WorldWideScience

Sample records for caetite mill process

  1. Hydrological Processes Modifications Induced by Land-Use Changes in the Caetité Region, Northeastern Brazil

    Science.gov (United States)

    Fernandes, N. F.; Franklin, M. R.; Ferraz, A. C.; Reis, R. G.; Melo, V. P.

    2009-04-01

    Land-use changes can generate important modifications in hydrological processes, especially those that take place close to the soil surface. These changes usually lead to a decrease in infiltration rates and to an increase in surface runoff and soil erosion. Besides, in the long-term, they tend to reduce groundwater recharge. Such effect can be amplified when intensive groundwater pumping is carried out in order to support mining and milling activities. This is the case in the region close to Caetité, in the southwestern portion of Bahia state located in northeastern Brazil, where an already problematic situation in terms of water supply due to the semi-arid conditions is becoming worse due to the exhaustive pumping, mainly for supporting the uranium mining and concentration activities, leading to a variety of potential conflicts concerning the water management in the basin. Since 2008 an experimental basin was installed in the area in order to characterize, through field monitoring and modeling, the evolution of the hydrogeochemical processes in the basin. This study aims, besides the assessment of the water quality, to characterize the effects produced by land-use changes in the hydrological processes that take place at the soil surface, especially on the soil infiltration capacity and saturated hydraulic conductivity (ksat). The Caetité experimental basin has a total area of about 65 km2 that includes portions with natural vegetation (dense and sparse), agriculture (usually small farms), grazing, as well as those resulting from the mining and milling activities (open pit, waste rock piles , industrial plant, ponds and access dirty roads). Although the mining activities have been only recently installed in the area (year of 2000), farmers have been established in the basin for up to 40 years. Average total annual rainfall in the basin is about 710 mm, with a long dry period (from April to October). The geological frame of the area comprises an Archaean gneiss

  2. Process engineering with planetary ball mills.

    Science.gov (United States)

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  3. Experimental study of the uranium mobility due to the weathering action at the uraniferous district of Caetite/Lagoa Real, Bahia, Brazil; Estudo experimental da mobilidade do uranio por acao intemperica, distrito uranifero de Caetite/Lagoa Real, Bahia, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Scislewski, Alexandro Rocha

    2004-01-15

    In the present research, the proposal was to develop a preliminary study about the geochemical behavior of determined chemical elements, mainly the uranium, during the action of weathering processes in the rocks that bear the uranium mineralizations of the Caetite-Lagoa Real region, State of Bahia, more specifically of the Jazida Cachoeira uranium mine. To reach this purpose were used samples that represent several stages of the milling process of the uranium ore, so selecting representatives of the host rock, the ore and the treated ore (waste from the milling plant) to be used in the laboratory-controlled experiments. The samples were dried, sieved and finally introduced in the reactors, these adapted from the Flow-Through Reactor of Brantley and Chen. In the geochemical point of view, the results of the experiments showed a distinct behavior between the samples. It was observed that the treated ore, in relation to the host rocks of the ore and the own ore, shown a faster and homogeneous interaction with the leaching solution; it was also noted that in the output solution of the treated ore samples existed a significant complexation of the uranium by the sulfate (S0{sub 4}{sup -2}), ), instead of the non treated samples (host rock and ore) that were complexed mainly by the carbonate (C0{sub 3}{sup -2}). These different results are attributed to the alterations imposed to the rock during the milling process, and occur mainly, during the acid attack in the leaching process of the milling plant. The results and conclusions of this research, in spite of been preliminary, are essential to understand the behavior of the geochemical speciation of the effluent solutions; to understand the alterations of a rock matrix, and finally, to understand the migration chemical behavior of the related chemical elements. It is expected that these results contribute, in the future, to a deeper knowledge of the processes that control the chemical composition of the natural waters from

  4. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.

  5. Enzymatic corn wet milling: engineering process and cost model

    Science.gov (United States)

    Enzymatic Corn Wet Milling (E-Milling) is a proposed alternative process to conventional wet milling for the recovery and purification of starch and coproducts using proteases to eliminate the need for sulfites and to decrease the steeping time. In 2005, the total starch production in USA by conven...

  6. Hydrological Monitoring and Environmental Modeling to Assess the Quality and Sustainability of the Water Resources in an Uranium Mine Area, Caetité - Brazil

    Science.gov (United States)

    Franklin, M. R.; van Slobbe, E.; Fernandes, N. F.; Palma, J.; van Dalen, D.; Santos, A. C.; Melo, V.; Reis, R. G.; Carmo, R.; Fernandes, H. M.

    2009-12-01

    Uranium mining and processing constitute the front-end of the nuclear fuel-cycle and respond for most of its radiological impacts. For many years it has been accepted that the key driving force associated with these radiological impacts was related with radon exhalation from mill tailings. However, evidences coming from other mining sites showed that impacts in superficial and ground waters could also play a significant role. In Brazil, the newest uranium production unit presents a unique opportunity to integrate all the above concepts in a logical framework that will lead to sound and environmental balanced operations. The production center (Caetité plant) consists of open pit mine and sulfuric acid Heap Leach operations and is located at a semi-arid region in northeastern Brazil. Because groundwater is the sole perennial source of water for human consumption and industrial use, this resource has to be managed wisely and efficiently. Therefore, this paper intends to summarize the components of an ongoing project of groundwater management in uranium mining areas. The results will guide the adequate management of groundwater use and provide the basis for the appropriate impact assessment of the potential releases of pollutants. The methodology starts with the mathematical simulation of the long-term behavior of the hydrogeological system based on an experimental basin approach. The occurrence and pattern of groundwater flow in the Caetité experimental basin (CEB) are mainly conditioned by the degree of faulting/fracturing of rocks (predominantly gneisses and granites). Two faulting systems are observed in the area, the principal one, parallel to the foliation (with NW direction) and the secondary one with NE direction. The main water reservoirs in the CEB are related to the intrusion of a diabase dike, which increased the density of fractures in the rocks. This dike serves as natural barrier to the water flow and constrains the potential contamination of

  7. Cutting force prediction for circular end milling process

    Institute of Scientific and Technical Information of China (English)

    Wu Baohai; Yan Xue; Luo Ming; Gao Ge

    2013-01-01

    A deduced cutting force prediction model for circular end milling process is presented in this paper.Traditional researches on cutting force model usually focus on linear milling process which does not meet other cutting conditions,especially for circular milling process.This paper presents an improved cutting force model for circular end milling process based on the typical linear milling force model.The curvature effects of tool path on chip thickness as well as entry and exit angles are analyzed,and the cutting force model of linear milling process is then corrected to fit circular end milling processes.Instantaneous cutting forces during circular end milling process are predicted according to the proposed model.The deduced cutting force model can be used for both linear and circular end milling processes.Finally,circular end milling experiments with constant and variable radial depth were carried out to verify the availability of the proposed method.Experiment results show that measured results and simulated results corresponds well with each other.

  8. Fractal and Chaos Characteristics in Rock Milled Process

    Directory of Open Access Journals (Sweden)

    Chenxu LUO

    2013-07-01

    Full Text Available In order to research the mechanism and to reveal the natural characteristics in rock milled process, the milling load was deemed to be a component of the deterministic nonlinear dissipation system. The characteristic factor model of milling load was built on the basis of time delay method, and the phase-space of milling load was rebuilt. the dimensional phase-type of broken attractor was described. The results indicated that the broken attractor was a fractal set ,which acquired through the scale conversion of phase-space developed by each dimension. The relevant dimension of broken attractor can be as the identification to reflect the change of rock broken mechanism. And the Lyapunov exponential spectrum and the maximum Lyapunov exponent were acquired by confirming the system reconstruction dimension. The chaos phenomenon was existed in the rock milled process, which provides the basis for building the deterministic model of rock milled process.

  9. Sorting Olive Batches for the Milling Process Using Image Processing

    Directory of Open Access Journals (Sweden)

    Daniel Aguilera Puerto

    2015-07-01

    Full Text Available The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco. The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results.

  10. Enzymatic corn wet milling: engineering process and cost model

    Directory of Open Access Journals (Sweden)

    McAloon Andrew J

    2009-01-01

    Full Text Available Abstract Background Enzymatic corn wet milling (E-milling is a process derived from conventional wet milling for the recovery and purification of starch and co-products using proteases to eliminate the need for sulfites and decrease the steeping time. In 2006, the total starch production in USA by conventional wet milling equaled 23 billion kilograms, including modified starches and starches used for sweeteners and ethanol production 1. Process engineering and cost models for an E-milling process have been developed for a processing plant with a capacity of 2.54 million kg of corn per day (100,000 bu/day. These models are based on the previously published models for a traditional wet milling plant with the same capacity. The E-milling process includes grain cleaning, pretreatment, enzymatic treatment, germ separation and recovery, fiber separation and recovery, gluten separation and recovery and starch separation. Information for the development of the conventional models was obtained from a variety of technical sources including commercial wet milling companies, industry experts and equipment suppliers. Additional information for the present models was obtained from our own experience with the development of the E-milling process and trials in the laboratory and at the pilot plant scale. The models were developed using process and cost simulation software (SuperPro Designer® and include processing information such as composition and flow rates of the various process streams, descriptions of the various unit operations and detailed breakdowns of the operating and capital cost of the facility. Results Based on the information from the model, we can estimate the cost of production per kilogram of starch using the input prices for corn, enzyme and other wet milling co-products. The work presented here describes the E-milling process and compares the process, the operation and costs with the conventional process. Conclusion The E-milling process

  11. Complete Mill Simulation of the Rolling Process of 1660 mm Hot Strip Continuous Mills

    Institute of Scientific and Technical Information of China (English)

    Yingrui WANG; Zhenshan CUI; Yingjie WANG; Hongmin LIU

    2004-01-01

    The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and computing model of shape and crown of 4-high mill was established by combining them, and the rolling process of 1660 mm hot strip continuous mills was simulated. The simulated results tally well with the experimental results. The model and the method for simulation of shape analysis and control of hot strip mills were provided.

  12. Impact of Modal Parameters on Milling Process Chatter Stability Lobes

    Institute of Scientific and Technical Information of China (English)

    LI Zhongqun; LIU Qiang

    2006-01-01

    Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process, the influence of modal parameters on chatter stability lobes independently or jointly has been analyzed by simulation. Peak-to-valley specific value, lobe coefficient and the corresponding calculation formula have been put forward. General laws and steps of modal simplification for multimodality system have been summarized.

  13. The construction of the milling process simulation models

    Science.gov (United States)

    Ślusarczyk, Ł.

    2016-09-01

    The paper has aimed at presentation of the possibilities of using computer-based techniques into scope of machine cutting processes, and mostly of analytical and numerical modeling of the milling process for austenitic high-alloy chromium-nickel steel X 5 CrNi 18-10 and verification of the results experiments. The study was mostly focused on measuring and assessment of deformations in the given sample with the specific load. The simulations were executed in modern computer simulation software which supports such activities. These include: NX by Siemens and Simulia Abaqus. The selection of parameters was based on the real values measured during the milling process.

  14. New Approach of Envelope Dynamic Analysis for Milling Process

    CERN Document Server

    Bisu, Claudiu-Florinel; Gérard, Alain; Vijelea, V; Anica, Marin

    2012-01-01

    This paper proposes a method to vibration analysis in order to on-line monitoring of milling process quality. Adapting envelope analysis to characterize the milling tool materials is an important contribution to the qualitative and quantitative characterization of milling capacity and a step by modeling the three-dimensional cutting process. An experimental protocol was designed and developed for the acquisition, processing and analyzing three-dimensional signal. The vibration envelope analysis is proposed to detect the cutting capacity of the tool with the optimization application of cutting parameters. The research is focused on FFT Fourier transform optimization of vibration analysis and vibration envelope to evaluate the dynamic behavior of the machine/ tool/workpiece

  15. Assessment of the total uranium concentration in surface and underground water samples from the Caetite region, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Julia Grasiela Batista; Geraldo, Luiz Paulo [Centro Universitario da Fundacao Educacional de Barretos (UNIFEB), (SP) (Brazil); Yamazaki, Ione Makiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    At the region of Caetite, BA, it is located the largest uranium mine in exploration at present days in Brazil. During the uranium extraction process, it may be having an environmental contamination by this heavy metal due to rain water and other natural transport mechanism, with potential exposition risk to the local population. The aim of this work was to investigate the total uranium concentration in surface and underground water samples collected at the Caetite region, using the nuclear track registration technique (SSNTD) in a polycarbonate plastic. A 100 mL volume of water samples were initially treated in 10 mL of HNO{sub 3} (PA) and concentrated by evaporation at a temperature around 80 deg C. The resulting residue was diluted to a total volume of 25 mL without pass it to a filter. About 10 {mu}L of this solution was deposited on the plastic detector surface (around 1.0 cm{sup 2} area) together with 5 {mu}L of a Cyastat detergent solution (5%) and evaporated under an infrared lamp. All the resulting deposits of non volatile constituents were irradiated, together with a uranium standard sample, at the IPEN-IEA-R1 (3.5 MW) nuclear reactor for approximately 3 min. After irradiations, chemical etching of the plastic detectors was carried out at 60 deg C, for 65 min. in a NaOH (6N) solution. The fission tracks were counted scanning all the deposit area of the polycarbonate plastic detector with a system consisting of an optical microscope together with a video camera and TV monitor. The average values of uranium concentrations obtained in this work ranged from (0.95{+-}0.19) {mu}g.L{sup -1} to (25.60{+-}3.3) {mu}g.L{sup -1}. These results were compared to values reported in the literature for water samples from other regions and discussed in terms of safe limits recommended by WHO -World Health Organization and CONAMA - Conselho Nacional do Meio Ambiente. (author)

  16. Development of Cooling Process Control Technique in Hot Strip Mill

    Institute of Scientific and Technical Information of China (English)

    HAN Bin; LIU Xiang-hua; WANG Guo-dong; SHE Guang-fu

    2005-01-01

    In order to ensure required mechanical properties of steel strip, various innovations in the cooling process control on the run-out table of a hot strip mill were actively promoted. The recent progress of process mathematical model and the new cooling strategy and equipment were discussed. The computer control system of high performance was introduced. The development trend in cooling process control was given.

  17. Effects of ozone on kraft process pulp mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, A. (Stanley Industrial Consultants, Edmonton, Alberta (Canada)); Smith, D.W. (Univ. of Alberta, Edmonton, (Canada))

    1992-12-01

    Effluent from a kraft process pulp mill was studied in a batch reactor for ozone doses between 50 and 200 mg O[sub 3]/L to identify the suitability of ozone application locations in the treatment process and see the improvements in biotreatability of wastewaters from a kraft process pulp mill. Laboratory acclimatized seed were used for (Biochemical Oxygen Demand) BOD tests for ozonated and unozonated samples. The inhibitory effects were minimized by using optimum dilutions. The studies were divided into three major sections: characterization of mill effluent; ozone system calibration, and reactor design; and ozonation of mill effluent. Seed for BOD tests were acclimatized in batch units for primary, bleach and secondary effluents separately. The results were analyzed using the [open quote]t[close quote] test for paired experiments and an ANOVA table for statistical confirmation. Residuals were plotted to check the assumptions of constant variance and normal distribution. It was concluded that ozone is most effective for the removal of color and the increase of BOD in secondary effluent. 21 refs., 9 figs., 7 tabs.

  18. Chemical process simulation for minimizing energy consumption in pulp mills

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Marcelo; Oliveira, Katia Dionisio de; Costa, George Alberto Avelar [Department of Chemical Engineering/School of Engineering, Federal University of Minas Gerais (UFMG), Belo Horizonte/MG (Brazil); Passos, Maria Laura [Collaborator Researcher, Drying Center, Chemical Engineering Department, Federal University of Sao Carlos (UFSCar) (Brazil)

    2009-01-15

    Chemical process simulation has proven to be an effective tool for performing a systematic and global analysis of energy systems to identify routes for maximizing the process efficiency concerning to the heat recovery. This paper shows an application of computer simulations in a Brazilian pulp mill, using two strategies for minimizing the mill energy consumption. In the first one, the overall heat transfer coefficient has been predicted for each body of the multiple effect evaporators by using continuous on-line data from the industrial plant in the black liquor recover unit. By monitoring oscillations of this heat transfer coefficient, the suitable time for washing the evaporator heat transfer surfaces can be well determined, reducing the energy loss during black liquor evaporation. In the second strategy, the liquor combustion has been simulated as function of the black liquor solids concentration to analyze its effect on the recovery boiler efficiency improvement. (author)

  19. Modelling Of Residual Stresses Induced By High Speed Milling Process

    Science.gov (United States)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  20. Scale-up from batch to flow-through wet milling process for injectable depot formulation.

    Science.gov (United States)

    Lehocký, Róbert; Pěček, Daniel; Štěpánek, František

    2016-12-01

    Injectable depot formulations are aimed at providing long-term sustained release of a drug into systemic circulation, thus reducing plasma level fluctuations and improving patient compliance. The particle size distribution of the formulation in the form of suspension is a key parameter that controls the release rate. In this work, the process of wet stirred media milling (ball milling) of a poorly water-soluble substance has been investigated with two main aims: (i) to determine the parametric sensitivity of milling kinetics; and (ii) to develop scale-up methodology for process transfer from batch to flow-through arrangement. Ball milling experiments were performed in two types of ball mills, a batch mill with a 30ml maximum working volume, and a flow-through mill with a 250ml maximum working volume. Milling parameters were investigated in detail by methodologies of QbD to map the parametric space. Specifically, the effects of ball size, ball fill level, and rpm on the particle breakage kinetics were systematically investigated at both mills, with an additional parameter (flow-rate) in the case of the flow-through mill. The breakage rate was found to follow power-law kinetics with respect to dimensionless time, with an asymptotic d50 particle size in the range of 200-300nm. In the case of the flow-through mill, the number of theoretical passes through the mill was found to be an important scale-up parameter.

  1. Anatomia dos órgãos vegetativos de Hymenaea martiana Hayne (Caesalpinioideae-Fabaceae: espécie de uso medicinal em Caetité-BA Anatomy of vegetative organs of Hymenaea martiana Hayne (Fabaceae-Caesalpinioideae: a species of medicinal use in Caetité-Bahia State, Brazil

    Directory of Open Access Journals (Sweden)

    M.S. Silva

    2012-01-01

    Full Text Available Hymenaea martiana Hayne (Fabaceae-Caesalpinioideae apresenta grande valor na medicina popular em Caetité. A casca, entrecasca do caule e a resina, são utilizadas no tratamento de diversos males. Neste estudo são apresentadas a caracterização anatômica e histoquímica dos órgãos vegetativos. Amostras foram coletadas e processadas segundo técnicas usuais em anatomia vegetal e histoquímica. Todos os órgãos apresentam, em visão transversal, epiderme unisseriada e cavidades secretoras. Cutícula espessa ocorre em todos os órgãos aéreos. A raiz é tetrarca. Colênquima lacunar foi encontrado no caule. Bainha de fibras esclerenquimáticas envolve os feixes vasculares dos órgãos aéreos. Células pétreas ocorrem no pecíolo. Tricomas tectores ocorrem em ambas as faces da folha. A folha é hipoestomática com estômatos paracíticos e o mesofilo é dorsiventral. Cristais de oxalato de cálcio ocorrem no caule, pecíolo e lâmina foliar. Compostos fenólicos ocorrem na raiz, pecíolo e nervura central da folha. Grãos de amido ocorrem na raiz, caule e pecíolo. Lipídios ocorrem em todos os órgãos. Acredita-se que compostos fenólicos e cavidades secretoras de resina podem justificar a utilidade medicinal da espécie pela população de Caetité.Hymenaea martiana Hayne (Fabaceae-Caesalpinioideae shows a great value in folk medicine in Caetité. Its bark, stem-bark and resin are used to treat various ailments. In this study, the anatomical and histochemical characterization of vegetative organs is reported. Samples were collected and processed according to usual techniques of plant anatomy and histochemistry. All organs have, by cross-sectional view, uniseriate epidermis and secretory cavities. Thick cuticle occurs in all aerial organs. The root is tetrarch. Lacunar collenchyma was found in the stem. Sclerenchymatic sheath of fibers surrounds the vascular bundles of the aerial organs. Stone cells occur in the petiole. Trichomes occur

  2. Grinding process within vertical roller mills: experiment and simulation

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-huai; CHEN Qing-ru; KUANG Ya-li; LYNCH A J; ZHUO Jin-wu

    2009-01-01

    Based on screening analysis, laser size analysis, grindability and rigidity tests of samples collected on line from a cement and a power plant, a simulation of the grinding process in vertical roller mills was carried out. The simulation calculation used a breakage function, B. The results indicate that the breakage function, B, and the selection function, S, in the form of a matrix, can be used to express the probability of the material breaking during the grinding process. This allows the size distribution of the product to be numerically estimated. The simulation results also show that the simulated size distribution curves fit the actual ex-perimental product curves quite well. The model provides a good starting point for simulation of the grinding process. Further re-search is needed to determine the proper breakage function and the matrix value of the selection function.

  3. Optimization of the Enzymatic Saccharification Process of Milled Orange Wastes

    Directory of Open Access Journals (Sweden)

    Daniel Velasco

    2017-08-01

    Full Text Available Orange juice production generates a very high quantity of residues (Orange Peel Waste or OPW-50–60% of total weight that can be used for cattle feed as well as feedstock for the extraction or production of essential oils, pectin and nutraceutics and several monosaccharides by saccharification, inversion and enzyme-aided extraction. As in all solid wastes, simple pretreatments can enhance these processes. In this study, hydrothermal pretreatments and knife milling have been analyzed with enzyme saccharification at different dry solid contents as the selection test: simple knife milling seemed more appropriate, as no added pretreatment resulted in better final glucose yields. A Taguchi optimization study on dry solid to liquid content and the composition of the enzymatic cocktail was undertaken. The amounts of enzymatic preparations were set to reduce their impact on the economy of the process; however, as expected, the highest amounts resulted in the best yields to glucose and other monomers. Interestingly, the highest content in solid to liquid (11.5% on dry basis rendered the best yields. Additionally, in search for process economy with high yields, operational conditions were set: medium amounts of hemicellulases, polygalacturonases and β-glucosidases. Finally, a fractal kinetic modelling of results for all products from the saccharification process indicated very high activities resulting in the liberation of glucose, fructose and xylose, and very low activities to arabinose and galactose. High activity on pectin was also observed, but, for all monomers liberated initially at a fast rate, high hindrances appeared during the saccharification process.

  4. Fuzzy and Regression Modelling of Hard Milling Process

    Directory of Open Access Journals (Sweden)

    A. Tamilarasan

    2014-04-01

    Full Text Available The present study highlights the application of box-behnken design coupled with fuzzy and regression modeling approach for making expert system in hard milling process to improve the process performance with systematic reduction of production cost. The important input fields of work piece hardness, nose radius, feed per tooth, radial depth of cut and axial depth cut were considered. The cutting forces, work surface temperature and sound pressure level were identified as key index of machining outputs. The results indicate that the fuzzy logic and regression modeling technique can be effectively used for the prediction of desired responses with less average error variation. Predicted results were verified by experiments and shown the good potential characteristics of the developed system for automated machining environment.

  5. Mineral-vegetal co-milling: An effective process to improve lignocellulosic biomass fine milling and to increase interweaving between mixed particles.

    Science.gov (United States)

    Motte, J-C; Delenne, J-Y; Rouau, X; Mayer-Laigle, C

    2015-09-01

    Fine-milling is a crucial objective for lignocellulosic biomass valorization. Co-milling appears to be a promising technique to improve its efficiency. However, the mechanisms occurring while co-milling remain poorly understood. In this study, an experimental work was performed to produce co-milled powders from both lignocellulosic (wheat, straw or pine sawdust) and mineral materials (limestone, quartzite or tile) with very contrasted physicochemical properties. The main consequences of co-milling were studied for both materials. A two-component mixing law for the prediction of the blend properties was proposed (particle sizes and true densities) to highlight the gain of this single processing step compared to separate milling and mixing. The predicted values were compared with experimental data for co-milled powders at 7 biomass contents from 0% to 100%. In all cases, co-milling leads to a reduction in particle size of lignocellulosic materials and create strong interweaving with mineral particles.

  6. Limit cycles, bifurcations, and accuracy of the milling process

    Science.gov (United States)

    Mann, B. P.; Bayly, P. V.; Davies, M. A.; Halley, J. E.

    2004-10-01

    Time finite element analysis (TFEA) is used to determine the accuracy, stability, and limit cycle behavior of the milling process. Predictions are compared to traditional Euler simulation and experiments. The TFEA method forms an approximate solution by dividing the time in the cut into a finite number of elements. The approximate solution is then matched with the exact solution for free vibration to obtain a discrete linear map. Stability is then determined from the characteristic multipliers of the map. Map fixed points correspond to stable periodic solutions which are used to evaluate surface location error. Bifurcations and limit cycle behavior are predicted from a non-linear TFEA formulation. Experimental cutting tests are used to confirm theoretical predictions.

  7. Tool path generation and back-off error analyze for robot milling process

    Science.gov (United States)

    Zhang, Bin; Tang, Chen; Wang, Ju; Wang, Qian

    2017-06-01

    An improved CC route tool path generation method is presented for robot milling process. Corresponding back-off error model is established based on the robot static elastic model and the ball-end cutter milling force model. Compared with the traditional CC route method, the distance between the adjacent constraint surfaces is adjusted dynamically and thus the milling accuracy will be improved. According to the back-off error model, tool posture can be optimized using genetic algorithms. It is significantly important for reducing the back-off error during robot milling process.

  8. Mathematical Model and Simulation of Cutting Force in Plunge Milling Process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Plunge milling is a high-speed machining way and the cutter is fed in the direction of the Z axis, which is used to remove excess material rapidly in roughing operations. In this paper, the orthogonal cutting theory was used to study the plunge milling of LY12 alloy. A mathematic model for cutting force in plunge milling was established, and the milling process was simulated by using Matlab. It is found that the single tooth cutting experimental result is unstable because of unsymmetrical single tooth in the milling process, which leads to the difference between the simulation and experimental results. The trend of multiple teeth cutting experimental result is similar to that of the simulation result; however, the peak values in the experimental result are different, which is caused by the error of cutter's position, and the error of peak value is less than 10%.

  9. Media milling process optimization for manufacture of drug nanoparticles using design of experiments (DOE).

    Science.gov (United States)

    Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj

    2015-01-01

    Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to <5 h to obtain the desired particle size (d90 < 400 nm). The desirability function used to optimize the response variables and observed responses were in agreement with experimental values. These results demonstrated the reliability of selected model for manufacture of drug nanoparticles with predictable quality attributes. The optimization of bead milling process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.

  10. Improved Sugar Production by Optimizing Planetary Mill Pretreatment and Enzyme Hydrolysis Process

    Directory of Open Access Journals (Sweden)

    Jeong Heo Kwon

    2015-01-01

    Full Text Available This paper describes an optimization of planetary mill pretreatment and saccharification processes for improving biosugar production. Pitch pine (Pinus rigida wood sawdust waste was used as biomass feedstock and the process parameters optimized in this study were the buffering media, the milling time, the enzyme quantity, and the incubation time. Glucose yields were improved when acetate buffer was used rather than citrate buffer. Initially, with each process variable tests, the optimal values were 100 minutes of milling, an enzyme concentration of 16 FPU/g-biomass, and a 12-hour enzymatic hydrolysis. Typically, interactions between these experimental conditions and their effects on glucose production were next investigated using RSM. Glucose yields from the Pinus rigida waste exceeded 80% with several of the conditions tested, demonstrating that milling can be used to obtain high levels of glucose bioconversion from woody biomass for biorefinery purposes.

  11. Study of Al composites prepared by high-energy ball milling; Effect of processing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Duarte, J.M.; Estrada-Guel, I.; Carreño-Gallardo, C.; Martínez-Sánchez, R.

    2015-09-15

    The present work deals with the synthesis of some Al-based composites prepared by mechanical milling and processing by powder metallurgy followed by the evaluation of process conditions as: type of additive, their concentration and milling intensity studying its effect on the characteristics of the powder composite and mechanical performance of the composite. Powder samples were microstructural characterized by electronic microscopy (SEM–TEM) and the mechanical response was followed by hardness and compressive tests. A pronounced effect on the mechanical response of the specimens was evident after the addition of reinforced particles and milling intensity. Microscopy studies showed a uniform dispersion of the reinforcing particles in the metallic matrix at nanometric scale and an important grain refinement of the Al matrix was confirmed. After processing, a 66% increase on the mechanical response was reached with 1% of additive complemented with short milling intensities.

  12. Timely online chatter detection in end milling process

    Science.gov (United States)

    Fu, Yang; Zhang, Yun; Zhou, Huamin; Li, Dequn; Liu, Hongqi; Qiao, Haiyu; Wang, Xiaoqiang

    2016-06-01

    Chatter is one of the most unexpected and uncontrollable phenomenon during the milling operation. It is very important to develop an effective monitoring method to identify the chatter as soon as possible, while existing methods still cannot detect it before the workpiece has been damaged. This paper proposes an energy aggregation characteristic-based Hilbert-Huang transform method for online chatter detection. The measured vibration signal is firstly decomposed into a series of intrinsic mode functions (IMFs) using ensemble empirical mode decomposition. Feature IMFs are then selected according to the majority energy rule. Subsequently Hilbert spectral analysis is applied on these feature IMFs to calculate the Hilbert time/frequency spectrum. Two indicators are proposed to quantify the spectrum and thresholds are automatically calculated using Gaussian mixed model. Milling experiments prove the proposed method to be effective in protecting the workpiece from severe chatter damage within acceptable time complexity.

  13. EFFECT OF THE INDUSTRIAL MILLING PROCESS ON THE RHEOLOGICAL BEHAVIOR OF DIFFERENT TYPES OF WHEAT FLOUR

    Directory of Open Access Journals (Sweden)

    Violeta Ionescu

    2010-12-01

    Full Text Available In the milling process a large number of milling streams are obtained. These fractions are usually combined into a single composite product, but it is possible to select for blending certain fractions to obtaining different types of flours. In this work the rheological behavior, of the industrial flours obtained in different extraction levels was analyzed using Mixolab and Alveograph devices. Our results showed that the flour extraction rate is an important factor influencing rheological behavior. When by the milling process were obtained two types of flour, the flour with high ash content presented higher values of C3, C4 and C5 torques compared to flour with lower ash content. Therefore, the quality of the white flour obtained from wheat milling at different extraction levels highly depends on the flour fractions that are selected for blending.

  14. Parameter Determination of Milling Process Using a Novel Teaching-Learning-Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zhibo Zhai

    2015-01-01

    Full Text Available Cutting parameter optimization dramatically affects the production time, cost, profit rate, and the quality of the final products, in milling operations. Aiming to select the optimum machining parameters in multitool milling operations such as corner milling, face milling, pocket milling, and slot milling, this paper presents a novel version of TLBO, TLBO with dynamic assignment learning strategy (DATLBO, in which all the learners are divided into three categories based on their results in “Learner Phase”: good learners, moderate learners, and poor ones. Good learners are self-motivated and try to learn by themselves; each moderate learner uses a probabilistic approach to select one of good learners to learn; each poor learner also uses a probabilistic approach to select several moderate learners to learn. The CEC2005 contest benchmark problems are first used to illustrate the effectiveness of the proposed algorithm. Finally, the DATLBO algorithm is applied to a multitool milling process based on maximum profit rate criterion with five practical technological constraints. The unit time, unit cost, and profit rate from the Handbook (HB, Feasible Direction (FD method, Genetic Algorithm (GA method, five other TLBO variants, and DATLBO are compared, illustrating that the proposed approach is more effective than HB, FD, GA, and five other TLBO variants.

  15. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling.

    Science.gov (United States)

    Bitterlich, A; Laabs, C; Krautstrunk, I; Dengler, M; Juhnke, M; Grandeury, A; Bunjes, H; Kwade, A

    2015-05-01

    The production of nanosuspensions has proved to be an effective method for overcoming bioavailability challenges of poorly water soluble drugs. Wet milling in stirred media mills and planetary ball mills has become an established top-down-method for producing such drug nanosuspensions. The quality of the resulting nanosuspension is determined by the stability against agglomeration on the one hand, and the process parameters of the mill on the other hand. In order to understand the occurring dependencies, a detailed screening study, not only on adequate stabilizers, but also on their optimum concentration was carried out for the active pharmaceutical ingredient (API) naproxen in a planetary ball mill. The type and concentration of the stabilizer had a pronounced influence on the minimum particle size obtained. With the best formulation the influence of the relevant process parameters on product quality was investigated to determine the grinding limit of naproxen. Besides the well known phenomenon of particle agglomeration, actual naproxen crystal growth and morphology alterations occurred during the process which has not been observed before. It was shown that, by adjusting the process parameters, those effects could be reduced or eliminated. Thus, besides real grinding and agglomeration a process parameter dependent ripening of the naproxen particles was identified to be a concurrent effect during the naproxen fine grinding process.

  16. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, M; UhlIr, V; Babor, P; Spousta, J; Sikola, T [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic); KolIbalova, E; HrncIr, T, E-mail: urbanek@fme.vutbr.cz [TESCAN, s.r.o., Libusina trIda 21, 623 00 Brno (Czech Republic)

    2010-04-09

    Focused ion beam (FIB) milling has been used to fabricate magnetic nanostructures (wires, squares, discs) from single magnetic layers (Co, permalloy) and spin-valve (permalloy/Cu/Co) multilayers (thicknesses 5-50 nm) prepared by ion beam sputtering deposition. Milled surfaces of metallic thin films typically exhibit residual roughness, which is also transferred onto the edges of the milled patterns. This can lead to domain wall pinning and influence the magnetization behaviour of the nanostructures. We have investigated the milling process and the influence of the FIB parameters (incidence angle, dwell time, overlap and ion beam current) on the roughness of the milled surface. It has been found that the main reasons for increased roughness are different sputter yields for various crystallographic orientations of the grains in polycrystalline magnetic thin films. We have found that the oblique ion beam angle, long dwell time and overlap < 1 are favourable parameters for suppression of this intrinsic roughness. Finally, we have shown how to determine the ion dose necessary to mill through the whole thin film up to the silicon substrate from scanning electron microscopy (SEM) images only.

  17. Cavity formation and surface modeling of laser milling process under a thin-flowing water layer

    Science.gov (United States)

    Tangwarodomnukun, Viboon

    2016-11-01

    Laser milling process normally involves a number of laser scans over a workpiece to selectively remove the material and then to form cavities with shape and dimensions required. However, this process adversely causes a heat accumulation in work material, which can in turn damage the laser-milled area and vicinity in terms of recast deposition and change of material properties. Laser milling process performing in a thin-flowing water layer is a promising method that can overcome such damage. With the use of this technique, water can flush away the cut debris and at the same time cool the workpiece during the ablation. To understand the potential of this technique for milling application, the effects of process parameters on cavity dimensions and surface roughness were experimentally examined in this study. Titanium sheet was used as a workpiece to be milled by a nanosecond pulse laser under different water flow velocities. A smooth and uniform cut feature can be obtained when the metal was ablated under the high laser pulse frequency and high water flow velocity. Furthermore, a surface model based on the energy balance was developed in this study to predict the cavity profile and surface roughness. By comparing to the experiments, the predicted profiles had a good agreement with the measured ones.

  18. The influence of milling-burnishing successive and simultaneous processes on the material hardness

    Science.gov (United States)

    Grigoraş, C. C.; Brabie, G.; Chirita, B.

    2016-08-01

    Recent developments in the field of bio-engineering allow the use of magnesium alloys as a substitute for medical implants. The issue with such alloys is the degradation rate witch has to be improved in order to provide the necessary support for the entire duration of the bone fraction healing. For improving the bone shielding heat treatment does not represent a solution, but chemical and/or mechanical do. One mechanical process that has excellent result is burnishing, but this process is difficult to be implemented on a milling machine. Therefore, it was necessary that a new tool and tool holder to be developed, that allow the simultaneous process to take place. A high-pressure hydraulic roller burnishing tool with a special tool holder was used on a CNC milling machine. The material used for this study is magnesium alloy AZ31B-F, and one of the main purposes was to improve the material hardness (HV). The milling-burnishing parameters that where varied are the speed and feed, burnishing pressure and depth, type of process (successive or simultaneous), machining direction and the material hardness after milling. The results were analyzed as percentage improvement between the milling and burnishing measured values.

  19. Effect of ball milling and heat treatment process on MnBi powders magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei; Polikarpov, Evgueni; Choi, Jung-Pyung; Bowden, Mark E.; Sun, Kewei; Cui, Jun

    2016-09-01

    The metallic compound MnBi has high intrinsic coercivity with large positive temperature coefficient. The coercivity of MnBi exceeds 12 kOe and 26 kOe at 300 K and 523 K, respectively. Hence MnBi is a good candidate for the hard phase in exchange coupled nanocomposite magnets. In order to maximize the loading of the soft phase, the size of the MnBi particle has to be close to 500 nm, the size of single magnetic domain. Low energy milling is the common method to reduce MnBi particle size. However, only 3-7 mu m size particle can be achieved without significant decomposition. Here, we report our effort on preparing submicron MnBi powders using traditional powder metallurgy methods. Mn55Bi45 magnetic powders were prepared using arc melting method, followed by a series of thermal-mechanical treatment to improve purity, and finished with low energy ball milling at cryogenic temperature to achieve submicron particle size. The Mn55Bi45 powders were decomposed during ball milling process and recovered during 24 h 290 degrees C annealing process. With increasing ball-milling time, the saturation magnetization of MnBi decreases, while the coercivity increases. Annealing after ball milling recovers some of the magnetization, indicating the decomposition occurred during the ball-milling process can be reversed. The coercivity of Mn55Bi45 powders are also improved as a result of the heat treatment at 290 degrees C for 24 h. The world record magnetization 71.2 emu/g measured applying a field of 23 kOe has been achieved via low energy ball mill at room temperature

  20. Model-based Process Monitoring and Control of Micro-milling using Active Magnetic Bearings

    NARCIS (Netherlands)

    Blom, R.S.

    2011-01-01

    The process of micro-milling is a promising technology for the fabrication of micro-parts with arbitrary 3D features in a wide range of materials. However, as a result of the reduced dimensions, the susceptibility of the process for machine tool errors and vibrations is higher, having adverse effect

  1. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Bouwhuis, E.; Klapwijk, A.; Spanjers, H.; Lier, van J.B.

    2002-01-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper

  2. Evaluation of natural radioactivity in superficial and underground drinking water, from the Caetite region, BA; Avaliacao da radioatividade natural em aguas potaveis, de superficie e subterraneas da regiao de Caetite, BA

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luciana Sousa

    2011-07-01

    Brazil has the seventh greatest geological uranium reserve in the world with approximately 310 thousand tons. The Lagoa Real Uranium Province, in the region of Caetite and Lagoa Real, situated in South Center Bahia, is considered the most important monomineralic province in Brazil. Urban population who lives in the uranium district in the cities of Caetite, Lagoa Real and Livramento de Nossa Senhora uses drinking water originated from public supply. In the rural area, characterized by frequent draughts, residents receive water from digged and drilled wells and from small dams and reservoirs, as well, which are supplied by the rains. This work determined the levels of total alpha and beta radioactivity and the uranium concentrations in several kinds of water consumed by urban and rural population from the Lagoa Real Uranium Province. Total {alpha} and {beta} activities were determined with a low-level gas flow proportional detector. The uranium concentrations were determined with an inductive coupled plasma-mass spectrometer (ICP-MS). The results obtained were confronted with the latest World Health Organization's recommendations from 2011, the ordinance number 2914 of December 12 2011 from the Health Ministry and CONAMA's resolutions. Natural radiation levels varied from 0,0041 {+-} 0,0004 Bq.L{sup -1} to 0,80 {+-} 0,04 Bq.L{sup -1} for total alpha activity and from 0,045 {+-} 0,003 to 3,00 {+-} 0,2 Bq.L{sup -1} for total beta activity. Having the WHO and the HM as parameter, just two underground water samples, one located in the city of Lagoa Real and the other in the city of Caetite presented total alpha concentration above the value of 0,5 Bq.L{sup -1} described in its recommendations, 0,80 {+-} 0,040 Bq.L{sup -1} and 0,57 {+-} 0,03 Bq.L{sup -1} respectively. For total beta three samples presented radioactivity levels above the 1 Bq.L{sup -1} limit recommended by the WHO and established by the Health Ministry; 3,00 {+-} 0,2 Bq.L{sup -1}; 1,63 {+-} 0

  3. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Science.gov (United States)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  4. The influence of milling-burnishing successive and simultaneous processes on the surface roughness

    Science.gov (United States)

    Grigoraş, C. C.; Brabie, G.; Chirita, B.

    2016-08-01

    The present techniques do not offer the possibility for milling and burnishing at the same time. The novelty of this study is the development of a new tool and tool holder that allows this processes to take place simultaneous. Magnesium alloys have a wide range of usages in industry; in the past years they seem to be a promising solution to classic implants. Improvements in fatigue and tensile strength need to be made. Heat treatments are difficult to implement, so the solution is a mechanical treatment. The burnishing process offers very good results, but it has difficulties in simultaneous machining with the milling process. Thereby a hydraulic roller burnishing tool and a special tool holder was manufactured to solve this issue. The combined process was carried out on a CNC milling machine. This study seeks to highlight the influence of the milling-burnishing process parameter on the surface roughness in the case of magnesium alloy AZ31B-F. Parameters like speed and feed of cut, burnishing pressure and depth where taken into consideration. It was noted that with the increase of the feed, speed, pressure and depth of burnishing the general percentage improvement of the surface roughness was higher.

  5. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill.

    Science.gov (United States)

    Steiner, Denise; Finke, Jan Henrik; Kwade, Arno

    2016-09-25

    Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved.

  6. Determination of the concentration of radionuclides in soil and water next the uranium mine of Caetite, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Geangela M.; Souza, Susana O. [Federal University of Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. of Physics; Campos, Simara S.S. [State University of Southwest Bahia (UESB), Itapetinga, BA (Brazil). Dept. of Basic and Instrumental Studies; Gennari, Roseli F., E-mail: rgennari@dfn.if.usp.b [University of Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. of Physics. Dept. of Nuclear Physics

    2011-07-01

    The economic growing in Brazil is responsible for an urgent demand for energy. Uranium is the fuel used to generate nuclear power. Brazil has the sixth largest reserve of the uranium ore in the world and, nowadays there is only one mine under exploration (Uraniferous District of Lagoa Real - Caetite-BA). Some Non-Governmental Organizations (NGOs), such as Greenpeace, state that the explored uranium mine is dangerous and polluting, causing water contamination by uranium. So, the population would be receiving radiation doses above permissible limits. However, Industrias Nucleares do Brasil (INB) the company in charge of the complex extraction and production of yellow cake rejected these accusations. The main purpose of this work is the determination of the composition of natural radionuclides in the Uraniferous District of Lagoa Real in order to determine if the nearest population is exposed to environmental radiation. It was checked if there is water contamination due to the natural transport in the uranium mining surroundings. Soil and water samples from Caetite mine and also from nearby town were collected. Only one water sample collected had concentrations higher than the limits recommended by World Health Organization. The presence of radionuclides in soil samples is considered independent of mineral exploration. The effective dose rates in almost all samples are above the world average which is 2.4 mSv/y. To sum up, the presence of uranium in water and soil of the tested areas is probably due to the nature of the soil and not to the exploration of mine. (author)

  7. A Review of Sensor System and Application in Milling Process for Tool Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad Rizal

    2014-02-01

    Full Text Available This study presents a review of the state-of-the-art in sensor technologies and its application in milling process to measure machining signal for Tool Condition Monitoring (TCM systems. Machining signals such as cutting force, torque, vibration, acoustic emission, current/power, sound and temperature from milling operation are briefly reviewed with the goal of indentifying the parameters for TCM. Sensors reviewed include both commercial and research devices that can measure machining signals. In this study describes trends in the sensor systems used and its potential for future research.

  8. Quantification of process induced disorder in milled samples using different analytical techniques

    DEFF Research Database (Denmark)

    Zimper, Ulrike; Aaltonen, Jaakko; McGoverin, Cushla M.

    2012-01-01

    The aim of this study was to compare three different analytical methods to detect and quantify the amount of crystalline disorder/ amorphousness in two milled model drugs. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman spectroscopy were used as analytical methods......-induced crystalline disorder/ amorphousness under different process conditions. In the DSC measurements the change in heat capacity at the glass transition was used for quantification. Differently prepared amorphous indomethacin standards (prepared by either melt quench cooling or cryo milling) were compared...... to crystalline disorder for milled drugs depends on the analytical method used and the calibration standard chosen as well as on the drug itself. From the data presented here, it appears that XRPD tends to give a higher percentage of crystalline disorder than Raman spectroscopy and DSC for the same samples...

  9. A vertical ball mill as a new reactor design for biomass hydrolysis and fermentation process

    DEFF Research Database (Denmark)

    de Assis Castro, Rafael Cunha; Mussatto, Solange I.; Conceicao Roberto, Inês

    2017-01-01

    A vertical ball mill (VBM) reactor was evaluated for use in biomass conversion processes. The effects of agitation speed (100–200 rpm), number of glass spheres (0–30 units) and temperature (40–46 °C) on enzymatic hydrolysis of rice straw and on glucose fermentation by a thermotolerant Kluyveromyces...

  10. THEORETICAL AND EXPERIMENTAL STUDIES OF ENERGY-EFFICIENT GRINDING PROCESS OF CEMENT CLINKER IN A BALL MILL

    Directory of Open Access Journals (Sweden)

    Kuznetsova M.M.

    2014-08-01

    Full Text Available The article presents results of theoretical and experimental research of grinding process of bulk materials in a ball mill. The new method of determination of energy efficiently mode of operation of ball mills in a process of a cement clinker grinding is proposed and experimentally tested.

  11. Automatic in-process chatter avoidance in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, N.J.M. van; Doppenberg, E.J.J.; Faassen, R.P.H.; Wouw, N. van de; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    High-speed milling is often used in industry to maximize productivity of the manufacturing of high-technology components, such as aeronautical components, mold, and dies. The occurrence of chatter highly limits the efficiency and accuracy of high-speed milling operations. In this paper, two control

  12. Improved electrode characteristics of olivine-LiCoPO 4 processed by high energy milling

    Science.gov (United States)

    Rabanal, M. E.; Gutierrez, M. C.; Garcia-Alvarado, F.; Gonzalo, E. C.; Arroyo-de Dompablo, M. E.

    Olivine-LiCoPO 4 powders have been processed by mechanical grinding for time periods ranging from 0.5 to 10 h with conductive carbon contents of 0, 8 and 20% (w/w). In all cases the grinding process produces an amorphization of the crystalline materials and decreases both the crystallite and particle sizes. Secondary phases are detected by scanning electron microscopy and X-ray diffraction in the materials milled for times greater than 2 h without carbon. The addition of conductive carbon during the milling process decelerates the degradation of the material and secondary phases are not detected even after 10 h of grinding. The electrochemical performance of olivine-LiCoPO 4 is improved in all the materials milled for 0.5 h; a lower cell polarization and a larger reversible specific capacity are observed. These characteristics are enhanced in the materials grinded with conductive carbon, which also display a capacity retention with cycling clearly superior to that of the fresh LiCoPO 4. Ball milling LiCoPO 4 for times greater than 1 h is detrimental for the response of the electrode, independently on the amount of conductive carbon in the grinding media.

  13. Processing of Polysulfone to Free Flowing Powder by Mechanical Milling and Spray Drying Techniques for Use in Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-04-01

    Full Text Available Polysulfone (PSU has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can be used for this aim. Processing PSU pellets by rotor milling in a three-step process resulted in particles of 51.8 μm mean diameter, whereas spray drying could only manage a mean diameter of 26.1 μm. The resulting powders were characterized using Differential Scanning Calorimetry (DSC, Gel Permeation Chromatography (GPC and X-ray Diffraction measurements (XRD. DSC measurements revealed an influence of all processing techniques on the thermal behavior of the material. Glass transitions remained unaffected by spray drying and rotor milling, yet a clear shift was observed for ball milling, along with a large endothermic peak in the high temperature region. This was ascribed to the imparting of an orientation into the polymer chains due to the processing method and was confirmed by XRD measurements. Of all processed powder samples, the ball milled sample was unable to dissolve for GPC measurements, suggesting degradation by chain scission and subsequent crosslinking. Spray drying and rotor milling did not cause significant degradation.

  14. COMPARATIVE STUDY IN THE PASSIVE FORCE AND CUTTING TORQUE IN THE MILLING PROCESS OF POLYMER MATRIX COMPOSITES AND ALUMINUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Krzysztof Ciecieląg

    2013-06-01

    Full Text Available This paper presents the results of a study undertaken to investigate the passive force and cutting torque during the milling of carbon fiber reinforced plastics saturated with epoxy resin and two aluminum alloys: AlSi21CuNi (AK 20 and 7075 (PA 9. The milling process was conducted using end mills with diamond inserts. The machining parameters were changed equally for each material as a result of which the passive force and cutting torque during the milling of these materials could be compared.

  15. DECOLORIZATION OF PROCESS WATERS IN DEINKING MILLS AND SIMILAR APPLICATIONS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Patrick Huber,

    2012-01-01

    Full Text Available Process waters in deinking mills often feature a strong coloration, due to dyes and pigments released from the recovered paper. This can usually be remediated by pulp bleaching treatment with appropriate chemicals. However, the red shade (from rhodamine dye is resistant to conventional bleaching treatments. This largely limits the use of deinked pulp in white paper grades. In this review, the available technologies for process water decolorization are discussed (chemical methods, physico-chemical methods and biological treatments. Ozonation of the process water appears to be the most promising technique for decolorization of process water in deinking mills. Other emerging technologies such as photo-catalytic treatment or mineralization by white-rot fungi (after adsorption on low-cost agricultural residues should be considered as well.

  16. Process Capability of High Speed Micro End-Milling of Inconel 718 with Minimum Quantity Lubrication

    Science.gov (United States)

    Rahman, Mohamed Abd; Yeakub Ali, Mohammad; Rahman Shah Rosli, Abdul; Banu, Asfana

    2017-03-01

    The demand for micro-parts is expected to grow and micro-machining has been shown to be a viable manufacturing process to produce these products. These micro-products may be produced from hard-to-machine materials such as superalloys under little or no metal cutting fluids to reduce machining cost or drawbacks associated with health and environment. This project aims to investigate the capability of micro end-milling process of Inconel 718 with minimum quantity lubrication (MQL). Microtools DT-110 multi-process micro machine was used to machine 10 micro-channels with MQL and 10 more under dry condition while maintaining the same machining parameters. The width of the micro-channels was measured using digital microscope and used to determine the process capability indices, Cp and Cpk. QI Macros SPC for Excel was used to analyze the resultant machining data. The results indicated that micro end-milling process of Inconel 718 was not capable under both MQL and dry cutting conditions as indicated by the Cp values of less than 1.0. However, the use of MQL helped the process to be more stable and capable. Results obtained showed that the process variation was greatly reduced by using MQL in micro end-milling of Inconel 718.

  17. An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions.

    Science.gov (United States)

    Li, Meng; Zhang, Lu; Davé, Rajesh N; Bilgili, Ecevit

    2016-04-01

    As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.

  18. Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills.

    Science.gov (United States)

    Zügner, Sascha; Marquardt, Karin; Zimmermann, Ingfried

    2006-02-01

    Elastic-plastic properties of single crystals are supposed to influence the size reduction process of bulk materials during jet milling. According to Pahl [M.H. Pahl, Zerkleinerungstechnik 2. Auflage. Fachbuchverlag, Leipzig (1993)] and H. Rumpf: [Prinzipien der Prallzerkleinerung und ihre Anwendung bei der Strahlmahlung. Chem. Ing. Tech., 3(1960) 129-135.] fracture toughness, maximum strain or work of fracture for example are strongly dependent on mechanical parameters like hardness (H) and young's modulus of elasticity (E). In addition the dwell time of particles in a spiral jet mill proved to correlate with the hardness of the feed material [F. Rief: Ph. D. Thesis, University of Würzburg (2001)]. Therefore 'near-surface' properties have a direct influence on the effectiveness of the comminution process. The mean particle diameter as well as the size distribution of the ground product may vary significantly with the nanomechanical response of the material. Thus accurate measurement of crystals' hardness and modulus is essential to determine the ideal operational micronisation conditions of the spiral jet mill. The recently developed nanoindentation technique is applied to examine subsurface properties of pharmaceutical bulk materials, namely calcite, sodium ascorbate, lactose and sodium chloride. Pressing a small sized tip into the material while continuously recording load and displacement, characteristic diagrams are derived. The mathematical evaluation of the force-displacement-data allows for calculation of the hardness and the elastic modulus of the investigated material at penetration depths between 50-300 nm. Grinding experiments performed with a modified spiral jet mill (Type Fryma JMRS 80) indicate the strong impact of the elastic-plastic properties of a given substance on its breaking behaviour. The fineness of milled products produced at constant grinding conditions but with different crystalline powders varies significantly as it is dependent on the

  19. ANALYZING THE PROCESS OF PRODUCTION IN LOGISTICS SUGARCANE MILL: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Alexandre Tognoli

    2011-06-01

    Full Text Available The objective was to present and analyze the physical arrangement of logistics and production process plant in a sugarcane mill, in order to expose the processes involved, analyzing them more deeply and thus collaborate in a more efficient production. The relevance of this presentation is linked to the benefits that the plant and professionals can get through this work, enabling the development of methods and production alternatives. The research method used was case study based on interviews, on-site observation and document analysis, which was very appropriate as it could examine and cross checking. This work will allow a better understanding of the production process of the logistics of the plant in a sugarcane mill and working with suggestions and methods for more efficient production.

  20. Integrated Approach for a Knowledge-Based Process Layout for Simultaneous 5-Axis Milling of Advanced Materials

    Directory of Open Access Journals (Sweden)

    F. Klocke

    2011-01-01

    Full Text Available Advanced materials, like nickel-based alloys, gain importance in turbomachinery manufacturing, where creating complex surfaces constitute a major challenge. However, milling strategies that provide high material removal rates at acceptable tooling costs demand optimized tool geometry and process parameter selection. In this paper, a description of circular milling is given, focusing on resulting engagement conditions. Regarding this, a test bench was designed to investigate the chip formation process in an analogy milling process. Furthermore, the methodology for the approach in the analogy process was developed. Results of a first test run in Inconel 718 verify the presented approach.

  1. Simulation and flowsheeting of the paper mill process; Paperiteollisuuden prosessien laskennallinen tasesimulointi

    Energy Technology Data Exchange (ETDEWEB)

    Penttinen, K.; Nystroem, L.

    1995-12-01

    The objective of this project was to select a suitable process simulation package for the paper industry by evaluating the properties of existing, mostly commercial, packages. Ease of use and flexibility are considered important. In addition the price of the simulation package should be low and the package should be usable in energy balance calculations. It is also a goal, that simulation packages will come in to common use in Finnish paper mills. The evaluated packages were ASPEN PLUS/MODELMANAGER, MASSBAL/CADSIM, WinGEMS and BALAS. Also the spreadsheet package (EXCEL) and RAMI simulation package (PI Process Consulting Ltd) were evaluated. The best package in this evaluation was the WinGEMS, which has the most suitable unit operation models for paper mill processes. The package has not yet the graphic user interface, but it has a Windows environment friendly for the user. The graphic user interface is being developed and it will be coming to the market in 1995. All the tested packages have good properties. MODELMANAGER(ASPEN PLUS) has the best graphic interface. MASSBAL2/CADSIM is a suitable tool for simulating the paper mill processes, but it requires good knowledge of both simulation technic and the process researched. BALAS package has good equipment symbols and it is fairly easy to use. (author)

  2. Influence of Milling Process of Roasted Cocoa Beans on Size Distribution Change of Cocoa Cotyledon

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2007-05-01

    Full Text Available One of important steps in secondarycocoa process is deshelling cocoa beans roasted. The aim of deshelling is to enrich cotyledon cocoa surface area which affects to reduce energy and processing time with good quality of the chocolate product. The objective of this research is to study the influence of milling process on physical characteristic change of cocoa beans roasted such as size distribution change, geometrical diameter average, uniformity index, fineness modulus, and average dimension of cotyledoncocoa roasted. The Indonesian Coffee and Cocoa Research Institute has designed and tested deshelling of roasted cocoa beans which will be used in this research. Before deshelling process, C grade bulk cocoa beans has been roasted up to 2.5—3% water contents. The result showed that optimal milling process by rotary cutter type milling unit has good size distribution change, geometrical diameter average, uniformity index, fineness modulus, and average dimension on 500 rpm rotary speed and 2.8 m/s air flow. On optimal process condition, 74.5% of cocoa cotyledon roasted has diameter size between 2.0—4.75 mm, 2.116 mm average of geometrical diameter, 0.864 mm average dimension, 3.052 fineness modulus, and 80% as crude size particel-20% as temperate size particel on uniformity index. Therefore, more than 80% of cocoa cotyledon roasted has diameter size between 2.0—4.75 mm with 700—900 rpm rotary cutter speed. Average of geometric diameter was 1.65—2.19 mm, and the dimension average was 0.69—0.89 mm. Uniformity index was crude size particle up to 80—90%, and in temperate size particle10—20%. Fineness modulus value was 2.73—3.09. Key words: cocoa, milling, size distribution, roasted beans.

  3. Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis.

    Science.gov (United States)

    Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A; Soni, Nipunjot; Mandal, Raju K; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y; Govender, Thavendran; Kruger, Hendrik G; Jawed, Arshad

    2016-01-01

    For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD600nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD600nm): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  4. Processing and microstructural characterization of a Ti-Cr-Nb alloy synthesized by high-energy ball-milling

    Directory of Open Access Journals (Sweden)

    José Fernando Ribeiro de Castro

    2012-10-01

    Full Text Available Ti-based body centered cubic (BCC solid solutions are promising materials for hydrogen storage. These alloys are usually synthesized by melting processes and have large amounts of vanadium as alloying element to stabilize the BCC phase at room temperature. In this work high energy ball-milling was evaluated as processing route for a Ti - based BCC solid solution. Moreover, the feasibility of Nb as stabilizer for the BCC phase is also investigated. The results show that the BCC phase is rapidly formed by ball-milling. After 2 hours of milling the alloy is mainly composed by BCC phase. Moreover, the time of milling must be limited in order to minimize the contamination with iron promoted by the wearing of milling balls and vials.

  5. Mathematical modelling to predict the roughness average in micro milling process

    Science.gov (United States)

    Burlacu, C.; Iordan, O.

    2016-08-01

    Surface roughness plays a very important role in micro milling process and in any machining process, because indicates the state of the machined surface. Many surface roughness parameters that can be used to analyse a surface, but the most common surface roughness parameter used is the average roughness (Ra). This paper presents the experimental results obtained at micro milling of the C45W steel and the ways to determine the Ra parameter with respect to the working conditions. The chemical characteristics of the material were determined from a spectral analysis, chemical composition was measured at one point and two points, graphical and tabular. A profilometer Surtronic 3+ was used to examine the surface roughness profiles; the effect of independent parameters can be investigated and can get a proper relationship between the Ra parameter and the process variables. The mathematical model were developed, using multiple regression method with four independent variables D, v, ap, fz; the analysis was done using statistical software SPSS. The ANOVA analysis of variance and the F- test was used to justify the accuracy of the mathematical model. The multiple regression method was used to determine the correlation between a criterion variable and the predictor variables. The prediction model can be used for micro milling process optimization.

  6. A model biorefinery for avocado (Persea americana mill.) processing.

    Science.gov (United States)

    Dávila, Javier A; Rosenberg, Moshe; Castro, Eulogio; Cardona, Carlos A

    2017-06-15

    This research investigated and evaluated a biorefinery for processing avocado Hass variety into microencapsulated phenolic compounds extract, ethanol, oil and xylitol. Avocado was first characterized for its potential valuable compounds; then, the techno-economic and environmental aspects of the biorefinery were developed and finally the total production costs and potential environmental impact of the proposed biorefinery were investigated. Four scenarios of the biorefinery were evaluated with different extent of mass and energy integration as well as the incorporation of a cogeneration system. Results indicated that the main fatty acid in the pulp of the investigated avocado variety was oleic acid (50.96%) and that this fruit contained significant amount of holocellulose (52.88% and 54.36% in the peel and seed, respectively). Techno-economic and environmental assessment suggested an attractive opportunity for a biorefinery for complete utilization of the avocado fruit as well the importance of the level of integration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effects of milling and processing on wheat contaminated with ochratoxin A.

    Science.gov (United States)

    Osborne, B G; Ibe, F; Brown, G L; Petagine, F; Scudamore, K A; Banks, J N; Hetmanski, M T; Leonard, C T

    1996-01-01

    Samples of sound home-grown wheat (one hard and one soft milling) were obtained, cleaned, and gamma-irradiation used to reduce numbers of viable naturally-occurring fungi. Each sample was inoculated with a toxigenic strain of Penicillium verrucosum and monitored for ochratoxin A formation. When ochratoxin A had reached a level of 60 micrograms/kg, the samples were milled into ten fractions which were analysed for ochratoxin A by an HPLC method with immunoaffinity column clean-up. Each straight-run white flour was baked into bread which was analysed in the same way. Relationships between ochratoxin A levels in naturally-contaminated wheat and the products of milling and baking were established. The recovery of ochratoxin A in wholemeal compared with the cleaned wheat was essentially complete and no significant loss occurred on baking white or wholemeal flour into bread. Recoveries in the straight-run white flours, however, were only approximately one-third for the hard wheat and two-thirds for the soft wheat of the ochratoxin A in the uncleaned wheat. The reason for this was that a much higher proportion of the ochratoxin A was found in the bran and offal fractions from hard wheat than from soft. Conversely, a much higher proportion of the ochratoxin A was found in the reduction flour from soft wheat than from hard. Scouring was examined as a possible method of decontamination of wheat prior to milling. This process removes a proportion of the pericarp (bran coat) prior to milling. The results of the study confirmed that scouring reduced the ochratoxin A level in white and wholemeal flour three-fold for both the hard and soft wheat.

  8. Development of high-aspect-ratio microchannel heat exchanger based on multi-tool milling process

    Institute of Scientific and Technical Information of China (English)

    潘敏强; 李金恒; 汤勇

    2008-01-01

    A high-aspect-ratio microchannel heat exchanger based on multi-tool milling process was developed. Several slotting cutters were stacked together for simultaneously machining several high-aspect-ratio microchannels with manifold structures. On the basis of multi-tool milling process, the structural design of the manifold side height, microchannel length, width, number, and interval were analyzed. The heat transfer performances of high-aspect-ratio microchannel heat exchangers with two different manifolds were investigated by experiments, and the influencing factors were analyzed. The results indicate that the magnitude of heat transfer area per unit volume dominates the heat transfer performances of plate-type micro heat exchanger, while the velocity distribution between microchannels has little effects on the heat transfer performances.

  9. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  10. Investigation of milling energy input on structural variations of processed olivine powders for CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Atashin, Sanam; Wen, John Z.; Varin, Robert A., E-mail: ravarin@uwaterloo.ca

    2015-01-05

    Highlights: • Milling energy input in kJ/g determines the microstructure of olivine powders. • The optimum energy input for a minimum olivine particle size is about 14 kJ/g. • The crystallite size of olivine decreases up to 55 kJ/g energy input and then saturates. • The effect of structural strain on material’s disorder is negligible above 55 kJ/g energy input. • The overall energy input for producing desirable olivine microstructure absorbing CO{sub 2} is about 55 kJ/g. - Abstract: This study aims to identify the correlation between microstructure of mechanically processed olivine powders and the milling energy input, for an ultimate purpose of optimizing the ball milling approach for achieving the best CO{sub 2} sequestration characteristics. Powders were processed in a high energy magneto ball mill. A variety of instrumental techniques such as scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) and X-ray diffraction (XRD) were utilized to characterize the particle size, specific surface area, pore volume, crystallinity and crystallite size of processes powders obtained with different levels of milling energy input. In each case, the variation of microstructural parameters with milling energy is compared for different milling devices extracted from the literature. Structural parameters of activated powders are correlated as a function of milling energy input, regardless of the ball mill type. The optimal range of milling energy input, expected to achieve the most desirable microstructure for CO{sub 2} sequestration is found to be about 55 kJ/g.

  11. FEM SIMULATION OF THE TUBE ROLLING PROCESS IN DIESCHER’S MILL

    Directory of Open Access Journals (Sweden)

    Zbigniew Pater

    2014-06-01

    Full Text Available This paper deals with the issue of numerical modelling of the piercing process of a thick–walled bush in a two-rolled skew rolling mill, equipped with guiding devices of Diescher’s type. After a short characteristic of the subject matter, the developed geometric model of the process was discussed, with taking kinematics of tools movement and thermal phenomena present in metal during forming into consideration. Next, the results of calculations were presented in a form of fields of strain, damage criterion and temperature. Distributions of force parameters acting on particular tools during the process of bush rolling were also given.

  12. THE IMPLEMENTATION OF TAGUCHI METHODOLOGY FOR OPTIMIZATION OF END MILLING PROCESS PARAMETER OF MILD STEEL

    Directory of Open Access Journals (Sweden)

    ANIL CHOUBEY

    2012-07-01

    Full Text Available In this paper Taguchi method is applied to find optimum process parameters for end milling while machining of mild steel. A L9 orthogonal array, taguchi method and analysis of variance (ANOVA are used to formulate the experimental layout, to analyses the effect of each parameter on the machining characteristics and to predict the optimal choice for each end milling parameter such as spindle speed, feed rate, depth of cut and width of cut, and analysed the effect of these parameter on the material removal rate (MRR and surfaceroughness (SR. Results obtained by taguchi method match with ANOVA and cutting speed are highly influencing parameter. The analysis of the taguchi method reveals that, in general the spindle speedsignificantly affects the SR, while, the feed mainly affects the MRR. Experimental results are provided to verify this approach.

  13. EFFECT OF PROCESS PARAMETERS ON SURFACE ROUGHNESS IN END MILLING OF Al/SiCp MMC

    Directory of Open Access Journals (Sweden)

    K. PALANIRADJA

    2011-01-01

    Full Text Available Metal matrix composites (MMCs have emerged as an important class of materials, which are increasingly being utilized in recent years. These materials are known as the difficult-to-machine materials because of the hardness and abrasive nature of reinforcements. The present work investigate the effect of spindle speed, feed rate, depthof cut and different % wt. of SiCp on surface roughness in end milling of LM25Al/SiCp. Experiments have been conducted on a CNC milling machine according to the principles of Response surface methodology design of experiments (DoE method. Central composite design (CCD was employed in developing an efficient mathematical model for surface roughness. Analysis of variance (ANOVA was used to test the adequacy of the developed mathematical model. The contour plots were generated to study the effect of process parameters aswell as their interactions.

  14. TANDEM COLD MILL PROCESS STABILITY IMPROVEMENT WITH CHROME PLATED WORK ROLLS APPLICATION

    Directory of Open Access Journals (Sweden)

    Sergio Luiz Muratori

    2012-09-01

    Full Text Available The stability of a tandem cold mill is essential to assure the thickness control, the main attribute of cold rolled steel sheets. This stability can be defined as the capability to control the process variables that act direct at the thickness. Among the most important variables are the first stand (mill linear speed and the sheet speed at the interstice ahead of it. This work shows how the chrome plated work rolls application improved this speed control and consequently the stability, which enabled an increase in the work roll rolling campaign (rolling sequence program in such a way significantly higher, compared to when using a non chrome plated work rolls. As results, significantly improvements of work rolls campaigns and the consequent increase of the equipment availability are presented.

  15. Optimize Operating Conditions on Fine Particle Grinding Process with Vertically Stirred Media Mill

    Science.gov (United States)

    Yang, Yang; Rowson, Neil; Ingram, Andy

    2016-11-01

    Stirred media mill recently is commonly utilized among mining process due to its high stressing intensity and efficiency. However, the relationship between size reduction and flow pattern within the mixing pot is still not fully understand. Thus, this work investigates fine particle grinding process within vertically stirred media mills by altering stirrer geometry, tip speed and solids loading. Positron Emitting Particle Tracking (PEPT) technology is utilized to plot routine of particles velocity map. By tacking trajectory of a single particle movement within the mixing vessel, the overall flow pattern is possible to be plotted. Ground calcium carbonate, a main product of Imerys, is chosen as feeding material (feed size D80 30um) mixed with water to form high viscous suspension. To obtain fine size product (normally D80 approximately 2um), large amount of energy is drawn by grinding mill to break particles through impact, shear attrition or compression or a combination of them. The results indicate higher energy efficient is obtained with more dilute suspension. The optimized stirrer proves more energy-saving performance by altering the slurry circulate. Imerys Minerals Limited.

  16. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: a comparative study.

    Science.gov (United States)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-10

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H2O2/Fe2+), UV, UV/H2O2, photo-Fenton (UV/H2O2/Fe2+), ozonation and peroxone (ozone/H2O2) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H2O2/Fe2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used.

  17. Optimizing the control system of cement milling: process modeling and controller tuning based on loop shaping procedures and process simulations

    Directory of Open Access Journals (Sweden)

    D. C. Tsamatsoulis

    2014-03-01

    Full Text Available Based on a dynamical model of the grinding process in closed circuit mills, efficient efforts have been made to optimize PID controllers of cement milling. The process simulation is combined with an autoregressive model of the errors between the actual process values and the computed ones. Long term industrial data have been used to determine the model parameters. The data include grinding of various cement types. The M - Constrained Integral Gain Optimization (MIGO loop shaping method is utilized to determine PID sets satisfying a certain robustness constraint. The maximum sensitivity is considered as such a criterion. Both dynamical parameters and PID sets constitute the inputs of a detailed simulator which involves all the main process characteristics. The simulation is applied over all the PID sets aiming to find the parameter region that provides the minimum integral of absolute error, which functions as a performance criterion. For each cement type a PID set is selected and put in operation in a closed circuit cement mill. The performance of the regulation is evaluated after a sufficient time period, concluding that the developed design combining criteria of both robustness and performance leads to PID controllers of high efficiency.

  18. Influence of emulsifiers on the optimization of processing parameters of refining milk chocolate in the ball mill

    OpenAIRE

    Pajin Biljana; Zarić Danica; Dokić Ljubica; Šereš Zita; Šoronja-Simović Dragana; Omorjan Radovan; Lončarević Ivana

    2011-01-01

    Chocolate manufacture is a complex process which includes a large number of technology operations. One of the obligatory phases is milling, called refining, which aims at obtaining the appropriate distribution of particle size, resulting in the chocolate with optimal physical and sensory characteristics. The aim of this work was to define and optimize the process parameters for the production of milk chocolate by a non-conventional procedure, using the ball mill. The quality of chocolat...

  19. Control of the Coagulation Process in a Paper-mill Wastewater Treatment Process Using a Fuzzy Neural Network

    OpenAIRE

    Wan, J.-Q.; Huang, M.-Z.; Ma, Y.-W.; Guo, W. J.; Y. Wang; Zhang, H.-P.

    2010-01-01

    In this paper, an integrated neural-fuzzy process controller was developed to study the coagulation of wastewater treatment in a paper mill. In order to improve the fuzzy neural network performance, the self-learning ability embedded in the fuzzy neural network model was emphasized for improving the rule extraction performance. It proves the fuzzy neural network more effective in modeling the coagulation performance than artificial neural networks (ANN). For comparing between the fuzzy neural...

  20. Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale.

    Science.gov (United States)

    Stolle, Achim; Schmidt, Robert; Jacob, Katharina

    2014-01-01

    The scale-up of the Knoevenagel-condensation between vanillin and barbituric acid carried out in planetary ball mills is investigated from an engineering perspective. Generally, the reaction proceeded in the solid state without intermediate melting and afforded selectively only one product. The reaction has been used as a model to analyze the influence and relationship of different parameters related to operation in planetary ball mills. From the viewpoint of technological parameters the milling ball diameter, dMB, the filling degree with respect to the milling balls' packing, ΦMB,packing, and the filling degree of the substrates with respect to the void volume of the milling balls' packing, ΦGS, have been investigated at different reaction scales. It was found that milling balls with small dMB lead to higher yields within shorter reaction time, treaction, or lower rotation frequency, rpm. Thus, the lower limit is set considering the technology which is available for the separation of the milling balls from the product after the reaction. Regarding ΦMB,packing, results indicate that the optimal value is roughly 50% of the total milling beakers' volume, VB,total, independent of the reaction scale or reaction conditions. Thus, 30% of VB,total are taken by the milling balls. Increase of the initial batch sizes changes ΦGS significantly. However, within the investigated parameter range no negative influence on the yield was observed. Up to 50% of VB,total can be taken over by the substrates in addition to 30% for the total milling ball volume. Scale-up factors of 15 and 11 were realized considering the amount of substrates and the reactor volume, respectively. Beside technological parameters, variables which influence the process itself, treaction and rpm, were investigated also. Variation of those allowed to fine-tune the reaction conditions in order to maximize the yield and minimize the energy intensity.

  1. Synthesis and Characterizations of Nanocrystalline WC-Co Composite Powders by a Unique Ball Milling Process

    Institute of Scientific and Technical Information of China (English)

    Jun SHEN; Jianfei SUN; Faming ZHANG

    2004-01-01

    In order to explore the high efficiency of fabricating nanocrystalline WC-Co composite powders, this paper presented a unique high energy ball milling process with variable rotation rate and repeatious circulation, by which nanocrystalline WC-10Co0.8VC-0.2Cr3C2 (wt pct) composite powders with mean grain size of 25 nm were prepared in 32 min, and the quantity of the powders for a batch was as much as 800 grams. The as-prepared powders were analyzed and characterized by chemical analysis,X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential thermal analysis (DTA). The results show that high energy ball milling with variable rotation rates and repeatious circulation could be used to produce nanocrystalline WC-Co powder composites with high efficiency. The compositions of the powders meet its specifications with low impurity content. The mean grain size decreases, lattice distortion and system energy increase with increasing the milling time. The morphology of nanocrystalline WC-Co particles displays dominantly sphere shape and their particle sizes are all lower than 80nm. The eutectic temperature of the nanocrystalline WC-10Co-0.8VC-0.2Cr3C2 composites is about 1280℃.

  2. 3D finite elements method (FEM Analysis of basic process parameters in rotary piercing mill

    Directory of Open Access Journals (Sweden)

    Z. Pater

    2012-10-01

    Full Text Available In this paper 3D FEM analysis of process parameters and its infl uence in rotary piercing mill is presented. The FEM analyze of the rotary piercing process was made under the conditions of 3D state of strain with taking into consideration the thermal phenomena. The calculations were made with application of different rolls’ skew angles and different plug designs. In the result, progression of shapes, temperature and distributions of stress and strain were characterized. The numerical results of calculations were compared with results of stand test with use of 100Cr6 steel. The comparisons of numerical and experimental tests confirm good agreement between obtained results.

  3. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Tien-Kan Chung

    2016-02-01

    Full Text Available An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers, criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence. Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  4. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    Science.gov (United States)

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  5. Artificial intelligence versus statistical modeling and optimization of continuous bead milling process for bacterial cell lysis

    Directory of Open Access Journals (Sweden)

    Shafiul Haque

    2016-11-01

    Full Text Available AbstractFor a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD was studied in a continuous bead milling process. A full factorial Response Surface Model (RSM design was employed and compared to Artificial Neural Networks coupled with Genetic Algorithm (ANN-GA. Significant process variables, cell slurry feed rate (A, bead load (B, cell load (C and run time (D, were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v, cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN coupled with GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h: 258.08, bead loading (%, v/v: 80%, cell loading (OD600 nm: 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN in combination with evolutionary optimization (GA for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  6. Designing plant scale process integration for water management in an Indian paper mill.

    Science.gov (United States)

    Shukla, Sudheer Kumar; Kumar, Vivek; Chakradhar, B; Kim, Taesung; Bansal, M C

    2013-10-15

    In the present study, plant-scale process integration was applied to an Indian paper mill using the water cascade analysis (WCA) technique. Three limiting constraints, chemical oxygen demand (COD), total dissolved solids (TDS), and adsorbable organic halides (AOX), were considered for the study. A nearest neighbor algorithm was used to distribute the freshwater and recycled water among the plant operations. It was found that the limiting critical constraint depends upon the types of processes and streams involved in the integration. The limiting critical constraint can differ for different sections of the same industry, and can differ in different schemes of integration. After process integration, a 55.6% reduction in effluent flow, a 36% reduction in COD, and a 73% reduction in AOX were observed. After process integration, a 35.21% reduction in pollution costs can be achieved and, assuming the average production of the mill to be 225 tons per day, a savings of Indian rupees (INR) 1.73 per kg of paper produced can be achieved by employing process integration. The water cess was calculated as INR 3024.77 per day without integration for the sections that were considered for integration, while after integration, a 41.53% savings in the form of water cess was calculated.

  7. Anatomia dos órgãos vegetativos de Hymenaea martiana Hayne (Caesalpinioideae-Fabaceae): espécie de uso medicinal em Caetité-BA

    OpenAIRE

    Leite, K. R. B.; M. S. SILVA; Saba, M. D.

    2012-01-01

    p. 673-679 Hymenaea martiana Hayne (Fabaceae-Caesalpinioideae) apresenta grande valor na medicina popular em Caetité. A casca, entrecasca do caule e a resina, são utilizadas no tratamento de diversos males. Neste estudo são apresentadas a caracterização anatômica e histoquímica dos órgãos vegetativos. Amostras foram coletadas e processadas segundo técnicas usuais em anatomia vegetal e histoquímica. Todos os órgãos apresentam, em visão transversal, epiderme unisseriada e cavidades secretora...

  8. Anatomia dos órgãos vegetativos de Hymenaea martiana Hayne (Caesalpinioideae-Fabaceae): espécie de uso medicinal em Caetité-BA

    OpenAIRE

    M. S. SILVA; Leite, K. R. B.; Saba, M. D.

    2012-01-01

    Hymenaea martiana Hayne (Fabaceae-Caesalpinioideae) apresenta grande valor na medicina popular em Caetité. A casca, entrecasca do caule e a resina, são utilizadas no tratamento de diversos males. Neste estudo são apresentadas a caracterização anatômica e histoquímica dos órgãos vegetativos. Amostras foram coletadas e processadas segundo técnicas usuais em anatomia vegetal e histoquímica. Todos os órgãos apresentam, em visão transversal, epiderme unisseriada e cavidades secretoras. Cutícula es...

  9. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengnan, E-mail: snzhang@c-nin.com [Northwest Institute for Non-Ferrous Metal Research, 710016, Xi' an (China); Liu, Jixing [Northwest Institute for Non-Ferrous Metal Research, 710016, Xi' an (China); School of Materials and Metallurgical, Northeast University, Shenyang, 110016 (China); Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang [Northwest Institute for Non-Ferrous Metal Research, 710016, Xi' an (China)

    2015-08-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe{sub 2} and Fe{sub 7}Se{sub 8}. Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed.

  10. End mill tools integration in CNC machining for rapid manufacturing processes: simulation studies

    Directory of Open Access Journals (Sweden)

    Muhammed Nafis Osman Zahid

    2015-01-01

    Full Text Available Computer numerical controlled (CNC machining has been recognized as a manufacturing process that is capable of producing metal parts with high precision and reliable quality, whereas many additive manufacturing methods are less capable in these respects. The introduction of a new layer-removal methodology that utilizes an indexing device to clamp the workpiece can be used to extend CNC applications into the realm of rapid manufacturing (CNC-RM processes. This study aims to improve the implementation of CNC machining for RM by formulating a distinct approach to integrate end mill tools during finishing processes. A main objective is to enhance process efficiency by minimizing the staircasing effect of layer removal so as to improve the quality of machined parts. In order to achieve this, different types of end mill tools are introduced to cater for specific part surfaces during finishing operations. Virtual machining simulations are executed to verify the method and the implications. The findings indicate the advantages of the approach in terms of cutting time and excess volume left on the parts. It is shown that using different tools for finishing operations will improve the capabilities of CNC machining for rapid manufacturing applications.

  11. Quantification of process induced disorder in milled samples using different analytical techniques

    DEFF Research Database (Denmark)

    Zimper, Ulrike; Aaltonen, Jaakko; McGoverin, Cushla M.;

    2012-01-01

    -induced crystalline disorder/ amorphousness under different process conditions. In the DSC measurements the change in heat capacity at the glass transition was used for quantification. Differently prepared amorphous indomethacin standards (prepared by either melt quench cooling or cryo milling) were compared...... by principal component analysis (PCA) to account for the fact that the choice of standard ultimately influences the quantification outcome. Finally, the calibration models were built using binary mixtures of crystalline and quench cooled amorphous drug materials. The results imply that the outcome with respect......, no glass transition) crystalline disorder/ amorphousness were detected....

  12. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Fathinia, Siavash [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Fathinia, Mehrangiz [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rahmani, Ali Akbar [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Khataee, Alireza, E-mail: a_khataee@tabrizu.ac.ir [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H{sub 2}O{sub 2} concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  13. Pyrite Oxidation in Leaching Process of Radionuclides and Heavy Metals from Uranium Mill Tailings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Pyrite is a sensitive mineral in the geological environment, and its oxidation produces an important geochemical and environmental effect on the control of the redox and pH conditions. Column experiment results were used for modeling the geochemical processes in uranium mill tailings under lcaching conditions. Oxidation of pyrite dominates the control of the tailings leaching process. The experimental and modeling results show that the leachate chemistry changes substantially with the decrease in pyrite consumption. In the initial stage of the leaching experiment, the pyrite is consumed several hundred times greater than that in the later stages, for much more oxygen is present in the tailings in the initial stage. As the experiment continues, the tailings is gradually saturated with water and the oxygen concentration greatly decreases and so does pyrite consumption. The experimental and modeling results are useful for the design of mill tailing decommissioning., oxidation process and transport of radioactive nuclides and heavy metals can be constrained by controlling the oxygen concentration of tailings and the infiltration of meteoric water.

  14. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.

    Science.gov (United States)

    Dhandapani, N V; Thangarasu, V S; Sureshkannan, G

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  15. Development and testing of an integrated rotating dynamometer on tool holder for milling process

    Science.gov (United States)

    Rizal, Muhammad; Ghani, Jaharah A.; Nuawi, Mohd Zaki; Che Haron, Che Hassan

    2015-02-01

    The cutting force provides significant information to help understand the machining process, optimization, tool condition monitoring, tool design and others. Hence, various methods of measuring the cutting force have been proposed by many researchers. In this work, an innovative integrated rotating dynamometer and tool holder is designed, constructed and tested that can fulfil the requirement to measure the cutting force in a wireless environment system. The device consists of a strain gauge based sensor that is mounted on a newly designed force sensing element which is then placed in the rotating tool holder. The force sensing element is designed in the form of a symmetrical cross beam type with four arms, shaped as a rectangular parallelepiped. This device is intended to be used in a rotating spindle such as in milling and drilling processes. A conditioning system and an inductive telemetry transmitter unit are incorporated into a modified tool holder in order to collect and transmit the cutting force signal to the data acquisition system. The rotating dynamometer has been subjected to a series of tests to determine its static and dynamic characteristics. Thus, it is tested experimentally by conducting cutting tests up to cutting speed 550 m/min with a single-tool insert. The results show it is suitable and reliable to measure the cutting force in milling processes.

  16. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process

    Directory of Open Access Journals (Sweden)

    N. V. Dhandapani

    2015-01-01

    Full Text Available This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  17. Simulation of 3D chip shaping of aluminum alloy 7075 in milling processes

    Institute of Scientific and Technical Information of China (English)

    DONG Hui-yue; KE Ying-lin

    2005-01-01

    By adopting an equivalent geometry model of machining process and considering thermo-plastic properties of the work material, a finite element method(FEM) to study oblique milling process of aluminum alloy with a double-edge tool was presented. In the FEM, shear flow stress was determined by material test. Re-meshing technology was used to represent chip separation process. Comparing the predicted cutting forces with the measured forces shows the 3D FEM is reasonable. Using this FEM, chip forming process and temperature distribution were predicted. Chips obtained by the 3D FEM are in spiral shape and are similar to the experimental ones. Distribution and change trend of temperature in the tool and chip indicate that contact length between tool rake face and chip is extending as tool moving forward. These results confirm the capability of FEM simulation in predicting chip flow and selecting optimal tool.

  18. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  19. Theoretical And Experimental Analysis Of Aluminium Bars Rolling Process In Three-High Skew Rolling Mill

    Directory of Open Access Journals (Sweden)

    Stefanik A.

    2015-06-01

    Full Text Available Technology of round bars rolling on a three-high skew rolling mills allows rolling of standard materials such as steel and aluminum, as well as new materials, especially hard deformable materials. The paper presents the results of theoretical and experimental rolling process of aluminum bars with a diameter of 20 mm. As the stock round bars with a diameter of 25 mm made of aluminum grade 1050A and aluminum alloy grade 2017A were used. The rolling process of aluminum bars has been carried out in a single pass. The numerical analysis was carried out by using computer program Forge2011®. On the basis of theoretical research it has been determined the state of deformation, stress and temperature distribution during rolling of aluminum bars. In addition, the results of theoretical research allowed to determine the schema of the metal plastic flow in the roll gap. Verification of the theoretical research was carried out during the rolling of aluminum bars on the RSP 40/14 laboratory three-high skew rolling mill. From the finished bars were taken the samples to set the shape and compared with the results of theoretical research. Finished aluminum round bars were characterized by low ovality and good surface quality.

  20. Improvement of Quality of a Modern Commercial Silk Mill through effective Process and Machine Control Parameters

    Directory of Open Access Journals (Sweden)

    Dr. Swapan Kumar Ghosh

    2016-08-01

    Full Text Available This paper deals with international and national scenario of commercial production and market share of silk fabrics with particular reference to process along with machine control parameters followed by adoption of good practices in the preparatory stages during production of the silk fabric in a commercial Silk Mill. An observatory report has been presented here for starting from yarn to the fabric stage, which indicates the major technical reasons for deterioration in the quality of the silk products affecting the cost factor and environment to some extent. This paper delineates an effective monitoring and controlling process variables along with machine parameters at every step of production of silk fabric from its filament yarn stage, particularly during the modern high speed silk twisting process, enhancing the quality of the finished product on one hand and minimizing wastage along with the cost of production and adverse environmental impact on the other

  1. Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes.

    Science.gov (United States)

    Alao, Abdur-Rasheed; Stoll, Richard; Song, Xiao-Fei; Miyazaki, Takashi; Hotta, Yasuhiro; Shibata, Yo; Yin, Ling

    2017-01-01

    This paper studied the surface quality (damage, morphology, and phase transformation) of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in CAD/CAM milling, and subsequent polishing, sintering and sandblasting processes applied in dental restorations. X-ray diffraction and scanning electron microscopy (SEM) were used to scan all processed surfaces to determine phase transformations and analyse surface damage morphology, respectively. The average surface roughness (Ra) and maximum roughness (Rz) for all processed surfaces were measured using desk-top SEM-assisted morphology analytical software. X-ray diffraction patterns prove the sintering-induced monoclinic-tetragonal phase transformation while the sandblasting-induced phase transformation was not detected. The CAD/CAM milling of pre-sintered Y-TZP produced very rough surfaces with extensive fractures and cracks. Simply polishing or sintering of milled pre-sintered surfaces did not significantly improve their surface roughness (ANOVA, p>0.05). Neither sintering-polishing of the milled surfaces could effectively improve the surface roughness (ANOVA, p>0.05). The best surface morphology was produced in the milling-polishing-sintering process, achieving Ra=0.21±0.03µm and Rz=1.73±0.04µm, which meets the threshold for bacterial retention. Sandblasting of intaglios with smaller abrasives was recommended as larger abrasive produced visible surface defects. This study provides technical insights into process selection for Y-TZP to achieve the improved restorative quality.

  2. Environmental Performance of the Milling Process Of Malaysian Palm Oil Using The Life Cycle Assessment Approach

    Directory of Open Access Journals (Sweden)

    Vijaya Subramaniam

    2008-01-01

    Full Text Available Malaysia is currently the world leader in the production and export of palm oil. This study has a gate to gate system boundary. The inventory data collection starts at the oil palm fresh fruit bunch hoppers when the fresh fruit bunch is received at the mill up till the production of the crude palm oil in the storage tanks at the mill. The plantation phase and land use for the production of oil palm fresh fruit bunch is not included in this system boundary. This gate to gate case study of 12 mills identifies the potential impacts associated with the production of palm oil using the life cycle assessment approach and evaluates opportunities to overcome the potential impacts. Most of the impact categories show savings rather than impact. Within the system boundary there are only two main parameters that are causing the potential impacts to the environment; they are the Palm Oil Mill Effluent (POME followed by the boiler ash. The impact categories that the POME contributes to are under the Respiratory Organics and Climate Change. Both these impact categories are related to air emissions. The main air emission from the POME ponds during the anaerobic digestion is the biogas which consists of methane, carbon dioxide and traces of hydrogen sulfide. An alternate scenario was conducted to see how the impact will be if the biogas was harvested and used as energy and the results shows that when the biogas is harvested, the impact from the POME is removed. The other significant impact is the boiler ash. This is the ash that is produced when the biomass is burnt in the boiler. This potential impact contributes to the ecotoxicity impact category. This is mainly because of the disposal of this ash which in most cases was used for land application in the roads leading to the mil or in the plantations. If the parameters causing these two potential impacts are curbed, then this will be a further plus point for the Malaysian oil palm industry which is already

  3. Mg2FeH6-based nanocomposites with high capacity of hydrogen storage processed by reactive milling

    Directory of Open Access Journals (Sweden)

    Alexandre Augusto Cesario Asselli

    2012-04-01

    Full Text Available The compound Mg2FeH6 was synthesized from a 2Mg-Fe mixture in a single process through high-energy ball milling under hydrogen atmosphere at room temperature. The complex hydride was prepared from Mg powder and granulated or powdered Fe using a planetary mill. The phase evolution during different milling times was performed by X-rays diffraction technique. The dehydrogenation behavior of the hydride was investigated through simultaneous thermal analyses of differential scanning calorimetry and thermogravimetry coupled with mass spectrometer. The use of powdered iron as starting material promoted conversion to complex hydride at shorter milling times than when granulated iron was used, nevertheless, after 24 hours of milling the 2Mg-Fe (powdered or granulated mixtures presented similar dehydrogenation behavior. The hydrogen absorption during milling was on average 3.2 wt. (%, however, changing the proportions of the reagents to 3Mg-Fe a Mg2FeH6-MgH2 based nanocomposite with higher density of hydrogen (5.2 wt. (% was obtained.

  4. Identification of Material Properties Based on Rolling Process at 4-Stand Laboratory Mill

    Science.gov (United States)

    Szeliga, D.; Graf, M.; Kawalla, R.; Pietrzyk, M.

    2011-05-01

    The general objective of the work is to estimate the properties of the material in hot strip rolling process. The authors propose a modified inverse algorithm; to make direct use of the manufacturing process instead of conventional plastometric tests. This approach allows to reduce time and costs of identification. The rolling at 4-stand pilot mill at the Institute of Metal Forming, TU Bergakademie, Freiberg was selected. The material was C45 steel. The measured quantities of the process were rolling loads and torques, as well as temperatures. Numerical tests have shown that accuracy of torque predictions is low, therefore, the goal function of inverse analysis was defined as an average square root error between measured and FEM calculated rolling loads only. The first stage of the work was to develop the model of the hot strip rolling, which defines the direct model in the inverse analysis. This model is complex, it composes the whole roughing and finishing rolling. Based on the model and results of the laboratory experiment, the deformation process including the temperature field and the recrystallization up to the last finishing mill is calculated. Moreover, an application of the inverse analysis to the identification of the models of the hot strip rolling and design of the rolling parameters allows to obtain the required microstructure of final products. Inverse analysis and/or optimization of such a manufacturing chain is time-consuming. Large number of control parameters makes the time of the analysis unacceptable. Therefore, the metamodel of the hot rolling is applied to make the inverse calculations efficient. In the work the results of calculations with identified process parameters and experimental data are compared and presented. Also advantages and disadvantages are described.

  5. Fate of ochratoxin A in the processing of whole wheat grains during milling and bread production.

    Science.gov (United States)

    Scudamore, K A; Banks, J; MacDonald, S J

    2003-12-01

    Batches of whole wheat contaminated with ochratoxin A were produced by inoculation with Penicillium verrucosum under controlled conditions in the laboratory. The fate of ochratoxin was followed through initial cleaning, abrasive scouring of the outer grain coat, milling into wholemeal wheat or into 10 milled fractions. Bread was baked from both wholemeal flour and straight-run white flour. Concentrations of ochratoxin A in the cleanings, scourings, and the bran and offal fractions were increased, but reduced in the white flour. Scouring removed up to 44% of the ochratoxin A present, but only a small further loss occurred in the bread-making process. An overall reduction of about 75% could be achieved in white bread using a combination of cleaning scouring and removal of the bran and offal fractions. Maximum overall reduction in producing wholemeal bread was about 40%. The reduction in ochratoxin A that can be achieved must be considered in relation to economic constraints concerning the disposal of wasted grain. Appropriate strategies for the use or disposal of potentially highly contaminated cleanings, scourings, bran or offal must be established.

  6. Modeling and Multi-response Optimization of Hard Milling Process using Desirability Function Approach

    Directory of Open Access Journals (Sweden)

    A. Tamilarasan

    2014-05-01

    Full Text Available The characteristic features of hard milling are variable chip thickness and intermittent cutting. Such tendency rapidly increases the tool wear and reduces the metal removal rate against the cutting temperature results poor surface finish. Therefore, the objective of this present study was to present the mathematical models for modeling and analysis on the effects of process parameters, including the feed per tooth, radial depth of cut, axial depth of cut and cutting speed on cutting temperature, tool wear and metal removal rate in hard milling of 100MnCrW4 (Type O1 tool steel using (TiN+TiAlN coated carbide inserts. A central composite rotatable design with four factors and five levels was chosen to minimize the number of experimental conditions. Further, the reduced developed models were used for multiple-response optimization by desirability function approach in order to determine the optimum cutting parameters. These optimized machining parameters are validated experimentally and the experimental and predicted values were in a good agreement with small consistent error.

  7. Precise ablation milling with ultrashort pulsed Nd:YAG lasers by optical and acoustical process control

    Science.gov (United States)

    Schulze, Volker; Weber, Patricia

    2010-02-01

    Laser ablation milling with ultra short pulsed Nd:YAG lasers enables micro structuring in nearly all kinds of solid materials like metals, ceramics and polymers. A precise machining result with high surface quality requires a defined ablation process. Problems arise through the scatter in the resulting ablation depth of the laser beam machining process where material is removed in layers. Since the ablated volume may change due to varying absorption properties in single layers and inhomogeneities in the material, the focal plane might deviate from the surface of the work piece when the next layer is machined. Thus the focal plane has to be adjusted after each layer. A newly developed optical and acoustical process control enables an in-process adjustment of the focal plane that leads to defined process conditions and thus to better ablation results. The optical process control is realized by assistance of a confocal white light sensor. It enables an automated work piece orientation before machining and an inline ablation depth monitoring. The optical device can be integrated for an online or offline process control. Both variants will be presented and discussed. A further approach for adjustment of the focal plane is the acoustical process control. Acoustic emissions are detected while laser beam machining. A signal analysis of the airborne sound spectrum emitted by the process enables conclusions about the focal position of the laser beam. Based on this correlation an acoustic focus positioning is built up. The focal plane can then be adjusted automatically before ablation.

  8. Improvement on ball-milling composite process of metal matrix micro-nanometer powder using nanosuspension as the precursor

    Science.gov (United States)

    Wang, Hongyu; Zhou, Jianzhong; Li, Xiangfeng; Shen, Qing; Cheng, Man

    2014-12-01

    The wet ball-milling preparation of metal matrix micro-nanometer powder using nanosuspension as the precursor can well solve the agglomeration of nanoscale component, but the micro-nanometer powder prepared by the method can hardly meet the requirement of powder feeding in laser cladding process and its composite effect is still not desirable enough. Aiming at the problem, the ball-milling composite process of metal matrix micro-nanometer powder using nanosuspension as the precursor was analyzed. It has been found that the morphological diversity of original micron powder is the main influencing factor of the deliverability and the composite effect of micro-nanometer powder. In addition, the deposition of the compounding powder in the bottom of ball-milling tank also has some negative influences on the composite effect. Accordingly, two improving measures namely the micron powder pretreatment with Ball Mill Reshaping + Screening and the additional stirring during ball-milling process are proposed and experimented. Results show that the micron powder pretreatment could significantly improve the composite effect and the deliverability of micro-nanometer powder, and the additional stirring could further improve the composite effect of micro-nanometer powder.

  9. Kinetics of pulp mill effluent treatment by ozone-based processes

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Chun-Han; Hsieh, Po-Hung [School of Forestry and Resource Conservation, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan (China); Chang, Meng-Wen [Department of Chemical Engineering, Tatung University, 40 Chungshan North Road, 3rd Sec., Taipei, 104, Taiwan (China); Chern, Jia-Ming, E-mail: jmchern@ttu.edu.tw [Department of Chemical Engineering, Tatung University, 40 Chungshan North Road, 3rd Sec., Taipei, 104, Taiwan (China); Chiang, Shih-Min [Bureau of Environmental Protection Tainan County, No. 78, Sec. 2, Changrong Rd., Sinying City, Tainan County 730, Taiwan (China); Tzeng, Chewn-Jeng [CECI Engineering Consultants, Inc., Taiwan, No. 185, Sec. 2, Chinhai Rd., Taipei, 106, Taiwan (China)

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  10. Study of the aluminothermic reduction of niobium pentoxide through thermal analysis experiments and high energy milling processing

    Directory of Open Access Journals (Sweden)

    Claudio Parra De Lazzari

    2007-06-01

    Full Text Available Aluminothermic reduction of niobium pentoxide was studied through thermal analysis techniques such as differential thermal analysis (DTA and thermogravimetry (TG as well as through high energy milling processing. Reactants mixtures were composed by powders of Nb2O5 and Al. In the case of DTA-TG experiments, different molar ratios Nb2O5:Al were heated in a dynamic atmosphere of synthetic air under controlled conditions. The high energy milling runs were carried out via SPEX vibratory mill under argon atmosphere and with milling power equal to 7:1 (ratio of mass of balls to mass of mixture with 10 pct excess of Al over the stoichiometric mass of aluminum necessary. In both kinds of experiments, X ray diffraction was used in order to identify the products of reaction. From DTA-TG experiments, it was possible to determine the experimental value of the enthalpy change (-595.9 kJ.mol-1, which is near to the theoretical one. From the milling experiments, it was possible to verify the possibility of the occurance of aluminothermic reducion of niobium pentoxide via this kind of processing.

  11. Performance of Silicon carbide whisker reinforced ceramic inserts on Inconel 718 in end milling process

    Science.gov (United States)

    Reddy, M. M.; Joshua, C. X. H.

    2016-03-01

    An experimental investigation is planned in order to study the machinability of Inconel 718 with silicon carbide whisker reinforced ceramic inserts in end milling process. The relationship between the cutting speed, feed rate, and depth of cut against the response factors are studied to show the level of significance of each parameter. The cutting parameters are optimized by using Taguchi method. Implementing analysis of variance, the parameter which influences the surface roughness the most is determined to be the cutting speed, followed by the feed rate and depth of cut. Meanwhile, the optimal cutting condition is determined to have high cutting speed, low feed rate, and high depth of cut in the range of selected parameters.

  12. EXPERIMENTAL ANALYSIS ON SURFACE ROUGHNESS OF CNC END MILLING PROCESS USING TAGUCHI DESIGN METHOD

    Directory of Open Access Journals (Sweden)

    PATEL K. P.

    2012-02-01

    Full Text Available Here, we study about, influence of various machining parameters like tool speed, tool feed, depth of cut and tool diameter. In the present study, experiments are conducted on AL 6351 –T6 material with four factors and five levels and try to find out optimum surface roughness by using taguchi method. This paper attempts to introduce how Taguchi parameter design could be used in identifying the significant processing parameters and optimizing the surface roughness of end-milling operations. In this study, it was observed that, the order of significance of the main variables is as A1 > B4 > C4 > D1(tool feed (A, tool speed (B, tool diameter(C, depth of cut (D.

  13. Anatomia dos órgãos vegetativos de Hymenaea martiana Hayne (Caesalpinioideae-Fabaceae): espécie de uso medicinal em Caetité-BA Anatomy of vegetative organs of Hymenaea martiana Hayne (Fabaceae-Caesalpinioideae): a species of medicinal use in Caetité-Bahia State, Brazil

    OpenAIRE

    M. S. SILVA; Leite, K. R. B.; Saba, M. D.

    2012-01-01

    Hymenaea martiana Hayne (Fabaceae-Caesalpinioideae) apresenta grande valor na medicina popular em Caetité. A casca, entrecasca do caule e a resina, são utilizadas no tratamento de diversos males. Neste estudo são apresentadas a caracterização anatômica e histoquímica dos órgãos vegetativos. Amostras foram coletadas e processadas segundo técnicas usuais em anatomia vegetal e histoquímica. Todos os órgãos apresentam, em visão transversal, epiderme unisseriada e cavidades secretoras. Cutícula es...

  14. Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products.

    Science.gov (United States)

    De Vasconcelos, Maria C B M; Bennett, Richard N; Rosa, Eduardo A S; Ferreira-Cardoso, Jorge V

    2010-08-15

    Chestnut fruits are highly regarded and widely consumed throughout Europe, America and Asia. Various commercial forms are available, e.g. fresh and industrially processed. There have been various reviews on the composition of chestnut fruits but there has not been a comprehensive review of the different health benefits that this fruit can provide. This review is focused on the composition and associated health effects of European fresh chestnut (Castanea sativa Mill.) fruits and their home-processed and industrial products, e.g. boiled, roasted, frozen, and 'marron glacées'. We also expand the knowledge of chestnut uses by presenting data for other chestnut materials that have potential applications as new foods, as sources of antioxidants, and as sources of other useful bioactives. There is considerable literature data on nutrients in fresh chestnut fruits but less information on bioactive non-nutrients such as phenolics. Chestnuts are mostly consumed as processed forms, and the different types of processing clearly affect the nutrient and non-nutrient composition of the fruits. The benefits that this fruit can provide for human and animal health are numerous, but it is clear that improvements can be made for both production and quality of chestnut products, e.g. genetic selection and optimizing industrial processing.

  15. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER membrane was used as pre-treatment for electrochemical process. The obtained permeate from the ultrafiltration process allowed COD removal efficiency of about 96% from OMW. Obtained permeate with an average COD of about 1.1gdm-3 was treated by electrochemical reactor equipped with a reactor with bipolar iron plate electrodes. The effect of the experimental parameters such as current density, pH, surface electrode/reactor volume ratio and NaCl concentration on COD removal was assessed. The results showed that the optimum COD removal rate was obtained at a current density of 93.3Am-2 and pH ranging from 4.5 to 6.5. At the optimum operational parameters for the experiments, electrocoagulation process could reduce COD from 1.1gdm-3 to 78mgdm-3, allowing direct discharge of the treated OMW as that meets the Algerian wastewater discharge standards (<125mgdm-3). © 2010 Elsevier B.V.

  16. Feasibility investigations on multi-cutter milling process: A novel fabrication method for microreactors with multiple microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Minqiang; Tang, Yong [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, Dehuai [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); School of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060 (China)

    2009-07-15

    A novel multi-cutter milling process for multiple parallel microchannels with manifolds is proposed to address the challenge of mass manufacture as required for cost-effective commercial applications. Several slotting cutters are stacked together to form a composite tool for machining microchannels simultaneously. The feasibility of this new fabrication process is experimentally investigated under different machining conditions and reaction characteristics of methanol steam reforming for hydrogen production. The influences of cutting parameters and the composite tool on the microchannel qualities and burr formation are analyzed. Experimental results indicate that larger cutting speed, smaller feed rate and cutting depth are in favor of obtaining relatively good microchannel qualities and small burrs. Of all the cutting parameters considered in these experiments, 94.2 m min{sup -1} cutting speed, 23.5 mm min{sup -1} feed rate and 0.5 mm cutting depth are found to be the optimum value. According to the comparisons of experimental results of multi-cutter milling process and estimated one of other alternative methods, it is found that multi-cutter milling process shows much shorter machining time and higher work removal rate than that of other alternative methods. Reaction characteristics of methanol steam reforming in microchannels also indicate that multi-cutter milling process is probably suitable for a commercial application. (author)

  17. Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Campos, R., E-mail: ruben.flores@itesm.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Tecnologico de Monterrey Campus Saltillo, Departamento de Ingenieria, Prol. Juan de la Barrera No. 1241 Ote., Col. Cumbres, CP 25270, Saltillo, Coah., Mexico (Mexico); Estrada-Guel, I., E-mail: ivanovich.estrada@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Martinez-Sanchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico); Herrera-Ramirez, J.M., E-mail: martin.herrera@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia, Miguel de Cervantes No. 120, CP 31109, Chihuahua, Chih., Mexico (Mexico)

    2012-01-15

    Nanostructured composites of 7075 aluminum alloy and carbon coated silver nanoparticles were produced by mechanical milling and indirect hot extrusion. The milling products were obtained in a high energy SPEX ball mill, and then were compacted by uniaxial load and pressure-less sintered under argon atmosphere. Finally, the sintered product was hot extruded. Carbon coated silver nanoparticles were well distributed in the matrix of the extruded material. Tensile tests were carried out to corroborate the hypothesis that second phase particles, well dispersed in the matrix, improve the strength of the material. High resolution transmission electron microscopy was employed to locate and make sure that the silver nanoparticles were homogeneously and finely dispersed. Highlights: Black-Right-Pointing-Pointer 7075 Al nanostructured composites can be produced by mechanical milling. Black-Right-Pointing-Pointer Carbon coated silver nanoparticles are well dispersed into aluminum matrix. Black-Right-Pointing-Pointer Ductile Ag-C NP's improve the mechanical properties of the 7075 Al-alloy. Black-Right-Pointing-Pointer Ag-C NP's content has an important effect in the particle and crystallite size. Black-Right-Pointing-Pointer Ag-C NP's keep their morphology after milling and conformation processes.

  18. A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

    Directory of Open Access Journals (Sweden)

    Yung-Chou Kao

    2015-10-01

    Full Text Available In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

  19. Effect of ball milling process on the microstructure of titanium-nanohydroxyapatite composite powder

    Institute of Scientific and Technical Information of China (English)

    PANG Pengsha; LI Wei; LIU Ying

    2007-01-01

    Titanium-nanohydroxyapatite (Ti-nHA) composite powders, composed of titanium with 10 vol.% and 20 vol.%of nano-hydroxyapatite, were milled in a planetary ball mill using alcohol media to avoid excessive heat. XRD and SEM were performed for characterization of the microstructure, and the homogeneity of Ti/HA nanocomposite powder was evaluated by EPMA with prolonged ball milling time. The results show that under the condition of wet milling, the grain size of Ti-nHA composite powders is decreased with the increase in ball milling time and the amount of the addition of nHA.While for milling of 30 h, the nanocomposite powder with fine structure, which consists of the nano-hydroxyapatite (nHA)particles and titanium (Ti) phase, is obtained. Three stages of milling can be observed from the element mapping of Ti, Ca,and P by EPMA; meanwhile, it is found that the nHA would be more homogenously distributed after milling for 30 h.

  20. Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process.

    Science.gov (United States)

    Amor, Carlos; Lucas, Marco S; García, Juan; Dominguez, Joaquín R; De Heredia, J Beltrán; Peres, José A

    2015-01-01

    This work presents the application of Fenton's reagent process combined with anaerobic digestion to treat an olive mill wastewater (OMW). Firstly, OMW was pre-treated by chemical oxidation in a batch reactor with Fenton's reagent, using a fixed H2O2/COD ratio of 0.20, pH = 3.5 and a H2O2/Fe(2+) molar ratio of 15:1. This advanced oxidation treatment allowed reaching reductions of 17.6 and 82.5% of chemical oxygen demand (COD) and total polyphenols (TP), respectively. Secondly, OMW treatment by anaerobic digestion was performed using previously adapted microorganisms immobilized in Sepiolite. These biological tests were carried out varying the substrate concentration supplied to the reactor and COD conversions from 52 to 74% were obtained. Afterwards, Fenton's reagent followed by anaerobic digestion was applied to OMW treatment. This combined process presented a significant improvement on organic load removal, reaching COD degradations from 64 to 88%. Beyond the pollutant load removal, it was also monitored the yield of methane generated throughout anaerobic experiments. The methane produced ranged from 281 cm(3) to 322 cm(3) of CH4/g COD removed. Additionally, a methane generation kinetic study was performed using the Monod Model. The application of this model allowed observing a kinetic constant increase of the combined process (kFN = 0.036 h(-1)) when compared to the single anaerobic process (kF = 0.017 h(-1)).

  1. Nitrogen Requirements for Growth and Early Fruit Development of Drip-Irrigated Processing Tomato (Lycopersicon esculentum Mill.) in Portugal

    Science.gov (United States)

    The effect of continuous application of small quantities of nitrogen (N) in irrigation water and N applied as starter on growth and development of processing tomato (Lycopersicon esculentum Mill.), from transplanting to beginning of fruit set, was studied in two experiments: a pot experiment and a f...

  2. Biological hydrogen production from olive mill wastewater with two-stage processes

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Ela; Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, 06531, Ankara (Turkey); Guenduez, Ufuk; Yuecel, Meral [Department of Biology, Middle East Technical University, 06531, Ankara (Turkey); Tuerker, Lemi [Department of Chemistry, Middle East Technical University, 06531, Ankara (Turkey)

    2006-09-15

    In the present work two novel two-stage hydrogen production processes from olive mill wastewater (OMW) have been introduced. The first two-stage process involved dark-fermentation followed by a photofermentation process. Dark-fermentation by activated sludge cultures and photofermentation by Rhodobacter sphaeroides O.U.001 were both performed in 55ml glass vessels, under anaerobic conditions. In some cases of dark-fermentation, activated sludge was initially acclimatized to the OMW to provide the adaptation of microorganisms to the extreme conditions of OMW. The highest hydrogen production potential obtained was 29l{sub H{sub 2}}/l{sub OMW} after photofermentation with 50% (v/v) effluent of dark fermentation with activated sludge. Photofermentation with 50% (v/v) effluent of dark fermentation with acclimated activated sludge had the highest hydrogen production rate (0.008ll{sup -1}h{sup -1}). The second two-stage process involved a clay treatment step followed by photofermentation by R. sphaeroides O.U.001. Photofermentation with the effluent of the clay pretreatment process (4% (v/v)) gives the highest hydrogen production potential (35l{sub H{sub 2}}/l{sub OMW}), light conversion efficiency (0.42%) and COD conversion efficiency (52%). It was concluded that both pretreatment processes enhanced the photofermentative hydrogen production process. Moreover, hydrogen could be produced with highly concentrated OMW. Two-stage processes developed in the present investigation have a high potential for solving the environmental problems caused by OMW. (author)

  3. The Physical Flow of Materials and the Associated Costs in the Production Process of a Rolling Mill

    Directory of Open Access Journals (Sweden)

    Holisz-Burzyńska, J.

    2007-01-01

    Full Text Available Efficiency of resources use is, in a large extent, determined by the organization of production flow and the way of their control. The optimization of materials flow in the production process requires the identification of physical flows of goods and it cost. In the article the physical flow process of materials stream in the production process in one of Polish rolling mill and also its logistics analysis and cost analysis are presented.

  4. Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater.

    Science.gov (United States)

    El-Abbassi, Abdelilah; Khayet, Mohamed; Hafidi, Abdellatif

    2011-10-01

    Olive mill wastewater (OMW) is an important environmental pollution problem, especially in the Mediterranean, which is the main olive oil production region worldwide. Environmental impact of OMW is related to its high organic load and particularly to the phytotoxic and antibacterial action of its phenolic content. In fact, polyphenols are known as powerful antioxidants with interesting nutritional and pharmaceutical properties. In the present work, the efficiency of OMW Micellar Enhanced Ultrafiltration (MEUF) treatment for removal and concentration of polyphenols was investigated, using an anionic surfactant (Sodium Dodecyl Sulfate salt, SDS) and a hydrophobic poly(vinyldene fluoride) (PVDF) membrane. The effects of the process experimental conditions on the permeate flux were investigated, and the secondary membrane resistance created by SDS molecules was evaluated. The initial fluxes of OMW processing by MEUF using SDS were 25.7 and 44.5 l/m2 h under transmembrane pressures of 3.5 and 4.5 bar, respectively. The rejection rate of polyphenols without using any surfactant ranged from 5 to 28%, whereas, it reached 74% when SDS was used under optimum pH (pH 2). The MEUF provides a slightly colored permeate (about 88% less dark), which requires clearly less chemical oxygen demand (COD) for its oxidation (4.33% of the initial COD). These results showed that MEUF process can efficiently be applied to the treatment of OMW and for the concentration and recovery of polyphenols.

  5. Bitter-tasting and kokumi-enhancing molecules in thermally processed avocado (Persea americana Mill.).

    Science.gov (United States)

    Degenhardt, Andreas Georg; Hofmann, Thomas

    2010-12-22

    Sequential application of solvent extraction and RP-HPLC in combination with taste dilution analyses (TDA) and comparative TDA, followed by LC-MS and 1D/2D NMR experiments, led to the discovery of 10 C(17)-C(21) oxylipins with 1,2,4-trihydroxy-, 1-acetoxy-2,4-dihydroxy-, and 1-acetoxy-2-hydroxy-4-oxo motifs, respectively, besides 1-O-stearoyl-glycerol and 1-O-linoleoyl-glycerol as bitter-tasting compounds in thermally processed avocado (Persea americana Mill.). On the basis of quantitative data, dose-over-threshold (DoT) factors, and taste re-engineering experiments, these phytochemicals, among which 1-acetoxy-2-hydroxy-4-oxo-octadeca-12-ene was found with the highest taste impact, were confirmed to be the key contributors to the bitter off-taste developed upon thermal processing of avocado. For the first time, those C(17)-C(21) oxylipins exhibiting a 1-acetoxy-2,4-dihydroxy- and a 1-acetoxy-2-hydroxy-4-oxo motif, respectively, were discovered to induce a mouthfulness (kokumi)-enhancing activity in sub-bitter threshold concentrations.

  6. Optimisation of mechanical milling process for production of AA 7075/(SiC or TiB₂) composite powders

    OpenAIRE

    Jabbari Taleghani, M. A.; Salehi, M.; Ruiz Navas, Elisa María; Torralba, José Manuel

    2012-01-01

    The present work concerns the processing of composite powders based on 7075 aluminium alloy by mechanical milling. A premixed powder (Alumix 431D, Ecka Granules, Germany) was used as the matrix material, and two different ceramic reinforcements (SiC and TiB₂) were chosen as reinforcements. The main objective was to evaluate the effect of the content and addition method of the process control agent as well as the content and type of reinforcement on the microstructural and morphological evolut...

  7. Effect of process variables on synthesis of MgB2 by a high energy ball mill

    Directory of Open Access Journals (Sweden)

    Kurama Haldun

    2016-01-01

    Full Text Available The discovery of superconductivity of MgB2 in 2001, with a critical temperature of 39 K, offered the promise of important large-scale applications at around 20 K. Except than the other featured synthesis methods, mechanical activation performed by high energy ball mills, as bulk form synthesis or as a first step of wire and thin film productions, has considered as an effective alternative production route in recent years. The process of mechanical activation (MA starts with mixing the powders in the right proportion and loading the powder mixture into the mill with the grinding media. The milled powder is then consolidated into a bulk shape and heat-treated to obtain desired microstructure and properties. Thus, the important components of the MA process are the raw materials, mill type and process variables. During the MA process, heavy deformation of particles occure. This is manifested by the presence of a variety of crystal defects such as dislocations, vacancies, stacking faults and increased number of particle boundaries. The presence of this defect structure enhances the diffusivity of solute hence the critical currents and magnetic flux pinning ability of MgB2 are improved. The aim of the present study is to determine the effects of process variables such as ball-to-powder mass ratio, size of balls, milling time, annealing temperature and contribution of process control agent (toluene on the product size, morphology and conversion level of precursor powders to MgB2 after subsequent heat treatment. The morphological analyses of the samples were performed by a high vacuum electron microscope ZEISS SUPRA VP 50. The phase compositions of the samples were performed with an Rigaku-Rint 2200 diffractometer, with nickel filtered Cu Kα radiation and conversion level. The MgB2 phase wt % was calculated by the Rietveld refinement method. The obtained results were discussed according to the process variables to find out their affect on the structure

  8. A comparative study on the use of drilling and milling processes in hole making of GFRP composite

    Indian Academy of Sciences (India)

    Hussein M Ali; Asif Iqbal; Li Liang

    2013-08-01

    Drilling and milling processes are extensively used for producing riveted and bolted joints during the assembly operations of composite laminates with other components. Hole making in glass fibre reinforced plastic (GFRP) composites is the most common mechanical process, which is used to join them to other metallic structures. Bolt joining effectiveness depends, critically, on the quality of the holes. The quality of machined holes in GFRP is strongly dependent on the appropriate choice of the cutting parameters. The main purpose of the present study is to assess the influence of drilling and milling machining parameters on hole making process of woven laminated GFRP material. A statistical approach is used to understand the effects of the control parameters on the response variables. Analysis of variance (ANOVA) was performed to isolate the effects of the parameters affecting the hole making in the two types of cutting processes. The results showed that milling process is more suitable than drilling process at high level of cutting speed and low level of feed rate, when the cutting quality (minimum surface roughness, minimum difference between upper and lower diameter) is of critical importance in the manufacturing industry, especially for precision assembly operation.

  9. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill.

    Science.gov (United States)

    Yoo, Jae-Min; Jeong, Jinki; Yoo, Kyoungkeun; Lee, Jae-Chun; Kim, Wonbaek

    2009-03-01

    Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to milled using a stamp mill to liberate the various metallic components, and then the milled printed circuit boards were classified into fractions of 5.0mm. The fractions of milled printed circuit boards of size zig-zag classifier. The >5.0mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards.

  10. Automatic polishing process of plastic injection molds on a 5-axis milling center

    CERN Document Server

    Pessoles, Xavier; 10.1016/j.jmatprotec.2008.08.034

    2010-01-01

    The plastic injection mold manufacturing process includes polishing operations when surface roughness is critical or mirror effect is required to produce transparent parts. This polishing operation is mainly carried out manually by skilled workers of subcontractor companies. In this paper, we propose an automatic polishing technique on a 5-axis milling center in order to use the same means of production from machining to polishing and reduce the costs. We develop special algorithms to compute 5-axis cutter locations on free-form cavities in order to imitate the skills of the workers. These are based on both filling curves and trochoidal curves. The polishing force is ensured by the compliance of the passive tool itself and set-up by calibration between displacement and force based on a force sensor. The compliance of the tool helps to avoid kinematical error effects on the part during 5-axis tool movements. The effectiveness of the method in terms of the surface roughness quality and the simplicity of impleme...

  11. Multicriteria FMECA Based Decision-Making for Aluminium Wire Process Rolling Mill through COPRAS-G

    Directory of Open Access Journals (Sweden)

    Nilesh Pancholi

    2016-01-01

    Full Text Available This paper presents a multifactor decision-making approach based on “grey-complex proportional assessment (COPRAS-G method” in a view to overcome the limitations of Failure Mode Effect and Criticality Analysis (FMECA. In this model, the scores against each failure mode are expressed in grey number instead of crisp values to evaluate the criticalities of the failure modes without uncertainty. The suggested study is carried out to identify the weights of major failure causes for bearings, gears, and shafts of aluminium wire rolling mill plant. The primary findings of the paper are that sudden impact on the rolls seems to be most critical failure cause and loss of power seems to be least critical failure cause. It is suggested to modify the current control practices with proper maintenance strategy based on achieved maintainability criticality index (MCI for different failure causes. The outcome of study will be helpful in deriving optimized maintenance plan to maximize the performance of process industry.

  12. Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes.

    Science.gov (United States)

    Kiliç, M Yalili; Yonar, T; Kestioğlu, K

    2013-01-01

    The pilot-scale treatability of olive oil mill wastewater (OOMW) by physicochemical methods, ultrafiltration and advanced oxidation processes (AOPs) was investigated. Physicochemical methods (acid cracking, oil separation and coagulation-flocculation) showed high efficiency of chemical oxygen demand (COD) (85%), oil and grease (O&G) (> 97%), suspended solids (SS) (> 99%) and phenol (92%) removal from the OOMW. Ultrafiltration followed by physicochemical methods is effective in reducing the SS, O&G. The final permeate quality is found to be excellent with over 90% improvements in the COD and phenol parameters. AOPs (ozonation at a high pH, O3/UV, H2O2/UV, and O3/H2O2/UV) increased the removal efficiency and the O3/H2O2/UV combination among other AOPs studied in this paper was found to give the best results (> 99% removal for COD, > 99% removal for phenol and > 99% removal for total organic carbon). Pilot-scale treatment plant has been continuously operated on site for three years (3 months olive oil production campaign period of each year). The capital and operating costs of the applied treatment alternatives were also determined at the end of these seasons. The results obtained in this study have been patented for 7 years by the Turkish Patent Institute.

  13. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    Science.gov (United States)

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  14. Early signals of environmental and health impacts caused by uranium mining in Caetite, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Adelson S. de; Rego, Rita de Cassia Franco [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Medicina Preventiva. Programa de Pos-Graduacao em Saude, Ambiente e Trabalho; Zucchi, Maria do Rosario [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Dept. de Fisica da Terra. Lab. de Fisica Nuclear Aplicada; Navarro, Marcus V. Teixeira, E-mail: mvtn@ifba.edu.b [Instituto Federal da Bahia (LAFIR/NTS/IFBA) Salvador, BA (Brazil). Nucleo de Tecnologia em Saude. Lab. de Fisica Radiologica

    2011-07-01

    Uranium mining and processing at Lagoa Real (Bahia, Brazil) in the southwest of Bahia state started in the year 2000.The processing of uranium ore for obtaining U3O8 (yellowcake) is done today in the processing unit of the Brazilian Nuclear Industries INB located in the area of the same municipality above mentioned. The production capacity is 400 tons / year of U3O8, and the reserves in this region are estimated at 100.000 tons of uranium without any other associated minerals, enough to supply the demand for nuclear power plants Angra I and II for over 100 years. Since the granting of AOP (Permanent Operation Authorization) by CNEN (National Commission on Nuclear Energy) in the year 2009, there were some incidents at the facility, such as: solvents and liquid containing uranium overflow; pipes rupture, causing indiscriminate dispersion of toxic acids and other chemical agents; collapse of parts of the slope of the open pit. CNEN admitted in an official press release on April 1, 2011 that 'INB has no capacity to produce annual reports on environmental monitoring (unable to perform radiometric measurements, etc.). The last time a report was released happened in the year 2008. These reports are vital to the environmental impact assessment of the facility'. Another potential source of environmental and health negative impacts on the local population could be linked to radon emission. What are the levels of this important pollutant in the affected areas? (author)

  15. Influence of emulsifiers on the optimization of processing parameters of refining milk chocolate in the ball mill

    Directory of Open Access Journals (Sweden)

    Pajin Biljana

    2011-01-01

    Full Text Available Chocolate manufacture is a complex process which includes a large number of technology operations. One of the obligatory phases is milling, called refining, which aims at obtaining the appropriate distribution of particle size, resulting in the chocolate with optimal physical and sensory characteristics. The aim of this work was to define and optimize the process parameters for the production of milk chocolate by a non-conventional procedure, using the ball mill. The quality of chocolate mass, produced on this way, is determined by measuring the following parameters: moisture, size of the largest cocoa particle, yield flow, and Casson plastic viscosity. A special consideration of this study is the optimization of the types and amounts of emulsifiers, which are responsible for achieving the appropriate rheological and physical characteristics of the chocolate mass. The obtained parameters are compared with those which are typical for the standard procedure.

  16. Microwave absorption properties of FeSi flaky particles prepared via a ball-milling process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yuan, Yong [Precision Machinery Research Institute of Shanghai Space Flight Academy, Shanghai 201600 (China); Jiang, Jian-tang [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Gong, Yuan-xun [Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074 (China); Zhen, Liang, E-mail: lzhen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); MOE Key Laboratory of Micro-system and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin 150080 (China)

    2015-12-01

    Flaky FeSi alloy particles with different aspect ratio were produced via ball-milling and a subsequent annealing. The microstructure and the morphology of the particles were examined by XRD and SEM. The dc resistivity, the static magnetization properties and electromagnetic properties were measured. Particles with high aspect ratio were found possess high permittivity and permeability. On the other hand, the variation of grain size and defects density was found influence the permittivity and permeability. High specific area was believed contribute to the intense dielectric loss and the high shape magnetic anisotropy lead to high permeability in the target band. Increased electromagnetic parameters compel the absorption peak’s shift to lower frequency. Coating using flaky FeSi particles milled for 12 h as fillers presented a reflection loss of −10 dB at 2 GHz and a matching thickness of 1.88 mm. The flaky FeSi alloy particles prepared through ball-milling and annealing can be promising candidates for EMA application at 1–4 GHz band. - Highlights: • Large quantity of flakey FeSi particles were produced through a simple way. • Coatings with as-milled FeSi particles exhibit excellent EMA performance in L-S band. • Shape and size of particles can be controlled via adjusting the ball-milling time. • Shape/size along with the microstructure influence the electromagnetic properties. • Shape/size contribute more to the excellent EMA performance compared to microstructure.

  17. IMPROVEMENT PROCESS FOR ROLLING MILL THROUGH THE DMAIC SIX SIGMA APPROACH

    Directory of Open Access Journals (Sweden)

    Kunal Ganguly

    2012-09-01

    Full Text Available This project aims to address the problems that are facing a large aluminum company in a Developing Hot Rolling Mill Capabilities for Wider Widths Hard Alloys Rolling and b Eliminate down time due to strip /coil slippage during hard alloys 5xxx rolling at Hot Mill. The challenge for the company was to cater the fast changing export demand for Flat Rolled products with its existing resources. By applying Six Sigma principles, the team identified the current situation that the rolling mills operations were in. Si x Sigma DMAIC methodologies were use d in the project to determine the project's CTQ characteristics, defining the possible causes, Identifying the variation sources, establishing variable relationships and Implementing Control Plans. The project can be useful for any company that needs to fi nd the most cost efficient way to improve and utilize its resources.

  18. Environmental Performance of the Milling Process Of Malaysian Palm Oil Using The Life Cycle Assessment Approach

    OpenAIRE

    Vijaya Subramaniam; Ma A. Ngan; Choo Y. May; Nik M.K. Sulaiman

    2008-01-01

    Malaysia is currently the world leader in the production and export of palm oil. This study has a gate to gate system boundary. The inventory data collection starts at the oil palm fresh fruit bunch hoppers when the fresh fruit bunch is received at the mill up till the production of the crude palm oil in the storage tanks at the mill. The plantation phase and land use for the production of oil palm fresh fruit bunch is not included in this system boundary. This gate to gate case study of 12 m...

  19. Iconology analysis of "Procession to Calvary" painting and "The Mill and the Cross" film

    Directory of Open Access Journals (Sweden)

    Zahra Rasta

    2016-03-01

    Full Text Available We encounter countless images of great artists while turning the pages of art history and great Western painters' books. These beautiful and various images have different combinations and styles. Some of them, which are called the iconography, show Mary and her son, Jesus's life of and have depicted different periods. Search icon image is of such research studies. Its history dates back to the Renaissance, started as a systematic tendency for examining image can be linked to the early twentieth century and Warburg school. Figure this school, Erwin Panofsky and his studies as a way of iconography and icon is steady. Iconological look at the videos on the theme of Christ leads to the creation of beautiful images. This view before seen in paintings and churches.The cinematic works of contemporary filmmakers to introduce the character of Christ to a variety of factors iconological interest.Icons to become part of the scene. Time is the icon of your way to cinematic art has opened.Icons are used in various aspects of their elemental composition or Views and scenes to run some kind of law has become. Using combination of new icons, using a variety of layout stage with images, concept, concept and aesthetics as well as complete the picture. This means that the new headings for the application icon in the creation of films with religious themes (Jesus have come in the modern era. This research represents the Iconographic analysis on Procession to Calvary painting by Pieter Bruegel the Elder of Christ. This study investigates the film based on the story of this painting called "the Mill and the Cross" directed by Lech Majewski in terms of iconography. This paper has descriptive-analytical method. Finally, the applied icons in both artworks and their roles are interpreted in creating content and meaning.

  20. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M.J., E-mail: mj.molaee@merc.ac.ir [Materials and Energy Research Center, P.O. Box: 31787-316, Karaj (Iran, Islamic Republic of); Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands); Ataie, A.; Raygan, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box: 14395-553, Tehran (Iran, Islamic Republic of); Picken, S.J. [Delft Chem Tech, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2015-03-15

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of a 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites

  1. Theoretical modeling of cutting temperature in high-speed end milling process for die/mold machining

    Institute of Scientific and Technical Information of China (English)

    Ying Tang

    2005-01-01

    A parametric model of cutting temperature generated in end milling process is developed according to the thermal mechanism of end milling as an intermittent operation, which periodically repeats the cycle of heating under cutting and cooling under noncutting. It shows that cutting speed and the tool-workpiece engagement condition are determinative for tool temperature in the operation. The suggested model was investigated by tests of AlTiN coated endmill machining hardened die steel JIS SKD61, where cutting temperature on the flank face of tool was measured with an optical fiber type radiation thermometer. Experimental results show that the tendency of cutting temperature to increase with cutting speed and engagement angle is intensified with the progressing tool wear.

  2. Potential for yield improvement in combined rip-first and crosscut-first rough mill processing

    Science.gov (United States)

    Ed Thomas; Urs. Buehlmann

    2016-01-01

    Traditionally, lumber cutting systems in rough mills have either first ripped lumber into wide strips and then crosscut the resulting strips into component lengths (rip-first), or first crosscut the lumber into component lengths, then ripped the segments to the required widths (crosscut-first). Each method has its advantages and disadvantages. Crosscut-first typically...

  3. Comparison of particle sizes between 238PuO2 before aqueous processing, after aqueous processing, and after ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mulford, Roberta Nancy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    Particle sizes determined for a single lot of incoming Russian fuel and for a lot of fuel after aqueous processing are compared with particle sizes measured on fuel after ball-milling. The single samples of each type are believed to have particle size distributions typical of oxide from similar lots, as the processing of fuel lots is fairly uniform. Variation between lots is, as yet, uncharacterized. Sampling and particle size measurement methods are discussed elsewhere.

  4. Processing of AISI M2 HSS with addition of NbC by mechanical alloying using two different types of attritor mills

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Filho, Oscar Olimpio de; Gonzalez, Cezar Henrique; Urtiga Filho, Severino Leopoldino, E-mail: oscaroaf98@hotmail.com, E-mail: gonzalez@ufpe.br, E-mail: urtiga@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica; Neves, Mauricio David Martins das, E-mail: mdneves@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ambrozio Filho, Francisco, E-mail: ambrozio@fei.edu.br [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil)

    2009-07-01

    The processing of a molybdenum AISI M2 high speed steel with the addition of NbC (6% in mass) by a Powder Metallurgy technique of Mechanical Alloying is the aim of this work. Mechanical Alloying (MA) has been used primarily for particle size reduction, to its present status as an important method for the preparation of either materials with enhanced physical and mechanical properties or, indeed, new phases, or new engineering materials. In this work, niobium carbide (NbC) was added to the AISI M2 HSS powders by Mechanical Alloying technique in two different types of attritor mills and the materials which resulted were characterized by means of SEM plus EDS. The powders were processed in a horizontal attritor Zoz mill and in a vertical attritor mill developed in our laboratory. The parameters of milling were distinct and the results of the processing were compared. (author)

  5. A process for the treatment of olive mill waste waters by immobilized cells.

    Directory of Open Access Journals (Sweden)

    ElYachioui, M.

    2005-06-01

    Full Text Available Mould strains were immobilized on sawdust from woods as a solid material for the treatment of Olive Mill Waste (OMW waters. Assays were carried out in flasks. The treatment process was monitored by physico-chemical determinations including pH, polyphenols and COD, which were followed up during the incubation time. In parallel the chemical inhibitory activity of OMW was confirmed biologically by the determination of some microorganisms in the medium including the plate count, yeasts and lactic acid bacteria. Results indicated that the polyphenol degradation level was 87 %. The COD was also reduced by 60 %. The pH of the effluent increased from 4.5 to 6.6. The microbial profiles showed their best growth during the treatment period indicating a removal of the inhibitory activities from the OMW waters. The growth patterns of all microorganism groups were similar and could reach high levels in the effluent.Cepas de moho fueron inmovilizadas sobre serrín de madera como material sólido para el tratamiento de aguas residuales de un molino de aceituna (OMW. Los ensayos se realizaron en matraces. El proceso de tratamiento se monitorizó mediante determinaciones físico-químicas incluyendo pH, polifenoles y DQO, que también se analizaron durante el tiempo de incubación. En paralelo, la actividad inhibidora química de las OMW se confirma biológicamente mediante su efecto sobre algunos microorganismos incluyendo levaduras y bactérias ácido lácticas. Los resultados indicaron que los polifenoles se degradan hasta un nivel del 87 %. La DQO se redujo también al 60 %. El pH del efluente aumentó de 4.5 a 6.6. Los perfiles microbiológicos mostraron un mejor crecimiento a medida que avanzaba el tratamiento indicando una supresión de las actividades inhibidoras de las aguas (OMW. El comportamiento del crecimiento de todos los grupos de microorganismos fue similar y puede alcanzar altos niveles en el efluente

  6. Remediation of uranium mill tailings by an integrated biological and chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.

    1992-01-01

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 [times] 10[sup [minus]3] and 2.3 [times] 10[sup [minus]3] mol/dry weight of alginate. The kinetic values, V[sub m] and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  7. Remediation of uranium mill tailings by an integrated biological and chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E.

    1992-12-31

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 {times} 10{sup {minus}3} and 2.3 {times} 10{sup {minus}3} mol/dry weight of alginate. The kinetic values, V{sub m} and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  8. Optimization strategy in end milling process for high speed machining of hardened die/mold steel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An optimization strategy for high speed machining of hardened die/mold steel based on machining feature analysis was studied. It is a further extension of the previously presented study on the thermal mechanism of end milling and constant cutting force control. An objective function concerning machining cost and associated optimization algorithm based on machining time and cutting length calculation was proposed. Constraints to satisfy specific machining strategies when high speed machining the hardened die/mold steel, trochoid tool path pattern in slot end milling to avoid over-heat and feed rate adaptation to avoid over-load, were also discussed.As a case study, the tool selection problem when machining a die part with multiple machining features was investigated.

  9. Effects of Milling and Cooking Processes on the Deoxynivalenol Content in Wheat

    Directory of Open Access Journals (Sweden)

    Masayo Kushiro

    2008-11-01

    Full Text Available Deoxynivalenol (DON, vomitoxin is a natural-occuring mycotoxin mainly produced by Fusarium graminearum, a food-borne fungi widely distributed in crops and it is one of the most important mycotoxins in wheat and wheat-based foods and feeds. DON affects animal and human health causing diarrhea, vomiting, gastro-intestinal inflammation, and immunomodulation. Since the rate of the occurrence of DON in wheat is high, effective procedures to remove or eliminate DON from food products is essential to minimize exposures in those who consume large amounts of wheat. Cleaning prior to milling reduced to some extent the concentration of DON in final products. Since DON is distributed throughout the kernels, with higher content in the outer skin, milling is also effective in reducing the DON levels of wheat-based foods if bran and shorts are removed before thermal cooking. DON is water-soluble and cooking with larger amounts of water lowers DON content in products such as spaghetti and noodles. During baking or heating, DON is partially degraded to DON-related chemicals, whose toxicological effects are not studied well. This paper reviews the researches on the effects of milling and cooking on the DON level and discusses the perspectives of further studies.

  10. Characterization and x-ray absorption spectroscopy of ilmenite nanoparticles derived from natural ilmenite ore via acid-assisted mechanical ball-milling process

    Science.gov (United States)

    Phoohinkong, Weerachon; Pavasupree, Sorapong; Wannagon, Anucha; Sanguanpak, Samunya; Boonyarattanakalin, Kanokthip; Mekprasart, Wanichaya; Pecharapa, Wisanu

    2017-09-01

    In this work activated ilmenite nanoparticles were prepared by chemical-assisted in mechanical ball-milling process from ilmenite ore as starting raw material. The effect of milling process on their phase composition, particle size, surface morphology and local structure were investigated. Phase identification and crystalline structure of ilmenite mineral, milled samples and subsequent leached residues were characterized by x-ray diffraction (XRD). Meanwhile, the distorted octahedral structure and the oxidation state of relevant elements in ilmenite ore and activated ilmenite obtained by different process conditions were analyzed by x-ray absorption spectroscopy (XAS). Particle size and morphologies of the samples were monitored by field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). Three dominant peaks of TiO2 rutile, FeTiO3, and Fe2TiO4 are obviously adulterated in XRD patterns after mechanical milling with water and acid solution when comparing to precursor mineral. However, the contaminated phase of FeTiO3 and Fe2TiO4 was readily decreased by acid-assisted mechanical ball-milling. The enhancement in leaching process of ilmenite residue after milling can be obtained with sulfuric acid. This result suggests that iron contaminated phase could be leached from the sample resulting to the decrease in Fe environment around Ti atom. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  11. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    Science.gov (United States)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  12. Degradation of EDTA and novel complexing agents in pulp and paper mill process and waste waters by Fenton's reagent.

    Science.gov (United States)

    Pirkanniemi, Kari; Metsärinne, Sirpa; Sillanpää, Mika

    2007-08-17

    Fenton's process was used in oxidative degradation of ethylediaminetetraacetic acid (EDTA) and novel complexing agents, namely BCA5 and BCA6, in distilled water and spiked samples of integrated pulp and paper mill waste water and ECF-pulp bleaching effluent. In waste water, over 90% of EDTA was degraded within 3 min when temperature was 60 degrees C, pH 4, and molecular ratio of H2O2:Fe2+:EDTA was 70:2:1 (0.26 mM EDTA) or higher. In spiked ECF bleaching effluent up to 42% of EDTA was degraded in similar reaction conditions, still higher than published results indicate biological waste water treatment of pulp and paper mill waste water being capable of. In pH 3, EDTA proved readily degradable by Fenton's process in otherwise similar conditions. According to these results, Fenton's process could be used as a pre-treatment method for EDTA-containing bleaching effluents prior to the biological waste water treatment. In addition, BCA5 and BCA6 proved their superiority in terms of degradability also by Fenton's process in both pH 3 and 4.

  13. Influence of wood properties and technological parameters of processing on cutting power in milling of thermally modified beechwood

    Directory of Open Access Journals (Sweden)

    Mandić Marija

    2011-01-01

    Full Text Available The paper presents results of influence of thermal modification on cutting power required for milling wood processing. The experiment was conducted for the different treatment temperatures (170°C, 190°C and 210°C and different technological parameters of processing (feed and cutting depth. Cutting powers during milling were measured on four groups of beech wood samples, dimensions 35×16×400 mm, separately for heartwood and sapwood. The following mechanical and physical properties of the processed samples were tested: bending properties (modulus of rupture and modulus of elasticity, cross-sectional and tangential hardness, and air-dry density. The measuring device used for measuring, monitoring and displaying cutting power was developed at the Wood Machining Centre at the Faculty of Forestry in Belgrade. The results point out the differences in the powers required for processing heat-treated wood compared to untreated wood. The analysis shows that with the increase in treatment temperature, the required cutting powers decrease.

  14. Contribution on Taguchi's Method Application on the Surface Roughness Analysis in End Milling Process on 7136 Aluminium Alloy

    Science.gov (United States)

    ȚÎȚU, M. A.; POP, A. B.

    2016-11-01

    The resulting surface quality after the cutting process is one of the most important characteristics of product quality and also the most frequent customer requirement. Previous research was focused on the effect investigation of machining parameters: cutting speed [1] and feed per tooth [2] on surface roughness. This paper is in itself a continuation of a previous research [3], in which, with Taguchi's method it was determined the level of influence of the cutting parameters on surface roughness of 7136 aluminium alloy in end milling process. The purpose of this paper is to highlight the importance of Taguchi's method use to analyse the surface roughness of 7136 aluminium alloy in end milling process. To conduct the experiments, three cutting parameters were used: cutting speed, feed per tooth and cutting depth. To analyse the surface quality, the surface roughness Ra (the arithmetic average of the absolute values) was measured. It was determined the recommended configuration regarding the optimum values of each machining parameter and the interactions between them, in order to obtain the better cutting process performance and to reduce the surface roughness sensitivity to uncontrollable factors. Based on a full factorial experiment were confirmed the obtained results by applying the Taguchi's method. Final results are a starting point for further research.

  15. Fenton treatment of olive oil mill wastewater--applicability of the method and parameters effects on the degradation process

    Institute of Scientific and Technical Information of China (English)

    Bensalah Nasr; Bedoui Ahmed; Gadri Abdellatif

    2004-01-01

    The low biodegradability of polyphenolic compounds typically found in olive processing indicated that biological treatment is not always successful in the treatment of olive oil mill wastewater in term of COD removal. In this study the results of investigations on the applicability of Fenton's reagent in the treatment of this effluent were discussed. The efficiency of this method was determined. 86 % of removal COD was obtained using 5 mol H2O2 and 0.4 mol Fe2+ per liter of crude OMW. The main parameters that govern the complex reactive system, i.e., time, pH, [H2O2] and [Fe(II)] have been studied.

  16. Flank wear and I-kaz 3D correlation in ball end milling process of Inconel 718

    Directory of Open Access Journals (Sweden)

    M.A.S.M. Tahir

    2015-12-01

    Full Text Available Tool wear may deteriorate the machine product quality due to high surface roughness, dimension exceeding tolerance and also to machine tool itself. Tool wear monitoring system is vital to be used in machining process to achieve high quality of the machined product and at the same time improve the productivity. Nowadays, many monitoring system developed using various sensor and statistical technique to analyze the signals being used. In this paper, I-kaz 3D method is used to analyze cutting force signal in milling process of Inconel 718 for monitoring the status of tool wear in milling process. The results from analyzing cutting force show that I-kaz 3D coefficient has a correlation with cutting tool condition. Tool wear will generate high value of I-kaz 3D coefficient than the sharp cutting tool. Furthermore, the three dimension graphical representation of I-kaz 3D for all cutting condition shown that the degree of scattering data increases with tool wear progression.

  17. EFFECT OF STRESS-INDUCED REACTIONS ON MORPHOLOGICAL STRUCTURE AND PROCESSABILITY OF PVC DURING PAN-MILLING

    Institute of Scientific and Technical Information of China (English)

    Hua-wei Zou; Wen Xu; Qing-fen Feng; Xi Xu

    2005-01-01

    The effect of pan-milling on morphological structure, processability and properties of PVC was studied through SEM, FTIR, granulometer, GPC and mechanical properties test in the hope of gaining ease in operation, needless of plasticizers, a clean and efficient route for improving the processability of PVC through stress-induced reactions,fulfilling the idea of "plasticizing PVC by itself'. The experimental results show that during pan-milling at ambient temperature, within 2-3 min, the microcrystalline structure of PVC becomes indistinct, the grain size of PVC is reduced from 130-160 μm to 1-50 μm the molecular weight of PVC is slightly decreased, the variation of molecular weight distribution is indistinct, the plasticizing time and torque at balance drop a great deal from 71-132 s to 31-33 s and from 18.2-22.1 Nm to 14.7-18.4 Nm, respectively, the processability of PVC is markedly improved, and the mechanical properties get enhanced too.

  18. Effect of milling duration on the evolution of shape memory properties in a powder processed Cu-Al-Ni-Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mohit; Gupta, Gaurav K.; Shafeeq, Muhamed M.; Modi, Om P.; Prasad, Braj K. [CSIR - Advanced Materials and Processes Research Institute, Bhopal (India)

    2013-09-15

    The present work describes the effect of milling duration on the properties of a powder metallurgy processed Cu-Al-Ni-Ti shape memory alloy employing mechanical alloying. Powder mixtures milled for different durations were sintered in order to investigate the formation of solid solution and evolution of martensitic structure. The idea was to optimize the duration of milling (mechanical alloying) to obtain chemical homogeneity as well as shape memory properties in the processed material without undergoing extensive post homogenization treatment. The martensitic structure was noted to evolve in the powder mix milled for at least 16 hrs, whereas complete transformation to martensite occurred after milling for 40 hrs. Interestingly, the dissolution of alloying elements (to form the {beta} phase prior to the formation of martensite) was noted to complete partially only during mechanical alloying for 40 hrs and remaining during subsequent sintering for 1 hr. The hot pressed compacts of the powders milled for 40 hrs were chemically homogeneous and consisted of fully martensite phase, which is essential for the realization of shape memory properties. They also revealed almost 100% shape recovery at the applied pre-strain levels of 1 and 2%. (orig.)

  19. Influence of milling process in the surface energy of glass tile frits; Influencia de la molienda en la energia superficial de fritas para esmaltes

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, A.; Rubio, F.; Oteo, J. L.; Rubio, J.

    2013-05-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO{sub 2} by 5% of B{sub 2}O{sub 3} and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A{sup 2} if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m{sup -}2) and the less acidic constant (0.13 kJ.mol{sup -}1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author) 30 refs.

  20. Influence of milling process in the surface energy of glass tile frits; Influencia de la molienda en la energia superficial de fritas para esmaltes

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, A.; Rubio, F.; Otero, J. L.; Rubio, J.

    2013-06-01

    In this work has been studied the influence of the milling process of two ceramic frits used in the ceramic tile industry. Both glass frits were of similar chemical composition changing SiO{sub 2} by 5% of B{sub 2}O{sub 3} and both of them were water or dry milled. Glass frit surfaces were characterized by FT-IR, Karl-Fischer (K-F) titration and Inverse Gas Chromatography at Infinite Dilution (IGC-ID). By K-F titration it was observed that water milled frits presented 28 and 26 OH groups for 100 A{sup 2} if they do not contain or contain boron, respectively. These surface changes are also observed by IGC-ID. Thus, the glass frit without boron and dry milled presented the highest dispersive surface energy (44 mJ.m{sup -}2) and the less acidic constant (0.13 kJ.mol{sup -}1). Both glass frits are amphoteric with acidic and base surface active sites, and that frit without boron presents the higher basicity. Milling process influences in the acid-base surface characteristics of both frits by increasing the basicity for the one without boron and increasing for the other one. This has been assigned to the different location of hydroxyl groups where the higher interaction is the one that does not contain boron and dry milled as K-F results. (Author)

  1. Mechanistic identification of cutting force coefficients in bull-nose milling process

    Institute of Scientific and Technical Information of China (English)

    Gao Ge; Wu Baohai; Zhang Dinghua; Luo Ming

    2013-01-01

    An improved method to determine cutting force coefficients for bull-nose cutters is proposed based on the semi-mechanistic cutting force model.Due to variations of cutting speed along the tool axis in bull-nose milling,they affect coefficients significantly and may bring remarkable discrepancies in the prediction of cutting forces.Firstly,the bull-nose cutter is regarded as a finite number of axial discs piled up along the tool axis,and the rigid cutting force model is exerted.Then through discretization along cutting edges,the cutting force related to each element is recalculated,which equals to differential force value between the current and previous elements.In addition,coefficient identification adopts the cubic polynomial fitting method with the slice elevation as its horizontal axis.By calculating relations of cutting speed and cutting depth,the influences of speed variations on cutting force can be derived.Thereby,several tests are conducted to calibrate the coefficients using the improved method,which are applied to later force predictions.Eventually,experimental evaluations are discussed to verify the effectiveness.Compared to the conventional method,the results are more accurate and show satisfactory consistency with the simulations.For further applications,the method is instructive to predict the cutting forces in bull-nose milling with lead or tilt angles and can be extended to the selection of cutting parameters.

  2. Multi response Characteristics of Process Parameters during End Milling of GFRP using Grey-Based Taguchi Method

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-05-01

    Full Text Available This paper deals with optimization of surface roughness and delamination damage on GFRP  material during end milling using grey - based taguchi method. Three parameters namely spindle speed, feed rate and depth of cut were identified and ranges of the parameters for the present investigation were determined from preliminary experiments. Taguchi method based on L9 orthogonal array was selected and experiments were conducted as per experimental layout plan. The experiments were carried out on a CNC vertical machining center to perform 10mm slots on GFRP work piece of 300mmX50mmX25mm size by K10 carbide, four flute end milling cutter. Surface roughness and delamination damage were measured on each slot with the aid of form Talysurf 50 and tool maker’s micro scope. An optimal combination of process parameters were obtained via grey based taguchi method. From the results of ANOVA, it is concluded that cutting speed and depth of cut are the most significant factors affecting the surface roughness and delamination damage factor and their contribution in an order of 26.84% and 40.44% respectively. A confirmatory experiment shows that 5.052µm for surface roughness and 1.682 delamination damage factor to validate the used approach after conducting with optimal setting of process parameters.

  3. Study of Commercial Wheat Flour Milling Process:Relation of Flour Yield,Ash and Protein Contents of Flour Mill and Characteristics of Wheat Blend%Study of Commercial Wheat Flour Milling Process: Relation of Flour Yield, Ash and Protein Contents of Flour Mill and Characteristics of Wheat Blend

    Institute of Scientific and Technical Information of China (English)

    Y S Kim; C W Deyoe; O K Chung; E Haque

    2006-01-01

    The profit margin in the flour milling industry is quite narrow, so high-quality raw materials and efficiency of milling operations are crucial for every company. Many flour mills, especially those which import wheat from other countries and have limited storage space for the different varieties or classes of wheat, can not afford to buy low quality wheat. Consequently, a mathematical model which can test the impact and interactions of raw materials, in technical point of view, would be a useful decision-making tool for the milling industry. A flour miller tests wheat for physical and chemical characteristics, cleanness and soundness. The miller also performs experimental milling, if available, to have some idea how the given wheat will behave during commercial milling. Based on these test results, the miller can only guess the commercial milling results such as flour yields and flour ash and protein contents. Thus, the objective of this study was to develop empirical equations to estimate commercial milling results, using the physical, chemical and experimental milling data of the given wheat blend and also, additionally, flour ash and protein specifications of the end-user. This was done by using the actual commercial milling procedures and their wheat physical, chemical, experimental milling data, and other vital data. Data were collected from a commercial mill located in East Asia that had four production lines and used wheat blend combinations from five different wheat classes, i.e. Hard Red Winter (HRW),Dark Northern Spring (DNS), Soft White (SW), Australian Soft (AS), and Australian Standard White (ASW) wheat to produce over 40 different products. The wheat physical and chemical characteristics included test weight, thousand kernel weight, ash and protein contents. The experimental milling data were straight-grade and patent flour yields, along with patent flour ash and protein contents from a Buhler experimental mill. The commercial milling results included

  4. Emission and drying kinetics of paper mill sludge during contact drying process

    Institute of Scientific and Technical Information of China (English)

    Wen-yi DENG; Xiao-dong LI; Jian-hua YAN; Fei WANG; Sheng-yong LU; Yong CHI; Ke-fa CEN

    2009-01-01

    The emission and contact drying kinetics of the paper mill sludge (PMS) were studied through experiments carried out in a paddle dryer. To get a better understanding of its drying mechanism, a penetration model developed by Tsotsas and Schlunder (1986) was used to simulate the drying kinetics of the PMS. The result indicated that this kinetics could be divided into three phases: pasty, lumpy and granular phases, and could be successfully simulated by the penetration model as the related sludge parameters were integrated into the model. The emission rate curves of the volatile compounds (VCs) were interrelated to the drying rate curve of the PMS, especially for volatile fatty acids (VFAs) and ammonia in this study.

  5. Pilot-scale comparison of thermophilic aerobic suspended carrier biofilm process and activated sludge process in pulp and paper mill effluent treatment.

    Science.gov (United States)

    Suvilampi, J E; Rintala, J A

    2004-01-01

    Thermophilic aerobic treatment of settled pulp and paper mill effluent was studied under mill premises with two comparative pilot processes; suspended carrier biofilm process (SCBP) and activated sludge process (ASP). Full-scale mesophilic activated sludge process was a reference treatment. During the runs (61 days) hydraulic retention times (HRTs) were kept 13+/-5 h and 16+/-6 h for SCBP and ASP, respectively. Corresponding volumetric loadings rates (VLR) were 2.7+/-0.9 and 2.2+/-1.0 kg CODfilt m(-3)d(-1). Temperatures varied between 46 to 60 degrees C in both processes. Mesophilic ASP was operated with HRT of 36 h, corresponding VLR of 0.7 kg CODfilt m(-3)d(-1). Both SCBP and ASP achieved CODfilt (GF/A filtered) removals up to 85%, while the mesophilic ASP removal was 89+/-2%. NTU values were markedly higher (100-300) in thermophilic effluents than in mesophilic effluent (30). Effluent turbidity was highly dependent on temperature; in batch experiment mesophilic effluent sample had NTU values of 30 and 60 at 35 degrees C and 55 degrees C, respectively. As a conclusion, both thermophilic treatments gave high CODfilt removals, which were close to mesophilic process removal and were achieved with less than half of HRT.

  6. Comparative research of plasma-assisted milling and traditional milling in synthesizing AlN

    Science.gov (United States)

    Wang, Sen; Wang, Wenchun; Liu, Zhijie; Yang, Dezheng

    2017-06-01

    In this paper, traditional milling and discharge plasma-assisted milling are employed to synthesize aluminum nitride (AlN) powder at nanometer scale by milling the mixture of aluminum and lithium hydroxide monohydrate. AlN powders can be generated in traditional milling and plasma-assisted milling in an hour milling time. Differential thermal analysis curves show that the reaction temperature of the powders treated by plasma-assisted milling is lower than that of traditional milling. These results indicate that plasma-assisted milling has higher efficiency in the synthesis of AlN, getting smaller crystallite size and activating powder. Moreover, an optical emission spectrum is employed to demonstrate the active species in plasma. The different formation process of AlN in the two-milling process, and the promotion effects of plasma in the milling process are discussed.

  7. Process modeling and analysis of pulp mill-based integrated biorefinery with hemicellulose pre-extraction for ethanol production: a comparative study.

    Science.gov (United States)

    Huang, Hua-Jiang; Ramaswamy, Shri; Al-Dajani, Waleed Wafa; Tschirner, Ulrike

    2010-01-01

    Pulp and paper mills represent a major platform to use more effectively an abundant, renewable bio-resource - wood. Modification of the modern day pulp mills into integrated forest biorefineries (IFBR) presents an excellent opportunity to produce, in addition to valuable cellulose fiber, co-products including fuel grade ethanol and additional energy, thus resulting in increased revenue streams and profitability and potentially lower the greenhouse gas emissions. A process model to simulate the integrate forest biorefinery manufacturing pulp and other co-products has been developed. This model has been used to compare three integrated biorefinery scenarios: the conventional Kraft pulping process, the pulp mill-based IFBR with hemicelluloses extraction prior to pulping for ethanol production, and the pulp mill-based IFBR with both pre-extracted hemicelluloses and the short fiber for ethanol production. Based on a fixed feedstock throughput of 2000 dry Mg wood/day, results show that the pulp mill-based IFBR with both pre-extracted hemicelluloses and the short fiber cellulose converted to ethanol can produce 0.038 MM m(3) (10.04 MM gal) ethanol per year at a minimum ethanol selling price (MESP) of $491/m(3) ($1.86/gal). The economic feasibility of IFBR can be further improved by using further improvements in the pre-extraction process, other biomass such as corn stover for producing ethanol, and taking advantage of the economies of scale.

  8. Anaerobic treatment for C and S removal in 'zero-discharge' paper mills: effects of process design on S removal efficiencies.

    NARCIS (Netherlands)

    Lier, van J.B.; Lens, P.N.L.; Hulshoff Pol, L.W.

    2001-01-01

    Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is a

  9. In vitro/in vivo evaluation of felodipine micropowders prepared by the wet-milling process combined with different solidification methods.

    Science.gov (United States)

    Meng, Jia; Li, Song; Yao, Qing; Zhang, Ling; Weng, Yan; Cai, Cuifang; Xu, Hui; Tang, Xing

    2014-07-01

    In order to improve the in vitro dissolution rate and in vivo oral bioavailability of the poorly water soluble drug, felodipine (FELO), the wet-milling process was employed involving co-grinding with HPMC E5 and the in vitro release rate as investigated. After solidification by spray drying or freeze drying, the microsized powders were characterized in terms of their size, morphology, and in vitro dissolution rate. The oral bioavailability of this dry powder for suspension was evaluated in rats. After milling with 8% HPMC E5 and freeze drying, the powder mixture had an average particle size of 2.249 ± 1.497 μm and displayed an excellent dissolution rate of up to 93.2% within 10 minutes. DSC and PXRD investigations confirmed the absence of any crystal transformation during the wet-milling process. Using two different solidification methods, powders were stable for 6 months with regard to their in vitro dissolution rate. Significantly improved bioavailability was obtained for the wet-milled suspension before solidification and freeze dried powders with 6.8- (p  0.05) in bioavailability was seen for the spray dried powders. These effects suggest that the solidification method plays an important role in modifying the bioavailability of FELO after wet milling. Consequently, wet-milling is an effective technique to enhance the bioavailability of FELO and to maintain these benefits, freeze-drying is a feasible approach to solidifying the wet-milled suspension for industrial applications.

  10. Structures,properties and responses to heat treatment of deformation processed Cu-15%Cr composite powders prepared by mechanical milling

    Institute of Scientific and Technical Information of China (English)

    刘京雷; 刘祖岩; 王尔德; 线恒泽

    2002-01-01

    Cu-15%Cr composite powders were produced from elemental powders by mechanical milling technique. The structures, properties and thermal stability of the composite powders were characterized by scanning and transmission electron microscopy (SEM and TEM, respectively), electron probe microanalysis(EPMA), X-ray diffractometry and microhardness testing. The results show that powders are first flattened into thin discs at the initial stage of milling and then evolved into spheroid on further milling. Lamellar structure in powders is produced after intermediate milling. The Cr laminas degenerate into particles uniformizing in Cu matrix with excessive milling. The microhardness values and internal strain sharply increase with increasing milling time. Nano-sized Cu grains were found by TEM analysis. The microstructural observations suggested that the composite powders have high thermal stability and both spherodisation and thermal grooving contribute to the instability of Cr laminas.

  11. The Semi-Quantitative Study of Magnetization Process on Milling and Reannealing of Barium Hexaferrite (BaO.6Fe2O3

    Directory of Open Access Journals (Sweden)

    Ridwan

    2009-07-01

    Full Text Available Barium hexaferrite (BaO.6Fe2O3 is as a hard magnetic material with good chemical stability which has been intensively used as permanent magnet components. Many works have been done in order to improve their magnetic properties either through chemical process or powders metallurgy technique. In this work, commercial BaO.6Fe2O3 was milled using high-energy milling machine for 10, 20 and 30 hours and followed by reannealing for 3 hours at 1000⁰C in air. X-ray diffraction pattern indicate no phase decomposition occurred caused the mill processing, annealing of milled powders recovered the crystal system and promoted crystallite growth. The magnetic hysteresis curve measured by vibrating sample magnetometer (VSM shows the coercivity of annealed BaO.6Fe2O3 increases to two times higher than the original one. By using Jiles-Atherton model, all the hysteresis parameters Ms, k, α, a and c, have been determined adopted to the Genetic Algorithm (GA. The analyzed hysteretic parameters obtained from this work is congruent to the change of magnetic properties of as-milled and annealed powders of barium hexaferrite.

  12. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  13. Characterization of cationic starch flocculants synthesized by dry process with ball milling activating method.

    Science.gov (United States)

    Su, Yuting; Du, Hongying; Huo, Yinqiang; Xu, Yongliang; Wang, Jie; Wang, Liying; Zhao, Siming; Xiong, Shanbai

    2016-06-01

    The cationic starch flocculants were synthesized by the reaction of maize starch which was activated by a ball-milling treatment with 2,3-epoxypropyl trimethyl ammonium chlorides (ETMAC) using the dry method. The cationic starches were characterized by several approaches including scanning electron microscope (SEM), degree of substitution (DS), infrared spectrum (IR), X-ray diffraction (XRD), flocculating activity, electron spin resonance (ESR), and solid-state nuclear magnetic resonance (NMR). The effect of mechanical activation on starch etherifying modification was investigated. The mechanical activation cracked starch granules and destructed their crystal structures. This resulted in enhancements to the reaction activity and reaction efficiency, which was approved by ESR and solid state NMR. The starch flocculants, synthesized by the reaction of mechanically activated starches at 90°C for 2.5h with ETMAC at molar ratio of 0.40:1.00, showed good flocculation activity. The substitution degree (0.300) and reaction efficiency (75.06%) of starch flocculants synthesized with mechanically activated starches were significantly greater than those of starch flocculants with native starches (P<0.05). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    Directory of Open Access Journals (Sweden)

    Georgios Koutrotsios

    2014-01-01

    Full Text Available Olive mill wastewater (OMW constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent’s decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64% followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW’s phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment.

  15. Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process

    Science.gov (United States)

    Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko

    2015-12-01

    A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.

  16. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    Science.gov (United States)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei

    2015-05-01

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  17. Influence of Process Control Agent on Characterization and Structure of Micron Chitosan Powders Prepared by Ball Milling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuan-jie

    2016-12-01

    Full Text Available With ethyl alcohol or distilled water as process control agent (PCA, micron chitosan powder was prepared by ball milling method. The yield rate, particle size distribution, micro morphology, viscosity average molecular mass, chemical and crystal structures, and thermal properties of these different micron chitosan powders were measured. The results indicate that the yield rate of micron chitosan powders prepared with ethyl alcohol as PCA increases significantly, and improves to 94.7% from 25% while the amount of ethyl alcohol is 0.75mL/g. The particle size distribution of micron chitosan powder prepared with ethyl alcohol as PCA is concentrated, while the D50 and D90 in size are 824nm and 1629nm respectively. Chitosan do not react with ethyl alcohol used as PCA, but the viscosity average molecular mass of prepared micron chitosan powder decreases by 23%, the crystal structures are destroyed slightly, and its thermal stability is slightly weakened.

  18. Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Canhui; Zhang, Xinxing; Zhang, Wei [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065 (China)

    2015-05-22

    The partially devulcanization or de-crosslinking of ground tire rubber (GTR), post-vulcanized fluororubber scraps and crosslinked polyethylene from cable scraps through high-shear mechanochemical milling (HSMM) was conducted by a modified solid-state mechanochemical reactor. The results indicated that the HSMM treated crosslinked polymer scraps can be reprocessed as virgin rubbers or thermoplastics to produce materials with high performance. The foamed composites of low density polyethylene/GTR and the blend of post-vulcanized flurorubber (FKM) with polyacrylate rubber (ACM) with better processability and mechanical properties were obtained. The morphology observation showed that the dispersion and compatibility between de-crosslinked polymer scraps and matrix were enhanced. The results demonstrated that HSMM is a feasible alternative technology for recycling post-vulcanized or crosslinked polymer scraps.

  19. Improvement of in-line process in high frequency welded steel pipe mill using advance tube tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Babakri, Khalid Ali [Saudi Steel Pipe Company, Dammam, (Saudi Arabia)

    2010-07-01

    The Saudi Steel Pipe Company has designed and implemented a new automated tube tracking system. This paper reported, based on practical experience, the improvement of the in-line process control in high frequency induction (HFI) welded steel pipe mill using this new advance in automated the tube tracking system (TTS). The TTS provides helps in quality control inspection stations (in-process inspection, flattening test, offline ultrasonic, final inspection). For example, the QC inspector at the in-process station is able to choose any tube from the running coil and carry out visual and dimensional inspections. The results will be automatically updated in the TTS. This new system is also integrated with the continuous electronic process control (CEPC) system where the welding and annealing parameters are recorded and linked to each produced coil. It is found that the implementation of the advanced TTS has improved in-line process control on the shop floor. The results showed an increase in productivity and a reduction of operation cost.

  20. Nanoscale characterisation and clustering mechanism in an Fe-Y{sub 2}O{sub 3} model ODS alloy processed by reactive ball milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Brocq, M., E-mail: mathilde.brocq@cea.fr [CEA, DEN, DMN, Service de Recherches de Metallurgie Physique, F-91191 Gif-sur-Yvette (France); Radiguet, B.; Le Breton, J.-M.; Cuvilly, F.; Pareige, P. [Universite et INSA de Rouen, Groupe de Physique des Materiaux - UMR 6634 CNRS, 76801 Saint Etienne du Rouvray (France); Legendre, F. [CEA, DEN, DMN, Service de Recherches de Metallurgie Physique, F-91191 Gif-sur-Yvette (France)

    2010-03-15

    Reactive ball milling and annealing is proposed as a new production method for oxide dispersion strengthened (ODS) steels. A highly concentrated Fe-38 atm.% Y{sub 2}O{sub 3} ODS model alloy was processed by reactive ball milling and annealing of YFe{sub 3} and Fe{sub 2}O{sub 3} powders so as to induce the chemical reaction 2YFe{sub 3} + Fe{sub 2}O{sub 3} {yields} 8Fe + Y{sub 2}O{sub 3}. The model alloy was characterised after milling and annealing by complementary techniques, including atom probe tomography. Ball milling up to the stationary state results in the formation of two metastable nanometric interconnected phases: super-saturated {alpha}-iron and an yttrium and oxygen rich phase. Annealing leads the system towards equilibrium through: (i) a chemical evolution of each phase to nearly pure {alpha}-Fe and Y{sub 2}O{sub 3} oxide slightly sub-stoichiometric in oxygen; and (ii) growth of the phases. A pure iron matrix reinforced by nanometric Y{sub 2}O{sub 3} particles was successfully synthesised by reactive ball milling and annealing.

  1. Mg{sub 2}FeH{sub 6}-based nano composite with high capacity of hydrogen storage processed by reactive milling

    Energy Technology Data Exchange (ETDEWEB)

    Asselli, A.A.C., E-mail: asselli@gmail.co [Universidade Federal de Sao Carlos (PPG-CEM/UFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Kiminami, C.S.; Jorge Junior, A.M.; Iskikawa, T.T.; Botta Filho, W.J. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The compound Mg{sub 2}FeH{sub 6} was synthesized from a 2Mg-Fe mixture in a single process by high-energy ball milling under hydrogen atmosphere at room temperature. The complex hydride was prepared from Mg powder and granulated or powdered Fe using a planetary mill. The phase evolution during different milling times was performed by X-rays diffraction technique. The dehydrogenation behavior of the hydride was investigated by simultaneous thermal analysis of differential scanning calorimetry and thermogravimetry coupled with mass spectrometry. The use of powdered iron as starting material promoted conversion to complex hydride at shorter milling times than when granulated iron was used, nevertheless, after 24 hours of milling the 2Mg-Fe (powdered or granulated) mixtures presented similar dehydrogenation behavior. The gravimetric capacity of hydrogen was on average 3.2 wt.%, however, changing the proportions between the reagents to 3Mg-Fe a Mg{sub 2}FeH{sub 6}-based nanocomposite with high capacity of hydrogen storage (5.2 wt.%) was obtained. (author)

  2. Nanocompósitos cerâmicos a partir do processo de moagem mecânica de alta energia Ceramic nanocomposites from the hight-energy mechanical milling process

    Directory of Open Access Journals (Sweden)

    Neftalí L. V. Carreño

    2008-01-01

    Full Text Available Pb/Ti, Sn and Mg-based nanocomposite materials were prepared by the high-energy mechanical milling of commercial powders. The surface of these ceramic compounds was strongly influenced by the doping, diameter of the milling spheres and time of the mechanical milling (amorphization process. Such milling leads to the formation of nanocrystalline materials. The mechanical processing parameters of these compounds were investigated through Brunauer, Emmett and Teller isotherms, wide angle X-ray diffraction, transmission electron microscopy and CO2 adsorption.

  3. Influence of minimum quantity of lubricant (MQL on tool life of carbide cutting tools during milling process of steel AISI 1018

    Directory of Open Access Journals (Sweden)

    Diego Núñez

    2017-03-01

    Full Text Available Nowadays, high productivity of machining is an important issue to obtain economic benefits in the industry. This purpose could be reached with high cutting velocity and feed rate. However, the inherently behavior produce high temperatures in the interface of couple cutting tool/workpiece. Many cutting fluids have been developed to control temperature in process and increase tool life. The objective of this paper is to compare the carbide milling tool wear using different systems cutting fluids: flood and minimum quantity of lubrication (MQL. The values of carbide milling cutting tool wear was evaluate according with the standard ISO 8688-1 1989. The experimental results showed that using MQL reduces significantly (about 40% tool wear in milling AISI 1018 steel at industrial cutting conditions.

  4. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment.

    Science.gov (United States)

    Ochando-Pulido, J M; Hodaifa, G; Victor-Ortega, M D; Rodriguez-Vives, S; Martinez-Ferez, A

    2013-12-15

    In this work, complete reclamation of the olive mill effluents coming from a two-phase olive oil extraction process (OME-2) was studied on a pilot scale. The developed depuration procedure integrates an advanced oxidation process based on Fenton's reagent (secondary treatment) coupled with a final reverse osmosis (RO) stage (purification step). The former aims for the removal of the major concentration of refractory organic pollutants present in OME-2, whereas the latter provides efficient purification of the high salinity. Complete physicochemical composition of OME-2 after the secondary treatment was examined, including the particle size distribution, organic matter gradation and bacterial growth, in order to assess the selection of the membrane and its fouling propensity. Hydrodynamics and selectivity of the membrane were accurately modelized. Upon optimization of the hydrodynamic conditions, the RO membrane showed stable performance and fouling problems were satisfactorily overcome. Steady-state permeate flux equal to 21.1 L h(-1)m(-2) and rejection values up to 99.1% and 98.1% of the organic pollutants and electroconductivity were respectively attained. This ensured parametric values below standard limits for reuse of the regenerated effluent, e.g. in the olives washing machines, offering the possibility of closing the loop and thus rending the production process environmentally friendly. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process

    Directory of Open Access Journals (Sweden)

    Marijana Kraljić Roković

    2014-12-01

    Full Text Available The objective of this work was to study the influence of NaCl concentration, time, and current density on the removal efficiency of phenolic compounds by electrocoagulation process, as well as to compare the specific energy consumption (SEC of these processes under different experimental conditions. Electrocoagulation was carried out on two different samples of water: model water of mimosa tannin and olive mill wastewater (OMW. Low carbon steel electrodes were used in the experiments. The properties of the treated effluent were determined using UV/Vis spectroscopy and by measuring total organic carbon (TOC. Percentage of removal increased with time, current density, and NaCl concentration. SEC value increased with increased time and current density but it was decreased significantly by NaCl additions (0-29 g L-1. It was found that electro­coagulation treatment of effluents containing phenolic compounds involves complex formation between ferrous/ferric and phenolic compounds present in treated effluent, which has significant impact on the efficiency of the process.

  6. Pitt Mill Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Oder, R.R.; Borzone, L.A.

    1990-05-01

    Results of a technical and economic evaluation of application of the Pitt Mill to fine coal grinding are presented. The Pitt Mill is a vertically oriented, batch operated, intermediate energy density (0. 025 kW/lb media), stirred ball mill. The mill grinds coal from coarse sizes (typically 3/16 inch or 4 mesh topsize) to the 10 micron to 20 micron mean particle diameter size range in a single step using a shallow grinding bed containing inexpensive, readily available, course grinding media. Size reduction is efficient because of rapid product circulation through the grinding bed caused by action of a novel circulation screw mounted on the agitator shaft. When a dispersant is employed, the grinding can be carried out to 50% to 60% solids concentration. Use of coarse grinding media offers the possibility of enhanced mineral liberation because size reduction is achieved more by impact shattering than by attrition. The batch method offers the possibility of very close control over product particle size distribution without overproduction of fines. A two- phase program was carried out. In the first phase, Grinding Studies, tests were run to determine a suitable configuration of the Pitt Mill. Machine design parameters which were studied included screw configuration, media type, agitator RPM, time, media size, and slurry chamber aspect ratio. During the last part of this phase of the program, tests were carried out to compare the results of grinding Pocahontas seam, Pittsburgh {number sign}8, and East Kentucky Mingo County coals by the Pitt Mill and by a two-stage grinding process employing a Netzsch John mill to feed a high energy density (0.05 kW/Lb media) disc mill. 22 refs., 25 tabs.

  7. Transformation of an active pharmaceutical ingredient upon high-energy milling: A process-induced disorder in Biclotymol.

    Science.gov (United States)

    Schammé, Benjamin; Couvrat, Nicolas; Malpeli, Pascal; Dudognon, Emeline; Delbreilh, Laurent; Dupray, Valérie; Dargent, Éric; Coquerel, Gérard

    2016-02-29

    This study investigates for the first time the thermodynamic changes of Biclotymol upon high-energy milling at various levels of temperature above and below its glass transition temperature (Tg). Investigations have been carried out by temperature modulated differential scanning calorimetry (TM-DSC) and X-ray powder diffraction (XRPD). Results indicate that Biclotymol undergoes a solid-state amorphization upon milling at Tg-45 °C. It is shown that recrystallization of amorphous milled Biclotymol occurs below the glass transition temperature of Biclotymol (Tg=20 °C). This displays molecular mobility differences between milled Biclotymol and quenched liquid. A systematic study at several milling temperatures is performed and the implication of Tg in the solid-state transformations generally observed upon milling is discussed. Influence of analysis temperature with respect to interpretation of results was investigated. Finally, it is shown that co-milling Biclotymol with only 20 wt% of amorphous PVP allows a stable amorphous dispersion during at least 5 months of storage.

  8. Enhanced magnetic properties of NiO powders by the mechanical activation of aluminothermic reduction of NiO prepared by a ball milling process

    Science.gov (United States)

    Padhan, Aneeta Manjari; Ravikumar, P.; Saravanan, P.; Alagarsamy, Perumal

    2016-11-01

    We report the effect of mechanical activation on NiO-Al (x wt%) reduction reaction and resulting structural and magnetic properties by carrying out high-energy planetary ball milling. The pure NiO (un-milled) and milled NiO-Al (x≤2.5) powders exhibit face centered cubic structure, but the antiferromagnetic nature of pure NiO powder shows significant room temperature ferromagnetism with moderate moment and coercivity after milling due to non-stoichiometry in NiO caused by the defects, size reduction and oxidation of Ni. On the other hand, the addition of Al between 2.5 and 10% in NiO forms solid solution of NiO-Al with considerable reduction in the moment due to the atomic disorder. With increasing Al above 10%, NiO reduction reaction progresses gradually and as a result, the average magnetization increases from 0.57 to 4.3 emu/g with increasing Al up to 25%. A maximum of 91% reduction was observed for NiO-Al (40%) powders in 30 h of milling with a large increase in magnetization (~24 emu/g) along with the development of α-Al2O3. Thermomagnetization data reveal the presence of mixed magnetic phases in milled NiO powders and the component of induced ferromagnetic phase fades out with increasing Al due to the formation of Ni from the NiO-Al reduction reaction. The changes in the structural and magnetic properties are discussed on the basis of mechanical activation on the reduction of NiO by Al. The controlled reduction reaction with different Al content in NiO-Al is encouraging for the applications in catalysis and process of ore reduction.

  9. An In-Process Surface Roughness Recognition System in End Milling Operations

    Science.gov (United States)

    Yang, Lieh-Dai; Chen, Joseph C.

    2004-01-01

    To develop an in-process quality control system, a sensor technique and a decision-making algorithm need to be applied during machining operations. Several sensor techniques have been used in the in-process prediction of quality characteristics in machining operations. For example, an accelerometer sensor can be used to monitor the vibration of…

  10. Overland erosion of uranium-mill-tailings impoundments: physical processes and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Walters, M.H.

    1983-03-01

    The surface runoff and erosional processes of watersheds caused by rainfall-runoff are reviewed. Soil properties, topography, and rainstorm distribution are discussed with respect to their effects on soil erosion. The effects of climate and vegetation are briefly presented. Regression models and physical process simulation models are reviewed.

  11. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2010-07-01

    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances.

  12. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect.

    Science.gov (United States)

    Fujioka, Kouki; Iwamoto, Takeo; Shima, Hidekazu; Tomaru, Keiko; Saito, Hideki; Ohtsuka, Masaki; Yoshidome, Akihiro; Kawamura, Yuri; Manome, Yoshinobu

    2016-04-11

    For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style) in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG) by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC) and liquid chromatography-tandem mass Spectrometry (LC-MS/MS) analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS) production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.

  13. Extraction Fuzzy Linguistic Rules from Neural Networks for Maximizing Tool Life in High-speed Milling Process

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhigang; HE Ning; LI Liang

    2009-01-01

    In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rules.

  14. The Powdering Process with a Set of Ceramic Mills for Green Tea Promoted Catechin Extraction and the ROS Inhibition Effect

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2016-04-01

    Full Text Available For serving green tea, there are two prominent methods: steeping the leaf or the powdered leaf (matcha style in hot water. The purpose of the present study was to reveal chemical and functional differences before and after the powdering process of green tea leaf, since powdered green tea may contribute to expanding the functionality because of the different ingesting style. In this study, we revealed that the powdering process with a ceramic mill and stirring in hot water increased the average extracted concentration of epigallocatechin gallate (EGCG by more than three times compared with that in leaf tea using high-performance liquid chromatography (HPLC and liquid chromatography–tandem mass Spectrometry (LC-MS/MS analyses. Moreover, powdered green tea has a higher inhibition effect of reactive oxygen species (ROS production in vitro compared with the same amount of leaf tea. Our data suggest that powdered green tea might have a different function from leaf tea due to the higher catechin contents and particles.

  15. Improved critical current density in ex situ processed MgB2 tapes by the size reduction of grains and crystallites by high-energy ball milling

    Science.gov (United States)

    Fujii, Hiroki; Ishitoya, Akira; Itoh, Shinji; Ozawa, Kiyoshi; Kitaguchi, Hitoshi

    2017-03-01

    We have fabricated Fe-sheathed MgB2 tapes through an ex situ process in a powder-in-tube (PIT) technique using powders ball milled under various conditions. Although the ex situ processed wires and tapes using the high-energy ball milled MgB2 powders have been studied and the decrease of grain and crystallite sizes of MgB2 and the critical current density (Jc) improvement of those conductors were reported so far, the use of filling powders milled at a higher rotation speed than previously reported further decreases the crystallite size and improves the Jc properties. The improved Jc values at 4.2 K and 10 T were nearly twice as large as those previously reported. Those milled powders and hence as-rolled tapes easily receive contamination in air. Thus, the transport Jc properties are easily deteriorated and scattered unless the samples are handled with care. The optimized heat treatment temperature (Topt) of those tape samples at which best performance in the Jc property is obtained decreases by more than 100 °C, compared with that of tapes using the as-received MgB2 powder.

  16. Refinement and carbon incorporation effects on the superconducting properties of MgB{sub 2} through wet milling process of low purity boron powder

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung-Hyuk, E-mail: bhjun@kaeri.re.kr [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Park, Soon-Dong; Kim, Chan-Joong [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Wet milling effects of B powder on the superconducting properties were investigated. Black-Right-Pointing-Pointer The C substitution for the B site in MgB{sub 2} occurred due to a toluene medium. Black-Right-Pointing-Pointer A shift of MgB{sub 2} peaks in XRD and a variation of J{sub c}-B slopes proved C incorporation. Black-Right-Pointing-Pointer The B particle size reduction could induce a small grain size in the MgB{sub 2} formation. Black-Right-Pointing-Pointer J{sub c} and H{sub c2} were enhanced by increased grain boundary pinning and lattice disorder. - Abstract: The wet milling effects of boron (B) powder on the full width at half maximum (FWHM) value of X-ray reflexes, grain size, carbon (C) substitution, critical temperature (T{sub c}), critical current density (J{sub c}), irreversibility field (H{sub irr}), and upper critical field (H{sub c2}) have been investigated for MgB{sub 2} bulk superconductors. The semi-crystalline B powder with a low purity of 95-97% was refined with different milling times of 1 to 15 h using a toluene medium. As a result of B powder milling, the particle size of the B powder decreased and the semi-crystalline phase became an amorphous phase. As the milling time increased, T{sub c} of MgB{sub 2} bulk decreased by the deterioration of the crystallinity and J{sub c} increased over the applied magnetic fields. With the refinement of the B powder, the grain boundary pinning increased due to smaller MgB{sub 2} grain size. In addition, it was found that a C substitution for the B site occurred from a toluene medium during wet milling process. The increased electron scattering due to an increase of the defects like grain boundary and lattice disorder by C substitution led to enhance the superconducting properties with an increase of the FWHM value of the MgB{sub 2} peaks and a decrease of the T{sub c}. The MgB{sub 2} prepared from B powder mechanically milled for 7 h showed the highest magnetic

  17. Numerical modelling of the forging process of rolls for rolling mills

    OpenAIRE

    Charles, J F; Castagne, S.; Zhang, Lihong; Habraken, Anne; Cescotto, Serge

    2000-01-01

    This article presents comparisons of forging processes between two flat tools, between two round tools, and at different forging temperatures. Simulation results help to recover and better understa,d long practice in the forging industry. Peer reviewed

  18. Enzymatic treatment of paper mill process waters; Entsyymit paperitehtaan kiertoveden kaesittelyssae - EKT 06

    Energy Technology Data Exchange (ETDEWEB)

    Mustranta, A.; Buchert, J. [VTT Biotechnology and Food Research, Espoo (Finland); Ekman, R.; Spetz, P. [Aabo Akademi, Turku (Finland). Lab. of Forest Products Chemistry; Luukko, K. [Helsinki Univ. of Technology, Otaniemi (Finland). Paper Technology

    1998-12-31

    Dissolved and colloidal substances (DCS) are dispersed into the process waters during different stages of pulp and paper production. These are lipophilic extractives (pitch), hydrophilic extractives (lignan) and carbohydrates, mainly hemicelluloses. These dissolved and colloidal substances accumulate during water circulation and results in impaired paper machine runnability. DCS can also interfere with wet-end process chemicals. In this project the chemical composition of the process waters of spruce TMP pulping have been characterized. Simultaneously, potential enzymes for modification of DCS has been produced and purified. The enzymatic treatments have been started with lipase acting on triglycerides present in extractives. The effect of enzymatic treatment on the properties of process waters and technical properties of the pulp have been evaluated. (orig.)

  19. End mill tools integration in CNC machining for rapid manufacturing processes: simulation studies

    OpenAIRE

    Muhammed Nafis Osman Zahid; Keith Case; Darren Watts

    2015-01-01

    Computer numerical controlled (CNC) machining has been recognized as a manufacturing process that is capable of producing metal parts with high precision and reliable quality, whereas many additive manufacturing methods are less capable in these respects. The introduction of a new layer-removal methodology that utilizes an indexing device to clamp the workpiece can be used to extend CNC applications into the realm of rapid manufacturing (CNC-RM) processes. This study aims to improve the imple...

  20. End mill tools integration in CNC machining for rapid manufacturing processes: simulation studies

    OpenAIRE

    Muhammed Nafis Osman Zahid; Keith Case; Darren Watts

    2015-01-01

    Computer numerical controlled (CNC) machining has been recognized as a manufacturing process that is capable of producing metal parts with high precision and reliable quality, whereas many additive manufacturing methods are less capable in these respects. The introduction of a new layer-removal methodology that utilizes an indexing device to clamp the workpiece can be used to extend CNC applications into the realm of rapid manufacturing (CNC-RM) processes. This study aims to improve the imple...

  1. Analysis of Vertical-Horizontal Coupling Vibration Characteristics of Rolling Mill Rolls Based on Strip Dynamic Deformation Process

    Directory of Open Access Journals (Sweden)

    Dongxiao Hou

    2014-01-01

    Full Text Available Nonlinear dynamic rolling forces in the vertical and horizontal directions are, respectively, established, considering the impact of vertical and horizontal directions vibration of rolls. Then a vertical-horizontal coupling nonlinear vibration dynamic model of rolling mill rolls is proposed, based on the interactions between this dynamic rolling force and mill structure. The amplitude-frequency equations of the main resonance and inner resonance are carried out by using multiple-scale method. The characteristics of amplitude frequency under nonlinear stiffness, damping, and amplitude of the disturbance are obtained by adopting the actual parameters of 1780 rolling mills. Finally, the bifurcation behavior of the system is studied, and it is found that many dynamic behaviors such as period, period-3 motion, and chaos exist in rolling mill, and this behavior could be restrained effectively by choosing proper system parameters.

  2. Chatter control in the high-speed milling process using μ-synthesis

    NARCIS (Netherlands)

    Dijk, N. van; Wouw, N. van de; Doppenberg, E.J.J.; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    Chatter is an instability phenomenon in machining processes which limits productivity and results in inferior workpiece quality, noise and rapid tool wear. The increasing demand for productivity in the manufacturing community motivates the development of an active control strategy to shape the chatt

  3. Robust active chatter control in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, N.J.M. van; Wouw, N. van de; Doppenberg, E.J.J.; Oosterling, H.A.J.; Nijmeijer, H.

    2012-01-01

    Chatter is an instability phenomenon in machining processes which limits productivity and results in inferior workpiece quality, noise and rapid tool wear. The increasing demand for productivity in the manufacturing community motivates the development of an active control strategy to shape the chatt

  4. Chatter control in the high-speed milling process using μ-synthesis

    NARCIS (Netherlands)

    Dijk, N. van; Wouw, N. van de; Doppenberg, E.J.J.; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    Chatter is an instability phenomenon in machining processes which limits productivity and results in inferior workpiece quality, noise and rapid tool wear. The increasing demand for productivity in the manufacturing community motivates the development of an active control strategy to shape the chatt

  5. Treatment of olive-mill wastewater from a two-phase process by chemical oxidation on an industrial scale.

    Science.gov (United States)

    Nieto, L M; Hodaifa, G; Vives, S R; Casares, J A G; Driss, S B; Grueso, R

    2009-01-01

    This study offers a solution for reducing the environmental effect of wastewaters generated by the olive-oil industry. Olive-oil companies produce variable quantities of wastewaters, which require treatment for disposal or reuse. Today, regulations are becoming increasingly strict regarding the parameters measured in these effluents. In Spain, the resolution by the president of the Hydrographical Confederation of the Guadalquivir on water use 2004 set parameter limits as follows: pH = 6.0-9.0, total suspended solid = 500 mg/L; and COD and BOD(5) (20)=1,500 mg O(2)/L. For the year 2006, maximum values for COD and BOD(5) (20) were fixed at 1,000 mg O(2)/L. To solve this problem, a study has been made to derive irrigation water from the above-mentioned effluents through chemical oxidation based on the Fenton's process. This would be first step towards using a closed-circuit system in olive-oil mills to treat and reuse effluents.

  6. Optimization of the Inclusion Process of Volatile Oil from Lavandula augustifolia Mill.%薰衣草挥发油包合工艺的优化

    Institute of Scientific and Technical Information of China (English)

    何沙沙; 廉宜君; 赵文彬; 任艳艳; 慕永歌; 陈韩英

    2011-01-01

    [目的] 优化薰衣草挥发油超声包合工艺,为薰衣草挥发油制剂的开发研究提供试验依据.[方法]以挥发油利用率为考察指标,采用单因素试验对薰衣草挥发油包合前溶解的乙醇浓度、乙醇用量进行考察;采用正交试验设计对薰衣草挥发油包合过程中各工艺参数进行优选.[结果] 薰衣草挥发油最佳包合工艺:挥发油用85%乙醇按1:25 的比例溶解,油:B-CD值为1:10,β-CD 浓度为12%,包合温度为55℃,超声包结时间为2.0 h.在最佳工艺条件下,薰衣草挥发油的利用率达到87.63%.[结论]该试验得到的包合工艺挥发油利用率高,操作简便,为薰衣草挥发油制剂的开发提供了试验依据.%[Objective] To optimize the inclusion process of Lavandula augustifolia Mill. volatile oil,so as to provide experimental basis for the developing and study of essential oil preparation products from Lavandula augustifolia Mill.. [ Method] Using utilization rate of volatile oil as an indicator,the concentration and use amount of ethanol employed to dissolve Lavandula augustifolia Mill. volatile oil were optimized by single factor test, and the inclusion process parameters were optimized by orthogonal test. [ Result ] With the proportion of 1:25,85% ethanol was used to dissolve the volatile oil. The optimum inclusion conditions for lavender volatile oil were as follows:ratio of essential oil to β-CD of 1: 10, β-CD concentration of 12% ,inclusion temperature of 55 ℃ and ultrasonic inclusion duration of 2.0 hours. Under the optimal inclusion process,the use rate of Lavandula augustifolia Mill. volatile oil reached as high as 87.63%. [ Conclusion] Simple in operation ,the inclusion process for Lavandula augustifolia Mill. volatile oil was high in utilization ratio,which provided experimental basis for the developing and study of essential oil preparation products from Lavandula augustifolia Mill.

  7. Characterisation of olive fruit for the milling process by using visible/near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Roberto Beghi

    2013-10-01

    Full Text Available Increasing consumption of olive oil and table olives has recently determined an expansion of olive tree cultivation in the world. This trend is supported by the documented nutritional value of the Mediterranean diet. The aim of this work was to test a portable visible/ near infrared (vis/NIR system (400-1000 nm for the analysis of physical-chemical parameters, such as olive soluble solid content (SSC and texture before the olive oil extraction process. The final goal is to provide the sector with post-harvest methods and sorting systems for a quick evaluation of important properties of olive fruit. In the present study, a total of 109 olives for oil production were analysed. Olive spectra registered with the optical device and values obtained with destructive analysis in the laboratory were analysed. Specific statistical models were elaborated to study correlations between optical and laboratory analysis, and to evaluate predictions of reference parameters obtained through the analysis of the visible-near infrared range. Statistical models were processed using chemometric techniques to extract maximum data information. Principal component analysis (PCA was performed on vis/NIR spectra to examine sample groupings and identify outliers, while partial least square (PLS regression algorithm was used to correlate samples spectra and physical- chemical properties. Results are encouraging. PCA showed a significant sample grouping among different ranges of SSC and texture. PLS models gave fairly good predictive capabilities in validation for SSC (R2=0.67 and RMSECV%=7.5% and texture (R2=0.68 and RMSECV%=8.2%.

  8. Towards sustainable membrane filtration of palm oil mill effluent: analysis of fouling phenomena from a hybrid PAC-UF process

    Science.gov (United States)

    Amosa, Mutiu Kolade

    2016-10-01

    Sustainability of a membrane process depends on many factors of which fouling mitigation is the most central. Because membrane fouling phenomenon is very complex, extent of fouling potential of a feedwater with respect to a membrane has to be identified right from the design stage. This will acquaint engineers with the proper fouling mitigation measures during operation. This study presents a preliminary fouling data from the ultrafiltration of biotreated palm oil mill effluent (POME) after an upstream adsorption process. The flux decline is studied in a typical constant-pressure experiments with a cross-flow ultrafiltration of biotreated POME through Sartocon® polyethersulfone membranes (MWCOs 1, 5 and 10 kDa) at applied pressures of 40, 80 and 120 kPa. Results are examined, within the frame of the common blocking mechanisms and it was found that the blocking index η decreased from 2 to 0. Pore blocking phenomenon was successively observed from complete blocking (η = 2) down to cake filtration (η = 0), and the early blockage of the pores and a formation of a cake resulted in a limiting cake height. Thus, cake filtration could be best used to explain the fouling mechanisms of biotreated POME on the ultrafiltration membranes based on the R 2 values at all applied pressures. This demonstrates that the fouling was as a result of gradual reversible cake deposition which could easily be removed by less onerous cleaning methods. In addition, it could be concluded that the upstream adsorption reduced the particulate deposition on the membrane surface.

  9. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1999-07-31

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  10. Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye.

    Science.gov (United States)

    Dindarsafa, Mahsa; Khataee, Alireza; Kaymak, Baris; Vahid, Behrouz; Karimi, Atefeh; Rahmani, Amir

    2017-01-01

    High energy planetary ball milling was applied to prepare sono-Fenton nanocatalyst from natural martite (NM). The NM samples were milled for 2-6h at the speed of 320rpm for production of various ball milled martite (BMM) samples. The catalytic performance of the BMMs was greater than the NM for treatment of Acid Blue 92 (AB92) in heterogeneous sono-Fenton-like process. The NM and the BMM samples were characterized by XRD, FT-IR, SEM, EDX and BET analyses. The particle size distribution of the 6h-milled martite (BMM3) was in the range of 10-90nm, which had the highest surface area compared to the other samples. Then, the impact of main operational parameters was investigated on the process. Complete removal of the dye was obtained at the desired conditions including initial pH 7, 2.5g/L BMM3 dosage, 10mg/L AB92 concentration, and 150W ultrasonic power after 30min of treatment. The treatment process followed pseudo-first order kinetic. Environmentally-friendly modification of the NM, low leached iron amount and repeated application at milder pH were the significant benefits of the BMM3. The GC-MS was successfully used to identify the generated intermediates. Eventually, an artificial neural network (ANN) was applied to predict the AB92 removal efficiency based upon the experimental data with a proper correlation coefficient (R(2)=0.9836). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Inline real-time near-infrared granule moisture measurements of a continuous granulation-drying-milling process.

    Science.gov (United States)

    Chablani, Lipika; Taylor, Michael K; Mehrotra, Amit; Rameas, Patrick; Stagner, William C

    2011-12-01

    The purpose of this research was to use inline real-time near-infrared (NIR) to measure the moisture content of granules manufactured using a commercial production scale continuous twin-screw granulator fluid-bed dryer milling process. A central composite response surface statistical design was used to study the effect of inlet air temperature and dew point on granule moisture content. The NIR moisture content was compared to Karl Fischer (KF) and loss on drying (LOD) moisture determinations. Using multivariate analysis, the data showed a statistically significant correlation between the conventional methods and NIR. The R(2) values for predicted moisture content by NIR versus KF and predicted moisture values by NIR versus LOD were 0.94 (p < 0.00001) and 0.85 (p < 0.0002), respectively. The adjusted R(2) for KF versus LOD correlation was 0.85 (p < 0.0001). Analysis of the response surface design data showed that inlet air temperature over a range of 35-55°C had a significant linear impact on granule moisture content as measured by predicted NIR (adjusted R(2) = 0.84, p < 0.02), KF (adjusted R(2) = 0.91, p < 0.0001), and LOD (adjusted R(2) = 0.85, p < 0.0006). The inlet air dew point range of 10-20°C did not have a significant impact on any of the moisture measurements.

  12. Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process

    Energy Technology Data Exchange (ETDEWEB)

    Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); Palm Oil Product and Technology Research Center, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93110 (Thailand); Birkeland, Nils-Kaare [Department of Biology and Centre for Geobiology, University of Bergen, P.O. Box 7800, N-5020 Bergen (Norway)

    2009-09-15

    The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l{sup -1} d{sup -1} gave a maximum hydrogen yield of 0.27 l H{sub 2} g COD{sup -1} with a volumetric hydrogen production rate of 9.1 l H{sub 2} l{sup -1} d{sup -1} (16.9 mmol l{sup -1}h{sup -1}). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 {+-} 3.5%, 92 {+-} 3%, 57 {+-} 2.5% and 78 {+-} 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l{sup -1} d{sup -1}) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME). (author)

  13. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Directory of Open Access Journals (Sweden)

    Elisabetta eMartini

    2013-12-01

    Full Text Available Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  14. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Science.gov (United States)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-12-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  15. Effect of Milling Time and the Consolidation Process on the Properties of Al Matrix Composites Reinforced with Fe-Based Glassy Particles

    Directory of Open Access Journals (Sweden)

    Özge Balcı

    2015-04-01

    Full Text Available Al matrix composites reinforced with 40 vol% Fe50.1Co35.1Nb7.7B4.3Si2.8 glassy particles have been produced by powder metallurgy, and their microstructure and mechanical properties have been investigated in detail. Different processing routes (hot pressing and hot extrusion are used in order to consolidate the composite powders. The homogeneous distribution of the glassy reinforcement in the Al matrix and the decrease of the particle size are obtained through ball milling. This has a positive effect on the hardness and strength of the composites. Mechanical tests show that the hardness of the hot pressed samples increases from 51–155 HV, and the strength rises from 220–630 MPa by extending the milling time from 1–50 h. The use of hot extrusion after hot pressing reduces both the strength and hardness of the composites: however, it enhances the plastic deformation significantly.

  16. RE-UTILIZATION OF INORGANIC SOLID WASTE (LIME MUD AS FOREST ROAD STABILIZER FROM THE CHEMICAL RECOVERY PROCESS IN KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    Habip Eroğlu

    2005-04-01

    Full Text Available Waste handling is a concern in all pulp and paper mills. Best available techniques for reducing waste is to minimize the generation of solid waste and/or reuse these materials, wherever practicable. One of the most important solid wastes is lime mud which is generated from the kraft pulping in its chemical recovery process. This paper explores the composition of lime mud resulting from the chemical recovery unite of kraft pulp mill and investigation of this waste for re-using beneficially on sub grade and pavement of forest road as a alternative disposal method. Lime mud obtained from the re-causticising process in SEKA pulp mill that utilizes wheat straw and reed as the principal raw material was supplied with % 47 water content and its chemical and physical characterisations was performed according to standard methods. Dried waste to environmental condition was mixed with certain amount to composite cement for using on pavement and sandy clay, loamy clay and clay soils for enriching forest road sub grade properties. In order to investigate the lime mud addition on pavement and sub grade properties necessary physical tests were performed. As a consequence this study reveals that while waste of lime mud causes environmental and economical problem with conventional disposal techniques and/or abandoning to environment, this waste can be used as good stabilisation materials on forest road sub-grade and pavement without any environmental problem.

  17. Simulation of two Stands Cold Rolling Mill Process Using a Combination of Neural Networks and Genetic Algorithms to Avoid the Chatter Phenomenon

    Directory of Open Access Journals (Sweden)

    Behzad BahramiNejad

    2015-03-01

    Full Text Available Rolling mill Industry is one of the most profitable industries in the world. Chatter phenomenon is one of the key issues in this industry. Chatter or rolling unwanted vibrations not only has an adverse effect on product quality, but also reduces considerably the efficiency with reduced rolling velocities of rolling lines. This paper is an attempt to simulate the phenomenon of Chatter more accurate than the previous performed simulations. In order to increase the production speed, it needs to avoid parameters which effect on the Chatter and varieties with the rolling lines condition. Actual values of these parameters were determined in the archives of the Mobarakeh two stand cold rolling mills and collected on the 210 case study of real chattering. To simulate the experiment, a neural network is trained and weights and bias values of the neural network with genetic optimization algorithm were used to get an optimal neural network which reduces bugs on the test data. So this model is capable to predict speed of Chatter threshold on rolling process of two stand cold rolling mill with the accuracy less than one percent. So it can be used in rolling process with the building intelligent recognition systems to prevent the creator conditions of the chatter frequency range.

  18. A constructed treatment wetland for pulp and paper mill wastewater: performance, processes and implications for the Nzoia River, Kenya

    NARCIS (Netherlands)

    Abira, M.A.

    2008-01-01

    The doctoral research study conducted in Kenya gives the first insight into the performance of a constructed treatment wetland receiving pulp and paper mill wastewater in the tropics. The wetland effectively removed organic matter, suspended solids, phenols and nutrients. BOD and phenols reduction

  19. Physical and combustion characteristics of biomass particles prepared by different milling processes for suspension firing in utility boilers

    DEFF Research Database (Denmark)

    Yin, Chungen; Momenikouchaksaraei, Maryam; Kær, Søren Knudsen

    2016-01-01

    close to suspension-fired boilers. The ignition, devolatilization and burnout times of the milled particles under different combustion conditions are analysed. A one-dimensional transient model, properly accounting for the particle-ambient flow interaction and appropriately addressing the key sub...

  20. Study of uranium leaching from industrial residues of Industrias Nucleares do Brazil S.A. (INB), Caetite, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Formiga, Thiago S.; Morais, Carlos A., E-mail: cmorais@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Gomiero, Luiz A., E-mail: gomiero@inb.gov.b [Industrias Nucleares do Brasil S/A (INB), Caetite, BA (Brazil)

    2011-07-01

    The uraniferous district of Lagoa Real, located in the south-central region of the state of Bahia, has reserves estimated at 100,000 tons of uranium, which is enough to supply Angra I, II and III for 100 more years. The process adopted for the beneficiation of the uranium ore from Lagoa Real is heap leaching, a static process in which the ore is crushed, disposed in heaps and irrigated with a sulfuric acid solution to remove the uranium. This technique has a relatively low cost of implementation, although the yield of uranium recovery is low, with an uranium content in the leached residue of 700 {mu}g/g U{sub 3}O{sub 8} for ores with an initial content of 2,700 {mu}g/g U{sub 3}O{sub 8}. With the deepening of the mine pit, an increase in the carbonate content in the ore was noted, which required a higher acid consumption in the leaching. In order to reduce the concentration of carbonates, a study of the ore concentration by flotation column was accomplished. The flotation reject had high carbonate content, with a uranium content of about 2,300 {mu}g/g U{sub 3}O{sub 8} for flotation in one column and 1,100 {mu}g/g U{sub 3}O{sub 8} for flotation in two columns. This paper presents the study of the leaching process for the recovery of the uranium present in the residue of the heap leaching and in the carbonated residue from the flotation of the anomaly 13 ore. The results indicate the feasibility of treating the waste of the heap leaching through dynamic leaching. The study of the uranium leaching from the flotation residue through acid leaching technique indicated a recovery of 96% of uranium, however with a high consumption of acid, around 450 kg/t, showing that for this case, the most suitable technique for the process is alkaline leaching. (author)

  1. Enhanced magnetic properties of NiO powders by the mechanical activation of aluminothermic reduction of NiO prepared by a ball milling process

    Energy Technology Data Exchange (ETDEWEB)

    Padhan, Aneeta Manjari; Ravikumar, P. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Saravanan, P. [Advanced Magnetic Lab, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Alagarsamy, Perumal, E-mail: perumal@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2016-11-15

    We report the effect of mechanical activation on NiO–Al (x wt%) reduction reaction and resulting structural and magnetic properties by carrying out high-energy planetary ball milling. The pure NiO (un-milled) and milled NiO–Al (x≤2.5) powders exhibit face centered cubic structure, but the antiferromagnetic nature of pure NiO powder shows significant room temperature ferromagnetism with moderate moment and coercivity after milling due to non-stoichiometry in NiO caused by the defects, size reduction and oxidation of Ni. On the other hand, the addition of Al between 2.5 and 10% in NiO forms solid solution of NiO–Al with considerable reduction in the moment due to the atomic disorder. With increasing Al above 10%, NiO reduction reaction progresses gradually and as a result, the average magnetization increases from 0.57 to 4.3 emu/g with increasing Al up to 25%. A maximum of 91% reduction was observed for NiO–Al (40%) powders in 30 h of milling with a large increase in magnetization (~24 emu/g) along with the development of α-Al{sub 2}O{sub 3}. Thermomagnetization data reveal the presence of mixed magnetic phases in milled NiO powders and the component of induced ferromagnetic phase fades out with increasing Al due to the formation of Ni from the NiO–Al reduction reaction. The changes in the structural and magnetic properties are discussed on the basis of mechanical activation on the reduction of NiO by Al. The controlled reduction reaction with different Al content in NiO–Al is encouraging for the applications in catalysis and process of ore reduction. - Highlights: • Preparation of Ni/Al{sub 2}O{sub 3} nanocomposite by mechanical activation of NiO–Al reduction. • Study the effect of Al addition on the reduction reaction of NiO–Al powders. • Understand the change in the structural and microstructural properties of NiO–Al. • Investigate role of reduction of NiO by Al on resulting magnetic property of NiO–Al. • Study the magnetic phase

  2. Rotary Tool Milling Processes and Its Tool%驱动式滚切铣削机理分析及其刀具

    Institute of Scientific and Technical Information of China (English)

    李慎旺; 王西彬; 解丽静; 张好强

    2016-01-01

    Rotary tool cutting process is applied to cutting especially in difficult-to-cut materials cutting with its unique advantages. There is no literature about it. The rotary rate ratio that is the proportional relationship of “rolling” and “cutting” was presented for the first time based on analysis of rotary tool cutting processes was. Combined with the rotary rate ratio, machined surface quality and the contact sliding rate and milling force were studied. An inner driving rotary milling tool was first proposed in this paper. It is the hardware realization of the driving rotary milling tool. The rotary rate ratio of inner driving rotary milling tool not only can be adjusted before cutting processes in accordance with the requirements of parameters, but also can keep the adjusted value in machining process. Results show that the inner driving rotary milling tool has a strong advantage, compared with the traditional self-propelled rotary tool.%为了对驱动式滚切铣削及驱动式滚切铣刀进行深入研究,在充分分析滚切加工特点的基础上,提出了以滚切速率比表征滚压和切削的比例关系,结合滚切速率比对驱动式滚切铣削的加工表面质量、刀具后刀面接触滑动速率、驱动式滚切铣削的铣削力的机理进行了研究。得出了驱动式滚切铣削本身特有的切削规律,并依据这些规律提出了驱动式滚切铣削加工的硬件实现形式“内驱动式滚切铣刀”。结果表明:内驱动式滚切铣刀(又称难加工材料专用铣刀)既能够根据待优化参数的要求在机加工前调节滚切速率比的值,又能够在机加工过程中保持调节好的滚切速率比的值稳定,相对传统的自滚切刀具具有很强的优势。

  3. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-03-01

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  4. Effects of Dry-Milling and Wet-Milling on Chemical, Physical and Gelatinization Properties of Rice Flour

    Directory of Open Access Journals (Sweden)

    Jitranut Leewatchararongjaroen

    2016-09-01

    Full Text Available Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90 °C of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.

  5. Optimization of Process Parameters for in High-Energy Ball Milling of CNTs/Al2024 Composites Through Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    Li Guo; Xiaolan Cai; Lei Zhou; Cui Hu; Changjiang Yang; Ziyang Wang; Wenzhong Zhang; Gang Peng

    2016-01-01

    The mathematical models are developed to evaluate the ultimate tensile strength( UTS) and hardness of CNTs/Al2024 composites fabricated by high⁃energy ball milling. The effects of the preparation variables which are milling time, rotational speed, mass fraction of CNTs and ball to powder ratio on UST and hardness of CNTs/Al2024 composites are investigated. Based on the central composite design( CCD) , a quadratic model is developed to correlate the fabrication variables to the UST and hardness. From the analysis of variance ( ANOVA) , the most influential factor on each experimental design response is identified. The optimum conditions for preparing CNTs/Al2024 composites are found as follows: 1. 53 h milling time, 900 r/min rotational speed, mass fraction of CNTs 2. 87% and Ball to powder ratio 25 ∶ 1. The predicted maximum UST and hardness are 273.30 MPa and 261.36 HV, respectively. And the experimental values are 283.25 MPa and 256.8 HV, respectively. It is indicated that the predicted UST and hardness after process optimization are found to agree satisfactory with the experimental values.

  6. Defining a Minimum End Mill Diameter

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2015-01-01

    Full Text Available Industrial observations show that the standard mill designs in many cases do not provide a complete diversity of manufacturing operations, and a lot of enterprises are forced to design and manufacture special (original designs of tools. The information search has revealed a lack of end mill diameter calculations in publications. There is a proposal to calculate the end mill diameter either by empirical formulas [2, 3], or by selection from the tables [4].To estimate a minimum diameter of the end mill to perform the specified manufacturing operations based on the mill body strength the formulas are obtained. The initial data for calculation are the flow sheet of milling operation and properties of processed and tool materials. The end mill is regarded, as a cantilevered beam of the circular cross section having Dс diameter (mill core diameter with overhang Lв from rigid fixing and loaded by the maximum bending force and torque.In deriving the formulas were used the following well-reasoned assumptions based on the analysed sizes of the structural elements of the standard mills: a diameter of mill core is linearly dependent on the mill diameter and the overhang; the 4τ 2 to σ 2 4τ2 ratio is constant and equal to 0.065 for contour milling and 0.17 for slot milling.The formulas for calculating the minimum diameter are as follows:  3 обр в 1 121 1.1  K S L L D m C z    for contour milling;  3 обр в 1 207 1.1  K S L L D m C z    for slot milling.Obtained dependences that allow defining a minimum diameter of the end mill in terms of ensuring its strength can be used to design mills for contour milling with radius transition sections, holes of different diameters in the body parts and other cases when for processing a singlemill is preferable.Using the proposed dependencies for calculating a feed of the maximum tolerable strength is reasonable in designing the mills for slots.Assumptions used in deriving

  7. Byssinosis among jute mill workers.

    Science.gov (United States)

    Chattopadhyay, Bhaskar P; Saiyed, Habibullah N; Mukherjee, Ashit K

    2003-07-01

    Although byssinosis in jute mill workers remains controversial, studies in a few jute mills in West-Bengal, India, revealed typical byssinotic syndrome associated with acute changes in FEV1 on the first working day after rest. The present study on 148 jute mill workers is reported to confirm the occurrence of byssinosis in jute mill workers. Work related respiratory symptoms; acute and chronic pulmonary function changes among exposed workers were studied on the basis of standard questionnaire and spirometric method along with dust level, particle mass size distributions and gram-negative bacterial endotoxins. The pulmonary function test (PFT) changes were defined as per the recommendation of World Health Organization and of Bouhys et al. Total dust in jute mill air were monitored by high volume sampling, technique (Staplex, USA), Andersen cascade impactor was used for particle size distribution and personal exposure level was determined by personal sampler (Casella, London). Endotoxin in airborne jute dust was analysed by Lymulus Amebocyte Lysate (LAL) "Gel Clot" technique. Batching is the dustiest process in the mill. Size distribution showed that about 70-80% dust in diameter of jute mill workers are also suffering from byssinosis as observed in cotton, flask and hemp workers.

  8. Performance Modeling and Cost Analysis of a Pilot-Scale Reverse Osmosis Process for the Final Purification of Olive Mill Wastewater

    Science.gov (United States)

    Ochando-Pulido, Javier Miguel; Hodaifa, Gassan; Victor-Ortega, Maria Dolores; Martinez-Ferez, Antonio

    2013-01-01

    A secondary treatment for olive mill wastewater coming from factories working with the two-phase olive oil production process (OMW-2) has been set-up on an industrial scale in an olive oil mill in the premises of Jaén (Spain). The secondary treatment comprises Fenton-like oxidation followed by flocculation-sedimentation and filtration through olive stones. In this work, performance modelization and preliminary cost analysis of a final reverse osmosis (RO) process was examined on pilot scale for ulterior purification of OMW-2 with the goal of closing the loop of the industrial production process. Reduction of concentration polarization on the RO membrane equal to 26.3% was provided upon increment of the turbulence over the membrane to values of Reynolds number equal to 2.6 × 104. Medium operating pressure (25 bar) should be chosen to achieve significant steady state permeate flux (21.1 L h−1 m−2) and minimize membrane fouling, ensuring less than 14.7% flux drop and up to 90% feed recovery. Under these conditions, irreversible fouling below 0.08 L h−2 m−2 bar−1 helped increase the longevity of the membrane and reduce the costs of the treatment. For 10 m3 day−1 OMW-2 on average, 47.4 m2 required membrane area and 0.87 € m−3 total costs for the RO process were estimated. PMID:24957058

  9. Performance modeling and cost analysis of a pilot-scale reverse osmosis process for the final purification of olive mill wastewater.

    Science.gov (United States)

    Ochando-Pulido, Javier Miguel; Hodaifa, Gassan; Victor-Ortega, Maria Dolores; Martinez-Ferez, Antonio

    2013-10-11

    A secondary treatment for olive mill wastewater coming from factories working with the two-phase olive oil production process (OMW-2) has been set-up on an industrial scale in an olive oil mill in the premises of Jaén (Spain). The secondary treatment comprises Fenton-like oxidation followed by flocculation-sedimentation and filtration through olive stones. In this work, performance modelization and preliminary cost analysis of a final reverse osmosis (RO) process was examined on pilot scale for ulterior purification of OMW-2 with the goal of closing the loop of the industrial production process. Reduction of concentration polarization on the RO membrane equal to 26.3% was provided upon increment of the turbulence over the membrane to values of Reynolds number equal to 2.6 × 104. Medium operating pressure (25 bar) should be chosen to achieve significant steady state permeate flux (21.1 L h-1 m-2) and minimize membrane fouling, ensuring less than 14.7% flux drop and up to 90% feed recovery. Under these conditions, irreversible fouling below 0.08 L h-2 m-2 bar-1 helped increase the longevity of the membrane and reduce the costs of the treatment. For 10 m3 day-1 OMW-2 on average, 47.4 m2 required membrane area and 0.87 € m-3 total costs for the RO process were estimated.

  10. Process and device to control the supply of hot and cold air to a coal mill. Verfahren und Einrichtung zum Steuern der Warm- und Kaltluftzufuhr fuer eine Kohlenstaubmahlanlage

    Energy Technology Data Exchange (ETDEWEB)

    Makuch, J.

    1980-01-03

    This is a process for the simple control of the flow and temperature of the air input to a coal mill, so that there is no danger of fire and there is a guarantee of a minimum quantity of air for pneumatic transport. The control of the quantity of air is carried out so that the control of air flow has priority over temperature control, if the actual flow falls below a predetermined minimum value. It the flow is above the reference value, the temperature control has priority over flow control.

  11. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo, E-mail: kspark@iae.re.kr; Lee, Chan Gi; Hong, Hyun Seon, E-mail: hshong@iae.re.kr

    2015-04-15

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.

  12. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption.

    Science.gov (United States)

    Ghosh, Indrajit; Schenck, Daniel; Bose, Sonali; Ruegger, Colleen

    2012-11-20

    The purpose of this study was to develop nanosuspension formulations of a poorly soluble drug using a wet media milling technique. The milling process was optimized by studying the effects of critical process parameters on the size of nanoparticles using a factorial design approach. During the design of experiments (DOEs) study, different concentrations of Vitamin E TPGS in the suspensions were used to evaluate its influence on the stabilization of a nanosuspension. Once the final formulation was optimized, a pharmacokinetic study was performed in beagle dogs to investigate the effect of different ranges of particle size of nanocrystals on the plasma profile. A significant increase in AUC and C(max) was observed when the drug substance was converted into nanocrystals, likely due to the increase in dissolution rate. Results also revealed that the nanosuspension formulation (consists of nanocrystals with narrow size distribution, having a mean particle size<300 nm) produced less variability with regards to the individual plasma concentrations in the dogs when compared an alternate nanocrystal formulation (consists of nanocrystals with broad size distribution having a mean particle size<750 nm). This type of observation can be explained due to the Ostwald ripening phenomena between the nanocrystals when the particle size distribution was very broad (higher poly dispersity index). Surprisingly, the un-micronized suspension containing Vitamin E TPGS did not show any significant impact on pharmacokinetic parameters.

  13. Geometrical characterization of micro end milling tools

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano

    2005-01-01

    Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization o...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...

  14. Geometrical characterization of micro end milling tools

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano;

    2005-01-01

    Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...

  15. Design and Manufacturing of Ultra-Hard Micro-Milling Tool

    Institute of Scientific and Technical Information of China (English)

    战忠波; 李亮; 何宁; 卞荣; 赵孟

    2014-01-01

    Based on the study of existing typical micro-milling tools and the actual demand for micro-milling tools, the P3 design principle and design flow for ultra-hard micro-milling tool were introduced to give basic guidance for the optimization of micro-milling tools. Then, according to the P3 design flow, the manufacturing process of polycrystal-line diamond (PCD) micro-milling tool was proposed, and the PCD micro-milling tool with diameter of 0.5 mm was developed. Finally, the micro-milling test on the slot was carried out to study the milling performance of PCD micro-milling tool.

  16. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); Ke, Fei [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); School of Science, Anhui Agricultural University, Hefei 230036 (China); Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); Wan, Xiaochun, E-mail: xcwan@ahau.edu.cn [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2016-07-01

    Highlights: • Ultrafine tea powder (UTP) was prepared by ball-milling. • A novel and high efficient biosorbent from ultrafine tea powder (UTP) for the removal of fluoride from drinking water was prepared. • Loaded ultrafine tea powder adsorbed more fluoride adsorption than loaded tea waste. • UTP-Zr performed well over a considerably wide pH range, from 3.0 to 10.0. • UTP-Zr retains Zr metal ion during defluoridation, limiting secondary pollution. - Abstract: A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3–10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  17. Effects of mechanical milling on the carbothermal reduction of oxide of WC/Co hardmetal scrap

    Science.gov (United States)

    Lee, Gil-Geun; Ha, Gook-Hyun

    2016-03-01

    The effects of mechanical milling on the carbothermal reduction of oxidized WC/Co hardmetal scrap with solid carbon were examined. Mixed powders were manufactured by milling the WC/Co hard metal scrap oxide and carbon powder in either a tumbler-ball mill or a planetary-ball mill. The milling type affected the carbothermal reduction of the oxide owing to the differing collision energies (mechanical milling energies) in the mills. The hardmetal scrap oxide powder (WO3, CoWO4) milled at high energy was more greatly reduced and at a lower temperature than that milled at lower mechanical energy. The formation of WC by the carburization reaction with solid carbon reached completion at a lower temperature after higher-energy milling than after lower-energy milling. The WC/Co composite particles synthesized by the combined oxidationmechanical milling-carbothermal reduction process were smaller when the initial powder was milled at higher mechanical energy.

  18. Online SAG Mill Pluse Measurement and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Raj Rajamani; Jose Delgadillo; Vishal Duriseti

    2007-06-30

    study their effect on the impact spectra. A good correlation was found between the process variables and the impact spectra. The load cell package was then used in a 16 inch pilot scale mill. The mill speed, ball size, and mill filling were varied here and a consistent trend between these variables and impact spectra was observed. With a better understanding developed from the initial tests, the design of the load cell package was significantly changed to eliminate noise. With the new design, the impact spectra were re-determined in the 16 inch pilot mill varying the process variables - ball size, mill speed, and mill filling. Finally, it is successfully shown that a change in the operating variables of a mill can be seen in the impact spectra and that this concept can be successfully developed to monitor the grinding operation of industrial mills. To adapt it to industrial level it is mandatory to make the load cell package wireless. A design of a wireless circuit that is capable of transferring data at the required speed of 1000 kbps was also developed and tested at Cortez Gold Mines (CGM), Nevada.

  19. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  20. Relações granulométricas no processo de brunimento de arroz Granulometry relationship in the rice milling process

    Directory of Open Access Journals (Sweden)

    Carlos A. S. Luz

    2005-04-01

    kernels were added to the whole kernels and 5 7.2 g of small broken kernels were added to the whole kernels. A laboratory mill was used. The classification was made manually. The percentages of broken kernels varied from 3.6% to 7.2% in the fraction of big broken kernels and from 1.04% to 7.2% in the fraction of small broken kernels, respectively. The results showed that, in the milling process using broken kernels in the mass, the head rice yield was significantly higher than when 100% of head kernels were milled.

  1. The influence of milling on the dissolution performance of simvastatin

    DEFF Research Database (Denmark)

    Zimper, Ulrike; Aaltonen, Jaakko; Krauel-Goellner, Karen

    2012-01-01

    properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors...... milling frequency, milling time and ball quantity at a set drug load, out of which milling frequency was found to be the most important factor for particle size as well as process induced disorder. Milling frequency and milling time exhibited an interaction effect on the responses. The optimum milling...... revealed that the process induced disorder was negligible with regard to the dissolution rate. The predicted primary particle size of 1.4 µm could be confirmed experimentally, but due to agglomeration of the primary particles a dissolution rate advantage was not shown, highlighting the importance...

  2. Investigation of the milling capabilities of the F10 Fine Grind mill using Box-Behnken designs.

    Science.gov (United States)

    Tan, Bernice Mei Jin; Tay, Justin Yong Soon; Wong, Poh Mun; Chan, Lai Wah; Heng, Paul Wan Sia

    2015-01-01

    Size reduction or milling of the active is often the first processing step in the design of a dosage form. The ability of a mill to convert coarse crystals into the target size and size distribution efficiently is highly desirable as the quality of the final pharmaceutical product after processing is often still dependent on the dimensional attributes of its component constituents. The F10 Fine Grind mill is a mechanical impact mill designed to produce unimodal mid-size particles by utilizing a single-pass two-stage size reduction process for fine grinding of raw materials needed in secondary processing. Box-Behnken designs were used to investigate the effects of various mill variables (impeller, blower and feeder speeds and screen aperture size) on the milling of coarse crystals. Response variables included the particle size parameters (D10, D50 and D90), span and milling rate. Milled particles in the size range of 5-200 μm, with D50 ranging from 15 to 60 μm, were produced. The impeller and feeder speeds were the most critical factors influencing the particle size and milling rate, respectively. Size distributions of milled particles were better described by their goodness-of-fit to a log-normal distribution (i.e. unimodality) rather than span. Milled particles with symmetrical unimodal distributions were obtained when the screen aperture size was close to the median diameter of coarse particles employed. The capacity for high throughput milling of particles to a mid-size range, which is intermediate between conventional mechanical impact mills and air jet mills, was demonstrated in the F10 mill. Prediction models from the Box-Behnken designs will aid in providing a better guide to the milling process and milled product characteristics.

  3. Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets.

    Science.gov (United States)

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Petrotos, Konstantinos; Kokkas, Stylianos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-12-01

    In the present study, a polyphenolic byproduct from olive mill wastewater (OMWW) was used for making piglet feed with antioxidant activity. For examining the antioxidant capacity of the feed, 30 piglets of 20 d old were divided into two groups receiving basal or experimental feed for 30 d. Blood and tissue samples were drawn at days 2, 20, 35 and 50 post-birth. The tissues collected were brain, heart, kidney, liver, lung, quadriceps muscle, pancreas, spleen and stomach. The antioxidant effects of the experimental feed were assessed by measuring oxidative stress biomarkers in blood and tissues. The oxidative stress markers were total antioxidant capacity (TAC), glutathione (GSH), catalase activity (CAT), protein carbonyls (CARB) and thiobarbituric acid reactive species (TBARS). The results showed that piglets fed with diet supplemented with OMWW polyphenols had significantly increased antioxidant mechanisms in blood and the majority of the tested tissues as shown by increases in TAC, CAT and GSH compared to control group. Moreover, piglets fed with the experimental feed exhibited decreased oxidative stress-induced damage to lipids and proteins as shown by decreases in TBARS and CARB respectively. This is the first study in which OMWW polyphenols were used for making pig feed with antioxidant activity.

  4. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    Science.gov (United States)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi; Ke, Fei; Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu; Wan, Xiaochun

    2016-07-01

    A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3-10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  5. Development of a nanofiltration process for flotation treated paper mill waste water; Nanosuodatusprosessin kehittaeminen flotaatiokaesitellylle paperitehtaan jaetevedelle - EKT 08

    Energy Technology Data Exchange (ETDEWEB)

    Maenttaeri, M.; Nuortila-Jokinen, J.; Nystroem, M. [Lappeenranta Univ. of Technology (Finland). Dept. of Chemical Technology

    1998-12-31

    Nanofiltration was studied as a purification method of paper mill effluents so that the permeates could be used as press section shower water. The quality of ultrafiltered water was not assessed to be sufficiently high for that purpose. The low flux of nanofiltration membranes has restricted their use in the pulp and paper industry. This study showed that the performance of nanofiltration membranes can be improved by controlling the filtration conditions, like pH, flow velocity and pressure. It was demonstrated that a critical flux exists also for nanofiltration membranes. By adjusting the permeate flux below this critical value fouling should be low. The experiments with a spiral wound element showed its sensitivity to plugging by fibers and also the unsuitability of cartridge filters as safety filters for it. Better pretreatment methods are needed. A multilayer filter seemed to decrease the fouling of the nanofiltration element somewhat. However, a simple and cleanable pretreatment method still needs to be developed. Fouling experiments with model components pointed out the importance of pH and cross-flow velocity in minimizing fouling. (orig.) 8 refs. CACTUS Research Programme

  6. Radiological health aspects of uranium milling

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

  7. Robotic milling for rapid ceramic pototyping

    Institute of Scientific and Technical Information of China (English)

    HAN Guang-chao; ZHANG Hai-ou; WANG Gui-lan

    2005-01-01

    Robotic milling is a developing method for rapidly producing prototypes and parts, but the application is limited for materials such as wax, wood, plastic and light metal, etc. The reason for this is because of the robotic weak rigidity. In this paper, a method of robotic milling for ceramic prototyping is developed, one that has been successfully applied in a new rapid hard tooling technology-Direct Prototype Spray Tooling[1]. At first, the appropriate ceramic materials mixed with metal powder are confirmed for the robotic milling and the following plasma spraying process. Then the 6 - DOF robotic milling paths are extracted from the NC code and transformed into the robotic JBI type file, the NC code generated through the general CAD/CAM software such as UG -NX.Finally, the robotic milling characteristics such as moving path accuracy and milling force are tested to find the best milling parameters and to ensure the executable, accurate and efficient ceramic prototype milling technology.The development of this method not only broadens the robotic milling material range but also extends the rapid prototyping fields. It can also be used for producing ceramic parts that are difficult to machine.

  8. Biomass torrefaction mill

    Energy Technology Data Exchange (ETDEWEB)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  9. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  10. 基于无瞬心包络法的偏心螺杆成型铣刀研究%Study of Formed Milling Cutter for Processing Eccentric Screw Based on Non-Instantaneous Envelope Method

    Institute of Scientific and Technical Information of China (English)

    李云; 范晋伟; 陈东菊; 王晓峰; 刘勇军

    2012-01-01

    根据偏心螺杆的形状和特征参数,建立了偏心螺杆的螺旋曲面方程;基于无瞬心包络法,从成型铣刀与偏心螺杆的相对运动关系出发,依据成型铣刀与螺杆的啮合条件,建立其接触线方程.由接触线围绕铣刀轴线回转形成回转面的轴向截形,推导出铣刀刀刃的廓形方程.进一步分析了成型铣刀用钝重磨后引起加工误差的原因,以阿基米德螺线为基础建立铣刀的齿背曲线方程,得到具有恒定后角的铣刀廓形方程.仿真结果表明,成型铣刀的廓形与偏心螺杆螺旋曲面吻合良好,设计的成型铣刀廓形方程符合加工要求.%The design theory and method of formed milling cutter for eccentric screw is presented. Through analyzing the shape and characteristic parameters of eccentric screw, the spiral surface equation of eccentric screw was established. Considering the relative motion and the meshing conditions between formed milling cutter and eccentric screw, the contact line equation was established based on non-instantaneous envelope method. Further, from the cross-section shape of the rotary surface formed by the contact line around the axis of cutter, the profile equation of formed milling cutter was deduced. By analyzing the causes of processing errors after wear of formed milling cutter, the tooth back curve equation was achieved in accordance with spiral of Archimedes and got the profile equation of formed milling cutter with constant back edge was gotten. Finally, the interference for profile equation of formed milling cutter was checked. Simulation shows that the profile of formed milling cutter coincides with the spiral surface of eccentric screw and the designed profile equation of formed milling cutter conforms to the requirements of the processing. This work provides a theoretical foundation for the design and manufacture of formed milling cutter.

  11. Regarding to the Variance Analysis of Regression Equation of the Surface Roughness obtained by End Milling process of 7136 Aluminium Alloy

    Science.gov (United States)

    POP, A. B.; ȚÎȚU, M. A.

    2016-11-01

    In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.

  12. Análisis de la Molienda en el Proceso de Elaboración de Mezcal Analysis of Agave Milling in the Process of Mescal Manufacturing

    Directory of Open Access Journals (Sweden)

    Hector. M Durán

    2007-01-01

    Full Text Available Se presenta y analiza el proceso de molienda de maguey para elaboración de mezcal, en las fabricas de la zona de San Luis Potosí, México. Las fábricas de mezcal cuentan con un molino chileno que consiste en una piedra amonedada de cantera o cemento que gira y presiona el material extrayendo sus jarabes. La rueda de piedra del molino presenta problemas de patinaje, que consiste en el deslizamiento sobre el material, por lo cual el bagazo conserva una cantidad considerable de jarabes o mieles utilizables. Se analizan diversos molinos y se estudia el comportamiento de las fuerzas que ejerce la rueda, para determinar las condiciones óptimas de diseño y operación. Se concluye que la densidad de la piedra tiene que ser la máxima posible, el área de contacto debe ser la más pequeña posible, y los canales sobre la superficie de la piedra deben tener una dirección hacia el centro del molino, para que el jugo salga en dirección de las fuerzas del material comprimidoIn this work, the process of grinding of agave for making mescal, in the factories of the zone of San Luis Potosi, Mexico is presented and analyzed. The mescal factories employ a Chilean mill which has a millstone wheel of that presses the material extracting its juices. The wheel presents problems of skating, which consists of the sliding of the wheel on the material, so the bagasse retains a considerable quantity of syrups and honeys. Several mills are analyzed and the forces exerted on the bagasse are studied, to determine the optimum design and operating conditions. It is concluded that the thickness of the stone has to be as big as possible, the contact area has to be as small as possible, and the channels on the surface of the stone must be directed towards the center of the mill, so that the juice goes out in direction of the forces of the compressed material

  13. Aftereffect conditions of prolonged space flight on physiological and biochemical processes and plant resistance Lycopersicon esculentum Mill. to pathogens

    Science.gov (United States)

    Mishchenko, Lidiya

    2016-07-01

    Tomatoes (Lycopersicon esculentum Mill.) - one of the most popular vegetables in Ukraine, they are a valuable product of therapeutic and dietetic foods because they contain a significant amount of nutrients and essential to the human body minerals and vitamins, but by the content of carotenoids - lycopene and β-carotene - is a powerful antioxidant. Therefore, tomato plants can be used successfully to astronauts on long space flights. We aftereffect was studied factors of space flight on the variety of tomato seeds Mir-1, which lasted (6 years) were on an orbital space station "Mir". Then, also after long-term storage in 2011, seeds were sown in the laboratory and received seedlings grown in field conditions Kiev region. The resulting seeds of the tomato crop in 2011 ("Space" and still) we used in our subsequent field studies in Kyiv and Poltava regions. We have previously shown that the "space" seeds had shown in 2011-2012 increased resistance to viruses PVY and PVM natural infectious background. Therefore, it is necessary continue the investigation and started to observe in future years, including 2015 and to analyze the results obtained. Because plants grown constantly in the field natural infectious background, there was a high probability of their defeat pathogens of different nature, including viruses. The works of many authors proved reduce the concentration of carotene and lycopene in tomatoes with the defeat of viruses (Raithak, 2012). In addition, the control plants were observed symptoms of such that is a viral infection, namely in 2011 - leaves curl in 2012 - except leaves curl and even mosaics. The research results were confirmed in 2013, namely on the plants of "space" seed no symptoms of, and in control - detection of potato virus Y (method RT-PCR) and symptoms of leaf curl and mosaic. During the bearing samples were taken leaves of the options and experiment conducted determination of photosynthetic pigments. It should be emphasized that in plant

  14. Taguchi design optimization of machining parameters on the CNC end milling process of halloysite nanotube with aluminium reinforced epoxy matrix (HNT/Al/Ep hybrid composite

    Directory of Open Access Journals (Sweden)

    J.S. Pang

    2014-08-01

    Full Text Available This paper introduces the application of Taguchi optimization methodology in optimizing the cutting parameters of end-milling process for machining the halloysite nanotubes (HNTs with aluminium reinforced epoxy hybrid composite material under dry condition. The machining parameters which are chosen to be evaluated in this study are the depth of cut (d, cutting speed (S and feed rate (f. While, the response factors to be measured are the surface roughness of the machined composite surface and the cutting force. An orthogonal array of the Taguchi method was set-up and used to analyse the effect of the milling parameters on the surface roughness and cutting force. The result from this study shows that the application of the Taguchi method can determine the best combination of machining parameters that can provide the optimal machining response conditions which are the lowest surface roughness and lowest cutting force value. For the best surface finish, A1–B3–C3 (d = 0.4 mm, S = 1500 rpm, f = 60 mmpm is found to be the optimized combination of levels for all the three control factors from the analysis. Meanwhile, the optimized combination of levels for all the three control factors from the analysis which provides the lowest cutting force was found to be A2–B2–C2 (d = 0.6 mm, S = 1000 rpm, f = 40 mmpm.

  15. AISI/DOE Advanced Process Control Program Vol. 3 of 6: MICROSTRUCTURAL ENGINEERING IN HOT-STRIP MILLS Part 2 of 2: Constitutive Behavior Modeling of Steels Under Hot-Rolling Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yi-Wen Cheng; Patrick Purtscher

    1999-07-30

    This report describes the development of models for predicting (1) constitutive behaviors and (2) mechanical properties of hot-rolled steels as functions of chemical composition, microstructural features, and processing variables. The study includes the following eight steels: A36, DQSK, HSLA-V, HSLA-Nb, HSLA-50/Ti-Nb, and two interstitial-free (IF) grades. These developed models have been integrated into the Hot-Strip Mill Model (HSMM), which simulates the hot strip rolling mills and predicts the mechanical properties of hot-rolled products. The HSMM model has been developed by the University of British Columbia-Canada as a part of project on the microstructural engineering in hot-strip mills.

  16. Study on Comminution Process and Micronization Efficiency of Potato Starch by Ball Milling%马铃薯淀粉的球磨破碎方式和微细化效果研究

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    采用机械球磨方法对马铃薯淀粉进行微粉碎,研究了球磨过程中淀粉颗粒的形貌、粒度分布及比表面积的变化特征,探讨了淀粉颗粒的破碎方式和粉碎模型,并考察了马铃薯淀粉微细化的效果。%Potato starch is mechanically ground by ball milling.The granular appearance,granule size distribution and specific surface of the starch are studied before and after milling.The comminution process and micronization effciency of the starch are discussed based on ultra-micronization model.The results show that potato starch can be effectively micronized by ball milling.

  17. Design And Preliminary Testing of a Hammer Mill with End-Suction Lift Capability Suitable for Commercial Processing of Grains and Solid Minerals in Nigeria

    Directory of Open Access Journals (Sweden)

    Ebunilo P. O.

    2010-06-01

    Full Text Available A hammer mill with an end-suction lift capability has been designed, fabricated and tested. The tests were carried out by comparing the product of a conventional hammer mill with that of the new hammer mill with end suction lift capability. The preliminary test results obtained using grains show that the efficiency of a conventional hammer mill and its ability to produce an output of specific size of 400m-600m for both maize and cowpeas is low when compared with the output of the new hammer mill. The new hammer mill, which is a partially closed system while in operation and utilizes suction power, virtually eliminates environmental pollution usually associated with the operation of conventional hammer mills and can be used to mill commonly occurring Nigerian grains like millet, sorghum, maize, cowpeas, guinea-corn and soya beans into flour and also for pulverizing locally occurring solid minerals like clays into powder. This would diversify storage options for the grains, deepen and widen the available food choices for all Nigerians and enhance food security and rural development.

  18. A Novel Photocatalyst with Ferromagnetic Core Used for the Treatment of Olive Oil Mill Effluents from Two-Phase Production Process

    Directory of Open Access Journals (Sweden)

    Javier Miguel Ochando-Pulido

    2013-01-01

    Full Text Available Photocatalytic degradation of olive oil mill wastewater from two-phase continuous centrifugation process was studied. A novel photocatalyst with ferromagnetic properties was characterized and investigated. The degradation capacity of the photocatalytic process of olive oil washing wastewater (OMW and mixture of olives and olive oil (1 v/v washing wastewaters (MOMW was demonstrated. At lab-scale, the %COD removal and residence time (τ for MOMW and OMW were 58.4% (τ=2 h and 21.4% (τ=3 h, respectively. On the other hand, at pilot scale, 23.4% CODremoval, 19.2% total phenolsremoval, and 28.1% total suspended solidsremoval were registered at the end of the UV/TiO2 process for OMW, whereas 58.3% CODremoval, 27.5% total phenolsremoval, and 25.0% total suspended solidsremoval for MOMW. Also, before the UV/TiO2 reaction, a pH-T flocculation operation as pretreatment was realized. The overall efficiency of the treatment process for MOMW was up to 91% of CODremoval, in contrast with 33.2% of CODremoval for OMW.

  19. 氧化锆义齿铣削工艺参数优化及其加工实验%Optimization of milling process parameters of zirconia denture and its experiment

    Institute of Scientific and Technical Information of China (English)

    刘俊伟; 杨晓钧

    2016-01-01

    为合理选择初次烧结氧化锆陶瓷义齿在铣削加工时的工艺参数以及加工路径规划方式,以提高加工效率及质量,建立以提高材料去除率和降低表面粗糙度为目标的函数,采用理想点法、最小偏差法和线性组合法,优化出精加工阶段的工艺参数;以磨牙冠表面加工为例,采用UG CAM系统规划刀具加工路径,粗加工采用型腔铣,精加工分别采用固定轴铣中的曲面铣削往复模式、区域铣削跟随周边模式及区域铣削往复模式3种规划方法。实际加工结果对比表明:在相同工艺参数及刀具条件下,区域铣削往复模式规划方法加工得到的牙冠表面质量最好。%To determine the proper values of process parameters when milling the pre⁃sintering zirconia denture, the optimization calculation is made to increase the material removal rate and decrease the surface roughness by using the ideal point method, minimum deviation method and linear combination method in finish milling process. Taking molar crown upper surface milling as a project for finding the suitable tool path planning method, the path planning is made by UG CAM. The cavity milling following periphery planning method is used for the rough machining. The reciprocating mode of surface milling, following periphery mode of area milling and reciprocating mode of area milling is used for the finish machining. It is found that the better surface quality can be acquired by the method of reciprocating mode of area milling for finish machining according to the results and contrast of the experiment in the same optimization values of the process parameters and standard tools.

  20. 75 FR 71463 - Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration

    Science.gov (United States)

    2010-11-23

    ... Employment and Training Administration Woodland Mills Corporation Mill Spring, NC; Notice of Revised... of Woodland Mills Corporation, Mill Spring, North Carolina, to apply for Trade Adjustment Assistance... yarn produced by Woodland Mills Corporation, Mill Spring, North Carolina Woodland Mills...

  1. GENERALIZED SIMULATION MODEL FOR MILLED SURFACE TOPOGRAPHY-APPLICATION TO PERIPHERAL MILLING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on analyzing various factors influencing milled surface topography, firstly, a generalized model for milled surface topography is proposed. Secondly, using the principles of transformation matrix and vector operation, the trajectory equation of cutting edge relative to workpiece is derived. Then, a three-dimensional topography simulation algorithm is constructed through dividing the workpiece into regular grids. Finally, taking the peripheral milling process as an example, the generalized model is simplified, and the corresponding simulation examples are given. The results indicate that it is very efficient for the generalized model to be used to analyze and simulate the peripherally milled surface topography.

  2. Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Helmens, H.J.

    2009-01-01

    A laboratory-scale process is presented for the manufacture of starch and gluten from wheat. Main feature of this process is that whole wheat kernels are crushed dry between smooth rolls prior to wet disintegration in excess water in such way that gluten formation is prevented and fibres can be

  3. Multi-Axis High Speed Milling : How to Speed up Prototyping & Tooling Processes by Using STL-Technology

    NARCIS (Netherlands)

    Gunnink, J.W.

    1998-01-01

    Despite the wide application of Layered Manufacturing Technologies like fused Depositîon Modelling, Layered Object Manufacturing etc. in the product development process, mihing is stil necessary. This is because Layered Manufactunng processes have some Iimitatïons in for instance, materials used and

  4. Multi-Axis High Speed Milling : How to Speed up Prototyping & Tooling Processes by Using STL-Technology

    NARCIS (Netherlands)

    Gunnink, J.W.

    1998-01-01

    Despite the wide application of Layered Manufacturing Technologies like fused Depositîon Modelling, Layered Object Manufacturing etc. in the product development process, mihing is stil necessary. This is because Layered Manufactunng processes have some Iimitatïons in for instance, materials used and

  5. Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Helmens, H.J.

    2009-01-01

    A laboratory-scale process is presented for the manufacture of starch and gluten from wheat. Main feature of this process is that whole wheat kernels are crushed dry between smooth rolls prior to wet disintegration in excess water in such way that gluten formation is prevented and fibres can be remo

  6. Milling time and BPR dependence on permeability and losses of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} synthesized via mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Ismayadi, E-mail: kayzen@gmail.co [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hashim, Mansor; Amin Matori, Khamirul [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Physics Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Alias, Rosidah [Telekom Research and Development Sdn. Bhd., Telekom Research and Development Innovation Centre, Lingkaran Teknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Hassan, Jumiah [Physics Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2011-06-15

    Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been synthesized using mechanical alloying method with two variables (milling time and ball-to-powder weight ratio (BPR)) were varied in order to study its effect on the magnetic properties of the material. The effects of these two variables were studied using XRD, SEM, TEM and later by impedance analyzer with the frequency range from 1 MHz to 1.8 GHz. The results obtained however show that there are no significant trends to relate the milling time and BPR with the permeability and losses of the material studied. After being sintered at 1150 {sup o}C, all the effects of alloying process seem to diminish. - Research highlights: We studied the effects of BPR and milling time on permeability of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}. The effects were studied using XRD, SEM, TEM and impedance analyzer. No relationship between the milling time and BPR with the permeability and losses. The alloying effects are eliminated after sintering. The magnetic properties of these samples are influenced by the sintering process.

  7. 齿向圆弧面铣削加工工艺%Milling Process of Tooth Trace Circular Surface

    Institute of Scientific and Technical Information of China (English)

    范有雄; 胡翠萍

    2012-01-01

    变刚度蛇形弹簧联轴器齿向弧形面,齿槽间隙小,加工时较为困难.对加工零件功能及工艺进行了分析,确定了零件加工工艺方案,拟定了装夹方案,给出了夹具设计结构图、刀具选用计算.提出了加工过程中应注意的问题,给出了加工过程中的数据计算方法,采用较为经济的加工工艺完成了齿向弧形面的加工.%Tooth trace of variable stiffness serpents spring coupling is circular surface there is small clearance in tooth bottom, its machining is relatively difficult. Function and process of the coupling are analyzed, process scheme and the clamping schemes are determined, the fixture design charts is given, tool selection calculation is carried out. Processing process problems should be paid attention to is put forward, data acalculaa'on method in processing is given using more economical process, processing of tooth trace circular surface is completed.

  8. Continuous grinding mill simulation using Austin's model

    Directory of Open Access Journals (Sweden)

    André Carlos Silva

    2012-01-01

    Full Text Available Comminution is a frequently-required step in mineral processing and is responsible for almost 90% of all energy consumption in a mineral processing plant. Tumbling mill design has been studied since the middle of the XIX century. There are many comminution models in the literature, with preponderance, however, of Austin’s model (2002 for mineral impact breakage. In this paper, Austin’s model was applied to tubular tumbling mills. Once Austin's model was proposed for batch processing of narrowly-distributed fraction sizes, an artifice has allowed it to be used in continuous grinding mill processes with widely-distributed fraction sizes. Interesting results were obtained with errors less than 0.005 for mills with sharp residence time distributions.

  9. YANG-MILLS FIELD AMPLIFIER

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-09-01

    Full Text Available The article presents a project of the Yang-Mills amplifier. Amplifier model is a multilayer spherical shell with increasing density towards the center. In the center of the amplifier is the core of high-density material. It is shown that in such a system, the amplitude of the Yang-Mills waves rises from the periphery to the center of several orders of magnitude. The role of the Yang-Mills field in the processes occurring in the nuclei of galaxies, stars and planets is discussed. The data modeling to strengthen the Yang-Mills field in the bowels of the planet, with an atomic explosion, and in some special devices such as the voltaic pile. To describe the mechanism of amplification chromodynamics field used as accurate results in Yang-Mills theory and numerical models developed based on an average and the exact equations as well. Among the exact solutions of the special role played by the centralsymmetric metric describing the contribution of the Yang-Mills field in the speed of recession of galaxies. Among the approximate numerical models can be noted the eight-scalar model we have developed for the simulation of non-linear color oscillations and chaos in the Yang-Mills theory. Earlier models were investigated spatio-temporal oscillations of the YangMills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three by five colors or vice versa. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. In the present study, we found that amplification chromodynamic field leads to a sharp increase in the amplitude of the suppressed color, which can lead to an increase in entropy, excitation of nuclear

  10. "2sDR": Process Development of a Sustainable Way to Recycle Steel Mill Dusts in the 21st Century

    Science.gov (United States)

    Rösler, Gernot; Pichler, Christoph; Antrekowitsch, Jürgen; Wegscheider, Stefan

    2014-09-01

    Significant amounts of electric arc furnace dust originating from steel production are recycled every year by the Waelz process, despite the fact that this type of process has several disadvantages. One alternative method would be the recovery of very high-quality ZnO as well as iron and even chromium in the two-step dust recycling process, which was invented to treat special waste for the recovery of heavy metal-containing residues. The big advantage of that process is that various types of residues, especially dusts, can be treated in an oxidizing first step for cleaning, with a subsequent reducing step for the metal recovery. After the treatment, three different fractions—dust, slag, and an iron alloy, can be used without any limitations. This study focuses on the development of the process along with some thermodynamic considerations. Moreover, a final overview of mass balances of an experiment performed in a 100-kg top blowing rotary converter with further developments is provided.

  11. Revitalizing America's Mills: A Report on Brownfields Mill Projects

    Science.gov (United States)

    This report focuses on mills -- former textile, wood, paper, iron, and steel mills. The report describes the challenges and opportunities of mill sites with case studies highlighting some of the most creative solutions from across the country.

  12. Effective removal of tetracycline from aqueous solution using activated carbon prepared from tomato (Lycopersicon esculentum Mill.) industrial processing waste.

    Science.gov (United States)

    Sayğılı, Hasan; Güzel, Fuat

    2016-09-01

    Activated carbon (TAC) prepared under optimized conditions with ZnCl2 activation from a new precursor; tomato industrial processing waste (TW), was applied as an adsorbent to remove tetracycline (TC) from aqueous solution. The factors (TAC dosage, initial TC concentration, contact time, ionic strength and solution temperature) affecting the adsorption process were examined at natural pH (5.7) of TAC-TC system in aqueous solution. Kinetic data was found to be best complied by the pseudo-second order model. The isotherm analysis indicated that the equilibrium data could be represented by the Langmuir model. The maximum adsorption capacity was identified as 500.0mgg(-1) at 308K.

  13. Position paper on the applicability of supplemental standards to the uppermost aquifer at the Uranium Mill Tailings Vitro Processing Site, Salt Lake City, Utah

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report documents the results of the evaluation of the potential applicability of supplemental standards to the uppermost aquifer underlying the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing Site, Salt Lake City, Utah. There are two goals for this evaluation: provide the landowner with information to make an early qualitative decision on the possible use of the Vitro property, and evaluate the proposed application of supplemental standards as the ground water compliance strategy at the site. Justification of supplemental standards is based on the contention that the uppermost aquifer is of limited use due to wide-spread ambient contamination not related to the previous site processing activities. In support of the above, this report discusses the site conceptual model for the uppermost aquifer and related hydrogeological systems and establishes regional and local background water quality. This information is used to determine the extent of site-related and ambient contamination. A risk-based evaluation of the contaminants` effects on current and projected land uses is also provided. Reports of regional and local studies and U.S. Department of Energy (DOE) site investigations provided the basis for the conceptual model and established background ground water quality. In addition, a limited field effort (4 through 28 March 1996) was conducted to supplement existing data, particularly addressing the extent of contamination in the northwestern portion of the Vitro site and site background ground water quality. Results of the field investigation were particularly useful in refining the conceptual site model. This was important in light of the varied ground water quality within the uppermost aquifer. Finally, this report provides a critical evaluation, along with the related uncertainties, of the applicability of supplemental standards to the uppermost aquifer at the Salt Lake City Vitro processing site.

  14. Optimization of water curing for the preservation of chestnuts (Castanea sativa Mill.) and evaluation of microbial dynamics during process.

    Science.gov (United States)

    Blaiotta, Giuseppe; Di Capua, Marika; Romano, Annalisa; Coppola, Raffaele; Aponte, Maria

    2014-09-01

    Chestnuts are very perishable fruits, whose quality may be compromised during postharvest handling. Damage can be caused both by insects and fungi. Water curing, a commonly used postharvest method, is based on soaking fruits in water typically for about one week. Factors that affect effectiveness of water curing have only been explained partially. A decrease in pH, likely imputable to a light fermentation caused by lactic acid bacteria, may inhibit the growth of moulds. In this study a Lactobacillus pentosus strain was selected for its ability to inhibit fungi, and used as a starter culture during water curing. As second goal, a reduction of the environmental impact of the process was evaluated by using water that had been re-cycled from a previous curing treatment. Experiments were performed on pilot as well as on farm scale. In all trials, microbial dynamics were evaluated by means of a polyphasic approach including conventional and molecular-based analyses. According to results, the employment of an adjunct culture appears as a very promising opportunity. Even if no reduction in the duration of the process was achieved, waters exhibited a minor microbial complexity and fruits did not lose the natural lustre after the process.

  15. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques.

    Science.gov (United States)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H(2)O(2)/ultraviolet radiations) at 25°C and ((Al-Fe)PILC/H(2)O(2)) at 50°C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H(2)O(2)), system operating at 50°C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H(2)O(2)) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  16. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    Energy Technology Data Exchange (ETDEWEB)

    Azabou, Samia [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Najjar, Wahiba [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Bouaziz, Mohamed [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Ghorbel, Abdelhamid [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia)

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H{sub 2}O{sub 2}/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H{sub 2}O{sub 2}) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H{sub 2}O{sub 2}), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H{sub 2}O{sub 2}) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  17. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    Science.gov (United States)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  18. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  19. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  20. Cutting Parameters Multi-object Optimization of Titanium Alloy Milling Process Based on Support Vector Regression and NSGA-II%基于SVR和NSGA-II的钛合金铣削参数多目标优化

    Institute of Scientific and Technical Information of China (English)

    向国齐

    2016-01-01

    对钛合金材料Ti6Al4V铣削加工进行有限元数值计算,结合试验设计方法构建了基于支持向量回归机(SVR)的铣削力预测模型,以材料去除率和刀具寿命为优化目标,提出一种基于支持向量回归机和带精英策略的非支配排序遗传算法(NSGA-II)的优化方法。结果表明,该方法能够获得满意的Pareto解集,为钛合金铣削参数优化提供一种新的方法,具有良好的推广价值。%In this paper, the Titanium Alloy Ti6Al4V milling process is analysized by ifnite element method, a milling force prediction model was established based on Support Vector Regression (SVR), The optimization design methodology based on SVR and NSGA-II is proposed for Titanium Alloy milling process cutting parameters. The results show that this methodology has a good performance in ifnding satisfying Pareto solutions, and thus can be used in the machining process parameters optimum and other material processing ifelds.

  1. Dynamic study of milling low depth channels

    Directory of Open Access Journals (Sweden)

    Rosca Dorin Mircea

    2017-01-01

    Full Text Available This paper presents a study of dynamic aspects of the milling cutters used in particular case of low depth channels. A new calculation method was developed, taking into account the high variations of cutting forces during milling small depth channels with peripheral cutting tools. A new formula was established for the minimal value of channel depth that allows cutting process to be performed in conditions of dynamic stability.

  2. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater.

    Science.gov (United States)

    Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D

    2017-05-01

    Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as

  3. Simulation and Optimization of Turning-Milling Complex Machining

    Directory of Open Access Journals (Sweden)

    Shihong Guo

    2013-05-01

    Full Text Available In this study, the turning-milling complex processing simulation platform is established based on the simulation and optimization platform of VERICUT NC machining, with WFL M65 turning-milling complex machining center as the research object; taking barrel body parts as an example, the simulation machining and related process issues checking in machining process is made and the analysis and optimization of effect factors is made for processing efficiency. The application indicates that: the research results effectively realize the simulation of the turning-milling complex machining process and the correctness verification and process optimization of the NC machining program, improve the processing efficiency and the processing quality, well improve the application level of enterprise turning-milling complex machining center, promote the development of the turning-milling complex machining technology.

  4. 冷带轧机液压AGC系统过程优化级计算机控制%Research on Computer Control of Process Optimization Level in Hydraulic AGC System of Cold Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    孙孟辉; 王益群

    2015-01-01

    冷带轧机的轧制过程是较为复杂的物理过程,因此液压AGC(Automatic Gauge Control)系统对冷带轧机成品带钢的厚度精度起着重要的作用。针对300可逆冷带轧机,进行了过程优化级计算机控制的研究,开发出了液压AGC系统的过程优化级计算机控制系统。液压AGC系统的过程优化级计算机控制,可以实现轧制规程的计算、过程控制级所需设定值的设定、轧制过程数据的采集以及人机界面的显示等功能。同时,进行了轧制试验。%Rolling process of the cold rolling mill is a complicated physical process, so the hydraulic AGC system is very important to the thickness precision of strips of cold rolling mill. In this paper, the computer control of process optimization level was researched, and the computer control system of process optimization level was developed, aiming at 300 reverse cold rolling mill. By the computer control of process optimization level of the hydraulic AGC, it can realize the calculation of rolling schedule, the set of setting value needed by the process control level, the data acquisition of rolling process and the display of human-computer interface. At the same time, the rolling experiment was carried out, and the experiment result implied that it could eliminate the thickness error of strips effectively, adopting the provided computer control's strategy of the process optimization level.

  5. Pilot scale hybrid processes for olive mill wastewater treatment, energy production and water reuse: comparison between fungal and electro-coagulation pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Sayadi, S.

    2009-07-01

    Olive oil mill wastewaters (OMW) cause disposal problems because they contain powerful pollutants such as phenolic compounds. Complete biodegradation or removal of these compounds is hardly achieved by a single treatment method. In this work, we investigated 2 integrated technologies for the treatment of the recalcitrant contaminants of OMW, allowing water recovery and reuse for agricultural purposes. (Author)

  6. Model Predictive Control for an Industrial SAG Mill

    DEFF Research Database (Denmark)

    2012-01-01

    identication. When applied to MIMO systems we call this controller a MIMO-ARX based MPC. We use an industrial Semi-Autogenous Grinding (SAG) mill to illustrate the performance of this controller. SAG mills are the primary units in a grinding chain and also the most power consuming units. Therefore, improved...... control of SAG mills has the potential to signicantly improve eciency and reduce the specic energy consumption for mineral processes. Grinding circuits involving SAG mills are multivariate processes. Commissioning of a control system based on a classical single-loop controllers with logic is time...

  7. High-Yield Preparation and Electrochemical Properties of Few-Layer MoS2 Nanosheets by Exfoliating Natural Molybdenite Powders Directly via a Coupled Ultrasonication-Milling Process

    Science.gov (United States)

    Dong, Huina; Chen, Deliang; Wang, Kai; Zhang, Rui

    2016-09-01

    Cost-effective and scalable preparation of two-dimensional (2D) molybdenum disulfide (MoS2) has been the bottleneck that limits their applications. This paper reports a novel coupled ultrasonication-milling (CUM) process to exfoliate natural molybdenite powders to achieve few-layer MoS2 (FL-MoS2) nanosheets in the solvent of N-methyl-2-pyrrolidone (NMP) with polyvinylpyrrolidone (PVP) molecules. The synergistic effect of ultrasonication and sand milling highly enhanced the exfoliation efficiency, and the precursor of natural molybdenite powders minimizes the synthetic cost of FL-MoS2 nanosheets. The exfoliation of natural molybdenite powders was conducted in a home-made CUM system, mainly consisting of an ultrasonic cell disruptor and a ceramic sand mill. The samples were characterized by X-ray diffraction, UV-vis spectra, Raman spectra, FT-IR, SEM, TEM, AFM, and N2 adsorption-desorption. The factors that influence the exfoliation in the CUM process, including the initial concentration of natural molybdenite powders ( C in, 15-55 g L-1), ultrasonic power ( P u, 200-350 W), rotation speed of sand mill ( ω s, 1500-2250 r.p.m), exfoliation time ( t ex, 0.5-6 h), and the molar ratio of PVP unit to MoS2 ( R pm, 0-1), were systematically investigated. Under the optimal CUM conditions (i.e., C in = 45 g L-1, P u = 280 W, ω s = 2250 r.p.m and R pm = 0.5), the yield at t ex = 6 h reaches 21.6 %, and the corresponding exfoliation rate is as high as 1.42 g L-1 h-1. The exfoliation efficiency of the CUM mode is much higher than that of either the ultrasonication (U) mode or the milling (M) mode. The synergistic mechanism and influencing rules of the CUM process in exfoliating natural molybdenite powders were elaborated. The as-obtained FL-MoS2 nanosheets have a high specific surface area of 924 m2 g-1 and show highly enhanced electrocatalytic performance in hydrogen evolution reaction and good electrochemical sensing property in detecting ascorbic acid. The CUM process

  8. Study on High-Performance Computing for Simulation of End Milling Force

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Milling Process Simulation is one of the important re search areas in manufacturing science. For the purpose of improving the prec ision of simulation and extending its usability, numerical algorithm is more and more used in the milling modeling areas. But simulative efficiency is decreasin g with increase of its complexity. As a result, application of the method is lim ited. Aimed at above question, high-efficient algorithm for milling process sim ulation is studied. It is important for milling process...

  9. Research on Frequency Response Characteristics of Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    CaiZhengguo; ZhangKenan

    2005-01-01

    The measurement method of frequency response characteristics for rolling mill is established by imposing different signal excitation on PID input of rolling mill under the different rolling conditions. The analysis results declare that sweep sine signal was relative efficient to evaluation for the frequency response character of hydraulic system. The practical application shows that the corresponding relationship between the parameters and the frequency response range of the rolling mill is helpful for parameters verification of process control and condition monitoring of hydraulic system.

  10. 铣削力试验数据处理软件的设计与实现%The Design & Implementation of Testing Data Processing Software for Milling Force

    Institute of Scientific and Technical Information of China (English)

    罗五四; 吴永强; 熊明华; 冯淑凯; 毛履国

    2001-01-01

    Testing data processing software of milling force programmed by Visual C++ 6.0,which has been developed with orthogonal design and regression analysis,successfully connects precedently developed computer-aided test system of cutting force.It has been applied in milling force contrast test of molten aluminum alloy material ZL106 and DFL—1.It realizes both testing on-the-spot and printing the testing report of milling force.%运用Visual C++ 6.0编程工具,采用正交回归方法开发了铣削力试验数据处理软件。该软件已与笔者前期开发的计算机辅助切削力测试系统实现对接,并已应用于铸态铝合金材料ZL106与DFL-1的铣削力对比试验,实现了实时测试数据处理和直接输出试验报告。

  11. Construction about on the Application of Macro Program in the NC of Milling Processing%浅谈宏程序在数控铣销加工中的应用

    Institute of Scientific and Technical Information of China (English)

    曾小虎; 许伯勇

    2011-01-01

    Using macro program in actual NC process is a relatively difficulty according to the programming theory and the feature of macro programs,this paper analyses the application of FANUC macro program in NC milling process.%数控实际加工中使用宏程序相对来说是一个难点,本文从宏程序的编程原理、宏程序的特点来讲述FANUC宏程序在数控铣削加工中的应用。

  12. EQUIVALENT NORMAL CURVATURE APPROACH MILLING MODEL OF MACHINING FREEFORM SURFACES

    Institute of Scientific and Technical Information of China (English)

    YI Xianzhong; MA Weiguo; QI Haiying; YAN Zesheng; GAO Deli

    2008-01-01

    A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given.

  13. Validation of the Hot Strip Mill Model

    Energy Technology Data Exchange (ETDEWEB)

    Richard Shulkosky; David Rosberg; Jerrud Chapman

    2005-03-30

    The Hot Strip Mill Model (HSMM) is an off-line, PC based software originally developed by the University of British Columbia (UBC) and the National Institute of Standards and Technology (NIST) under the AISI/DOE Advanced Process Control Program. The HSMM was developed to predict the temperatures, deformations, microstructure evolution and mechanical properties of steel strip or plate rolled in a hot mill. INTEG process group inc. undertook the current task of enhancing and validating the technology. With the support of 5 North American steel producers, INTEG process group tested and validated the model using actual operating data from the steel plants and enhanced the model to improve prediction results.

  14. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic-acidogenic step.

    Science.gov (United States)

    Rincón, B; Borja, R; Martín, M A; Martín, A

    2009-09-01

    A study of the second step or methanogenic stage of a two-stage anaerobic digestion process treating two-phase olive oil mill solid residue (OMSR) was conducted at mesophilic temperature (35 degrees C). The substrate fed to the methanogenic step was the effluent from a hydrolytic-acidogenic reactor operating at an organic loading rate (OLR) of 12.9 g chemical oxygen demand (COD) L(-1) d(-1) and at a hydraulic retention time (HRT) of 12.4 days; these OLR and HRT were found to be the best values to achieve the maximum total volatile fatty acid concentration (14.5 g L(-1) expressed as acetic acid) with a high concentration in acetic acid (57.5% of the total concentration) as the principal precursor of methane. The methanogenic stage was carried out in an anaerobic stirred tank reactor containing saponite as support media for the immobilization of microorganisms. OLRs of between 0.8 and 22.0 g COD L(-1) d(-1) were studied. These OLRs corresponded to HRTs of between 142.9 and 4.6 days. The methanogenic reactor operated with high stability for OLRs lower than 20.0 g COD L(-1) d(-1). This behaviour was shown by the total volatile fatty acids/total alkalinity ratio, whose values were always kept 0.12 for HRTs>4.6 days. The total COD (T-COD) removed was in the range of 94.3-61.3% and the volatile solids (VS) removed between 92.8% and 56.1% for OLRs between 0.8 and 20.0 g COD L(-1) d(-1). In the same way, a reduction of 43.8% was achieved for phenolic content. The low concentration of total volatile fatty acids (TVFA) observed (below 1 g L(-1) expressed as CH(3)COOH) in the methanogenic reactor effluents showed the high percentage of consumption and conversion of these acids to methane. A methane yield of 0.268+/-0.003 L CH(4) at standard temperature and pressure conditions (STP) g(-1) COD eliminated was achieved.

  15. Análisis Multifactorial Del Consumo Energético de un Proceso de Fresado Frontal Multifactorial Analysis of the Energetic Consumption of a Process Face Milling

    Directory of Open Access Journals (Sweden)

    Luis M Sarache

    2007-01-01

    Full Text Available Este trabajo muestra una evaluación y análisis multifactorial sobre el consumo energético de piezas fresadas utilizando un Diseño Experimental Factorial. Se consideran las variables profundidad de corte, velocidad de avance y uso de fluido de corte. Los datos se obtuvieron mediante una tarjeta de adquisición de datos y los cálculos sobre significancia se efectuó con la utilización del software SEMPRO II. Además de la calidad de las piezas, se analiza el uso racional de la energía, ya que el costo de producción de una pieza es afectado por la potencia consumida. Se concluye que con el uso del refrigerante o fluido de corte disminuye el gasto energético en un 28 %, cuando se trabaja con mínima profundidad y velocidad de avance de la pieza, lo que hace necesario mejorar los diseños de piezas a mecanizar, orientadas al mínimo de desperdicio que se logra con profundidades muy pequeñasThis work shows an evaluation and multifactorial analysis on the energetic consumption of pieces face milling using an Experimental Design Factorial, are considered to be the variables depth of cut, feed per tooth and the use or not of Cutting Fluid. The values generated of the byline it was achieved by means of a information acquisition card and the calculations on significance was effected(carried out by the utilization of the software SEMPRO 2, that allows the analysis multifactorial, the surface of response and the equation of variable. It is important to give a sense different from the efficiency of the processes of manufacture that affect the quality of the pieces, though the quality is important for reasons of competitiveness, also and must be the rational use of the energy, since the cost of production of a piece is affected by this one (power. One concludes that the use of cooling or cutting fluid diminishes the energetic expense in 28 %, when one works with minimal depth and advance of the piece, which it makes necessary to improve the designs

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  17. Cuttable Ruled Surface Strips for Milling

    DEFF Research Database (Denmark)

    Steenstrup, Kasper Hornbak; Nørbjerg, Toke Bjerge; Søndergaard, Asbjørn;

    2016-01-01

    This paper proposes a novel pre-processing method for industrial robotic CNC-milling. The method targets a hybrid machining process, in which the main bulk of material is removed through robotic hot or abrasive wire cutting, after which regular CNC-machining is employed for removal of the remaining...

  18. Effect of milling time on the formation of carbon nanotube by mechano-thermal method

    Indian Academy of Sciences (India)

    Ertan Evin; Ömer Güler; Mustafa Aksoy; Seval Hale Güler

    2015-08-01

    Mechano-thermal method was used for synthesizing the carbon nanotubes (CNTs) in this study. In this method, graphite powders in the elemental form were firstly exposed to milling process in high-energy ball milling and then the milled powders were annealed at high temperatures. As a result of milling of the graphite, ultra-active disordered carbon structures were obtained. This structure serves as a carbon source for the formation of nanotubes during the annealing process. This study investigated the effect of the milling process. For this purpose, graphite powders were milled at different periods such as 5 and 150 h and then annealed at 1600°C. The transmission electron microscopy and scanning electron microscopy examinations demonstrated that CNTs formed in samples milled both for 5 and 150 h. However, the difference in the milling time influenced the amount of CNTs, their size and the formation of other structures except from nanotubes.

  19. 三辊斜轧机轧制外螺纹管件工艺分析%Process Analysis of Rolling External-threaded Tube by Three-roll Cross Mill

    Institute of Scientific and Technical Information of China (English)

    张海龙; 杨晓明; 陈端

    2015-01-01

    对采用三辊斜轧机轧制外螺纹管件的工艺过程进行了分析,特别分析了压下量、螺纹升角、送进角等工艺参数对产品质量的影响。%In this paper ,the rolling process of external-threaded pipe by three-roll cross rolling mill were analyzed ,the reduction , thread lead angle ,feed angle and other parameters influencing on product quality were put emphasis on .

  20. 65Mn 高线盘条控制冷却工艺参数选择%PROCESS SELECTION FORM CONTROLLED COOLING OF 65Mn COIL ROD BY HIGHSPEED ROD MILL

    Institute of Scientific and Technical Information of China (English)

    赵时腾

    2001-01-01

    对 65Mn 高线盘条控制冷却工艺参数进行了优化,使其获得较好的金相组织和力学性能,在制造弹簧时可省掉铅淬火工序。%To optimize a process parameter of controlled cooling for 65Mn coil rod by high-speed rod mill makes to obtain qualified microstructure and mechanical property.A lead quench can not need when to produce springs with the coil rod.

  1. Structural investigation of an extended milled ferrite powder

    Energy Technology Data Exchange (ETDEWEB)

    Moisin, A.M.; Macrin, M. (Institutul de Cercetari Electronice, Bucharest (Romania))

    1980-01-01

    An investigation of the structural modifications introduced by the extended milling and annealing processes in the barium ferrite powder during its preparation is presented. X-ray diffraction measuements on a barium ferrite powder in various milling and annealing conditions have been carried out and the results concerning the phase compositions, lattice constants and crystallite sizes are discussed.

  2. Uranium Mill Tailings Remedial Action Project surface project management plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  3. Structural and magnetic properties of ball milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1998-01-01

    The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces ca...

  4. Treatment of Olive Oil Mill Wastewater With Fungi

    OpenAIRE

    YEŞİLADA, Özer

    1999-01-01

    : Olive oil mills produce a liquid waste called olive black water in the olive oil production process. In this study, olive oil mill wastewater (OOMW) was analysed and then treated aerobically with fungi. Consequently, high chemical oxygen demand (COD), phenol and color reduction were obtained. High biomass yields and laccase enzyme activities were also determined.

  5. Investigating Effect of Machining Parameters of CNC Milling on Surface Finish by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Amit Joshi

    2012-08-01

    Full Text Available CNC End milling is a unique adaption of the conventional milling process which uses an end mill tool for the machining process. CNC Vertical End Milling Machining is a widely accepted material removal process used to manufacture components with complicated shapes and profiles. During the End milling process, the material is removed by the end mill cutter. The effects of various parameters of end milling process like spindle speed, depth of cut, feed rate have been investigated to reveal their Impact on surface finish using Taguchi Methodology. Experimental plan is performed by a Standard Orthogonal Array. The results of analysis of variance (ANOVA indicate that the feed Rate is most influencing factor for modeling surface finish. The graph of S-N Ratio indicates the optimal setting of the machining parameter which gives the optimum value of surface finish. The optimal set of process parameters has also been predicted to maximize the surface finish.

  6. Investigating Effect of Machining Parameters of CNC Milling on Surface Finish by Taguchi Method

    Directory of Open Access Journals (Sweden)

    Amit Joshi

    2013-08-01

    Full Text Available CNC End milling is a unique adaption of the conventional milling process which uses an end mill tool for the machining process. CNC Vertical End Milling Machining is a widely accepted material removal process used to manufacture components with complicated shapes and profiles. During the End milling process, the material is removed by the end mill cutter. The effects of various parameters of end milling process like spindle speed, depth of cut, feed rate have been investigated to reveal their Impact on surface finish using Taguchi Methodology. Experimental plan is performed by a Standard Orthogonal Array. The results of analysis of variance (ANOVA indicate that the feed Rate is most influencing factor for modelling surface finish. The graph of S-N Ratio indicates the optimal setting of the machining parameter which gives the optimum value of surface finish. The optimal set of process parameters has also been predicted to maximize the surface finish.

  7. Mechanically milled aluminium matrix composites reinforced with halloysite nanotubes

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2012-12-01

    Full Text Available Purpose: The present work describes fabrication of aluminium AlMg1SiCu matrix composite materials reinforced with halloysite nanotubes by powder metallurgy techniques and hot extrusion.Design/methodology/approach: Mechanical milling, compacting and hot extrusion successively are considering as a method for manufacturing metal composite powders with a controlled fine microstructure and enhanced mechanical properties. It is possible by the repeated welding and fracturing of powders particles mixture in a highly energetic ball mill.Findings: The milling process has a huge influence on the properties of powder materials, changing the spherical morphology of as-received powder during milling process to flattened one due to particle deformation followed by welding and fracturing particles of deformed and hardened enough which allows to receive equiaxial particles morphology again. The investigation shows that so called brittle mineral particles yields to plastic deformation as good as ductile aluminium alloy particles. That indicates that the halloysite powder can play a role of the accelerator during mechanical milling. High energy ball milling as a method of mechanical milling improves the distribution of the halloysite reinforcing particles throughout the aluminium matrix, simultaneously reducing the size of particles. The apparent density changes versus milling time can be used to control the composite powders production by mechanical milling and the presence of halloysite reinforcements particles accelerates the mechanical milling process.Research limitations/implications: Contributes to knowledge about technology, structure and properties of aluminium alloy matrix composite material reinforced with mineral nanoparticles.Practical implications: Conducted research shows that applied technology allows obtaining very good microstructural characteristics.Originality/value: It has been confirmed that halloysite nanotubes can be applied as an effective

  8. Influence of operating parameters on product size obtained from an EVT No. 35 test mill

    Energy Technology Data Exchange (ETDEWEB)

    Borthwick, I.R.

    1984-01-01

    The broad objective is to undertake fundamental studies into the milling and drying of brown coal to obtain sufficient understanding of the processes involved to enable existing and proposed mill designs to be assessed and improved. The objective of the work reported here is to determine the effect of operating parameters and product moisture content on product size in a small scale EVT mill.

  9. Towards the effective tool wear control in micro-EDM milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Valentincic, J.; Hansen, Hans Nørgaard

    2010-01-01

    The electrode wear in micro-electrical discharge milling (micro-EDM milling) is one of the main problems to be solved in order to improve machining accuracy. This paper presents an investigation on wear and material removal in micro-EDM milling for selected process parameter combinations typical ...

  10. Prototyping of Dental Structures Using Laser Milling

    Science.gov (United States)

    Andreev, A. O.; Kosenko, M. S.; Petrovskiy, V. N.; Mironov, V. D.

    2016-02-01

    The results of experimental studies of the effect of an ytterbium fiber laser radiation parameters on processing efficiency and quality of ZrO2 ceramics widely used in stomatology are presented. Laser operating conditions with optimum characteristics for obtaining high quality final surfaces and rapid material removal of dental structures are determined. The ability of forming thin-walled ceramic structures by laser milling technology (a minimum wall thickness of 50 μm) is demonstrated. The examples of three-dimensional dental structures created in computer 3D-models of human teeth using laser milling are shown.

  11. Characterization of Al{sub 2}O{sub 3}NP-Al{sub 2024} and Ag{sub C}NP-Al{sub 2024} composites prepared by mechanical processing in a high energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Carreno-Gallardo, C. [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia-Chihuahua, Miguel de Cervantes No. 120, C.P. 31109, Chihuahua (Mexico); Universidad Autonoma Metropolitana, Departamento de Materiales, Av. San Pablo No. 180, Col Reynosa-Tamaulipas, CP 02200, D.F. (Mexico); Estrada-Guel, I. [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia-Chihuahua, Miguel de Cervantes No. 120, C.P. 31109, Chihuahua (Mexico); Romero-Romo, M. [Universidad Autonoma Metropolitana, Departamento de Materiales, Av. San Pablo No. 180, Col Reynosa-Tamaulipas, CP 02200, D.F. (Mexico); Cruz-Garcia, R. [Universidad Autonoma de Chihuahua (UACH), Facultad de Ingenieria, Circuito No. 1 Nuevo Campus Universitario, C.P. 31125, Chihuahua (Mexico); Lopez-Melendez, C. [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia-Chihuahua, Miguel de Cervantes No. 120, C.P. 31109, Chihuahua (Mexico); Universidad La Salle Chihuahua, Prol. Lomas de Majalca No. 11201, C.P. 31020, Chihuahua (Mexico); Martinez-Sanchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnologia-Chihuahua, Miguel de Cervantes No. 120, C.P. 31109, Chihuahua (Mexico)

    2012-09-25

    Graphical abstract: Mechanical alloying was used to produce two kinds of metal matrix composites based on 2024 aluminum alloy, the nanocomposites were reinforced with different percentages of Al{sub 2}O{sub 3} and Ag{sub C} nanoparticles. The content of nanoparticles has a role important on the mechanical properties of the nanocomposite. 10 h of milling time are enough to former the Al{sub 2024} nanocomposites. The results obtained by differential scanning calorimeter show the temperatures of intermetallic precipitation, which were identified by X-ray diffraction. The results revealed that mechanical alloying is an excellent route to incorporate and distribute NP into Al{sub 2024}. Highlights: Black-Right-Pointing-Pointer Aluminum-based nanocomposites were synthesized bay milling process. Black-Right-Pointing-Pointer An homogeneous nanoparticles dispersion was reached and mechanical properties were enhanced. Black-Right-Pointing-Pointer Phase transformation during heating was characterized by XRD. - Abstract: Mechanical alloying was used to produce two kinds of metal matrix composites based on 2024 aluminum alloy. The nanocomposites were reinforced with different percentages of Al{sub 2}O{sub 3} and Ag{sub C} nanoparticles. The content of nanoparticles has an important role on the mechanical properties of the nanocomposites. A milling time of 10 h is enough to form the Al{sub 2024} nanocomposites. The thermograms obtained by differential scanning calorimeter show the temperatures of phase precipitation, which were identified by X-ray diffraction. The results revealed that mechanical alloying is an excellent route for the incorporation and distribution of nanoparticles into Al{sub 2024}.

  12. GEOMETRICAL CHARACTERIZATION OF MICRO END MILLING TOOLS

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo

    for the manufacturing of miniature parts by micro milling puts further challenges on to the manufacturing process. The whole geometry of the tools cannot be directly downscaled with the tool diameter. Besides the physical limit in the reduction of the cutting edge radius constituted by the grain size of sintered...... carbides the error motion during the grinding wheels do not allow using identical paths for tools having differences in diameter of more than one order of magnitude. Thus grinding paths for micro and mills are simplified in comparison to those for larger tools of similar shape. [1] The aim of the present...... report is to develop procedures for the geometrical characterization of micro end milling tools in order to define a method suitable for the quality assurance in the micro cutting field....

  13. Underground void filling by cemented mill tailings

    Institute of Scientific and Technical Information of China (English)

    Choudhary Bhanwar Singh; Kumar Santosh

    2013-01-01

    Underground mining always create voids. These voids can cause subsidence of surface. So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized. Void filling using mill tailings especially in metal mining is one of the best techniques. The tailings produced in milling process have traditionally been disposed in tailing ponds creating a waste disposal and environ-mental problems in terms of land degradation, air and water pollution, etc. This disposal practice is more acute in the metal milling industry where the fine grinding, required for value liberation, results in the production of very fine tailings in large percentage. This paper includes discussions on the effectiveness of different paste mixes with varying cement contents in paste backfilling operations. The results revealed that material composition and use of super plasticizer strongly influenced the strength of cemented backfill.

  14. Uranium mill ore dust characterization

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  15. Study on Recycling Metal in PCB by Heavy Medium Selection-Selectivity Milling-Acid Lixiviating Process%重选-磨细-酸浸联合工艺回收PCB中金属的研究

    Institute of Scientific and Technical Information of China (English)

    熊英禹

    2013-01-01

    采用重介质分选选择性磨细酸浸联合工艺,利用磁铁矿重介质悬浮液,对粗碎后的PCB进行分选,再利用PCB中不同塑料可磨性的不同,将其进行选择性磨细,使PCB中所含金属成分与其他组分有效分离,采用酸浸工艺将各种金属成分转移到液相中,实现金属成分的高效回收.结果表明,在PCB的粒度小于等于2.5 mm时,可使PCB中约55.26%的金属得到富集;86.08%的Au和89.21%的Ag被富集到磨细的粉末中,产品中的各种金属含量分别为:Au 0.68 kg/t,Ag 0.91 kg/t,Cu120.8 kg/t,Al2.98 kg/t,Sn28.02 kg/t.当采用350 mL浓H2SO,、浸出时间为8h,浸出温度为100℃条件下,对50 9分选后的重组分进行酸浸时,可以使Au的回收率达到89.8%,Ag的回收率达到90.2%.与其他传统工艺相比,该工艺具有回收效率高、低污染、低能耗等特点,可以作为PCBs资源化的有效手段.%This paper used heavy medium selection-selectivity milling-acid lixiviating process to recycle metal in PCBs.It used magnetite as the heavy medium,selected PCB after the coarse fragmentation,selectivity milled the PCB according to the different milling characteristics to separate the metal from other component,then,by acid lixiviating to transfer the metal into liquid phase,recycled the metal efficiently.As a result,separate efficiency could reach 55.26% when the PCB′s granularity was less than or equal to 2.5 mm; 86.08% of Au,89.21% of Ag were enriched into the powder after the selectivity milling process,and the contents of metals in the powder were Au 0.68 kg/t,Ag 0.91 kg/t,Cu120.8 kg/t,Al2.98 kg/t and Sn28.02 kg/t,respectively.Under the conditions of oil of vitriol350 mL,lixiviated time 8 h,lixiviated temperature 100 ℃,the recycle ratios of Au and Ag in 50g selected heavier part were 89.8% and 90.2%,respectively.Compared with traditional processes,the heavy medium selection-selectivity milling-acid lixiviating process had the characteristics of

  16. Chemical characterisation and in vitro assessment of the nutritive value of co-products yield from the corn wet-milling process.

    Science.gov (United States)

    Malumba, Paul; Boudry, Christelle; Roiseux, Olivier; Bindelle, Jérôme; Beckers, Yves; Béra, François

    2015-01-01

    The chemical characteristics of co-products recovered during a laboratory-scale wet milling procedure as well as that of whole corn flour were characterised and their digestibility and fermentability value determined using a 2 steps in vitro digestibility and fermentation model of the pig digestive tract. Five co-products differing in their chemical composition were collected and analysed. These co-products differed in their in vitro dry matter Digestibility and in their kinetic of fermentation. High coefficients of digestibility were observed for starchy samples, while low coefficients of digestibility were observed for samples rich in lignocellulosic components. Fermentation patterns of samples analysed were different as well as the profile of volatile fatty acids produced during the fermentation. The production of straight-chain fatty acids produced was significantly correlated with the proportion of starch in the sample, while branched-chain fatty acids were correlated to proteins concentration of samples.

  17. Effects and mechanism of ball milling on torrefaction of pine sawdust.

    Science.gov (United States)

    Gong, Chunxiao; Huang, Jing; Feng, Chen; Wang, Guanghui; Tabil, Lope; Wang, Decheng

    2016-08-01

    The effects and mechanism of ball milling on the torrefaction process were studied. Ball- and hammer-milled (screen size 1mm) pine sawdust samples were torrefied at three temperatures (230, 260, and 290°C) and two durations (30 and 60min) to investigate into their torrefaction behavior and physicochemical properties. The results showed that, under identical torrefaction conditions, torrefied ball-milled pine sawdust had a higher carbon content and fixed carbon, and lower hydrogen and oxygen contents than torrefied hammer-milled pine sawdust. Torrefied ball-milled pine sawdust produced lower mass and energy yields, but higher heating values than torrefied hammer-milled pine sawdust. Ball milling destroyed the crystalline structure of cellulose and thus reduced the thermal stability of hemicellulose, cellulose, and lignin, causing them to degrade at relatively lower temperatures. In conclusion, biomass pretreated with a combination of ball milling and torrefaction has the potential to produce an alternative fuel to coal.

  18. Assessment on the Environment Impact of Mining and Milling Process of an Uranium Deposit in North China%北方某铀矿采冶工程环境影响预测与评价

    Institute of Scientific and Technical Information of China (English)

    杨莹; 杜喜臣; 蔡敏琦

    2013-01-01

    针对我国北方某铀矿采冶工程,全面分析工程的主要放射性污染源,预测并评价放射性污染源对环境的可能影响,分析其非放射性环境影响,并给出主要评价结论;同时提出了辐射防护与环境保护措施,对铀矿资源开采及环境保护工作的开展具有指导意义.%The main radioacitive pollution sources were analyzed comprehensivly during the mining and milling process of an uranium deposit in North China, the possible radioactive environmental impact from these source was evaluated and predicted. The paper also analyzed the non-radioactive environmental impact from the mining and milling, and presented the main evaluation conclusion. Some useful measures of radioactive protection and environmental reservation were proposed for the efforts of uranium deposit mining.

  19. 叶片型面曲率属性对数控铣削加工过程的影响%Effect of curvature attribute of free-form surface on CNC milling process

    Institute of Scientific and Technical Information of China (English)

    王明海; 李晓鹏

    2013-01-01

    提出了一种基于曲面曲率属性分析数控铣削加工过程的方法,该方法通过在构建的自由曲面上规划走刀轨迹,建立刀位轨迹等参数曲线,来分析等参数曲线曲率属性对加工干涉和加工带宽度的影响.同时,通过对刀位轨迹和残留高度与曲面曲率属性之间关系的研究,获得了影响数控铣削加工效率、加工精度及发生干涉的一些规律.此外,研究表明通过对刀具半径、残留高度与加工表面曲率之间的吻合关系曲线合理优化,可有效提高加工带宽度.试验结果证明该曲面曲率属性分析数控铣削加工过程的方法是有效的,加工效率可提高5%~8%.%A method was presented to analyze the computer-numerical-control (CNC) milling process based on characteristics of the curvature of curved surface. It applied differential geometry theory to CNC milling process. This method was employed to analyze the effects of the curvature attributes of isoparametric curves on the interference and cutting width during the process through planning the cutting path on the constructed free-form surface and establishing cutting path isoparametric curve. At the same time, according to the research on the relationship among the cutting path, the scallop height and the attributes of curvature of curve, some laws affecting the machining efficiency, accuracy and interference were obtained. In addition, the research shows that the cutting width can be improved effectively by optimizing the anastomosis curve of the cutting tool radius, the scallop height and machined surface's curvature. The experimental results show the effectiveness of the method in analyzing CNC milling process based on the attributes of the curvature of curves, the machining efficiency can be increased 5% ~ 8%.

  20. Research on Closed Cylinder Cam Slot Mill-turn Process and Feed Method Following Surface Curvature%封闭圆柱凸轮槽车铣加工与沿曲面曲率进刀方法研究

    Institute of Scientific and Technical Information of China (English)

    陈学翔

    2013-01-01

    The structure of closed cylinder cam slot was analyzed,a special tongs was designed to realize quick clamping and po-sitioning of spare parts in the mill-turn compound machine tool. By using UG NX4.0 multi-axis process function,a process program suitable for mill-turn compound machine tool was written,and the processing efficiency of the same kinds of cam spare parts was im-proved. The feed method following surface curvature was put forward,and the problem about contact tool scars generated on the two sides inside the closed cylinder cam slot caused by normal feed methods was solved. It is verified through test that the process quality of spare parts is greatly improved,and the inferior rate is reduced.%分析封闭圆柱凸轮槽结构,设计出专用夹具,实现零件在车铣复合机床上的快速装夹定位;使用UG NX4.0多轴加工功能编制出适合车铣复合加工机床的加工程序,提高了同类型凸轮零件的加工效率。提出沿曲面曲率进刀方法,解决了加工过程中因常规圆弧等进退刀方式引起的封闭圆柱凸轮槽内两侧面接刀痕的问题。经实际加工验证,采用该方法大大提高了零件的加工质量,降低了次品率。

  1. NOISE IN TEXTILE MILLS

    Directory of Open Access Journals (Sweden)

    P. Meshgi

    1977-06-01

    Full Text Available The mean noise levels were measured in the different sections of six representative mills in the Isfahan area, and audiometric measurements were made in 282 male workers employed in these mills. The mean noise levels were on average 95 dBA in the weaving sections and 88 d BA in the spinning sections. The audiometric findings showed a significant loss of gearing in the textile workers as compared to controls who were employed in a quiet environment. The study indicated that noisiness depended; on the whole, on the age and number of machines deployed per unit area of shop-floor. On the basis of this study certain recommendations were made to improve the working conditions.

  2. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    accommodate a trial run of inert single base pellet feed for use in a twin screw extruder. 15. SUBJECT TERMS INIT248, Advanced Propellant Technology...Bldg. 4909-5 – Shear Roll Mill Pilot Plant at the Radford Army Ammunition Plant (RFAAP) in order to produce pellet feed for a twin screw extruder used...propellant to simulate feed for a twin screw extruder. Preventive maintenance procedures were in progress in final preparation for running with

  3. Rock Characteristics and Ball Mill Energy Requirements at ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... Goldfields Ghana Limited, Tarkwa Gold Mine (TGM), processes ores which occur in conglomerate ... effect of changes in rock characteristics on the performance of the existing ball mill. ..... feldspars, iron oxides and sulphides.

  4. Effects of Temperature and Solvent on the Solid-State Transformations of Pranlukast during Mechanical Milling.

    Science.gov (United States)

    Xiong, Xinnuo; Xu, Kailin; Du, Qiaohong; Zeng, Xia; Xiao, Ying; Yang, Hongqin; Li, Hui

    2017-02-26

    Four solid forms of pranlukast (PRS) were obtained during mechanical milling including neat milling (NM) and solvent-drop milling (SDM), which were characterized by various analytical techniques. The effect of milling conditions including three milling temperatures and six assist solvents on the solid-state transformations of commercial PRS (PRS HH) were systemically investigated. Milling temperature significantly influenced the NM process. A low milling temperature (5 °C) led to a complete amorphization of PRS HH, while higher milling temperatures (15 °C and 30 °C) only induced a partial amorphization. The milling at 5 °C was proven to be a progressive amorphization process, and the amorphous material showed an increasing stability with prolonged milling time. Amorphous PRS can stay stable under low temperature and RH conditions, and showed significantly higher solubilities and faster dissolution rates in both water and pH 6.8 phosphate buffer solution. A total of six solvents were used in the SDM experiments. N,N-dimethylformamide and dimethyl sulfoxide should be avoided in the manufacturing process of PRS because corresponding solvates of PRS can be easily generated by SDM of PRS HH with short milling time and small amount of solvents.

  5. Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics.

    Science.gov (United States)

    Fernández-Rodríguez, M J; Rincón, B; Fermoso, F G; Jiménez, A M; Borja, R

    2014-04-01

    Olive mill solid waste (OMSW) is a pollutant waste coming from olive oil elaboration by the two-phase centrifugation system. OMSW has a high organic matter content and unbalanced carbon to nitrogen (C/N) ratio, 31/1, which avoids obtaining high methane yields in the anaerobic digestion of this waste. In the present study a microalgae, Dunaliella salina, was employed as co-substrate for the OMSW anaerobic digestion in order to decrease the C/N ratio and increase its biodegradability. Different co-digestion mixtures (C/N ratios) were studied. The increase of D. salina from 25% to 50% in the co-digestion mixture clearly increased the biodegradability of the sole substrates. The highest biodegradability was found for the co-digestion mixture 50% OMSW-50% D. salina. Nevertheless, the maximum methane production, 330mLCH4/gVSadded, and the highest methane production rate were obtained for the co-digestion mixture 75% OMSW-25% D. salina, keeping a C/N ratio near to 26.7/1.

  6. Hot Extrusion Process Effect on Mechanical Behavior of Stir Cast Al Based Composites Reinforced with Mechanically Milled B4C Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    A. Alizadeh1; E. Taheri-Nassaj; M. Hajizamani

    2011-01-01

    In this study, aluminum alloy (Al-2 wt% Cu) matrix composites reinforced with 1, 2 and 4 wt% boron carbide nanoparticles fabricated through mechanical milling with average size of 100 nm were fabricated via stir casting method at 850℃. Cast ingots of the matrix alloy and the composites were extruded at 500℃ at an extrusion ratio of 10:1 to investigate the effects of hot extrusion on the mechanical properties of the composites. The microstructures of the as-cast and the extruded composites were investigated by scanning electron microscopy (SEM). Density measurement, hardness and tensile tests were carried out to identify the mechanical properties of the composites. The extruded samples revealed a more uniform distribution of B4C nanoparticles. Also, the extruded samples had strength and ductility values superior to those of the as-cast counterparts. In the as-cast and the extruded samples, with increasing amount of B4C nanoparticles, yield strength and tensile strength increased but elongation to fracture decreased.

  7. 1450六辊轧机工艺润滑系统的水锤及水锤防护%Water hammer and its protection of process lubrication system in 1450 six-roller mill

    Institute of Scientific and Technical Information of China (English)

    马旻; 艾春璇; 甄永富; 辛静泰

    2011-01-01

    This paper analyzes the causes of water hammer of the process lubrication system in 1450 six-roller mill. The water hammer was calculated according to the actual situation. The water hammer impact and pipe vibration were effectively eliminated by reasonably arranging the action sequence of the pneumatic butterfly valve in the system and prolonging the closing time of the butterfly valve.%分析了1450六辊轧机工艺润滑系统水锤产生的原因,结合实际情况进行水锤计算,通过合理的安排系统中气动蝶闭的动作顺序和延长阀开闭的时间的方法,有效地解决了水锤冲击和管道振动.

  8. The Tool Life of Ball Nose end Mill Depending on the Different Types of Ramping

    Directory of Open Access Journals (Sweden)

    Vopát Tomáš

    2014-12-01

    Full Text Available The article deals with the cutting tool wear measurement process and tool life of ball nose end mill depending on upward ramping and downward ramping. The aim was to determine and compare the wear (tool life of ball nose end mill for different types of copy milling operations, as well as to specify particular steps of the measurement process. In addition, we examined and observed cutter contact areas of ball nose end mill with machined material. For tool life test, DMG DMU 85 monoBLOCK 5-axis CNC milling machine was used. In the experiment, cutting speed, feed rate, axial depth of cut and radial depth of cut were not changed. The cutting tool wear was measured on Zoller Genius 3s universal measuring machine. The results show different tool life of ball nose end mills depending on the copy milling strategy.

  9. Distribution of Fusarium mycotoxins in UK wheat mill fractions.

    Science.gov (United States)

    Edwards, S G; Dickin, E T; MacDonald, S; Buttler, D; Hazel, C M; Patel, S; Scudamore, K A

    2011-12-01

    The EU has set maximum limits for the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON). The maximum permitted level decreases from unprocessed wheat, through intermediary products, e.g. flour, to finished products such as bakery goods and breakfast cereals. It is, therefore, important to understand the effects of processing on the mycotoxin distribution in mill fractions. Between 2004 and 2007, samples were taken at commercial flour mills at various points in the milling process and analysed for trichothecenes and ZON. Samples with a range of mycotoxin concentrations harvested in 2004 and 2005 were processed in a pilot mill and the mycotoxins in the different mill fractions quantified. In the commercial samples, DON was the predominant mycotoxin with highest levels detected in the bran fraction. Analysis of the pilot mill fractions identified a significant difference between the two years and between mycotoxins. The proportion of DON and nivalenol in the mill fractions varied between years. DON and nivalenol were higher in flour fractions and lower in bran and offal in samples from 2004 compared to samples from 2005. This may be a consequence of high rainfall pre-harvest in 2004 resulting in movement of these mycotoxins within grains before harvest. There was no significant difference in the distribution of ZON within mill fractions between the two years. For DON, higher concentrations in the grain resulted in a greater proportion of DON within the flour fractions. Understanding the factors that impact on the fractionation of mycotoxins during milling will help cereal processors to manufacture products within legislative limits.

  10. CVD carbon powders modified by ball milling

    Directory of Open Access Journals (Sweden)

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  11. Effects of Non Process Elements in the chemical recovery system of a kraft pulp mill from the incineration in the recovery boiler of biological sludge; Effekter av PFG vid indunstning och foerbraenning av bioslam i ett massabruks sodapanna

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbom, Johan

    2003-01-01

    The purpose of this project was to investigate the effects of incineration of biological sludge in the recovery boiler of a Swedish Kraft pulp mill, StoraEnso Pulp AB Skutskaers Bruk, which has practiced incineration of sludge in the recovery boiler during the last two years. The following aspects of the technique were investigated: Experience from operation of incineration of biological sludge in the recovery boiler; The content of Non-Process Elements (NPE) in process flows and evaluate the risks of incrustations in the system; The build-up of NPE in the chemicals recovery system and the estimated increase in make-up lime demand; and Technical risks for mills with different process equipment. This study comprises the following NPE: aluminium, silicon, phosphorus, magnesium, calcium, chloride, iron, manganese, potassium, copper, and nitrogen. The operational experience from the system for hydrolysis of the biological sludge and evaporation/incineration in the recovery boiler is excellent. The handling of the sludge takes place in a closed system that demands little supervision and maintenance. Overall, the mill has not seen any negative effects that can be explained by increased intake of NPEs to the chemical recovery system. Aluminium can lead to troublesome incrustations of sodium-aluminium-silicates on the heat surfaces in the evaporation plant. An effective elimination of aluminium by the green liquor dreg is obtained with the double salt hydrotalcite if the quotient Mg/Al is kept higher than 4-5 in the black liquor. The need for make-up lime has increased due to the build-up of phosphorus in the lime. Depending on the level of make-up lime the need will increase 2-5 kg/ t{sub 90} at a price of 2-5 kr/t{sub 90}. If a higher level of phosphorus is accepted instead of increasing lime make-up the running costs will be somewhat higher, 0,5-1 kr/t{sub 90} due to increased ballast. NO{sub x} in the flue gases from the recovery boiler has not increased since the

  12. Aerial gamma spectrometry of the uranium province of Lagoa Real (Caetite, BA, Brazil): go environmental aspects and distribution of the absorbed dose in the air; Espectrometria gama aerea da provincia uranifera de Lagoa Real (Caetite, BA): aspectos geoambientais e distribuicao da dose absorvida no ar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Esau Francisco Sena

    2006-07-01

    In the present study, it was analyzed the surface concentrations of the natural radioelements K, U and Th, as well as the absorbed dose rate in air caused by gamma radiation from the Lagoa Real uranium province, which is located at the center southern portion of Bahia State and comprises an area of approximately 4.600 Km{sup 2}. Data from the airborne gamma ray spectrometric survey of the region (Sao Timoeo Project) carried out in 1979, was used in this study. Besides, recent data of U, Th and absorbed dose rates from the Environmental Monitoring Program of the uranium concentration plant (URA), operated in the region by the Brazilian Nuclear Industries (INB), were used with the aim of inter compare the sampling points in the same geo referenced area. Imaging geo processing software's give support to frame maps of surface concentrations and ternary maps, as well as allow the integration of these with other themes (e.g. hydrology, geology, pedology) favouring the interpretation of geo environmental process from the radioactive cartography. Considering the whole study area, it was obtained the following mean values: absorbed dose rate in air (61,08 nGy.h{sup -1}), Potassium (1,65 % K) , Uranium (3,02 ppm eU) and thorium (18,26 ppm eTh). The geological unities bounding the uranium anomalies were placed in the areas characterized by the highest values of radioelements and, as expected, the major dose levels. The use of ternary maps coupled with the geology and hydrology allowed distinguishing the relationship between the surface distribution of natural radioelements and the geo environmental aspects, including the influence of the catchment in their transport and migration. (author)

  13. Frequency Modulation of High-Speed Mill Chatter

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mill chatter is a common phenomenon in the metal strip rolling process. Product defects caused by mill vibration were reported worldwide during last two decades, which is usually classified as torque vibration of the driving system with low frequencies and vertical vibration of the mill stand with comparative higher frequencies. The frequency range of the vertical vibration is wide (in general from more than 100 Hz to more than 1 000 Hz), and the vibration phenomena are very complex, even it is very diffic...

  14. Effect of mechanical milling and cold pressing on co power

    CSIR Research Space (South Africa)

    Bolokang, AS

    2012-01-01

    Full Text Available . 4, pp. 518? 521, 2011. [53] W. Szkliniarz and G. Smolka, ?Analysis of volume effects of phase transformation in titanium alloys,? Journal of Materials Processing Technology, vol. 53, no. 1-2, pp. 413?422, 1995. ...: XRD data of unmilled free, unmilled cold pressed (CP), 30 h milled-free, 30 h milled CP and 30 h milled CP 400?C-annealed Co powder. Material condition Space group and number Phases Lattice parameter (A?) a c Unmilled powder P63/mmc no. 194 HCP 2...

  15. Formation of ball-milled Fe-Mo nanostructured powders

    Energy Technology Data Exchange (ETDEWEB)

    Moumeni, H. [Laboratoire de Magnetisme et de Spectroscopie des Solides, LM2S, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba-Algerie (Algeria) and Departement de Physique, Faculte des Sciences et de l' Ingenierie, Universite de Guelma, B.P. 401, 24000 Guelma-Algerie (Algeria)]. E-mail: hmoumeni@yahoo.fr; Alleg, S. [Laboratoire de Magnetisme et de Spectroscopie des Solides, LM2S, Departement de Physique, Faculte des Sciences, Universite de Annaba, B.P. 12, 23000 Annaba-Algerie (Algeria); Greneche, J.M. [Laboratoire de Physique de l' Etat Condense, UMR CNRS 6087, Universite du Maine, Faculte des Sciences, F-72085, Le Mans Cedex 9 (France)

    2006-08-10

    Nanostructured Fe-6 wt.%Mo powders were prepared by mechanical alloying in a high-energy planetary ball-mill. The structural changes and the kinetics of Mo dissolution were studied by using X-ray diffraction. The crystallite size reduction down to about 11 nm is accompanied by the introduction of internal strains up to 1.1% (root-mean square strain, rms). After 24 h of milling, a bcc Fe(Mo) solid solution is formed. The kinetics of Mo dissolution into the Fe matrix during the milling process can be described by two regimes characterized by small values of Avrami parameter which do not exceed unit.

  16. Study on Process of Preparing Fe-Al2O3 Magnetic Abrasive by High Energy Ball Milling%高能球磨法制备Al2O3/Fe磁性磨粒的工艺研究

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 李文辉

    2013-01-01

    Magnetic abrasive finishing machining technology is a new technology to use the magnetic field force produced by permanent magnetic or electromagnetic device asthe driving force of magnetic abrasive finishing machining of parts surface,which can realize the surface polishing,deburring,eliminating the micro crack,and reducing the surface roughness of parts.4 new technology of preparing magnetic abrasives used high energy ball milling was put forward and the working principle was analyzed in the ball milling.Pure iron powder was used as the magnetic phase,corundum powder as the abrasive,and three different times Fe-Al2O3 magnetic abrasives were prepared by high energy ball milling method.X-ray diffraction and SEM were used to analyze the morphology and phase components of the magnetic abrasives.Magnetic flux density of the magnetic abrasives were tested by the instrument.It finds that the process is easy and low cost,so it would have great hope to accomplish large-scale industrialized production.%磁性磨粒光整加工技术是利用永磁或者电磁发生装置产生的磁场力作为磁性磨粒的源动力对零件表面进行光整加工的一种新技术,它可以实现对零件进行表面抛光、去除毛刺、消除微观裂纹、降低表面粗糙度等加工.提出应用高能球磨法制备磁性磨粒的新工艺,分析了球磨过程中的工作原理.用纯铁粉作为磁性体,三氧化二铝粉作为磨料相,采用高能球磨法制备了三种不同时间的Fe-Al2O3磁性磨粒.采用X射线衍射仪和扫描电子显微镜分析了该磁性磨粒的物相组成和外观形貌,用特斯拉仪测试了磁性磨粒的磁感应强度.发现了该工艺简单,成本低,且有望进行大规模工业化生产.

  17. PQF轧管机的摆臂焊接工艺研究与应用%Welding Process Research and Application for Swing Arm of PQF Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    王东; 张永明; 邢伏祥

    2012-01-01

    PQF轧管机的摆臂为厚板结构,材质Q345-D,质量达3.2 t,机加工面多、空间尺寸多、几何公差复杂,要求结构件组对焊接变形要控制到最小,一般焊接工艺无法保证焊接质量.本文探讨了采用整体组对,辅以拉撑刚性固定的优化焊接工艺,防止产生未焊透、裂纹等缺陷,选择多层多道对称交替施焊,有效地控制了焊接变形,且焊后进行去应力工艺,保证了机加工面合理的加工余量,满足了设计尺寸偏差及几何公差.%The swing arm of PQF rolling mill is the thick fabric with the materials Q345-D and weight 3 200 kg. There are many machine surfaces and complex geometric tolerance. The structure must have good fabricate quality and small welding distortion. It cannot ensure welding quality to commonly welding procedure. We have discussed that fitting whole and fix up rigidity with supports and optimize welding technic avoiding a few welding defects such as incomplete penetration et al. We have chosen effective means to control welding distortion that depends on multilayer symmetry welding by turns and carrying through heat treatment for release stress. All these assured logical excrescent machine measure, dimension warp and complex geometric tolerance.

  18. Influence of milling time on fineness of Centella Asiatica particle size produced using planetary ball mill

    Science.gov (United States)

    Borhan, M. Z.; Ahmad, R.; Rusop, M.; Abdullah, S.

    2012-11-01

    Centella Asiatica (C. Asiatica)contains asiaticoside as bioactive constituent which can be potentially used in skin healing process. Unfortunately, the normal powders are difficult to be absorbed by the body effectively. In order to improve the value of use, nano C. Asiatica powder was prepared. The influence of milling time was carried out at 0.5, 2, 4, 6, 8 hours and 10 hours. The effect of ball milling at different times was characterized using particles size analysis and FTIR Spectroscopy. The fineness of ground product was evaluated by recording the z-Average (nm), undersize distribution and polydispersity index (PdI). The results show that the smallest size particles by mean is 233 nm while FTIR spectra shows that there is no changing in the major component in the C. Asiatica powders with milling time.

  19. Synthesis of Fe3O4 nanoparticles by wet milling iron powder in a planetary ball mill

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe3O4 nanoparticles with sizes ranging from 30 to 80nm were synthesized by wet milling iron powders in a planetary ball mill. The phase composition and the morphologies of the as-synthesized products were measured by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nanosized Fe3O4 particles were prepared by wet milling metallic iron powder (-200 mesh, 99%)rotation speed of 300 rpm. The use of the iron balls in this method played a key role in Fe3O4 formation. The present technique is simple and the process is easy to carry out.

  20. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  1. Synthesis of Nanocrystalline WC Single-Phase Refractory via Mechanical Milling

    Directory of Open Access Journals (Sweden)

    Mansour Razavi

    2011-01-01

    Full Text Available In this paper the possibility of production of nanocrystalline WC single-phase by mechanical milling has been investigated. The raw materials containing tungsten and carbon with WC as nucleation were milled in a planetary ball mill and sampled in different times. Studies showed that after 75 hours of milling the WC with W2C was produced and remained constant in higher milling time. Adding WC to raw materials at the beginning process leads to the fact that after 50 hours of milling only WC was synthesized without undesirable W2C phase. This material remained stable until higher times of milling too. From broadening of XRD peaks, the crystalline size in synthesized WC was estimated in nanometer scale which lower than the system containing primary WC, and it means that the strain in this system was lower than first system.

  2. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large d...

  3. Paper mill wastewater detoxification by solar photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sattler, C.; Funken, K.H.; Oliveira, L. de; Tzschirner, M. [German Aerospace Center, Inst. of Technical Thermodynamics - Solar Research, Cologne (Germany); Machado, A.E.H. [Lab. de Fotoquimica - Inst. de Quimica, Univ. Federal de Uberlandia, Uberlandia, MG (Brazil)

    2003-07-01

    In the WATER project the German Aerospace Center, DLR, and the Universidade Federal de Uberlandia, UFU, analyse the possibilities of treating paper mill effluents by solar photocatalysis for the paper mill of the Brazilian paper producer Votorantim Celulose e Papel, VCP, at Luiz Antonio, SP, Brazil. The degradation of the bio-polymer lignin is a vast problem in paper production. The tests have shown that treatment by the photocatalyst TiO{sub 2} and solar radiation is an ecological future oriented approach to solve this problem. The treatment of lignin containing process water by solar photocatalysis was optimised and the economics for solar treatment plants of different sizes was estimated to check the possibilities for implementing the technology in industrial processes. (orig.)

  4. Modeling for driving systems of four-high rolling mill

    Institute of Scientific and Technical Information of China (English)

    贺建军; 喻寿益; 钟掘

    2002-01-01

    A modeling method for driving systems of four-high rolling mill was put forward in order to analyze the origin of rolling mill's chatter that brings about light and shade streaks on the surface of steel strip from aspect of electromechanical coupling. The process and steps of modeling method was introduced by means of an example. The correctness of the model and the feasibility of the modeling method were verified in simulation experiment.

  5. Record critical current densities in IG processed bulk YBa{sub 2}Cu{sub 3}O{sub y} fabricated using ball-milled Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5} phase

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, Miryala; Kenta, Nakazato; Murakami, Masato [Department of Materials Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Zeng, XianLin; Koblischka, Michael R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany); Diko, Pavel [Institute of Experimental Physics, Material Physics Laboratory, Slovak Academy of Sciences, Kosice (Slovakia)

    2016-02-15

    The infiltration-growth (IG) technique enables the uniform and controllable Y{sub 2}BaCuO{sub 5} (Y211) secondary phase particles formation within the YBa{sub 2}Cu{sub 3}O{sub y} (Y123) matrix. Recent results clarified that the flux pinning performance of the Y123 material was dramatically improved by optimizing the processing conditions during the IG process. In this paper, we adapted the IG technique and produced several samples with addition of nanometer-sized Y211 secondary phase particles, which were produced by a ball milling technique. We found that the performance of the IG processed Y123 material dramatically improved in the low field region for a ball milling time of 12 h as compared to the samples without a ball milling step. Magnetization measurements showed a sharp superconducting transition with an onset T{sub c} at around 92 K. The critical current density (J{sub c}) at 77 K and zero field was determined to be 224 022 Acm{sup -2}, which is higher than the not ball-milled sample. Furthermore, microstructural observations exhibited a uniform microstructure with homogenous distribution of nanosized Y-211 inclusions within the Y-123 matrix. The improved performance of the Y-123 material can be understood in terms of fine distribution of the secondary phases. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Science.gov (United States)

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â...) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF... classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  7. 基于S7-300PLC的球磨机配料过程自动控制系统%Automatic Control System of Ball Mill Blending Process Based on S7-300 PLC

    Institute of Scientific and Technical Information of China (English)

    王全铁; 包岩峰

    2011-01-01

    Ball mill blending process is one of the key producing processes in the sintering alumina production.In this blending process,raw materials are ground and blended in the mill to produce raw slurry.The automatic control system was designed and developed by using S7-300 PLC of Siemens Company in consideration of this industry features and technique requested.The structure,functions and control strategy of this system were all discussed,and the control software was developed.Control software includes the logic control program,continuous control program and picture monitoring.The proposed control system can not only improve the quality of raw slurry,but also can lower energy consumption and create more profit for its enterprise.%球磨机配料过程是氧化铝行业对原料进行加工处理的重要工序。在该过程中,碱赤泥浆等多种原料被输送到球磨机中进行混合、研磨后形成生料浆。针对该工业过程的特点及技术要求,利用Siemens公司的S7-300 PLC设计并开发了球磨机配料过程的自动控制系统,包括系统的结构和功能、硬件设计、各种软件程序的开发等。其中软件程序的开发包括逻辑控制程序、连续控制程序和监控画面的开发。所设计和开发的控制系统不仅可以大幅度提高生料浆质量,同时可以节能降耗,为企业创造更多的效益。

  8. In-Orbit Construction with a Helical Seam Pipe Mill

    Science.gov (United States)

    Gilhooley, N.

    The challenges of building large structures in space, and in particular a torus habitat, require novel processes. One potential method is to manufacture helical seam (also called spiral) pipe in orbit using a pipe mill. These machines turn rolls of steel or alloy into fully formed, welded and inspected pipe, pressure vessels and silos of various diameters. Pipe mills are highly automated and efficient in a factory environment and are increasingly being used for in-situ repair. By constructing in-orbit (on-orbit assembly) the launch vehicle can supply full payloads of compact, robust rolls of material; and the installation design is less restricted by fairing constraints and modular limitations. The use of a pipe mill is discussed as a possible construction method, for comparison an example design envelope is shown and further pipe mill products are considered.

  9. Flatness and Profile Integration Control Model for Tandem Cold Mills

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Using the effective matrix methods of flatness and profile control synthetically, the flatness and profile in- tegration control scheme for tandem cold mills is built in order to increase flatness and profile control precision of tan- dem cold mills. Corresponding control strategies are adopted for various control objectives of different stands and the coordination control strategies of various stands are given, which makes the on-line flatness control cooperate with on-line profile control and implements the parallel control of different stands. According to the measured flatness and profile data of some 1550 mm tandem cold mills, the control scheme is verified and the result indicates that the scheme has high flatness and profile control precision with steady and reliable control process. A new way and method is supplied for researching shade control of tandem cold mills.

  10. The Experiment Research of Cutting Parameters Optimization in High-speed Micro-milling Hard Processing Materials%高速微铣削难加工材料切削参数优化试验研究

    Institute of Scientific and Technical Information of China (English)

    张欣欣; 许金凯; 于化东

    2015-01-01

    The micro groove structure be processed in titanium alloy Ti6Al4V surface and stainless steel 0Cr18Ni9 surface using high speed precision micro milling machine tool,regarding surface roughness Ra as research object,optimizing cutting parameters of hard machining materials. Using single factor experiment and muti-factor orthogonal experiment to study the influence law of spindle speed,feed rate and axial cutting depth on surface roughness,finished the optimal parameter combination simultaneously. Experimental results show that the surface quality of two materials is different because the two materials have different physical, chemical and mechanical process performance. When machining titanium alloy and stainless steel,the influ-ence of various factors on the surface roughness from big to small in turn is of vf>n>ap and vf>ap>n. Un-der the condition of this test,in order to improve the processing surface quality of parts,it should be appropri-ate to improve the spindle rotational speed,reduce the feed speed and axial cutting depth,so the optimal pa-rameters is of n=30000 r/min,vf=40 mm/min,ap=10 μm in micro-milling titanium alloy and the optimal parameters is of n=48000 r/min,vf=30 mm/min,ap=10 μm in micro-milling stainless steel.%利用高速精密微铣削机床在钛合金Ti6 Al4 V与不锈钢0 Cr18 Ni9表面加工微沟槽结构,以沟槽底面粗糙度Ra为目标,优化难加工材料的切削参数。分别采用单因素试验与多因素正交试验研究主轴转速、进给速度与轴向切深对表面粗糙度的影响规律,通过极差与方差分析法指出各切削参数对表面粗糙度影响的主次顺序与最优参数组合。试验结果表明:由于两种材料具有不同的物理、化学与机械加工性,所以表面质量有所差异,加工钛合金与不锈钢时,各因素对表面粗糙度的影响从大到小依次分别为vf >n>ap 与vf >ap >n;在本次试验条件下,为了提高零件的加工表面质量,应适当提高主

  11. Cuttable Ruled Surface Strips for Milling

    DEFF Research Database (Denmark)

    Steenstrup, Kasper Hornbak; Nørbjerg, Toke Bjerge; Søndergaard, Asbjørn

    2016-01-01

    This paper proposes a novel pre-processing method for industrial robotic CNC-milling. The method targets a hybrid machining process, in which the main bulk of material is removed through robotic hot or abrasive wire cutting, after which regular CNC-machining is employed for removal of the remaining...... material volume. Hereby, the roughing process is significantly sped up, reducing overall machining time. We compare our method to the convex hull and remove between 5% and 75% more material; on most models we obtain a 50% improvement. Our method ensures that no overcutting happens and that the result...

  12. A methodological approach to sugar mill diversification and conversion

    Directory of Open Access Journals (Sweden)

    Noé Aguilar Rivera

    2012-03-01

    Full Text Available Sugar industry diversification is complex, being constrained by biophysical and socioeconomic conditions. Ongoing work has shown the sugarcane industry’s potential as biorefinery or its sustainable use by offering products as raw material. However, few studies have studied how such potential could be achieved by promoting a conventional sugar mill through integrating its indicators for developing an efficient diversified processing plant which would contribute towards fossil energy saving and competitiveness. This paper presents a conceptual framework for analysis based on existing knowledge regarding sugar industry state-of-the-art for evaluating diversification, using analytical hierarchy process (AHP as a tool for analysing complex systems, identifying alternatives to the current situation and discussing them to facilitate collective decision-making. Sugar mill AHP scores enabled discussion about the variables most affecting sugar mill diversification (0.332 factory yield, 0.327 sugar mill products and 0.121 sugarcane quality. The results serve as a useful guidance for formulating strategies for the optimum use of by-products in a sugar mill while maximising benefits to modify/convert a traditional sugar mill to a so-called bio-refinery.

  13. Effects of the deep rolling process on the surface roughness and properties of an Al-3vol%SiC nanoparticle nanocomposite fabricated by mechanical milling and hot extrusion

    Science.gov (United States)

    Sattari, Sajjad; Atrian, Amir

    2017-07-01

    Deep rolling is one of the most widely used surface mechanical treatments among several methods used to generate compressive residual stress. This process is usually used for axisymmetric components and can lead to improvements of the surface quality, dimensional accuracy, and mechanical properties. In this study, we deduced the appropriate deep rolling parameters for Al-3vol%SiC nanocomposite samples using roughness and microhardness measurements. The nanocomposite samples were fabricated using a combination of mechanical milling, cold pressing, and hot extrusion techniques. Density measurements indicated acceptable densification of the samples, with no porosity. The results of tensile tests showed that the samples are sufficiently strong for the deep rolling process and also indicated near 50% improvement of tensile strength after incorporating SiC nanoparticle reinforcements. The effects of some important rolling parameters, including the penetration depth, rotation speed, feed rate, and the number of passes, on the surface quality and microhardness were also investigated. The results demonstrated that decreasing the feed rate and increasing the number of passes can lead to greater surface hardness and lower surface roughness.

  14. Effect of annealing on the magnetic properties of ball milled NiO powders

    Energy Technology Data Exchange (ETDEWEB)

    Kisan, Bhagaban [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Saravanan, P. [Defence Metallurgical Research laboratory, Hyderabad 500058 (India); Layek, Samar; Verma, H.C. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Hesp, David; Dhanak, Vinod [Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); Krishnamurthy, Satheesh [Materials Engineering, The Open University, Milton Keynes MK7 6AA (United Kingdom); Perumal, A., E-mail: perumal@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India)

    2015-06-15

    We report systematic investigations on structural and magnetic properties of nanosized NiO powders prepared by the ball milling process followed by systematic annealing at different temperatures. Both as-milled and annealed NiO powders exhibit face centered cubic structure, but average crystallite size decreases (increases) with increasing milling time (annealing temperature). Pure NiO exhibits antiferromagnetic nature, which transforms into ferromagnetic one with moderate moment at room temperature with decreasing crystallite size. The on-set of ferromagnetic behavior in the as-milled powders was observed at higher temperatures (>750 K) as compared to bulk Ni (~630 K). On the other hand, annealing of as-milled powders showed a large reduction in magnetic moment and the rate of decrease of moment strongly depends on the milling conditions. The observed properties are discussed on the basis of crystallite size variation, defect density, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. - Highlights: • Preparation of fine NiO powder using top-to-bottom approach using planetary ball mill. • Effect of milling on instituting room temperature ferromagnetism with size reduction. • Stability of ferromagnetic properties at high temperatures in milled NiO powders • Effect of annealing process on the structural properties of milled NiO powders. • Understanding the origin of ferromagnetism at 300 K in NiO powders through annealing.

  15. INVESTIGATION ON HARDENED STEEL MILLING WITH MICRO-END MILL

    Institute of Scientific and Technical Information of China (English)

    HUYing-ning; WANGCheng-yong; WUXue-qi; QINZhe; ZENGBao-ping

    2004-01-01

    Tool wear and breakage of the micro-milling tool is an important problem for high speed machining of hardened steel die and mould. Dry milling of S136 hardened steel is carried out using TiA1N coated carbide micro-end mill (Ф2 mm). The effect of cutting speed, feed per tooth and radial depth of cut on cutting force is analyzed. Cutting parameters adapting to dry machining and strategy optimized for higher rate of material removal with lower cutting force are attained. Results of SEM observation show that the main failure patterns of micro-end mill are breakage of tool tip, wear and drop-off of surface coating, micro-chipping, and breakage of flank.

  16. Intelligent Tool Wear Condition Monitoring System with High Adaptability in High Speed Milling Process%具备高适应性的高速铣削刀具磨损状态监测系统

    Institute of Scientific and Technical Information of China (English)

    申志刚; 何宁

    2013-01-01

    To enhance the adaptability of tool condition monitoring(TCM) system, an novel and intelligent method is proposed for automatic identifying the different tool wear states and estimating the wear value with no need of the pre-designed "teaching" or "training" phase. Automatic sensory feature selection method is used to aid the systematic design of TCM, and to suppress interference introduced by changes of cutting parameter. Force and acoustic emission sensors are used in high speed milling operations. The time domain, frequency domain and wavelet analysis techniques are applied to processing the signals. The real-time intelligent monitoring system is built on the cycle process of linear fitting and Ma-halanobis distance (MD) calculating. A series of experiment application on a CNC vertical milling machine tool show that the proposed method is accurate for feature extraction and efficient for condition monitoring of cutting tools.%为提高加工监测系统的适应性和智能化程度,提出基于刀具磨损曲线的实时刀具状态监测系统.自学习能力的引入使该系统可自动进行不同刀具状态的识别和磨损程度的估计,较大程度上摆脱对系统事先“教学”的依赖.同时为有效抑制切削参数变化带来的干扰,提出一种特征提取方法来自动提取敏感特征,减少监测系统开发时间和成本.针对高速铣削过程的刀具磨损监测,采用切削力和声发射传感器来采集信号,并运用时域、频域和小波分析技术来对信号进行处理,试验结果证明了所提出的自动特征提取方法的有效性和智能刀具状态监测系统的高适应性.

  17. Understanding milling induced changes: Some results

    Indian Academy of Sciences (India)

    K Chattopadhyay; N Ravishankar; T A Abinandanan; Viji Varghese

    2003-10-01

    The effect of mechanical milling on materials has been studied using simple model systems. The results show that milling leads to enhancement in both thermodynamic driving force and transport kinetics. A study of some characteristic physical properties of the milled samples in comparison to the bulk shows how milling affects the properties.

  18. Remediation of oil-contaminated sand by coal agglomeration using ball milling.

    Science.gov (United States)

    Shin, Yu-Jen; Shen, Yun-Hwei

    2011-10-01

    The mechanical shear force provided by a less energy intensive device (usually operating at 20-200 rpm), a ball mill, was used toperform coal agglomeration and its effects on remediation of a model fuel oil-contaminated sand were evaluated. Important process parameters such as the amount of coal added, milling time, milling speed and the size of milling elements are discussed. The results suggested that highly hydrophobic oil-coal agglomerates, formed by adding suitable amounts of coal into the oil-contaminated sand, could be mechanically liberated from cleaned sand during ball milling and recovered as a surface coating on the steel balls. Over 90% removal of oil from oil-contaminated sand was achieved with 6 wt% of coal addition and an optimum ball milling time of 20 min and speed of 200 rpm. This novel process has considerable potential for cleaning oil-contaminated sands.

  19. A case study of waste management at the Northern Finnish pulp and paper mill complex of Stora Enso Veitsiluoto Mills.

    Science.gov (United States)

    Nurmesniemi, Hannu; Pöykiö, Risto; Keiski, Riitta Liisa

    2007-01-01

    This work presents the current waste management system at the pulp and paper mill complex of Stora Enso Oyj Veitsiluoto Mills at Kemi, Northern Finland. This paper covers examples of case studies carried out at the mill and describes how the wastes and by-products are utilized as a neutralizing agent for acidic wastewaters (i.e., green liquor dregs from the causticizing process), as a hardener in filling mine cavities (i.e., ash from the fluidized bed boiler), as a landscaping agent (i.e., ash as well as the fibre clay from chemical wastewater treatment plant), as a hydraulic barrier material for landfills (i.e., fibre clay), and as a soil enrichment agent (i.e., calcium carbonate from the precipitated calcium carbonate plant). In addition, the wood waste from the wood-handling plant, sawmill, packaging pallet plant and from the groundwood mill, as well as the biosludge from the biological wastewater treatment plant, are all incinerated in the fluidized bed boiler for energy production. Due to effective utilization of the solid wastes generated at the mills, the annual amount of waste to be disposed of in the landfill has decreased between 1994 and 2004 from 42,990 to 6083 tonn (expressed as wet weight). The paper also gives an overview of the relevant European Union legislation on the forest industry and on waste management, as well as of the pulping process and of the generation of major solid wastes in the pulp and paper mills.

  20. Chalk Line Mill, Anniston, AL

    Science.gov (United States)

    The Chalk Line Mill property was the site of a textile mill which operated from 1887 until 1994. Demolition activities in 2004 removed most of the structures on-site, but also left large, unsightly piles of debris scattered across this 14-acre property. The City applied for and received a $200,000 Brownfields cleanup grant in 2007 to address contamination on the property and the Appalachian Regional Commission provided an additional $150,000 in funding.

  1. Brookside Mills, Knox County, TN

    Science.gov (United States)

    Brookside Mills, located in Knox County, TN, was a textile mill that was founded in 1885 and at its peak employed over 1,000 people. Its former uses included fabric weaving, dying, and sewing operations. It was at some point a department store, and during a portion of its history, coal was used as an energy source. Weaving operations continued in some form at the Brookside factory until 1969. In 1996 the buildings were demolished.

  2. Wiener process-based online prediction method of remaining useful life for draught fans in steel mills%基于Wiener过程的钢厂风机剩余使用寿命实时预测

    Institute of Scientific and Technical Information of China (English)

    王兆强; 胡昌华; 王文彬; 董广静

    2014-01-01

    作为炼钢厂的关键设备,风机担负着转炉除尘和煤气回收的重要任务,实现风机剩余使用寿命的准确预测具有重要的实际意义。通过对邯郸某炼钢厂风机振动数据的分析,建立了基于 Wiener 过程的状态退化模型,在首达时间的意义下,推导出风机剩余使用寿命的概率密度函数的解析表达式,提出了一种基于极大似然估计的参数实时估计方法,从而实现风机剩余使用寿命的在线实时预测。实验结果表明,相对于文献中的方法,本文所提出的预测方法可以得到更高的预测精度和较低的预测不确定性。%As a crucial device of steel mills, the draught fan plays a key role in converter dedusting and gas recycling, and thus it is significantly essential to predict the remaining useful life (RUL) of the draught fan. In this paper, a Wiener process-based degradation model is constructed based on vibration data analysis for a draught fan in the Handan steel mill. An analytical expression of the probability density function (PDF) of RUL is derived on the concept of the first hitting time (FHT). A parameter updating scheme is deduced on the basis of the maximum likelihood estimation (MLE) algorithm for the RUL online prediction of the draught fan. Comparative studies with existing models show that the proposed method can predict the RUL of the draught fan in real time with a higher accuracy and less uncertainties.

  3. Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes.

    Science.gov (United States)

    Chen, Lei; Kirchberg, Stefan; Jiang, Bing-Yan; Xie, Lei; Jia, Yun-Long; Sun, Lei-Lei

    2014-11-01

    A uniform plano-convex spherical microlens array with a long focal length was fabricated by combining the micromilling and injection molding processes in this work. This paper presents a quantitative study of the injection molding process parameters on the uniformity of the height of the microlenses. The variation of the injection process parameters, i.e., barrel temperature, mold temperature, injection speed, and packing pressure, was found to have a significant effect on the uniformity of the height of the microlenses, especially the barrel temperature. The filling-to-packing switchover point is also critical to the uniformity of the height of the microlenses. The optimal uniformity was achieved when the polymer melts completely filled the mold cavity, or even a little excessively filled the cavity, during the filling stage. In addition, due to the filling resistance, the practical filling-to-packing switchover point can vary with the change of the filling processing conditions and lead to a non-negligible effect on the uniformity of the height of the microlenses. Furthermore, the effect of injection speed on the uniformity of the height of the microlenses was analyzed in detail. The results indicated that the effect of injection speed on the uniformity of the height of the microlenses is mainly attributed to the two functions of injection speed: transferring the filling-to-packing switchover point and affecting the distribution of residual flow stress in the polymer melt.

  4. Sterigmatocystin Occurrence in Paddy and Processed Rice Produced in Italy in the Years 2014–2015 and Distribution in Milled Rice Fractions

    Science.gov (United States)

    Bertuzzi, Terenzio; Romani, Marco; Rastelli, Silvia; Mulazzi, Annalisa; Pietri, Amedeo

    2017-01-01

    The occurrence of sterigmatocystin (STC) in paddy and processed rice samples produced in Italy was surveyed. After extraction and purification, STC was analysed using HPLC-MS/MS. STC was detected in all paddy rice samples (n = 49), in the range 0.29–15.85 μg·kg−1. As regards processed rice, a widespread contamination was found in brown and parboiled rice. All the brown rice samples were contaminated between 0.12 and 1.32 μg·kg−1; for parboiled rice, the incidence was 90.9% and the maximum level was 1.09 μg·kg−1. The contamination in white rice was significantly lower (p processes, was evaluated. After de-hulling, the STC percentage remaining in brown rice was in the range 21.2%–30.8%. The polishing process, from brown to white rice, caused another remarkable decrease of contamination; the STC remaining in white rice was 2.2%–8.3% of the amount found in paddy rice. PMID:28264482

  5. Assessing green-processing technologies for wet milling freshly hulled and germinated brown rice, leading to naturally fortified plant-based beverages

    Science.gov (United States)

    Rice milk beverages can well balanced nutrition. With healthier nutrition in consumer’s minds, national. Worldwide consumption/production of plant-based milk beverages are increasing. Much past research and invention was based on enzymatic conversion processes for starch that were uncomplicated be...

  6. Jet milling effect on wheat flour characteristics and starch hydrolysis.

    Science.gov (United States)

    Angelidis, Georgios; Protonotariou, Styliani; Mandala, Ioanna; Rosell, Cristina M

    2016-01-01

    The interest for producing wheat flour with health promoting effect and improved functionality has led to investigate new milling techniques that can provide finer flours. In this study, jet milling treatment was used to understand the effect of ultrafine size reduction onto microstructure and physicochemical properties of wheat flour. Three different conditions of jet milling, regarding air pressure (4 or 8 bars) feed rate and recirculation, were applied to obtain wheat flours with different particle size (control, F1, F2 and F3 with d50 127.45, 62.30, 22.94 and 11.4 μm, respectively). Large aggregates were gradually reduced in size, depending on the intensity of the process, and starch granules were separated from the protein matrix. Damaged starch increased while moisture content decreased because of milling intensity. Notable changes were observed in starch hydrolysis kinetics, which shifted to higher values with milling. Viscosity of all micronized samples was reduced and gelatinization temperatures (To, Tp, Tc) for F2 and F3 flours increased. Controlling jet milling conditions allow obtaining flours with different functionality, with greater changes at higher treatment severity that induces large particle reduction.

  7. The influence of milling on the dissolution performance of simvastatin

    DEFF Research Database (Denmark)

    Zimper, Ulrike; Aaltonen, Jaakko; Krauel-Goellner, Karen

    2012-01-01

    Particle size reduction is a simple means to enhance the dissolution rate of poorly water soluble BCS-class II and IV drugs. However, the major drawback of this process is the possible introduction of process induced disorder. Drugs with different molecular arrangements may exhibit altered...... properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors...... by XRPD), at a set optimization limit of dissolution testing...

  8. Biomechanical properties of wheat grains: the implications on milling

    Science.gov (United States)

    Reith, Martin

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different ‘hardness’. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. PMID:28100826

  9. OPTIMIZATION OF WOOD MILLING SCHEDULE – A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Emilia-Adela SALCA

    2015-12-01

    Full Text Available The paper presents the results of a case study applied to the milling process of solid wood specimens made of black alder wood (Alnus glutinosa L. Gaertn. with a view to find the optimal cutting schedule when two main criteria, such as the minimum power consumption and the best surface quality are fulfilled.The experimental work was performed with black alder wood originating from mature trees from the Buzau Valley region in Romania. All samples were processed on their longitudinal edges by straight milling with a milling cutter having glued straight plates on the vertical milling machine under different cutting schedules. An electronic device connected to the machine engine and an acquisition board were used to record and compute the power consumption during milling. Roughness measurements of the samples were performed by employing an optical profilometer. All data were processed using the regression method and variance analysis. The study revealed that best results are to be obtained in terms of cutting power and surface quality when processing with low feed speeds and light cutting depths.

  10. Heat treatment process optimization of roller material of wheat mill against abrasive wear%小麦磨粉机磨辊材料抗磨损热处理工艺优化

    Institute of Scientific and Technical Information of China (English)

    张克平; 姜良朋; 黄晓鹏

    2016-01-01

    植物磨料磨损是辊式制粉工业中磨辊磨损失效的主要原因,热处理工艺是磨辊材料(低铬白口铁)表面硬度强化的一般手段。该文选用与辊式制粉工况相似的磨损试验机进行试验,利用正交试验考察了不同工艺参数热加工对低铬白口铁抗小麦粉料磨损性能的影响,并择选出最优工艺组合。基于最优工艺组合,以低铬白口铁原始件为参照,综合质量损失、磨痕特征及扫描电镜形貌等手段提取磨损特征,考察最优热处理工艺对低铬白口铁抗小麦粉料磨损性能的强化效果。试验推荐最优热处理工艺组合为:960℃(1 h)空淬+250℃(2 h)回火,实际生产推荐最优热处理工艺组合为:基于960℃淬火+250℃回火的表面热加工;经最优热加工工艺处理的低铬白口铁的磨损质量损失约为原始试样质量损失的42%,铸态组织内共晶碳化物断网现象明显,以半连续网状或孤立块状分布于基体;被磨面沟槽宽深度与棱脊峰谷值等磨痕特征及金属元素含量有所降低,试样硬度显著增加;磨损形式主要为微观切削、多次塑性变形与低周期疲劳磨损。该研究可为磨辊耐磨性能的提升以及降低加工过程对面粉的金属污染提供参考。%The wear of plant abrasive is the main reason to roller wear failure in wheat roller milling industry, while the heat treatment is the general strengthening means of surface hardness of low chromium white iron which is usually used as roller material. In this paper, 3 principles of abrasive wear were applied, and low chromium white iron was chosen as the test samples and wheat powder was chosen as abrasive. The wear test was conducted on wear test machine under the similar work process of industrial roller milling. The test was divided into 2 phases. In the first phase, 9 groups of samples were heat treated with different process parameters according to the

  11. Planificación del proceso de fresado de una pieza compleja utilizando una máquina herramienta virtual//Milling process planning of a complex workpiece using a virtual machine tool

    Directory of Open Access Journals (Sweden)

    Jorge‐Andrés García‐Barbosa

    2014-08-01

    Full Text Available Se diseñó y se fabricó exitosamente una pieza experimental compleja compuesta de superficies con curvatura cero, positiva y negativa. Se planificó y se ejecutó el proceso de fabricación por maquinado usando el proceso de fresado con herramientas de punta esférica en un centro de maquinado vertical equipado con un cuarto eje de rotación externo. Para la planificación, simulación y verificación del proceso se desarrolló un modelo virtual de la máquina herramienta disponible y sus accesorios en un sistema comercial de maquinado asistido por computador. Se implementó el montaje virtual del sistema de manufactura con el que se verificó y se ajustó el proceso hasta observar un buen desempeño. Se comprobaron así las ventajas de utilizar los recientes métodos virtuales ofrecidos por varios sistemas de maquinado asistido por computador para la simulación del proceso, especialmente cuando se trata de componentes complejos procesados en máquinas herramienta de más de tres ejes.Palabras claves: máquinas herramienta virtuales, planificación de procesos, maquinado de piezas complejas, simulación y verificación de procesos, maquinado multiejes.______________________________________________________________________________AbstractWe designed and successfully manufactured a complex experimental piece composed of surfaces with zero, positive and negative curvatures. We planned and executed the machining manufacturing process by using milling process with end ball nose tools on a vertical machining center equipped with a fourth external rotational axis. For planning, simulation and verification of the machiningprocess, we developed a virtual model of the machine tool and its accessories in a commercial system for computer aided machining. By mounting the virtual manufacturing system, we verified the process and adjusted it until observe a good performance. We tested and confirmed the advantages of using the recent virtual methods for

  12. Research on Cutting Force of Turn-Milling Based on Thin-Walled Blade

    Directory of Open Access Journals (Sweden)

    Lida Zhu

    2016-01-01

    Full Text Available Turn-milling is regarded as the milling of a curved surface while rotating the workpiece around its center point, which combines effectively the advantages of both turning and milling, wherein it allows for good metal removal with the difficult-to-cut thin-walled workpieces in aviation. The objective of the present work is to study cutting force by turn-milling in cutting condition. Aiming at the deformation properties of thin-walled blade, the predicted models of rigid cutting force and flexible cutting force with ball cutter are provided, respectively, in turn-milling process. The deformation values of blade and cutter are calculated, respectively, based on the engaged trajectory by using the iterative algorithm. The rigid and flexible cutting forces are compared and the influence degrees of cutting parameters on cutting forces are analyzed. These conclusions provide theoretical foundation and reference for turn-milling mechanism research.

  13. Effect of high-energy ball milling in the structural and textural properties of kaolinite

    Directory of Open Access Journals (Sweden)

    E. C. Leonel

    2014-06-01

    Full Text Available Through the process of high-energy ball milling it is possible to obtain solid materials with higher surface area and different particle sizes. These characteristics are very important for some application such as adsorption. Besides, applications of some clays depend on the functionalization which, for kaolinite, takes place in the aluminol groups. Modification in the structural and textural properties of kaolinite by high-energy milling can improve functionalization of kaolinite due to the exposure of aluminol groups. In this work studies were done on the influence of high-energy ball milling on the morphological properties of kaolinite, taking into account parameters such as filling of the miller, number of balls and amount of mass to be milled. Moreover, studies involving milling kinetics of purified kaolinite were carried out to verify modification in the morphology of kaolinite with milling time.

  14. Radioresistance of Salmonella species and Listeria monocytogenes on minimally processed arugula (Eruca sativa Mill.): effect of irradiation on flavonoid content and acceptability of irradiated produce.

    Science.gov (United States)

    Nunes, Tatiana P; Martins, Cecília G; Behrens, Jorge H; Souza, Kátia L O; Genovese, Maria Inés; Destro, Maria Teresa; Landgraf, Mariza

    2008-02-27

    This work studied the radiation resistance of Listeria monocytogenes and Salmonella species and the effect of irradiation on leaf flavonoid content and sensory acceptability of minimally processed arugula. Immersion in ozone-treated water reduced the analyzed microorganisms by 1 log. L. monocytogenes and Salmonella were not isolated from samples. Samples of this vegetable were inoculated with a cocktail of Salmonella spp. and L. monocytogenes and exposed to gamma irradiation. D10 values for Salmonella ranged from 0.16 to 0.19 kGy and for L. monocytogenes from 0.37 to 0.48 kGy. Kaempferol glycoside levels were 4 and ca. 3 times higher in samples exposed to 1 and 2 kGy, respectively, than in control samples. An increase in quercetin glycoside was also observed mainly in samples exposed to 1 kGy. In sensory evaluation, arugula had good acceptability, even after exposure to 2 and 4 kGy. These results indicate that irradiation has potential as a practical processing step to improve the safety of arugula.

  15. Solid state amorphization in the Al-Fe binary system during high energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Urban, P., E-mail: purban@us.es; Montes, J. M.; Cintas, J. [University of Seville, Department of Mechanical and Materials Engineering, ETSI, Camino de los Descubrimientos s/n, Seville, 41092 (Spain); Cuevas, F. G., E-mail: fgcuevas@dqcm.uhu.es [University of Huelva, Department of Chemistry and Materials Science, ETSI, Campus La Rábida, Carretera Palos s/n, Palos de la Frontera, Huelva, 21819 (Spain)

    2013-12-16

    In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{sub 2}.

  16. Analyzing the performance of diamond-coated micro end mills.

    Energy Technology Data Exchange (ETDEWEB)

    Torres, C. D.; Heaney, P. J.; Sumant, A. V.; Hamilton, M. A.; Carpick, R. W.; Pfefferkorn, F. E.; Univ. of Wisconsin at Madison; Univ. of Pennsylvania

    2009-06-01

    A method is presented to improve the tool life and cutting performance of 300 {micro}m diameter tungsten carbide (WC) micro end mills by applying thin (<300 nm) fine-grained diamond (FGD) and nanocrystalline diamond (NCD) coatings using the hot-filament chemical vapor deposition (HF-CVD) process. The performance of the diamond-coated tools has been evaluated by comparing their performance in dry slot milling of 6061-T6 aluminum against uncoated WC micro end mills. Tool wear, coating integrity, and chip morphology were characterized using SEM and white light interferometry. The initial test results show a dramatic improvement in the tool integrity (i.e., corners not breaking off), a lower wear rate, no observable adhesion of aluminum to the diamond-coated tool, and a significant reduction in the cutting forces (>50%). Reduction of the cutting forces is attributed to the low friction and adhesion of the diamond coating. However, approximately 80% of the tools coated with the larger FGD coatings failed during testing due to delamination. Additional machining benefits were attained for the NCD films, which was obtained by using a higher nucleation density seeding process for diamond growth. This process allowed for thinner, smaller grained diamond coatings to be deposited on the micro end mills, and enabled continued operation of the tool even after the integrity of the diamond coating had been compromised. As opposed to the FGD-coated end mills, only 40% of the NCD-tools experienced delamination issues.

  17. YANG-MILLS FIELD CAPACITOR

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-10-01

    Full Text Available The article presents a project of the capacitor in the Yang-Mills theory. Model capacitor represents the equipotential surfaces separated by a space. To describe the mechanism of condensation chromodynamics field used numerical models developed based on an average of the Yang-Mills theory. In the present study, we used eight-scalar component model that in the linear case is divided into two groups containing three or five fields respectively. In contrast to classical electrodynamics, a static model of the Yang-Mills is not divided into independent equations because of the nonlinearity of the model itself. However, in the case of a linear theory separation is possible. It is shown that in this particular case, the Yang-Mills theory is reduced to Poisson theory, which describes the electrostatic and magnetostatic phenomena. In the present work it is shown that in a certain region of the parameters of the capacitor of the Yang-Mills theory on the functional properties of the charge accumulation and retention of the field is similar to the capacitor of the electrostatic field or a magnet in magnetostatics. This means that in nature there are two types of charges, which are sources of macroscopic Yang-Mills field, which are similar to the properties of electric and magnetic charges in the Poisson theory. It is shown that in Yang-Mills only one type of charge may be associated with the distribution density of the substance, while another type of charge depends on the charge distribution of the first type. This allows us to provide an explanation for the lack of symmetry between electric and magnetic charges

  18. Noise exposure in oil mills

    Directory of Open Access Journals (Sweden)

    Prasanna Kumar G

    2008-01-01

    Full Text Available Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM (Model-824, Larson and Davis, USA, equivalent SPL was measured at operator′s ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m x 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of

  19. High Speed Milling : By using STL-Technology

    NARCIS (Netherlands)

    Gunnink, J.W.

    1998-01-01

    Despite the wide application of Layered Manufacturing Technologies like Fused Deposition Modelling, Layered Object Manufacturing etc. in the product development processes, milling is stili necessary. This is a result of the fact that Layered Manufacturing processes have some limitations in for

  20. High Speed Milling : By using STL-Technology

    NARCIS (Netherlands)

    Gunnink, J.W.

    1998-01-01

    Despite the wide application of Layered Manufacturing Technologies like Fused Deposition Modelling, Layered Object Manufacturing etc. in the product development processes, milling is stili necessary. This is a result of the fact that Layered Manufacturing processes have some limitations in for insta

  1. Mineralogical residence of alpha-emitting contamination and implications for mobilization from uranium mill tailings

    Science.gov (United States)

    Morrison, Stan J.; Cahn, Lorie S.

    1991-09-01

    The rate and magnitude of contaminant release from mill tailings to groundwater are known to depend on the form and mineralogy of the host grains. Using samples from three uranium mill sites in the western United States, we identified four types of α-emitting host grains — those containing bariumstrontium sulfates, authigenic siliceous material, uranium minerals, and irontitaniumvanadium oxides. These four grain types constitute scheme for the tailings. Each milling process (acid or alkaline) produces distinct types of grains. In acid-milled tailings, such as those at Slick Rock, Colorado, the dominant source of α emissions is from bariumstrontium sulfate. The barium-to-strontium ratio covers the entire solid-solution range between barite and celestine. In alkaline-milled tailings, α emissions come predominantly from siliceous composite grains, which are interpreted as grains from the mill feed that have been altered during milling. In the siliceous composite grains, radionuclides are encased by siliceous material resembling chalcedony. Other α-emitting grains appear to be unrelated to milling; some uranium minerals and irontitaniumvanadium oxides appear to have passed through the milling process relatively unaltered. The classification scheme identified in this study reflects the geochemical reactivity of the tailings with groundwater. Our findings can be used to improve confidence levels when predicting; (1) source loading to a groundwater system; (2) health effects from inhaled radioactive dust; and (3) long-term performance of uranium tailings containment cells.

  2. Methods of chemical oxidation to close the water cycle at paper mills. Process development and modelling; Hapetustekniikoiden kaeyttoe metsaeteollisuuden vesikiertojen sulkemisessa: prosessin kehitys ja mallinnus

    Energy Technology Data Exchange (ETDEWEB)

    Laari, A.; Kallas, J. [Lappeenranta Univ. of Technology (Finland); Korhonen, S. [Mikkeli Polytechnic, School of Engineering, Mikkeli (Finland); Tuhkanen, T. [Tampere Univ. of Technology (Finland)

    1999-07-01

    Chemical oxidation with ozone was studied as means of the removal of lipophyllic wood extractives (LWEs) from thermo- mechanical pulp (TMP) circulation water. Ozonation was also tested as the method of microbiological control for the circulation water of paper machines. Ozone was found to selectively oxidise LWEs in TMP-waters. The dosage of ozone sufficient to remove 50 % of the LWEs was found to be from 75 to 300 mg O{sub 3}/l. Ozone dose from 500 to 800 mg O{sub 3}/l was required for 90 % removal of LWEs. The ozone dose from 10 to 40 mg O{sub 3}/l was necessary to inactivate micro-organisms by two orders of magnitude (99%). The model of ozonation process simulation was developed, which consists of the model of reaction kinetics and the reactor model. The model of reaction kinetics assumes two simultaneous competitive reactions with ozone: (a) oxidation of LWEs and (b) oxidation of other organic substances defined as chemical oxygen demand (COD). The selectivity of oxidation was defined as the ratio of the rate coefficients of the mentioned reactions and was calculated from experimental data. The selectivity was found to be different in different TMP circulation water samples and varied with LWEs composition. The selectivity of oxidation also decreased as the ozonation proceeded. The value of the selectivity ratio ranged between 7 and 10 was used in simulation of ozonation reactor. (orig.)

  3. Sugarcane Tandem Mills Operation at Two Hydraulic Pressure Levels

    Directory of Open Access Journals (Sweden)

    Jorge Michel Corrales-Suárez

    2015-01-01

    Full Text Available Among the areas with more energy consumption in a sugar factory is the tandem of mills. The applied hydraulic pressure on the superior mace is one of the variables that have influence on this energy consumption. Hydraulic pressures were decreased in a value that did not affect the extraction process efficiency to determine the possibilities of decreasing this energy consumption. The research was carried out in two sugar cane tandems of six mills. The pressures were only varied in the extraction mills in humid according to a statistical design of experiments in random blocks. The results were analyzed by means of the analysis of variance of double classification. The independent variables were the hydraulic pressures in the intermediate mills while the dependent variables were the % pol and % humidity of the final bagasse. The hydraulic pressures of the intermediate mills were reduced 3.45 MPa in the Tandem 1 and 2.07 MPa in the Tandem 2. It was demonstrated that under the conditions of the experiment, the employment of working hydraulic pressures smaller than the usually established ones for each tandem did not affect the extraction process of the sugar cane sucrose significantly, but decreased 11.75% the power demand on tandem 1 and 8.17% on tandem 2.

  4. The postharvest of mill olives

    Directory of Open Access Journals (Sweden)

    Yousfi, Khaled

    2006-03-01

    Full Text Available The greatest deterioration of olive oil is due to poor handling of the olives during the time between harvesting and processing. Storage of olive fruits is carried out by simple heaping in fruit piles, waiting their processing. These fruits develop all kinds of degenerative processes in a short period of time. Oils obtained from them show characteristics hydrolytic and oxidative deteriorations confirmed by their high acidity values, peroxide value or ultraviolet absorbance at 232 and 270 nm. To avoid this situation, the industry is currently reducing the interval between harvesting and processing, through an increase in milling capacity. However, the equipment necessary for preventing the accumulation of fruit in January would be unnecessary for the rest of the season. In this chapter, refrigeration of the olive fruits, or the use of physical treatments, to allow the processing of unripe fruits, are analysed as possible alternatives.El mayor deterioro del aceite de oliva es debido a la inadecuada manipulación de las aceitunas durante el tiempo que media entre su cosecha y su procesado. El almacenamiento de las aceitunas se lleva acabo mediante el simple amontonamiento del fruto, esperando su procesamiento. Estos frutos desarrollan toda clase de procesos degenerativos en un corto periodo de tiempo. Los aceites obtenidos a partir de estos frutos exhiben deterioros hidrolíticos y oxidativos característicos, confirmados por sus valores altos de acidez, de índice de peróxidos o de absorbancia en la región ultravioleta a 232 y 270 nm. Para evitar esta situación, la industria intenta reducir al máximo el intervalo entre la cosecha y el procesado del fruto, mediante un aumento de la capacidad de molturación. Sin embargo, el equipo necesario para prevenir la acumulación de fruto en Enero no se precisa para el resto de la campaña. En este capítulo, la refrigeración de las aceitunas o el uso de tratamientos físicos, que permiten el procesado

  5. Design and Fabrication of Savonious Wind Mill

    Directory of Open Access Journals (Sweden)

    P. L. N. V. Aashrith

    2014-06-01

    Full Text Available The project deals with the design and fabrication of Savonius wind mill. Pw – Wind power (watt, and Power produced by the turbine Pt has been calculated using m – Mass flow rate (kg/s, Swept area of the windfall ,V- Velocity of the wind, Θ- Angular position of turbine, T- Torque obtained by wind, Pt- Shaft power , Cp- Power coffecient ,Ct- Torque co-efficient , μ – Tip speed ratio , r – Radius of rotor , d- Diameter of rotor ,w- Angular speed of rotor. Various operations involved in fabrication process and characteristics & specifications of wind turbine has been mentioned

  6. Influence of flaws and crystal properties on particle fracture in a jet mill

    NARCIS (Netherlands)

    de Vegt, Onno; Vromans, Herman; den Toonder, Jaap; Maarschalk, Kees van der Voort

    2009-01-01

    jet milling is commonly used for reducing the particle size of active pharmaceutical ingredients. Unfortunately, this process is sometimes difficult to control as pre-existing flaws and mechanical properties affect the particle fracture behaviour in a mill. In this study the effect of pre-existing f

  7. An analytical model for force prediction in ball nose micro milling of inclined surfaces

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2010-01-01

    Ball nose micro milling is a key process for the generation of free form surfaces and inclined surfaces often present in mould inserts for micro replication. This paper presents a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge rad...

  8. Force analysis in micro milling Al 6082 T6 in various engagement conditions

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Gietzelt, T.; Hansen, Hans Nørgaard

    2008-01-01

    This paper discusses the issues related to force measurement in micro milling and presents the results of the experimental investigation performed in an on going Cross Divisional Project within the 4M network of Excellence, aiming at force analysis and process characterization in micro milling. R...

  9. Influence of flaws and crystal properties on particle fracture in a jet mill

    NARCIS (Netherlands)

    de Vegt, Onno; Vromans, Herman; den Toonder, Jaap; Maarschalk, Kees van der Voort

    2009-01-01

    jet milling is commonly used for reducing the particle size of active pharmaceutical ingredients. Unfortunately, this process is sometimes difficult to control as pre-existing flaws and mechanical properties affect the particle fracture behaviour in a mill. In this study the effect of pre-existing

  10. Synthesis of FeTi hydrogen storage material via ball milling: effect of milling energy and atmosphere.

    OpenAIRE

    Livramento, Vanessa; Rangel, C. M.; Correia, J. Brito; Shohoji, Nobumitsu; R.A. Silva

    2008-01-01

    Attempts were made earlier to synthesize and activate the FeTi intermetallic during ball milling (BM), for H2 storage using sodium boron tetra-hydride (NaBH4) additive as a process controlling agent. Simple reactive milling starting from Fe and Ti powders resulted in heavy agglomeration of powders, due to the self sustaining nature of the reaction following an incubation period. When NaBH4 was used as the process control agent to avoid agglomeration, this resulted in the production of titaniu...

  11. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large...... deviations from the ideal micro tool shape, dramatically changing the cutting edge profile as well as rake and clearance angles. This critically affects the performance of the micro tool leading to increased cutting forces and micro tool deflections with detrimental effects on the accuracy of the machined...... part. For this investigation 200 microns end mills are considered. Visual inspection of the micro tools requires high magnification and depth of focus. 3D reconstruction based on scanning electron microscope (SEM) images and stereo-pair technique is foreseen as a possible method for quantification...

  12. 微细铣削过程中刀尖径向总跳动度的实验研究%Research on the Tool-point Radical Run-out of Micro Milling Process

    Institute of Scientific and Technical Information of China (English)

    李光俊; 高翼飞

    2015-01-01

    微细铣削过程中,刀尖径向总跳动度与每齿进给量在同一量级,其影响切削过程切削厚度,从而影响切削过程切削力。文章基于轴向铣微孔实验分析了微细铣削过程中主轴转速和刀具悬伸量对刀尖径向总跳动度的影响规律,采用线性回归最小二乘估计法建立刀尖径向总跳动度预测模型,并对预测模型进行显著性检验和拟合度检验,检验结果表明:预测模型可用于切削参数范围内刀尖径向总跳动量的预测。%In micro milling process, the tool-point radical run-out is comparable with the feed per tooth and will affect the chip thickness, ultimately impact the cutting forces. In this paper, micro drilling hole tests are carried out to analyze the influence principle of the spindle speed and the tool overhang on the tool-point rad-ical run-out;and based on the test results, the tool point radical run-out prediction model is built by using linear regression least square estimation method. In addition, the significance test and fitting degree test are conducted on the prediction model, which show that the prediction model is efficient for predicting the tool-point radical run-out in the range of test cutting parameters.

  13. IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS

    Energy Technology Data Exchange (ETDEWEB)

    Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

    2005-12-01

    The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling

  14. A Method to Determine the Ball Filling, in Miduk Copper Concentrator SAG Mill

    Directory of Open Access Journals (Sweden)

    Ali Kamali Moaveni

    2012-12-01

    Full Text Available The aim of this research work was to investigate on the ball filling estimation of Miduk semi-autogenous (SAG Mill via an utilized method. Miduk copper concentrator is located in Kerman Province, Iran, and its size reduction stage includes one gyratory crusher which feeds one SAG mill (9.75 dia.(m*3.88 length(m following two parallel ball mills (5dia.(m*7lenght(m. After SAG mill, a trommel screen produces two over and under size materials which the oversize part is circulated into SAG mill and undersize reports to hydrocyclone for further process. Ball filling identify was implemented in this work using mill`s load sampling and ball abrasion test.These methods could estimate ball filling variation with easy, undeniable, and useful tests. Also, these tests have shown the digression of operating ball filling amount and its manual designed. To make more homogenous load, mill load samplings were carried out from 6 points after whirling the mill via inching motor. Acquired load sampling results were compared with ball abrasion tests. Ball abrasion tests were calculated for 3 different conditions include maximum, average, and minimum ball abrasion. However, the calculated maximum and minimum conditions never occurred. However, these are just for obtaining to ball filling variation in the mill. The results obtained from this work show, the ball filling percentage variation is between 1.2– 3.7% which is lower than mill ball filling percentage, according to the designed conditions (15%. In addition, acquired load samplings result for mill ball filling was 1.3%.

  15. Uranium mill tailings and radon

    Energy Technology Data Exchange (ETDEWEB)

    Hanchey, L A

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  16. Soil Carbon 4 per mille

    Science.gov (United States)

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become

  17. Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties.

    Science.gov (United States)

    Chua, Chun Kiang; Sofer, Zdeněk; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2016-07-21

    Graphene materials have found applications in a wide range of devices over the past decade. In order to meet the demand for graphene materials, various synthesis methods are constantly being improved or invented. Ball-milling of graphite to obtain graphene materials is one of the many versatile methods to easily obtain bulk quantities. In this work, we show that the graphene materials produced by ball-milling are spontaneously contaminated with metallic impurities originating from the grinding bowls and balls. Ball-milled sulfur-doped graphene materials obtained from two types of ball-milling apparatus, specifically made up of stainless steel and zirconium dioxide, were investigated. Zirconium dioxide-based ball-milled sulfur-doped graphene materials contain a drastically lower amount of metallic impurities than stainless steel-based ball-milled sulfur-doped graphene materials. The presence of metallic impurities is demonstrated by their catalytic effects toward the electrochemical catalysis of hydrazine and cumene hydroperoxide. The general impression toward ball-milling of graphite as a versatile method for the bulk production of 'metal-free' graphene materials without the need for post-processing and the selection of ball-milling tools should be cautioned. These findings would have wide-reaching implications for graphene research.

  18. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Wang, Zihua; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2015-11-10

    Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.

  19. Effect of Milling Time on Al-Fe-Cr-20 Wt. % Al2O3composite Prepared Through Ball Milling

    Directory of Open Access Journals (Sweden)

    Hameedur Rehman Khan

    2014-07-01

    Full Text Available One of the main challenges towards achieving a homogeneous distribution of the ceramic phase in the metal matrix composites is agglomeration of the reinforcement particles. Mechanical alloying is among the most important processing techniques used for manufacturing of metal matrix composites (MMCs.An attempt was made to synthesize Al-Fe-Cr-Al2O3composites synthesized through mechanical alloying. Al2O3 is used as reinforcement. Ethanol (5 wt. % has been used as a process control agent (PCA. Mechanical alloying is carried out in a conventional ball mill using stainless steel grinding media at 115 rpm in the argon environment for 5h, 10h and 15h. The ball to powder weight ratio was maintained at 20:1. The characterization of the ball milled powder was followed by scanning electron microscopy (SEM. Showed the formation of a homogeneous phase for all compositions after milling for 15 h. XRD patterns were recorded for the milled powders, and analyzed using Williamson–Hall method and Scherrer’s equation to determine the lattice strain and grain size.EDX is performed to check the contamination of composites during the mechanical alloying.XRD is used to study structural evolution of synthesized aluminium composite. Effect of milling time is investigated on synthesized Al-Fe-Cr-20 wt. % Al2O3 composites.

  20. Discrete element method based scale-up model for material synthesis using ball milling

    Science.gov (United States)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully

  1. 甘蔗糖厂压榨阶段有害菌灭菌方法的探索%Exploration on the Harmful Bacteria Sterilization Method in the Crushing Process of Cane Sugar Mills

    Institute of Scientific and Technical Information of China (English)

    相萍萍; 冯紫艳; 谢政; 张义平; 姚晓麦; 陈山

    2014-01-01

    在制糖过程中,蔗汁中微生物活动是影响白糖产品品质的一个重要因素。为了消除糖厂有害菌对白糖产品品质的影响,本文主要探索了常用食品防腐剂、天然食品防腐剂、其它试剂以及氯化钠水溶液低压直流电解后对甘蔗压榨过程中危害最严重的明串珠菌类微生物的抑菌效果。实验结果表明,对羟基苯甲酸乙酯钠、注射用青霉素钠、乙二胺四乙酸钠(EDTA-2Na)均能有效抑制糖厂生产中主要的有害菌,其最低有效抑菌浓度分别为0.0016、0.0096、0.0056 g/L;氯化钠水溶液在20 V 直流电压电解的抑菌效果与盐浓度的大小以及延迟时间相关,7%左右的盐溶液配合低压电解的抑菌作用最显著。%In the process of sugar production, the microbial activity in the cane juice is an important factor in damaging the quality of sugar products. In order to inhibit the harmful effect of bacterium on the quality of sugar products, the antibacterial effect of common food preservatives, natural food preservatives, other reagents and sodium chloride aqueous electrolytes solution on Leuconostoc, the most harmful bacterium during the crushing process of cane sugar mills, was explored in this paper. The results showed that sodium p-hydroxybenzoate, ethyl injection of sodium penicillin, sodium ethylenediamine tetraacetate (EDTA-2Na) could inhibit the main harmful bacterium effectively during the process of sugar production and the lowest effective antibacterial concentration was 0.0016 g/L, 0.0096 g/L, 0.0056 g/L respectively. The antibacterial effect of sodium chloride aqueous electrolytes solution at 20 V is related to the salt concentration and the delay time, and the antibacterial effect of about 7% salt solution with low voltage electrolysis is the most significant.

  2. Researches regarding the reducing of burr size by optimising the cutting parameters on a CNC milling machine

    Directory of Open Access Journals (Sweden)

    Biriş Cristina

    2017-01-01

    Full Text Available This paper presents some experimental researches regarding burrs dimensions reduction that appear after the milling process together with an approach to reduce or eliminate the burrs resulted after this process. In order to reduce burrs dimensions, the milling process was executed with different cutting parameters and strategies then the results were evaluated.

  3. Machine Shop. Module 6: Milling. Instructor's Guide.

    Science.gov (United States)

    Walden, Charles H.

    This document consists of materials for a 12-unit course on the following topics: (1) introduction to milling; (2) structure and accessories; (3) safety and maintenance; (4) cutting-tool variables; (5) basic set-up activities; (6) squaring a workpiece; (7) hole-making operations; (8) form milling; (9) machining keyways; (10) milling angular…

  4. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... COMMISSION Bioassay at Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for public comment draft regulatory guide (DG), DG-8051, ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions...

  5. HA/Ti composite for biomedical application by mechanical milling

    Institute of Scientific and Technical Information of China (English)

    刘咏; 刘芳; 周科朝; 黄伯云

    2003-01-01

    In order to overcome the poor mechanical properties of HA and the low bioactivity of Ti, HA/Ti com-posites with various compositions were prepared by mechanical milling. The effects of milling condition and the com-position on the microstructure, the density and the hardness of the composites were studied. The results show thatduring the ball milling process, Ti particles are refined and the homogeneity of the HA/Ti mixtures is improved;HA will partially decompose due to the existence of Ti and high sintering temperature. The microstructure of HA/Ti composites is highly dependent on the milling condition and the composition. In the microstructure, Ti phase con-nects to be a continuous network, and HA/Ti mixtures disperse in the network. The longer the milling time, the fi-ner the network will be. The density of HA/Ti composites decreases with the content of HA increasing and themilling time prolonging, because HA deteriorates the sinterability of Ti. The hardness of HA/Ti composites increa-ses firstly with the content of HA increasing, and then drops when the content of HA exceeds 30%. Addition ofHA will strengthen the HA/Ti composite but will decrease the density of the composite, which accounts for theeffect of HA on the hardness of the composites.

  6. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  7. Nano-subgrain Strengthening in Ball-milled Iron

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D R; Syn, C K; Sherby, O D

    2006-03-23

    The strength and deformation behavior of ball-milled, iron-base materials containing nano-scale subgrains have been evaluated. As reported by several authors, nanosubgrains form during the early stages of ball milling as a result of severe plastic deformation inherent in the ball milling process. The strength for these nano-scale subgrains are compared with the strength of larger-scale subgrains in iron and iron-base alloys produced by traditional mechanical working. The data covers over 2 orders of magnitude in subgrain size (from 30 nm to 6 {micro}m) and shows a continuous pattern of behavior. For all materials studied, the strength varied as {lambda}{sup -1}, where {lambda} is the subgrain size. Strengthening from subgrains was found to breakdown at a much smaller subgrain size than strengthening from grains. In addition, the ball-milled materials showed significant strengthening contributions from nano-scale oxide particles. Shear bands are developed during testing of ball-milled materials containing ultra-fine subgrains. A model for shear band development in nano-scale subgrains during deformation has also been developed. The model predicts a strain state of uniaxial compression in the shear band with a strain of -1.24. Subgrains are shown to offer the opportunity for high strength and good work hardening with the absence of yield point behavior.

  8. Soil carbon 4 per mille

    NARCIS (Netherlands)

    Mulder, V.L.

    2017-01-01

    The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil

  9. J. S. Mill on Education

    Science.gov (United States)

    Ryan, Alan

    2011-01-01

    Mill may be said either to have written rather little on education or to have written a very great deal. He himself distinguished between a "narrow" and a "wider" sense of education, the former limited to what happens in formal educational settings, the latter embracing all the influences that make us who and what we are. He wrote rather little on…

  10. Environmental benchmarking of energy-related kraft mill modifications using LCA

    Energy Technology Data Exchange (ETDEWEB)

    Gaudreault, C.; Wising, U.; Martin, G.; Samson, R.; Stuart, P. [Ecole Polytechnique, Montreal, PQ (Canada)

    2008-12-15

    Life cycle assessment (LCA) tools were used to assess energy efficiency modifications at an integrated kraft pulp and paper mill. The tools were used to build a life cycle model of mill processes and products suitable for benchmarking environmental performance. An iterative process was used for all mill processes in the LCA system boundaries. Process options involving the use of waste paper were considered. Forest operations data included processes from planting seedlings to loading logs onto trucks as well as the manufacturing of fuel, chemicals, and amounts electricity needed. The state-specific fuel mix for electricity supply was applied to mill processes. Emission and resources were classified into categories and potential impacts were evaluated. The study showed that on-site mill operations were the main contributors to the ecotoxicity indicator and human health particulates indicator (HHP). Non mill-related activities accounted for most of the environmental impacts from fossil fuel usage. Paper end-of-life was the principal contributor to the eutrophication indicator. The study showed that converting steam production from coal to bark significantly reduced the environmental impacts of the mill. However the integration of a cogeneration plant did not significantly improve energy efficiency. 20 refs., 7 tabs., 11 figs.

  11. Integration of micro milling highspeed spindle on a microEDM-milling machine set-up

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Hansen, Hans Nørgaard; Andolfatto, Loic

    2009-01-01

    In order to cope with repositioning errors and to combine the fast removal rate of micro milling with the precision and small feature size achievable with micro EDM milling, a hybrid micro-milling and micro-EDM milling centre was built and tested. The aim was to build an affordable set-up, easy...... by micro milling. Examples of test parts are shown and used as an experimental validation....

  12. Fermentation and chemical treatment of pulp and paper mill sludge

    Science.gov (United States)

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  13. Milling technological experiments to reduce Fusarium toxin contamination in wheat

    Directory of Open Access Journals (Sweden)

    Véha A.

    2015-01-01

    Full Text Available We examine 4 different DON-toxin-containing (0.74 - 1.15 - 1.19 - 2.14 mg/kg winter wheat samples: they were debranned and undebranned, and we investigated the flour’s and the by-products’ (coarse, fine bran toxin content changes. SATAKE lab-debranner was used for debranning and BRABENDER lab-mill for the milling process. Without debranning, two sample flours were above the DON toxin limit (0.75 mg/kg, which are waste. By minimum debranning (and minimum debranning mass loss; 6-8%, our experience with whole flour is that the multi-stage debranning measurement significantly reduces the content of the flour’s DON toxin, while the milling by-products, only after careful consideration and DON toxin measurements, may be produced for public consumption and for feeding.

  14. The Role of Promotion in Milling and Bakery Products Sales

    Directory of Open Access Journals (Sweden)

    Sergiu-Bogdan Constantin

    2009-07-01

    Full Text Available Irrespective of the avenue chosen for the retail of milling and bakery products, a key role in sales growth is the one played by promotion, information of the future customers as to the characteristics of the products, the execution and sale conditions. Such information process takes place by means of the promotional mix, consisting of a blend of advertising, sales promotion, public relations tools, trademarks, promotional events, and sales forces. The milling and baking industry uses, to certain extent, all the components of the promotional mix. Product promotion is central both to sales growth, as well as to educating, advising and informing consumers as to how they can select quality milling and bakery products.

  15. NUMERICAL EVALUATION OF TEMPERATURE DISTRIBUTION IN THE ROLLING MILL ROLLS

    Directory of Open Access Journals (Sweden)

    José Claudino de Lira Júnior

    2013-06-01

    Full Text Available In hot rolling processes occur changes in the profile of the rolling mill rolls (expansion and contraction and constant wear due to mechanical stress and continuous thermal cycles of heating/cooling caused by contact rolled material- working roll and the cooling system by water jets in their surface, decreasing their lifetime. This paper presents a computational model to simulate the thermal performance of rolling mill rolls. The model was developed using the finite volume method for a transient two-dimensional system and allows calculating the temperature distribution of the rolling mill rolls under various conditions of service. Here it is investigated the influence of flow rate and temperature of the cooling water on the temperature distribution. The results show that the water temperature has greater influence than the water flow to control the surface temperature of the cylinders.

  16. Altered reproduction in fish exposed to pulp and paper mill effluents: roles of individual compounds and mill operating conditions.

    Science.gov (United States)

    Hewitt, L Mark; Kovacs, Tibor G; Dubé, Monique G; MacLatchy, Deborah L; Martel, Pierre H; McMaster, Mark E; Paice, Michael G; Parrott, Joanne L; van den Heuvel, Michael R; van der Kraak, Glen J

    2008-03-01

    For the last 20 years, studies conducted in North America, Scandinavia, and New Zealand have shown that pulp and paper mill effluents affect fish reproduction. Despite the level of effort applied, few leads are available regarding the factors responsible. Effluents affect reproduction in multiple fish species, as evidenced by decreased gonad size, decreased circulating and gonadal production of reproductive steroids, altered expression of secondary sex characteristics, and decreased egg production. Several studies also have shown that effluent constituents are capable of accumulating in fish and binding to sex steroid receptors/ binding proteins. Studies aimed at isolating biologically active substances within the pulping and papermaking process have provided clues about their source, and work has progressed in identifying opportunities for in-mill treatment technologies. Following comparisons of manufacturing processes and fish responses before and after process changes, it can be concluded that effluent from all types of mill processes are capable of affecting fish reproduction and that any improvements could not be attributed to a specific process modification (because mills normally performed multiple modifications simultaneously). Improved reproductive performance in fish generally was associated with reduced use of molecular chlorine, improved condensate handling, and liquor spill control. Effluent biotreatment has been effective in reducing some effects, but biotreated effluents also have shown no difference or an exacerbation of effects. The role of biotreatment in relation to effects on fish reproduction remains unclear and needs to be resolved.

  17. Technical Research of Recovering Protein from Process Water in Starch Wet Milling System%淀粉工艺水中蛋白回收工艺的研究

    Institute of Scientific and Technical Information of China (English)

    刘泽龙; 潘君慧; 张连慧; 强婉丽

    2015-01-01

    A study was conducted to develop a technique that can recover protein from the process water in starch wet milling system, which mainly include recollecting corn gluten and obtaining two kinds of novel protein from process water produced during the step of major starch/protein separation by membrane filtration incroporating heat treatment. It was found that ultrafiltration membranes with molecular weight cut-off at 50 ku and 100 ku have better effect on the rejection of 30 ku protein fraction , which is in the enrichment of branched chain amino acids such as Leu and Val. In addition , the obtained protein fractions at molecular weight range of 3 ku to 14 ku were found to resist to heat treatment. The novel protein products can be used as food protein ingredient or protein feed with potential application in muscle building and the acid food or beverage , repectively.%为了探索玉米淀粉生产中的工艺水中的蛋白组分的开发利用,研究一种玉米淀粉工艺水蛋白回收工艺,主要包括处理在湿磨法生产玉米淀粉工艺中的麸质浓缩步骤产生的工艺水,并使用膜技术和热处理技术在回收玉米黄粉的同时获得两种新蛋白产品。研究发现,50 ku和100 ku对丰度较高的30 ku蛋白组分的截留浓缩效果较好,其中,该蛋白富含亮氨酸和缬氨酸等支链氨基酸。分离出的耐热耐酸蛋白组分主要为3 ku~14 ku的部分。所得新蛋白产品可作为食用或饲用蛋白原料使用,并且分别具有增肌和用于酸性食品的潜力。

  18. Carbonyl trapping and antiglycative activities of olive oil mill wastewater

    NARCIS (Netherlands)

    Navarro, M.; Fiore, A.; Fogliano, V.; Morales, F.

    2015-01-01

    The use of natural compounds as antiglycative agents to reduce the load of advanced glycation end products from diet is very promising. Olive mill wastewater is a by-product of the olive oil extraction processes with a high content of hydroxytyrosol, hydroxytyrosol derivatives and molecules containi

  19. Parametric optimization of CNC end milling using entropy ...

    African Journals Online (AJOL)

    user

    International Journal of Engineering, Science and Technology. Vol. 2, No. 2, 2010 .... Prior state of art and motivation of the present work. Alauddin et al. ... networks for in-process prediction of surface roughness in milling operations. They had ...... He has more than 6 years of experience in teaching and research. His current.

  20. Carbonyl trapping and antiglycative activities of olive oil mill wastewater

    NARCIS (Netherlands)

    Navarro, M.; Fiore, A.; Fogliano, V.; Morales, F.

    2015-01-01

    The use of natural compounds as antiglycative agents to reduce the load of advanced glycation end products from diet is very promising. Olive mill wastewater is a by-product of the olive oil extraction processes with a high content of hydroxytyrosol, hydroxytyrosol derivatives and molecules

  1. Design of Formed Milling Cutter for Double-Helix Screw Based on Noninstantaneous Envelope Method

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available The design theory and method of formed milling cutter for double-helix screw of progressing cavity pump are presented. Through analyzing the shape and characteristic parameters of double-helix screw, the helicoids equation and axial curve equation of double-helix screw were established. According to the relative position relations between formed milling cutter and double-helix screw in the machining process, the geometric mapping relationship of screw coordinate system and formed milling cutter coordinate system was established by using the coordinate transformation theory. Based on noninstantaneous envelope method and the meshing conditions between formed milling cutter and double-helix screw, the contact line equations were established by minimum value method. By analyzing the machining errors caused by resharpening the formed milling cutter, the tooth back curve equation was established based on spiral of Archimedes, and the profile equation of formed milling cutter with constant back angle was got. On this basis, the formed milling cutter of processing double-helix screw was designed, and the cutter head and tool post were manufactured, respectively. The measuring results have shown that this method can satisfy the requirements of machining accuracy for double-helix screw. So this is an effective method to get formed milling cutter profile for double-helix screw.

  2. Multilayered piezoceramic microactuators formed by milling in the green state

    Science.gov (United States)

    Simu, Urban; Johansson, Stefan A. I.

    1999-10-01

    Methods for the fabrication of piezoceramic microactuators that will be used in a miniaturized robot have been investigated. Multilayered structures for piezoceramic microactuators are usually fabricated by tape casting and lamination. The present structures are fabricated with a wet building process where thin layers of ceramic slurry and screen-printed electrodes are cast sequentially. The use of multilayered structures reduces the drive voltage to common levels for integrated circuits, but also result in difficulties forming complicated shapes. Dicing is a straightforward alternative to achieve a simple geometry, but it can not machine e.g. a hollow cylindrical structure. There are several methods that could be used, but only few that would be cost-efficient for large-scale production. One of these is milling with modern high-precision CNC machine tools. Conventional milling of sintered ceramic components would result in many problems since the material is rather brittle and cracks are easily formed. Cracks are detrimental to the mechanical properties as well as for the electrical properties. Milling in the ceramic green state appears to be a promising method, since microcracks does not arise. The relatively soft green body puts great demands on the milling process. A high speed of the spindle is necessary to achieve low cutting forces since sub-millimeter cutting tools are used. The paper present result from different milling test and discusses how the machining parameters affect the resulting shape. The resolution is comparable with other techniques and it can be concluded that it is sufficient for normal screen-printed multilayered components. The evaluation of resulting deformation of the material after milling and sintering is presented.

  3. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  4. Metastable phase transitions in Mo-Si and V-Si systems activated by high energy ball milling

    Institute of Scientific and Technical Information of China (English)

    柳林

    2002-01-01

    Mechanical alloying of Mo-Si (Mo33Si67) and V-Si (V75Si25) powder mixtures was activated by high energy ball milling at ambient temperature. The metastable phase transitions in both systems during milling were investigated by X-ray diffraction, scanning and transmission electron microscopy. It is found that the alloying processes are closely related to the milling conditions. As far as the Mo-Si system is concerned, ball milling leads to the formation of both α-MoSi2 (room temperature phase) and β-MoSi2 (high temperature phase), but lower energy milling favors the formation of β phase, while higher energy milling promotes the formation of α phase. In addition, if the milling energy is high enough, the Mo/Si reaction is governed by a self-propagating high temperature process. On the other hand, two different pathways of phase transition in the V-Si system were also identified depending on the milling intensity, i.e. weak milling leads to amorphous transition, whereas intensive milling causes the formation of V3Si and V5Si3 intermetallic compounds. Finally, the thermodynamics and kinetics related to the different phase transitions in the two systems were discussed.

  5. Measurement of moisture in mill feed ore

    Energy Technology Data Exchange (ETDEWEB)

    Timm, A.R.; Moench, P.; Moisel, E. (Council for Mineral Technology, Randburg (South Africa))

    1985-04-01

    The control of the moisture in the feed to a mill is very important for efficient mill operation. Water is added continuously to the ore fed to a mill to maintain a suitable mix of ore and moisture in the mill. However, problems arise because of the large variation in the moisture content of the ore, which affects the efficiency of the grind. If too little moisture is present, the mill is unable to grind the ore finely enough, creating instead a thick 'porridge' that causes the mill to choke up. On the other hand, too much moisture results in inefficient grinding because the ore is flushed through the mill too quickly. Several techniques are available for measuring moisture and Mintek undertook an investigation in an attempt to develop a reliable robust moisture meter suitable for monitoring the moisture content of ore, which include the following: neutron backscattering, infrared absorption, microwaves, capacitance and moisture as a function of conductivity.

  6. Bioplastic production using wood mill effluents as feedstock.

    Science.gov (United States)

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  7. A comparison of the CATHIA-T sampler, the GK2.69 cyclone and the standard cowled sampler for thoracic fiber concentrations at a Taconite (iron ore)-processing mill.

    Science.gov (United States)

    Lee, Eun Gyung; Harper, Martin; Nelson, John; Hintz, Patrick J; Andrew, Michael E

    2008-01-01

    Several recommendations have been made to the effect that the most appropriate health-based size-selective criterion for fibers is the thoracic convention of the International Organization for Standardization (ISO). The performance of two thoracic samplers, the CATHIA-T (37-mm filter) and the GK2.69 cyclone (37-mm filter), was investigated against the standard 25-mm cowled sampler (current NIOSH 7400 standard method) to determine the effect of thoracic sampling on field results. A total of 270 samples: 80 field and 10 field blank samples for each sampler type, were taken from seven stations in the processing mill of an iron ore mine whose ore contains amphibole minerals. Slides were prepared using the dimethyl formamide/Euparal technique and relocatable cover slips. Two counters examined the slides according to NIOSH 7400 counting A rules with phase contrast microscopes. Prior to counting the sample slides, four reference slides were randomly selected and counted three times on different days to compare the coefficient of variation (CV) between and within counters. Also, seven reference slides were chosen to explore variability between the two microscopes. The average CV between counters (0.148) showed slightly higher than the average CVs within counters (0.072 for Counter 1 and 0.119 for Counter 2). The average CV between the two microscopes was 0.147. Compared to the standard cowled sampler, the overall fiber concentration was lower for the CATHIA-T sampler (CATHIA-T/Cowled = 0.63) and higher for the GK2.69 cyclone (GK2.69/Cowled = 1.66). The result for the CATHIA-T sampler is as expected from laboratory trials, but the result for the GK2.69 cyclone is not as expected. In conclusion, the CATHIA-T sampler has a potential advantage as a high-flow static sampler for screening coarse particles. However, these findings resulted from one field sampling site that contains amphibole minerals, not all of which are asbestiform. Thus, additional field samples from other

  8. Um modelo de referência para o processo de desenvolvimento de produtos de empresas do setor moageiro de trigo A reference model for the products development process for companies in the sector of milling wheat

    Directory of Open Access Journals (Sweden)

    Samanta Ullmann de Campos

    2011-09-01

    Full Text Available Este artigo apresenta um modelo de referência para o processo de desenvolvimento de produtos (PDP no setor moageiro de trigo. O modelo objetiva facilitar os projetos de novos produtos, avaliando necessidades, requisitos e limitações. Ele pode contribuir para a integração e comunicação entre as áreas funcionais, reduzindo o tempo de desenvolvimento. A estrutura operacional do modelo é composta por três macrofases e oito fases. No término de cada fase, as informações são compiladas em forma de um documento, que deve passar pela avaliação da direção (gate. A aplicação do modelo foi realizada a partir de um plano para sistematizar o PDP de uma empresa. A intervenção para ajustar o modelo à empresa contemplou: análise da situação atual do PDP, proposição de melhorias e aplicação do modelo. Entre os resultados, destaca-se a facilidade de enquadrar as soluções propostas para melhorar o PDP ao modelo referencial, mostrando a exequibilidade do mesmo.This paper presents a reference model for the milling wheat product development process (PDP. The model targets to facilitate the project of new products, evaluating necessities, requirements and limitations. It contributes to integrate and create communication among the functional areas, reducing development times. The operational structure of the model is composed of three macro-phases and eight phases. At the end of each phase, the main information is compiled in document type-form, which must pass by a top management evaluation gate. The application of the reference model was tested from a plan to systematize the PDP of a company. The intervention to adjust the reference model to the company analyzes the actual PDP status, proposition of improvements, and the conduction of such application. Among the results, the facility to apply the proposed solutions to improve the company's PDP using the reference model stand out, showing the practical adequacy of the proposed model.

  9. Challenges of fabricating plasmonic and photonic structures with Neon ion beam milling

    DEFF Research Database (Denmark)

    Leißner, Till; Fiutowski, Jacek; Bozhevolnyi, Sergey I.

    properties. We are currently studying the capabilities of focussed Helium and Neon ion beam milling for the fabricating of plasmonic and photonic devices. We found that Neon ion beam milling enables us to prepare plasmonic structures, such as trenches (see Fig. 1) and V-grooves without doping and alloying...... effects specific to Galium FIB. Neon FIB milling is superior to Helium FIB milling in terms of the processing speed and smaller levels of implanted ions. From our perspective it is the most promising technique for the fabrication of individual plasmonic devices with a few nanometers precision. The main...... presentation we show the current progress in Neon FIB milling of plasmonic structures. We compare different materials, in particular poly- and mono-crystalline gold as well as thin films of Titanium Nitride, which are commonly used for plasmonic applications....

  10. San Sebastián: the social and political effects of sugar mill closure in Mexico.

    Science.gov (United States)

    Powell, Kathy

    2007-01-01

    Mexico's sugar mills face an uncertain future: the closure of San Sebastián may well presage others if the climate for sugar production on national and international levels does not improve. While the continued squeezing of small cane producers reflects processes affecting peasant agriculture generally in Mexico, and indeed beyond, the fate of the mill workers made redundant when the mill closed similarly mirrors broad tendencies in labor in both the developed and developing world under neoliberalism. Former workers fell back upon personal, family, and community resources by migrating to the U.S. or locally reconstructing livelihoods characterized by a reduction in income, security, and access to social benefits. This article reports on the impact of the mill closure on the livelihoods of former mill worker families in the community of San Sebastián and offers some observations on their responses to the situation.

  11. COAL MICRONIZATION STUDIES IN VIBRATING MILL IN TERMS OF COAL WATER SLURRY (CWS FUEL PREPARATION

    Directory of Open Access Journals (Sweden)

    Michał Rejdak

    2017-03-01

    Full Text Available The paper presents the results of coal milling tests in aspect of slurry fuel preparation. The tests were carried out with the use of vibrating mill with working chamber of 47.5 dm3. The influence of milling time, amount and composition of grinding aids on degree of fineness and particle size distribution has been investigated. It has been found that the efficiency of the grinding process (in this type of milling device depends primarily on the milling time and the share of grinding aids and - to a lesser extent - on their polydispersity. The study allows to conclude that the grinding time, composition and share of used grinding aids enable to control the final grain size of coal which has an impact on apparent viscosity of coal water slurry.

  12. Modeling High-Energy Ball Milling in the Alumina-Yttria System

    Science.gov (United States)

    Alkebro, J.; Bégin-Colin, S.; Mocellin, A.; Warren, R.

    2002-02-01

    Experimental results from high-energy ball milling of alumina-yttria powder mixtures have been analyzed with models collected from the literature. Depending on the milling conditions, either there is formation of an intermediate phase in the alumina-yttria system (yttrium aluminum perovskite, YAP), or the sample becomes mostly amorphous. Variations due to milling tool material can be accounted for by local models based on the Hertzian theory of elastic bodies, but the effects of changing mills are poorly accounted for by published models. Therefore, the concept of an impact frequency distribution over the energy spectrum is introduced as a tool for studying the characteristics of the mills. The pressure on the powder trapped between two colliding bodies has been found to be the factor deciding the outcome of the process. The threshold behavior of the system yields an amorphous structure for low pressures, and formation of YAP when impact pressures exceed the threshold value.

  13. Microbial biogeochemistry of uranium mill tailings

    Science.gov (United States)

    Landa, Edward R.

    2005-01-01

    Uranium mill tailings (UMT) are the crushed ore residues from the extraction of uranium (U) from ores. Among the radioactive wastes associated with the nuclear fuel cycle, UMT are unique in terms of their volume and their limited isolation from the surficial environment. For this latter reason, their management and long-term fate has many interfaces with environmental microbial communities and processes. The interactions of microorganisms with UMT have been shown to be diverse and with significant consequences for radionuclide mobility and bioremediation. These radionuclides are associated with the U-decay series. The addition of organic carbon and phosphate is required to initiate the reduction of the U present in the groundwater down gradient of the mills. Investigations on sediment and water from the U-contaminated aquifer, indicates that the addition of a carbon source stimulates the rate of U removal by microbial reduction. Moreover, most attention with respect to passive or engineered removal of U from groundwaters focuses on iron-reducing and sulfate-reducing bacteria.

  14. Olive mill wastewater treatment: an experimental study.

    Science.gov (United States)

    Bettazzi, E; Morelli, M; Caffaz, S; Caretti, C; Azzari, E; Lubello, C

    2006-01-01

    Olive oil production, one of the main agro-industries in Mediterranean countries, generates significant amounts of olive mill wastewaters (OMWs), which represent a serious environmental problem, because of their high organic load, the acidic pH and the presence of recalcitrant and toxic substances such as phenolic and lipidic compounds (up to several grams per litre). In Italy, traditional disposal on the soil is the most common way to discharge OMWs. This work is aimed at investigating the efficiency and feasibility of AOPs and biological processes for OMW treatment. Trials have been carried out on wastewaters taken from one of the largest three-phase mills of Italy, located in Quarrata (Tuscany), as well as on synthetic solutions. Ozone and Fenton's reagents applied both on OMWs and on phenolic synthetic solutions guaranteed polyphenol removal efficiency up to 95%. Aerobic biological treatment was performed in a batch reactor filled with raw OMWs (pH = 4.5, T = 30 degrees C) without biomass inoculum. A biomass rich of fungi, developed after about 30 days, was able to biodegrade phenolic compounds reaching a removal efficiency of 70%. Pretreatment of OMWs by means of oxidation increased their biological treatability.

  15. Investigating Genetic Diversity of Foeniculum Vulgare Mill using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Omid Jadidi

    2016-06-01

    Full Text Available Medicinal plants are considered valuable genetic resources in Iran. One of these medicinal as well as spice plants is Foeniculum Vulgare Mill from Umbellifetae family used in different industries such as food, medicine, and cosmetics. It seems that due to different climate conditions in Iran this plant represents a high and valuable genetic diversity; therefore, management of genetic resources protection and obtaining information about genetic diversity will help awareness of evolution processes as well as genetic erosion of this valuable plant. Genetic diversity in local masses of Foeniculum Vulgare Mill can be investigated using molecule markers such as AFLP, RAPD, ISSR, SRAP, RFLP, and so on. In investigation of over 30 ecotype of local Foeniculum Vulgare Mill, different markers have shown that mean polymorphic content (PIC is about 36% and mean genetic diversity is estimated about 40% in different samples. Data obtained from molecule software analyses help to categorize Foeniculum Vulgare Mill genotype in different groups based on climate and geographical conditions. Principle components analysis (PCOA has also confirmed the results of cluster analysis. Dendrogram obtained by cluster analysis based on similarity coefficient of simple matching (SM and UPGMA algorithm can also categorize population of Foeniculum Vulgare Mill in different groups. Results of molecular variance analysis (AMOVA have shown that most genetic variance between geographical groups can be seen in populations. In general, according to investigations, there is a significant genetic diversity regarding agronomic and molecular traits of Foeniculum Vulgare Mill masses in Iran and knowing this genetic diversity will help in breeding programs, complementary studies, categorization, and so on.

  16. Análise da influência de dois processos distintos de moagem nas propriedades do pó precursor e do cimento de beta-TCP Analysis of the influence of two different milling processes on the properties of beta-TCP precursor powder and cement

    Directory of Open Access Journals (Sweden)

    H. A. I. Cardoso

    2012-06-01

    Full Text Available São várias as características que tem colocado os cimentos de fosfato de cálcio em evidência na área dos biomateriais, como sua bioatividade e reabsorção in vivo. Neste trabalho, analisou-se a influência de dois processos de moagem nas propriedades morfológicas do pó de [beta]-fosfato tricálcico, [beta]-TCP, e na resistência mecânica do cimento. O pó foi obtido via reação no estado sólido de CaCO3 e CaHPO4 a 1050 ºC, apresentando pureza de fase e ausência de elementos tóxicos. O pó foi moído em: (A moinho de bolas e (B moinho vibratório de alta energia; sendo analisado por MEV e distribuição granulométrica. Os pós apresentaram propriedades diferentes com relação à distribuição e tamanho médio de grão. Finalmente, o cimento preparado com o pó submetido ao processo (B apresentou valores de resistência mecânica significativamente maiores que o preparado com o pó submetido ao processo (A. Conclui-se que o processo de moagem (B é muito mais eficiente que o processo (A.There are several characteristics that put calcium phosphate cements in evidence, like its bioactivity and in vivo resorption. The influence of two milling processes on the morphological properties of the [beta]-tricalcium phosphate powder, [beta]-TCP, and in the mechanical properties of the cement were analyzed. The powder was obtained by solid state reaction of CaCO3 and CaHPO4 at 1050 ºC. It showed high phase purity and absence of toxic elements. The powder was processed in ball mill (A and high-energy vibratory mill (B, with posterior analysis by SEM and particle size distribution. The powders showed different average and distribution of grain size. Finally, the cement prepared with powder submitted to process (B showed values of axial tensile strength significantly greater than that prepared with powder submitted to process (A. The milling process (B is much more efficient than the process (A.

  17. PULPA CUBA MILL ENERGY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Juan Pedro Hernández Touset

    2015-10-01

    Full Text Available An energy study was performed at Pulpa Cuba Paper Mill, located in Sancti Spiritus, where an energy management system was applied according to NC: ISO 50001, in order to assess the energy system by applying energy management systems for energy and water reduction in the paper mill, in which the current steam generation, distribution and consumption system is diagnosed. The proposal of a modified energy scheme with 1 MW Backpressure Steam Turbine Generator and rehabilitation of the original boiler or installing a lower capacity boiler contributes to save financial resources by the concept of water, fuel and electricity. The implementation of four projects will save 3,095,574 CUC / y and an average payback period of about 1 year is expected.

  18. Influence of the milling strategy on the durability of forging tools

    OpenAIRE

    Ficko, Mirko; Balič, Jože; Gotlih, Karl; Pahole, Ivo; Studenčnik, Dejan

    2015-01-01

    The quality of a tool's surface has a direct influence on the number of well-produced parts. For the machining of an active tool surface, two technological processes are used: electrical discharge machining and high-speed milling. These two processes are used when machining new tools and for the repairing of used forging tools. In both cases, the material has already been thermally treated, so it has to be used for hard milling. Practical experience shows that the milling strategy has a big i...

  19. ATTITUDES AND INTERESTS OF THE MILL EMPLOYEES TOWARDS THE SPRORTS RECREATION

    Directory of Open Access Journals (Sweden)

    Momo Nikolić,

    2007-05-01

    Full Text Available Topic of the research is the attitudes and interest of the Mill industry workers in Niksic towards sports recreation. The aim of the research is to establish attitudes of the Mill industry employees towards sports recreation and to establish connections and conditionalities depending on age, sex, level of education, subjective assessment of the health condition and level of information one has. The research sample represents employees of both sexes in the mill industry in Niksic. Statistical processing of the data is interpreted quantitatively and qualitatively. For the qualitative data processing we used calculation of percentage relations, coeffi cient of contingency and Hi-quadrate test.

  20. Using treated municipal wastewater in a linerboard mill -- legal, political, and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, W. (Montville Water Pollution Control Authority, Montville, CT (United States)); Scogin, R. (Rand-Whitney Containerboard, L.P., Montville, CT (United States)); Cobery, J.E. (Bingham, Dana and Gould, Boston, MA (United States))

    1994-10-01

    When plans to expand production at an antiquated mill were jeopardized by an inadequate source of process water, the mill explored the possibility of producing first-quality linerboard using treated municipal wastewater. This paper outlines the legal, technical, and political issues encountered in developing a plan that would allow the mill to use effluent from a municipal wastewater treatment system. The technology is available to make reuse of municipal wastewater feasible, as evidence by the closed-loop delivery and discharge system describe in this report. Nevertheless, legal and political concerns make the implementation process arduous and time consuming.

  1. ROLLING MILL SYSTEM DYNAMIC DESIGN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is studied how the aluminum foil chatter mark is produced and controlledThe stableness of hydraulic AGC system,fluid vibration of capsule system,and electromechanical coupling of AC/AC VVVF system and dec oupling are also studiedIt is shown that rolling mill design should go to syst em dynamic design from traditional designThe framed drawing of system dynamic design program is presented

  2. GLYCOSIDES FROM LINARIA VULGARIS MILL

    Directory of Open Access Journals (Sweden)

    Natalia Mashcenko

    2008-12-01

    Full Text Available A new flavonol glycoside, 5,4′-dimethylkaempferol 3-O-β-D-(6′′-α-Lrhamnopyranosyl -glucopyranoside, together with three known compounds were isolated from the n-butanolic soluble fraction of underground and aerial parts of Linaria vulgaris Mill, collected on the territory of Moldova. The characterisation of these compounds was achieved by various chromatographic and spectroscopic methods (IR, UV, 13C-NMR, 1H-NMR and MS.

  3. Systematic evaluation of satellite remote sensing for identifying uranium mines and mills.

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Dianna Sue; Stork, Christopher Lyle; Smartt, Heidi Anne; Smith, Jody Lynn

    2006-01-01

    In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are

  4. The principle of second generation wavelet for milling cutter breakage detection

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Performance degradation or failure of manufacturing equipment will badly influence machining quality.Because of discontinuousness of the milling process,dynamic signals produced in the milling process become non-stationary.This paper indicates that the essence of SGW(second generation wavelet) transform in non-stationary signal processing is the mathematics principle of inner product transform of a dynamic signal with basis functions.Namely,by means of the inner product operation of a signal with basis functions containing scale function and wavelet function,signal decomposition and reconstruction are obtained.Acoustic emission signals generated in the milling processes of a CNC machine were analyzed by using the basis functions of SGW which are oscillation,decay and compact support.The features of end milling cutter breakage have been extracted,and the influences on machining surface quality have been identified effectively,which provide scientific bases for fault diagnosis,error tracing and quality control.

  5. The principle of second generation wavelet for milling cutter breakage detection

    Institute of Scientific and Technical Information of China (English)

    HE ZhengJia; CAO HongRui; LI Zhen; ZI YanYang; CHEN XueFeng

    2009-01-01

    Performance degradation or failure of manufacturing equipment will badly influence machining quality.Because of discontinuousness of the milling process, dynamic signals produced in the milling process become non-stationary. This paper indicates that the essence of SGW (second generation wavelet)transform in non-stationary signal processing is the mathematics principle of inner product transform of a dynamic signal with basis functions. Namely, by means of the inner product operation of a signal with basis functions containing scale function and wavelet function, signal decomposition and recon-struction are obtained. Acoustic emission signals generated in the milling processes of a CNC machine were analyzed by using the basis functions of SGW which are oscillation, decay and compact support.The features of end milling cutter breakage have been extracted, and the influences on machining surface quality have been identified effectively, which provide scientific bases for fault diagnosis, error tracing and quality control.

  6. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    Science.gov (United States)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  7. Development of meso-scale milling machine tool and its performance analysis

    Institute of Scientific and Technical Information of China (English)

    Hongtao LI; Xinmin LAI; Chengfeng LI; Zhongqin LIN; Jiancheng MIAO; Jun NI

    2008-01-01

    To overcome the shortcomings of current technologies for meso-scale manufacturing such as MEMS and ultra precision machining, this paper focuses on the investigations on the meso milling process with a miniaturized machine tool. First, the related technologies for the process mechanism studies are investigated based on the analysis of the characteristics of the meso milling process. An overview of the key issues is presented and research approaches are also proposed. Then, a meso-scale milling machine tool system is developed. The subsystems and their specifications are described in detail. Finally, some tests are conducted to evaluate the performance of the system. These tests consist of precision measurement of the positioning subsystem, the test for machining precision evaluation, and the experiments for machining mechanical parts with com-plex features. Through test analysis, the meso milling process with a miniaturized machine tool is proved to be feasible and applicable for meso manufacturing.

  8. Study on surface defects in milling Inconel 718 super alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liu; Chengzu, Ren; Guofeng, Wang; Yinwei, Yang; Lu, Zhang [Tianjin University, Tianjin (China)

    2015-04-15

    Nickel-based alloys have been extensively used as critical components in aerospace industry, especially in the key section of aero engine. In general, these sections are manufactured by milling process because most of them have complex forms. However, surface defects appear frequently in milling due to periodic impact force, which leads to the deterioration of the fatigue life. We conducted milling experiments under different cutting conditions and found that four kinds of defects, i.e., tear, cavity, build up edge (BUE) and groove, commonly appear on the machined surface. Based on the observed results, the morphology and generation regime of these defects are analyzed and the carbide particle cracking is discussed to explain the appearance of the nickel alloy defects. To study the effect of the cutting parameters on the severity of these surface defects, two qualitative indicators, which are named as average number of the defects per field and average area ratio of the defects per field, are presented and the influence laws are summarized based on the results correspondingly. This study is helpful for understanding the generation mechanism of the surface defects during milling process of nickel based super alloy.

  9. Helical Feed Milling with MQL for Boring of Aluminum Alloy

    Science.gov (United States)

    Sasahara, Hiroyuki; Kawasaki, Makoto; Tsutsumi, Masaomi

    MQL is applied to the helical feed milling hole-making process of aluminum alloy. It is difficult to drill on aluminum alloy without cutting fluid because the adhesion to the tool leads to a chip jam, the tool breakage or low accuracy. By employing the helical feed milling, cutting temperature will decrease, each chip length will become short and a chip jam in a hole will be avoided, because the intermittent cutting is realized. As a result of employing the helical feed milling with MQL, it was shown that the shape error is decreased, a burr formation is decreased, machining temperature becomes low and the cutting force becomes small comparing with drilling process. Shape error by helical feed milling with MQL is comparable with that with flood coolant. In this case, small mist particle counts under 5μm, which affects working environment, are almost constant if the spindle speed varies. Scattered mist particle counts are less when MQL is employed over 20000 min-1 spindle speed comparing with the flood coolant.

  10. Preparation and investigation of Al–4 wt% B4C nanocomposite powders using mechanical milling

    Indian Academy of Sciences (India)

    A Alizadeh; E Taheri-Nassaj; H R Baharvandi

    2011-08-01

    Boron carbide nanoparticles were produced using commercially available boron carbide powder (0.8 m).Mechanical milling was used to synthesize Al nanostructured powder in a planetary ball-mill under argon atmosphere up to 20 h. The same process was applied for Al–4 wt% B4C nanocomposite powders to explore the role of nanosize reinforcements on mechanical milling stages. Scanning electron microscopy (SEM) analysis as well as apparent density measurements were used to optimize the milling time needed for completion of the mechanical milling process. The results show that the addition of boron carbide particles accelerate the milling process, leading to a faster work hardening rate and fracture of aluminum matrix. FE-SEM images show that distribution of boron carbide particles in aluminum matrix reaches a full homogeneity when steady state takes place. The better distribution of reinforcement throughout the matrix would increase hardness of the powder. To study the compressibility of milled powder, modified heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of B4C particles. For better distribution of reinforcement throughout the matrix, , modified heckel equation was used to consider the pressure effect on yield strength as well as reinforcing role of B4C particles.

  11. Compressive properties of a reaction milled NiAl-AlN composite

    OpenAIRE

    Whittenberger, J. Daniel; Arzt, Eduard; Luton, Michael J.

    1990-01-01

    Cryomilling (high intensity mechanical ball milling in a liquid nitrogen bath) of the B2 crystal structure nickel aluminide leads to a NiAl composite containing about 10 vol. % of AlN particles. This is the result of a reaction milling process, where nitrogen incorporated into the matrix during cryomilling reacts with Al during subsequent thermomechanical processing to form the composite. Compressive testing at 1300 K of such materials densified by 1505 K extrusion or isostatic pressing at 13...

  12. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    Science.gov (United States)

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  13. Application of point-process statistical tools to stable isotopes in xylem water for the study of inter- and intra-specific interactions in water uptake patterns in a mixed stand of Pinus halepensis Mill. and Quercus ilex L.

    Science.gov (United States)

    Comas, Carles; del Castillo, Jorge; Voltas, Jordi; Ferrio, Juan Pedro

    2013-04-01

    The stable isotope composition of xylem water reflects has been used to assess inter-specific differences in uptake patterns, revealing synergistic and competition processes in the use of water resources (see e.g. Dawson et al. 1993). However, there is a lack of detailed studies on spatial and temporal variability of inter- and intra-specific competition within forest stands. In this context, the aim of this work was to compare the isotope composition of xylem water (δ18O , δ2H) in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill, in order to understand their water uptake patterns throughout the growing season. In addition, we analyze the spatial variability of xylem water, to get insight into inter-specific strategies employed to cope with drought and the interaction between the individuals. Our first hypothesis was that both species used different strategies to cope with drought by uptaking water at different depths; and our second hypothesis was that individual trees would behave in different manner according to the distance to their neighbours as well as to whether the neighbour is from one species or the other. The study was performed in a mixed stand where both species are nearly co-dominant, adding up to a total of 33 oaks and 77 pines (plot area= 893 m2). We sampled sun-exposed branches of each tree six times over the growing season, and extracted the xylem water with a cryogenic trap. The isotopic composition of the water was determined using a Picarro Water Analizer L2130-i. Tree mapping for spatial analysis was done using a high resolution GPS technology (Trimble GeoExplorer 6000). For the spatial analysis, we used the pair-correlation function to study intra-specific tree configuration and the bivariate pair correlation function to analyse the inter-specific spatial configurations (Stoyan et al 1995). Moreover, the isotopic composition of xylem water was assumed to be a mark associated to each tree and analysed as a

  14. Novel spin glasses by mechanical milling

    Institute of Scientific and Technical Information of China (English)

    周国富; H.Bakker

    1996-01-01

    Novel spin-glass alloys were synthesized by milling intermetallic compounds and also by milling mixtures of crystalline elemental powder in a high-energy ball mill.Spin glass behaviour was found in amorphous Co2Ge,which was amorphised by milling in mechanically disordered crystalline GdAl2 in ball-milled crystalline and amorphous CoZr,and in mechanically alloyed Co-Cu,which formed a supersaturated f.c.c.solid solution.All these materials are binary alloys and tlie concentration of the magnetic element is high,which makes them novel types of spin glasses.It is shown that ball milling may not only lead to structural metallic glasses,but can also generate the magnetic pendant of a structural glass,namely the spin glass.

  15. Computer Modeling of the Surface Texture Treated by Mill with Curved Cutting Edge

    Directory of Open Access Journals (Sweden)

    M. S. Potapova

    2015-01-01

    Full Text Available Application of mills with a curvilinear profile of the cutting edge (often called rough end mills allows us to increase milling rate, but a roughness of the surface treated by such mills is higher, than after milling by the "ordinary" mills with the "smooth" cutting edge. Deterioration of a roughness is caused by a curvature of cutting edge. The shape and sizes of a profile are of crucial importance for forming roughness on a surface. A literary review revealed that depending on a profile of the cutting edge the roughness of the machined surface makes Ra2…12,5μm.There is a developed parametrical computer model to visualize roughness formed on a surface after milling by the fluting cutter and curved cutting edge mill. The computer model also allows a 3D chip type to be cut off from a work-piece by the mills with various cutting edge profiles. When developing the model it was assumed that the tilt angle of a cutting flute is equal 0 °, a trajectory of the tooth movement is a circle rather than a trochoidal curve.An experimental test of the model has shown that the radial beats of the mill teeth have a very significant effect on the extent of the roughness formed on the machined surface. After amendments - taking into consideration teeth beats - introduced into model the modeling error made less than 5% that can be explained by the fact that profile parameters of the cutting edge of mills embedded in the model are inaccurate because of the tilt angle the cutting flutes.The analysis of the surface model has shown that after milling the work piece has a cellular structure. Each tooth with curved cutting edge forms the cell repeating with the next turn of a mill. The adjacent teeth form identical cells displaced in the feed path with respect to the cell formed by the previous tooth by the chip load Sz. Unlike processing by the ordinary mills with the "smooth" cutting edge in this case on a surface there is a surface texture not only in the feed

  16. Formation of surface coating on milling balls during milling of Cr powders

    Institute of Scientific and Technical Information of China (English)

    王成国; 齐宝森; 王瑞华

    2002-01-01

    The formation regularity of surface coating on milling balls during milling of Cr powders was investigated, revealing that the plastic deformation of the balls surface plays an important role in the formation of coating and that the stronger affinity between the powders and the balls is a necessary pre-condition for the coating. The size of Cr powders, the coating thickness and the microhardness vary consistently with milling time during milling. At initial milling stage, the powder size decreases, while the coating thickness and the microhardness increase, however, after milling for 24h, they all change slightly with prolonged milling, indicating a dynamic equilibrium between the powders cold welding and crashing, i.e. an almost equal rate for the powders attaching to and breaking off the milling balls.

  17. 75 FR 49524 - Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding...

    Science.gov (United States)

    2010-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated July 22, 2010,...

  18. Surface integrity evolution and fatigue evaluation after milling mode, shot-peening and polishing mode for TB6 titanium alloy

    Science.gov (United States)

    Yao, Changfeng; Wu, Daoxia; Ma, Lufei; Tan, Liang; Zhou, Zheng; Zhang, Jiyin

    2016-11-01

    Surface integrity is closely related to the service life of parts and components. Effects of four kinds of integration processes on surface integrity and fatigue life are studied. These four integration processes are M (milling), MP (milling and polishing), MPS (milling, polishing and shot-peening), and MPSP (milling, polishing, shot-peening and polishing). When roughness, micro-hardness, residual stress, micro-structure and fatigue were considered after the four integration processes, research results show that MPSP process can obtain the best surface topography and roughness, micro-hardness, and residual stress field distribution; MPSP process has the longest fatigue life, and the fatigue life of MPSP process is about 68 times of M process, 56 times of MP process, and 48 times of MPS process; The fatigue fracture of the specimen after MPSP process is flat, and the depth of the crack initiation site for MPSP specimen is approximately 150 μm below the surface.

  19. STABILIZATION OF EXPANSIVE SOIL USING MILL SCALE

    OpenAIRE

    Y.I.Murthy

    2012-01-01

    The present paper deals with the evaluation of the mechanical properties of black cotton soil mixed with mill scale in varying proportions and comparing the same with the results of pure black cotton soil. The mechanical properties of mill scale and black cotton soil are individually determined first and then the two are combined in varying proportions. The properties like plastic limit, CBR and Permeability of the same are evaluated. It is found that mixing mill scale in varying proportions ...

  20. Mill, Liberty And The Facts Of Life

    OpenAIRE

    Stimson, Shannon C.; Milgate, Murray

    2001-01-01

    This paper examines John Stuart Mill's discussion of economic liberty and individual liberty, and his view of the relationship between the two. It explores how, and how effectively, Mill developed his arguments about the two liberties; reveals the lineages of thought from which they derived; and considers how his arguments were altered by political economists not long after his death. It is argued that the distinction Mill drew between the two liberties provided him with a framework of conc...

  1. Developing postprocessor for five-axes milling machines with dual rotary head

    Directory of Open Access Journals (Sweden)

    Živković Srđan P.

    2014-01-01

    Full Text Available Five axis milling technology has been in use nearly 25 years in VTI Belgrade. Primarily it is used in the production process of wind tunnel models. For generating tool path and the post-processing paths, used postprocessor generated on Siemens PLM NX. Producer of CAD/CAM software, in newer versions, the old concept of post processing GPM (Graphics Postprocessor Module replaced it with a new, improved, module MOM (Manufacturing Output Manager. The VTI are identified in the CNC code for five axes milling, generated using the MOM module, some errors. Product support application engineer confirmed all the allegations VTI. This was the reason for the development of its own postprocessor for five axes milling machines with double rotating head. The paper gives a detailed overview of the development based on the kinematic model of the five-axes milling machine in VTI Belgrade.

  2. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    Science.gov (United States)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  3. Treatment and valorization of olive mill wastewaters

    Directory of Open Access Journals (Sweden)

    Nabila Slimani Alaoui

    2016-04-01

    Full Text Available This study aims to evaluate the effectiveness of the physicochemical process with lime and ferric chloride in removing the pollution generated by the olive mill wastewaters (OMW .The characterization of the samples has shown that they are acidic, with a black color and a strong organic load due to the presence of phenolic compounds. The combination of the lime and the ferric chloride allows the removal of 87% of the total suspended solid (TSs, 58% of chemical oxygen demand (COD and 75% of Phenolic compounds. After purification the treated OMW were valorised as wash water or used for irrigation of green spaces and the generated sludge were dried and used to combustion. 

  4. Environmentally friendly pretreatment of plant biomass by planetary and attrition milling.

    Science.gov (United States)

    Kim, Hyeon Jeong; Lee, Siseon; Kim, Jungbae; Mitchell, Robert J; Lee, Jin Hyung

    2013-09-01

    This study evaluated the use of planetary and attrition milling as pretreatment processes for lignocellulosic biomass using rice straw. Planetary milling reduced the rice straw crystallinity from 0.48 to 0.11. Since the samples could be milled and enzymatically treated using the same media, loss of the biomass due to washing was effectively eliminated. In contrast, conventional sodium hydroxide and soaking in aqueous ammonia (SAA) processes showed a loss of 34.2% and 14.8%, respectively. Furthermore, milling produced significantly lower concentrations of soluble phenolics than the alkali treatments. Using a bioluminescent bioreporter strain that is sensitive to these phenolics, neither of the milled samples elicited a response while the sodium hydroxide and SAA samples led to a 25.8 and 4.7 -fold induction, respectively. Although planetary milling produced more reducing sugars than attrition milling before saccharification, both had similar monosaccharide yields, i.e., 0.38 and 0.34 g/g-biomass, respectively, when 40 g/l rice straw was treated.

  5. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Rong [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Chen, Ding, E-mail: ma97chen@hotmail.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Qianxia [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Bian, Zhibing; Dai, Haixiong; Zhang, Chi [Jiangsu Jinling Special Paint Co., Ltd., Yangzhou 225212 (China)

    2014-10-15

    Highlights: • TiH{sub 2} was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH{sub 2} with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process.

  6. Structural evolution of ball-milled permalloy

    Energy Technology Data Exchange (ETDEWEB)

    Brzozka, K., E-mail: kbrzozka@poczta.f [Technical University, Department of Physics (Poland); Oleksakova, D.; Kollar, P. [P.J. Safarik University, Department of Condensed Matter Physics, Institute of Physics, Faculty of Science (Slovakia); Szumiata, T.; Gorka, B.; Gawronski, M. [Technical University, Department of Physics (Poland)

    2006-02-15

    Two series of Fe{sub 19.8}Ni{sub 80.2} samples obtained by ball milling and differing in the form of starting material were investigated by Moessbauer spectroscopy. In the case of milled elemental powder, strong structural evolution was stated: both {alpha} and {gamma} phases arise and a small amount of pure iron is present as well. The annealing of as-milled powder at 490{sup o}C causes faster forming of {gamma}-(Ni-Fe) phase. Only slight changes in atomic order were stated in the series of milled polycrystalline ribbon.

  7. Cutting Characteristics of Force Controllable Milling Head

    Institute of Scientific and Technical Information of China (English)

    Shirakashi; Takahiro; Shibuya; Wataru

    2002-01-01

    In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction respectively. Both up-cut and down-cut can be carried out simultaneously by t hese milling cutters. The each depth of cut, the ratio of up/down cutting depth , by these cutters can be also selected. The cutting force characteristics were experimentally discussed by changing the ratio. The cut...

  8. Reduced graphene oxide synthesis by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, O. [Department of Physics, M.U.C Women' s College, Burdwan 713104 (India); Mitra, S. [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India); Pal, M. [CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Datta, A. [University School of Basic and Applied Science (USBAS), Guru Gobind Singh Indraprastha University, New Delhi 110075 (India); Dhara, S. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chakravorty, D., E-mail: mlsdc@iacs.res.in [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India)

    2015-07-01

    Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. The process of ball milling introduces defects and removes oxygen functional groups, thereby creating the possibility of fine tuning the band gap of all intermediate stages of the structural evolution. A limit of the backbone sp{sup 2} network structure has been found which should be able to accommodate defects, before amorphization sets in. The amorphization of graphene oxide is achieved rather quickly in comparison to that of graphite. From thermogravimetric and differential scanning calorimetric analysis along with Fourier transform infrared (FTIR) and Raman spectroscopic studies, it is found that the number of oxygen-containing groups decreases at a faster rate than that of aromatic double bonds with increasing ball milling time with a maximum limit of 3 h. Several characterization techniques (FTIR, Raman, UV–Visible and X-ray photoelectron spectroscopy) have confirmed that the material synthesized is, indeed, reduced graphene oxide. - Highlights: • Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. • Fine tuning the band gap by introducing defects and removing oxygen functional groups. • Introduction of excess defects leads to amorphization. • Photoluminescence has been observed in the UV-blue region.

  9. TECHNOLOGICAL FEATURES OF MILLING AND FRACTIONATION OF FLAXSEEDS

    Directory of Open Access Journals (Sweden)

    A. Feskova

    2015-01-01

    Full Text Available Summary. The optimal parameters of milling and fractionation of flaxseeds were substantiated. It was found that the hull fraction with the highest content of lignan secoisolariciresinol diglucoside SDG was obtained when flaxseeds were grinded using a rotatory impact continuous operation mill at the rotation 1380-1640 rpm. Studies have shown that with the increasing of the rotor speed the number of unbriken seeds decreased. However, due to the fact that the shells are crushed more, they become more difficult to separate from the cotyledons. For identification and quantification of SDG the HPLC-MS method was used. It is found that the optimum separation membranes and cotyledon fraction occurs at sifting milled seeds sequentially through the sieves having meshes of 1 and 0.5 mm. The technology of industrial production of lignans-containing fraction and flour on the basis of flaxseeds processing were proposed. This technology includes milling flaxseeds at the rotation 1380-1640 rpm, with subsequent 2% silicon dioxide addition and stepwise sieving using sieves with the mesh size 2 mm. To use a fraction membranes high in lignans as raw material for biologically active additives to food it needed additional enforcement-ground to a size not more than 0.4 mm (technological features of capsulation. The developed technology allowed getting with maximum yields of lignans-containing fraction (10% yield and flaxseed flour (80% yield.

  10. Research on Positioning Error Compensation for Micro Milling Machine Tool

    Institute of Scientific and Technical Information of China (English)

    Ming-Jun Chen; Wen-Lan Tian; Yong Xiao; Yan Jiang

    2014-01-01

    Micro milling has many advantages in fabricating three⁃dimensional ( 3D) structure in micrometer scale. The micro milling machine tool with high positioning accuracy is of great importance for getting micro structure with high profile precision and good surface quality. Meanwhile, the method of position error compensation is a good way to improve the accuracy of the micro milling machine tools. In this paper, a software method is adopted to compensate the positioning error and improve the positioning accuracy. According to error cancellation theory, the compensation values are generated and compensation tables are built to adjust the positioning error in the NC system based on Industrial Motion and Automation Control ( IMAC) . The positioning accuracy of linear motor is ±0�3μm without backlash after compensation. In order to verify the effectiveness of compensation on the machining performance, concave spherical surfaces are processed on the micro milling machine tool. The experimental results show that the profile radius error of the spherical surface machined with compensation decreases more than 60%.

  11. Carbonyl trapping and antiglycative activities of olive oil mill wastewater.

    Science.gov (United States)

    Navarro, Marta; Fiore, Alberto; Fogliano, Vincenzo; Morales, Francisco J

    2015-02-01

    The use of natural compounds as antiglycative agents to reduce the load of advanced glycation end products from diet is very promising. Olive mill wastewater is a by-product of the olive oil extraction processes with a high content of hydroxytyrosol, hydroxytyrosol derivatives and molecules containing o-dihydroxyl functions such as verbascoside. Two powders were obtained after the ultrafiltration and nanofiltration of olive mill wastewater, and successive spray drying with maltodextrin and acacia fiber. The samples were characterized by phenolic composition and antioxidant capacity. Antiglycative capacity was evaluated by in vitro BSA-glucose and BSA-methylglyoxal assays, formation of Amadori products and direct trapping of reactive dicarbonyls (methylglyoxal and glyoxal). Both ultrafiltered and nanofiltered olive mill wastewater powders had an activity comparable to quercetin and hydroxytyrosol against the inhibition of protein glycation (IC50 = 0.3 mg mL(-1)). The antiglycative activity of the powder was further investigated after separation by reverse phase solid extraction. Fractions extracted with the methanol content higher than 40% and rich in hydroxytyrosol and verbascoside exerted the highest reactivity against dicarbonyls. Data confirmed that the direct trapping of dicarbonyl compounds is the main route explaining the antiglycative action rather than of the already known antioxidant capacity. Results support further investigations to evaluate the technological feasibility to use olive mill wastewater powders as antiglycative ingredients in foods or in pharmacological preparations in future.

  12. Cutting Power during Milling of Thermally Modified Pine Wood

    Directory of Open Access Journals (Sweden)

    Andrzej Krauss

    2016-09-01

    Full Text Available The paper presents experimental testing results of cutting power of thermally modified wood of Scots pine (Pinus sylvestris L. during lengthwise milling. The process of heat treatment was performed in the atmosphere of superheated steam, at temperatures of 130, 160, 190 and 220 °C, maintaining an identical heating time of 4 h for all modification variants. Cutting power was determined during milling of the radial surface of modifi ed and non--modified samples. It was calculated as the difference of power used by a milling machine during wood machining and at idling. Based on the results of measurements, it was found that, in the case of modified wood, cutting power decreases with an increase in modifi cation temperature (the dependence being linear and increases with an increase in the working engagement. At temperatures exceeding 160 °C, the power required for milling of modified wood is lower than cutting power for non-modified wood. The experiment indicated a significant reduction of cutting power with an increase in wood modification temperature. It was also found that an increase in the working engagement results in an increase of cutting power both in thermally modifi ed and non-modified wood.

  13. Thermographic Study of Chip Temperature in High-Speed Dry Milling Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Kuczmaszewski Józef

    2016-06-01

    Full Text Available This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.

  14. Experimental Studies on Co-composting of Municipal Solid Waste with Paper Mill Sludge.

    Science.gov (United States)

    Manjula, G; Meenambal, T

    2014-07-01

    In this study, a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along with paper mill sludge at different C/N ratios. About 10 kg of shredded waste containing paper mill sludge, saw dust and municipal solid waste was placed in reactors in different proportions and 100 mL of effective microorganisms was added to it. The variation in physical and chemical parameters was monitored throughout the process. The results indicate that co-composting of paper mill sludge with municipal solid waste produces compost that is more stable and homogenous and can be effectively used as soil conditioner.

  15. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  16. Evaluation of in vitro dissolution rates of thorium in uranium mill tailings.

    Science.gov (United States)

    Reif, R H

    1994-11-01

    Dissolution rates of thorium from the uranium mill tailings piles at two Department of Energy Uranium Mill Tailings Remedial Action Project (UMTRAP) sites have been evaluated. The thorium dissolution rates were evaluated in vitro using simulated lung fluid. The former uranium mills at the UMTRAP sites employed different chemical processes (acid leach and alkaline pressure leach) to extract the uranium from the ore, and the thorium dissolution rates at these sites were found to be markedly different. A site specific annual limit on intake (ALI) value for 230Th was calculated for the UMTRAP site that was associated with a multiple component dissolution curve.

  17. Mill Designed Bio bleaching Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Paper Science Technology

    2004-01-30

    generation of laccase has a broad spectrum of operating parameters. Nonetheless, the development of future genetically engineered laccases with enhanced temperature, pH and redox potentials will dramatically improve the overall process. A second challenge for LMS bleaching technologies is the need to develop effective, catalytic mediators. From the literature we already know this is feasible since ABTS and some inorganic mediators are catalytic. Unfortunately, the mediators that exhibit catalytic properties do not exhibit significant delignification properties and this is a challenge for future research studies. Potential short-term mill application of laccase has been recently reported by Felby132 and Chandra133 as they have demonstrated that the physical properties of linerboard can be improved when exposed to laccase without a chemical mediator. In addition, xxx has shown that the addition of laccase to the whitewater of the paper machine has several benefits for the removal of colloidal materials. Finally, this research program has presented important features on the delignification chemistry of LMS{sub NHA} and LMS{sub VA} that, in the opinion of the author, are momentous contributions to the overall LMS chemistry/biochemistry knowledge base which will continue to have future benefits.

  18. Palm Oil Milling Wastes and Sustainable Development

    Directory of Open Access Journals (Sweden)

    A. C. Er

    2011-01-01

    Full Text Available Problem statement: Palm oil milling generates solid wastes, effluent and gaseous emissions. The aim of this study is to assess the progress made in waste management by the Malaysian palm oil milling sector towards the path of sustainable development. Sustainable development is defined as the utilization of renewable resources in harmony with ecological systems. Inclusive in this definition is the transition from low value-added to higher value-added transformation of wastes into resources. Approach: A longitudinal study was carried out from 2003-2010 via, initially a field survey and subsequently a key informant approach with observation as a complementation for both. Results: Solid wastes, inclusive of solid wastes derived from air emissions and palm oil mil effluent, have a utility function with zero wastage. The principal source of effluent is palm oil mill effluent. Treated palm oil mill effluent is utilized for cropland application by plantation-based palm oil mills. However, independent mills discharge treated palm oil mill effluent in accordance to environmental parameters into receiving waterways. Methane is also released by palm oil mill effluent. Biogas from palm oil mill effluent and biomass energy from solid wastes are potential sources of renewable energy in Malaysia. Conclusion: In general, the wastes from palm oil milling are returned to the field for cropland application, utilized in-house or in the plantation, or sold to third parties. Thus, there is progress made towards sustainable development. The addition of new technologies and replacement of old mills will help to reduce the carbon footprint. However, at this juncture, the feed-in tariff for renewable energy is not financially attractive. If the biogas and biomass renewable energy sector were to take-off, enhancement in the value chain would occur and in tandem further progress towards sustainable development can be attained.

  19. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    Science.gov (United States)

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  20. FePt magnetic particles prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, V., E-mail: vvjimeno@fis.ucm.es [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155, Las Rozas 28230 (Spain); Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain); Hernando, A.; Crespo, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155, Las Rozas 28230 (Spain); Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain)

    2013-10-15

    High-energy ball milling of Fe and Pt elemental powders has been carried out under dry and wet (in presence of solvent and surfactants) conditions. Dry milling leads to the formation of the disordered FCC-FePt alloy whereas by the wet milling procedure the main process is the decrease of Fe and Pt particle size, although some dissolution of Pt into Fe grains cannot be ruled out, and no hint of the formation of the FCC-FePt phase is observed even to milling times up to 20 h, as X-ray diffraction, electron microscopy and Mössbauer spectroscopy indicates. The as-milled particles were annealed at 600 °C for 2 h under Ar atmosphere. It is noticed that the disordered fcc-FePt phase observed in particles milled under dry conditions transform to ordered fct phase characterized by a hard magnetic behavior with a coercive field up to 10,000 Oe. However, those particles milled in the surfactant/solvent medium exhibit a soft magnetic behavior with a coercive field of 600 Oe. These results indicate that wet high-energy ball milling is not an adequate technique for obtaining single-phase FePt particles. - Highlights: • FePt particles have been obtained by high-energy ball milling. • In the presence of surfactants and solvents, almost no alloying process takes place. • After annealing, the coercive field of the FePt alloy particles increases from 150 Oe to 10,000 Oe.

  1. Effect of Addition of Mill Scale on Sintering of Iron Ores

    Science.gov (United States)

    Wang, Zhe; Pinson, David; Chew, Sheng; Monaghan, Brian J.; Pownceby, Mark I.; Webster, Nathan A. S.; Rogers, Harold; Zhang, Guangqing

    2016-10-01

    Iron-rich (65 to 70 pct total Fe) mill scale generated during processing by steel mills can be recycled by using it as a ferrous raw material in the sintering process. The effect of mill scale addition on the phase formation of sintered specimens from an industrial sinter blend containing 0 to 15 wt pct mill scale was examined, and the mineral phases formed during sintering under various conditions ( T = 1523 K to 1598 K [1250 °C to 1325 °C] and gas compositions of pO2 = 0.5, 5 and 21 kPa) were quantitatively measured. For samples sintered in air (pO2 = 21 kPa), there was negligible effect of mill scale addition on the phases formed. The oxidation of the mill scale was complete, and phases such as Silico-Ferrite of Calcium and Aluminum (SFCA), SFCA-I, and hematite dominated. Under lower oxygen partial pressures (pO2 = 0.5 or 5 kPa), and throughout the temperature range examined, the mill scale was converted to magnetite, with the extent of reaction controlled by the hematite-magnetite conversion kinetics. When sintered in the gas mixture with pO2 = 5 kPa, an increase in the mill scale content from 0 to 15 wt pct resulted in a decrease of hematite and total SFCA phases and a corresponding increase in the amount of magnetite which formed. The oxidation of wustite in mill scale to magnetite decreased the local partial pressure of O2 and increased sintering temperature, which promoted the decomposition of hematite.

  2. Finite Element Method Based Modeling for Prediction of Cutting Forces in Micro-end Milling

    Science.gov (United States)

    Pratap, Tej; Patra, Karali

    2017-02-01

    Micro-end milling is one of the widely used processes for producing micro features/components in micro-fluidic systems, biomedical applications, aerospace applications, electronics and many more fields. However in these applications, the forces generated in the micro-end milling process can cause tool vibration, process instability and even cause tool breakage if not minimized. Therefore, an accurate prediction of cutting forces in micro-end milling is essential. In this work, a finite element method based model is developed using ABAQUS/Explicit 6.12 software for prediction of cutting forces in micro-end milling with due consideration of tool edge radius effect, thermo-mechanical properties and failure parameters of the workpiece material including friction behaviour at tool-chip interface. Experiments have been performed for manufacturing of microchannels on copper plate using 500 µm diameter tungsten carbide micro-end mill and cutting forces are acquired through a dynamometer. Predicted cutting forces in feed and cross feed directions are compared with experimental results and are found to be in good agreements. Results also show that FEM based simulations can be applied to analyze size effects of specific cutting forces in micro-end milling process.

  3. PRODUCTION OF PALM OIL WITH METHANE AVOIDANCE AT PALM OIL MILL: A CASE STUDY OF CRADLE-TO-GATE LIFE CYCLE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Chiew Wei Puah

    2013-01-01

    Full Text Available The study discusses a case study of cradle to gate life cycle assessment for the production of Crude Palm Oil (CPO with methane avoidance at palm oil mill. The improved milling process enables total utilization of the oil palm fruit to produce alow oil palm based food source. The minimal modification in the mill includes cleaning of Fresh Fruit Bunches (FFB and obtaining the low oil food source from the aqueous stream. The oil palm fruit processing plant enables the significant reduction of Greenhouse Gas (GHG such as methane and carbon dioxide emissions by avoiding the formation of liquid biomass in the form of Palm Oil Mill Effluent (POME. The attributional Life Cycle Assessment (LCA shows the improved milling process contributes to significant reduction of GHG emission from palm oil mills as compared to the process of capturing biogas from POME. The palm based food source contains phytonutrients, namely carotenoids, tocols (tocopherol and tocotrienols and water soluble polyphenols.

  4. Changes of floodplain morphology by water mills: Legacy sediments stored behind mill dams as archive and source for pollution - Examples from the Wurm River, Lower Rhine Embayment, Germany

    Science.gov (United States)

    Buchty-Lemke, Michael; Frings, Roy; Hagemann, Lukas; Lehmkuhl, Frank; Maaß, Anna-Lisa; Schwarzbauer, Jan

    2016-04-01

    The Wurm River (Lower Rhine Embayment, Germany) is a small stream in a low mountain area near the Dutch-German border that has seen a lot of anthropogenic changes of its morphology since medieval times. Among other influencing factors, water mills, in particular, had an early impact on the sediment dynamics and created sediment traps. Several knickpoints in the long profile may represent the legacy of mill damming - or founded mill building at these spots. The knickpoints may also represent the aftermath of the colliery history. A study site in the upper reaches of the Wurm River features erosion terraces, incised following the demise of a mill dam in the early 20th century. The mill pond most likely collected sediment and additives e.g. used in agricultural and industrial processes. These legacy sediments from behind former mill dams provide information about anthropogenic pollution, particularly for the era of industrialization in the vicinity of the old industrial area of the city of Aachen. Along with the demise of the mill dam and the increased incision tendency, the sediments are also a secondary source for pollution in case of remobilization of contaminated sediments. Two major research questions are addressed. A) Which individual hydrological and geomorphological processes, both upstream and downstream, triggered the incision and the construction of the erosion terraces, which are preserved in the mill pond sediments? Is either the demised mill dam, or subsidence effects, or a combination of both the determining factor? B) Which contaminants are retained in the sediments? Is there a detectable point source for the pollutants or is it a mixture of diffuse anthropogenic (industry, agriculture, traffic, wastewater) and natural origin? To tackle these questions, sedimentological data are combined with geomorphological mapping and evaluation of historical data. A soil profile provides insight into the architecture of the floodplain, which is built of riverbed

  5. Improvements in nanoscale zero-valent iron production by milling through the addition of alumina

    Science.gov (United States)

    Ribas, D.; Cernik, M.; Martí, V.; Benito, J. A.

    2016-07-01

    A new milling procedure for a cost-effective production of nanoscale zero-valent iron for environmental remediation is presented. Conventional ball milling of iron in an organic solvent as Mono Ethylene Glycol produces flattened iron particles that are unlikely to break even after very long milling times. With the aim of breaking down these iron flakes, in this new procedure, further milling is carried out by adding an amount of fine alumina powder to the previously milled solution. As the amount of added alumina increases from 9 to 54 g l-1, a progressive decrease of the presence of flakes is observed. In the latter case, the appearance of the particles formed by fragments of former flakes is rather homogeneous, with most of the final nanoparticles having an equivalent diameter well below 1 µm and with an average particle size in solution of around 400 nm. An additional increase of alumina content results in a highly viscous solution showing worse particle size distribution. Milled particles, in the case of alumina concentrations of 54 g l-1, have a fairly large specific surface area and high Fe(0) content. These new particles show a very good Cr(VI) removal efficiency compared with other commercial products available. This good reactivity is related to the absence of an oxide layer, the large amount of superficial irregularities generated by the repetitive fracture process during milling and the presence of a fine nanostructure within the iron nanoparticles.

  6. A prediction-correction scheme for microchannel milling using femtosecond laser

    Science.gov (United States)

    Chen, Jianxiong; Zhou, Xiaolong; Lin, Shuwen; Tu, Yiliu

    2017-04-01

    In this paper, a prediction-correction scheme is proposed to online measure and regulate the milling depth of microchannel using an indicator of laser triggered plasma. Firstly, a prediction model, with respect to the laser fluence and feedrate, is established with several calibration tests using the least square fitting method. It is utilized to change the focal position of objective to track the depth evolution of newly generated surface. Meanwhile, a scanning path for every milling layer with an offset in Z-axis at the beginning and the end of the trajectory, is developed to drive the plasma brightness periodically changing. Then, the milling depth could be obtained when the brightness reaches to the maximum value. By doing so, an online measurement method is presented to estimate the milling depth using the trend of plasma brightness. Furthermore, a correction model is developed to iteratively adjust the feedrate with the online estimated depth. Therefore, the microchannel milling process could be monitored and controlled in a closed-loop manner, in order to accurately regulate the milling depth. Finally, an online measurement and closed-loop microchannel milling is carried out on the self-developed micro-machining center. The effectiveness and correctness of the proposed method are verified by comparing the estimated depth with the actually measured results.

  7. Effect of ball milling energy on rheological and thermal properties of amaranth flour.

    Science.gov (United States)

    Roa, Diego F; Baeza, Rosa I; Tolaba, Marcela P

    2015-12-01

    Pearled amaranth grains obtained by abrasive milling were processed by planetary ball milling to produce amaranth flours. The influence of milling energy on rheological and thermal behavior of amaranth flour dispersions and stability during 24 h storage at 4 °C were investigated based on a factorial design. The rheological behavior of flour dispersions (4 % and 8 % w/v) was determined using a rotational viscometer, while gelatinization degree was determined by differential scanning calorimetry as a measure of structural changes.The power law model was found to be suitable in expressing the relationship between shear stress and shear rate. Flour dispersions showed a pseudoplastic behavior. However this character decreased with the storage being dependent on flour concentration and milling energy. A decrease of the consistency index and an increase of the flow behavior index were observed as a result of the increasing milling energy. Gelatinization enthalpy decrease showed the loss of crystalline structure due to ball milling. Amaranth flour dispersions presented increasing stability during storage. It was observed, that the stability changed with the concentration of amaranth flours.Thus, more stable dispersions were obtained as the flour concentration increased. The highly milled sample was the most stable sample during the storage.

  8. Pollution Control: How Feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills

    Directory of Open Access Journals (Sweden)

    Yahaya S. Madaki

    2013-10-01

    Full Text Available Many palm oil mills in Malaysia still discharged either partially treated or raw palm oil mill effluent (POME into nearby rivers. Either partially treated or untreated POME depletes a water body of its oxygen and suffocates aquatic life. Vast amounts of biogas are also generated during anaerobic digestion of POME. This paper presented the key findings from the survey mailed to 86 palm oil mills located in Sarawak and Sabah. The survey results provide an overview of the position of the palm oil mills operators on current advance POME treatment technology (PTT in relation to achieving zero discharge concepts. The survey attempted to identify the key issues about the PTT in respect to feasibility of zero discharge concepts in palm oil mills. The results shows that, although palm oil mills generate a lot of different types of wastes during processing of Fresh Fruit Bunches, according to the operators and available literature, POME is the most difficult waste to manage. The results also shows that, palm oil mills cannot meet up with the new discharge limits of 20ppm of BOD and zero emission using only conventional open or closed pounding system

  9. Characteristics and oil absorption in deep-fat fried batter prepared from ball-milled wheat flour.

    Science.gov (United States)

    Thanatuksorn, Pariya; Kajiwara, Kazuhito; Suzuki, Toru

    2010-01-15

    The porous structure generated during frying influences oil absorption and textural qualities. The alteration in physical properties of wheat flour is suspected to affect the structure formation. The present study investigated the effect of physicochemical changes in wheat flour by the ball-milling process on structure formation and consequently oil absorption of a fried wheat flour batter model. Batter models containing 600 g kg(-1) moisture were made of 0-10 h ball-milled wheat flour and then fried in frying oil at 150 degrees C for 1-7 min. The samples made of milled flour possess larger pores and exhibit lower oil absorption than sample made of 0 h milled flour. The fracture force of a fried sample prepared from 5 and 10 h milled flour is lower than that of a sample prepared from 0 h milled flour. The decrease in glass transition temperature (T(g)) and melting temperature (T(m)) of milled flour affect the microstructure formation in the fried wheat flour batter. The microstructure is responsible for oil absorption and fracturability in fried food. The samples made of flour of longer ball-milling time have lower oil absorption and higher crispness. Ball-milling may be a tool to produce mechanically modified wheat flour which can reduce oil absorption for fried batter. Copyright (c) 2009 Society of Chemical Industry.

  10. Skin disease in paper mill workers

    NARCIS (Netherlands)

    Jungbauer, F.H.W.; Lensen, G.J.; Groothoff, J.W.; Coenraads, P.J.

    Background Paper mill workers have frequent and prolonged exposure to skin irritants and allergens and may have a higher risk of developing occupational dermatitis. Aims The aim of this study was to determine the extent of skin problems in a paper mill and how much was attributable to contact with

  11. Vertical mill simulation applied to iron ores

    Directory of Open Access Journals (Sweden)

    Douglas Batista Mazzinghy

    2015-04-01

    Full Text Available The application of vertical mills in regrind circuits is consolidated. This type of mill is now attracting interest in primary grinding applications, due to its higher efficiency when compared to ball mills, which are usually used at this stage. In this study, a coarse sample of iron ore was tested in a pilot scale grinding circuit with a vertical mill. Other three samples of pellet feed had already been tested with the methodology used in this study. The sample of coarse iron ore was characterized in laboratory tests carried out in a small batch ball mill. Selection and breakage function parameters were determined from the laboratory tests. The parameters were then used for simulating the pilot scale tests using Modsim™ software. The model previously implemented in Modsim™ has been successfully applied to represent the vertical mill operated with different ores. The simulations produced particle size distributions that were very close to the actual size distributions, and the predictions were accomplished only by imputing the calibrated parameters from the batch tests, the power draw and the feed size distribution of the pilot tests. The methodology is therefore useful for scale-up and simulation of vertical mills, only requiring laboratory tests that can be carried out in standard laboratory batch ball mills with small amounts of samples.

  12. Jiangsu Mills Attempt to Adjust Production

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The profit squeeze on China’s textile mills continues. In Jiangsu Province, a very important market, mills are reacting in a variety of ways to this situation. Spinners and weavers of man-made fiber appear to be the most adversely affected,

  13. Improvement of the stone elimination roller mill

    Institute of Scientific and Technical Information of China (English)

    SunGuofeng

    2005-01-01

    Elimination roller mill as raw materials preparing equipments is universally used in brick making industry. Stone Elimination Roller Mill should have following characteristics: high machine strength and good wearresistant of roller shell, safety reliability, high machinery intensity (impact strength) and rigidity, reliable hermetically sealed construction.

  14. The effects of lifter configurations and mill speeds on the mill power draw and performance

    Science.gov (United States)

    Usman, Husni; Taylor, Patrick; Spiller, D. Erik

    2017-01-01

    Grinding mills used in the mining industries are the most energy-intensive operation and require a large number of wear resistant materials as well. The 1-m mill was used to investigate the effects of three lifter configurations, namely Hi (High), Rail and Hi-Lo (High-Low), and mill speeds on the mill performance. The MillTraj software was also utilized to simulate the outermost charge trajectories of the mill. At the given operating conditions, the power draw of Hi lifter was slightly lower than that of the Rail and the Hi-Lo and thus, the Hi lifter showed improvement in the mill efficiency. The product size distributions of the different lifters are very close and the size distribution of Hi-Lo lifter is slightly finer than those of the other lifters. At 74% critical speed, the size distributions of the Rail and Hi-Lo lifters were finer than at 70% critical speed, while that of Hi lifter otherwise occurs. At 80% critical speed, the size distributions of the lifters were coarser than at 74% critical speed. In this case, the outer charge trajectories of each lifter could go down on the mill shell rather than on the toe of the mill charge, resulting in ineffective grinding. Increasing face angles and/or mill charge would allow the mill to be operated at higher speeds.

  15. Computer Vision Hardware System for Automating Rough Mills of Furniture Plants

    Science.gov (United States)

    Richard W. Conners; Chong T. Ng; Thomas H. Drayer; Joe G. Tront; D. Earl Kline; C.J. Gatchell

    1990-01-01

    The rough mill of a hardwood furniture or fixture plant is the place where dried lumber is cut into the rough parts that will be used in the rest of the manufacturing process. Approximately a third of the cost of operating the rough mill is the cost of the raw material. Hence any increase in the number of rough parts produced from a given volume of raw material can...

  16. Deconvolution of grading curves during milling: example of wheat straw

    Science.gov (United States)

    Blanc, Nicolas; Richefeu, Vincent; Mayer, Claire; Delenne, Jean-Yves

    2017-06-01

    The evolution of grading-curves during powder milling or agglomeration processes includes a wealth of information about the mechanisms involved at the scale of particles. However, such information can hardly be retrieved from the particle size distribution (PSD). Based on a minimization technique we developed a methodology for the decomposition of grading curves as sub-PSDs. In this paper we follow their evolution with time in the specific case of the comminution of wheat straw.

  17. PRODUCTION OF PALM OIL WITH METHANE AVOIDANCE AT PALM OIL MILL: A CASE STUDY OF CRADLE-TO-GATE LIFE CYCLE ASSESSMENT

    OpenAIRE

    Chiew Wei Puah; Yuen May Choo; Soon Hock Ong

    2013-01-01

    The study discusses a case study of cradle to gate life cycle assessment for the production of Crude Palm Oil (CPO) with methane avoidance at palm oil mill. The improved milling process enables total utilization of the oil palm fruit to produce alow oil palm based food source. The minimal modification in the mill includes cleaning of Fresh Fruit Bunches (FFB) and obtaining the low oil food source from the aqueous stream. The oil palm fruit processing plant enables the significant reduction of...

  18. Biorefinery Concept Development Based on Wheat Flour Milling

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Orth, Rick J.; Werpy, Todd A.; Gao, Johnway; Eakin, David E.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Murry, J; Flagg, Anthony; Lahman, L; Mennel, D; Lin, C J.; Landucci, Ron; Crockett, John; Peterson, Charles L.

    2002-09-22

    We are developing an innovative process for the recovery of a starch-rich product from millfeed (the low-value byproduct of wheat flour milling); enzymatic processing of the starch to glucose; and the subsequent processes for conversion of that glucose into a value-added product by either a catalytic or a fermentation process. We have completed the development of the starch recovery step with enzymatic processing and the assessment of its economic viability. The processes to use the glucose product as feedstock for catalytic processing and fermentation processing have been tested in the laboratory. Catalytic processing of the glucose from the extracted starch for polyol production is based on catalytic hydrogenation to sorbitol. Alternatively, fermentation of the extracted starch-derived glucose also provides a pathway to value-added chemical products via a platform chemical, lactic acid. The paper includes results from all the processing areas addressed. Starch extraction and glucose generation from wheat milling byproducts are presented with laboratory and scaled-up processing results. Results of fermentation of the glucose product to lactic acid in shaker flask tests are presented, documenting the minimal requirements for nutrient addition. Stirred batch reactor tests of catalytic hydrogenation of the glucose product to sorbitol are presented with a discussion of contaminant effects on the catalyst.

  19. Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics.

    Science.gov (United States)

    Mahajan, Bikram K; Yu, Xiaowei; Shou, Wan; Pan, Heng; Huang, Xian

    2017-02-20

    Bioresorbable electronics is predominantly realized by complex and time-consuming anhydrous fabrication processes. New technology explores printable methods using inks containing micro- or nano-bioresorbable particles (e.g., Zn and Mg). However, these particles have seldom been obtained in the context of bioresorbable electronics using cheap, reliable, and effective approaches with limited study on properties essential to printable electronics. Here, irregular nanocrystalline Zn with controllable sizes and optimized electrical performance is obtained through ball milling approach using polyvinylpyrrolidone (PVP) as a process control agent to stabilize Zn particles and prevent cold welding. Time and PVP dependence of the ball milled particles are studied with systematic characterizations of morphology and composition of the nanoparticles. The results reveal crystallized Zn nanoparticles with a size of ≈34.834 ± 1.76 nm and low surface oxidation. The resulting Zn nanoparticles can be readily printed onto bioresorbable substrates and sintered at room temperature using a photonic sintering approach, leading to a high conductivity of 44 643 S m(-1) for printable zinc nanoparticles. The techniques to obtain Zn nanoparticles through ball milling and processing them through photonic sintering may potentially lead to a mass fabrication method for bioresorbable electronics and promote its applications in healthcare, environmental protection, and consumer electronics.

  20. Research on the thermal load of CNC milling machine

    Science.gov (United States)

    Nie, Xue-Jun; Wu, Ping-Dong

    2011-05-01

    Machine tool accuracy is the assurance of top-quality products in machining processes. In the all kinds of errors related to machine tools, thermal errors of machine tools' parts play an important role in machining accuracy and directly influence both the surface finish and the geometric shape of the finished workpiece. Therefore the objective of this work was to analyze the temperature field and thermal deformation in some parts of CNC machine tools. In this paper, the thermal boundary condition of main spindle and driving ball screw in CNC milling machine are discussed, some parameters in heat transfer process are calculated. Based on steady heat transfer process, the thermal analysis about spindle and ball screw is carried out under ANSYS environment, and their temperature fields are obtained when milling machine is working. Then the deformations of main spindle and ball screw are acquired by applying the thermal structure coupling element. Furthermore, in order to decrease main parts' deformations and improve the accuracy of CNC milling machine, some suggests are proposed.