of sodium humate was within the same order of magnitude as KOP and 3,4-DHPOP. Ammonium humate was able to increase the plasminogen activator release only at a concentration of 100 µg/ml perfusate. In rats, the t-PA activity increased after i.v. application of 10 mg/kg of KOP, Na-HS or NH4-HS.

  4. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Science.gov (United States)

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  5. Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography.

    Science.gov (United States)

    Ganzera, Markus; Egger, Christoph; Zidorn, Christian; Stuppner, Hermann

    2008-05-01

    Arnica montana preparations have been used in Europe for centuries to treat skin disorders. Among the biologically active ingredients in the flower heads of the plant are sequiterpenes, flavonoids and phenolic acids. For the simultaneous determination of compounds belonging to the latter two groups a micellar electrokinetic capillary chromatography (MEKC) method was developed and validated. By using an electrolyte solution containing 50 mM borax, 25 mM sodium dodecyl sulfate and 30% of acetonitrile the separation of seven flavonoids and four caffeic acid derivatives was feasible in less than 20 min. The optimized system was validated for repeatability (sigma(rel) or = 0.9996), and then successfully applied to assay several plant samples. In all of them the most dominant flavonoid was found to be quercetin 3-O-glucuronic acid, whereas 3,5-dicaffeoylquinic acid was the major phenolic acid; the total content of flavonoids and phenolic acids varied in the samples from 0.60 to 1.70%, and 1.03 to 2.24%, respectively.

  6. [Quantitative analysis of seven phenolic acids in eight Yinqiao Jiedu serial preparations by quantitative analysis of multi-components with single-marker].

    Science.gov (United States)

    Wang, Jun-jun; Zhang, Li; Guo, Qing; Kou, Jun-ping; Yu, Bo-yang; Gu, Dan-hua

    2015-04-01

    The study aims to develop a unified method to determine seven phenolic acids (neochlorogenic acid, chlorogenic acid, 4-caffeoylquinic acid, caffeic acid, isochlorogenic acid B, isochlorogenic acid A and isochlorogenic acid C) contained in honeysuckle flower that is the monarch drug of all the eight Yinqiao Jiedu serial preparations using quantitative analysis of multi-components by single-marker (QAMS). Firstly, chlorogenic acid was used as a reference to get the average relative correction factors (RCFs) of the other phenolic acids in ratios to the reference; columns and instruments from different companies were used to validate the durability of the achieved RCFs in different levels of standard solutions; and honeysuckle flower extract was used as the reference substance to fix the positions of chromatographic peaks. Secondly, the contents of seven phenolic acids in eight different Yinqiao Jiedu serial preparations samples were calculated based on the RCFs durability. Finally, the quantitative results were compared between QAMS and the external standard (ES) method. The results have showed that the durability of the achieved RCFs is good (RSD during 0.80% - 2.56%), and there are no differences between the quantitative results of QAMS and ES (the relative average deviation quantitative control of honeysuckle flower principally prescribed in Yinqiao Jiedu serial preparations.

  7. 过山蕨中有机酸类化学成分研究%Chemical constituents of organic acid part from Camptosorus sibiricus

    Institute of Scientific and Technical Information of China (English)

    李宁; 李铣; 冯志国; 李雪征; 张鹏

    2007-01-01

    目的 研究过山蕨Camptosorus sibiricus中有机酸类化学成分.方法 采用反复硅胶柱色谱分离纯化,通过理化常数测定和光谱分析鉴定其化学结构.结果 从过山蕨中分离得到了10个有机酸类化合物,即11,12,15-三羟基-13-烯十八碳酸(11,12,15-trihydroxy-13-en-octadecenoic acid Ⅰ)、咖啡酸(caffeic acid,Ⅱ)、香豆酸(courmaric acid,Ⅲ)、原儿茶酸(protocatechuic acid,Ⅳ)、对羟基苯甲酸(4-hydroxybenzoic acid,Ⅴ)、异香草酸(isovanillic acid,Ⅵ)、2,4-二羟基苯甲酸(2,4-dihydroxybenzoic acid,Ⅶ)、肉桂酸(cinnamic acid,Ⅷ)、丁二酸(succinic acid,Ⅸ)、棕榈酸(palmitic acid,Ⅹ).结论 化合物Ⅰ为新化合物,将其命名为过山蕨酸(camptosoric acid),化合物Ⅲ~Ⅹ均为首次从该属植物中分离得到.

  8. Caffeic acids from roots of Arctium lappa and their neuroprotective activity%牛蒡根中咖啡酸类化学成分及其神经保护活性研究

    Institute of Scientific and Technical Information of China (English)

    白俊鹏; 胡晓龙; 蒋晓文; 田星; 赵庆春

    2015-01-01

    目的 研究牛蒡Arctium lappa根中咖啡酸类化学成分及其神经保护活性.方法 采用硅胶、C18反相硅胶、SephadexLH-20、AB-8大孔树脂柱色谱以及制备HPLC等方法对咖啡酸类化合物及类似物进行分离纯化,通过波谱学方法鉴定其结构,并采用MTT法对分离得到的化合物进行抗谷氨酸诱导神经母细胞瘤SH-SY5Y细胞株神经损伤的活性评价.结果 从牛蒡根55%乙醇提取物中分离得到8个咖啡酸类化合物,分别鉴定为l,5-O-二咖啡酰-3-O-(4-苹果酸甲酯)-奎宁酸(1)、3,5-二咖啡酰奎宁酸甲酯(2)、3,4-二咖啡酰奎宁酸甲酯(3)、4,5-二咖啡酰奎宁酸甲酯(4)、(2D-1,4-dimethyl-2-[(4-hydroxyphenyl)methyl]-2-butenedioicacid (5)、绿原酸甲酯(6)、咖啡酸甲酯(7)、3,4,3’,4’-tetrahydroxy-δ-truxinate (8),经活性测试发现此类化合物均具有较好的神经保护活性.结论 牛蒡根的抗谷氨酸诱导神经损伤的活性与其含有的咖啡酸类化合物有关;化合物1为新化合物,化合物5为新天然产物,化合物2~4、6、7为首次从该植物中分离得到,化合物8为首次从该属植物中分离得到.

  9. Determination of Total Flavonoid and Caffeic Acid in Taraxacum officinale from Different Habitats%不同产地蒲公英药材中总黄酮和咖啡酸含量分析与评价

    Institute of Scientific and Technical Information of China (English)

    冯倩; 穆丽; 郑伟; 苏瑞强; 惠建国; 赵志全

    2013-01-01

    目的:建立不同产地蒲公英药材综合质量评价方法.方法:采用紫外-可见分光光度法测定蒲公英总黄酮含量,采用HPLC测定其咖啡酸的含量.结果:不同产地蒲公英总黄酮和咖啡酸的含量均差异较大,总黄酮含量在28.63~51.79 mg·g-1,咖啡酸含量在0.007 6%~0.042 4%.结论:以总黄酮和咖啡酸作为质量评价指标,建立的方法简单、快捷、准确,结果表明山东临沂蒲公英的质量较好.

  10. Folic acid

    Science.gov (United States)

    ... taking folic acid by itself, or with L-carnitine a compound similar to an amino acid from ... levels. It is not clear if folic acid supplementation reduces hearing loss in people with normal folate ...

  11. Mathematical Evaluation of the Amino Acid and Polyphenol Content and Antioxidant Activities of Fruits from Different Apricot Cultivars

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2011-09-01

    Full Text Available Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L. cultivated in Lednice (climatic area T4, South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin, was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis. The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

  12. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages.

    Science.gov (United States)

    Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng

    2014-01-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/-) mice and its potential mechanism. ApoE(-/-) mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/-) mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.

  13. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Chongming Wu

    Full Text Available Chlorogenic acid (CGA is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/- mice and its potential mechanism. ApoE(-/- mice were fed a cholesterol-rich diet without (control or with CGA (200 and 400 mg/kg or atorvastatin (4 mg/kg for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/- mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.

  14. Nephroprotective effect of date fruit extract against dichloroacetic acid exposure in adult rats.

    Science.gov (United States)

    El Arem, Amira; Thouri, Amira; Zekri, Mouna; Saafi, Emna Behija; Ghrairi, Fatma; Zakhama, Abdelfattah; Achour, Lotfi

    2014-03-01

    The aim of this study was to investigate the protective effects of aqueous date extract (ADE) on dichloroacetic acid (DCA)-induced nephrotoxicity. In vitro, total phenolic content estimated in the ADE were 417.71mg gallic acid equivalents/100g fresh weights (FW), while total flavonoid and tannins contents were 285.23 and 73.65mg catechin equivalents/100g FW, respectively. The ADE has strong scavenging activity. Ferulic, caffeic and p-coumaric acids are the major's compounds. Nephrotoxicity was induced in male Wistar rats by the administration of 0.5 and 2g/L DCA as drinking water. Some of these rats received also by gavage ADE (4mL/kg) before the administration of DCA. After two months of experiment, DCA administration caused elevated levels of renal MDA, significant depletion of GSH levels, altered the antioxidant enzyme activities and deteriorated the renal functions as assessed by the increased plasma urea, uric acid and creatinine levels compared to control rats. The treatment with the ADE significantly normalized the increased plasma levels of creatinine, urea and uric acid, reduced the elevated MDA levels, significantly normalized the antioxidant enzyme activities and GSH level and restored the altered kidney histology in rats treated with DCA. Therefore, it was speculated that ADE protects rats from kidney damage through its antioxidant capacity.

  15. Chlorogenic acid-arabinose hybrid domains in coffee melanoidins: Evidences from a model system.

    Science.gov (United States)

    Moreira, Ana S P; Coimbra, Manuel A; Nunes, Fernando M; Passos, Cláudia P; Santos, Sónia A O; Silvestre, Armando J D; Silva, André M N; Rangel, Maria; Domingues, M Rosário M

    2015-10-15

    Arabinose from arabinogalactan side chains was hypothesized as a possible binding site for chlorogenic acids in coffee melanoidins. To investigate this hypothesis, a mixture of 5-O-caffeoylquinic acid (5-CQA), the most abundant chlorogenic acid in green coffee beans, and (α1 → 5)-L-arabinotriose, structurally related to arabinogalactan side chains, was submitted to dry thermal treatments. The compounds formed during thermal processing were identified by electrospray ionization mass spectrometry (ESI-MS) and characterized by tandem MS (ESI-MS(n)). Compounds composed by one or two CQAs covalently linked with pentose (Pent) residues (1-12) were identified, along with compounds bearing a sugar moiety but composed exclusively by the quinic or caffeic acid moiety of CQAs. The presence of isomers was demonstrated by liquid chromatography online coupled to ESI-MS and ESI-MS(n). Pent1-2CQA were identified in coffee samples. These results give evidence for a diversity of chlorogenic acid-arabinose hybrids formed during roasting, opening new perspectives for their identification in melanoidin structures.

  16. Synthesis and Antioxidant Activity of Polyhydroxylated trans-Restricted 2-Arylcinnamic Acids

    Directory of Open Access Journals (Sweden)

    Mitko Miliovsky

    2015-02-01

    Full Text Available A series of sixteen polyhydroxylated trans-restricted 2-arylcinnamic acid analogues 3a–p were synthesized through a one-pot reaction between homophthalic anhydrides and various aromatic aldehydes, followed by treatment with BBr3. The structure of the newly synthesized compounds was confirmed by spectroscopic methods and the configuration around the double bond was unequivocally estimated by means of gated decoupling 13C-NMR spectra. It was shown that the trans-cinnamic acid fragment incorporated into the target compounds’ structure ensures the cis-configuration of the stilbene backbone and prevents further isomerization along the carbon–carbon double bond. The antioxidant activity of compounds 3a–p was measured against 1,1-diphenyl-2-picrylhydrazyl (DPPH●, hydroxyl (OH● and superoxide (O2●▬ radicals. The results obtained showed that the tested compounds possess higher activities than natural antioxidants such as protocatechuic acid, caffeic acid and gallic acid. Moreover, it was shown that a combination of two different and independently acting fragments of well-known pharmacological profiles into one covalently bonded hybrid molecule evoke a synergistic effect resulting in higher than expected activity. To rationalize the apparent antioxidant activity and to establish the mechanism of action, a SAR analysis and DFT quantum chemical computations were also performed.

  17. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants.

    Science.gov (United States)

    Kovácik, Jozef; Klejdus, Borivoj; Hedbavny, Josef; Backor, Martin

    2009-07-01

    Influence of 100 mM NaCl and 50 microM salicylic acid (SA) and their combination on the metabolism of chamomile (Matricaria chamomilla) during 7 days was studied. NaCl reduced growth and selected physiological parameters and SA in combined treatment (NaCl + SA) reversed majority of these symptoms. Application of SA reduced NaCl-induced increase of Na+ in the rosettes, but not in the roots. Accumulation of total amino acids was stimulated in NaCl-treated roots, especially due to exceptional increase of proline (4.4-fold). Among phenolic acids, accumulation of protocatechuic acid was the most enhanced in NaCl-exposed leaf rosettes (ca. 3-fold) while chlorogenic and caffeic acids in the roots (2.4- and 2.8-fold, respectively). Total soluble phenols increased after NaCl and SA treatments, but root lignin content was not affected. Activity of phenylalanine ammonia-lyase and shikimate dehydrogenase increased in response to NaCl, but cinnamyl alcohol dehydrogenase was not affected and polyphenol oxidase decreased. Stress parameters were elevated by NaCl treatment (superoxide radical and malondialdehyde content, activities of catalase, ascorbate- and guaiacol-peroxidase) and substantially prevented by SA, while accumulation of hydrogen peroxide decreased. Overall, SA showed strong beneficial properties against NaCl-induced negative symptoms. Protective effect of SA was the most visible at the level of guaiacol-peroxidase and through amelioration of stress parameters and mineral nutrient contents.

  18. Involvement of NADPH oxidase in high-dose phenolic acid-induced pro-oxidant activity on rat mesenteric venules.

    Science.gov (United States)

    Du, Wen-Yuan; Xiao, Ying; Yao, Jian-Jing; Hao, Zhe; Zhao, Yu-Bin

    2017-01-01

    In the present study, we investigated the potential role of phenolic acids in initiating oxidative damage to microvascular endothelial cells and the underlying mechanism mediating the pro-oxidant action. Male Wistar rats received high doses of phenolic acid [caffeic acid (CA), salvianolic acid B (SAB), chlorogenic acid (ChA) or ferulic acid (FA)]. The creation of reactive oxygen species in mesenteric microcirculation endothelial cells and adherent leukocytes along with venules were assessed using intravital microscopy. The expression levels of NADPH oxidase subunits (Nox4 and p22(phox)) in terminal ileum tissues were determined by western blot analysis. Intravenous injection of high-dose ChA or CA (7 mg/kg) markedly increased the peroxide production in the venular walls and upregulated the protein expression levels of Nox4 and p22(phox) in the ileum tissues, while the same dose of CA and SAB made no difference within the observation period. No changes were observed in the number of leukocytes adhering to the venular walls. High-dose ChA and FA led to an imbalance between the oxidant and antioxidant mechanism by boosting the expression levels of NADPH oxidase. Thus, we clarified the rationale behind the adverse effects of a herbal injection containing high levels of phenolic acid compounds.

  19. Biotransformation and improved enzymatic extraction of chlorogenic acid from coffee pulp by filamentous fungi.

    Science.gov (United States)

    Torres-Mancera, María Teresa; Baqueiro-Peña, Itzamná; Figueroa-Montero, Arturo; Rodríguez-Serrano, Gabriela; González-Zamora, Eduardo; Favela-Torres, Ernesto; Saucedo-Castañeda, Gerardo

    2013-01-01

    The highest enzymatic extraction of covalent linked chlorogenic (36.1%) and caffeic (CA) (33%) acids from coffee pulp (CP) was achieved by solid-state fermentation with a mixture of three enzymatic extracts produced by Aspergillus tamarii, Rhizomucor pusillus, and Trametes sp. Enzyme extracts were produced in a practical inexpensive way. Synergistic effects on the extraction yield were observed when more than one enzyme extract was used. In addition, biotransformation of chlorogenic acid (ChA) by Aspergillus niger C23308 was studied. Equimolar transformation of ChA into CA and quinic acids (QA) was observed during the first 36 h in submerged culture. Subsequently, after 36 h, equimolar transformation of CA into protocatechuic acid was observed; this pathway is being reported for the first time for A. niger. QA was used as a carbon source by A. niger C23308. This study presents the potential of using CP to produce enzymes and compounds such as ChA with biological activities.

  20. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.

    Science.gov (United States)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-06-19

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.

  1. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid.

    Science.gov (United States)

    Budhiraja, Abhishek; Dhingra, Garima

    2015-01-01

    The antibacterial and anti-inflammatory potential of rosemarinic acid (ROA), a naturally occurring ester of caffeic acid has been well reported. Antibacterial effect of ROA is attributed to nucleoid damage with an increase in spatial division and condensation of genetic material. ROA has been found dynamic against many human pathogenic bacterial strains but its inhibitory prospective has never been established against skin inflammations caused by Propionibacterium acne. The skin surface in acne prone areas is colonized with Staphylococcus aureus and Propionibacterium acnes which contribute to inflammation and acne. Resistance to current antimicrobial therapies suggested the need to explore new antimicrobial agents against acne. Present work included the preparation of ROA-loaded niosomes and their in vitro antimicrobial evaluation against P. acne and S. aureus. This work also included the development of niosomal gel of rosmarinic acid for sustained delivery to bacteria infected cells. Niosomes of rosmarinic acid were formulated by reverse phase evaporation method using different ratio of span 85 and cholesterol. The prepared formulations were evaluated for its vesicle size, entrapment efficiency, in vitro release study and antibacterial activity. In vivo study of developed formulation was conducted on Swiss albino mice in comparison with solution of plain drug and a marketed formulation of benzoyl peroxide. It was evident that niosomes are novel carrier for delivery of naturally occurring antimicrobial agents, in deeper tissues of skin. The results showed that drug-loaded niosomes dispersed in the gelling agent are an effective delivery system for treatment of acne vulgaris.

  2. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    Science.gov (United States)

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts.

  3. Methyl Jasmonate and Salicylic Acid Induced Oxidative Stress and Accumulation of Phenolics in Panax ginseng Bioreactor Root Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Kee-Yoeup Paek

    2007-03-01

    Full Text Available To investigate the enzyme variations responsible for the synthesis of phenolics, 40 day-old adventitious roots of Panax ginseng were treated with 200 μM methyl jasmonate (MJ or salicylic acid (SA in a 5 L bioreactor suspension culture (working volume 4 L. Both treatments caused an increase in the carbonyl and hydrogen peroxide (H2O2 contents, although the levels were lower in SA treated roots. Total phenolic, flavonoid, ascorbic acid, non-protein thiol (NPSH and cysteine contents and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical reducing activity were increased by MJ and SA. Fresh weight (FW and dry weight (DW decreased significantly after 9 days of exposure to SA and MJ. The highest total phenolics (62%, DPPH activity (40%, flavonoids (88%, ascorbic acid (55%, NPSH (33%, and cysteine (62% contents compared to control were obtained after 9 days in SA treated roots. The activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, substrate specific peroxidases (caffeic acid peroxidase, quercetin peroxidase and ferulic acid peroxidase were higher in MJ treated roots than the SA treated ones. Increased shikimate dehydrogenase, chlorogenic acid peroxidase and β-glucosidase activities and proline content were observed in SA treated roots than in MJ ones. Cinnamyl alcohol dehydrogenase activity remained unaffected by both MJ and SA. These results strongly indicate that MJ and SA induce the accumulation of phenolic compounds in ginseng root by altering the phenolic synthesis enzymes.

  4. Valproic Acid

    Science.gov (United States)

    ... acid is in a class of medications called anticonvulsants. It works by increasing the amount of a ... older (about 1 in 500 people) who took anticonvulsants such as valproic acid to treat various conditions ...

  5. Ascorbic Acid

    Science.gov (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops ...

  6. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  7. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots.

    Science.gov (United States)

    Kovácik, Jozef; Klejdus, Borivoj

    2008-03-01

    Phenylalanine ammonia-lyase (PAL) activity, 11 phenolic acids and lignin accumulation in Matricaria chamomilla roots exposed to low (3 microM) and high (60 and 120 microM) levels of cadmium (Cd) or copper (Cu) for 7 days were investigated. Five derivatives of cinnamic acid (chlorogenic, p-coumaric, caffeic, ferulic and sinapic acids) and six derivatives of benzoic acid (protocatechuic, vanillic, syringic, p-hydroxybenzoic, salicylic acids and protocatechuic aldehyde) were detected. Accumulation of glycoside-bound phenolics (revealed by acid hydrolysis) was enhanced mainly towards the end of the experiment, being more expressive in Cu-treated roots. Interestingly, chlorogenic acid was extremely elevated by the highest Cu dose (21-fold higher than control) suggesting its involvement in antioxidative protection. All compounds, with the exception of chlorogenic acid, were detected in the cell wall bound fraction, but only benzoic acids were found in the ester-bound fraction (revealed by alkaline hydrolysis). Soluble phenolics were present in substantially higher amounts in Cu-treated roots and more Cu was retained there in comparison to Cd. Cu strongly elevated PAL activity (by 5.4- and 12.1-fold in 60 and 120 microM treatment, respectively) and lignin content (by 71 and 148%, respectively) after one day of treatment, indicating formation of a barrier against metal entrance. Cd had slighter effects, supporting its non-redox active properties. Taken together, different forms of phenolic metabolites play an important role in chamomile tolerance to metal excess and participate in active antioxidative protection.

  8. The shikimic acid: an important metabolite for the Aglianico del Vulture wines

    Directory of Open Access Journals (Sweden)

    Pasquale Tamborra

    2014-12-01

    Full Text Available Shikimic acid is a precursor for the biosynthesis of aromatic amino acids and flavonoids (anthocyanins, tannins and flavonols. In the pharmaceutical industry, it is obtained by extraction of star anise from China, and at a yield of 3-7% it is used for the production of antiviral drug, e.g. oseltamivir. Unlike flavonoids which are only present in the grape skins, shikimic acid is present in the juice together with hydroxycinnamil tartaric acids (caffeic, ferulic and p-coumaric acid. Therefore, their content in white wines may not be negligible and their presence may explain the epidemiological studies that showed a reduced incidence of cardiovascular diseases also in people with moderate white wine consumption. The content of shikimic acid has been used to characterize wines. In southern Italy it has been used to distinguish Aglianico grape, which holds medium-high content, from Negroamaro, Primitivo and Uva di Troia grapes who have rather lower levels. It could be useful also to distinguish Fiano di Avellino (high value from Fiano Minutolo (low value. However, results of a recent work showed that the shikimic acid content decreases significantly during the ripening of the grapes and therefore its content in wine is strongly influenced by the harvest period. Finally, in a recent paper it was highlighted the increase in shikimic acid content at the end of fermentation in an Aglianico del Vulture wine, produced in the area of Rapolla (PZ, Italy municipality during the 2013 harvest. These last experimental results explain why the values of shikimic acid were lower in grapes and surprisingly higher in wines produced in the 2011 and 2012 harvest.

  9. Permeability of Rosmarinic acid in Prunella vulgaris and Ursolic acid in Salvia officinalis Extracts across Caco-2 Cell Monolayers

    Science.gov (United States)

    Qiang, Zhiyi; Ye, Zhong; Hauck, Cathy; Murphy, Patricia A.; McCoy, Joe-Ann; Widrlechner, Mark P.; Reddy, Manju B.; Hendrich, Suzanne

    2011-01-01

    Ethnopharmacological relevance Rosmarinic acid (RA), a caffeic acid-related compound found in high concentrations in Prunella vulgaris (self-heal), and ursolic acid (UA), a pentacyclic triterpene acid concentrated in Salvia officinalis (sage), have been traditionally used to treat inflammation in the mouth, and may also be beneficial for gastrointestinal health in general. Aim of the study To investigate the permeabilities of RA and UA as pure compounds and in P. vulgaris and S. officinalis ethanol extracts across human intestinal epithelial Caco-2 cell monolayers. Materials and methods The permeabilities and Phase II biotransformation of RA and UA as pure compounds and in herbal extracts were compared using Caco-2 cells with HPLC detection. Results The apparent permeability coefficient (Papp) for RA and RA in P. vulgaris extracts was 0.2 ± 0.05 × 10−6 cm/s, significantly increased to 0.9 ± 0.2 × 10−6 cm/s after β-glucuronidase/sulfatase treatment. Papp for UA and UA in S. officinalis extract was 2.7 ± 0.3 × 10−6 cm/s and 2.3 ± 0.5 × 10−6 cm/s before and after β-glucuronidase/sulfatase treatment, respectively. Neither compound was affected in permeability by the herbal extract matrix. Conclusion RA and UA in herbal extracts had similar uptake as that found using the pure compounds, which may simplify the prediction of compound efficacy, but the apparent lack of intestinal glucuronidation/sulfation of UA is likely to further enhance the bioavailability of that compound compared with RA. PMID:21798330

  10. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    Science.gov (United States)

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  11. Fatty acids - trans fatty acids

    Science.gov (United States)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  12. Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosus L. Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fujia Chen

    2014-01-01

    Full Text Available Plant phenolics can have applications in pharmaceutical and other industries. To identify and quantify the phenolic compounds in Helianthus tuberosus leaves, qualitative analysis was performed by a reversed phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS and quantitative analysis by HPLC. Ten chlorogenic acids (CGAs were identified (3-o-caffeoylquinic acid, two isomers of caffeoylquinic acid, caffeic acid, p-coumaroyl-quinic acid, feruloylquinic acid, 3,4-dicaffeoyquinic acid, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid by comparing their retention times, UV-Vis absorption spectra, and MS/MS spectra with standards. In addition, four other phenolic compounds, including caffeoyl glucopyranose, isorhamnetin glucoside, kaempferol glucuronide, and kaempferol-3-o-glucoside, were tentatively identified in Helianthus tuberosus leaves for the first time. The 3-o-caffeoylquinic acid (7.752 mg/g DW, 4,5-dicaffeoylquinic acid (5.633 mg/g DW, and 3,5-dicaffeoylquinic acid (4.900 mg/g DW were the major phenolic compounds in leaves of Helianthus tuberosus cultivar NanYu in maturity. The variations in phenolic concentrations and proportions in Helianthus tuberosus leaves were influenced by genotype and plant growth stage. Cultivar NanYu had the highest concentration of phenolic compounds, in particular 3-o-caffeoylquinic acid and 4,5-dicaffeoylquinic acid compared with the other genotypes (wild accession and QingYu. Considering various growth stages, the concentration of total phenolics in cultivar NanYu was higher at flowering stage (5.270 mg/g DW than at budding and tuber swelling stages. Cultivar NanYu of Helianthus tuberosus is a potential source of natural phenolics that may play an important role in the development of pharmaceuticals.

  13. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid...... with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid...

  14. First identification of dimethoxycinnamic acids in human plasma after coffee intake by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Nagy, Kornél; Redeuil, Karine; Williamson, Gary; Rezzi, Serge; Dionisi, Fabiola; Longet, Karin; Destaillats, Frédéric; Renouf, Mathieu

    2011-01-21

    There is a substantial amount of published literature on the bioavailability of various coffee components including the most abundant metabolites, caffeic and ferulic acids. Surprisingly, to date, the appearance of dimethoxycinnamic acid derivatives in humans has not been reported despite the fact that methylated form of catechol-type polyphenols could help maintain, modify or even improve their biological activities. This study reports an LC-MS method for the detection of dimethoxycinnamic acid in human plasma after treatment with an esterase. Liquid chromatography, including the combination of methanol and acetonitrile as organic eluent, was optimized to resolve all interferences and enable reliable detection and identification of 3,4-dimethoxycinnamic and 3,4-dimethoxy-dihydrocinnamic acids. In addition to the good mass accuracy achieved (better than 5 ppm), tandem mass spectrometric and co-chromatography experiments further confirmed the identity of the compounds. The optimized method was applied to analyze samples obtained immediately, 1 and 10 h after coffee ingestion. The results show that in particular 3,4-dimethoxycinnamic acid appears in high abundance (∼380 nM at 60 min) in plasma upon coffee intake, indicating that it is important to consider these derivatives in future bioavailability and bioefficacy studies.

  15. Dissolvable layered double hydroxide coated magnetic nanoparticles for extraction followed by high performance liquid chromatography for the determination of phenolic acids in fruit juices.

    Science.gov (United States)

    Saraji, Mohammad; Ghani, Milad

    2014-10-31

    A magnesium-aluminum layered double hydroxide coated on magnetic nanoparticles was synthesized and used as a sorbent to extract some phenolic acids including p-hydroxy benzoic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid from fruit juices. After extraction, the elution step was performed through dissolving double hydroxide layers containing the analytes by changing the solution pH. The extracted phenolic acids were separated and quantified using high performance liquid chromatography-photodiode array detection. Experimental parameters such as sorbent amount, solution pH, desorption solvent volume and extraction time were studied and optimized. The linearity range of the method was between 2 and 500μgL(-1) with the determination coefficient (r(2)) higher than 0.991. Relative standard deviations for intra- and inter-day precision for the analytes at 100μgL(-1) were in the range of 4.3-9.2% and 4.9-8.6%, respectively. Batch-to-batch reproducibility at 100μgL(-1) concentration level was in the range of 7.8-11% (n=3). The limits of detection were between 0.44 and 1.3μgL(-1). Relative recoveries higher than 81% with RSDs in the range of 4.2-9.7% were obtained in the analysis of fruit juice samples.

  16. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock 'GiSelA 5' leafy cuttings.

    Science.gov (United States)

    Trobec, Mateja; Stampar, Franci; Veberic, Robert; Osterc, Gregor

    2005-05-01

    The relationship between the phenol composition of rooting zones and rootability was studied in the first days after the establishment of cuttings. The trial included two different types of cuttings (basal and terminal). Additionally, the influence of exogenously applied auxin (IBA) was observed. The best rooting results (55.6%) were achieved with terminal IBA treated cuttings, while only 1.9% of basal cuttings formed roots. The auxin treatment increased the root formation in terminal, but not in basal cuttings. Low rooting rate of basal cuttings was probably due to higher lignification rate of the basal tissue which can represent a mechanical barrier for root emergence. When measuring phenolic compounds and cinnamic acid, terminal cuttings contained higher (rutin, vanillic acid, (-)-epicatechin, caffeic acid and sinapinic acid) or equal concentrations of detected phenols as basal cuttings, while applied auxin did not influence the level of any of discussed phenolics, neither of cinnamic acid. It is to assume that cuttings for starting of root induction phase should contain certain levels of several phenolic compounds, but higher influence on rooting success is to be ascribed to the impact of the auxin level. During the time of the experiment concentrations of monophenols sinapinic acid and vanillic acid rapidly decreased. This decrease was more pronounced in terminal cuttings, which might have a better mechanism of lowering those two compounds to which a negative influence on rooting is ascribed. Fluctuations and differences between treatments of other phenolics were not significant enough to influence the rooting process.

  17. Okadaic acid

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H; Severinsen, Mai C K

    2014-01-01

    Okadaic acid (OA) is a polyether fatty acid produced by marine dinoflagellates and the causative agent of diarrhetic shellfish poisoning. The effect of OA on apical endocytosis in the small intestine was studied in organ cultured porcine mucosal explants. Within 0.5-1 h of culture, the toxin caused...... in acidic organelles, implying a different toxic mechanism of action. We propose that rapid induction of LBs, an indicator of phospholipidosis, should be included in the future toxicity profile of OA....

  18. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.

    Science.gov (United States)

    Liang, Ningjian; Kitts, David D

    2015-12-25

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  19. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions

    Directory of Open Access Journals (Sweden)

    Ningjian Liang

    2015-12-01

    Full Text Available Chlorogenic acids (CGAs are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1 the relative composition of different CGA isomers present in coffee beverages; (2 analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3 description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  20. Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation.

    Science.gov (United States)

    Zhang, Yuan; Yan, Ya-Ping; Wu, Yu-Cui; Hua, Wen-Ping; Chen, Chen; Ge, Qian; Wang, Zhe-Zhi

    2014-01-01

    To produce beneficial phenolic acids for medical and commercial purposes, researchers are interested in improving the normally low levels of salvianolic acid B (Sal B) produced by Salvia miltiorrhiza. Here, we present a strategy of combinational genetic manipulation to enrich the precursors available for Sal B biosynthesis. This approach, involving the lignin pathway, requires simultaneous, ectopic expression of an Arabidopsis Production of Anthocyanin Pigment 1 transcription factor (AtPAP1) plus co-suppression of two endogenous, key enzyme genes: cinnamoyl-CoA reductase (SmCCR) and caffeic acid O-methyltransferase (SmCOMT). Compared with the untransformed control, we achieved a greater accumulation of Sal B (up to 3-fold higher) along with a reduced lignin concentration. This high-Sal B phenotype was stable in roots during vegetative growth and was closely correlated with increased antioxidant capacity for the corresponding plant extracts. Although no outward change in phenotype was apparent, we characterized the molecular phenotype through integrated analysis of transcriptome and metabolome profiling. Our results demonstrated the far-reaching consequences of phenolic pathway perturbations on carbohydrate metabolism, respiration, photo-respiration, and stress responses. This report is the first to describe the production of valuable end products through combinational genetic manipulation in S. miltiorrhiza plants. Our strategy will be effective in efforts to metabolically engineer multi-branch pathway(s), such as the phenylpropanoid pathway, in economically significant medicinal plants.

  1. Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species

    Institute of Scientific and Technical Information of China (English)

    Ilkay Erdogan Orhan; Nilgun Ozturk; Bilge Sener

    2015-01-01

    Objective: To explore some Fumaria species which were recorded to be traditionally used against malaria and other protozoal diseases. Methods: Consequently, in the current study, antiprotozoal effect of the ethanol extracts obtained from five Fumaria species (Fumaria densiflora, Fumaria cilicica, Fumaria rostellata, Fumaria kralikii, and Fumaria parviflora) was investigated against the parasites; Plasmodium falciparum (malaria) and Trypanosoma bruceirhodesiense (human African trypanosomiasis) at 0.81 and 4.85 μg/mL concentrations. Results: Among them, Fumaria densiflora extract exerted the highest antiplasmodial (93.80%) and antitrypanasomal effect (55.40%), while the ethanol extracts of Fumaria kralikii (43.45%) and Fumaria rostellata (41.65%) showed moderate activity against Plasmodium falciparum. Besides, phenolic acid contents of the extracts were analyzed using high performance liquid chromatography (HPLC) and trans-cinnamic (4.32 mg/g) and caffeic (3.71 mg/g) acids were found to be the dominant phenolic acids in Fumaria densiflora. Conclusions: According to our results, Fumaria densiflora deserve further study for its promising antiprotozoal activity.

  2. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus

    Directory of Open Access Journals (Sweden)

    Leticia Barrientos

    2013-01-01

    Full Text Available Propolis is a non-toxic natural substance with multiple pharmacological properties including anticancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 µgmL-1. Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them.

  3. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus.

    Science.gov (United States)

    Barrientos, Leticia; Herrera, Christian L; Montenegro, Gloria; Ortega, Ximena; Veloz, Jorge; Alvear, Marysol; Cuevas, Alejandro; Saavedra, Nicolás; Salazar, Luis A

    2013-01-01

    Propolis is a non-toxic natural substance with multiple pharmacological properties including anti-cancer, antioxidant, fungicidal, antibacterial, antiviral, and anti-inflammatory among others. The aim of this study was to determine the chemical and botanical characterization of Chilean propolis samples and to evaluate their biological activity against the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Twenty propolis samples were obtained from beekeeping producers from the central and southern regions of Chile. The botanical profile was determined by palynological analysis. Total phenolic contents were determined using colorimetric assays. Reverse phase HPLC and HPLC-MS were used to determine the chemical composition. The minimum inhibitory concentration (MIC) was determined on S. mutans and S. sobrinus. All propolis samples were dominated by structures from native plant species. The characterization by HPLC/MS, evidenced the presence of quercetin, myricetin, kaempferol, rutine, pinocembrin, coumaric acid, caffeic acid and caffeic acid phenethyl ester, that have already been described in these propolis with conventional HPLC. Although all propolis samples inhibited the mutans streptococci growth, it was observed a wide spectrum of action (MIC 0.90 to 8.22 μg mL(-1)). Given that results it becomes increasingly evident the need of standardization procedures, where we combine both the determination of botanical and the chemical characterization of the extracts. Research conducted to date, describes a promising effectiveness of propolis in the prevention of caries and other diseases of the oral cavity, making it necessary to develop studies to identify and understand the therapeutic targets or mechanisms of molecular action of the various compounds present on them.

  4. Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from Aspergillus niger.

    Science.gov (United States)

    Benoit, Isabelle; Asther, Michèle; Bourne, Yves; Navarro, David; Canaan, Stéphane; Lesage-Meessen, Laurence; Herweijer, Marga; Coutinho, Pedro M; Asther, Marcel; Record, Eric

    2007-09-01

    The full-length gene that encodes the chlorogenic acid hydrolase from Aspergillus niger CIRM BRFM 131 was cloned by PCR based on the genome of the strain A. niger CBS 513.88. The complete gene consists of 1,715 bp and codes for a deduced protein of 512 amino acids with a molecular mass of 55,264 Da and an acidic pI of 4.6. The gene was successfully cloned and overexpressed in A. niger to yield 1.25 g liter(-1), i.e., 330-fold higher than the production of wild-type strain A. niger CIRM BRFM131. The histidine-tagged recombinant ChlE protein was purified to homogeneity via a single chromatography step, and its main biochemical properties were characterized. The molecular size of the protein checked by mass spectroscopy was 74,553 Da, suggesting the presence of glycosylation. ChlE is assembled in a tetrameric form with several acidic isoforms with pIs of around 4.55 and 5.2. Other characteristics, such as optimal pH and temperature, were found to be similar to those determined for the previously characterized chlorogenic acid hydrolase of A. niger CIRM BRFM 131. However, there was a significant temperature stability difference in favor of the recombinant protein. ChlE exhibits a catalytic efficiency of 12.5 x 10(6) M(-1) s(-1) toward chlorogenic acid (CGA), and its ability to release caffeic acid from CGA present in agricultural by-products such as apple marc and coffee pulp was clearly demonstrated, confirming the high potential of this enzyme.

  5. A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis.

    Science.gov (United States)

    Nieter, Annabel; Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G

    2015-03-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.

  6. Interaction of chlorogenic acids and quinides from coffee with human serum albumin.

    Science.gov (United States)

    Sinisi, Valentina; Forzato, Cristina; Cefarin, Nicola; Navarini, Luciano; Berti, Federico

    2015-02-01

    Chlorogenic acids and their derivatives are abundant in coffee and their composition changes between coffee species. Human serum albumin (HSA) interacts with this family of compounds with high affinity. We have studied by fluorescence spectroscopy the specific binding of HSA with eight compounds that belong to the coffee polyphenols family, four acids (caffeic acid, ferulic acid, 5-O-caffeoyl quinic acid, and 3,4-dimethoxycinnamic acid) and four lactones (3,4-O-dicaffeoyl-1,5-γ-quinide, 3-O-[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, 3,4-O-bis[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide, and 1,3,4-O-tris[3,4-(dimethoxy)cinnamoyl]-1,5-γ-quinide), finding dissociation constants of the albumin-chlorogenic acids and albumin-quinides complexes in the micromolar range, between 2 and 30μM. Such values are comparable with those of the most powerful binders of albumin, and more favourable than the values obtained for the majority of drugs. Interestingly in the case of 3,4-O-dicaffeoyl-1,5-γ-quinide, we have observed the entrance of two ligand molecules in the same binding site, leading up to a first dissociation constant even in the hundred nanomolar range, which is to our knowledge the highest affinity ever observed for HSA and its ligands. The displacement of warfarin, a reference drug binding to HSA, by the quinide has also been demonstrated.

  7. Folic Acid

    Science.gov (United States)

    ... damage. 10 Do I need folic acid after menopause? Yes. Women who have gone through menopause still need 400 micrograms of folic acid every ... United States: 2003–2006 . American Journal of Clinical Nutrition; 91(1): 231–237. Hamner, H.C., Cogswell, ...

  8. AcEST: DK961166 [AcEST

    Lifescience Database Archive (English)

    Full Text Available _POPKI Caffeic acid 3-O-methyltransferase 3 OS=Po... 72 2e-12 sp|Q41086|COMT2_POPTM Caffeic acid 3-O-methyltransferase 2 OS=Po....sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po... 72 2e-12 sp|Q43046|COMT1_POPKI Caffeic a...cid 3-O-methyltransferase 1 OS=Po... 72 2e-12 sp|Q8LL87|COMT1_COFCA Caffeic acid

  9. Reversed-phase high-performance liquid chromatography determination of selected phenolic acids in propolis concentrates in terms of standardization for drug manufacturing purposes.

    Science.gov (United States)

    Krzek, Jan; Kaleta, Jolanta; Hubicka, Urszula; Niedzwiedz, Aneta

    2006-01-01

    A reversed-phase high-performance liquid chromatography method with gradient elution was developed for the determination of the caffeic, p-coumaric, and ferulic acids in propolis concentrates. Solid-phase extraction on an RP18 column was applied for preliminary purification, and chromatographic separation was performed on 100 RP18e Lichrospher column of particle size 5 microm. The mobile phase was obtained by mixing in appropriate ratios 0.03 mM NaH2PO4, acidified with H3PO4 up to pH = 3.0, with acetonitrile to obtain a gradient in the elution process. Spectrophotometric detection was conducted at 320 nm. Under the established conditions, the method featured high sensitivity, good precision, and comparability of results, as proven by method validation and statistical analysis of the obtained results. The limits of detection were 0.315, 0.325, and 0.695 microg/mL for caffeic, p-coumaric, and ferulic acids, respectively. The corresponding recovery values were 98.14, 101.05, and 99.42% and the linearity ranges from 1.31 to 99.18 microg/mL, 1.52 to 119.16 microg/mL, and 2.42 to 184.14 microg/mL. The precision of the method was expresed by relative standard deviation values that did not exceed 3%. It was also shown that the propolis concentrates under examination had similar antibacterial activity against Staphylococcus aureus ranging from 119.8 to 124.3 microg/mL, contrary to model mixtures that showed no antibacterial activity.

  10. Effect of Ethanol/Water Solvents on Phenolic Profiles and Antioxidant Properties of Beijing Propolis Extracts

    Science.gov (United States)

    Sun, Chunli; Wu, Zhengshuang; Wang, Ziyan; Zhang, Hongcheng

    2015-01-01

    Propolis is a natural substance known to be beneficial for human health and used as a folk medicine in many parts of the world. In this study, phenolic profiles and antioxidant properties of Beijing propolis extracted by different ethanol/water solvents were analyzed. Our results reveal that phenolic compounds and antioxidant properties of propolis extracts were significantly dependent on the concentration of ethanol/water solvents. Totally, 29 phenolic compounds were identified: 12 phenolic acids, 13 flavonoids, and 4 phenolic acid esters. In particular, 75 wt.% ethanol/water solvent may be the best for the highest extraction yield and the strongest antioxidant properties. Caffeic acid, benzyl caffeate, phenethyl caffeate, 5-methoxy pinobanksin, pinobanksin, pinocembrin, pinobanksin-3-O-acetate, chrysin, and galangin were the characteristic compounds of Beijing propolis, and these compounds seem to verify that Beijing propolis may be poplar-type propolis. In addition, the presence of high level of pinobanksin-3-O-acetate in Chinese propolis may be a novel finding, representing one-third of all phenolics. PMID:26351514

  11. In Vitro Gender-Dependent Inhibition of Porcine Cytochrome P450 Activity by Selected Flavonoids and Phenolic Acids

    Directory of Open Access Journals (Sweden)

    Bo Ekstrand

    2015-01-01

    Full Text Available We investigated gender-related differences in the ability of selected flavonoids and phenolic compounds to modify porcine hepatic CYP450-dependent activity. Using pools of microsomes from male and female pigs, the inhibition of the CYP families 1A, 2A, 2E1, and 3A was determined. The specific CYP activities were measured in the presence of the following selected compounds: rutin, myricetin, quercetin, isorhamnetin, p-coumaric acid, gallic acid, and caffeic acid. We determined that myricetin and isorhamnetin competitively inhibited porcine CYP1A activity in the microsomes from both male and female pigs but did not affect the CYP2A and CYP2E1. Additionally, isorhamnetin competitively inhibited CYP3A in both genders. Noncompetitive inhibition of CYP3A activity by myricetin was observed only in the microsomes from male pigs, whereas CYP3A in female pigs was not affected. Quercetin competitively inhibited CYP2E1 and CYP1A activity in the microsomes from male pigs and irreversibly CY3A in female pigs. No effect of quercetin on CYP2E1 was observed in the microsomes from female pigs. Neither phenolic acids nor rutin affected CYP450 activities. Taken together, our results suggest that the flavonoids myricetin, isorhamnetin, and quercetin may affect the activities of porcine CYP1A, CYP3A, and CYP2E1 in a gender-dependent manner.

  12. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    Science.gov (United States)

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  13. Studies on phenolic acid constituents of Acanthopanax sessiliflorus fruits%无梗五加果酚酸类化学成分的研究

    Institute of Scientific and Technical Information of China (English)

    肖扬; 王立波; 金刚; 孙锐; 胡希; 杨春娟

    2012-01-01

    To study the chemical constituents of the fruits from Acanthopanax sessiliflorus,the seperation was carried out on the column chromatography of silica gel, Sephadex LH-20, ODS and preparative liquid chro-matography. Their structures were elucidated on basis of physicochemical properties and spectral data. Eight phenolic acid compounds were isolated and identified as tyrosol(1) ,p-hydrocoumaric arid(2),protocate-chuic aldehyde(3) ,caffeic acid(4) ,4-(3,4-dihydroxyphenyl)-2-butanone(5) ,gallic acid(6) ,4-hydroxy-benzoic acid(7), pyrocatechol (8). Compound 5 was isolated from the family of Araliaceae for the first time. Compound 2 was isolated from Acanthopanax genus for the first time, and compounds 1,7,8 were isolated from Acanthopanax sessiliflorus for the first time.%目的 对五加科五加属植物无梗五加果的化学成分进行研究.方法 采用硅胶柱色谱法、Sephadex LH-20柱色谱法、ODS柱色谱法以及制备液相色谱法对无梗五加果的化学成分进行分离,根据化合物的理化性质及波谱数据鉴定其结构.结果 分离得到8个已知的酚酸类化合物,分别为对羟基苯乙醇( tyrosol,1)、对羟基苯丙酸(p-hydrocoumaric acid,2)、原儿茶醛(protocatechuic aldehyde,3)、咖啡酸(caffeic acid,4)、4-(3,4-二羟基苯基)-2-丁酮[4-(3,4-dihydroxyphenyl)-2-butanone,5]、没食子酸(gallic acid,6)、对羟基苯甲酸(4-hydroxybenzoic acid,7)、邻苯二酚(pyrocatechol,8).结论 化合物5为首次从五加科植物中分离得到,化合物2为首次从五加属植物中分离得到,化合物1、7、8为从该植物中首次分离得到.

  14. Assessment of phenolic acid content and in vitro antiradical characteristics of hawthorn.

    Science.gov (United States)

    Öztürk, Nilgün; Tunçel, Muzaffer

    2011-06-01

    The infusions and extracts obtained from leaves with flowers, fruit peel, and seed from hawthorn (Crataegus monogyna Jacq., Family Rosaceae) were subjected to evaluation as potential sources of antioxidant phytochemicals on the basis of their total content of phenolics, levels of phenolic acids, and in vitro antiradical activity. Total phenolic content of extracts was determined using the modified Folin-Ciocalteau method. Antioxidant activity was determined for phenolic extracts by a method involving the use of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Phenolic acids containing extracts and infusions from hawthorn leaves, fruit peel, and seeds were obtained using different polarity solvents and separated by reverse-phase high-performance liquid chromatography, which enabled improved separation by the use of a C(18) column, an acidic mobile phase, and gradient elusion. The highest total phenolic content (343.54 mg of gallic acid equivalents/g) and the highest DPPH radical scavenging activity as the inhibition percentage (60.36%) were obtained in ethyl acetate extract from hawthorn leaves with flower. Also, the highest phenolic acid content was measured in the extracts of hawthorn leaves with flowers: protocathechuic (108-128 mg/100 g), p-hydroxy benzoic (141-468 mg/100 g), caffeic (137-3,580 mg/100 g), chlorogenic (925-4,637 mg/100 g), ferulic (3,363-3,462 mg/100 g), vanillic (214 mg/100 g), and syringic (126 mg/100 g) acids. The results indicate that hawthorn is a promising plant because of its high antioxidant activity.

  15. The roasting process does not influence the extent of conjugation of coffee chlorogenic and phenolic acids.

    Science.gov (United States)

    Sanchez-Bridge, Belén; Renouf, Mathieu; Sauser, Julien; Beaumont, Maurice; Actis-Goretta, Lucas

    2016-05-01

    Understanding the bioavailability and metabolism of coffee compounds will contribute to identify the unknown biological mechanism(s) linked to their beneficial effects. The influence of the roasting process on the metabolism of coffee chlorogenic acids in humans was evaluated. In a randomized, double-blind, crossover study, 12 healthy volunteers consumed four instant coffees namely, high roasted coffee (HRC), low roasted coffee (LRC), unroasted coffee (URC), and in vitro hydrolyzed unroasted coffee (HURC). The sum of areas under the curve (AUC) ranged from 8.65-17.6 to 30.9-126 µM/h (P coffee drinks. Despite different absorption rates, the extent of conjugation was comparable between HRC, LRC, and URC coffees but different for HURC. The most abundant circulating metabolites during the first 5 H were dihydroferulic acid (DHFA), caffeic acid-3'-O-sulfate (CA3S) and isoferulic-3'-O-glucuronide (iFA3G). DHFA and 5-4-dihydro-m-coumaric acid (mDHCoA) were the main metabolites in the period of 5-24 H. The phenolic compounds after consumption of HURC were most rapidly absorbed (Tmax 1 H) compared with the other coffees (Tmax between 9 and 11 H). Using coffees with different degrees of roasting we highlighted that in spite of different absorption rates the extent of conjugation of phenolic acids was comparable. In addition, by using a hydrolyzed unroasted coffee we demonstrated an increased absorption of phenolic acids in the small intestine. © 2016 BioFactors, 42(3):259-267, 2016.

  16. Mefenamic Acid

    Science.gov (United States)

    ... any of the inactive ingredients in mefenamic acid capsules. Ask your pharmacist for a list of the inactive ingredients.tell your doctor and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  17. 茉莉酸甲酯和水杨酸甲酯诱导杨树叶片内酚酸含量的变化%A change of phenolic acids content in poplar leaves induced by methyl salicylate and methyl jasmonate

    Institute of Scientific and Technical Information of China (English)

    安钰; 沈应柏; 吴丽娟; 张志翔

    2006-01-01

    The contents of seven different phenolic acids such as gallic acid, catechinic acid, pyrocatechol, caffeic acid, coumaric acid, ferulic acid and benzoic acid in the poplar leaves (Populus Simonii×Populus Pyramibalis c.v and Populus deltoids) suffocated by Methyl jasmonate (MeJA) and Methyl salicylate (MeSA) were monitored for analyzing their functions in interplant communications by using high-pressure liquid chromatography (HPLC).The results showed that the contents of phenolic acids had obviously difference in leaves exposed to either MeSA or MeJA.When P.deltoides leaves exposed to MeJA or MeSA, the level of gallic acid, coumaric acid, caffeic acid, ferulic acid and benzoic acid was increased, gallic acid in leaves treated with MeJA comes to a peak at 24 h while to a peak at 12-d having leaves treated with MeSA.When P.Simonii ×P.Pyramibalis c.v leaves were exposed to MeJA or MeSA, the level of gallic acid, pyrocatechol and ferulic acid was increased; The catechinic acid and benzoic acid had a little drop; The caffeic acid and coumaric acid were undetected in both suffocated and control leaves.This changed pattern indicated that MeJA and MeSA can act as airborne signals to induce defense response of plants.%用茉莉酸甲酯(MeJa)及水杨酸甲酯(MeSa)熏蒸合作杨(P. Simonii×P. Pyramibalis c.v)和黑杨(P. deltoids)植株,采用高效液相色谱技术(HPLC)检测杨树叶片内没什子酸、儿茶酸、邻苯二酚、咖啡酸、香豆酸、阿魏酸和苯甲酸的含量变化,分析MeJa与MeSa诱导植物叶片内酚酸含量的差异.结果表明:在不同的处理条件下,不同酚酸含量存在显著差异.MeJA及MeSa熏蒸后的黑杨叶片内没什子酸、香豆酸、咖啡酸、阿魏酸和苯甲酸含量均增加,且没什子酸含量在MeJa处理24 h后达到最大量,在MeSa处理12天后达到最大量.MeJa及MeSa熏蒸后的合作杨叶片内没什子酸、邻苯二酚和阿魏酸含量也增加,儿茶酸和苯甲酸含量略有下降,

  18. Determination of Flavonoids, Phenolic Acids, and Xanthines in Mate Tea (Ilex paraguariensis St.-Hil.

    Directory of Open Access Journals (Sweden)

    Mirza Bojić

    2013-01-01

    Full Text Available Raw material, different formulations of foods, and dietary supplements of mate demands control of the content of bioactive substances for which high performance thin layer chromatography (TLC, described here, presents simple and rapid approach for detections as well as quantification. Using TLC densitometry, the following bioactive compounds were identified and quantified: chlorogenic acid (2.1 mg/g, caffeic acid (1.5 mg/g, rutin (5.2 mg/g, quercetin (2.2 mg/g, and kaempferol (4.5 mg/g. The results obtained with TLC densitometry for caffeine (5.4 mg/g and theobromine (2.7 mg/g show no statistical difference to the content of total xanthines (7.6 mg/g obtained by UV-Vis spectrophotometry. Thus, TLC remains a technique of choice for simple and rapid analysis of great number of samples as well as a primary screening technique in plant analysis.

  19. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn.

    Science.gov (United States)

    Olsen, Helle; Aaby, Kjersti; Borge, Grethe Iren A

    2009-04-08

    Kale is a leafy green vegetable belonging to the Brassicaceae family, a group of vegetables including cabbage, broccoli, cauliflower, and Brussels sprouts, with a high content of health-promoting phytochemicals. The flavonoids and hydroxycinammic acids of curly kale ( Brassica oleracea L. ssp. oleracea convar. acephala (DC.) Alef. var. sabellica L.), a variety of kale, were characterized and identified primarily through HPLC-DAD-ESI-MS(n) analysis. Thirty-two phenolic compounds including glycosides of quercetin and kaempferol and derivatives of p-coumaric, ferulic, sinapic, and caffeic acid were tentatively identified, providing a more complete identification of phenolic compounds in curly kale than previously reported. Moreover, three hydroxycinnamic acids and one flavonoid with an unusual high grade of glycosylation, quercetin-3-disinapoyl-triglucoside-7-diglucoside, have been tentatively identified for the first time. The influence of different extraction conditions (extraction method, solvent type, solvent/solid ratio, and duration of extraction) was investigated. The total flavonol and hydroxycinnamic acid contents in curly kale determined as rutin equivalents (RE) were 646 and 204 mg of RE/100 g of fresh weight (fw), respectively. The contents of individual flavonoids ranged from 2 to 159 mg of RE/100 g of fw, with main compounds kaempferol-3-sinapoyl-diglucoside-7-diglucoside (18.7%) and quercetin-3-sinapoyl-diglucoside-7-diglucoside (16.5%). After acidic hydrolysis, two flavonol aglycones were identified in curly kale, quercetin and kaempferol, with total contents of 44 and 58 mg/100 g of fw, respectively.

  20. Characterization of flavonoids and phenolic acids in Myrcia bella Cambess. using FIA-ESI-IT-MS(n) and HPLC-PAD-ESI-IT-MS combined with NMR.

    Science.gov (United States)

    Saldanha, Luiz L; Vilegas, Wagner; Dokkedal, Anne L

    2013-07-16

    The leaves of Myrcia DC. ex Guill species are used in traditional medicine and are also exploited commercially as herbal drugs for the treatment of diabetes mellitus. The present work aimed to assess the qualitative and quantitative profiles of M. bella hydroalcoholic extract, due to these uses, since the existing legislation in Brazil determines that a standard method must be developed in order to be used for quality control of raw plant materials. The current study identified eleven known flavonoid-O-glycosides and six acylated flavonoid derivatives of myricetin and quercetin, together with two kaempferol glycosides and phenolic acids such as caffeic acid, ethil galate, gallic acid and quinic acid. In total, 24 constituents were characterized, by means of extensive preparative chromatographic analyses, along with MS and NMR techniques. An HPLC-PAD-ESI-IT-MS and FIA-ESI-IT-MS(n) method were developed for rapid identification of acylated flavonoids, flavonoid-O-glycosides derivatives of myricetin and quercetin and phenolic acids in the hydroalcoholic M. bella leaves extract. The FIA-ESI-IT-MS techinique is a powerful tool for direct and rapid identification of the constituents after isolation and NMR characterization. Thus, it could be used as an initial method for identification of authentic samples concerning quality control of Myrcia spp extracts.

  1. Characterization of Flavonoids and Phenolic Acids in Myrcia bella Cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS Combined with NMR

    Directory of Open Access Journals (Sweden)

    Anne L. Dokkedal

    2013-07-01

    Full Text Available The leaves of Myrcia DC. ex Guill species are used in traditional medicine and are also exploited commercially as herbal drugs for the treatment of diabetes mellitus. The present work aimed to assess the qualitative and quantitative profiles of M. bella hydroalcoholic extract, due to these uses, since the existing legislation in Brazil determines that a standard method must be developed in order to be used for quality control of raw plant materials. The current study identified eleven known flavonoid-O-glycosides and six acylated flavonoid derivatives of myricetin and quercetin, together with two kaempferol glycosides and phenolic acids such as caffeic acid, ethil galate, gallic acid and quinic acid. In total, 24 constituents were characterized, by means of extensive preparative chromatographic analyses, along with MS and NMR techniques. An HPLC-PAD-ESI-IT-MS and FIA-ESI-IT-MSn method were developed for rapid identification of acylated flavonoids, flavonoid-O-glycosides derivatives of myricetin and quercetin and phenolic acids in the hydroalcoholic M. bella leaves extract. The FIA-ESI-IT-MS techinique is a powerful tool for direct and rapid identification of the constituents after isolation and NMR characterization. Thus, it could be used as an initial method for identification of authentic samples concerning quality control of Myrcia spp extracts.

  2. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil.

    Science.gov (United States)

    Lima, Marcos Dos Santos; Silani, Igor de Souza Veras; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Biasoto, Aline Camarão Telles; Pereira, Giuliano Elias; Bordignon-Luiz, Marilde T; Ninow, Jorge Luiz

    2014-10-15

    The phenolic compounds, organic acids and the antioxidant activity were determined for grape juice samples from new Brazilian varieties grown in the Sub-middle São Francisco Valley in the Northeast Region of Brazil. The results showed that the Brazilian grape juices have high antioxidant activity, which was significantly correlated with the phenolic compounds catechin, epicatechin gallate, procyanidin B1, rutin, gallic acid, caffeic acid, p-coumaric acid, pelargonidin-3-glucoside, cyanidin-3-glucoside, cyaniding-3,5-diglucoside and delphinidin-3-glucoside. The produced juice samples showed higher concentrations of trans-resveratrol than those observed in juices made from different varieties of grapes from traditional growing regions. Organic acids concentrations were similar to those of juices produced from other classical varieties. It was demonstrated that it is possible to prepare juices from grapes of new varieties grown in the Northeast of Brazil containing a high content of bioactive compounds and typical characteristics of the tropical viticulture practised in the Sub-middle São Francisco Valley.

  3. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    Science.gov (United States)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  4. [Effect of drying methods on monoterpenes, phenolic acids and flavonoids in Mentha haplocalyx].

    Science.gov (United States)

    Zhu, Shao-qing; Zhu, Zhen-hua; Guo, Sheng; Zhao, Yu-yang; Lu, Xue-jun; Sha, Xiu-xiu; Qian, Da-wei; Duan, Jin-ao

    2015-12-01

    To provide a scientific basis for the selection of the appropriate drying method for Mentha Haplocalyx Herba (MHH), determine 2 monoterpenes, 4 phenolic acids and 5 flavonoids in MHH by GC-MS and UPLC-TQ-MS methods, and investigate the effects of the drying methods on the changes in contents of these analytes. The qualities of products obtained with different drying methods were evaluated by the multivariate statistical method of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Results showed that the drying methods had the greatest impact on menthol, caffeic acid, and rosemary acid, which were followed by chlorogenic acid and diosmetin-7-O-glucoside. The contents in these analytes processed with hot-air-drying method were higher than those with microwave-drying and infrared-drying methods at the same temperatures. The contents in these analytes processed under low temperature (40-45 °C) were higher than those under higher temperature (60-70 °C). Above all, the contents in phenolic acids processed with microwave fixation (exposed under microwave at 100 °C for several minutes) were obviously higher than those of not being processed, showing an inhibition of some enzymes in samples after fixation. The TOPSIS evaluation showed that the variable temperature drying method of 'Hot-Air 45-60 °C' was the most suitable approach for the primary drying processing of MHH. The results could provide the scientific basis for the selection of appropriate drying method for MHH, and helpful reference for the primary drying proces of herbs containing volatile chemical components.

  5. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  6. 孕期苯乙基异硫氰酸盐染毒对大鼠子代神经行为发育的影响%Changes on neurobehavioral development of the offspring in rats prenataly exposed by phenethyl isothiocyanate

    Institute of Scientific and Technical Information of China (English)

    支媛; 刘海波; 耿桂英; 于洲; 徐海滨

    2011-01-01

    目的 研究大鼠孕期暴露于苯乙基异硫氰酸盐(PEITC)对子一代(F1)神经发育、早期行为及学习记忆能力等的影响.方法 受孕大鼠于孕7~16天分别经口给予0、15、60和120mg/kg PEITC后,观察F1代断崖回避、平面翻正、前肢悬挂、听觉惊愕和嗅觉定位等早期行为发育指标的变化,并应用Y迷宫评价仔鼠学习记忆能力,对F1代大鼠大脑海马区神经元发育情况进行病理学检查.结果 孕大鼠60和120mg/kg染毒剂量组,其F1代仔鼠平面翻正、断崖回避以及嗅觉定向等早期行为指标发育延迟,且运动学习能力下降;120mg/kg染毒剂量组F1代仔鼠海马区平均神经元密度为142±6.7,与阴性对照组相比有显著差异(P<0.05),且神经元损伤评分增至0~1级.结论 大鼠孕期给予PEITC,可对F1代大鼠早期行为和学习记忆产生抑制和干扰;PEITC在15mg/kg剂量条件下无神经发育毒性和行为致畸作用.%Objective To study the effect of rats prenatal exposed to phenethyl isothiocyanate (PEITC) on the postnatal growth and neurobehavioral development of rats. Methods Pregnant adult rats were randomly assigned to 4 groups, of which 3 groups were exposed to PEITC at doses of 15,60 and 120 mg/kg respectively from the 7th to 16th day of gestation, and their Fl pups were observed the impact of PEITC on the age acquisition of two reflexes (cliff avoidance,surface righting) and sensuous function(auditory startle and olfactory discrimination), movement and coordination functions (forelimb hanging) and learning and memory( Y-maze test). Fl pups' brain tissues were taken and neuronal morphology changes were observed with pathology staining. Results Compared to the control group,60 and 120mg/kg groups exposed inuterus caused the Fl rat pups' cliff avoidance, surface righting and olfactory discrimination development delaying,and their learning and memory abilities were impaired. The increase to 0 - 1 level in histological grades

  7. Optimization of Extraction Conditions for the Total Flavonoids and Phenolic Acid of Lycopi Herba by Orthogonal Design%正交试验法筛选泽兰总黄酮及酚酸类成分的提取工艺

    Institute of Scientific and Technical Information of China (English)

    黄樱华; 黄月纯; 魏刚; 刘东辉; 陈慕媛; 陈国留

    2011-01-01

    Objective To study the optimum extraction process of the total flavonoids and phenolic acid and caffeic acid from the Lycopi Herba.Methods The effect of the concentration of ethanol, extraction time duration, extraction time and alcohol amount were investigated by the orthonogal design with the content of tiliroside as the chemical reference.Results The optimum extraction condition was established as follows: with 15 times ethanol concentration 50%, extracting 2 hours for three times.Conclusion The method is simple and feasible, and is the optimum extraction process of the total flavohoids, phenolic acid and caffeic acid from Lycopus Lucidus.%目的 研究泽兰总黄酮及酚酸类成分的最佳提取工艺.方法 以总黄酮及酚酸、咖啡酸舍量为指标,采用L(3)正交试验,考察提取溶媒、提取次数、提取时间、溶媒用量因素时提取的影响,确定泽兰最佳提取工艺.结果 以15倍量的50%乙醇为溶媒,回流提取3次,每次2 h为最佳提取条件.结论 本提取工艺方法简单、合理,是泽兰黄酮及酚酸类成分的最佳提取工艺.

  8. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times.

    Science.gov (United States)

    Carbone, Katya; Fiordiponti, Luciano

    2016-07-22

    Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH(•) and ABTS(+•) assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  9. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    Science.gov (United States)

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  10. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times

    Directory of Open Access Journals (Sweden)

    Katya Carbone

    2016-07-01

    Full Text Available Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates, bioactive compounds (total polyphenols and flavan-3-ols, HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH• and ABTS+• assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  11. 不同产地和不同部位亚贡叶总酚酸含量测定%Determination of Total Phenolic Acid in Yacon Leaves ( Smallanthus Sonchifolius ) from Different Habitats and Different Parts

    Institute of Scientific and Technical Information of China (English)

    赵河新; 何凡; 潘红艳; 王晓菲; 窦德强

    2011-01-01

    Objective: To determinate the total phenolic acid in the leaves of yacon which from different habits and different parts by different control samples.Method: The content of total phenolic acid in the leaves of yacon was determined by UV spectrophotometry with chlorogenic acid and caffeic acid as control samples.Results: The content of total phenolic acid in the leaves of yacon which from different places and different parts changes obviously.Conclusion: The content of total phenolic acid can be used as one of the indexes for the quality control and quantitative analysis of yacon leaves ( Smallanthus sonchifolius ).%目的:采用不同对照品测定不同产地及不同部位的亚贡叶中总酚酸的含量.方法:选用绿原酸和咖啡酸为对照品,利用紫外分光光度计通过测定吸光度计算不同产地及不同部位的亚贡叶中总酚酸的含量.结果:不同产地及不同部位亚贡叶中总酚酸的含量有所差异.结论:亚贡叶总酚酸的含量测定可作为亚贡叶的质量控制和定量分析指标之一.

  12. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  13. Anti-inflammatory and antibacterial profiles of selected compounds found in South African propolis

    Directory of Open Access Journals (Sweden)

    S. Buthelezi

    2010-02-01

    Full Text Available Propolis is a complex resinous substance manufactured by honey bees to scaffold and protect the hive against pathogens. Although it has been widely used for its medicinal properties, it is unknown whether the activity depends on the concentrations of specific constituents or on potentiation between these. This study describes (1 the individual topical anti-inflammatory activities of selected flavonoids commonly found in propolis, and (2 their antibacterial activities, alone or in combination with the non-flavonoid caffeic acid phenethyl ester (CAPE. For the anti-inflammatory activities, the reduction in croton oil-induced oedema in a mouse model, after topical application of quercetin and galangin for 3 h, was more than 50%, while after 6 h of treatment the reduction was less then 50%. By contrast, the suppressive activity of luteolin was about 30% and 50%, for treatments of 3 h and 6 h, respectively. The maximum inhibition of the growth of Staphylococcus aureus by each of CAPE, eriodictyol and quercetin was about 20%, while luteolin was inactive. When combined with CAPE, potentiation of the antibacterial effect was observed in the case of luteolin, but antagonism was observed when combined with either eriodictyol or quercetin. The propolis flavonoids each appear to have significant anti-inflammatory activity while their antibacterial activities are somewhat weaker and significant only when luteolin was combined with CAPE.

  14. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  15. In vitro inflammation inhibition model based on semi-continuous toll-like receptor biosensing.

    Directory of Open Access Journals (Sweden)

    Jin-Woo Jeon

    Full Text Available A chemical inhibition model of inflammation is proposed by semi-continuous monitoring the density of toll-like receptor 1 (TLR1 expressed on mammalian cells following bacterial infection to investigate an in vivo-mimicked drug screening system. The inflammation was induced by adding bacterial lysate (e.g., Pseudomonas aeruginosa to a mammalian cell culture (e.g., A549 cell line. The TLR1 density on the same cells was immunochemically monitored up to three cycles under optimized cyclic bacterial stimulation-and-restoration conditions. The assay was carried out by adopting a cell-compatible immunoanalytical procedure and signal generation method. Signal intensity relative to the background control obtained without stimulation was employed to plot the standard curve for inflammation. To suppress the inflammatory response, sodium salicylate, which inhibits nuclear factor-κB activity, was used to prepare the standard curve for anti-inflammation. Such measurement of differential TLR densities was used as a biosensing approach discriminating the anti-inflammatory substance from the non-effector, which was simulated by using caffeic acid phenethyl ester and acetaminophen as the two components, respectively. As the same cells exposed to repetitive bacterial stimulation were semi-continuously monitored, the efficacy and toxicity of the inhibitors may further be determined regarding persistency against time. Therefore, this semi-continuous biosensing model could be appropriate as a substitute for animal-based experimentation during drug screening prior to pre-clinical tests.

  16. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    Directory of Open Access Journals (Sweden)

    Mateusz Stoszko

    2016-01-01

    Full Text Available Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4+ T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal.

  17. Cichoric Acid Reverses Insulin Resistance and Suppresses Inflammatory Responses in the Glucosamine-Induced HepG2 Cells.

    Science.gov (United States)

    Zhu, Di; Wang, Yutang; Du, Qingwei; Liu, Zhigang; Liu, Xuebo

    2015-12-30

    Cichoric acid, a caffeic acid derivative found in Echinacea purpurea, basil, and chicory, has been reported to have bioactive effects, such as anti-inflammatory, antioxidant, and preventing insulin resistance. In this study, to explore the effects of CA on regulating insulin resistance and chronic inflammatory responses, the insulin resistance model was constructed by glucosamine in HepG2 cells. CA stimulated glucosamine-mediated glucose uptake by stimulating translocation of the glucose transporter 2. Moreover, the production of reactive oxygen, the expression of COX-2 and iNOS, and the mRNA levels of TNF-α and IL-6 were attenuated. Furthermore, CA was verified to promote glucosamine-mediated glucose uptake and inhibited inflammation through PI3K/Akt, NF-κB, and MAPK signaling pathways in HepG2 cells. These results implied that CA could increase glucose uptake, improve insulin resistance, and attenuate glucosamine-induced inflammation, suggesting that CA is a potential natural nutraceutical with antidiabetic properties and anti-inflammatory effects.

  18. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    Science.gov (United States)

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).

  19. Hydrofluoric acid poisoning

    Science.gov (United States)

    Fluorhydric acid ... stomach, or intestine have holes (perforations) from the acid. ... Hydrofluoric acid is especially dangerous. The most common accidents involving hydrofluoric acid cause severe burns on the skin ...

  20. The phenolic acids of Agen prunes (dried plums) or Agen prune juice concentrates do not account for the protective action on bone in a rat model of postmenopausal osteoporosis.

    Science.gov (United States)

    Léotoing, Laurent; Wauquier, Fabien; Davicco, Marie-Jeanne; Lebecque, Patrice; Gaudout, David; Rey, Stéphane; Vitrac, Xavier; Massenat, Laurent; Rashidi, Salim; Wittrant, Yohann; Coxam, Véronique

    2016-02-01

    Dietary supplementation with dried plum (DP) has been shown to protect against and reverse established osteopenia in ovariectomized rodents. Based on in vitro studies, we hypothesized that DP polyphenols may be responsible for that bone-sparing effect. This study was designed to (1) analyze whether the main phenolic acids of DP control preosteoblast proliferation and activity in vitro; (2) determine if the polyphenolic content of DP or DP juice concentrate is the main component improving bone health in vivo; and (3) analyze whether DP metabolites directly modulate preosteoblast physiology ex vivo. In vitro, we found that neochlorogenic, chlorogenic, and caffeic acids induce the proliferation and repress the alkaline phosphatase activity of primary preosteoblasts in a dose-dependent manner. In vivo, low-chlorogenic acid Agen prunes (AP) enriched with a high-fiber diet and low-chlorogenic acid AP juice concentrate prevented the decrease of total femoral bone mineral density induced by estrogen deficiency in 5-month-old female rats and positively restored the variations of the bone markers osteocalcin and deoxypyridinoline. Ex vivo, we demonstrated that serum from rats fed with low-chlorogenic acid AP enriched with a high-fiber diet showed repressed proliferation and stimulated alkaline phosphatase activity of primary preosteoblasts. Overall, the beneficial action of AP on bone health was not dependent on its polyphenolic content.

  1. Protective effects of rosmarinic acid against radiation-induced damage to the hematopoietic system in mice.

    Science.gov (United States)

    Xu, Wenqing; Yang, Fujun; Zhang, Yujie; Shen, Xiu

    2016-07-01

    Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is a potent antioxidant that functions by scavenging free radicals. Here, we used a 30-day survival assay to investigate the radioprotective effects of RA. Mice were treated with RA once per day for 10 consecutive days starting at 3 days before gamma irradiation at 7.5 Gy until 7 days post irradiation. Mice treated with 100 and 200 mg/kg body weight (bw) of RA had 30-day survival rates of 89% and 72%, respectively, compared with 32% in the control group, and the differences were statistically significant (P = 0.0008 and 0.0421, respectively). Spleen colony-forming units (CFU-S), the number of nucleated cells in the bone marrow (BMNC), bone marrow DNA content, and hematological parameters of the peripheral blood were measured to investigate the radioprotective effect of RA on the hematopoietic system. The treatment groups that received RA at 50, 100 and 150 mg/kg bw and whole-body exposure to 5.5 Gy of (137)Cs γ- radiation had significantly higher CFU-S, BMNC and DNA content than the irradiation-only group. Assessment of hematological parameters in the peripheral blood showed that the treatment groups receiving RA at doses of 50, 100 and 150 mg/kg bw had higher white blood cell counts, hemoglobin and platelets than the radiation-only group. These results suggested that the administration of RA promoted the recovery of peripheral blood cells in irradiated mice.

  2. Experimental colitis in mice is attenuated by topical administration of chlorogenic acid.

    Science.gov (United States)

    Zatorski, Hubert; Sałaga, Maciej; Zielińska, Marta; Piechota-Polańczyk, Aleksandra; Owczarek, Katarzyna; Kordek, Radzisław; Lewandowska, Urszula; Chen, Chunqiu; Fichna, Jakub

    2015-06-01

    Epidemiological data suggest that the consumption of polyphenol-rich foods reduces the incidence of cancer, coronary heart disease, and inflammation. Chlorogenic acid (CGA), an ester of caffeic and quinic acids, is one of the most abundant polyphenol compounds in human diet with proven biological effectiveness both in vitro and in vivo. The aim of the study is to investigate the possible anti-inflammatory effect of CGA in the gastrointestinal (GI) tract and its mechanism of action. We used a well-established model of colitis, induced by intracolonic (i.c.) administration of trinitrobenzenesulfonic acid (TNBS) in mice. The anti-inflammatory effect of CGA in the colon was evaluated based on the clinical and macroscopic and microscopic parameters. To investigate the mechanism of protective action of CGA, myeloperoxidase (MPO), H2O2, and NF-κB levels were assessed in the colon tissue. CGA administered i.c. at the dose of 20 mg/kg (two times daily) protected against TNBS-induced colitis more effectively than the same dose administered orally (p.o.), as evidenced by significantly lower macroscopic and ulcer scores. Furthermore, CGA (20 mg/kg, i.c.) reduced neutrophil infiltration, as demonstrated by decreased MPO activity. Moreover, CGA suppressed activation of NF-κB, as evidenced by lower levels of phospho-NF-κB/NF-κB ratio in the tissue. CGA did not affect the oxidative stress pathways. CGA exhibits anti-inflammatory properties through reduction of neutrophil infiltration and inhibition of NF-κB-dependent pathways. Our results suggest that CGA may have the potential to become a valuable supplement in the treatment of GI diseases.

  3. Dehydroabietic acid

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rao

    2009-10-01

    Full Text Available The title compound [systematic name: (1R,4aS,10aR-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent molecules exist in the asymmetric unit. In each molecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by intermolecular O—H...O hydrogen bonds.

  4. Hydroxycinnamic acids and UV-B depletion: Profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1.

    Science.gov (United States)

    Calvenzani, Valentina; Castagna, Antonella; Ranieri, Annamaria; Tonelli, Chiara; Petroni, Katia

    2015-06-01

    Hydroxycinnamic acids (HCAs) are phenolic compounds widely found in most plant families. Aim of the present work was to investigate their accumulation and biosynthetic gene expression in presence or absence of UV-B radiation in tomato fruits of wild-type and hp-1, a mutant characterized by exaggerated photoresponsiveness and increased fruit pigmentation. Gene expression and HCAs content were higher in hp-1 than in wild type peel and UV-B depletion determined a decrease in HCAs accumulation in wild-type and an increase in hp-1 fruits, generally in accordance with biosynthetic gene expression. In flesh, despite a similar transcript level of most genes between the two genotypes, HCAs content was generally higher in wild type than in hp-1, although remaining at a lower level with respect to wild type peel. Under UV-B depletion, a general reduction of HCAs content was observed in wild-type flesh, whereas an increase in the content of p-coumaric acid and caffeic acid was observed in hp-1 flesh.

  5. Diagnostic fragment-ion-based and extension strategy coupled to DFIs intensity analysis for identification of chlorogenic acids isomers in Flos Lonicerae Japonicae by HPLC-ESI-MS(n).

    Science.gov (United States)

    Zhang, Jia-Yu; Zhang, Qian; Li, Ning; Wang, Zi-Jian; Lu, Jian-Qiu; Qiao, Yan-Jiang

    2013-01-30

    A method of modified diagnostic fragment-ion-based extension strategy (DFIBES) coupled to DFIs (diagnostic fragmentation ions) intensity analysis was successfully established to simultaneously screen and identify the chlorogenic acids (CGAs) in Flos Lonicerae Japonicae (FLJ) by HPLC-ESI-MS(n). DFIs, such as m/z 191 [quinic acid-H](-), m/z 179 [caffeic acid-H](-) and m/z 173 [quinic acid-H-H2O](-) were determined or proposed from the fragmentation patterns analysis of corresponding reference substances for every chemical family of CGAs. A "structure extension" method was then proposed based on the well-demonstrated fragmentation patterns and was successively applied into the rapid screening of CGAs in FLJ. Considering that substitution isomerism is a common phenomenon, a full ESI-MS(n) fragmentation analysis according to the intensity of DFIs has been performed to identify the CGA isomers. Based on the DFIs and intensity analysis, 41 peaks attributed to CGAs including 4 caffeoylquinic acids (CQA), 7 CQA glycosides, 6 dicaffeoylquinic acids (DiCQA), 10 DiCQA glycosides, 1 tricaffeoylquinic acids (TriCQA), 4p-coumaroylquinic acids (pCoQA), 3 feruloylquinic acids (FQA) and 6 caffeoylferuloylquinic acids (CFQA) were identified preliminarily in a 65-min chromatographic run. It was the first time to systematically report the presence of CGAs in FLJ, especially for CQA glycosides, DiCQA glycosides, TriCQA, pCoQA and CFQA. All the results indicated that the method of developed DFIBES coupled to DFIs analysis was feasible, reliable and universal for screening and identifying the constituents with the same carbon skeletons especially the isomeric compounds from the complex extract of TCMs.

  6. Flavonoids derived from Abelmoschus esculentus attenuatesUV-B Induced cell damage in human dermal fibroblasts throughNrf2-ARE pathway

    Directory of Open Access Journals (Sweden)

    Juilee Patwardhan

    2016-01-01

    Abbreviations used:ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid, AO: Acridine orange, ANOVA: Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picryl hydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, qPCR: Quantitative polymerase chain reaction

  7. AcEST: DK956129 [AcEST

    Lifescience Database Archive (English)

    Full Text Available OS=Chryso... 39 0.026 sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po....yltransferase OS=Cath... 37 0.058 sp|Q43046|COMT1_POPKI Caffeic acid 3-O-methyltransferase 1 OS=Po... 36 0.1...Q43047|COMT3_POPKI Caffeic acid 3-O-methyltransferase 3 OS=Po... 35 0.29 sp|P46484|COMT1_EUCGU Caffeic acid ...3-O-methyltransferase OS=Euca... 35 0.38 sp|Q41086|COMT2_POPTM Caffeic acid 3-O-methyltransferase 2 OS=Po......feic acid 3-O-methyltransferase OS=Ipo... 39 0.18 tr|Q1JUZ5|Q1JUZ5_IPONI Caffeic

  8. AcEST: DK957190 [AcEST

    Lifescience Database Archive (English)

    Full Text Available nsferase OS=Clar... 86 1e-16 sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po...... 82 2e-15 sp|Q43046|COMT1_POPKI Caffeic acid 3-O-methyltransferase 1 OS=Po... 80 7e-15 sp|O81...O-methyltransferase 3 OS=Po... 78 4e-14 sp|Q43609|COMT1_PRUDU Caffeic acid 3-O-methyltransferase OS=Prun... ..._COFCA Caffeic acid 3-O-methyltransferase OS=Coff... 75 2e-13 sp|Q41086|COMT2_POPTM Caffeic acid 3-O-methyltransferase 2 OS=Po....8|Q1JUZ8_IPONI Caffeic acid 3-O-methyltransferase OS=Ipo... 78 4e-13 tr|Q1JUZ5|Q1

  9. AcEST: DK958984 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 3-O-methyltransferase OS=Clar... 99 2e-20 sp|Q00763|COMT1_POPTM Caffeic acid 3-O-methyltransferase 1 OS=Po...... 99 3e-20 sp|Q43046|COMT1_POPKI Caffeic acid 3-O-methyltransferase 1 OS=Po... 97 7e-20 sp|O81646|COMT1_CAPC...|COMT3_POPKI Caffeic acid 3-O-methyltransferase 3 OS=Po... 92 2e-18 sp|Q8GU25|COMT1_ROSCH Caffeic acid 3-O-m...ethyltransferase OS=Rosa... 92 2e-18 sp|Q41086|COMT2_POPTM Caffeic acid 3-O-methyltransferase 2 OS=Po....0|Q5IDE0_PINTA Caffeate O-methyltransferase (Fragment) O... 92 3e-17 tr|Q1JUZ8|Q1JUZ8_IPONI Caffeic acid 3-O

  10. Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3'-hydroxylase from carrot (Daucus carota L. ) cell suspension cultures

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnl, T.K.; Koch, U.; Heller, W.; Wellmann, E.

    1987-10-01

    Microsomal preparations from carrot (Daucus carota L.) cell suspension cultures catalyze the formation of trans-5-O-caffeoyl-D-quinate (chlorogenate) from trans-5-O-(4-coumaroyl)-D-quinate. trans-5-O-(4-Coumaroyl)shikimate is converted to about the same extent to trans-5-O-caffeoylshikimate. trans-4-O-(4-Coumaroyl)-D-quinate, trans-3-O-(4-coumaroyl)-D-quinate, trans-4-coumarate, and cis-5-O-(4-coumaroyl)-D-quinate do not act as substrates. The reaction is strictly dependent on molecular oxygen and on NADPH as reducing cofactor. NADH and ascorbic acid cannot substitute for NADPH. Cytochrome c, Tetcyclacis, and carbon monoxide inhibit the reaction suggesting a cytochrome P-450-dependent mixed-function monooxygenase. Competition experiments as well as induction and inhibition phenomena indicate that there is only one enzyme species which is responsible for the hydroxylation of the 5-O-(4-coumaric) esters of both D-quinate and shikimate. The activity of this enzyme is greatly increased by in vivo irradiation of the cells with blue/uv light. We conclude that the biosynthesis of the predominant caffeic acid conjugates in carrot cells occurs via the corresponding 4-coumaric acid esters. Thus, in this system, 5-O-(4-coumaroyl)-D-quinate can be seen as the final intermediate in the chlorogenic acid pathway.

  11. Potent protection of Danshensu(β-3,4-dihydroxyphenyl-lactic acid)against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain

    Institute of Scientific and Technical Information of China (English)

    Jingen Shen; Lijian Yu; Rundi Ma; Yongping Zhang; Xiaoyu Zhang; Juanzhi Fang; Tingxi Yu

    2010-01-01

    Recent studies have demonstrated that ferulic acid[3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid]and sodium ferulate produce protective effects against glutamate-induced neurotoxicity in adult mice.Danshensu(β-3,4-dihydroxyphenyl-lactic acid)has a similar molecular structure and pharmacological action to caffeic acid.This study aimed to validate the protection conferred by Danshensu against excitotoxic effects of maternal intragastric administration of monosodium glutamate at late stages of pregnancy in the developing mouse fetal brain.Behavioral tests,as well as histopathological and immunohistochemical examination of hippocampi were performed in filial mice.Results revealed that maternal intragastric administration of excessive monosodium glutamate(1.0,2.0,4.0 g/kg body weight)at a late stage of pregnancy resulted in a series of behavioral disorders(hyperactivity,lesions of learning and memory,and disturbance in cooperation of movement ability under high-altitude stress),histopathological impairment(neuronal edema,degeneration,necrosis,and hyperplasia)and molecular cellular biological changes(upregulated expression of N-methyI-D-aspartate receptor type 1 and neuropeptide Y in the hippocampal region of the brain of the filial mice from mothers treated with monosodium glutamate).Simultaneous administration of sodium Danshensu partially reversed the effects of monosodium glutamate on the above mentioned phenomena.These findings indicate that sodium Danshensu exhibits obvious protective effects on the excitotoxicity of monosodium glutamate.

  12. Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1.

    Science.gov (United States)

    Ziamajidi, Nasrin; Khaghani, Shahnaz; Hassanzadeh, Gholamreza; Vardasbi, Safura; Ahmadian, Shahram; Nowrouzi, Azin; Ghaffari, Seyed Mahmood; Abdirad, Afshin

    2013-08-01

    We evaluated the effect of chicory (Cichorium intybus L.) seed extract (CI) on hepatic steatosis caused by early and late stage diabetes in rats (in vivo), and induced in HepG2 cells (in vitro) by BSA-oleic acid complex (OA). Different dosages of CI (1.25, 2.5 and 5 mg/ml) were applied along with OA (1 mM) to HepG2 cells, simultaneously and non-simultaneously; and without OA to ordinary non-steatotic cells. Cellular lipid accumulation and glycerol release, and hepatic triglyceride (TG) content were measured. The expression levels of sterol regulatory element-binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptor alpha (PPARα) were determined. Liver samples were stained with hematoxylin and eosin (H&E). Significant histological damage (steatosis-inflammation-fibrosis) to the cells and tissues and down-regulation of SREBP-1c and PPARα genes that followed steatosis induction were prevented by CI in simultaneous treatment. In non-simultaneous treatment, CI up-regulated the expression of both genes and restored the normal levels of the corresponding proteins; with a greater stimulating effect on PPARα, CI acted as a PPARα agonist. CI released glycerol from HepG2 cells, and targeted the first and the second hit phases of hepatic steatosis. A preliminary attempt to characterize CI showed caffeic acid, chlorogenic acid, and chicoric acid, among the constituents.

  13. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  14. On the determination of minor phenolic acids of virgin olive oil by RP-HPLC

    Directory of Open Access Journals (Sweden)

    Tsimidou, M.

    1996-06-01

    Full Text Available The objective of this study was the detection and determination of four minor phenolic acids present in the polar fraction of olive oil. Gallic, homovanillic, caffeic and ferulic acids, were separated on RP-HPLC and detected by using three different systems. Detection limits were determined for the four compounds. Variable wavelength UV detectors were found to be more suitable than diode array for quantitative information. However, diode array was required for qualitative information for unknown components present in olive oil. For the determination of sensitive phenolic compouds present in minor amounts the use of a more sensitive system, such as the electrochemical detector, was necessary.

    El objetivo de este estudio fue la detección y determinación de cuatro ácidos fenólicos minoritarios presentes en la fracción polar del aceite de oliva. Los ácidos gálico, homovanílico, cafeico y ferúlico fueron separados mediante RP-HPLC y detectados usando tres sistemas diferentes. Se determinaron los límites de detección para los cuatro componentes. Se encontró que los detectores UV a longitud de onda variable son más apropiados que los detectores de batería de diodos para la información cuantitativa. Sin embargo, el detector de batería de diodo fue necesario para la información cualitativa de componentes desconocidos en el aceite de oliva. Para la determinación de compuestos fenólicos sensibles, presentes en cantidades minoritarias, fue necesario el uso de un sistema más sensible, como es el detector electroquímico.

  15. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  16. POLYELEOSTEARIC ACID VESICLES

    Institute of Scientific and Technical Information of China (English)

    LI Zichen; XIE Ximng; FAN Qinghua; FANG Yifei

    1992-01-01

    α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solutionofeleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was demonstrated by electron microscopic observation and bromothymol blue encapsulation experiments. Polymerizations of the eleostearic acids in the formed vesicles carried out by UV irradiation produced poly-α-eleostearic acid and poly-β-eleostearic acid vesicles.

  17. Arabidopsis CDS blastp result: AK287689 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 5e-23 ...

  18. Arabidopsis CDS blastp result: AK240736 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-22 ...

  19. Arabidopsis CDS blastp result: AK241705 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-11 ...

  20. Arabidopsis CDS blastp result: AK287483 [KOME

    Lifescience Database Archive (English)

    Full Text Available avonol 3-O-methyltransferase 1 / caffeic acid/5-hydroxyferulic acid O-methyltransferase (OMT1) identical to ...1.1.76) (AtOMT1) (Flavonol 3- O-methyltransferase 1) (Caffeic acid/5-hydroxyferulic acid O- methyltransferase) {Arabidopsis thaliana} 1e-37 ...

  1. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  2. Synthesis of Selective Butyrylcholinesterase Inhibitors Coupled between α-Lipoic Acid and Polyphenols by Using 2-(Piperazin-1-yl)ethanol Linker

    Energy Technology Data Exchange (ETDEWEB)

    Yeun, Go Heun; Lee, Seung Hwan; LIm, Yong Bae; Lee, Hye Sook; Lee, Bong Ho; Park, Jeong Ho [Hanbat National Univ., Daejeon (Korea, Republic of); Won, Mooho [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2013-04-15

    In the previous paper (Bull. Korean Chem. Soc., 2011, 32, 2997), the hybrid molecules between α-lipoic acid (ALA) and polyphenols (PPs) connected with neutral 2-(2-aminoethoxy)ethanol linker (linker-1) showed new biological activity such as butyrylcholinesterase (BuChE) inhibition. In order to increase the binding affinity of the hybrid compounds to cholinesterase (ChE), the neutral 2-(2-aminoethoxy)ethanol (linker 1) was switched to the cationic 2-(piperazin-1-yl)ethanol linker (linker 2). The IC{sub 50} values of the linker-2 hybrid molecules for BuChE inhibition were lower than those of linker-1 hybrid molecules (except 9-2) and they also had the same great selectivity for BuChE over AChE (> 800 fold) as linker-1 hybrid molecules. ALA-acetyl caffeic acid (10-2, ALA-AcCA) was shown as an effective inhibitor of BuChE (IC{sub 50} = 0.44 ± 0.24 μM). A kinetic study using 7-2 showed that it is the same mixed type inhibition as 7-1. Its inhibition constant (Ki) to BuChE is 4.3 ± 0.09 μM.

  3. Kinetics and mechanism of protection of thymine from sulphate radical anion under anoxic conditions

    Indian Academy of Sciences (India)

    M Sudha Swaraga; M Adinarayana

    2003-04-01

    The rates of photooxidation of thymine in presence of peroxydisulphate (PDS) have been determined by measuring the absorbance of thymine at 264 nm spectrophotometrically. The rates and the quantum yields () of oxidation of thymine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of thymine suggesting that caffeic acid acts as an efficient scavenger of SO$^{\\bullet -}_{4}$ and protects thymine from it. Sulphate radical anion competes for thymine as well as for caffeic acid. The rate constant of sulphate radical anion with caffeic acid has been calculated to be 1.24 × 1010 dm3 mol-1 s-1. The quantum yields of photooxidation of thymine have been calculated from the rates of oxidation of thymine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cl) assuming caffeic acid acting only as a scavenger of SO$^{\\bullet -}_{4}$ radicals show that exptl values are lower than cl values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for SO$^{\\bullet-}_{4}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the thymine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  4. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis.

    Science.gov (United States)

    Kirmizibekmez, Hasan; Calis, Ihsan; Perozzo, Remo; Brun, Reto; Dönmez, Ali A; Linden, Anthony; Rüedi, Peter; Tasdemir, Deniz

    2004-08-01

    Anti-plasmodial activity-guided fractionation of Phlomis brunneogaleata (Lamiaceae) led to the isolation of two new metabolites, the iridoid glycoside, brunneogaleatoside and a new pyrrolidinium derivative (2 S,4 R)-2-carboxy-4-( E)- p-coumaroyloxy-1,1-dimethylpyrrolidinium inner salt [(2 S,4 R)-1,1-dimethyl-4-( E)- p-coumaroyloxyproline inner salt]. Moreover, a known iridoid glycoside, ipolamiide, six known phenylethanoid glycosides, verbascoside, isoverbascoside, forsythoside B, echinacoside, glucopyranosyl-(1-->G (i)-6)-martynoside and integrifolioside B, two flavone glycosides, luteolin 7- O-beta- D-glucopyranoside ( 10) and chrysoeriol 7- O-beta- D-glucopyranoside ( 11), a lignan glycoside liriodendrin, an acetophenone glycoside 4-hydroxyacetophenone 4- O-(6'- O-beta- D-apiofuranosyl)-beta- D-glucopyranoside and three caffeic acid esters, chlorogenic acid, 3-O-caffeoylquinic acid methyl ester and 5- O-caffeoylshikimic acid were isolated. The structures of the pure compounds were elucidated by means of spectroscopic methods (UV, IR, MS, 1D and 2D NMR, [alpha] (D)) and X-ray crystallography. Compounds 10 and 11 were determined to be the major anti-malarial principles of the crude extract (IC (50) values of 2.4 and 5.9 micrograms/mL, respectively). They also exhibited significant leishmanicidal activity (IC (50) = 1.1 and 4.1 micrograms/mL, respectively). The inhibitory potential of the pure metabolites against plasmodial enoyl-ACP reductase (FabI), which is the key regulator of type II fatty acid synthases (FAS-II) in P. falciparum, was also assessed. Compound 10 showed promising FabI inhibiting effect (IC (50) = 10 micrograms/mL) and appears to be the first anti-malarial natural product targeting FabI of P. falciparum.

  5. Color of whole-wheat foods prepared from a bright-white hard winter wheat and the phenolic acids in its coarse bran.

    Science.gov (United States)

    Jiang, Hongxin; Martin, Joe; Okot-Kotber, Moses; Seib, Paul A

    2011-08-01

    The color of wheat kernels often impacts the color and thereby the value of wheat-based foods. A line of hard white winter wheat (B-W HW) with bright appearing kernels has been developed at the Kansas State Agricultural Research Center. The objective of this study was to compare the color of several foods made from the B-W HW wheat with those of 2 hard white wheat cultivars, Trego and Lakin. The B-W HW kernels showed higher lightness (L*, 57.6) than Trego (55.5) and Lakin (56.8), and the increased lightness was carried over to its bran and whole-wheat flour. Alkaline noodle and bread crumb made from the B-W HW whole-wheat flour showed slightly higher lightness (L*) than those made from Trego and Lakin. The sum of soluble and bound phenolics extracted from the 3 wheat brans, which had not been preextracted to remove lipids, was found to be 17.22 to 18.98 mg/g. The soluble phenolic acids in the brans were principally vanillic, ferulic, and syringic. The bound phenolic acids in the brans were dominated by ferulic, which accounted for 50.1% to 82.2% of total identified bound phenolic acids. Other bound phenolic acids were protocatechuic, caffeic, syringic, trans-cinnamic, p-hydroxybenzoic, p-coumaric, and vanillic. The lightness (L*) values of coarse wheat brans correlated positively with their levels of bound protocatechuic (r = 0.72, P < 0.01) and p-hydroxybenzoic acids (r = 0.75, P < 0.01).

  6. Gas-phase Acidities of Aspartic Acid, Glutamic Acid, and their Amino Acid Amides.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A; Dixon, David A; Cassady, Carolyn J

    2007-02-14

    Gas-phase acidities (GA or ΔGacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  7. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    Science.gov (United States)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  8. Acid Thunder: Acid Rain and Ancient Mesoamerica

    Science.gov (United States)

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  9. 茉莉酸甲酯和水杨酸对丹参幼苗中蔗糖代谢和酚酸类物质积累的影响%Effects of Salicylic Acid and Methyl Jasmonate on Sucrose Metabolism andPhenolic Compounds Accumulation in Salvia miltiorrhiza Bunge Seedlings

    Institute of Scientific and Technical Information of China (English)

    王春丽; 梁宗锁; 李殿荣; 杨建利

    2011-01-01

    Salvia miltiorrhiza seedling was used as material in the experiment to investigate accumulation of phenolic compounds and sucrose metabolism of the seedling responding to salicylic acid (SA) and methyl jasmonate (MeJA) foliar application.The results showed that the MeJA treatment promoted activity of acid invertase (pH 5.0) in both the leaves and roots and accelerated sucrose hydrolysis in the seedlings,thus resulted in the decrease of sucrose content in the roots;while tanshensu sodium (which is biosynthesized through tyrosine-derived pathway),protocatechuic acid and caffeic acid (all the two compounds were produced through phenylpropanoid pathway),rosmarinic acid (which is produced through both tyrosine-derived pathway and phenylpropanoid pathway), salvianolic acid B (which is generated from tanshensu, caffeic acid and rosmarinic acid) as well as total polyphenol contents in the roots were significantly increased too.However, the activity of acid invertase in both the leaves and roots and the activity of neutral invertase in the leaves were decreased by the SA treatment to the seedlings,thus inhibited sucrose hydrolysis and significantly increased sucrose content in the shoots.The content of sucrose in the roots did not change significantly;Meantime,tanshensu sodium production was decreased,whereas the contents of protocatechuic acid,caffeic acid and rosmarinic acid in roots were significantly increased,the contents of salvianolic acid B and total polyphenol exhibited no significant changes.This indicates that sucrose metabolism correlate with tanshensu biosynthesis via tyrosine-derived pathway, but rarely influence protocatechuic acid, caffeic acid and rosmarinic acid production through phenylpropanoid pathway in the plant.%以丹参幼苗为材料,研究了茉莉酸甲酯(MeJA)和水杨酸(SA)对其地上地下部分蔗糖代谢和根系中酚酸类物质积累的影响.结果显示:(1)外源施用MeJA能够显著增强幼苗叶片和根

  10. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  11. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  12. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of ...

  13. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant ...

  14. Lactic acid test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  15. Folic Acid Quiz

    Science.gov (United States)

    ... folic acid 9. A woman should be taking folic acid if she: A is planning a pregnancy B is capable of becoming pregnant, even if ... Answer: D CORRECT: A woman should be taking folic acid if she is planning a pregnancy, is capable of becoming pregnant (even if she ...

  16. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  17. Acid Rain Study Guide.

    Science.gov (United States)

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  18. The Acid Rain Reader.

    Science.gov (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  19. Potent inhibition of Western Equine Encephalitis virus by a fraction rich in flavonoids and phenolic acids obtained from Achyrocline satureioides

    Directory of Open Access Journals (Sweden)

    María Carola Sabini

    Full Text Available ABSTRACT Achyrocline satureioides (Lam. DC. Asteraceae, ‘marcela del campo', possess several pharmacological properties. Previously we reported antiviral activity of an aqueous extract of A. satureioides against an alphavirus, Western Equine Encephalitis virus. Alphaviruses are highly virulent pathogens which cause encephalitis in humans and equines. There are no effective antiviral to treat its infections. The aim of this study was to evaluate in vitro cytotoxic and antiviral activities against Western Equine Encephalitis virus of five water extract chromatographic fractions from A. satureioides and identify the main compounds of the bioactive fraction. Also, it was to assess in vivo cytogenotoxic ability of the active fraction. Cytotoxicity studies revealed low toxicity of the most of fractions in Vero and in equine peripheral blood mononuclear cells. Antiviral studies showed that the water crude extract – Sephadex LH 20 – fraction 3 MeOH–H2O (Fraction 3 was active against Western Equine Encephalitis virus with Effective Concentration 50% = 5 µg/ml. Selectivity Indices were 126.0 on Vero and 133.6 on peripheral blood mononuclear cells, four times higher than aqueous extract selectivity index. Regarding the mechanism of action we demonstrated that F3 exerted its action in intracellular replication stages. Further, fraction 3 showed important virucidal action. Fraction 3 contains, in order of highest to lowest: chlorogenic acid, luteolin, 5,7,8-trimethoxyflavone, 3-O-methylquercetin and caffeic acid. Fraction 3 did not induce in vivo toxic nor mutagenic effect. Therefore, it is safe its application as antiviral potential. Further studies of antiviral activity in vivo will be developed using a murine model.

  20. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  1. [Biosynthesis of adipic acid].

    Science.gov (United States)

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  2. Demospongic Acids Revisited

    Directory of Open Access Journals (Sweden)

    Gilles Barnathan

    2010-10-01

    Full Text Available The well-known fatty acids with a D5,9 unsaturation system were designated for a long period as demospongic acids, taking into account that they originally occurred in marine Demospongia sponges. However, such acids have also been observed in various marine sources with a large range of chain-lengths (C16–C32 and from some terrestrial plants with short acyl chains (C18–C19. Finally, the D5,9 fatty acids appear to be a particular type of non-methylene-interrupted fatty acids (NMA FAs. This article reviews the occurrence of these particular fatty acids in marine and terrestrial organisms and shows the biosynthetic connections between D5,9 fatty acids and other NMI FAs.

  3. Boric acid and boronic acids inhibition of pigeonpea urease.

    Science.gov (United States)

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  4. Chemical composition and antifungal potential of Brazilian propolis against Candida spp.

    Science.gov (United States)

    Freires, I A; Queiroz, V C P P; Furletti, V F; Ikegaki, M; de Alencar, S M; Duarte, M C T; Rosalen, P L

    2016-06-01

    Propolis is known to have biological properties against numerous microorganisms of clinical interest. This study aimed to determine the chemical composition and antifungal activity of Brazilian propolis (types 3 and 13) against Candida spp. and their effects on the morphology of preformed and mature Candida biofilms. Samples of propolis (3 and 13) collected by Apis mellifera honeybees were obtained from different regions in Brazil. Ethanolic extracts of propolis (EEP) were prepared, fractionated and submitted to chemical analysis by GC/MS. The extracts and their hexane, dichloromethane and ethyl acetate fractions were tested for their ability to inhibit Candida spp. (C. albicans, C. dubliniensis, C. glabrata, C. kruzei, C. tropicalis and C. parapsilosis) by determination of the minimum inhibitory and fungicidal concentrations (MIC/MFC). Additionally, their effects on morphology of preformed and mature biofilms were observed by scanning electron microscopy. The phenolic compounds p-coumaric acid, caffeic acid phenethyl ester (CAPE), kaempferol and quercetin were identified in the EEP-3 and its bioactive dichloromethane fraction; and isoflavonoids such as medicarpin, vestitol and formononetin were found in the EEP-13, and triterpenes in its bioactive hexane fraction. The EEP-3 and EEP-13 and their bioactive fractions showed MIC values ranging from 0.2 to 125μg/mL and MFC values between 125 and 500μg/mL. The EEP and fractions were predominantly fungistatic agents. All extracts and fractions disrupted biofilm structures at 500μg/mL and amorphous areas with cell damage were clearly observed in preformed and mature biofilms. Propolis types 3 and 13 have strong anti-Candida activity and should be considered as promising candidates to treat oral and systemic candidiasis.

  5. Propolis, A Hope for the Future in Treating Resistant Periodontal Pathogens

    Science.gov (United States)

    Rashid, Maryam; Tipu, Hamid N

    2016-01-01

    Introduction: Periodontitis is one of the most common causes of tooth loss worldwide. Recently, special attention has been paid to natural medication for its treatment. For this purpose, propolis (bee glue) activity has also been investigated. Its antibacterial properties are mainly attributed to flavonones pinocembrin, flavonols galangin and to the caffeic acid phenethyl ester. This study is aimed at evaluating the antimicrobial effects of propolis from Pakistan on 35 clinical isolates of pigmented anaerobic periodontal pathogens. Methods: This study was conducted in the Microbiology department, University of Health Sciences, Lahore, Pakistan. Pathogens included were Porphyromonas asaccharolytica (n=9), Porphyromonas gingivalis (n=13), Prevotella intermedia (n=9), Prevotella melaninogenica (n=4). Minimum inhibitory concentration (MIC) to three antibiotics was obtained by E-test method. All strains were sensitive to amoxicillin plus clavulanic acid and metronidazole, but 100% of P asaccharolytica and P melaninogenica strains displayed intermediate resistance to tetracycline while 69.2% P gingivalis and 100% P intermedia strains exhibited complete resistance to tetracycline. Screening for antibacterial activity of propolis extract was done by agar well diffusion assay, and all strains were found sensitive to ethanolic extract of propolis. Results: MIC was obtained by agar incorporation technique with values ranging from 0.064 to 0.512 mg/ml. It was also noticed that percentage yield of ethanolic extract of propolis prepared from ultrasonic extraction method was higher compared to extract obtained with maceration. Conclusion: These results indicate that propolis from this region has potent antimicrobial activity against pigmented anaerobic periodontal pathogens. Taking into consideration the increasing resistance in anaerobic bacteria, this effective antimicrobial activity of propolis gives hope in the treatment of oral cavity diseases. PMID:27563508

  6. 植物种子皮壳抗氧剂阿魏酸的生理功能和人体健康%New natural antioxidants ferulic acid