WorldWideScience

Sample records for cadmium-containing crystals based

  1. Protein Crystal Based Nanomaterials

    Science.gov (United States)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  2. Graphene-based photonic crystal

    OpenAIRE

    Berman, Oleg L.; Boyko, Vladimir S.; Kezerashvili, Roman Ya.; Kolesnikov, Anton A.; Lozovik, Yurii E.

    2010-01-01

    A novel type of photonic crystal formed by embedding a periodic array of constituent stacks of alternating graphene and dielectric discs into a background dielectric medium is proposed. The photonic band structure and transmittance of such photonic crystal are calculated. The graphene-based photonic crystals can be used effectively as the frequency filters and waveguides for the far infrared region of electromagnetic spectrum. Due to substantial suppression of absorption of low-frequency radi...

  3. Meta-analysis of cellular toxicity for cadmium-containing quantum dots.

    Science.gov (United States)

    Oh, Eunkeu; Liu, Rong; Nel, Andre; Gemill, Kelly Boeneman; Bilal, Muhammad; Cohen, Yoram; Medintz, Igor L

    2016-05-01

    Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials. PMID:26925827

  4. Meta-analysis of cellular toxicity for cadmium-containing quantum dots

    Science.gov (United States)

    Oh, Eunkeu; Liu, Rong; Nel, Andre; Gemill, Kelly Boeneman; Bilal, Muhammad; Cohen, Yoram; Medintz, Igor L.

    2016-05-01

    Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.

  5. Diamond based photonic crystal microcavities.

    Science.gov (United States)

    Tomljenovic-Hanic, S; Steel, M J; de Sterke, C Martijn; Salzman, J

    2006-04-17

    Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0x10(4), sufficient for proof of principle demonstrations in the quantum regime. PMID:19516502

  6. Liquid Crystal Cells Based on Photovoltaic Substrates

    Science.gov (United States)

    Lucchetti, L.; Kushnir, K.; Zaltron, A.; Simoni, F.

    2016-02-01

    Liquid crystal cells with LiNbO3:Fe crystals as substrates, are described. The photovoltaic field generated by the substrates is able to reorient the liquid crystal director thus giving rise to a phase shift on the light propagating through the cell, as in liquid crystal light valves. The process does not require the application of an external electric field, thus being potentially useful for applications requiring a high degree of compactness. An efficient optical switch with a high transmission contrast, based on the described optically-induced electric field, is also proposed.

  7. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B; Hoiby, P E; Missier, V; Pedersen, L H; Hansen, Theis Peter; Bjarklev, Anders Overgaard; Bang, Ole

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy and...

  8. Crystal Bases and Young Tableaux

    OpenAIRE

    Cliff, Gerald

    1997-01-01

    Let B be the crystal basis of the minus part of the quantized enveloping algebra of a semi-simple Lie algebra. Kashiwara has shown that B has a combinatorial description in terms of an embedding of B into the tensor product of B and k abstract crystals B_{i_j}, j=1,2,...,k, where the longest word in the Weyl group is s_{i_1}...s_{i_k}. We give an explicit description of the image of this embedding for classical Lie algebras of types A, B, C, D. This description is in terms of semi-standard Yo...

  9. Polymer-based photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Edrington, A.C.; Urbas, A.M.; Fink, Y.; Thomas, E.L. [Massachusetts Inst. of Tech., Cambridge (United States). Dept. of Materials Science and Engineering; DeRege, P. [Firmenich, Inc., Port Newark, NJ (United States); Chen, C.X.; Swager, T.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry; Hadjichristidis, N. [Athens Univ. (Greece). Dept. of Chemistry; Xenidou, M.; Fetters, L.J. [ExxonMobil Research Corp., Annandale, NJ (United States); Joannopoulos, J.D. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

    2001-03-16

    The development of polymers as photonic crystals is highlighted, placing special emphasis on self-assembled block copolymers. 1D self-assembled multilayers as well as 2D and 3D self-assembled structures are examined, then intricate block polymer structures such as that shown in the Figure are discussed as are birefringent multilayer and elastomeric films. (orig.)

  10. Crystal bases and quiver varieties (Geometric construction of crystal bases II)

    OpenAIRE

    Saito, Yoshihisa

    2001-01-01

    We give a crystal structure on the set of all irreducible components of Lagrangian subvarieties of quiver varieties. One con show that, as a crystal, it is isomorphic to the crystal base of an irreducible highest weight representation of a quantized universal enveloping algebra.

  11. Fluorous-based carbohydrate quartz crystal microbalance.

    Science.gov (United States)

    Chen, Lei; Sun, Pengfei; Chen, Guosong

    2015-03-20

    Fluorous chemistry has brought many applications from catalysis to separation science, from supramolecular materials to analytical chemistry. However, fluorous-based quartz crystal microbalance (QCM) has not been reported so far. In the current paper, fluorous interaction has been firstly utilized in QCM, and carbohydrate-protein interaction and carbohydrate-carbohydrate interaction have been detected afterward. PMID:25541017

  12. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  13. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.;

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using a sing...... singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  14. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.; Alkeskjold, Thomas Tanggaard; Mulvad, Hans Christian Hansen; Bassi, Paolo; Bjarklev, Anders Overgaard

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  15. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS)

    International Nuclear Information System (INIS)

    The Microcapillary Protein Crystallization System (MPCS) is a new protein-crystallization technology used to generate nanolitre-sized crystallization experiments for crystal screening and optimization. Using the MPCS, diffraction-ready crystals were grown in the plastic MPCS CrystalCard and were used to solve the structure of methionine-R-sulfoxide reductase. The Microcapillary Protein Crystallization System (MPCS) embodies a new semi-automated plug-based crystallization technology which enables nanolitre-volume screening of crystallization conditions in a plasticware format that allows crystals to be easily removed for traditional cryoprotection and X-ray diffraction data collection. Protein crystals grown in these plastic devices can be directly subjected to in situ X-ray diffraction studies. The MPCS integrates the formulation of crystallization cocktails with the preparation of the crystallization experiments. Within microfluidic Teflon tubing or the microfluidic circuitry of a plastic CrystalCard, ∼10–20 nl volume droplets are generated, each representing a microbatch-style crystallization experiment with a different chemical composition. The entire protein sample is utilized in crystallization experiments. Sparse-matrix screening and chemical gradient screening can be combined in one comprehensive ‘hybrid’ crystallization trial. The technology lends itself well to optimization by high-granularity gradient screening using optimization reagents such as precipitation agents, ligands or cryoprotectants

  16. Crystallization kinetics of Fe based amorphous alloy

    Science.gov (United States)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  17. Fork gratings based on ferroelectric liquid crystals.

    Science.gov (United States)

    Ma, Y; Wei, B Y; Shi, L Y; Srivastava, A K; Chigrinov, V G; Kwok, H-S; Hu, W; Lu, Y Q

    2016-03-21

    In this article, we disclose a fork grating (FG) based on the photo-aligned ferroelectric liquid crystal (FLC). The Digital Micro-mirror Device based system is used as a dynamic photomask to generated different holograms. Because of controlled anchoring energy, the photo alignment process offers optimal conditions for the multi-domain FLC alignment. Two different electro-optical modes namely DIFF/TRANS and DIFF/OFF switchable modes have been proposed where the diffraction can be switched either to no diffraction or to a completely black state, respectively. The FLC FG shows high diffraction efficiency and fast response time of 50µs that is relatively faster than existing technologies. Thus, the FLC FG may pave a good foundation toward optical vertices generation and manipulation that could find applications in a variety of devices. PMID:27136779

  18. Ionizing particle detection based on phononic crystals

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-01

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  19. Ionizing particle detection based on phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Arafa H., E-mail: arafa16@yahoo.com, E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  20. Liquid Crystal-based Beam Steering Technologies for NASA Applications

    Science.gov (United States)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip; Lavrentovich, Oleg; Wang, Xinghua; Pishnyak, Oleg; Kreminska, Liubov; Golovin, Andrii

    2006-01-01

    Liquid crystal-based beam steering devices can provide electronic beam scanning to angles above 1 milliradian, sub-microradian beam pointing accuracy, as well as wave-front correction to maintain output optical beam quality. The liquid crystal technology effort will be summarized, and the potential application of the resulting devices to NASA space-based scenarios will be described.

  1. Crystallization of zirconia based thin films.

    Science.gov (United States)

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C. PMID:26119755

  2. Polymer and metallodielectric based photonic crystals

    OpenAIRE

    Kassim, Syara

    2014-01-01

    The bottom-up colloidal synthesis of photonic crystals has attracted interest over top-down approaches due to their relatively simplicity, the potential to produce large areas, and the low-costs with this approach in fabricating complex 3-dimensional structures. This thesis focuses on the bottom-up approach in the fabrication of polymeric colloidal photonic crystals and their subsequent modification. Poly(methyl methacrylate) sub-micron spheres were used to produce opals, inverse opals and 3D...

  3. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    Science.gov (United States)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  4. Liquid-crystal tunable filter based on sapphire microspheres.

    Science.gov (United States)

    Gilardi, Giovanni; Donisi, Domenico; Serpengüzel, Ali; Beccherelli, Romeo

    2009-11-01

    We design an integrated optoelectronic device based on the whispering-gallery modes of a sapphire microsphere integrated with a liquid-crystal tuning medium to produce a narrowband, electrically tunable, channel-dropping filter. The sapphire microsphere is glued over a diffused waveguide in a glass substrate. At the base of the microsphere, a small volume of liquid crystal is infiltrated. We numerically evaluate the performance of the device and demonstrate a voltage tuning of the narrowband resonances. PMID:19881558

  5. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    Science.gov (United States)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  6. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization.

    Science.gov (United States)

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2016-02-29

    A facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here. The drug acting as the host particle and the polymer for coating are Griseofulvin (GF) and Eudragit RL100, respectively. The polymer's cloud point temperature in its acetone solution was determined by UV spectrophotometry. An acetone solution of the polymer containing the drug in solution as well as undissolved drug crystals in suspension were pumped through the tube side of the SHFCC device; a cold liquid was circulated in the shell side to rapidly cool down the feed solution-suspension in the hollow-fiber lumen. The polymer precipitated from the solution and coated the suspended crystals due to rapid temperature reduction and heterogeneous nucleation; crystals formed from the solution were also coated by the polymer. Characterizations by scanning electron microscopy, thermogravimetric analysis, laser diffraction spectroscopy, X-ray diffraction, Raman spectroscopy, and dissolution tests show that a uniformly coated, free-flowing drug/product can be obtained under appropriate operating conditions without losing the drug's pharmaceutical properties and controlled release characteristics. PMID:26772536

  7. Optical detection of sepsis markers using liquid crystal based biosensors

    Science.gov (United States)

    McCamley, Maureen K.; Artenstein, Andrew W.; Opal, Steven M.; Crawford, Gregory P.

    2007-02-01

    A liquid crystal based biosensor for the detection and diagnosis of sepsis is currently in development. Sepsis, a major clinical syndrome with a significant public health burden in the US due to a large elderly population, is the systemic response of the body to a localized infection and is defined as the combination of pathologic infection and physiological changes. Bacterial infections are responsible for 90% of cases of sepsis in the US. Currently there is no bedside diagnostic available to positively identify sepsis. The basic detection scheme employed in a liquid crystal biosensor contains attributes that would find value in a clinical setting, especially for the early detection of sepsis. Utilizing the unique properties of liquid crystals, such as birefringence, a bedside diagnostic is in development which will optically report the presence of biomolecules. In a septic patient, an endotoxin known as lipopolysaccharide (LPS) is released from the outer membrane of Gram-negative bacteria and can be found in the blood stream. It is hypothesized that this long chained molecule will cause local disruptions to the open surface of a sensor containing aligned liquid crystal. The bulk liquid crystal ampli.es these local changes at the surface due to the presence of the sepsis marker, providing an optical readout through polarizing microscopy images. Liquid crystal sensors consisting of both square and circular grids, 100-200 μm in size, have been fabricated and filled with a common liquid crystal material, 5CB. Homeotropic alignment was confirmed using polarizing microscopy. The grids were then contacted with either saline only (control), or saline with varying concentrations of LPS. Changes in the con.guration of the nematic director of the liquid crystal were observed through the range of concentrations tested (5mg/mL - 1pg/mL) which have been confirmed by a consulting physician as clinically relevant levels.

  8. Optical modulator based on coupled photonic crystal cavities

    Science.gov (United States)

    Serafimovich, Pavel G.; Kazanskiy, Nikolay L.

    2016-07-01

    We propose and numerically investigate an optical signal modulator based on two-photonic crystal nanobeam cavities coupled through a waveguide. The suggested modulator shifts the resonant frequency over a scalable range. We design a compact optical modulator based on photonic crystal nanobeams cavities that exhibits high stability to manufacturing. Photonic crystal waveguide tuning in the low-intensity region of the resonant mode is demonstrated. The advantages of the suggested approach over the single-resonator optical modulator approaches include the possibilities to shift the modulator frequency over a scalable range that depends on switching energy level and to effectively electrically tune the device in the low-intensity region of the resonant mode.

  9. Photonic crystal waveguides based on an antiresonant reflecting platform

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Frandsen, Lars Hagedorn; Fage-Pedersen, Jacob;

    2005-01-01

    We apply the antiresonant reflecting layers arrangement to silicon-on-insulator based photonic crystal waveguides. Several layered structures with different combinations of materials (Si-SiO2, Si3N4-SiO2) and layer topology have been analysed. Numerical modelling using 3D Finite-Difference Time...

  10. Characterization and crystal structures of new Schiff base macrocyclic compounds

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Ghoran, S.H.; Pojarová, Michaela; Dušek, Michal

    2015-01-01

    Roč. 56, č. 7 (2015), s. 1410-1414. ISSN 0022-4766 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : synthesis * macrocyclic Schiff base * single crystal structure analysis * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.508, year: 2014

  11. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy

    OpenAIRE

    Horan, Laura E.; Ruth, Albert A.; Garcia-Gunning, Fatima C.

    2012-01-01

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to col...

  12. Optical parametric chirped pulse amplification based on photonic crystal fibre

    Institute of Scientific and Technical Information of China (English)

    Wang He-Lin; Yang Ai-Jun; Leng Yu-Xin; Wang Cheng; Xu Zhi-Zhan; Hou Lan-Tian

    2011-01-01

    A compact two-stage optical parametric chirped pulse amplifier based on photonic crystal fibre is demonstrated.A 1064-nm soliton pulse is obtained in a home-made photonic crystal fibre(PCF)with femtosecond pulse pumping and then amplified to 2 mJ in an Nd:YAG regenerative amplifier.After the amplified pulses pass through the LBO crystal,the 532-nm double-frequency light with an energy of 0.8 mJ and a duration of over 100 ps at 10-Hz repetition rate is generated as a pump source in the following two-stage optical parametric amplification(OPA).The 850-am chirped signal light gain from the stretcher is 1.5×104in the first-stage OPA while it is 120 in the second-stage OPA.The total signal gain of optical parametric chirped pulse amplification(OPCPA)can reach 1.8×106.

  13. Coherent Pair Production in Deformed Crystals with a Complex Base

    Science.gov (United States)

    Mkrtchyan, A. R.; Saharian, A. A.; Parazian, V. V.

    We investigate the coherent electron-positron pair creation by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are specified under which the influence of the deformation is considerable. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parametrization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S type. In dependence of the parameters, the presence of deformation can either enhance or reduce the pair creation cross-section. This can be used to control the parameters of the positron sources for storage rings and colliders.

  14. Coherent pair production in deformed crystals with a complex base

    CERN Document Server

    Mkrtchyan, A R; Saharian, A A

    2006-01-01

    We investigate the coherent electron-positron pair creation by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are specified under which the influence of the deformation is considerable. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for $\\mathrm{SiO}_{2}$ single crystal and Moliere parametrization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of $S$ type. In dependence of the parameters, the presence of deformation can either enhance or reduce the pair creation cross-section. This can be used to control the parameters of the positron sources for storage rings and colliders.

  15. A new membrane-based crystallization technique: tests on lysozyme

    Science.gov (United States)

    Curcio, Efrem; Profio, Gianluca Di; Drioli, Enrico

    2003-01-01

    The great importance of protein science both in industrial and scientific fields, in conjunction with the intrinsic difficulty to grow macromolecular crystals, stimulates the development of new observations and ideas that can be useful in initiating more systematic studies using novel approaches. In this regard, an innovative technique, based on the employment of microporous hydrophobic membranes in order to promote the formation of lysozyme crystals from supersaturated solutions, is introduced in this work. Operational principles and possible advantages, both in terms of controlled extraction of solvent by acting on the concentration of the stripping solution and reduced induction times, are outlined. Theoretical developments and experimental results concerning the mass transfer, in vapour phase, through the membrane are presented, as well as the results from X-ray diffraction to 1.7 Å resolution of obtained lysozyme crystals using NaCl as the crystallizing agent and sodium acetate as the buffer. Crystals were found to be tetragonal with unit cell dimensions of a= b=79.1 Å and c=37.9 Å; the overall Rmerge on intensities in the resolution range from 25 to 1.7 Å was, in the best case, 4.4%.

  16. Crystal engineering with thioureas: A structure-based inquiry

    Science.gov (United States)

    Paisner, Kathryn A.

    2011-12-01

    Structural trends applicable to crystal engineering were studied in three classes of thiourea-based compounds. The aim of the study was to identify, predict, and ultimately design reliable single-molecule structural features, which could then be used to engineer crystals with desirable properties. In one class of compounds, this goal was achieved: N-alkyl and N-aryl derivatives of N,N'-bis(3-thioureidopropyl)piperazine adopted an identical conformation in the solid state, which resulted in near-identical crystal packing. A second class of closely related compounds, N-substituted tris(2-thioureidoethyl)amines, showed no such reliability in the solid state, likely because the parent structure lacked hydrogen-bonding functionalities sufficient to control intramolecular structure. In the third class of compounds that we studied, 1-benzoyl-3-(2-pyridyl)thioureas, substitution patterns were often predictive of molecular conformation; however, these intramolecular trends did not lead to recognizable crystal packing motifs. Nevertheless, certain physical properties observed in this last class of compounds---color, solubility, and often crystallinity---were conformer-specific, interestingly without any apparent relevance to crystal lattice structure. Solution-state and solid-state conformational trends in these 1-benzoyl-3-(2-pyridyl)thioureas have been documented, and speculations as to the source of color in one of the two observed conformations have been noted.

  17. Crystallization from a milk-based revised simulated body fluid

    International Nuclear Information System (INIS)

    A milk-based revised simulated body fluid (milk-rSBF) was prepared by a conventional route but instead of deionized water, all necessary chemicals were dissolved in whole cow's milk (3.2% fat). In order to accelerate crystallization and increase the amount of precipitates, the influence of milk was studied from condensed solutions equal to four times the ionic concentrations of rSBF (4rSBF). The experiments were performed under physiological conditions (solution pH = 7.35-7.40, temperature 37.0 ± 0.2 deg. C, duration 7 days) in a constant-composition double-diffusion device, which provided a slow crystallization under strictly controlled conditions. Similar experiments with 4rSBF but dissolved in deionized water were used as a control. An extra set of experiments with 4rSBF dissolved in deionized water but with an addition of 40 g l-1 bovine serum albumin (BSA) was used as another control. The influence of milk appeared to be similar to that of dissolved BSA: some components of milk (presumably albumins and proteins) were found to co-precipitate with calcium phosphates, which had a strong negative influence on both the crystallinity and the crystal sizes of the precipitates. In addition, both milk and BSA strongly inhibited crystallization of calcium phosphates: the precipitates turned out to contain a minor amount of calcium phosphates and a substantial amount of organic phase

  18. Singly-resonant optical parametric oscillator based on KTA crystal

    Indian Academy of Sciences (India)

    S Das; S Gangopadhyay; C Ghosh; G C Bhar

    2005-01-01

    Tunable mid-infra-red radiation by singly resonant optical parametric oscillation based on KTA crystal pumped by multi-axial Gaussian shape beam from Q-switched Nd:YAG laser has been demonstrated. Threshold energy of oscillation at different idler wavelengths for different cavity length has been demonstrated. Single pass conversion efficiency of incident pump energy to infra-red wavelength has also been measured.

  19. Self Assembled Monolayers for Quartz Crystal Microbalance based Biosensing

    OpenAIRE

    Myrskog, Annica

    2009-01-01

    The work in this thesis has been focused on developing surfaces for use in biosensor systems, especially for quartz crystal microbalances. The surfaces were prepared by adsorption of organosulfur molecules onto gold substrates, so called self assembled monolayers (SAMs). By chemical synthesis these thiols can be specifically tailored to provide surfaces with desired properties. The investigated surfaces were all based on thiols terminated with carboxylic acid groups to render hydrophilic surf...

  20. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  1. Crystal chemistry and structural design of iron-based superconductors

    Institute of Scientific and Technical Information of China (English)

    Jiang Hao; Sun Yun-Lei; Xu Zhu-An; Cao Guang-Han

    2013-01-01

    The second class of high-temperature superconductors (HTSCs),iron-based pnictides and chalcogenides,necessarily contain Fe2X2 (“X” refers to a pnictogen or a chalcogen element) layers,just like the first class of HTSCs which possess the essential CuO2 sheets.So far,dozens of iron-based HTSCs,classified into nine groups,have been discovered.In this article,the crystal-chemistry aspects of the known iron-based superconductors are reviewed and summarized by employing “hard and soft acids and bases (HSAB)” concept.Based on these understandings,we propose an alternative route to exploring new iron-based superconductors via rational structural design.

  2. Photonic-crystal-based all-optical NOT logic gate.

    Science.gov (United States)

    Singh, Brahm Raj; Rawal, Swati

    2015-12-01

    In the present paper, we have utilized the concept of photonic crystals for the implementation of an optical NOT gate inverter. The designed structure has a hexagonal arrangement of silicon rods in air substrate. The logic function is based on the phenomenon of the existence of the photonic bandgap and resulting guided modes in defect photonic crystal waveguides. We have plotted the transmission, extinction ratio, and tolerance analysis graphs for the structure, and it has been observed that the maximum output is obtained for a telecom wavelength of 1.554 μm. Dispersion curves are obtained using the plane wave expansion method, and the transmission is simulated using the finite element method. The proposed structure is applicable for photonic integrated circuits due to its simple structure and clear operating principle. PMID:26831380

  3. CVD synthesis of carbon-based metallic photonic crystals

    CERN Document Server

    Zakhidov, A A; Baughman, R H; Iqbal, Z

    1999-01-01

    Three-dimensionally periodic nanostructures on the scale of hundreds of nanometers, known as photonic crystals, are attracting increasing interest because of a number of exciting predicted properties. In particular, interesting behavior should be obtainable for carbon- based structures having a dimensional scale larger than fullerenes and nanotubes, but smaller than graphitic microfibers. We show here how templating of porous opals by chemical vapor deposition (CVD) allows us to obtain novel types of graphitic nanostructures. We describe the synthesis of new cubic forms of carbon having extended covalent connectivity in three dimensions, which provide high electrical conductivity and unit cell dimensions comparable to optical wavelengths. Such materials are metallic photonic crystals that show intense Bragg diffraction. (14 refs).

  4. Proton irradiation of liquid crystal based adaptive optical devices

    International Nuclear Information System (INIS)

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (1010p/cm2). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  5. Distributed optical fibre devices based on liquid crystal infiltrated photonic crystal fibers

    OpenAIRE

    Alkeskjold, Thomas Tanggaard; Broeng, Jes; Hermann, D.S.; Bjarklev, Anders Overgaard

    2004-01-01

    We describe a new class of hybrid photonic crystal fibers, which are liquid crystal infiltrated fibers. Using these fibers, we demonstrate 'distributed' tunable filter and switching functionalities operating by the photonic bandgap effect.

  6. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Science.gov (United States)

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection. PMID:26996608

  7. Polarization converters based on axially symmetric twisted nematic liquid crystal.

    Science.gov (United States)

    Ko, Shih-Wei; Ting, Chi-Lun; Fuh, Andy Y-G; Lin, Tsung-Hsien

    2010-02-15

    An axially symmetric twisted nematic liquid crystal (ASTNLC) device, based on axially symmetric photoalignment, was demonstrated. Such an ASTNLC device can convert axial (azimuthal) to azimuthal (axial) polarization. The optical properties of the ASTNLC device are analyzed and found to agree with simulation results. The ASTNLC device with a specific device can be adopted as an arbitrary axial symmetric polarization converter or waveplate for axially, azimuthally or vertically polarized light. A design for converting linear polarized light to axially symmetric circular polarized light is also demonstrated. PMID:20389369

  8. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  9. Crystallization of Mg-based bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; M. FERRY

    2006-01-01

    Mg-based bulk metallic glass fabricated by conventional copper mould method was aged at different temperatures. X-ray diffractometry(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM) and focused ion beam(FIB) miller were employed to examine specimens obtained under different conditions. The crystallization of Mg-based bulk metallic glass depends upon both the aging temperature and the aging time. As temperature increases or the holding time increases, the microstructure of the aged specimen varies from glassy one to crystalline one plus glassy phase and then to absolutely multiphase crystalline one. From the FIB images, it is clear that Mg-based bulk metallic glass could not only crystallize completely but also display dendrite-like growth style. From the AFM images, there are not only significant variations of microstructures but also surface morphology of specimens obtained under different conditions. It is proposed that the surface morphology varies as the treating temperature increases. The Vickers hardness of different specimens increases as the fraction of crystalline phase (s) increases.

  10. AFM research on Fe-based nanocrystal crystallization mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cross-section pattern of Fe-based alloy ribbon (Fe73.5Cu1Nb3Si13.5B9) annealed at different temperatures was investigated by AFM (atomic force microscope), and the effect mechanism of Nb and Cu in Fe-based alloy ribbon annealing was analyzed with XRD diffraction crystal analysis technique and other research results. New concepts of encapsulated grain, Nb vacancy cluster, Nb-B atom cluster and so on were proposed and used to describe the formation mechanism of α-Fe (Si) nanocrystal. Finally, a three-phase (separation phase, encapsulated phase and nanocrystalline phase) interconnected structure model in Fe-based nanocrystalline alloy was established.

  11. Digital photofinishing system based on liquid crystal on silicon

    Science.gov (United States)

    Zheng, Minmin; Yan, Huimin; Zhang, Xiuda; Du, Yanli

    2006-01-01

    As the digital camera user base grows, so does the demand for digital imaging services. A new digital photo finishing system based on Liquid Crystal On Silicon (LCOS) is presented. The LCOS panel motherboard is made up of CMOS chip. Three individual streams of light (red, green, blue) are directed to corresponding Polarization Beam Spliter (PBS) to make the S polarization beam arrive at LCOS panel. When the Liquid appears light, the S polarization beam is changed to P polarization beam and reflected to pass through Polarization Beam Spliter. Compared with Thin Film Transistor-Liquid Crystal Display (TFT-LCD), LCOS has many merits including high resolution, high contrast, wide viewing angle, low cost and so on. In this work, we focus on the way in which the images will be displayed on LCOS. A liquid crystal on silicon microdisplay driver circuit for digital photo finishing system has been designed and fabricated using BRILLIAN microdisplay driver lite(MDD-LITE) ASIC and LCOS SXGA (1280×1024 pixel) with a 0.78"(20mm) diagonal active matrix reflective mode LCD. The driver includes a control circuit, which presents serial data, serial clock , write protect signals and control signals for LED, and a mixed circuit which implements RGB signal to input the LCOS. According to a minimum error sum of squares algorithm, we find a minimum offset and then shift RGB optical intensity vs voltage curves right and left to make these three curves almost coincide with each other. The design had great application in the digital photo finishing.

  12. Colorimetric logic response based on aptamer functionalized colloidal crystal hydrogels

    Science.gov (United States)

    Ye, Baofen; Wang, Huan; Ding, Haibo; Zhao, Yuanjin; Pu, Yuepu; Gu, Zhongze

    2015-04-01

    A novel colorimetric logic system based on the aptamer-cross-linked colloidal crystal hydrogel (CCH) was developed. With the input stimuli of Hg2+ and Ag+, the CCH displayed shrinking response and colour change corresponding to the logical ``OR'' and ``AND'' gate. The visualization of the logic output signals is realized.A novel colorimetric logic system based on the aptamer-cross-linked colloidal crystal hydrogel (CCH) was developed. With the input stimuli of Hg2+ and Ag+, the CCH displayed shrinking response and colour change corresponding to the logical ``OR'' and ``AND'' gate. The visualization of the logic output signals is realized. Electronic supplementary information (ESI) available: I. Experimental section. II. Photograph of the aptamer functionalized CCH in the presence of different targets. III. The specificity of the aptamer functionalized CCH. IV. Relationship between the input ion concentration and the reflection wavelength blue shift. V. The logic swelling kinetics of CCH. See DOI: 10.1039/c5nr00586h

  13. Magnonic crystals-based tunable microwave phase shifters

    International Nuclear Information System (INIS)

    Tunable microwave phase shifters using magnetostatic backward volume waves in yttrium iron garnet/gadolinium gallium garnet thin film-based one-dimensional (1-D) and two-dimensional (2-D) magnonic crystals (MCs) are reported in this paper. Large differential phase shifts with small insertion loss variations were achieved in the passbands neighboring the bandgaps by tuning of the bias magnetic field. Large phase tuning rates up to 13.48 °/(Oe cm) and 25.9 °/(Oe cm) together with small insertion loss variations of 2.08 dB/cm and 0.97 dB/cm were demonstrated in the 1-D and 2-D MCs, respectively. An excellent agreement between the measured and the calculated results based on Walker's equation was obtained.

  14. Magnonic crystals-based tunable microwave phase shifters

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.; Chi, K. H. [Department of Electrical Engineering and Computer Science, and Institute for Surface and Interface Science, University of California, Irvine, California 92697 (United States); Tsai, C. S., E-mail: cstsai@uci.edu [Department of Electrical Engineering and Computer Science, and Institute for Surface and Interface Science, University of California, Irvine, California 92697 (United States); Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China)

    2014-07-14

    Tunable microwave phase shifters using magnetostatic backward volume waves in yttrium iron garnet/gadolinium gallium garnet thin film-based one-dimensional (1-D) and two-dimensional (2-D) magnonic crystals (MCs) are reported in this paper. Large differential phase shifts with small insertion loss variations were achieved in the passbands neighboring the bandgaps by tuning of the bias magnetic field. Large phase tuning rates up to 13.48 °/(Oe cm) and 25.9 °/(Oe cm) together with small insertion loss variations of 2.08 dB/cm and 0.97 dB/cm were demonstrated in the 1-D and 2-D MCs, respectively. An excellent agreement between the measured and the calculated results based on Walker's equation was obtained.

  15. Emerging Applications of Liquid Crystals Based on Nanotechnology

    Directory of Open Access Journals (Sweden)

    Jung Inn Sohn

    2014-03-01

    Full Text Available Diverse functionalities of liquid crystals (LCs offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices.

  16. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations

    International Nuclear Information System (INIS)

    Highlights: • The interdiffusion behavior between the NiAlHf coating and the superalloy substrate was influenced by the crystal orientation of the substrate alloy. • The structure of TCP phases formed in SRZ and IDZ was studied. • Studying the effect of orientation crystal of substrate on the formation of SRZ. - Abstract: NiAlHf coatings were deposited onto Ni-based single crystal (SC) superalloy with different crystal orientations by electron beam physical vapor deposition (EB-PVD). The effects of the crystal orientations of the superalloy substrate on inter-diffusion behavior between the substrate and the NiAlHf coating were investigated. Substrate diffusion zone (SDZ) containing needle-like μ phases and interdiffusion zone (IDZ) mainly consisting of the ellipsoidal and rod-like μ phases were formed in the SC alloy after heat-treatment 10 h at 1100 °C. The thickness of secondary reaction zone (SRZ) formed in the SC alloy with (0 1 1) crystal orientation is about 14 μm after 50 h heat-treatment at 1100 °C, which is relatively thicker than that in the SC alloy with (0 0 1) crystal orientation, whereas the IDZ revealed similar thickness

  17. Strontium titanate/silicon-based terahertz photonic crystal multilayer stack

    International Nuclear Information System (INIS)

    A one-dimensional photonic crystal working in the terahertz (THz) range was designed and implemented. To facilitate the design, the transmission properties of strontium titanate crystals were characterized by THz-time-domain spectroscopy. Relatively high refractive index (∝18.5) and transmission ratio (0.08) were observed between 0.2 to 1 THz. A stacked structure of (Si dSi/STO dSTO)N /Si dSi was then designed, with transmission spectra calculated by the transfer matrix method. The effects of the filling ratio (dSTO/(dSi+dSTO)), periodicity (dSi+dSTO) and the number of repeats N on the transmission of PC were investigated. The effect of introducing a defect layer was also studied. Based on these, Si/STO multilayers with STO defect thickness of 125 μm and 200 μm were measured. The shift of the defect mode was observed and compared with the calculations. (orig.)

  18. Growth and Characterization on PMN-PT-Based Single Crystals

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2014-07-01

    Full Text Available Lead magnesium niobate—lead titanate (PMN-PT single crystals have been successfully commercialized in medical ultrasound imaging. The superior properties of PMN-PT crystals over the legacy piezoelectric ceramics lead zirconate titanate (PZT enabled ultrasound transducers with enhanced imaging (broad bandwidth and improved sensitivity. To obtain high quality and relatively low cost single crystals for commercial production, PMN-PT single crystals were grown with modified Bridgman method, by which crystals were grown directly from stoichiometric melt without flux. For ultrasound imaging application, [001] crystal growth is essential to provide uniform composition and property within a crystal plate, which is critical for transducer performance. In addition, improvement in crystal growth technique is under development with the goals of improving the composition homogeneity along crystal growth direction and reducing unit cost of crystals. In recent years, PIN-PMN-PT single crystals have been developed with higher de-poling temperature and coercive field to provide improved thermal and electrical stability for transducer application.

  19. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    Institute of Scientific and Technical Information of China (English)

    XIE Zhi-Guo; LU Yong-Hua; WANG Pei; LIN Kai-Qun; YAN Jie; MING Hai

    2008-01-01

    @@ A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid.Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome maes-transport constraints, allowing more silver nanoparticles involved in SERS activity.This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture.We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA ) molecules with the injecting way and the common dipping measurement.The injecting way shows obviously better results than the dipping one.Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area.

  20. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    Science.gov (United States)

    Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655

  1. Pressure sensor based on flexible photonic crystal membrane.

    Science.gov (United States)

    Karrock, Torben; Gerken, Martina

    2015-12-01

    We demonstrate a pressure sensor based on deformation of a periodically nanostructured Bragg grating waveguide on a flexible 50 µm polydimethylsiloxane membrane and remote optical read out. A pressure change causes deformation of this 2 mm diameter photonic crystal membrane sealing a reference volume. The resulting shift of the guided mode resonances is observed by a remote camera as localized color change. Crossed polarization filters are employed for enhancing the visibility of the guided mode resonances. Pressure values are calculated from the intensity change in the green color channel using a calibration curve in the range of 2000 Pa to 4000 Pa. A limit of detection (LOD) of 160 Pa is estimated. This LOD combined with the small size of the sensor and its biocompatibility render it promising for application as an implantable intraocular pressure sensor. PMID:26713204

  2. Terahertz wave filter based on cinquefoil photonic crystal

    Science.gov (United States)

    Sun, Chao; Li, Jiu-sheng

    2012-03-01

    There are increasing demands for experiments in terahertz frequencies, in different areas such as biotechnology, nanotechnology, space science, security, terahertz wave communications, and plasma diagnostics. For potential applications, the functional devices, such as beam polarizers, modulators and filters, are crucuial components for a terahertz system. As a dispensable device for ultrafast information processing and interconnection of terahertz wave communication, terahertz wave filter has attracted considerable attention. In this paper, we design the terahertz wave filter structure based on three kinds of photonic crystals structures. The finite-difference time-domain (FDTD) has been employed to analysis the performances of these terahertz wave filters. The simulation results show that these designed filters exhibit excellent transmission performance such as high transmission at the central frequency, adjustable bandpass, and good rejection of the sideband frequencies. Three kinds of compact and integrated terahertz wave filters are obtained.

  3. Single Crystal DMs for Space-Based Observatories

    Science.gov (United States)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and

  4. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Carla C. Kato

    2011-11-01

    Full Text Available A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  5. Cholesteric Liquid Crystal Based Reflex Color Reflective Displays

    Science.gov (United States)

    Khan, Asad

    2012-02-01

    Bistable color cholesteric liquid crystal displays are unique LCDs that exhibit high reflectivity, good contrast, extremely low power operation, and are amenable to versatile roll-to-roll manufacturing. The display technology, now branded as Reflex has been in commercialized products since 1996. It has been the subject of extensive research and development globally by a variety of parties in both academic and industrial settings. Today, the display technology is in volume production for applications such as dedicated eWriters (Boogie Board), full color electronic skins (eSkin), and displays for smart cards. The flexibility comes from polymerization induced phase separation using unique materials unparalleled in any other display technology. The blend of monomers, polymers, cross linkers, and other components along with nematic liquid crystals and chiral dopants is created and processed in such ways so as to enable highly efficient manufactrable displays using ultra thin plastic substrates -- often as thin as 50μm. Other significant aspects include full color by stacking or spatial separation, night vision capability, ultra high resolution, as well as active matrix capabilities. Of particular note is the stacking approach of Reflex based displays to show full color. This approach for reflective color displays is unique to this technology. Owing to high transparency in wavelength bands outside the selective reflection band, three primarily color layers can be stacked on top of each other and reflect without interfering with other layers. This highly surprising architecture enables the highest reflectivity of any other reflective electronic color display technology. The optics, architecture, electro-topics, and process techniques will be discussed. This presentation will focus on the physics of the core technology and color, it's evolution from rigid glass based displays to flexible displays, development of products from the paradigm shifting concepts to consumer

  6. Optimization of salt concentration in PEG-based crystallization solutions

    OpenAIRE

    Yamanaka, Mari; Inaka, Koji; Furubayashi, Naoki; Matsushima, Masaaki; Takahashi, Sachiko; Tanaka, Hiroaki; Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo

    2010-01-01

    Although polyethylene glycol (PEG) is the most widely used precipitant in protein crystallization, the concentration of co-existing salt in the solution has not been well discussed. To determine the optimum salt concentration range, several kinds of protein were crystallized in a 30% PEG 4000 solution at various NaCl concentrations with various pH levels. It was found that, if crystallization occurred, the lowest effective salt concentration depended on the pH of the protein solution and the ...

  7. Adaptive micro-optical phase modulators based on liquid crystal technology

    OpenAIRE

    Algorri Genaro, José Francisco

    2015-01-01

    This thesis began with the project “Advanced Devices of Liquid Crystal and Electroluminescent Organic Diodes. Hybrid Applications for 3D Vision” funded by the Spanish government. The goal of this project was the development of optical devices to achieve 3D vision in portable devices without glasses or external elements. In order to achieve the goals of this project, solutions based on liquid crystal are considered. Specifically, adaptive micro-optical phase modulators based on liquid crystal ...

  8. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  9. Sagnac interferometer based on an etched photonic crystal fiber

    International Nuclear Information System (INIS)

    The transmission characteristics of a Sagnac interferometer based on an etched polarization maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF) are investigated for simultaneous measurement of strain and temperature. After reducing the cladding diameter of the PM-PCF, we fabricated the Sagnac interferometer to induce peak wavelengths for effective measurement of strain and temperature changes. The pumped EDF is implemented to be both a light source for the sensing signal and a temperature-sensing probe. The applied strain shifts the peak wavelength to a longer wavelength and does not change the peak power in the transmission spectrum of the Sagnac interferometer. The etched PM-PCF improves the strain sensitivity of the proposed sensing probe to 4.7 pm/με, which is three time higher than previous results. However, the pumped EDF only responds to an external temperature change, and the amplified spontaneous emission of the pumped EDF is decreased by an applied temperature change. Eventually, the transmission peak power of the etched PM-PCF-based Sagnac interferometer is only changed by an applied temperature change. Therefore, it is possible to discriminate strain and temperature by measuring variations in the peak wavelength and in the transmission peak power, respectively.

  10. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  11. Latest methods of fluorescence-based protein crystal identification

    International Nuclear Information System (INIS)

    Fluorescence, whether intrinsic or by using trace fluorescent labeling, can be a powerful aid in macromolecule crystallization. Its use in screening for crystals is discussed here. Successful protein crystallization screening experiments are dependent upon the experimenter being able to identify positive outcomes. The introduction of fluorescence techniques has brought a powerful and versatile tool to the aid of the crystal grower. Trace fluorescent labeling, in which a fluorescent probe is covalently bound to a subpopulation (<0.5%) of the protein, enables the use of visible fluorescence. Alternatively, one can avoid covalent modification and use UV fluorescence, exploiting the intrinsic fluorescent amino acids present in most proteins. By the use of these techniques, crystals that had previously been obscured in the crystallization drop can readily be identified and distinguished from amorphous precipitate or salt crystals. Additionally, lead conditions that may not have been obvious as such under white-light illumination can be identified. In all cases review of the screening plate is considerably accelerated, as the eye can quickly note objects of increased intensity

  12. Dislocation-dynamics based crystal plasticity law for the low- and high-temperature deformation regimes of bcc crystal

    International Nuclear Information System (INIS)

    Based on recent dislocation dynamics simulations investigations, a set of constitutive equations and model parameters for the description of plasticity of body-centered cubic materials is proposed. Assuming the flow stress to be controlled at low temperatures by the mobility of screw dislocations and by forest interactions at high temperatures, this model allows for the prediction of the mechanical behavior in monotonic loading over a large range of temperatures and strain rates. The consideration of the difference in mobility between screw and non-screw dislocations is found to affect strain hardening in a complex manner. The constitutive equations are implemented in a finite-element method to simulate tensile tests on iron single crystal at different temperatures. The use of finite transformation formalism enables the computation of crystal rotations which affect slip system activities. The calculated critical resolved shear stress and crystal rotations are in good agreement with existing experimental results. (authors)

  13. Liquid crystal based biosensors for bile acid detection

    Science.gov (United States)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  14. Optical properties in the soft photonic crystals based on ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Fan, C Z; Liang, E J [School of Physical Science and Engineering, and Key Laboratory of Materials Physics of Ministry of Education of China, Zhengzhou University, Zhengzhou 450052 (China); Huang, J P, E-mail: chunzhen@zzu.edu.cn [Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433 (China)

    2011-08-17

    We theoretically investigate the properties of optical propagation in one-dimensional soft photonic crystals based on ferrofluids using the transfer matrix method. The proposed structure is composed of an alternating ferrofluid layer and a dielectric layer. Ferrofluids are composed of suspended ferromagnetic nanoparticles coated with silver, which has a frequency-dependent dielectric function. Core-shell nanocomposites incorporating an optical signature with magnetic response are particularly useful. The calculated results of dispersion relation show that tunable band gaps can be realized by varying the local magnetic field factor {alpha}, the shell thickness parameter t, or the filling fraction {nu} of the ferrofluid layer. An additional band gap appears in the lower frequency region due to the absorption. These band gaps blue shift when the external magnetic field is enhanced, and red shift when either t or {nu} is increased. We also extend our analysis to the variation of band width. To meet the requirements of optical devices, such a tunable structure can be used to design optical filters, modulators and waveguides.

  15. A liquid-crystal-based DNA biosensor for pathogen detection

    Science.gov (United States)

    Khan, Mashooq; Khan, Abdur Rahim; Shin, Jae-Ho; Park, Soo-Young

    2016-03-01

    A liquid-crystal (LC)-filled transmission electron microscopy (TEM) grid cell coated with the cationic surfactant dodecyltrimethylammonium bromide (DTAB), to which a single-stranded deoxyribonucleic acid probe (ssDNAprobe) was adsorbed at the LC/aqueous interface (TEMDTAB/DNA), was applied for the highly specific detection of target DNA molecules. The DTAB-coated E7 (used LC mixture) in the TEM grid (TEMDTAB) exhibited a homeotropic orientation, and changed to a planar orientation upon adsorption of the ssDNAprobe. The TEMDTAB/DNA was then exposed to complementary (target) ssDNA, which resulted in a planar-to-homeotropic configurational change of E7 that could be observed through a polarized optical microscope under crossed polarizers. The optimum adsorption density (2 μM) of ssDNAprobe enabled the detection of ≥0.05 nM complementary ssDNA. This TEMDTAB/DNA biosensor could differentiate complementary ssDNA from mismatched ssDNA as well as double-stranded DNA. It also successfully detected the genomic DNAs of the bacterium Erwinia carotovora and the fungi Rhazictonia solani. Owe to the high specificity, sensitivity, and label-free detection, this biosensor may broaden the applications of LC-based biosensors to pathogen detection.

  16. Liquid crystal photoalignment material based on chloromethylated polyimide

    International Nuclear Information System (INIS)

    We report a liquid crystal photoalignment material with high photosensitivity and excellent thermal stability. The chloromethylated aromatic polyimide exhibited defect-free homogeneous alignment of liquid crystals upon irradiation of polarized deep ultraviolet (UV) for 50 s. The aligning ability of the film was retained up to 210 deg. C, and the cell containing liquid crystals could be stored at 85 deg. C for more than 14 days without any deterioration. FT-IR and UV-vis spectra confirmed that the alignment was induced by photodecomposition of polyimide, drastically accelerated by the introduction of chloromethyl side group

  17. Photoelectrochemical cells based on In2S3 single crystals

    International Nuclear Information System (INIS)

    The single crystals of tetragonal modification t-In2S3 are grown by the planar crystallization of the melt. On their basis, the photosensitive H2O/t-In2S3 cells are fabricated, and the spectra of their quantum efficiency are investigated. The broadband photosensivity of H2O/t-In2S3 cells is determined. On the basis of the photosensivity spectra, the character of interband transitions and the t-In2S3 band gaps corresponding to them are determined. The possibility of using the t-In2S3 crystals in broadband photoconverters of natural and polarized radiations is shown. The relation between the energy spectrum and the phase state of In2S3 crystals is revealed.

  18. Band Structure Based Analysis of Certain Photonic Crystal Structures

    OpenAIRE

    Wolff, Christian

    2011-01-01

    Photonic crystals are periodic dielectric structures that may exhibit a complete photonic band gap. First, I discuss geometric properties of the band structure such as band edges. In a second part, I present work on photonic Wannier functions and their use for solving the wave equation. The third part is devoted to applications of the presented methods: A polarization resolved transmission experiment of opel films and an analogy experiment for spontaneous emission inside a photonic crystal.

  19. Highly Sensitive Sensors Based on Photonic Crystal Fiber Modal Interferometers

    Directory of Open Access Journals (Sweden)

    Joel Villatoro

    2009-01-01

    Full Text Available We review the research on photonic crystal fiber modal interferometers with emphasis placed on the characteristics that make them attractive for different sensing applications. The fabrication of such interferometers is carried out with different post-processing techniques such as grating inscription, tapering or cleaving, and splicing. In general photonic crystal fiber interferometers exhibit low thermal sensitivity while their applications range from sensing strain or temperature to refractive index and volatile organic compounds.

  20. Highly Sensitive Sensors Based on Photonic Crystal Fiber Modal Interferometers

    OpenAIRE

    Valerio Pruneri; Gonçal Badenes; Joel Villatoro; Vittoria Finazzi

    2009-01-01

    We review the research on photonic crystal fiber modal interferometers with emphasis placed on the characteristics that make them attractive for different sensing applications. The fabrication of such interferometers is carried out with different post-processing techniques such as grating inscription, tapering or cleaving, and splicing. In general photonic crystal fiber interferometers exhibit low thermal sensitivity while their applications range from sensing strain or temperature to refract...

  1. Superfluorinated Ionic Liquid Crystals Based on Supramolecular, Halogen-Bonded Anions

    OpenAIRE

    Cavallo, Gabriella; Terraneo, Giancarlo; Monfredini, Alessandro; Saccone, Marco; Priimagi, Arri; Pilati, Tullio; Resnati, Giuseppe; Metrangolo, Pierangelo; Bruce, Duncan W

    2016-01-01

    Unconventional ionic liquid crystals in which the liquid crystallinity is enabled by halogen-bonded supramolecular anions [CnF2n+1-I···I···I-CnF2n+1]- are reported. The material system is unique in many ways, demonstrating for the first time 1)ionic, halogen-bonded liquid crystals, and 2)imidazolium-based ionic liquid crystals in which the occurrence of liquid crystallinity is not driven by the alkyl chains of the cation.

  2. Kinetics of Non-Isothermal Crystallization of Coconut-based Cholesteryl Ester: Avrami and Ozawa Approache

    OpenAIRE

    J. F. Joson; L. T. Davila; Z. B. Domingo

    2003-01-01

    Kinetics of non-isothermal crystallization of coconut-based cholesteryl ester was performed by differentialscanning calorimetry under various heating rates. Different analysis methods were used to describe theprocess of non-isothermal crystallization. The results showed that the Avrami equation could describe thesystem very well. However, the Ozawa analysis failed. A probable reason is the difference in the crystallizationkinetics at high and low relative crystallization. The phase transition...

  3. A Novel Microwave Tunable Band-Pass Filter Integrated Power Divider Based on Liquid Crystal

    OpenAIRE

    Yupeng Liu; Di Jiang; Lei Xia; Ruimin Xu

    2015-01-01

    This paper proposes a novel microwave continuous adjustable band-pass filter integrated power divider based on nematic liquid crystals (LCs). The proposed power divider uses liquid crystal (LC) as the dielectric material. It can realize phase shift by changing the dielectric anisotropy, when biasing the high anisotropy nematic liquid crystal. It is mainly used in microwave frequencies. It has a large number of advantages compared to conventional filter integrated power divider, such as low lo...

  4. The Reflective Type of Electronic Whiteboard Based on Cholesteric Liquid Crystal Display Technology

    OpenAIRE

    TianHua Li

    2013-01-01

    The study analyzes the basic principle and structure of cholesteric liquid crystal display technology and concludes features and requirements of reflective type of electronic whiteboard based on cholesteric liquid crystal display technology. The design of drive circuit of reflective type of electronic whiteboard; the make-up of large reflective type of cholesteric liquid crystal homogeneous display screen as the display equipment of electronic whiteboard; and the adoption of C language to edi...

  5. Light scattering in opal-based photonic crystals

    Science.gov (United States)

    Limonov, M. F.

    2010-05-01

    We present a new light scattering pattern in low-contrast opal-based photonic crystals (PhCs). The structure of real opals is always imperfect because of the a-SiO2 particles being inherently inhomogeneous and nonuniform in size and average dielectric permittivity. We found that opals possess all predictable properties of multi-component PhCs, which we define as periodic structures consisting of inhomogeneous or multiple (three or more) components. By theory, by properly tuning the permittivity of one of the components in ordered, low-contrast multi-component PhCs (for instance, of the filler ɛf in an opal), one can produce selective disappearance of any non-resonant (hkl) stop band. A study of transmission spectra of opals revealed that stop bands exhibit different (including resonant) behavior under variation of ɛf. Experiment did not, however, substantiate complete disappearance of stop bands predicted by theory for an ordered PhC. In the region of the predicted disappearance, a new effect has been observed, namely flip-over of the Bragg band, i.e., transformation of the Bragg dip into a Bragg rise. The flip-over effect, which has been studied in considerable detail in the particular example of the (111) stop band, originates from the nonuniformity of a-SiO2 particles. This nonuniformity leads to additional broad-band light scattering, the character of which is determined by Mie scattering. Thus, Mie scattering is responsible for two components in opal transmission spectra, more specifically, narrow Bragg bands and broad-band background. Their interference gives rise to formation of the Fano resonance, which in opal spectra becomes manifest, first, in a Bragg band asymmetry, and, second, in the flip-over effect, i.e., transformation of a photonic stop band into a photonic pass band.

  6. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber

    Science.gov (United States)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2016-02-01

    We reported the modeling result of selectively magnetic fluid infiltrated dual-core photonic crystal fiber based magnetic field sensor. Inside the cross-section of the designed photonic crystal fiber, the two fiber cores filled with magnetic fluid (Fe3O4) form two independent waveguides with mode coupling. The mode coupling under different magnetic field strengths is investigated theoretically. The sensitivity of the sensor as a function of the structural parameters of the photonic crystal fiber is calculated. The result shows that the proposed sensing device with 1 cm photonic crystal fiber length has a large sensitivity of 305.8 pm/Oe.

  7. Programmable agile beam steering based on a liquid crystal prism

    International Nuclear Information System (INIS)

    To meet the application need for agile precision beam steering, a novel liquid crystal prism device with a simple structure, convenient control, low cost and applicable performance is presented, and analysed theoretically and experimentally. The relationships between the optical path and the thickness of the liquid crystal cell under different voltages are investigated quantitatively by using a theoretical model. Analysis results show that the optical path profile of the liquid crystal prism has a quasi-linear slope and the standard deviation of the linear slope is less than 16 nm. The slope ratio can be changed by a voltage, which achieves the programmable beam steering and control. Practical liquid crystal prism devices are fabricated. Their deflection angles and wavefront profiles with different voltages are experimentally tested. The results are in good agreement with the simulated results. The results imply that the agile beam steering in a scope of 100 μrad with a micro-rad resolution is substantiated in the device. The two-dimensional beam steering is also achieved by cascading two liquid crystal prism devices. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Anhydrous crystals of DNA bases are wide gap semiconductors

    Science.gov (United States)

    Maia, F. F.; Freire, V. N.; Caetano, E. W. S.; Azevedo, D. L.; Sales, F. A. M.; Albuquerque, E. L.

    2011-05-01

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  9. Habit and morphology study on the palm-based 9,10-dihydroxystearic acid (DHSA) crystals

    International Nuclear Information System (INIS)

    Dihydroxystearic acid (DHSA) and its derivatives are hydroxyl fatty acids suitable to be used as multipurpose intermediates in the synthesis of personal care products and decorative cosmetics. In Malaysia, DHSA has been successfully produced from palm-based oleic acid, via epoxidation with per-formic acid followed with hydrolysis of the epoxide. The objective of this paper is to study the crystals of DHSA produced under different crystallization conditions. The crystal habit and morphology were observed in terms of scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results show that solvent type, solvent concentration and cooling mode affect the crystal habit but not the morphology. The DHSA crystals agglomerated into either sphere-like or plate-like habit structure while always maintaining the triclinic crystal system

  10. A region segmentation based algorithm for building crystal position lookup table in scintillation detector

    CERN Document Server

    Wang, Hai Peng; Liu, Shuang Quan; Fan, Xin; Cao, Xue Xiang; Chai, Pei; Shan, Bao Ci

    2014-01-01

    In scintillation detector, scintillation crystals are typically made into 2-dimension modular array. The location of incident gamma-ray need be calibrated due to spatial response nonlinearity. Generally, position histograms, the characteristic flood response of scintillation detectors, are used for position calibration. In this paper, a position calibration method based on crystal position lookup table which maps the inaccurate location calculated by Anger logic to the exact hitting crystal position has been proposed, Firstly, position histogram is segmented into disconnected regions. Then crystal marking points are labeled by finding the centroids of regions. Finally, crystal boundaries are determined and crystal position lookup table is generated. The scheme is evaluated by the whole-body PET scanner and breast dedicated SPECT detector developed by Institute of High Energy Physics, Chinese Academy of Sciences. The results demonstrate that the algorithm is accurate, efficient, robust and general purpose.

  11. InP-based two-dimensional photonic crystals filled with polymers

    CERN Document Server

    Van der Heijden, R W; Snijders, J A P; Van der Heijden, R W; Karouta, F; Nötzel, R; Salemink, H W M; Kjellander, B K C; Bastiaansen, C W M; Broer, D J; Van der Drift, E

    2006-01-01

    Polymer filling of the air holes of Indium Phosphide based two-dimensional photonic crystals is reported. After infiltration of the holes with a liquid monomer and solidification of the infill in situ by thermal polymerization, complete filling is proven using scanning electron microscopy. Optical transmission measurements of a filled photonic crystal structure exhibit a redshift of the air band, confirming the complete filling.

  12. Characterization of hydrogen embrittlement in nickel base superalloy single crystals

    Science.gov (United States)

    Chene, J.; Baker, C. L.; Bernstein, I. M.; Williams, J. C.

    1986-01-01

    In order to study the role of CMSX2 single crystal microstructure on the combined stress-hydrogen environment effects, hydrogen was introduced by cathodic charging. Concentration measurements were carried out to investigate the dependence of hydrogen solubility and trapping on microstructure. Mechanical properties were measured at room temperature on smooth tensile specimens as a function of heat treatment, crystal orientation and H charging conditions. SEM and TEM allow to study H induced cracks initiation and propagation. A large amount of hydrogen can be dissolved and trapped in CMSX2 single crystals when exposed to a high hydrogen fugacity environment. The strong H trapping evidenced in voids explains the predominant role of these defects as crack initiation sites. The strong detrimental effect of hydrogen on the material tenacity is discussed.

  13. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    International Nuclear Information System (INIS)

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry

  14. Design and Fabrication of SOI-based photonic crystal components

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;

    2004-01-01

    We present examples of ultra-compact photonic crystal components realized in silicon-on-insulator material. We have fabricated several different types of photonic crystal waveguide components displaying high transmission features. This includes 60° and 120° bends, different types of couplers......, and splitters. Recently, we have designed and fabricated components with more than 200 nm bandwidths. Design strategies to enhance the performance include systematic variation of design parameters using finite-difference time-domain simulations and inverse design methods such as topology optimization....

  15. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    CERN Document Server

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  16. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    International Nuclear Information System (INIS)

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts

  17. Crystallization Kinetics of Misch Metal Based Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was found that the apparent activation energy Eg, Ex and Ep of the BMG calculated by Kissinger's method were 189.58, 170.68 and 170.41 kJ·mol-1, respectively, which was bigger than those of La55Al25Cu10Ni5Co5 BMG indicating that thermal stability of the former was higher than that of the latter. The local activation energy obtained using Ozawa equation decreased as crystallization proceeded except for the initial stage. The Avrami exponents were calculated to be in the range of 3.26~5.23 for different crystallization stages and isothermal temperatures. This implied that crystallization of Mm55Al25Cu10Ni5Co5 BMG was governed by diffusion-controlled three-dimensional growth with either reduced or increased nucleation rate, depending on isothermal temperature. Inconsistency of thermal stability with glass-forming ability for Mm(La)-Al-Cu-Ni-Co BMGs was discussed.

  18. Synthesis optimization of photonic crystals based on silicon and vanadium dioxides

    International Nuclear Information System (INIS)

    The photonic crystal is the material which structure is characterized by periodic distribution of refraction index in the spatial directions, which have the photonic band gaps in a spectrum of own electromagnetic states. There are numerous approaches of the creation of photonic crystals. In the present the optimal conditions of synthesis of photonic crystals based on silicon dioxide as well as the inverse photonic crystals based on vanadium dioxide are investigated. It is known that the synthesis process is influenced by many different factors. We have studied the dependence of the particle size on the concentration of reagents, as well as on the duration of the reaction. These studies are important for the production of samples of photonic crystals with a definite structure

  19. Advanced piezoelectric single crystal based transducers for naval sonar applications

    Science.gov (United States)

    Snook, Kevin A.; Rehrig, Paul W.; Hackenberger, Wesley S.; Jiang, Xiaoning; Meyer, Richard J., Jr.; Markley, Douglas

    2006-03-01

    Transducers incorporating single crystal piezoelectric Pb(Mg 1/3Nb 2/3) x-1Ti xO 3 (PMN-PT) exhibit significant advantages over ceramic piezoelectrics such as PZT, including both high electromechanical coupling (k 33 > 90%) and piezoelectric coefficients (d 33 > 2000 pC/N). Conventional orientation gives inherently larger bandwidth and output power than PZT ceramics, however, the anisotropy of the crystal also allows for tailoring of the performance by orienting the crystal along different crystallographic axes. This attribute combined with composition refinements can be used to improve thermal or mechanical stability, which is important in high power, high duty cycle sonar applications. By utilizing the "31" resonance mode, the high power performance of PMN-PT can be improved over traditional "33" mode single crystal transducers, due to an improved aspect ratio. Utilizing novel geometries, effective piezoelectric constants of -600 pC/N to -1200 pC/N have been measured. The phase transition point induced by temperature, pre-stress or field is close to that in the "33" mode, and since the prestress is applied perpendicular to the poling direction in "31" mode elements, they exhibit lower loss and can therefore be driven harder. The high power characteristics of tonpilz transducers can also be affected by the composition of the PMN-PT crystal. TRS modified the composition of PMN-PT to improve the thermal stability of the material, while keeping the loss as low as possible. Three dimensional modeling shows that the useable bandwidth of these novel compositions nearly equals that of conventional PMN-PT. A decrease in the source level of up to 6 dB was calculated, which can be compensated for by the higher drive voltages possible.

  20. Study of the photonic crystal waveguide based on 2D compound lattice structure

    Institute of Scientific and Technical Information of China (English)

    WU Chao-jun; LI Yan-ping; WANG Zi-u

    2009-01-01

    group velocity dispersion compensation can be realized by the structure optimization. The results provide a reference for the study and application of photonic crystal waveguide based on the compound lattice structure.

  1. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    OpenAIRE

    Lavrinenko, Andrei V.; Novitsky, Andrey V.; Zhilko, Vitaly V.

    2006-01-01

    We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits.

  2. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals.

    Science.gov (United States)

    Dao, E Han; Sierra, Raymond G; Laksmono, Hartawan; Lemke, Henrik T; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L; Cohen, Aina E; Soltis, S Michael; DeMirci, Hasan

    2015-07-01

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser. PMID:26798805

  3. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    Directory of Open Access Journals (Sweden)

    E. Han Dao

    2015-07-01

    Full Text Available In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  4. Kinetics of Non-Isothermal Crystallization of Coconut-based Cholesteryl Ester: Avrami and Ozawa Approache

    Directory of Open Access Journals (Sweden)

    J. F. Joson

    2003-06-01

    Full Text Available Kinetics of non-isothermal crystallization of coconut-based cholesteryl ester was performed by differentialscanning calorimetry under various heating rates. Different analysis methods were used to describe theprocess of non-isothermal crystallization. The results showed that the Avrami equation could describe thesystem very well. However, the Ozawa analysis failed. A probable reason is the difference in the crystallizationkinetics at high and low relative crystallization. The phase transitions of the coconut-based cholesterylester were also observed through optical polarizing microscopy

  5. Identification of a Spatio-Temporal Model of Crystal Grwoth Based on Boundary Curvature

    OpenAIRE

    Y. Zhao; Billings, S.A.; Coca, D.; Ristic, R.; L. Matos

    2007-01-01

    A new method of identifying the spatio-temporal transition rule of crystal growth is introduced based on the connection between growth kinetics and dentritic morphology. Using a modified three-point method, curvatures of the considered crystal branch are calculated and curvature direction is used to measure growth velocity. A polynomial model is then produced based on a curvature-velocity relationship to represent the spatio temporal growth process. A very simple simulation example is used in...

  6. Identification of a spatio-temporal model of crystal growth based on boundary curvature

    OpenAIRE

    Y. Zhao; Billings, S.A.; Coca, D.; Ristic, R.; L. Matos

    2007-01-01

    A new method of identifying the spatio-temporal transition rule of crystal growth is introduced based on the connection between growth kinetics and dentritic morphology. Using a modified three-point-method, curvatures of the considered crystal branch are calculated and curvature direction is used to measure growth velocity. A polynomial model is then produced based on a curvature-velocity relationship to represent the spatio-temporal growth process. A very simple simulation example i...

  7. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, A.; Zhilko, V.V.

    We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits.......We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits....

  8. An ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei

    2006-01-01

    We employ an antiresonant reflecting layers arrangement for siliicon-on-insulator based photonic crystal waveguides with thin cores. 3D FDTD numerical modelling reveals the reduction of losses with a promising potential for competing with membrane-like waveguides.......We employ an antiresonant reflecting layers arrangement for siliicon-on-insulator based photonic crystal waveguides with thin cores. 3D FDTD numerical modelling reveals the reduction of losses with a promising potential for competing with membrane-like waveguides....

  9. Photonic Crystals: Enhancing the Light Output of Scintillation Based Detectors

    CERN Document Server

    Knapitsch, Arno Richard

    A scintillator is a material which emits light when excited by ionizing radiation. Such materials are used in a diverse range of applications; From high energy particle physics experiments, X-ray security, to nuclear cameras or positron emission tomography. Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent developments in the area of nanophotonics were showing now that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the substrate. P...

  10. Fabrication of diamond based quartz crystal microbalance gas sensor

    Czech Academy of Sciences Publication Activity Database

    Varga, Marián; Laposa, A.; Kulha, P.; Davydova, Marina; Kroutil, J.; Husák, M.; Kromka, Alexander

    Vol. 605. Zurich : Trans Tech Publications, 2014 - (Hristoforou, E.; Vlachos, D.), s. 589-592 ISBN 9783038350514. ISSN 1013-9826. [International Conference on Materials and Applications for Sensors and Transducers /3./ (IC-MAST 2013). Praha (CZ), 13.09.2013-17.09.2013] R&D Projects: GA ČR(CZ) GAP108/11/0794 Institutional support: RVO:68378271 Keywords : diamond thin film * low temperature deposition * quartz crystal microbalance * gas sensor Subject RIV: JB - Sensors, Measurment, Regulation

  11. Electronically Reconfigurable Liquid Crystal Based Mm-Wave Polarization Converter

    OpenAIRE

    Doumanis, E.; Goussetis, G.; Dickie, R.; CAHILL, R; Baine, P; Bain, M; V. Fusco; Encinar, J. A.; Toso, G

    2014-01-01

    An electronically tunable reflection polarizer which exploits the dielectric anisotropy of nematic liquid crystals (LC) has been designed, fabricated and measured in a frequency band centered at 130 GHz. The phase agile polarizing mirror converts an incident slant 45° signal upon reflection to right hand circular (RHCP), orthogonal linear (-45 °) or left hand circular (LHCP) polarization depending on the value of the voltage biasing the LC mixture. In the experimental set-up this is achieved ...

  12. Photonic Crystal Fiber Temperature Sensor Based on Quantum Dot Nanocoatings

    Directory of Open Access Journals (Sweden)

    Beatriz Larrión

    2009-01-01

    Full Text Available Quantum dot nanocoatings have been deposited by means of the Layer-by-Layer technique on the inner holes of Photonic Crystal Fibers (PCFs for the fabrication of temperature sensors. The optical properties of these sensors including absorbance, intensity emission, wavelength of the emission band, and the full width at half maximum (FWHM have been experimentally studied for a temperature range from −40 to 70C°.

  13. Optimization and applications of planar silicon-based photonic crystal devices

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Burgos Leon, Juan; Niemi, Tapio; Lavrinenko, Andrei

    2005-01-01

    Very low propagation losses in straight planar photonic crystal waveguides have previously been reported. A next natural step is to add functionality to the photonic crystal waveguides and create ultra compact optical components. We have designed and fabricated such structures in a silicon......-on-insulator material. The photonic crystal is defined by holes with diameter 250 nm arranged in a triangular lattice having lattice constant 400 nm. Leaving out single rows of holes creates the planar photonic crystal waveguides. Different types of couplers and splitters, aswell as 60. 90 and 120 degree bends have...... topology optimization. We have also investigated a new device concept for coarse wavelength division de-multiplexing based on planar photonic crystal waveguides. The filtering of the wavelength channels has been realized by shifting the cut-off frequency of the fundamental photonic band gap mode in...

  14. Enhancement of light extraction from aligned SiGe-based photonic crystal slabs

    International Nuclear Information System (INIS)

    Full text: During the last decades silicon-based photonics has become an intensive research field due to its compatibility with standard metal-oxide-semiconductor (MOS) technology. Si/Ge photonic crystals are promising optical devices for enhancing spontaneous emission rates of embedded quantum emitters. For this work hexagonal photonic crystal slabs were produced on SOI substrates with embedded Ge quantum dots which were grown on predefined positions at high symmetry points between the photonic crystal holes. This is a promising approach for the design of photonic crystals with enhanced photoluminescence only at specific telecom-wavelengths, where photonic crystal modes have high electric fields and high LDOS at the position of the quantum dots. (author)

  15. A Double Emulsion-Based, Plastic-Glass Hybrid Microfluidic Platform for Protein Crystallization

    Directory of Open Access Journals (Sweden)

    Deyong Zhu

    2015-10-01

    Full Text Available This paper reports the design and construction of a plastic-glass hybrid microfluidic platform for performing protein crystallization trials in nanoliter double emulsions. The double emulsion-based protein crystallization trials were implemented with both the vapor-diffusion method and microbatch method by controlling the diffusion of water between the inner and outer phases and by eliminating water evaporation. Double emulsions, whose inner and outer environments can be easily adjusted, can provide ideal conditions to explore protein crystallization with the advantages of a convection-free environment and a homogeneous interface. The property of the water-oil interface was demonstrated to be a critical factor for nucleation, and appropriate surfactants should be chosen to prevent protein adsorption at the interface. The results from the volume effect study showed a trend of fewer crystals and longer incubation time when the protein solution volume became smaller, suggesting that the nucleation in protein crystallization process can be controlled by changing the volume of protein solutions. Finally, sparse matrix screening was achieved using the double emulsion-based microbatch method. The double emulsion-based approach for protein crystallization is a promising tool for enhancing the crystal quality by controlling the nucleation process.

  16. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.

    Science.gov (United States)

    Fang, Tao; Jia, Junteng; Li, Shuhua

    2016-05-01

    The generalized energy-based fragmentation (GEBF) approach for molecular crystals with periodic boundary condition (PBC) (denoted as PBC-GEBF) is extended to allow vibrational spectra of molecular crystals to be easily computed at various theory levels. Within the PBC-GEBF approach, the vibrational frequencies of a molecular crystal can be directly evaluated from molecular quantum chemistry calculations on a series of nonperiodic molecular systems. With this approach, the vibrational spectra of molecular crystals can be calculated with much reduced computational costs at various theory levels, as compared to those required by the methods based on periodic electronic structure theory. By testing the performance of the PBC-GEBF method for two molecular crystals (CO2 and imidazole), we demonstrate that the PBC-GEBF approach can reproduce the results of the methods based on periodic electronic structure theory in predicting vibrational spectra of molecular crystals. We apply the PBC-GEBF method at second-order Møller-Plesset perturbation theory (PBC-GEBF-MP2 in short) to investigate the vibrational spectra of the urea and ammonia borane crystals. Our results show that the PBC-GEBF-MP2 method can provide quite accurate descriptions for the observed vibrational spectra of the two systems under study. PMID:27076120

  17. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  18. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal

    International Nuclear Information System (INIS)

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface

  19. A Micro-Mechanically Based Continuum Model for Strain-Induced Crystallization in Natural Rubber

    Science.gov (United States)

    Mistry, Sunny Jigger

    Recent experimental results show that strain-induced crystallization can substantially improve the crack growth resistance of natural rubber. While this might suggest superior designs of tires or other industrial applications where elastomers are used, a more thorough understanding of the underlying physics of strain-induced crystallization in natural rubber has to be developed before any design process can be started. The objective of this work is to develop a computationally-accessible micro-mechanically based continuum model, which is able to predict the macroscopic behavior of strain crystallizing natural rubber. While several researchers have developed micro-mechanical models of partially crystallized polymer chains, their results mainly give qualitative agreement with experimental data due to a lack of good micro-macro transition theories or the lack of computational power. However, recent developments in multiscale modeling in polymers provide new tools to continue this early work. In this thesis, a new model is proposed to model strain-induced crystallization in natural rubber. To this end, a micro-mechanical model of a constrained partially crystallized polymer chain with an extended-chain crystal is derived and connected to the macroscopic level using the non-affine micro-sphere model. On the macroscopic level, a thermodynamically consistent framework for strain-crystallizing materials is developed, and a description of the crystallization kinetics is introduced. For that matter, an evolution law for crystallization based on the gradient of the macroscopic Helmholtz free energy function (chemical potential) in combination with a simple threshold function is used. A numerical implementation of the model is proposed and its predictive performance assessed using published data.

  20. Nucleation and crystallization of tailing-based glass-ceramics by microwave heating

    Institute of Scientific and Technical Information of China (English)

    Bao-wei Li; Hong-xia Li; Xue-feng Zhang; Xiao-lin Jia; Zhi-chao Sun

    2015-01-01

    The effect of microwave radiation on the nucleation and crystallization of tailing-based glass-ceramics was investigated using a 2.45 GHz multimode microwave cavity. Tailing-based glass samples were prepared from Shandong gold tailings and Guyang iron tailings utilizing a conventional glass melting technique. For comparison, the tailing-based glass samples were crystallized using two different heat-treatment meth-ods:conventional heating and hybrid microwave heating. The nucleation and crystallization temperatures were determined by performing a dif-ferential thermal analysis of the quenched tailing-based glass. The prepared glass-ceramic samples were further characterized by Fourier trans-form infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermal expansion coefficient measurements, and scanning electron micros-copy. The results demonstrated that hybrid microwave heating could be successfully used to crystallize the tailing-based glass, reduce the proc-essing time, and decrease the crystallization temperature. Furthermore, the results indicated that the nucleation and crystallization mechanism of the hybrid microwave heating process slightly differs from that of the conventional heating process.

  1. Nucleation and crystallization of tailing-based glass-ceramics by microwave heating

    Science.gov (United States)

    Li, Bao-wei; Li, Hong-xia; Zhang, Xue-feng; Jia, Xiao-lin; Sun, Zhi-chao

    2015-12-01

    The effect of microwave radiation on the nucleation and crystallization of tailing-based glass-ceramics was investigated using a 2.45 GHz multimode microwave cavity. Tailing-based glass samples were prepared from Shandong gold tailings and Guyang iron tailings utilizing a conventional glass melting technique. For comparison, the tailing-based glass samples were crystallized using two different heat-treatment methods: conventional heating and hybrid microwave heating. The nucleation and crystallization temperatures were determined by performing a differential thermal analysis of the quenched tailing-based glass. The prepared glass-ceramic samples were further characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermal expansion coefficient measurements, and scanning electron microscopy. The results demonstrated that hybrid microwave heating could be successfully used to crystallize the tailing-based glass, reduce the processing time, and decrease the crystallization temperature. Furthermore, the results indicated that the nucleation and crystallization mechanism of the hybrid microwave heating process slightly differs from that of the conventional heating process.

  2. Faraday rotator based on TSAG crystal with orientation.

    Science.gov (United States)

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Aleksey; Mironov, Evgeniy; Palashov, Oleg

    2016-07-11

    A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10-4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems. PMID:27410823

  3. Crystal chemistry of the perovskite based superconducting oxides

    International Nuclear Information System (INIS)

    The crystal chemistry of K2NiF4 and Ba2YCu3O7 type compounds is discussed. The composition dependence of the lattice parameters for the Ba2-xLaxYCu3O7+δ solid solution and of the oxygen stoichiometry in Ba2-xLaxYCu3O7+δ annealed in O2 at 500 C, as well as a tentative partial phase equilibria diagram for ABO3-x perovskites in the (Ba, La, Y) CuO3-x chemical system are given. 19 refs, 4 figs

  4. Integrable microwave filter based on a photonic crystal delay line

    OpenAIRE

    Sancho Durá, Juan; Bourderionnet, Jerome; Lloret Soler, Juan Antonio; Combrie, Sylvain; Gasulla Mestre, Ivana; Xavier, Stephane; Sales Maicas, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany Francoy, José; Rossi, Alfredo

    2012-01-01

    The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0 5...

  5. Luneburg and flat lens based on graded photonic crystal

    Science.gov (United States)

    Liu, Wei; Sun, Xiaohong; Gao, Minglei; Wang, Shuai

    2016-04-01

    Square-lattice graded photonic crystals employed for designing Luneburg and Flat Lens is presented. Comparable simulation of the Luneburg lens with TE and TM polarizations predicts that TM lens possesses of enlarged transmission bandwidth and strengthened focusing ability, in comparison with TE lens. As a typical simplified counterpart, the evolution of focusing intensity and numerical aperture of the flat lens is achieved. What is more, those Luneburg and Flat Lens can withstand imperfect gradients in structure design. This will provide a guidance to produce a high quality focusing lens with small size, short focal length and large numerical aperture applied in the integrated photonic devices.

  6. Silica based polishing of {100} and {111} single crystal diamond

    International Nuclear Information System (INIS)

    Diamond is one of the hardest and most difficult to polish materials. In this paper, the polishing of {111} and {100} single crystal diamond surfaces by standard chemical mechanical polishing, as used in the silicon industry, is demonstrated. A Logitech Tribo Chemical Mechanical Polishing system with Logitech SF1 Syton and a polyurethane/polyester polishing pad was used. A reduction in roughness from 0.92 to 0.23 nm root mean square and 0.31 to 0.09 nm rms for {100} and {111} samples respectively was observed. (paper)

  7. Pulse-width compression based on photonic crystal fiber

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; WANG Zhen-li; SHI Yan-mei

    2006-01-01

    According to the characteristics of high-order solitons,compressed picosecond pulses are numerically simulated in the photonic crystal fiber (PCF),by means of split-step Fourier method. The results show that,PCF enables input pulse with lower peak power to form high-order solitons for the purpose of femtosecond pulse-width compression. For example,60- femtosecond pulse width was made for 1-ps initial pulse width only over the distance of 2.2 m.Besides,shorter optimum fiber length for compression and higher compression ratio could be obtained on the premise of pre-chirp technique.

  8. Ellipsometric investigations of photonic crystals based on carbon nanofibers

    CERN Document Server

    Rehammar, R; Arwin, H; Kinaret, J M; Campbell, E E B

    2010-01-01

    Carbon nanofibers (CNF) are used as components of planar photonic crystals (PC). Square and rectangular lattices as well as random patterns of vertically aligned CNF were fabricated and their properties studied using ellipsometry. Conventional methods of ellipsometric analysis used in thin film ellipsometry are not applicable to these samples due to their nanostructured nature. We show that detailed information such as symmetry directions and the band structure of these novel materials can be extracted from considerations of the polarization state in the specular beam.

  9. A switchable circular polarizer based on zenithal bistable liquid crystal gratings

    Science.gov (United States)

    Zografopoulos, Dimitrios C.; Isić, Goran; Kriezis, Emmanouil E.; Beccherelli, Romeo

    2016-05-01

    A switchable circular polarizer for infrared telecom wavelengths based on zenithal bistable liquid crystal gratings is designed and investigated by employing the finite-element method for the study of full-wave light propagation and a tensorial formulation for the liquid crystal orientation. The handedness of the output circular polarization can be selected by switching between the two stable states of the liquid-crystal grating. Analysis of the spectral dependence and the tolerance of the polarizer’s performance with respect to deviations from the optimized geometry reveals the robustness of its polarizing properties, which stems from the non-resonant nature of its operation.

  10. A spin-wave logic gate based on a width-modulated dynamic magnonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Andrey A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern 67663 (Germany); Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 (Finland); Ustinov, Alexey B. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 (Finland); Semenov, Alexander A.; Kalinikos, Boris A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Chumak, Andrii V.; Serga, Alexander A.; Vasyuchka, Vitaliy I.; Hillebrands, Burkard [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern 67663 (Germany); Lähderanta, Erkki [Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 (Finland)

    2015-03-09

    An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated.

  11. A Novel Microwave Tunable Band-Pass Filter Integrated Power Divider Based on Liquid Crystal

    Directory of Open Access Journals (Sweden)

    Yupeng Liu

    2015-01-01

    Full Text Available This paper proposes a novel microwave continuous adjustable band-pass filter integrated power divider based on nematic liquid crystals (LCs. The proposed power divider uses liquid crystal (LC as the dielectric material. It can realize phase shift by changing the dielectric anisotropy, when biasing the high anisotropy nematic liquid crystal. It is mainly used in microwave frequencies. It has a large number of advantages compared to conventional filter integrated power divider, such as low loss, multifunction integration, continuous adjustable, miniaturization, low processing costs, low operating voltage, high phase shift, and convenient manufacture. Therefore, it has shown great potential for application.

  12. SOLIDIFICATION OF NICKEL-BASED SINGLE CRYSTAL SUPERALLOY BY ELECTRIC FIELD

    Institute of Scientific and Technical Information of China (English)

    Y.S. Yang; X.H. Feng; G.F. Cheng; Y.J. Li; Z.Q. Hu

    2005-01-01

    The crystal growth of a nickel-based single crystal superalloy DD3 was researched via controlled directional solidification under the action of a DC electric field. The cellular or dendrite spacing of the single crystal superalloy is refined and microsegregation of alloying elements Al,Ti, Mo and W, is reduced by the electric field. The electric field decreases the interface stability and reduces the critical growth rate of the cellular-dendritic translation because of Thomson effect and Joule heating. The precipitation of the γ' phase is more uniform and the size of the γ'phase is smaller with the electric field than that without the electric field.

  13. Laser micro-processing as a tool for constructing insulator-based magnonic crystal

    International Nuclear Information System (INIS)

    Y3Fe5O12 (YIG) films with a periodic-antidot-array structure fabricated by laser micro-processing is shown to exhibit clear characteristics of two-dimensional (2D) magnonic crystals. The experimental results demonstrate that the spin-wave-resonance spectra in the YIG films are modulated by the periodic antidot structure. The frequency and lattice-constant dependences of the spectra are well reproduced by a numerical calculation based on magnonic band structures of the 2D magnonic crystals. Since the laser micro-processing is compatible with various thin-film fabrication methods, it can be a powerful tool for constructing magnonic crystals. (paper)

  14. Single crystal growth of europium and ytterbium based intermetallic compounds using metal flux technique

    Indian Academy of Sciences (India)

    Sumanta Sarkar; Sebastian C Peter

    2012-11-01

    This article covers the use of indium as a potential metal solvent for the crystal growth of europium and ytterbium-based intermetallic compounds. A brief view about the advantage of metal flux technique and the use of indium as reactive and non-reactive flux are outlined. Large single crystals of EuGe2, EuCoGe3 and Yb2AuGe3 compounds were obtained in high yield from the reactions of the elements in liquid indium. The results presented here demonstrate that considerable advances in the discovery of single crystal growth of complex phases are achievable utilizing molten metals as solvents.

  15. A spin-wave logic gate based on a width-modulated dynamic magnonic crystal

    International Nuclear Information System (INIS)

    An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated

  16. Optical switch based on the electrically controlled liquid crystal interface.

    Science.gov (United States)

    Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A

    2015-06-01

    The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically. PMID:26192675

  17. Accurate determination of crystal structures based on averaged local bond order parameters

    OpenAIRE

    Lechner, Wolfgang; Dellago, Christoph

    2008-01-01

    Local bond order parameters based on spherical harmonics, also known as Steinhardt order parameters, are often used to determine crystal structures in molecular simulations. Here we propose a modification of this method in which the complex bond order vectors are averaged over the first neighbor shell of a given particle and the particle itself. As demonstrated using soft particle systems, this averaging procedure considerably improves the accuracy with which different crystal structures can ...

  18. A Double Emulsion-Based, Plastic-Glass Hybrid Microfluidic Platform for Protein Crystallization

    OpenAIRE

    Deyong Zhu; Xiaohu Zhou; Bo Zheng

    2015-01-01

    This paper reports the design and construction of a plastic-glass hybrid microfluidic platform for performing protein crystallization trials in nanoliter double emulsions. The double emulsion-based protein crystallization trials were implemented with both the vapor-diffusion method and microbatch method by controlling the diffusion of water between the inner and outer phases and by eliminating water evaporation. Double emulsions, whose inner and outer environments can be easily adjusted, can ...

  19. Crystal structure prediction and electronic properties of Li-based ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vergniory, Maia G.; Sanna, Antonio; Ernst, Arthur; Romero, Aldo H.; Gross, Eberhard K.U. [Max Planck Institute of Microstructure Physics, 06120 Halle (Germany); Marques, Miguel A.L.; Botti, Silvana; Valencia, Irais [Universite de Lyon, F-69000 Lyon, France and LPMCN, CNRS, UMR 5586, Universite Lyon 1, F-69622 Villeurbanne (France); Amsler, Max; Goedecker, Stefan [Department of Physics, Universitaet Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Chulkov, Evgueni V. [Donostia International Physics Center, 20018 Donostia-San Sebastian (Spain)

    2013-07-01

    On the basis of ab initio first principles and using the Minimal Hopping Algorithm we predict the crystal structure of non synthesized LiYZ (Y=Au,Ag, Z=Te,Se) based ternary compounds. We find that, as distinct from expectation, the crystal structure depends strongly on the composition, thus every compound belongs to a different symmetry group and has complexly different electronic properties. We analyze the fundamental physics below these features considering the calculated ground state structure.

  20. Micro-Displacement Sensor Based on a Hollow-Core Photonic Crystal Fiber

    OpenAIRE

    Orlando Frazão; Manuel Lopez-Amo; José Manuel Baptista; José Luís Santos; Ana Margarida Rodrigues Pinto

    2012-01-01

    A sensing head based on a hollow-core photonic crystal fiber for in-reflection measurement of micro-displacements is presented. The sensing structure takes advantage of the multimodal behavior of a short segment of hollow-core photonic crystal fiber in-reflection, being spliced to a single mode fiber at its other end. A modal interferometer is obtained when the sensing head is close to a mirror, through which displacement is measured.

  1. Tunable defect mode realized by graphene-based photonic crystal

    Science.gov (United States)

    Fu, Jiahui; Chen, Wan; Lv, Bo

    2016-04-01

    In this literature, we propose an active terahertz 1D photonic crystal, which consists of silicon layers and air layers. A graphene sheet is embedded at the interface between dielectric and air. Tunable photonic band gap is realized by changing the Fermi level of graphene. Transmission Matrix Method is utilized to explain the influence of the graphene layer. We also demonstrate that a dielectric slab attached with a thin sheet made of single-negative metamaterial acts like a pure dielectric slab with a thinner thickness. A tunable blue shift of the band gap can be realized by simply applying different chemical potentials on the graphene sheet. This feature can be utilized for the design of tunable high-gain antenna array and force generator in terahertz band.

  2. Advanced excimer-based crystallization systems for production solutions

    International Nuclear Information System (INIS)

    Line beam excimer laser annealing (ELA) is a well-known technique for thin Si-film crystallization and established in LTPS mass production. With introduction of sequential lateral solidification (SLS) some aspects such as crystalline quality, throughput and flexibility regarding the substrate size could be improved, but for OLED manufacturing still further process development is necessary. This paper discusses line beam ELA and SLS-techniques that might enable process engineers to make polycrystalline-silicon (poly-Si) films with a high degree of uniformity and quality as required for system on glass (SOG) and active matrix organic light emitting displays (AMOLED). Equipment requirements are discussed and compared to previous standards. SEM-images of process examples are shown in order to demonstrate the viability

  3. Advanced excimer-based crystallization systems for production solutions

    Energy Technology Data Exchange (ETDEWEB)

    Simon, F. [Lambda Physik AG, Goettingen (Germany)]. E-mail: frank.simon@coherent.com; Brune, J. [Lambda Physik AG, Goettingen (Germany); Herbst, L. [Lambda Physik AG, Goettingen (Germany)

    2006-04-30

    Line beam excimer laser annealing (ELA) is a well-known technique for thin Si-film crystallization and established in LTPS mass production. With introduction of sequential lateral solidification (SLS) some aspects such as crystalline quality, throughput and flexibility regarding the substrate size could be improved, but for OLED manufacturing still further process development is necessary. This paper discusses line beam ELA and SLS-techniques that might enable process engineers to make polycrystalline-silicon (poly-Si) films with a high degree of uniformity and quality as required for system on glass (SOG) and active matrix organic light emitting displays (AMOLED). Equipment requirements are discussed and compared to previous standards. SEM-images of process examples are shown in order to demonstrate the viability.

  4. Microstructural observations of the crystallization of amorphous Fe-Si-B based magnetic alloys

    International Nuclear Information System (INIS)

    The effect of Cu and Nb alloying additions on the crystallization of Fe-Si-B based alloys were studied. DSC, XRD, TEM, EELS and VSM techniques were used to study the thermal properties, phase formation during primary crystallization, morphological transitions and magnetic properties. The additions of individual Cu or Nb alloying additions changed the crystallization temperature as well as the activation energy for primary crystallization. The phases formed during primary crystallization for the Fe77.5Si13.5B9, Fe76.5Si13.5B9Cu1 and Fe74.5Si13.5B9Nb3Cu1 alloys are the same, however the morphologies are significantly different. Alloying additions of 3 at.% Nb induced a change in the crystallization mechanism and the type of phases formed. The combined additions of Cu and Nb resulted in the formation of nanocrystals. B atoms were found to be rejected around dendrites formed during primary crystallization of the Fe77.5Si13.5B9 alloy. The highest saturation magnetization and the lowest coercivity is obtained in the Fe77.5Si13.5B9 and Fe74.5Si13.5B9Nb3Cu1 alloy respectively after annealing at 550 deg. C for 1 h

  5. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Science.gov (United States)

    Zhao, Xiaolong; Chen, Liang; He, Yongning; Liu, Jinliang; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting; Zhang, Zhongbing; Ouyang, Xiaoping

    2016-04-01

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 1013 Ω cm due to the compensation of the donor defects (VO) and acceptor defects (VZn and Oi) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  6. Design, construction and testing of a system for detection of toxic gases based on piezoelectric crystals.

    Science.gov (United States)

    Leyva, J A; de Cisneros, J L; de Barreda, D G; Becerra, A J

    1994-01-01

    A system for static operation of toxic gas sensors based on piezoelectric crystals was constructed as a preliminary step in the development of this type of sensor. The sensing part of the setup consists of a twin oscillating circuit assembled from commercially available electronic parts mounted on a motherboard. The oscillating circuits can accommodate two piezoelectric crystals, of which one or both can be coated with different materials, or a single one, as required. The sensing assembly (crystals plus oscillating circuits) is placed in a customized test chamber that allows one to control and reproduce its internal environment. Once assembled and fine-tuned, the proposed setup was used to test a commercially available piezoelectric crystal for sensing formaldehyde in order to expand available information on this type of sensor. PMID:18965902

  7. Analysis of Sampled Fiber Bragg Grating Based on the Photonic Crystal Theory

    Institute of Scientific and Technical Information of China (English)

    ZHU Dan-dan

    2009-01-01

    One of the most basic characteristics of photonic crystal is frequency band gap.When defects are introduced into the periodic photonic crystal,a number of defect modes appear in the stop band.In this paper,we exploit transfer matrix method based on photonic crystal theory,and assume the sampled fiber Bragg grating as one-dimensional dual photonic crystal with a large size defect.Characteristics of the sampled fiber Bragg grating are analyzed.Experimental results show that the sampled fiber Bragg grating has many reflective peaks.Its reflectivity,center wavelength,reflective peak intervals and band width all change with the grating parameters,including grating length,duty ratio of the material with high dielectric constant,and index modulation depth and period.Results agree with the conventional couple mode theory which can be used when analyzing other characteristics of the sampled fiber Bragg grating or applying it into practice.

  8. Investigation on the optical and electrical properties of MMTG crystal: A Lewis base adduct

    Science.gov (United States)

    Vetha Potheher, I.; Rajarajan, K.; Vimalan, M.; Tamilselvan, S.; Jeyasekaran, R.; Sagayaraj, P.

    2011-09-01

    The growth of nonlinear optical single crystal of manganese mercury thiocyanate glycol monomethyl ether (MMTG), a Lewis base adduct of manganese mercury thiocyanate (MMTC), is reported. MMTG crystallizes in orthorhombic structure with Pca2 1 space group. The optical band gap energy of the sample is found to be 3.5 eV. The sample is thermally stable up to 145 °C. The grown crystal is characterized by photoluminescence, dielectric, dc conductivity, photoconductivity and SEM studies. From the photoluminescence study, the suitability of the material for blue and green light generation is confirmed. The electric and dielectric response of the grown crystal is studied as a function of temperature and the results are discussed. The dc activation energy of the sample is found to be 0.048 eV.

  9. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-07-01

    Full Text Available Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3O3-PbTiO3 (PMN-PT have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60% near the morphotropic phase boundary (MPB. Ternary Pb(In1/2Nb1/2O3-Pb(Mg1/3Nb2/3O3-PbTiO3 (PIN-PMN-PT single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.

  10. High performance relaxor-based ferroelectric single crystals for ultrasonic transducer applications.

    Science.gov (United States)

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L W; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  11. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    Science.gov (United States)

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  12. Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers

    DEFF Research Database (Denmark)

    Burani, Nicola; Lægsgaard, Jesper

    2005-01-01

    We present a modeling study carried out to support the design of a novel, to our knowledge, kind of photonic-crystal fiber (PCF)-based sensor. This device, based on a PCF Bragg grating, detects the presence of selected single-stranded DNA molecules, hybridized to a biofilm in the air holes of the...

  13. Investigation of frequency-selective devices based on a microstrip 2D photonic crystal

    Science.gov (United States)

    Belyaev, B. A.; Khodenkov, S. A.; Shabanov, V. F.

    2016-04-01

    The frequency-selective properties of structures based on a 2D microstrip photonic crystal have been investigated theoretically and experimentally. It is shown that various microwave devices, including diplexers, bandpass filters, and double bandpass filters, can be designed based on these structures.

  14. Single-crystal tungsten-based alloys with molybdenum and rhenium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Single crystals of ternary W-based alloys with 2 % Re and less than 7 % Mo have been grown for the first time at the Baikov Institute of Metallurgy and Materials Science RAS. Plasma arc melting allowed us to effectively purify the single crystals from a number of impurities. According to mass spectrometric analysis for 70 elements, the total content of impurities does not exceed 0. 063%. It was found that, as the Mo content increases, the size of first-kind subgrains decreases and their mutual misorientation increases. In the W-based alloy with 2.3 % Re and 6.7% Mo, no first-kind subgrains are observed,whereas second-kind subgrains are elongated along the growth direction. In this case, their total misorientation is well below that in the other low-alloy single crystals.Single-crystal of binary tungsten-based alloys with rhenium were prepared by electron-beam zone melting (1% Re, mass fraction) and plasma arc melting (2%Re, 10%Re, 25%Re (mass fraction)). It was found that the low-alloyed (1%-2 % Rh (mass fraction)) W-based alloys are characterized by a rather perfect single-crystal structure and misorientations of first- and second-kind subgrains of 20-50' and 10-40', respectively. Sections with the coarse-grained structure are observed in ingots of the alloy with 10%and 25% (mass fraction) Rh; in the alloy with 25% Rh, such structure is observed immediately from the seed.A device for measuring the liquidus and solidus temperatures of refractory metallic alloys has been designed. The liquidus temperatures of ternary single crystals (W-Mo-Re) have been measured.The studied single crystals, owing to their purity and high stability of the structure and properties,are widely used in electronics, electrical engineering, and analytical devices for various purposes.

  15. High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants

    International Nuclear Information System (INIS)

    High-molecular-weight poly-γ-glutamic acid-based polymers have been synthesized, tested and adopted for protein crystallization. Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here

  16. High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ting-Chou [Department of Chemistry, University of York, York YO10 5YW (United Kingdom); Korczyńska, Justyna [Department of Chemistry, University of York, York YO10 5YW (United Kingdom); Structural Biology Laboratory, University of York, York YO10 5YW (United Kingdom); Smith, David K. [Department of Chemistry, University of York, York YO10 5YW (United Kingdom); Brzozowski, Andrzej Marek, E-mail: marek@ysbl.york.ac.uk [Department of Chemistry, University of York, York YO10 5YW (United Kingdom); Structural Biology Laboratory, University of York, York YO10 5YW (United Kingdom)

    2008-09-01

    High-molecular-weight poly-γ-glutamic acid-based polymers have been synthesized, tested and adopted for protein crystallization. Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here.

  17. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Science.gov (United States)

    Chhipa, Mayur Kumar; Dusad, Lalit Kumar

    2016-05-01

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm2.

  18. Tunable All-in-Fiber Waveplates Based on Negative Dielectric Liquid Crystal Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Wei, Lei; Eskildsen, Lars; Weirich, Johannes;

    2008-01-01

    Tunable all-in-fiber waveplates based on negative dielectric liquid crystal photonic bandgap fibers are presented. The birefringence can be tuned electrically and thermally to work as a quarter-wave or a half-wave plate in the range 1520 nm-1580 nm.......Tunable all-in-fiber waveplates based on negative dielectric liquid crystal photonic bandgap fibers are presented. The birefringence can be tuned electrically and thermally to work as a quarter-wave or a half-wave plate in the range 1520 nm-1580 nm....

  19. Add-drop filter based on dual photonic crystal nanobeam cavities in push-pull mode

    CERN Document Server

    Poulton, Christopher V; Wade, Mark T; Popovic, Milos A

    2015-01-01

    We demonstrate an add-drop filter based on a dual photonic crystal nanobeam cavity system that emulates the operation of a traveling-wave resonator and drops light on resonance to a single output port. Realized on an advanced SOI CMOS (IBM 45nm SOI) chip without any foundry process modifications, the device shows 16dB extinction in through port and 1dB loss in drop port with a 3dB bandwidth of 64GHz. To the best of our knowledge, this is the first implementation of a four-port add-drop filter based on photonic crystal nanobeam cavities.

  20. Expectation-based approach for one-dimensional randomly disordered phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng, E-mail: wufeng_chn@163.com; Gao, Qiang, E-mail: qgao@dlut.edu.cn; Xu, Xiaoming, E-mail: xxm020201@163.com; Zhong, Wanxie, E-mail: zwoffice@dlut.edu.cn

    2014-03-01

    An expectation-based approach to the statistical theorem is proposed for the one-dimensional randomly disordered phononic crystal. In the proposed approach, the expectations of the random eigenstates of randomly disordered phononic crystals are investigated. In terms of the expectations of the random eigenstates, the wave propagation and localization phenomenon in the random phononic crystal could be understood in a statistical perspective. Using the proposed approach, it is proved that for a randomly disordered phononic crystal, the Bloch theorem holds in the perspective of expectation. A one-dimensional randomly disordered binary phononic crystal consisting of two materials with the random geometry size or random physical parameter is addressed by using the proposed approach. From the result, it can be observed that with the increase of the disorder degree, the localization of the expectations of the eigenstates is strengthened. The effect of the random disorder on the eigenstates at higher frequencies is more significant than that at lower frequencies. Furthermore, after introducing the random disorder into phononic crystals, some random divergent eigenstates are changed to localized eigenstates in expectation sense.

  1. Expectation-based approach for one-dimensional randomly disordered phononic crystals

    International Nuclear Information System (INIS)

    An expectation-based approach to the statistical theorem is proposed for the one-dimensional randomly disordered phononic crystal. In the proposed approach, the expectations of the random eigenstates of randomly disordered phononic crystals are investigated. In terms of the expectations of the random eigenstates, the wave propagation and localization phenomenon in the random phononic crystal could be understood in a statistical perspective. Using the proposed approach, it is proved that for a randomly disordered phononic crystal, the Bloch theorem holds in the perspective of expectation. A one-dimensional randomly disordered binary phononic crystal consisting of two materials with the random geometry size or random physical parameter is addressed by using the proposed approach. From the result, it can be observed that with the increase of the disorder degree, the localization of the expectations of the eigenstates is strengthened. The effect of the random disorder on the eigenstates at higher frequencies is more significant than that at lower frequencies. Furthermore, after introducing the random disorder into phononic crystals, some random divergent eigenstates are changed to localized eigenstates in expectation sense.

  2. Kinetics of crystallization of a Fe-based multicomponent amorphous alloy

    Indian Academy of Sciences (India)

    Arun Pratap; T Lilly Shanker Rao; Kinnary Patel; Mukesh Chawda

    2009-10-01

    The Fe-based multicomponent amorphous alloys (also referred to as metallic glasses) are known to exhibit soft magnetic properties and, it makes them important for many technological applications. However, metallic glasses are in a thermodynamically metastable state and in case of high temperature operating conditions, the thermally activated crystallization would be detrimental to their magnetic properties. The study of crystallization kinetics of metallic glasses gives useful insight about its thermal stability. In the present work, crystallization study of Fe67Co18B14Si1 (2605CO) metallic glass has been carried out using differential scanning calorimetry (DSC) technique. Mössbauer study has also been undertaken to know the phases formed during the crystallization process. The alloy shows two-stage crystallization. The activation energy has been derived using the Kissinger method. It is found to be equal to 220 kJ/mol and 349 kJ/mol for the first and second crystallization peaks, respectively. The Mössbauer study indicates the formation of -(Fe, Co) and (Fe, Co)3B phases in the alloy.

  3. PREDICTION OF EARING IN TEXTURED ALUMINIUM SHEETS BASED ON CRYSTAL PLASTICITY

    Institute of Scientific and Technical Information of China (English)

    Chen Yiping; Dong Xianghuai; Xie Chunlei; E. Nakamachi; Li Zhigang

    2001-01-01

    The phenomenon of earing is investigated in the present study based on the theory of crystal plasticity with the dynamic explicit finite element program developed. Firstly texture analysis is carried out of rolled aluminium alloy A15052 by means of X-ray technique. Then from the texture coefficients an analytical expression for the orientation distribution function (ODF) is derived making use of the computer algebraic language Mathematica4.0, which makes it easier to discretize the ODF into a series of Eulerian angles representing the distribution of lattices and further the preferred orientation (texture) of crystals of the original sheets. For the polycrystal model, the material is described using crystal plasticity where each material point in the sheet is assumed to be a polycrystalline aggregate of a very large number of face-centered cubic (FCC)grains with each grain modelled as an FCC crystal with 12 distinct slip systems. The modified Taylor theory of crystal plasticity is used and only the initial texture is taken into consideration during large plastic deformation. Numerical simulation of earing has been performed for an aluminium sheet with texture and one with crystals exhibiting random distribution to demonstrate the effect of texture of materials on their plastic anisotropy and formability.

  4. Development of crystals based in cesium iodide for application as radiation detectors

    International Nuclear Information System (INIS)

    Inorganic scintillators with fast luminescence decay time, high density and high light output have been the object of studies for application in nuclear physics, high energy physics, nuclear tomography and other fields of science and engineering. Scintillation crystals based on cesium iodide (CsI) are matters with relatively low higroscopy, high atomic number, easy handling and low cost, characteristics that favor their use as radiation detectors. In this work, the growth of pure CsI crystals, CsI:Br and CsI:Pb, using the Bridgman technique, is described. The concentration of the bromine doping element (Br) was studied in the range of 1,5x10-1 M to 10-2 M and the lead (Pb) in the range of 10-2 M to 5x10-4 M. To evaluate the scintillators developed, systematic measurements were carried out for luminescence emission and luminescence decay time for gamma radiation, optical transmittance assays, Vickers micro-hardness assays, determination of the doping elements distribution along the grown crystals and analysis of crystals response to the gamma radiation in the energy range of 350 keV to 1330 keV and alpha particles from a 241Am source, with energy of 5.54 MeV. It was obtained 13 ns to 19 ns for luminescence decay time for CsI:Br and CsI:Pb crystals. These results were very promising. The results obtained for micro-hardness showed a significant increase in function of the doping elements concentration, when compared to the pure CsI crystal, increasing consequently the mechanical resistance of the grown crystals. The validity of using these crystals as radiation sensors may be seen from the results of their response to gamma radiation and alpha particles. (author)

  5. Liquid crystal bio-based epoxy coating with enhanced performance

    Directory of Open Access Journals (Sweden)

    Rasha A. El-Ghazawy,

    2014-11-01

    Full Text Available Tetrafunctional rosin based epoxy was synthesized and cured with either rosin based hardener or conventional phenylene diamine to study the feasibility of producing high performance thermosetting polymer from renewable resource. The chemical structure of the prepared epoxy was confirmed by elemental analysis, FTIR, 1HNMR, UV, total acid number and epoxy equivalent weight. Dynamic mechanical (DMA and thermogravimetric (TGA analyses results indicate that fully biobased epoxy system possesses high glass transition temperature (Tg, high modulus (G` and improved thermal stability.

  6. Novel Synthesis of Ferrocenyl Schiff Bases and Crystal Structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Hui-Qing; ZHOU,Zhi-Ming; YU,Cong-Xuan

    2004-01-01

    @@ Ferrocenylimines have attracted additional interest due to their versatile utilities. They have been widely used as plant growth regulator, bactericide, fuel dope and new anticarcinogen.[1] And a large amount of ferrocenyl shiff bases were prepared in the past. However, study on ferrocenylimines as directing ortho metalation group (DMG) in the (-)-sparteine meditated synthesis of planar chiral ferrocene has not been reported. Herein, we synthesized a series of ferrocenyl schiff bases for this study.

  7. A high sensitivity pressure sensor based on two-dimensional photonic crystal

    Science.gov (United States)

    Tao, Shangbin; Chen, Deyuan; Wang, Juebin; Qiao, Jing; Duan, Yali

    2016-06-01

    In this paper, we propose and simulate a pressure sensor based on two-dimensional photonic crystal with the high quality factor and sensitivity. The sensor is formed by the coupling of two photonic crystal based waveguides and one nanocavity. The photonic crystal with the triangular lattice is composed of GaAs rods. The detailed structures of the waveguides and nanocavity are optimized to achieve better quality factor and sensitivity of the sensor. For the optimized structures, the resonant wavelength of the sensor has a linear redshift as increasing the applied pressure in the range of 0-2 GPa, and the quality factor keeps unchanged nearly. The optimized quality factor is around 1500, and the sensitivity is up to 13.9 nm/GPa.

  8. A flow-free droplet-based device for high throughput polymorphic crystallization.

    Science.gov (United States)

    Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi

    2015-06-21

    Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing

  9. A four-layer attenuation compensated PET detector based on APD arrays without discrete crystal elements

    International Nuclear Information System (INIS)

    Scintillation detectors developed for PET traditionally use relatively thick crystals coupled to photomultiplier tubes. To ensure good efficiency the crystals typically measure between 10 and 30 mm thick. Detectors also require good spatial resolution so the scintillator is normally made up of a densely packed array of long thin crystals. In this paper, we present a novel design in which the detection crystal is divided into a number of layers along its length with an avalanche photo diode (APD) inserted between each layer. With thin layers of crystal, it is possible to use a continuous rather than a pixelated crystal. The potential advantages of this design over a conventional PMT-based detector are: (i) improved light collection efficiency, (ii) reduced dependency on dense crystal to achieve good stopping power, (iii) ease of crystal manufacture, (iv) reduced detector dead-time and increased count rate, and (v) inherent depth of interaction. We have built a four-layer detector to test this design concept using Hamamatsu S8550 APD arrays and LYSO crystals. We used the centre 16 pixels of each of the arrays to give an active area of 9.5 mm x 9.5 mm. Four crystals 9.5 mm x 9.5 mm were used with thickness increasing from 2 mm at the front to 2.5 mm, 3.1 mm and 4.3 mm at the back, to ensure a similar count rate in each layer. Calculations for the thickness of the four layers were initially made using the linear attenuation coefficient for photons at 511 keV of LYSO. Experimental results and further simulation demonstrated that a correction to the thickness of each layer should be considered to take into account the scattered events. The energy resolution for each of the layers at 511 keV was around 15%, coincidence-timing resolution was 2.2 ns and the special resolution was less than 2 mm using a statistical-based positioning algorithm

  10. A four-layer attenuation compensated PET detector based on APD arrays without discrete crystal elements.

    Science.gov (United States)

    McCallum, Stephen; Clowes, Peter; Welch, Andrew

    2005-09-01

    Scintillation detectors developed for PET traditionally use relatively thick crystals coupled to photomultiplier tubes. To ensure good efficiency the crystals typically measure between 10 and 30 mm thick. Detectors also require good spatial resolution so the scintillator is normally made up of a densely packed array of long thin crystals. In this paper, we present a novel design in which the detection crystal is divided into a number of layers along its length with an avalanche photo diode (APD) inserted between each layer. With thin layers of crystal, it is possible to use a continuous rather than a pixelated crystal. The potential advantages of this design over a conventional PMT-based detector are: (i) improved light collection efficiency, (ii) reduced dependency on dense crystal to achieve good stopping power, (iii) ease of crystal manufacture, (iv) reduced detector dead-time and increased count rate, and (v) inherent depth of interaction. We have built a four-layer detector to test this design concept using Hamamatsu S8550 APD arrays and LYSO crystals. We used the centre 16 pixels of each of the arrays to give an active area of 9.5 mm x 9.5 mm. Four crystals 9.5 mm x 9.5 mm were used with thickness increasing from 2 mm at the front to 2.5 mm, 3.1 mm and 4.3 mm at the back, to ensure a similar count rate in each layer. Calculations for the thickness of the four layers were initially made using the linear attenuation coefficient for photons at 511 keV of LYSO. Experimental results and further simulation demonstrated that a correction to the thickness of each layer should be considered to take into account the scattered events. The energy resolution for each of the layers at 511 keV was around 15%, coincidence-timing resolution was 2.2 ns and the special resolution was less than 2 mm using a statistical-based positioning algorithm. PMID:16177539

  11. Experimental and numerical investigations of Si-based photonic crystals with ordered Ge quantum dots emitters

    International Nuclear Information System (INIS)

    In recent years quasi-two-dimensional (2D) photonic crystals, also known as photonic crystal slabs, have been the subject of extensive research. The present work is based on photonic crystals where a hexagonal 2D lattice of air holes is etched through a silicon-on-insulator (SOI) slab. Light is guided in the horizontal plane using photonic band-gap properties, and index guiding provides the optical confinement in the third dimension. This work discusses photonic crystal slabs with Ge quantum dots (QDs) as internal sources. Ge quantum dots have luminescence around 1500nm, which is well suited for optical fiber communication in a way that is fully compatible with standard silicon technology. QD emission can be controlled by epitaxial growth on a pre-patterned SOI substrate. In this way the position of the QDs is controlled, as well as their homogeneity and spectral emission range. During this thesis, photonic crystal fabrication techniques together with techniques for the alignment of the photonic crystal holes with the QDs positions were developed. The employed techniques involve electron beam lithography (EBL) and inductively-coupled-plasma reactive ion etching (ICP-RIE). Perfect ordering of the QDs position was achieved by employing these techniques for pit patterning and the subsequent growth of Ge dots using molecular beam epitaxy (MBE). A second EBL step was then used for photonic crystal writing, which needed to be aligned with respect to the pit pattern with a precision of about ± 30nm. Micro-photoluminescence spectroscopy was used for the optical characterization of the photonic crystal. The emission from ordered quantum dots in different symmetry positions within a unit cell of photonic crystal was theoretically and experimentally investigated and compared with randomly distributed ones. Besides, different geometrical parameters of photonic crystals were studied. The theoretical investigations were mainly based on the rigorous coupled wave analysis (RCWA

  12. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    International Nuclear Information System (INIS)

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser

  13. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mario Agio

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  14. A novel laser-based method for controlled crystallization in dental prosthesis materials

    Science.gov (United States)

    Cam, Peter; Neuenschwander, Beat; Schwaller, Patrick; Köhli, Benjamin; Lüscher, Beat; Senn, Florian; Kounga, Alain; Appert, Christoph

    2015-02-01

    Glass-ceramic materials are increasingly becoming the material of choice in the field of dental prosthetics, as they can feature both high strength and very good aesthetics. It is believed that their color, microstructure and mechanical properties can be tuned such as to achieve an optimal lifelike performance. In order to reach that ultimate perfection a controlled arrangement of amorphous and crystalline phases in the material is required. A phase transformation from amorphous to crystalline is achieved by a heat treatment at defined temperature levels. The traditional approach is to perform the heat treatment in a furnace. This, however, only allows a homogeneous degree of crystallization over the whole volume of the parent glass material. Here a novel approach using a local heat treatment by laser irradiation is presented. To investigate the potential of this approach the crystallization process of SiO2-Li2O-Al2O3-based glass has been studied with laser systems (pulsed and continuous wave) operating at different wavelengths. Our results show the feasibility of gradual and partial crystallization of the base material using continuous laser irradiation. A dental prosthesis machined from an amorphous glassy state can be effectively treated with laser irradiation and crystallized within a confined region of a few millimeters starting from the body surface. Very good aesthetics have been achieved. Preliminary investigation with pulsed nanosecond lasers of a few hundreds nanoseconds pulse width has enabled more refinement of crystallization and possibility to place start of phase change within the material bulk.

  15. Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kolegov, A A; Shandarov, S M; Simonova, G V; Kabanova, L A; Burimov, Nikolai I; Shmakov, S S; Bykov, V I; Kargin, Yu F

    2011-09-30

    The characteristics of a holographic interferometer, which is based on the interaction of counterpropagating light waves on reflective holograms in cubic photorefractive sillenite crystals of the (100) cut and designed for measuring surface vibration spectra from specularly reflecting objects, have been theoretically analysed and experimentally studied. The experiments showed that an interferometer of this type, based on an Bi{sub 12}TiO{sub 20} : Fe,Cu crystal, makes it possible to measure vibrations with an amplitude of 5 pm. An analysis performed with allowance for the shot and thermal noise of the photodetector showed that vibrations with an amplitude below 1 pm can be measured. A model is proposed to describe the experimentally found strong temperature dependence of the light interaction on reflection holograms in a Bi{sub 12}TiO{sub 20} : Ca crystal. This model takes into account the influence of temperature on the photoinduced charge redistribution over deep donor and shallow trap centres, as well as the drift of the interference pattern in the crystal due to the thermooptical effect and linear expansion of the crystal.

  16. Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments

    Science.gov (United States)

    Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak

    2015-10-01

    The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.

  17. Broadband TE01 mode fiber coupler based on dual-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Wang, Chun-can; Wang, Mei-hui

    2014-01-01

    A broadband TE01 mode fiber coupler based on dual-core photonic crystal fiber (PCF) is proposed by introducing gold nanowires and fluorine-doped (F-doped) layers in the core areas. With an appropriate choice of the parameters of the F-doped layers and air hole space, the wavelength bandwidth can be...

  18. Crystal structures of novel bis-NO-acyclic Schiff base compounds

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Fejfarová, Karla; Dušek, Michal

    2015-01-01

    Roč. 56, č. 7 (2015), s. 1405-1409. ISSN 0022-4766 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : Schiff base * single crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.508, year: 2014

  19. CaF2:Dy and CaF2 crystal-based UV dosimeters

    International Nuclear Information System (INIS)

    Background/aims: Monitoring of ultraviolet (UV) exposure in humans is important, since UV has been implicated in the pathogenesis of skin cancer, skin ageing and immunosuppression. Biological and physical dosimeters are being developed to measure occupational and environmental UV radiation exposure. We studied the UV-dependent thermoluminescence in CaF2:Dy and CaF2 crystals and report on the development of a small personal UV dosimeter based on the thermoluminescent phenomenon. Methods. CaF2:Dy or CaF2 was sensitized to UV by heating for 1-3 h to 750-950 deg. C on different supports (porcelain, steel, preheated steel, silicon, chromium, manganese, iron, cobalt, nickel, copper, Fe2O3, Fe3O4). Sensitized crystals were irradiated with UV of different energies and wavelengths. Thermoluminescence of irradiated crystals was measured at different temperatures. Results: Maximal sensitivity of the crystals to UV was obtained after preheating to 900 deg. C on steel and manganese supports. Sensitivity could be improved further by prolonging heating time. CaF2:Dy and CaF2 were most sensitive to short-wave UVC and UVB radiation. Based on these findings we have constructed personal UVB and UVC dosimeters. Conclusion: Development of personal UVC and UVB dosimeters based on UV-indued thermoluminescence in CaF2:DY and CaF2 crystals is feasible. CaF2:Dy and CaF2 crystals are not sensitive enough to long-wave UV radiation to be used for construction of UVA dosimeters. (au) 21 refs

  20. Knowledge-Based Optimization of Molecular Geometries Using Crystal Structures.

    Science.gov (United States)

    Cole, Jason C; Groom, Colin R; Korb, Oliver; McCabe, Patrick; Shields, Gregory P

    2016-04-25

    This paper describes a novel way to use the structural information contained in the Cambridge Structural Database (CSD) to drive geometry optimization of organic molecules. We describe how CSD structural information is transformed into objective functions for gradient-based optimization to provide good quality geometries for a large variety of organic molecules. Performance is assessed by minimizing different sets of organic molecules reporting RMSD movements for bond lengths, valence angles, torsion angles, and heavy atom positions. PMID:26977906

  1. Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells.

    Science.gov (United States)

    Jeng, Shie-Chang; Hwang, Shug-June; Yang, Chen-Yu

    2009-02-15

    The nanoparticles-induced vertical alignment technique was applied to generate variable liquid-crystal pretilt angles based on doping different concentrations of polyhedral oligomeric silsesquioxane (POSS) nanoparticles in the planar-aligned liquid crystal cells. Competition between the homogeneously aligned polyimide layer and POSS-induced spontaneous vertical alignment domain generated the variable pretilt angle. Experimental results demonstrated that the pretilt angle theta(p) is a function of the doped POSS concentration and can be controlled continuously over the range of 0 degrees

  2. Computer-based areal surface temperature and local heat transfer measurements with thermochromic liquid crystals (TLC)

    Science.gov (United States)

    Platzer, K.-H.; Hirsch, C.; Metzger, D. E.; Wittig, S.

    1992-05-01

    The experimental technique presented is designed to obtain detailed local heat transfer data on both stationary as well as rotating disk-cavity surfaces applicable to gas turbines. The method employed utilizes thin coatings of thermochromic liquid crystals (TLC) as surface temperature indicators under aerodynamically steady but thermally transient experimental conditions. The color display of the liquid crystals is monitored by a video camera. The video signals are captured in real time by a computer-based color recognition system to extract areal temperature and heat transfer information. Some typical results are presented and compared with literature data to illustrate the potential of the system.

  3. Narrow Band Longitude Mode Selector of Laser Based on Conjugated Photonic Crystals

    International Nuclear Information System (INIS)

    Properties of transmission spectra of multi-layers consisting of two conjugated photonic crystals are investigated. It is found that, in the case of a small amount of time, the mode density at the interface mode is much larger than that at the band edge. Under certain conditions, the transmission can reach the unity, and the bandwidth can reach the order of picometer. Based on this property, a longitude mode selector of laser consisting of two conjugated photonic crystals made with gain materials is suggested. The effects of the impedance contrast of materials and the refractive index of the environment on the bandwidth are studied

  4. SNR improvement based on non-collinear OPCPA with angular spectral dispersion in BBO crystal

    Science.gov (United States)

    Ye, Rong; Zhang, Bin; Sun, Nian-chun

    2014-07-01

    The characteristics of the signal-to-noise ratio (SNR) improvement based on non-collinear optical parametric chirped pulse amplification (OPCPA) with angular spectral dispersion (ASD) was revealed and investigated. The angular dispersion formula was derived theoretically and the effects of crystal length, pump peak intensity, noise characteristics and angular dispersion on the SNR improvement and conversion efficiency were discussed. Furthermore, by optimizing the critical parameters, 35% conversion efficiency and more than 3 orders of magnitude of SNR improvement were achieved for the chirped signal pulse with a central wavelength of 800 nm, pumped by 532 nm in presented amplification scheme with BBO crystal.

  5. Electrically tunable Fabry-Péerot resonator based on microstructured Si containing liquid crystal

    KAUST Repository

    Tolmachev, Vladimir A.

    2012-01-01

    We have built Fabry-Perot resonators based on microstructured silicon and a liquid crystal. The devices exhibit tuning of the resonance peaks over a wide range, with relative spectral shifts of up to Delta lambda/lambda = 10%. In order to achieve this substantial spectral shift, cavity peaks of high order were used. Under applied voltages of up to 15 V, a variation in the refractive index of the nematic liquid crystal E7 from Delta n(LC) = 0.12 to Delta n(LC) = 0.17 was observed. These results may have practical applications in the near-, mid and far-infrared range.

  6. The study of the conversion of UNH crystal on spent-nuclear fuel reprocessing process with crystallization. Document prepared by other institute, based on the contract

    International Nuclear Information System (INIS)

    Crystallization procedure is considered to have an adaptability to new reprocessing process based on the PUREX process because it has an advantage in recovering rather pure uranium from contaminated uranium solution without reagent. Up to now, a small-scale uranium test has been performed to confirm an applicability of crystallization. Hydrated uranyl nitrate (UNH) crystal from crystallization procedure is fed to the conversion process into UO2 for the fabrication of nuclear fuel. One requirement is that feed material should be UNH crystal or molten salt, not solution. Because additional reagent or water are needed to make UNH solution from crystal and it would cause reducing the advantage of crystallization procedure due to increasing amount of reagents. In this study, processes for the conversion into metal oxide, including applied in common industry, were investigated to formulate concepts of processes for conversion of UNH to have new advantages. In each process, product characteristics, operating simplicity and operating cost are compared. As a result, several processes, such as freeze dry, exchange of reagents in solution, agitated bed and spray pyrolysis, are selected to have a possibility of the advantages over conventional process. Additionally, process flow sheets and concept images on these selected processes are shown. (author)

  7. Hybrid Crystals of Cuprates and Iron-Based Superconductors

    OpenAIRE

    Dai, Xia; Le, Congcong; Wu, Xianxin; Hu, Jiangping

    2016-01-01

    We propose two possible new compounds, Ba$_2$CuO$_2$Fe$_2$As$_2$ and K$_2$CuO$_2$Fe$_2$Se$_2$, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO$_2$ layers and antifluorite-type Fe$_2$X$_2$ (X=As,Se) layers separated by Ba/K. The calculations of binding energies and phonon spectrums indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The F...

  8. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    OpenAIRE

    Yan Chen; Kwok-Ho Lam; Dan Zhou; Qingwen Yue; Yanxiong Yu; Jinchuan Wu; Weibao Qiu; Lei Sun; Chao Zhang; Haosu Luo; Chan, Helen L. W.; Jiyan Dai

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d 33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatu...

  9. Theoretical Strength of Face-Centred-Cubic Single Crystal Copper Based on a Continuum Model

    International Nuclear Information System (INIS)

    The constitutive relation of single crystal copper based on atomistic potential is implemented to capture the nonlinear inter-atomic interactions. Uniaxial loading tests of single crystal copper with inter-atomic potential finite-element model are carried out to determine the corresponding ideal strength using the modified Born stability criteria. Dependence of the ideal strength on the crystallographic orientation is studied, and tension-compression asymmetry in ideal strength is also investigated. The results suggest that asymmetry for yielding strength of nano-materials may result from anisotropic character of crystal instability. Moreover, the results also reveal that the critical resolved shear stress in the direction of slip is not an accurate criterion for the ideal strength since it could not capture the dependence on the loading conditions and hydrostatic stress components for the ideal strength

  10. V-shape liquid crystal-based retromodulator air to ground optical communications

    CERN Document Server

    Geday, Morten A; Carrasco-Casado, Alberto; Bennis, Noureddine; Quintana, Xabier; Hernandez, Francisco Lopez; Sanchez, Jose Manuel Oton

    2015-01-01

    This paper describes the use of a 2D liquid crystal retro-modulator as a free space, wireless, optical link. The retro-modulator is made up of a retro-reflecting cornercube onto which 2 cascaded V-shape smectics liquid crystal modulators are mounted. The communication link differs with respect to more conventional optical links in not using amplitude (nor frequency) modulation, but instead state-of-polarisation (SOP) modulation known as Polarisation Shift Keying (PolSK). PolSK has the advantage over amplitude modulation, that it is less sensitive to changes in the visibility of the atmosphere, and increases inherently the bandwidth of the link. The implementation of PolSK both in liquid crystal based and in retro-modulated communication are novelties.

  11. Theoretical Strength of Face-Centred-Cubic Single Crystal Copper Based on a Continuum Model

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Ming; LIU Zhan-Li; YOU Xiao-Chuan; NIE Jun-Feng; ZHUANG Zhuo

    2009-01-01

    The constitutive relation of single crystal copper based on atomistic potential is implemented to capture the nonlinear inter-atomic interactions. Uniaxial loading tests of single crystal copper with inter-atomic potential finite-element model are carried out to determine the corresponding ideal strength using the modified Born stability criteria. Dependence of the ideal strength on the crystallographic orientation is studied, and tension-compression asymmetry in ideal strength is also investigated. The results suggest that asymmetry for yielding strength of nano-materials may result from anisotropic character of crystal instability. Moreover, the results also reveal that the critical resolved shear stress in the direction of slip is not an accurate criterion for the ideal strength since it could not capture the dependence on the loading conditions and hydrostatic stress components for the ideal strength.

  12. Photosensitive structures based on CuIn5Te8 single crystals: Development and properties

    International Nuclear Information System (INIS)

    A new ternary compound is synthesized for the first time, and bulk CuIn5Te8 single crystals are grown by directed crystallization of near-stoichiometric melt. It is established from X-ray diffraction patterns of grown crystals that they exhibit the structure of imperfect chalcopyrite with parameters of the unit cell of CuIn5Te8, which were close to those known for the CuInTe2 ternary compound with the composition index n = 0. First, photosensitive structures are fabricated based on CuIn5Te8 crystals, and photosensitivity spectra are obtained for them; it is shown that it is possible to achieve broadband photosensitivity under illumination of the barrier side of these crystals. From the analysis of photosensitivity spectra, the character of band-to-band transitions and corresponding energies of these transitions in CuIn5Te8 are determined. This opens up prospects to use this new semiconductor in photoconverters of solar radiation.

  13. Nano-scale electronic and optoelectronic devices based on 2D crystals

    Science.gov (United States)

    Zhu, Wenjuan

    In the last few years, the research community has been rapidly growing interests in two-dimensional (2D) crystals and their applications. The properties of these 2D crystals are diverse -- ranging from semi-metal such as graphene, semiconductors such as MoS2, to insulator such as boron nitride. These 2D crystals have many unique properties as compared to their bulk counterparts due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the material also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and their interaction with light. These unique properties of 2D crystals open up a broad territory of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on these 2D crystals.

  14. A photonic crystal L-shaped bend based on ring resonators

    Institute of Scientific and Technical Information of China (English)

    M. Djavid; F. Monifi; A. Ghaffari; M. S. Abrishamian

    2008-01-01

    @@ We propose a new type of two-dimensional (2D) photonic crystal L-shaped bent waveguides based on ring resonators with an acceptable bandwidth. The proposed structure mechanism is based on coupling between a waveguide and a ring resonator. This structure is designed and verified by finite-difference time-domain (FDTD) computation. Our simulation using this method gets over 90% output.

  15. Will my protein crystallize? A sequence-based predictor.

    Science.gov (United States)

    Smialowski, Pawel; Schmidt, Thorsten; Cox, Jürgen; Kirschner, Andreas; Frishman, Dmitrij

    2006-02-01

    We propose a machine-learning approach to sequence-based prediction of protein crystallizability in which we exploit subtle differences between proteins whose structures were solved by X-ray analysis [or by both X-ray and nuclear magnetic resonance (NMR) spectroscopy] and those proteins whose structures were solved by NMR spectroscopy alone. Because the NMR technique is usually applied on relatively small proteins, sequence length distributions of the X-ray and NMR datasets were adjusted to avoid predictions biased by protein size. As feature space for classification, we used frequencies of mono-, di-, and tripeptides represented by the original 20-letter amino acid alphabet as well as by several reduced alphabets in which amino acids were grouped by their physicochemical and structural properties. The classification algorithm was constructed as a two-layered structure in which the output of primary support vector machine classifiers operating on peptide frequencies was combined by a second-level Naive Bayes classifier. Due to the application of metamethods for cost sensitivity, our method is able to handle real datasets with unbalanced class representation. An overall prediction accuracy of 67% [65% on the positive (crystallizable) and 69% on the negative (noncrystallizable) class] was achieved in a 10-fold cross-validation experiment, indicating that the proposed algorithm may be a valuable tool for more efficient target selection in structural genomics. A Web server for protein crystallizability prediction called SECRET is available at http://webclu.bio.wzw.tum.de:8080/secret. PMID:16315316

  16. A computational study of dielectric photonic-crystal-based accelerator cavities

    Science.gov (United States)

    Bauer, C. A.

    Future particle accelerator cavities may use dielectric photonic crystals to reduce harmful wakefields and increase the accelerating electric field (or gradient). Reduced wakefields are predicted based on the bandgap property of some photonic crystals (i.e. frequency-selective reflection/transmission). Larger accelerating gradients are predicted based on certain dielectrics' strong resistance to electrical breakdown. Using computation, this thesis investigated a hybrid design of a 2D sapphire photonic crystal and traditional copper conducting cavity. The goals were to test the claim of reduced wakefields and, in general, judge the effectiveness of such structures as practical accelerating cavities. In the process, we discovered the following: (1) resonant cavities in truncated photonic crystals may confine radiation weakly compared to conducting cavities (depending on the level of truncation); however, confinement can be dramatically increased through optimizations that break lattice symmetry (but retain certain rotational symmetries); (2) photonic crystal cavities do not ideally reduce wakefields; using band structure calculations, we found that wakefields are increased by flat portions of the frequency dispersion (where the waves have vanishing group velocities). A complete comparison was drawn between the proposed photonic crystal cavities and the copper cavities for the Compact Linear Collider (CLIC); CLIC is one of the candidates for a future high-energy electron-positron collider that will study in greater detail the physics learned at the Large Hadron Collider. We found that the photonic crystal cavity, when compared to the CLIC cavity: (1) can lower maximum surface magnetic fields on conductors (growing evidence suggests this limits accelerating gradients by inducing electrical breakdown); (2) shows increased transverse dipole wakefields but decreased longitudinal monopole wakefields; and (3) exhibits lower accelerating efficiencies (unless a large photonic

  17. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF4]-based polymeric films

    Science.gov (United States)

    Saroj, A. L.; Chaurasia, S. K.; Kataria, Shalu; Singh, R. K.

    2016-06-01

    The effect of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM][BF4], on crystallization behavior of poly(vinyl alcohol) (PVA) has been studied by isothermal and non-isothermal differential scanning calorimetry techniques. The PVA + IL based polymer electrolyte films have been prepared using solution casting technique. To describe the isothermal and non-isothermal crystallization kinetics, several kinetic equations have been employed on PVA + IL based films. There is strong dependence of the peak crystallization temperature (Tc), relative degree of crystallity (Xt), half-time of crystallization (t1/2), crystallization rate constants (Avrami Kt and Tobin AT), and Avrami (n) and Tobin (nT) exponents on the cooling rate and IL loading.

  18. PCR-based gene synthesis to produce recombinant proteins for crystallization

    Directory of Open Access Journals (Sweden)

    Byrne-Steele Miranda L

    2008-04-01

    Full Text Available Abstract Background Gene synthesis technologies are an important tool for structural biology projects, allowing increased protein expression through codon optimization and facilitating sequence alterations. Existing methods, however, can be complex and not always reproducible, prompting researchers to use commercial suppliers rather than synthesize genes themselves. Results A PCR-based gene synthesis method, referred to as SeqTBIO, is described to efficiently assemble the coding regions of two novel hyperthermophilic proteins, PAZ (Piwi/Argonaute/Zwille domain, a siRNA-binding domain of an Argonaute protein homologue and a deletion mutant of a family A DNA polymerase (PolA. The gene synthesis procedure is based on sequential assembly such that homogeneous DNA products can be obtained after each synthesis step without extensive manipulation or purification requirements. Coupling the gene synthesis procedure to in vivo homologous recombination techniques allows efficient subcloning and site-directed mutagenesis for error correction. The recombinant proteins of PAZ and PolA were subsequently overexpressed in E. coli and used for protein crystallization. Crystals of both proteins were obtained and they were suitable for X-ray analysis. Conclusion We demonstrate, by using PAZ and PolA as examples, the feasibility of integrating the gene synthesis, error correction and subcloning techniques into a non-automated gene to crystal pipeline such that genes can be designed, synthesized and implemented for recombinant expression and protein crystallization.

  19. All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators

    Science.gov (United States)

    Moniem, Tamer A.

    2016-04-01

    The photonic crystals draw significant attention to build all-optical logic devices and are considered one of the solutions for the opto-electronic bottleneck via speed and size. The paper presents a novel optical 4 × 2 encoder based on 2D square lattice photonic crystals of silicon rods. The main realization of optical encoder is based on the photonic crystal ring resonator NOR gates. The proposed structure has four logic input ports, two output ports, and two bias input port. The photonic crystal structure has a square lattice of silicon rods with a refractive index of 3.39 in air. The structure has lattice constant 'a' equal to 630 nm and bandgap range from 0.32 to 044. The total size of the proposed 4 × 2 encoder is equal to 35 μm × 35 μm. The simulation results using the dimensional finite difference time domain and Plane Wave Expansion methods confirm the operation and the feasibility of the proposed optical encoder for ultrafast optical digital circuits.

  20. Development of a detector setup based on BGO single crystals to measure high energy gamma spectra of neutron sources

    International Nuclear Information System (INIS)

    Radiation detectors based on Bi4Ge3O12 (BGO) single crystal scintillators have many applications, mainly in high-energy physics, and nuclear industry. The BGO possesses several advantages including high density, large effective atomic number Zeff, small radiation length, high radiation hardness, stability of chemical properties, non-hygroscopic nature and much smaller afterglow which make these crystals indispensable in many applications. These crystals are the best choices for the spectroscopy of high energies gamma rays which are usually produced from (γ, n) reactions in various neutron sources. The major applications of these crystals in high energy physics and to detect high energy gammas require large size crystals. It has been well known that the signal output from BGO crystals is strongly governed by the purity and crystal defects. To grow high quality single crystals with large size and minimum number of defects has always been a daunting task for crystal growers. In this communication, we describe the growth and characterization BGO single crystals. Fabrication of a setup based on BGO scintillator useful to measure gamma-rays from an Am-Be neutron source is discussed

  1. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ming; Zhuo, Longchao [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China); Liu, Zhanli [Applied Mechanics Lab, School of Aerospace, Tsinghua University, Beijing 100084 (China); Lu, Xiaogang [School of Materials Science and Engineering, Shanghai University, Shanghai (China); Shi, Zhenxue; Li, Jiarong [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China)

    2015-07-29

    The mechanical properties of nickel-based single crystal superalloys deteriorate with increasing misorientation, thus the finished product rate of the casting of single crystal turbine airfoils may be reduced due to the formation of grain boundaries especially when the misorientation angle exceeds to some extent. To this day, evolution of the microstructures at the grain boundaries with misorientation and the relationship between the microstructures and the mechanical properties are still unclear. In this work a detailed characterization of the misorientation related microstructure at the grain boundary in DD6 single crystal superalloy has been carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques; the elemental distribution at the grain boundaries has been analyzed by energy dispersive (EDS) X-ray mapping; and the effect of precipitation of μ phases at the grain boundary on the mechanical property has been evaluated by finite element calculation. It is shown that the proportion of γ phase at the grain boundaries decreases, while the proportion of γ′ phase at the grain boundaries increases with increasing misorientation; the μ phase is precipitated at the grain boundaries when the misorientation angle exceeds about 10° and thus it could lead to a dramatic deterioration of the mechanical properties, as well as that the enrichment of Re and W gradually disappears as the misorientation angle increases. All these factors may result in the degradation of the mechanical properties at the grain boundaries as the misorientation increases. Furthermore, the finite element calculation confirms that precipitation of μ phases at the grain boundary is responsible for the significant deterioration of the mechanical properties when the misorientation exceeds about 10°. This work provides a physical imaging of the microstructure for understanding the relationship between the mechanical properties and the misorientation

  2. Comparison of tunable lasers based on diode pumped Tm-doped crystals

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Koranda, Petr; Černý, Pavel; Jabczyński, Jan K.; Żendzian, Waldemar; Kwiatkowski, Jacek; Urata, Yoshiharu; Higuchi, Mikio

    2008-12-01

    We report on continuously tunable operation of a diode pumped lasers based on Tm-doped materials, emitting in the 1.8 - 2.μ1 m spectral band. In our study we compare results obtained with three various single crystals doped by Tm3+ ions: Yttrium Aluminum perovskite YAP (YAlO3), Gadolinium orthovanadate GdVO4, and Yttrium Lithium Fluoride YLF (YLiF4). Following samples were available: the 3mm long a-cut crystal rod of Tm:YAP with 4% at. Tm/Y (diameter 3 mm); the 8mm long b-cut crystal rod of Tm:YLF with 3.5% at. Tm/Y (diameter 3 mm); the 2.7mm long a-cut crystal block of Tm:GdVO4 with 2% at. Tm/Gd (crystal face 5×3 mm). For active medium pumping, the laser diode radiation was used. Because the tested samples differs significantly in absorption spectra, two fibre-coupled (core diameter 400 µm) temperature-tuned laser diodes were used: first operating at wavelength 793nm was used for Tm:YAP and Tm:YLF; the second operating at wavelength 802nm was used for Tm:GdVO4. In both cases, the continuous power up to 20W was available for pumping. The diode radiation was focused into the active crystal by two achromatic doublet lenses with the focal length f = 75 mm. The measured radius of pumping beam focus inside the crystal was 260 µm. The longitudinally diode pumped crystals were tested in linear, 80mm long, hemispherical laser cavity. The curved (radius 150mm) output coupler reflectivity was ~ 97 % in range from 1.8 up to 2.1 μm. The pumping flat mirror had maximal reflectivity in this range and it had high transmission around 0.8 μm. A 1.5mm thick birefringent plate made from quartz (Lyot filter) inserted under a Brewster's angle was used as a tuning element. This plate was placed inside the resonator between the crystal and the output coupler. Using Tm:YAP crystal, the maximal output power of 2.8W in this set-up was obtained. The laser could be tuned from 1865nm up to 2036nm with a maximum at 1985 nm. Laser based on Tm:YLF crystal was tunable from 1835nm up to

  3. A dinuclear cadmium(II) Schiff base thiocyanato complex: crystal structure and fluorescence.

    Science.gov (United States)

    Shit, Shyamapada; Sankolli, Ravish; Guru Row, Tayur N

    2014-01-01

    A new dinuclear cadmium(II) complex, [Cd(L)(NCS)]2 (1) has been synthesized using a potentially tetradentate Schiff base ligand HL, 2-((E)-(2-(diethylamino)ethylimino)methyl)-6-methoxyphenol, obtained by the condensation of 2-diethylaminoethylamine and o-vanillin, and characterized by different physicochemical techniques. Crystal structure of the title complex was unambiguously established by single crystal X-ray diffraction which reveals that metal centers are connected by bridging phenolato and chelating methoxy oxygen atoms of the coordinating Schiff bases and embedded in severely distorted octahedral geometries. Fluorescence properties of the ligand and its complex, studied at room temperature indicate that later may serve as strong fluorescent emitter. PMID:24664327

  4. Liquid Crystal-Based Beam Steering Device Development for NASA Applications

    Science.gov (United States)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip; Lavrentovich, Oleg; Wang, Xinghua

    2004-01-01

    The NASA Computing, Information and Communications Technology (CICT) Program is supporting the development of liquid crystal-based beam steering devices. The device would use inexpensive, light-weight, optical components, and it would have the following capabilities: electronic beam scanning to angles above 1 milliradian, and submicroradian beam pointing accuracy. In order to correct for the imperfections resulting from the space-deployable optics, the technique of wave-front correction would be implemented. Hence, the output beam quality would be maintained. The potential applications could include satellite tracking, near-Earth inter-satellite communications, deep-space communications, and optical phased array systems. The status of the beam steering device development based on the liquid crystal technology and its relationship to prospective NASA mission scenarios will be described.

  5. Performance in real condition of photonic crystal sensor based NO2 gas monitoring system

    Science.gov (United States)

    Rahmat, M.; Maulina, W.; Rustami, E.; Azis, M.; Budiarti, D. R.; Seminar, K. B.; Yuwono, A. S.; Alatas, H.

    2013-11-01

    In this report we discuss the performance in real condition of an optical based real-time NO2 gas monitoring system. For detecting the gas concentration in the ambient air we have developed an optical sensor based on one-dimensional photonic crystal with two defects that allows the existence of photonic pass band inside the associated photonic band gap. To measure the gas concentration, we dissolve the corresponding NO2 gas into a specific Griess Saltzman reagent solution. The change of gas concentration in the related dissolved-solution can be inspected by the photonic pass band peak variation. It is observed that the wavelength of the photonic pass band peak of the fabricated photonic crystal is nearly coincide with the wavelength of the associated solution highest absorbance. The laboratory test shows that the device works properly, whereas the field measurement test demonstrates accurate results with validation error of 1.56%.

  6. Correlation of crystal structures, electronic structures and photocatalytic properties in W-based oxides

    International Nuclear Information System (INIS)

    We reported a novel W-based oxide NaBi(WO4)2 with WO4 tetrahedral crystal structure as a photocatalyst for decomposition of 2-propanol. The physical characteristics of the sample were examined by XRD, BET measurement and SEM, respectively. The band gap of NaBi(WO4)2 was determined to be 3.6 eV according to the diffuse reflectance spectra of the sample. The photocatalytic activity of NaBi(WO4)2 was confirmed by decomposing 2-propanol into acetone and CO2. It showed a higher acetone generation rate (211 ppm h-1) in contrast to that of WO3 (120 ppm h-1), which consisted of WO6 octahedra. Their electronic structures were further investigated by the plane-wave based density function theory. The results suggested that the crystal field (WO6 and WO4) significantly influenced the electronic structures and hence affected the photocatalytic activity.

  7. Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals

    DEFF Research Database (Denmark)

    Lehmann, Tau Bernstorff

    In this thesis, the application of semiconductor quantum-dots in photonic crystals is explored as aresource for single-photon technology.Two platforms based on photonic crystals, a cavity and a waveguide, are examined as platformssingle-photon sources. Both platforms demonstrate strong single-photon...... purity under quasi-resonantexcitation. Furthermore the waveguide based platform demonstrates indistinguishable single-photonsat timescales up to 13 ns.A setup for active demultiplexing of single-photons to a three-fold single-photon state is proposed.Using a fast electro-optical modulator, single-photons...... from a quantum-dot are routed on timescalesof the exciton lifetime. Using active demultiplexing a three-fold single-photon state is generated at anextracted rate of 2:03 ±0:49 Hz.An on-chip power divider integrated with a quantum-dot is investigated. Correlation measurementof the photon statistic...

  8. Dual-frequency division de-multiplexer based on cascaded photonic crystal waveguides

    International Nuclear Information System (INIS)

    A dual-frequency division de-multiplexing mechanism is demonstrated using cascaded photonic crystal waveguides with unequal waveguide widths. The de-multiplexing mechanism is based on the frequency shift of the waveguide bands for the unequal widths of the photonic crystal waveguides. The modulation in the waveguide bands is used for providing frequency selectivity to the system. The slow light regime of the waveguide bands is utilized for extracting the desired frequency bands from a wider photonic crystal waveguide that has a relatively larger group velocity than the main waveguide for the de-multiplexed frequencies. In other words, the wider spatial distribution of the electric fields in the transverse direction of the waveguide for slow light modes is utilized in order to achieve the dropping of the modes to the output channels. The spectral and spatial de-multiplexing features are numerically verified. It can be stated that the presented mechanism can be used to de-multiplex more than two frequency intervals by cascading new photonic crystal waveguides with properly selected widths.

  9. Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    In the present work we study the formation mechanism and crystallization behavior of Fe-based bulk metallic glasses influenced by the addition of rare-earth elements. Samples are characterized by conventional X-ray diffractometry, optical microscopy, and high-resolution field-emission-gun scanning and transmission electron microscopy. In the rare-earth-containing alloys, bulk metallic glasses are formed with populations of quenched-in nuclei. Consequently, crystallization on isothermal annealing occurs without any incubation period. This behavior, not typical of bulk metallic glasses in general, implies that in the rare-earth-containing alloys glass formation is possible only because of restricted crystal growth: both on cooling from the molten and on heating from the glassy state, growth of the primary χ-Fe36Cr12Mo10 crystals is too slow to be significant on a reasonable timescale. The low growth rate is connected with large inhomogeneous strain in the growing nanoparticles, while nucleation of eutectic colonies is hampered by slow diffusion of a rare-earth alloying element

  10. Kinetics of Isothermal Melt Crystallization in CaO-SiO2-CaF2-Based Mold Fluxes

    Science.gov (United States)

    Seo, Myung-Duk; Shi, Cheng-Bin; Baek, Ji-Yeon; Cho, Jung-Wook; Kim, Seon-Hyo

    2015-10-01

    A kinetic study for isothermal melt crystallization of CaO-SiO2-CaF2-based mold fluxes with different basicity of 0.94 and 1.34 has been carried out systematically by DSC measurements. The kinetic parameters were determined by Johnson-Mehl-Avrami equation. The average Avrami exponent of cuspidine (3CaO·2SiO2·CaF2) crystallization for mold flux of lower basicity (0.94) is calculated to be 3.1, implying that the crystallization mode is instantaneous nucleation followed by 3-dimensional growth. For the mold flux of higher basicity (1.34), the average Avrami exponent of cuspidine equals to 3.4, strongly suggesting that the growth is still 3 dimensional but the nucleation should be continuous. It was found that the effective crystallization rate constant for both mold fluxes increases as the crystallization temperature decreases, showing that the crystallization rate could be governed by nucleation rate. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the mold fluxes studied. Therefore, it is concluded that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The morphology of cuspidine crystals observed by SEM agreeds well with the isothermal crystallization kinetics results.

  11. Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier matrices

    International Nuclear Information System (INIS)

    The characterization of a PET detector head based on continuous LYSO crystals and silicon photomultiplier (SiPM) arrays as photodetectors has been carried out for its use in the development of a small animal PET prototype. The detector heads are composed of a continuous crystal and a SiPM matrix with 64 pixels in a common substrate, fabricated specifically for this project. Three crystals of 12 mm x 12 mm x 5 mm size with different types of painting have been tested: white, black and black on the sides but white on the back of the crystal. The best energy resolution, obtained with the white crystal, is 16% FWHM. The detector response is linear up to 1275 keV. Tests with different position determination algorithms have been carried out with the three crystals. The spatial resolution obtained with the center of gravity algorithm is around 0.9 mm FWHM for the three crystals. As expected, the use of this algorithm results in the displacement of the reconstructed position toward the center of the crystal, more pronounced in the case of the white crystal. A maximum likelihood algorithm has been tested that can reconstruct correctly the interaction position of the photons also in the case of the white crystal.

  12. Photonic crystal fiber Bragg grating based sensors: opportunities for applications in healthcare

    Science.gov (United States)

    Berghmans, Francis; Geernaert, Thomas; Sulejmani, Sanne; Thienpont, Hugo; Van Steenberge, Geert; Van Hoe, Bram; Dubruel, Peter; Urbanczyk, Waclaw; Mergo, Pawel; Webb, David J.; Kalli, Kyriacos; Van Roosbroeck, Jan; Sugden, Kate

    2011-12-01

    We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.

  13. theoretical analysis of finite-height semiconductor-on-insulator based planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Arentoft, Jesper

    2002-01-01

    A planar photonic crystal waveguide based on the semiconductor-on-insulator (SOI) materials system is analyzed theoretically. Two-dimensional (2-D) calculations and comparison with dispersion relations for the media above and below the finite-height waveguide are used to obtain design guidelines....... of light for the third frequency interval is explained theoretically by investigating the vertical localization of the guided modes....

  14. Development of an application specific scintimammography detector based on a crystal scintillator array and a PSPMT

    CERN Document Server

    Majewski, S; Goode, A; Kross, B J; Steinbach, D; Weisenberger, A; Williams, M; Wojci, R

    1998-01-01

    We report the results of studies conducted with small field of view scintimammography camera based on a position-sensitive photomultiplier tube (5'' Hamamatsu R3292) and several pixelized crystal scintillator arrays made of YAP, CsI(Na) and NaI(Tl) scintillators. Laboratory tests and pre-clinical phantom studies were conducted to compare and optimize the performances of the prototypes with special emphasis on spatial resolution (approx 2-3mm) and sufficient energy resolution for scatter rejection.

  15. Development of multichannel quartz crystal microbalances for MIP-based biosensing

    OpenAIRE

    Croux, Dieter; Weustenraed, Ans; Pobedinskas, Paulius; HOREMANS, Frederik; DILIEN, Hanne; Haenen, Ken; CLEIJ, Thomas; Wagner, Patrick Hermann; Thoelen, Ronald; De Ceuninck, Ward

    2012-01-01

    Molecularly imprinted polymers (MIPs) offer a huge potential in the development of cheap small-scale disposable biomimetic sensors. They are suited for a wide variety of biological targets and are compatible with many different measurement techniques such as gravimetric sensing and impedance spectroscopy. One potential sensor platform for MIP-based biosensors is the quartz crystal microbalance (QCM). A 4-channel MIP/non-imprinted polymer (NIP) coated QCM biosensor array was developed on a sin...

  16. Luminescence-induced noise in single photon sources based on BBO crystals

    Science.gov (United States)

    Machulka, Radek; Lemr, Karel; Haderka, Ondřej; Lamperti, Marco; Allevi, Alessia; Bondani, Maria

    2014-11-01

    Single-photon sources based on the process of spontaneous parametric down-conversion play a key role in various applied disciplines of quantum optics. We characterize the intrinsic luminescence of BBO crystals as a source of non-removable noise in quantum-optics experiments. By analysing its spectral and temporal properties together with its intensity, we evaluate the impact of luminescence on single-photon state preparation using spontaneous parametric down-conversion.

  17. A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity

    OpenAIRE

    Sun., Xiankai; Zhang, Xufeng; Poot, Menno; Xiong, Chi; Tang, Hong X.

    2012-01-01

    We develop an all-integrated optoelectromechanical system that operates in the superhigh frequency band. This system is based on an ultrahigh-Q slotted photonic crystal (PhC) nanocavity formed by two PhC membranes, one of which is patterned with electrode and capacitively driven. The strong simultaneous electromechanical and optomechanical interactions yield efficient electrical excitation and sensitive optical transduction of the bulk acoustic modes of the PhC membrane. These modes are ident...

  18. Photonic crystal multi-channel drop filters based on microstrip lines

    International Nuclear Information System (INIS)

    We propose photonic crystal (PC) multi-channel drop filters implemented using microstrip lines. Their performance is based on coupling between the cavity modes of microstrip PC cavities and the guiding modes of microstrip waveguides. The dropping frequency can be controlled by correct design of the cavity. The proposed multi-channel drop filter can be useful for implementing new types of functional microwave filters

  19. Crystal plasticity based modelling of strain hardening and creep in nanocrystalline freestanding Pd films

    OpenAIRE

    Lemoine, Guerric; Colla, Marie-Stéphane; Idrissi, Hosni; Raskin, Jean-Pierre; Pardoen, Thomas; Delannay, Laurent; 35th Risø International Symposium on Materials Science. New Frontiers of Nanometals

    2014-01-01

    Crystal plasticity based finite element modelling (CPFEM) is used to study strain hardening and creep in freestanding nanocrystalline Pd films. The model accounts for the confinement of plasticity due to grain boundaries and to the presence of growth twins as well as for the significant viscoplastic effects associated to thermally activated mechanisms. The model microstructure is a 2D periodic Voronoï tessellation that reproduces the grain size distribution. The finite element mesh conforms t...

  20. New modification of the LCAO method for α-transition element-based crystals

    International Nuclear Information System (INIS)

    A new variant of the scheme linear combination of atomic orbitals (LCAO) to calculate crystal electron structure based on the account of shielding within real space of pseudoatom potentials by most delocalized s-states, is suggested. It is shown, that at certain simplifications of local shielding approximation it is possible to express analytically bonding of shielding potential with initial one. Calculation of LaNi5 zonal structure is conducted to check the application of the developed technique.12 refs., 2 figs

  1. sl3-web bases, intermediate crystal bases and categorification

    DEFF Research Database (Denmark)

    Tubbenhauer, Daniel

    2014-01-01

    We give an explicit graded cellular basis of the sl3-web algebra K_S. In order to do this, we identify Kuperberg's basis for the sl3-web space W_S with a version of Leclerc-Toffin's intermediate crystal basis and we identify Brundan, Kleshchev and Wang's degree of tableaux with the weight of flow...

  2. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  3. Tunable Fabry-Pérot filter based on one-dimensional photonic crystals with liquid crystal components

    Science.gov (United States)

    Cos, J.; Ferre-Borrull, J.; Pallares, J.; Marsal, L. F.

    2009-03-01

    A theoretical study of a tunable Fabry-Pérot multilayer structure composed of alternating layers of silicon and liquid crystal is presented and analyzed. The structure possesses two resonant frequencies within the stop band with tunable wavelengths and transmission properties. Tuning is achieved by allowing different orientations of the liquid crystal optical axes within the cavity and within the mirrors, while keeping the optical axes parallel to the layers. Applying the transfer matrix method for thin layers of anisotropic materials we demonstrate that the resonant wavelengths depend on the difference between the liquid crystal optical axis orientations. Besides, we are able to obtain a complete characterization of the structure in the form of its Jones matrix. From this, we propose an optical two-channel equalizer for applications around 1.55 μm that allows tuning the two resonant wavelengths and their relative amplitude levels.

  4. Rhombohedral cubic semiconductor materials on trigonal substrate with single crystal properties and devices based on such materials

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.

  5. Prediction of recrystallisation in single crystal nickel-based superalloys during investment casting

    Directory of Open Access Journals (Sweden)

    Panwisawas Chinnapat

    2014-01-01

    Full Text Available Production of gas turbines for jet propulsion and power generation requires the manufacture of turbine blades from single crystal nickel-based superalloys, most typically using investment casting. During the necessary subsequent solution heat treatment, the formation of recrystallised grains can occur. The introduction of grain boundaries into a single crystal component is potentially detrimental to performance, and therefore manufacturing processes and/or component geometries should be designed to prevent their occurrence. If the boundaries have very low strength, they can degrade the creep and fatigue properties. The root cause for recrystallisation is microscale plasticity caused by differential thermal contraction of metal, mould and core; when the plastic deformation is sufficiently large, recrystallisation takes place. In this work, numerical and thermo-mechanical modelling is carried out, with the aim of establishing computational methods by which recrystallisation during the heat treatment of single crystal nickel-based superalloys can be predicted and prevented prior to their occurrence. Elasto-plastic law is used to predict the plastic strain necessary for recrystallisation. The modelling result shows that recrystallisation is most likely to occur following 1.5–2.5% plastic strain applied at temperatures between 1000 ∘C and 1300 ∘C; this is validated with tensile tests at these elevated temperatures. This emphasises that high temperature deformation is more damaging than low temperature deformation.

  6. Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides.

    Science.gov (United States)

    Shen, Guansheng; Tian, Huiping; Ji, Yuefeng

    2013-02-20

    We design two microwave photonic filters (notch filter and bandpass filter) based on silicon on insulator (SOI) photonic crystal waveguides for a 60 GHz single-sideband signal radio-over-fiber (ROF) system. By perturbing the radii of the first two rows of holes adjacent to the photonic crystal waveguide, we obtained a broad negligible dispersion bandwidth and a corresponding constant low group velocity. With the slow light effect, the delay line of filters can be significantly reduced while providing the same delay time as fiber based delay lines. The simulation results show that the delay-line length of the notch filter is only about 25.9 μm, and it has a free spectral range of 130 GHz, a baseband width (BW) of 4.12 GHz, and a notch depth of 22 dB. The length of the bandpass filter is 62.4 μm, with a 19.6 dB extinction ratio and a 4.02 GHz BW, and the signal-to-noise ratio requirement of received data can be reduced by 9 dB for the 10(-7) bit-error ratio. Demonstrated microwave photonic crystal filters could be used in a future high-frequency millimeter ROF system. PMID:23434992

  7. Wavelet-based method for computing elastic band gaps of one-dimensional phononic crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A wavelet-based method was developed to compute elastic band gaps of one-dimensional phononic crystals. The wave field was expanded in the wavelet basis and an equivalent eigenvalue problem was derived in a matrix form involving the adaptive computation of integrals of the wavelets. The method was then applied to a binary system. For comparison, the elastic band gaps of the same one-di- mensional phononic crystals computed with the wavelet method and the well- known plane wave expansion (PWE) method are both presented in this paper. The numerical results of the two methods are in good agreement while the computation costs of the wavelet method are much lower than that of PWE method. In addition, the adaptability of wavelets makes the method possible for efficient band gap computation of more complex phononic structures.

  8. A Rayleigh number based dendrite fragmentation criterion for detachment of solid crystals during solidification

    International Nuclear Information System (INIS)

    Movement of solid crystals in the form of dendrite fragments causes severe macro-segregation in solidified products. Dendrite fragmentation in the developing mushy zone occurs as a result of remelting (causing dissolution) and subsequent breakage of dendritic side arms from the dendritic stalks. An understanding of the mechanisms of dendrite fragmentation is essential for predicting the transport of fragmented solid crystals for possible control of macro-segregation. In this work, a Rayleigh number based fragmentation criterion is developed for detachment of dendrites from the developing mushy zone, which determines the conditions favourable for fragmentation of dendrites. The Rayleigh number, defined in this paper, measures the ratio of the driving buoyancy force for the flow in the mushy zone to the retarding frictional force associated with the permeability of the mush. The criterion developed is a function of the concentration difference, liquid fraction, permeability, growth rate of mushy layer and thermophysical properties of the material

  9. Space- and Ground-Based Crystal Growth Using a Baffle (CGB)

    Science.gov (United States)

    Ostrogorsky, A. G.; Marin, C.; Peignier, T.; Duffar, T.; Volz, M.; Jeter, L.; Luz, P.

    2001-01-01

    The composition of semiconductor crystals produced in space by conventional melt-growth processes (directional solidification and zone melting) is affected by minute levels of residual micro-acceleration, which causes natural convection. The residual acceleration has random magnitude, direction and frequency. Therefore, the velocity field in the melt is apriori unpredictable. As a result, the composition of the crystals grown in space can not be predicted and reproduced. The method for directional solidification with a submerged heater or a baffle was developed under NASA sponsorship. The disk-shaped baffle acts as a partition, creating a small melt zone at the solid-liquid interface. As a result, in ground based experiment the level of buoyancy-driven convection at the interface is significantly reduced. In several experiments with Te-doped GaSb, nearly diffusion controlled segregation was achieved.

  10. Mechanisms of the degradation of Schottky-barrier photodiodes based on ZnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Korsunska, N. E.; Shulga, E. P.; Stara, T. R., E-mail: stara-t@ukr.net; Litvin, P. M.; Bondarenko, V. A. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)

    2016-01-15

    The effect of ultraviolet (UV) illumination on the electrical and spectral characteristics of Schottky-barrier photodiodes based on ZnS single crystals is studied. It is found that irradiation deteriorates their photosensitivity and changes the current–voltage and capacitance–voltage characteristics and the surface profile of the blocking electrode. It is shown that the main reason for a decrease in the photosensitivity of the diodes is the photoinduced drift of mobile donors in the electric field of the barrier. This drift depends on the crystallographic orientation of the surface being irradiated. Another photoinduced process observed in the diodes is photolysis of the ZnS crystal. This process mainly determines the change in the electrical characteristics of the diodes and in the surface profile of the electrode at an insignificant change in the photosensitivity.

  11. All-solid-state narrow-linewidth 455-nm blue laser based on Ti: sapphire crystal

    Institute of Scientific and Technical Information of China (English)

    Shankui Rong; Xiaolei Zhu; Weibiao Chen

    2009-01-01

    A compact, all-solid-state, narrow-linewidth, pulsed 455-nm blue laser based on Ti:sapphire crystal is developed. Pumped by a 10-Hz, frequency-doubled all-solid-state Nd:YAG laser and injection-seeded by an external cavity laser diode, the narrow-linewidth 910-nm laser with pulse width of 20 ns is obtained from a Tirsapphire laser. 3.43-mJ blue laser can be obtained from the laser system by frequency-doubling with BBO crystal. This research is very useful to determine the roadmap of developing the practical, high power blue laser. This kind of laser will have potential application for underwater communication.

  12. Silicon-nanomembrane-based photonic crystal nanostructures for chip-integrated open sensor systems

    Science.gov (United States)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Lin, Cheyun; Wang, Xiaolong; Chen, Ray T.

    2011-11-01

    We experimentally demonstrate two devices on the photonic crystal platform for chip-integrated optical absorption spectroscopy and chip-integrated biomolecular microarray assays. Infrared optical absorption spectroscopy and biomolecular assays based on conjugate-specific binding principles represent two dominant sensing mechanisms for a wide spectrum of applications in environmental pollution sensing in air and water, chem-bio agents and explosives detection for national security, microbial contamination sensing in food and beverages to name a few. The easy scalability of photonic crystal devices to any wavelength ensures that the sensing principles hold across a wide electromagnetic spectrum. Silicon, the workhorse of the electronics industry, is an ideal platform for the above optical sensing applications.

  13. Diode-pumped two-frequency lasers based on c-cut vanadate crystals

    International Nuclear Information System (INIS)

    The luminescent and lasing properties of the neo-dymium ion at the 4F3/2-4I11/2 transition in c-cut vanadate crystals (Nd:YVO4, Nd:GdVO4, and Nd:Gd1-xYxVO4) are studied. Tuning of the laser radiation wavelength (Δλ = 5.4 nm) is demonstrated. Two-frequency laser schemes with the use of a Lyot filter, a Fabry-Perot etalon, and a Brewster prism as spectral selection elements are proposed and experimentally realised. Stable two-frequency lasing of a laser based on the c-cut Nd:GdVO4 crystal was obtained in the cw, Q-switched (nanosecond pulses), and active acousto-optic mode-locked (picosecond pulses) regimes. (lasers)

  14. Construction of optical data processing systems based on optoelectronic liquid crystal elements

    Science.gov (United States)

    Tolstik, Alexei; Melnikova, Elena

    2005-11-01

    The methods for the optical signal conversion based on the optoelectronic system "relief grating - liquid crystal" and liquid-crystal (LC) cells using S- or twist-effect have been presented. New schemes forming the basis for realization of bistable LC devices, optoelectronic logic elements and systems of electrically-coupled LC elements intended for the production of laser oscillations at the constant input intensity have been proposed. It has been demonstrated that with the use of varying parameters of optoelectronic feedback one is enabled to set up both regular and chaotic intensity oscillations, to control the frequency and form of these oscillations, to realize functional changes of logic elements. The developed LC systems have been introduced into the educational practice of students mastering modem information techniques.

  15. Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Zhaoguang Pang

    2012-09-01

    Full Text Available An optical sensor based on the coupling between the plasmonic and photonic resonance modes in metallic photonic crystals is investigated. Large-area metallic photonic crystals consisting of periodically arranged gold nanostructures with dimensions down to sub-100 nm are fabricated using solution-processible gold nanoparticles in combination with interference lithography or interference ablation, which introduces a variety of fabrication techniques for the construction of this kind of sensor device. Sensitivity of the plasmonic response of the gold nanostructures to the changes in the environmental refractive index is enhanced through the coupling between the narrow-band photonic resonance mode and the relatively broad-band plasmon resonance, which is recognized as a Fano-like effect and is utilized to explore sensors. Theoretical modeling shows the characterization and the optimization of the sensitivity of this kind of sensor device. Theoretical and experimental results are demonstrated for the approaches to improve the sensitivity of the sensor device.

  16. Crystallization of a Ti-based Bulk Metallic Glass Induced by Electropulsing Treatment

    Institute of Scientific and Technical Information of China (English)

    Yong-jiang HUANG; Xiang CHENG; Hong-bo FAN; Shi-song GUAN; Zhi-liang NING; Jian-fei SUN

    2016-01-01

    The effect of electropulsing treatment (EPT)on the microstructure of a Ti-based bulk metallic glass (BMG)has been studied.The maximum current density applied during EPT can exert a crucial role on tuning the microstructure of the BMG.When the maximum current density is no more than 2 720 A/mm2 ,the samples retains amorphous nature,whereas,beyond that,crystalline phases precipitate from the glassy matrix.During EPT,the maximum temperature within the samples EPTed at the maximum current densities larger than 2 720 A/mm2 is higher than the crystallization temperature of the BMG,leading to the crystallization event.

  17. Studies of plastic crystal gel polymer electrolytes based on poly(vinylidene chloride-co-acrylonitrile)

    Science.gov (United States)

    Hambali, D.; Zainuddin, Z.; Supa'at, I.; Osman, Z.

    2016-02-01

    In this work, we have prepared systems of poly(vinylidene chloride-co-acrylonitrile) (PVdC-co-AN) based gel polymer electrolytes (GPEs) which are single plasticized-GPEs and double plasticized-GPEs. Both systems comprised plastic crystal succinonitrile SN to form plastic crystal gel polymer electrolyte (PGPE) films. The ionic conductivity of the PGPE films were analysed by means of a.c. impedance spectroscopy at room temperature as well as at the temperature range of 303 K to 353 K. The temperature dependence ionic conductivity was found to obey the VTF rule. To study the interactions among the constituents in the PGPEs, Fourier Transform Infrared Spectroscopy (FTIR) was carried out and hence, the complexation between them has also been confirmed.

  18. Ultra-wide acoustic band gaps in pillar-based phononic crystal strips

    International Nuclear Information System (INIS)

    An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips

  19. Evaluation of optical properties for real photonic crystal fiber based on total variation in wavelet domain

    Science.gov (United States)

    Shen, Yan; Wang, Xin; Lou, Shuqin; Lian, Zhenggang; Zhao, Tongtong

    2016-09-01

    An evaluation method based on the total variation model (TV) in wavelet domain is proposed for modeling optical properties of real photonic crystal fibers (PCFs). The TV model in wavelet domain is set up to suppress the noise of the original image effectively and rebuild the cross section images of real PCFs with high accuracy. The optical properties of three PCFs are evaluated, including two kinds of PCFs that supplied from the Crystal Fiber A/S and a homemade side-leakage PCF, by using the combination of the proposed model and finite element method. Numerical results demonstrate that the proposed method can obtain high noise suppression ratio and effectively reduce the noise of cross section images of PCFs, which leads to an accurate evaluation of optical properties of real PCFs. To the best of our knowledge, it is the first time to denoise the cross section images of PCFs with the TV model in the wavelet domain.

  20. Study of Inverse Ni-based Photonic Crystal using the Microradian X-ray Diffraction

    International Nuclear Information System (INIS)

    Inverse photonic nickel-based crystal films formed by electrocrystallization of metal inside the voids of polymer artificial opal have been studied using the microradian X-ray diffraction. Analysis of the diffraction images agrees with an face-centred cubic (FCC) structure with the lattice constant a0 = 650 ± 10 nm and indicates two types of stacking sequences coexisting in the crystal (twins of ABCABC... and ACBACB... ordering motifs), the ratio between them being 4:5 The transverse structural correlation length Ltran is 2.4 ± 0.1 μm, which corresponds to a sample thickness of 6 layers. The in-plane structural correlation length Llong is 3.4 ± 0.2 μm, and the structure mosaic is of order of 100.

  1. Study of Inverse Ni-based Photonic Crystal using the Microradian X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Vasilieva, A V; Okorokov, A I; Grigoriev, S V [Petersburg Nuclear Physics Institute, Gatchina, 188350, St. Petersburg (Russian Federation); Grigoryeva, N A; Mistonov, A A [Department of Physics, St. Petersburg State University, 198504, St. Petersburg (Russian Federation); Sapoletova, N A; Napolskii, K S; Eliseev, A A; Lukashin, A V; Tretyakov, Yu D [Department of Materials Science, Moscow State University, 119899, Moscow (Russian Federation); Petukhov, A V; Byelov, D [Debye Institute, Utrecht University, 3584 CH Utrecht (Netherlands); Chernyshov, D [SNBL European Synchrotron Radiation Facility (ESRF), 38043 Grenoble (France); Bouwman, W G, E-mail: vasilieva@lns.pnpi.spb.r [Delft Technical University, 2629 JB Delft (Netherlands)

    2010-10-01

    Inverse photonic nickel-based crystal films formed by electrocrystallization of metal inside the voids of polymer artificial opal have been studied using the microradian X-ray diffraction. Analysis of the diffraction images agrees with an face-centred cubic (FCC) structure with the lattice constant a{sub 0} = 650 {+-} 10 nm and indicates two types of stacking sequences coexisting in the crystal (twins of ABCABC... and ACBACB... ordering motifs), the ratio between them being 4:5 The transverse structural correlation length L{sub tran} is 2.4 {+-} 0.1 {mu}m, which corresponds to a sample thickness of 6 layers. The in-plane structural correlation length L{sub long} is 3.4 {+-} 0.2 {mu}m, and the structure mosaic is of order of 10{sup 0}.

  2. Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal

    Science.gov (United States)

    Ren, Yingying; Dong, Jun

    2014-02-01

    Efficient passively Q-switched microchip laser based on Yb:YAG/Cr4+:YAG composite crystal has been demonstrated under high brightness single-emitter laser-diode pumping. Maximum average output power of 1.5 W was obtained when the absorbed pump power was 3.65 W, the corresponding optical-to-optical efficiency was over 41%. The slope efficiency was 52.3%. The effect of the cavity length on the performance of Yb:YAG/Cr4+:YAG composite crystal passively Q-switched microchip lasers was investigated. Laser pulses at 1030 nm with pulse width of 466 ps and peak power of 91 kW were achieved with cavity length of 1.7 mm, while laser pulses with pulse width of 665 ps and peak power of 79 kW were obtained with cavity length of 3.7 mm.

  3. A New Approach for RRR Determination of Niobium Single Crystal Based on AC Magnetic Susceptibility

    Science.gov (United States)

    Ermakov, Alexey; Korolev, Alexander V.; Singer, Waldemar; Singer, Xenia

    2011-03-01

    Residual resistivity ratio RRR is an important integral characteristic of material purity. It was proposed to determine the RRR on base of the AC susceptibility. AC susceptibility of a number of single crystal niobium samples of different orientations types ( , rpar; and differently treated (BCP 70, 150 μm, annealing 800° C/2h) was measured. The RRR value was determined on base of these results using a relation between the imaginary part of χ″ of AC magnetic susceptibility at low frequency, AC magnetic field and resistivity ρ of the sample.

  4. Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens

    OpenAIRE

    Zhang, Xiangdong Zhang Xiangdong

    2004-01-01

    Based on the exact numerical simulation and physical analysis, we have demonstrated all-angle single-beam left-handed behavior and superlens for both transverse electric and transverse magnetic modes in a twodimensional coated photonic crystal. The imaging behaviors by two-dimensional photonic-crystal-based superlens have been investigated systematically. Good-quality images and focusing, with relative refractive index of −1, have been observed in these systems for both polarized waves....

  5. The Role of Weak Interactions in the Mechano-induced Single-Crystal-to-Single-Crystal Phase Transition of 8-Hydroxyquinoline-Based Co-crystals.

    Science.gov (United States)

    Liu, Jie; Liu, Guangfeng; Liu, Yang; Zheng, Xiaoxin; Han, Quanxiang; Ye, Xin; Tao, Xutang

    2016-06-01

    Mechano-induced single-crystal-to-single-crystal (SCSC) phase transitions in crystalline materials that change their properties have received more and more attention. However, there are still too few examples to study molecular-level mechanisms in the mechano-induced SCSC phase transitions, making the systematic and in-depth understanding very difficult. We report that bis-(8-hydroxyquinolinato) palladium(II)-tetracyanoquinodimethane (PdQ2 -TCNQ) and bis-(8-hydroxyquinolinato) copper(II)-tetracyanoquinodimethane (CuQ2 -TCNQ) show very different mechano-response behaviors during the SCSC phase transition. Phase transition in CuQ2 -TCNQ can be triggered by pricking on the crystal surface, while in PdQ2 -TCNQ it can only be induced by applying pressure uniformly over the whole crystal face. The crystallography data and Hirshfeld surface analysis indicate that the weak intra-layer C-H⋅⋅⋅O, C-H⋅⋅⋅N hydrogen bonds and inter-layer stacking interactions determine the feasibility of the SCSC phase transition by mechanical stimuli. Weaker intra-layer interactions and looser inter-layer stacking make the SCSC phase transition occur much more easily in the CuQ2 -TCNQ. PMID:27124771

  6. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes

    Science.gov (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user

  7. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    Science.gov (United States)

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls. PMID:25061239

  8. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications.

    Science.gov (United States)

    Sun, Enwei; Cao, Wenwu

    2014-08-01

    techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls. PMID:25061239

  9. Multiaxial creep damage constitutive relationship for nickel-base single crystal superalloys based on the microstructural assessment and application

    International Nuclear Information System (INIS)

    Full text: A multiaxial creep damage constitutive relationship has been presented for nickel-base single crystal superalloys, which takes the microstructural assessment into consideration. It consists of three parts. In the first part, based on the relief of interfacial energy density by dislocation generation at the gamma prime γ' interfaces, a rafting prediction criterion has been developed for nickel-base single crystals under multiaxial stresses. The diagrams of rafting have been presented, and confirmed by experimental results. The rafting processes have been analyzed quantitatively by the relief of interfacial energy. The criterion has been related to study the creep life behavior. The example of creep life analysis shows that the criterion can be correlated satisfactorily to the crystallographic orientation dependence of creep behavior. In the second part, based on the microstructural assessment, a two-state-variable crystallographic creep damage constitutive equation has been presented. The constitutive equation takes into consideration of the rafting-derafting and the damage of the voids simultaneously. With the uniaxial creep experimental data, the constitutive equation can model the creep damage of nickel-base single crystal superalloys, especially the dependence of the creep behavior on the crystallographic orientation. The third part is applications of the constitutive equation. The constitutive equation has been implemented as a user subroutine umat into ABAQUS. The creep experiments of double shear specimens have been carried out to validate the constitutive equation. There is a good agreement between the finite element analytical results and experiment results. The distributions of damage in the double shear creep specimens are given out. (author)

  10. Thermomechanical fatigue behavior of coated and bare nickel-based superalloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chataigner, E.; Remy, L.

    1996-12-31

    The thermal-mechanical fatigue behavior of chromium-aluminum coated [001] single crystals of AM1, a nickel-base superalloy for turbine blades, is studied using a diamond shape cycle from 600 to 1,100 C. Comparison with bare specimens does not show any significant difference in thermal-mechanical fatigue nor in isothermal low cycle fatigue at high temperature. Metallographic observations on fracture surfaces and longitudinal sections of specimens tested to fatigue life or to a definite fraction of expected life have shown that the major crack tends to initiate from casting micropores in the sub-surface area very early in bare and coated specimens, under low cycle fatigue or thermal-mechanical fatigue. But the interaction between oxidation and fatigue cracking seems to play a major role. A simple model proposed by Reuchet and Remy has been identified for this single crystal superalloy. Its application to the life prediction under low cycle fatigue and thermal-mechanical fatigue for bare and coated single crystals with different orientations is shown.

  11. Energy harvesting based on FE-FE transition in ferroelectric single crystals.

    Science.gov (United States)

    Guyomar, Daniel; Pruvost, Sebastien; Sebald, Gael

    2008-02-01

    The pyroelectric properties of Pb(Zn(1/3)Nb(2/3))(0955)Ti(0.045)O(3) single crystals versus an electric field have been studied for energy harvesting in this paper. Two thermodynamic cycles (Stirling and Ericsson) were used for this purpose. By applying an electric field, a FE-FE transition was induced, abruptly increasing the polarization. This transition minimized the supplied energy and improved the harvested energy. By discharging the single crystal at a higher temperature, a gain of 1100% was obtained with the Stirling cycle at 1 kV/mm (gain is defined as harvested energy divided by supplied energy). The study revealed that Stirling cycles are more interesting for low electric fields. Based on experimental results, simulations were carried out to estimate energy harvesting in high electric fields to evaluate the performances of thin samples (single crystals or oriented thin films). At high electric fields, both cycles gave almost the same energy harvesting, but Ericsson cycles were more appropriate to control the voltage on the sample. The simulation led to a harvested energy of 500 mJ/g for an applied electric field equal to 50 kV/mm. The efficiency with respect to Carnot was raised 20%. PMID:18334334

  12. Tunable Stokes laser generation based on the stimulated polariton scattering in KTiOPO₄ crystal.

    Science.gov (United States)

    Jiang, Shiqi; Chen, Xiaohan; Cong, Zhenhua; Zhang, Xingyu; Qin, Zengguang; Liu, Zhaojun; Wang, Weitao; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-07-27

    The tunable Stokes laser characteristics based on the stimulated polariton scattering in KTiOPO4 (KTP) crystal and the intracavity frequency doubling properties for the Stokes laser are investigated for the first time. When the pumping laser wavelength is 1064.2 nm, and the angle between the pumping and Stokes beams outside the KTP crystal changes from 1.875° to 6.750°, the obtained tunable Stokes laser wavelength varies discontinuously from 1076.5 nm to 1091.4 nm with four gaps. When the pumping pulse energy is 120.0 mJ, the maximum Stokes pulse energy is 46.5 mJ obtained at the wavelength of 1086.6 nm. By inserting a LiB3O5 (LBO) crystal into the cavity, the obtained frequency-doubled laser wavelength is inconsecutive tunable from 538.5 nm to 543.8 nm. The maximum frequency-doubled laser pulse energy is 15.9 mJ at the wavelength of 543.5 nm. PMID:26367675

  13. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  14. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  15. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    International Nuclear Information System (INIS)

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C12H25O(CH2CH2O)10H/Ln(NO3)3·6H2O/H2O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film

  16. Redetermination of LaZn5 based on single crystal X-ray diffraction data

    Directory of Open Access Journals (Sweden)

    Igor Oshchapovsky

    2012-01-01

    Full Text Available The crystal structure of the already known binary title compound LaZn5 (lanthanum pentazinc (space group P6/mmm, Pearson symbol hP6, CaCu5 structure type has been redetermined from single-crystal X-ray diffraction data. In contrast to previous determinations based on X-ray powder data [Nowotny (1942. Z. Metallkd. 34, 247–253; de Negri et al. (2008. Intermetallics, 16, 168–178], where unit-cell parameters and assignment of the structure type were reported, the present study reveals anisotropic displacement parameters for all atoms. The crystal structure consists of three crytallographically distinct atoms. The La atom (Wyckoff site 1a, site symmetry 6/mmm is surrounded by 18 Zn atoms and two La atoms. The coordination polyhedron around one of the Zn atoms (Wyckoff site 2c, site symmetry -6m2 is an icosahedron made up from three La and nine Zn atoms. The other Zn atom (Wyckoff site 3g, site symmetry mmm is surrounded by four La and eight Zn atoms. Bonding between atoms is explored by means of the TB–LMTO–ASA (tight-binding linear muffin-tin orbital atomic spheres approximation program package. The positive charge density is localized around La atoms, and the negative charge density is around Zn atoms, with weak covalent bonding between the latter.

  17. Synthesis and Crystal Structure of a Co(II) Complex with Schiff Base and Imidazole Ligand

    Institute of Scientific and Technical Information of China (English)

    WU Lian-Bin; HU Zi-Qiang; LAI Guo-Qiao

    2006-01-01

    The title compound, [Co(C3H4N2)2(C22H18N2O4)]·5H2O (Mr = 659.56), has been prepared and its crystal structure was determined by X-ray diffraction method. The crystal be- longs to monoclinic, space group P21/n, a = 9.6808(2), b = 26.7204(5), c = 12.7993(3)(A), β = 100.9340(10)o, V = 3250.75(12) (A)3, Z = 4, Dc = 1.348 g/cm3, μ= 0.586 mm-1, F(000) = 1380, S = 1.131, R = 0.0689 and wR = 0.1883 for 4782 observed reflections (I > 2σ(I)). The title crystal consists of Co(II) complex and lattice water molecules. The Co(II) complex assumes a distorted octahedral coordination geometry, formed by one Schiff base dianion phenylenediamine-3-me- thoxysali-cylaldehyde and two imidazole ligands. The π-π stacking interaction occurs between nearly parallel benzene rings of the neighboring complexes.

  18. Fabrication of fully undercut ZnO-based photonic crystal membranes with 3D optical confinement

    Science.gov (United States)

    Hoffmann, Sandro Phil; Albert, Maximilian; Meier, Cedrik

    2016-09-01

    For studying nonlinear photonics, a highly controllable emission of photons with specific properties is essential. Two-dimensional photonic crystals (PhCs) have proven to be an excellent candidate for manipulating photon emission due to resonator-based effects. Additionally, zinc oxide (ZnO) has high susceptibility coefficients and therefore shows pronounced nonlinear effects. However, in order to fabricate such a cavity, a fully undercut ZnO membrane is required, which is a challenging problem due to poor selectivity of the known etching chemistry for typical substrates such as sapphire or ZnO. The aim of this paper is to demonstrate and characterize fully undercut photonic crystal membranes based on a thin ZnO film sandwiched between two layers of silicon dioxide (SiO2) on silicon substrates, from the initial growth of the heterostructure throughout the entire fabrication process. This process leads to a fully undercut ZnO-based membrane with adjustable optical confinement in all three dimensions. Finally, photonic resonances within the tailored photonic band gap are achieved due to optimized PhC-design (in-plane) and total internal reflection in the z-direction. The presented approach enables a variety of photon based resonator structures in the UV regime for studying nonlinear effects, including photon-exciton coupling and all-optical switching.

  19. Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry

    Indian Academy of Sciences (India)

    Man Mohan Gupta; S Medhekar

    2014-06-01

    Nonlinear Mach–Zehnder interferometer (NMZI) created with photonic crystal waveguides (PCW) and with Kerr-type nonlinearity has been investigated in this paper. The NMZI has been simulated using two-dimensional finite difference time domain (2D-FDTD) method. Input verses output (I/O) characteristics have been obtained for different lengths of the nonlinear arm, nonlinear coefficients of the nonlinear arm, wavelengths of the input beam, sizes of defect rods and NMZI offset. The results obtained are compared with earlier published results of NMZI created with conventional step index waveguides (SIW). It is shown that all useful features of light switching offered by SIW-based NMZIs are also possible with PCW-based NMZIs of extremely small dimensions. Moreover, PCW-based NMZIs offer additional useful feature not available with SIW-based NMZIs.

  20. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution

    Science.gov (United States)

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-04-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals.

  1. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution.

    Science.gov (United States)

    Jiang, Qiang; Chen, Jiabi; Wang, Yan; Liang, Binming; Hu, Jinbing; Zhuang, Songlin

    2016-01-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process when light travels through a moving photonic crystal was investigated using static and dynamic finite different time domain methods. The analysis demonstrates the validity of the use of np (the effective refractive index of the photonic crystal in the light path) in these calculations, and reveals the origin of the inverse Doppler effect in photonic crystals. PMID:27102211

  2. Control of Process Operations and Monitoring of Product Qualities through Generic Model-based Framework in Crystallization Processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin

    A generic and systematic model-based framework for the design of a process monitoring and control system to achieve the desired crystal size distribution (CSD) and crystal shape for a wide range of crystallization processes has been developed. This framework combines a generic multi-dimensional m......A generic and systematic model-based framework for the design of a process monitoring and control system to achieve the desired crystal size distribution (CSD) and crystal shape for a wide range of crystallization processes has been developed. This framework combines a generic multi...... generate the necessary problem-system specific model, the necessary set point using the extended analytical CSD estimator and the response surface method (RSM) and a PAT system design including implementation of monitoring tools and control strategies in order to produce a desired product with its...... twodimensional description; b) the systematic framework is used in a case study to design a monitoring and control (PAT) system for a potassium dichromate and KDP crystallization processes to achieve the desired target CSD respectively; and c) Based on the PAT system design in b), the application of uncertainty...

  3. Multi-stable variable optical attenuator based on a liquid crystal gel-filled photonic crystal fiber.

    Science.gov (United States)

    Lee, Chun-Hong; Wu, Chih-Wei; Chen, Chun-Wei; Jau, Hung-Chang; Lin, Tsung-Hsien

    2014-08-01

    This work demonstrates a multi-stable variable optical attenuator (VOA) that is fabricated by infiltrating a photonic crystal fiber (PCF) with a liquid crystal (LC) gel. Varying the cooling rate or biasing the electric field during gelation yields various degrees of scattering. Therefore, LC gel-filled PCFs with various transmittances can be realized. At a wavelength of 1550 nm, an attenuation rate of -33.4  dB/cm is obtained at a cooling rate of 30°C/min and a biasing voltage of 400 V during gelation. The proposed all-in-fiber VOA exhibits tunable attenuation and multiple stable states at room temperature. PMID:25090354

  4. Fast near infra-red ferroelectric liquid crystal based Mueller matrix system for imaging and spectroscopy

    Science.gov (United States)

    Kildemo, M.; Sandvik Aas, L. M.; Ellingsen, P. G.; Lindgren, M.

    2010-06-01

    The science and optical engineering of imaging Mueller Matrix Ellipsometry (MME) and Spectroscopic MME is currently being revitalized based on an efficient optimal design method, and through the use of the so-called Eig envalue Calibration Technique (ECT). Through the ECT one may efficiently measure the details of the polarization state generator (PSG) matrix, and the polarization state analyzer (PSA) matrix, and hence avoid modeling of any unknown polarizing components in the system, and in particular the exact response of complex polarizing elements such as liquid crystal retarders. We here start up with presenting a detailed an alysis of the dynamic response of a near infrared Ferroelectric Liquid Crystal based Mueller matrix ellipsometer (NIR FLC- MME) [1] . A time dependent simulation model, using the measured time response of the individual FLCs, is used to describe the measured temporal response. Furthermore, the impulse response of the detector and the pre-amplifier is characterized and in cluded in the simulation model. The measured time dependent intensity response of the MME is well explained by simulations. A FLC based NIRMME system is here shown to be able to operate accurately at the maximum speed of approximately 16 ms per Mueller matrix measurement (steady state response). We demonstrate here time dependent Mueller Matrix measurements of a dynamically changing sample, with even down to 8 ms sampling time of each complete Mueller Matrix (with some loss of accuracy). We secondly briefly present the NIR-FLC- MME imaging system, and show applications to strain imaging of a crystal subjected to an external pressure. Furthermore, we present near-infra-red Mueller matrix images and corresponding polar decomposition images of thin slices of bio-tissue [2].

  5. Analysis of crystallization process of selected Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    P. Sakiewicz

    2012-12-01

    Full Text Available Purpose: The paper mainly aims to present the influence of annealing temperature on structural changes and magnetic properties of selected Fe-based bulk metallic glasses with chemical composition of Fe43Co14Ni14B20Si5Nb4 (at.%.Design/methodology/approach: The investigated samples were cast in form of the rods with diameter of 1.5 mm by the pressure die casting method. The structure changes in function of annealing temperature were examined by X-ray diffraction (XRD and transmission electron microscopy (TEM methods. The crystallization behaviour of the studied alloy was also examined by differential scanning calorimetry (DSC. Magnetic measurements of annealed samples included the initial magnetic permeability and the magnetic permeability relaxation measurements.Findings: The annealing process at temperature range from 373 to 773 K caused a structural relaxation of tested material, which caused the atomic rearrangements and changes of physical properties in relation to as-cast state. The annealing at higher temperatures (823-923 K obviously caused a formation of α-Fe and iron borides crystalline phases. The increasing of annealing temperature significantly improved soft magnetic properties of examined alloy by increase the initial magnetic permeability and decrease the magnetic permeability relaxation.Practical implications: The investigation of the crystallization process of Fe-based metallic glasses is important for understanding the mechanisms of forming controlled microstructures of these materials with specific physical properties.Originality/value: A proper understanding of crystallization process of Fe-based bulk metallic glasses is still novel scientific problem.

  6. Crystal growth of iron-based superconductor FeSe0.94 by KCl flux method

    International Nuclear Information System (INIS)

    Highlights: • SC crystals of FeSe0.94 bigger than previous reports are grown by KCl flux method. • The crystal sizes are 6 × 3 × 0.1–0.2 mm3 or 5 × 5 × 0.1–0.2 mm3; the TC is around 10 K. • Relatively big crystal size is realized by optimizing crystal growth conditions. • Optimized are the dissolution and convection, temperature gradient and flux content. - Abstract: Single crystals of iron-based superconductor FeSe0.94, the 11 phase, have been grown using KCl as flux. The size of as-grown crystals is up to 6 × 3 mm2 or 5 × 5 mm2. The relatively big crystal size is achieved by optimizing the experimental scheme. The main phase of the crystal samples is identified to be tetragonal β-FeSe by X-ray diffraction analysis. The superconducting transition temperature is determined to be around 10 K by both electron transport and diamagnetism measurements

  7. Crystal growth of iron-based superconductor FeSe{sub 0.94} by KCl flux method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, M.W.; Yuan, D.N.; Wu, Y.; Dong, X.L.; Zhou, F., E-mail: fzhou@aphy.iphy.ac.cn

    2014-11-15

    Highlights: • SC crystals of FeSe{sub 0.94} bigger than previous reports are grown by KCl flux method. • The crystal sizes are 6 × 3 × 0.1–0.2 mm{sup 3} or 5 × 5 × 0.1–0.2 mm{sup 3}; the T{sub C} is around 10 K. • Relatively big crystal size is realized by optimizing crystal growth conditions. • Optimized are the dissolution and convection, temperature gradient and flux content. - Abstract: Single crystals of iron-based superconductor FeSe{sub 0.94}, the 11 phase, have been grown using KCl as flux. The size of as-grown crystals is up to 6 × 3 mm{sup 2} or 5 × 5 mm{sup 2}. The relatively big crystal size is achieved by optimizing the experimental scheme. The main phase of the crystal samples is identified to be tetragonal β-FeSe by X-ray diffraction analysis. The superconducting transition temperature is determined to be around 10 K by both electron transport and diamagnetism measurements.

  8. An efficient optical biochemical sensor based on a polyatomic photonic crystal ring resonator

    Science.gov (United States)

    Wang, Daobin; Liu, Yanjun; Yuan, Lihua; Lei, Jingli; Li, Xiaoxiao; wu, Gang; Hou, Shanglin

    2016-08-01

    In this paper, we introduce and investigate a design concept for a polyatomic photonic crystal ring resonator (PCRR). In contrast to conventional sensors, this PCRR comprises two different branching waveguides (WG), which are all oriented in the same lattice direction, but with different optical propagation properties due to the binary nature of the diatomic square lattice. Based on this new scheme, an on-chip biochemical sensor is proposed. Electromagnetic analysis, PWE and FDTD numerical techniques, were used to investigate the sensing performance. Our results show that such a sensor can efficiently detect small changes in the refractive index within the sensing area.

  9. Laterally substituted naphthalene-2,7-diol-based bent-shaped liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Kozmík, V.; Kuchař, M.; Svoboda, J.; Novotná, Vladimíra; Glogarová, Milada; Baumeister, U.; Diele, S.; Pelzl, G.

    2005-01-01

    Roč. 32, č. 9 (2005), s. 1151-1160. ISSN 0267-8292 R&D Projects: GA ČR(CZ) GA202/02/0840; GA ČR(CZ) GA202/05/0431; GA MŠk(CZ) 1P04OCD14.60 Grant ostatní: EU(XE) COST D14 WG 00015 Institutional research plan: CEZ:AV0Z1010914 Keywords : naphthalene - based liquid crystals * x-ray Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.432, year: 2005

  10. Widely tunable polarization maintaining photonic crystal fiber based parametric wavelength conversion.

    Science.gov (United States)

    Murray, Robert T; Kelleher, Edmund J R; Popov, Sergei V; Mussot, Arnaud; Kudlinski, Alexandre; Taylor, James R

    2013-07-01

    We report a near-visible parametric wavelength converter comprising a polarization-maintaining photonic crystal fiber (PM-PCF) pumped by a highly versatile diode-seeded master-oscillator power amplifier system based around 1.06 μm. The device is broadly tunable in wavelength (0.74-0.81 μm), pulse duration (0.2-1.5 ns) and repetition rate (1-30 MHz). A maximum anti-Stokes slope conversion efficiency of 14.9% is achieved with corresponding anti-Stokes average output powers of 845 mW, at a wavelength of 0.775 μm. PMID:23842368

  11. Enhancement of photoluminescence and raman scattering in one-dimensional photonic crystals based on porous silicon

    International Nuclear Information System (INIS)

    In porous-silicon-based multilayered structures that exhibit the properties of one-dimensional photonic crystals, an increase in the photoluminescence and Raman scattering intensities is observed upon optical excitation at the wavelength 1.064 μm. When the excitation wavelength falls within the edge of the photonic band gap of the structures, a multiple increase (by a factor larger than 400) in the efficiency of Raman scattering is detected. The effect is attributed to partial localization of excitation light and, correspondingly, to the much longer time of interaction of light with the material in the structures.

  12. Photonic Crystal Waveguide Intersection Based on Self-Imaging of Multi-Mode Interference

    Institute of Scientific and Technical Information of China (English)

    DING Wei-Qiang; TANG Dong-Hua; CHEN Li-Xue; ZHAO Yuan; Liu Yan

    2007-01-01

    @@ A new mechanism of intersection formed by two line defect photonic crystal (PC) waveguides are numerically investigated using the finite-difference time-domain method. The results show that the normalized crosstalk is smaller than 10-4; the reflection is smaller than 10-3, and the transmission is larger than 0.999. The authors analyse the physical origins and find that a modified self-imaging process in the intersected multi-mode region is the main reason of the excellent performance. This kind of multi-mode interference based intersection may find potential applications in PC optical circuits.

  13. Some features of the technology of passive laser shutters based on GSGG crystals

    Science.gov (United States)

    Titov, A. N.; Krutova, L. I.; Ignatenkov, B. A.; Vetrov, V. N.

    2006-05-01

    This paper presents the results of work on improving the technology of passive laser shutters based on gallium scandium gadolinium garnet crystals doped with tetravalent chromium cations. It is shown that the behavior of the Cr4+ cations in a melt of a mix of oxides can be described by the Pfann equation, and the distribution factor of Cr4+ can be determined. It was possible to increase the utilization factor of the mix by a factor of 3.5 and to reduce the number of process operations by optimizing the technology.

  14. Liquid crystal Fresnel zone lens based on single-side-patterned photoalignment layer.

    Science.gov (United States)

    Wang, X Q; Fan, F; Du, T; Tam, A M W; Ma, Y; Srivastava, A K; Chigrinov, V G; Kwok, H S

    2014-04-01

    In this article, we disclose a method to fabricate a liquid crystal (LC) Fresnel zone lens (FZL) with high efficiency. The LCFZL, based on patterned planar-aligned regions, has been prepared by means of a two-step photoalignment technique. The proposed binary-phase LCFZL manifests 39% diffraction efficiency at the focal point, which is close to the theoretical limit, 41%. Moreover, because of a lower driving voltage and faster response time, these elements could find application in many modern devices. PMID:24787157

  15. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    OpenAIRE

    Ryszard Buczynski; Henry Bookey; Mariusz Klimczak; Dariusz Pysz; Ryszard Stepien; Tadeusz Martynkien; McCarthy, John E.; Andrew J. Waddie; Kar, Ajoy K.; Taghizadeh, Mohammad R.

    2014-01-01

    In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. Th...

  16. Yb-doped silica glass and photonic crystal fiber based on laser sintering technology

    Science.gov (United States)

    Zhang, Wei; Wu, Jiale; Zhou, Guiyao; Xia, Changming; Liu, Jiantao; Tian, Hongchun; Liang, Wanting; Hou, Zhiyun

    2016-03-01

    We demonstrate the fabricating method for Yb3+-doped silica glass and double-cladding large mode area photonic crystal fiber (LMA PCF) based on laser sintering technology combined with a liquid phase doping method. The doped material prepared shows the amorphous property and the hydroxyl content is approximately 40 ppm. The attenuation of the fabricated LMA PCF is 14.2 dB m-1 at 976 nm, and the lowest value is 0.25 dB m-1 at 1200 nm. The laser slope efficiency is up to 70.2%.

  17. Rod-like Schiff Base Magnetic Liquid Crystals Bearing Organic Radical

    Institute of Scientific and Technical Information of China (English)

    ZHENG, Min-Yan; AN, Zhong-Wei

    2006-01-01

    4 novel rod-like Schiff base magnetic liquid crystals have been prepared in which trans-bicyclohexyl or trans-cyclohexyl phenyl and biphenyl carboxylic acid phenol ester mesogenic cores with n-propyl and n-pentyl substituents were terminated by 4-amino-TEMPO (TEMPO=2,2,6,6-tetramethylpiperidine-l-oxyl). Of these compounds the silk-like and schlieren textures were found from 4c and 4d by POM (Polarizing Optical Microscope).DSC (Differential Scanning Calorimeter) measurements show that the mesophase exists from 4-6 ℃. EPR spectra reveal their paramagnetic properties.

  18. An In-Reflection Strain Sensing Head Based on a Hi-Bi Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Manuel Lopez-Amo

    2013-06-01

    Full Text Available A photonic crystal fiber-based sensing head is proposed for strain measurements. The sensor comprises a Hi-Bi PCF sensing head to measure interferometric signals in-reflection. An experimental background study of the sensing head is conducted through an optical backscatter reflectometer confirming the theoretical predictions, also included. A cost effective setup is proposed where a laser is used as illumination source, which allows accurate high precision strain measurements. Thus, a sensitivity of ~7.96 dB/me was achieved in a linear region of 1,200 μe.

  19. Polyethylene Maleate Copolyesters as Coating Materials for Piezoelectric Quartz Crystal-based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    D. C. Gupta

    2005-10-01

    Full Text Available Polyethylene maleate (PEM was synthesised by direct polycondensation of maleic anhydride and ethylene glycol in toluene under reflux usingp-toluene sulphonic acid as a catalyst. Structure of PEM was further modified by varying nature of diols and acid components, chain length of glycols, incorporation of aromatic and fluorine groups in the chain. Formation of PEM was monitored by gas chromatography. The parameters like degree of polymerisation, number average molecular weight (Mn, and weight average molecular weight (Mw were calculated from the extent of reaction and stoichiometric ratio of the reactants. The number average molecular weight was also determined using Knauer vapour pressure osmometer. Cohesive energy, volume, and solubility parameters of PEM-based copolyesters were calculated by group contribution method. These PEM-based copolyesters’ have been evaluated as sorbent-coating materials for the detection of organ0 phosphorus(OPcompo using dimethylmethylphosphonate (DMMP as model compound and piezoelectric crystal detector. PEMbisphenol A is found to be the most sensitive and potential coating material for the detection of OP compounds using piezoelectric crystal detector. Potential PEM-based copolyesters have been characterised by viscosity, infrared spectroscopy, NMR spectroscopy, Mn and thermal stability.

  20. Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol–gel based electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan; Gao, Qian; He, Haiyan; Li, Xiang, E-mail: xiang.li@zju.edu.cn; Ren, Zhaohui; Liu, Yong; Shen, Ge; Xu, Gang; Zhang, Xiwen; Han, Gaorong, E-mail: hgr@zju.edu.cn

    2013-12-05

    Highlights: •Single-crystal-like PZT nanofibers were fabricated by electrospinning and calcination. •Fiber diameter was precisely controlled by solution viscosity and electrospinning parameters. •Pyrolysis is a key factor for fabrication of single-crystal-like structure. -- Abstract: Size-controlled single-crystal-like lead zirconate titanate (PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}, PZT) ceramic fibers have been successfully prepared by sol–gel based electrospinning and subsequent calcination process, and their morphology, crystal structure have been characterized at nanoscale. The fiber diameter can be precisely controlled from ∼50 to 540 nm by varying the PVP concentration and electrospinning process parameters. The crystal structure of the nanofibers pyrolyzed at 400 °C for 0.5 h and calcined at 650 °C for 2 h is proved to be single-crystal-like tetragonal perovskite phase. A formation mechanism is also discussed based on the thermal decomposition process, effect of the calcination and pyrolysis procedure, using the thermogravimetry/differential scanning caborimetry (TG/DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is found that the pyrolysis procedure is a critical factor for the fabrication of single-crystal-like structure PZT nanofibers using electrospinning.

  1. Effects of temperature and solvent concentration on the solvent crystallization of palm-based dihydroxystearic acid with isopropyl alcohol

    Institute of Scientific and Technical Information of China (English)

    Gregory F.L.Koay; Teong-Guan Chuah; Sumaiya Zainal-Abidin; Salmiah Ahmad; Thomas S.Y.Choong

    2012-01-01

    Palm-based dihydroxystearic acid of 69.55% purity was produced in a 500-kg-per-batch operation pilot plant and purified through solvent crystallization in a custom fabricated simultaneous batch crystallizer unit.The effects of temperature and solvent concentration on yield,particle size distribution and purity were studied.The purity was higher,while the yield and particle size were lower and smaller,respectively,at higher temperature and solvent concentration.The solvent crystallization process efficiency was rated at 66-69% when carried out with 70-80% isopropyl alcohol at 20 ℃.

  2. Ground-based research of crystal growth of II-VI compound semiconductors by physical vapor transport

    Science.gov (United States)

    Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Su, Ching-Hua; Sha, Yi-Gao; Zhou, W.; Dudley, M.; Liu, Hao-Chieh; Brebrick, R. F.; Wang, J. C.

    1994-01-01

    Ground-based investigation of the crystal growth of II-VI semiconductor compounds, including CdTe, CdS, ZnTe, and ZnSe, by physical vapor transport in closed ampoules was performed. The crystal growth experimental process and supporting activities--preparation and heat treatment of starting materials, vapor partial pressure measurements, and transport rate measurements are reported. The results of crystal characterization, including microscopy, microstructure, optical transmission photoluminescence, synchrotron radiation topography, and chemical analysis by spark source mass spectrography, are also discussed.

  3. Switchable liquid-crystal phase-shift mask for super-resolution photolithography based on Pancharatnam-Berry phase

    Science.gov (United States)

    Glazar, Nikolaus; Culbreath, Christopher; Li, Yannian; Yokoyama, Hiroshi

    2015-11-01

    We present a novel liquid-crystal-based phase-shift mask that utilizes the Pancharatnam-Berry phase for super-resolution photolithography. Using an automated maskless photoalignment technique, we pattern an azobenzene alignment layer in a nematic liquid-crystal cell to fabricate the mask. Since the image is formed by phase cancellation, the minimum feature size is not restricted by the diffraction limit; here, we obtain submicron features. The liquid-crystal properties of the cell allow the mask to be switched on and off by applying a voltage. The cost effectiveness and flexibility of this technique make it a promising new technology for photolithography.

  4. Secondary Crystal Growth on a Cracked Hydrotalcite-Based Film Synthesized by the Sol-Gel Method.

    Science.gov (United States)

    Lee, Wooyoung; Lee, Chan Hyun; Lee, Ki Bong

    2016-05-01

    The sol-gel synthesis method is an attractive technology for the fabrication of ceramic films due to its preparation simplicity and ease of varying the metal composition. However, this technique presents some limitations in relation to the film thickness. Notably, when the film thickness exceeds the critical limit, large tensile stresses occur, resulting in a cracked morphology. In this study, a secondary crystal growth method was introduced as a post-treatment process for Mg/Al hydrotalcite-based films synthesized by the sol-gel method, which typically present a cracked morphology. The cracked hydrotalcite-based film was hydrothermally treated for the secondary growth of hydrotalcite crystals. In the resulting film, hydrotalcite grew with a vertical orientation, and the gaps formed during the sol-gel synthesis were filled with hydrotalcite after the crystal growth. The secondary crystal growth method provides a new solution for cracked ceramic films synthesized by the sol-gel method. PMID:27064301

  5. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts

    Directory of Open Access Journals (Sweden)

    Celia Garcia-Hernandez

    2015-11-01

    Full Text Available An array of electrochemical quartz crystal electrodes (EQCM modified with nanostructured films based on phthalocyanines was developed and used to discriminate musts prepared from different varieties of grapes. Nanostructured films of iron, nickel and copper phthalocyanines were deposited on Pt/quartz crystals through the Layer by Layer technique by alternating layers of the corresponding phthalocyanine and poly-allylamine hydrochloride. Simultaneous electrochemical and mass measurements were used to study the mass changes accompanying the oxidation of electroactive species present in must samples obtained from six Spanish varieties of grapes (Juan García, Prieto Picudo, Mencía Regadío, Cabernet Sauvignon, Garnacha and Tempranillo. The mass and voltammetric outputs were processed using three-way models. Parallel Factor Analysis (PARAFAC was successfully used to discriminate the must samples according to their variety. Multi-way partial least squares (N-PLS evidenced the correlations existing between the voltammetric data and the polyphenolic content measured by chemical methods. Similarly, N-PLS showed a correlation between mass outputs and parameters related to the sugar content. These results demonstrated that electronic tongues based on arrays of EQCM sensors can offer advantages over arrays of mass or voltammetric sensors used separately.

  6. Synergistic effect of rhenium and ruthenium in nickel-based single-crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.X. [Department of Physics, Tsinghua University, Beijing 100084 (China); Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, C.Y., E-mail: cywang@mail.tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Central Iron and Steel Research Institute, Beijing 100081 (China); Zhang, X.N. [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Yan, P. [Central Iron and Steel Research Institute, Beijing 100081 (China); Zhang, Z., E-mail: zezhang@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-01-05

    Highlights: • Re and Ru synergistic effects in nickel-based superalloys are investigated. • The Al site occupation of Re atom in the γ′ phase is observed directly. • The addition of Ru results in the repartitioning of Re to γ phase. -- Abstract: The microstructures of ternary Ni–Al–Re and quaternary Ni–Al–Re–Ru single-crystal alloys were investigated at atomic and electronic levels to clarify the synergistic effect of Re and Ru in nickel-based single-crystal superalloys. In the Ni–Al–Re alloy, it was directly observed that Re atom occupied the Al site of γ′ phase. In the Ni–Al–Re–Ru alloy, the mechanisms of Re repartition between γ and γ′ phases were proposed. In the dendritic cores, high concentrations of Re exceeded the solubility limit of γ′ phase and partitioned to γ phase, which led to the homogenization. In the interdendritic regions, Ru resulted in the repartitioning of Re to γ phase which was proved by transmission electron microscopy and first-principles calculations.

  7. Tunable integrated optical filters based on sapphire microspheres and liquid crystals

    Science.gov (United States)

    Gilardi, Giovanni; Yilmaz, Hasan; Sharif Murib, Mohammed; Asquini, Rita; d'Alessandro, Antonio; Serpengüzel, Ali; Beccherelli, Romeo

    2010-05-01

    We present an integrated optical narrowband electrically tunable filter based on the whispering gallery modes of sapphire microspheres and double ion-exchanged channel BK7 glass waveguides. Tuning is provided by a liquid crystal infiltrated between the spheres and the glass substrate. By suitably choosing the radii of the spheres and of the circular apertures, upon which the spheres are positioned, arrays of different filters can be realized on the same substrate with a low cost industrial process. We evaluate the performance in terms of quality factor, mode spacing, and tuning range by comparing the numerical results obtained by the numerical finite element modeling approach and with the analytical approach of the Generalized Lorenz-Mie Theory for various design parameters. By reorienting the LC in an external electrical field, we demonstrate the tuning of the spectral response of the sapphire microsphere based filter. We find that the value of the mode spacing remains nearly unchanged for the different values of the applied electric field. An increase of the applied electric field strength, changes the refractive index of the liquid crystal, so that for a fixed geometry the mode spacing remains unchanged.

  8. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals.

    Science.gov (United States)

    Červinka, Ctirad; Fulem, Michal; Růžička, Květoslav

    2016-02-14

    A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol(-1) on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems. PMID:26874495

  9. CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals

    Science.gov (United States)

    Červinka, Ctirad; Fulem, Michal; Růžička, Květoslav

    2016-02-01

    A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol-1 on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems.

  10. Cube slip and non-Schmid effects in single crystal Ni-base superalloys

    International Nuclear Information System (INIS)

    An advanced constitutive model incorporating two specific aspects of Ni-base superalloy deformation behaviour is proposed. Several deformation mechanisms are active in these two-phase materials. In the matrix phase, cube slip plays an important role in the orientation dependence of the material. Moreover, inelastic deformation of the precipitate phase leads to non-Schmid effects in the material response. Macroscopic cube slip is modelled here by incorporating a zig-zag cross slip mechanism into the constitutive relations for the matrix phase. A cross slip factor is proposed that quantifies the amount of cross slip and consequently represents the orientation dependence of the cube slip. Further, a detailed precipitate phase constitutive model is proposed, which enables the simulation of non-Schmid effects, like the tension–compression asymmetry. The cross slip mechanism and the associated splitting of partial dislocations in the γ'-phase, which are responsible for the anomalous yield behaviour, are incorporated in the model. The proposed formulations are implemented in a recently developed crystal plasticity framework for single crystal Ni-base superalloys and a consistent set of model parameters for the commercial alloy CMSX-4 is determined. The model is shown to reasonably predict the material tensile response and creep behaviour for a range of temperatures and stress or strain rate levels. The incorporation of the cross slip mechanisms in the matrix and precipitate results in an adequate simulation of the material orientation dependence and the experimentally determined tension–compression asymmetry

  11. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.; Shum, P.; Yan, Min; Leviatan, Y.; Li, C.M.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...... terms of signal to noise ratio (SNR). The improvements in spectral width and SNR can both contribute to a better detection limit for this refractive index sensor.......We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index...... sensitivity as high as 5500 nm/RIU (refractive index unit) can be achieved in the proposed structure. Compared with the entirely coated structure, the selectively coated sensor design demonstrates narrower resonance spectral width. Moreover, the greater resonance depth can improve the sensing performance in...

  12. Fabrication technology of heterojunctions in the lattice of a 2D photonic crystal based on macroporous silicon

    International Nuclear Information System (INIS)

    Design and fabrication technology of a microcavity structure based on a double heterojunction in macroporous silicon is suggested. The fabrication process of a strip of a 2D photonic crystal constituted by a finite number of lattice periods and the technique for defect formation by local opening of macropores on the substrate side, followed by filling of these macropores with a nematic liquid crystal, are considered.

  13. Self-assembling behavior in decane solution of potential wax crystal nucleators based on poly(co-olefins)

    OpenAIRE

    Schwahn, D.; Richter, D; Wright, P J; Symon, C.; Fetters, L.J.; Lin, M.

    2002-01-01

    The control of the precipitation and gelation of long chain paraffins from oil remains an enduring technological challenge regarding the processing and recovery of refined fuels and waxy crudes. Wax crystal modifiers based on polyethylene -poly(ethylene-propylene) (PE-PEP) diblock copolymers function as efficient nucleators for wax crystals in middle distillate fuels. These diblock polymers self-assemble in oil to form expansive platelike aggregates consisting of a PE core cloaked behind the ...

  14. Mechanism Analysis of the Inverse Doppler Effect in Two-Dimensional Photonic Crystal based on Phase Evolution

    OpenAIRE

    Qiang Jiang; Jiabi Chen; Yan Wang; Binming Liang; Jinbing Hu; Songlin Zhuang

    2016-01-01

    Although the inverse Doppler effect has been observed experimentally at optical frequencies in photonic crystal with negative effective refractive index, its explanation is based on phenomenological theory rather than a strict theory. Elucidating the physical mechanism underlying the inverse Doppler shift is necessary. In this article, the primary electrical field component in the photonic crystal that leads to negative refraction was extracted, and the phase evolution of the entire process w...

  15. Surface plasmon Raman scattering studies of liquid crystal anchoring on liquid-crystal-based self-assembled monolayers.

    Science.gov (United States)

    Critchley, Kevin; Cheadle, Edward M; Zhang, Hao-Li; Baldwin, Kurt J; Liu, Quanying; Cheng, Yaling; Fukushima, Hitoshi; Tamaki, Takashi; Batchelder, David N; Bushby, Richard J; Evans, Stephen D

    2009-11-26

    We studied the anchoring of 6CB on a series of self-assembled monolayers (SAMs) with a functional group that mimics that of the nematic liquid crystal (LC). The SAMs were first characterized by wetting, Fourier-transform infrared spectroscopy, and surface potential measurements. We found that, in two of these SAMs, the end group dipoles were oriented close to the normal of the surface and that these promoted homeotropic anchoring. In the case of the other SAM, the dipole was oriented parallel to the surface, and planar anchoring was obtained. Raman scattering by adsorbates on thin metal films is enhanced by the electromagnetic fields of surface plasmon polaritons (SPPs). Despite the inherent polarization of SPPs, there have been few reports in which SPP Raman scattering has been used to study molecular orientation. We have developed optical instrumentation to provide efficient excitation and collection of SPP Raman scattered light using attenuated total reflection geometry. The Kretschmann prism coupling configuration was used to excite SPPs on thin (500 A) gold films with adsorbed SAMs of alkanethiols in contact with thin films (50 microm) of the nematic liquid crystal 4'-hexylbiphenyl-4-carbonitrile (6CB, Merck). The anchoring and orientational wetting of the LC 6CB at the interface with omega-functionalized SAMs was studied using this arrangement. In agreement with the results of previous studies, a high-energy surface (-COOH) was found to promote planar anchoring, whereas a low-energy surface (-CF(3)) was found to induce homeotropic anchoring. PMID:19921953

  16. Computational crystallization.

    Science.gov (United States)

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536

  17. Protein Crystallization

    Science.gov (United States)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  18. Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers

    Science.gov (United States)

    Li, Jianhua; Wang, Rong; Wang, Jingyuan; Zhang, Baofu; Xu, Zhiyong; Wang, Huali

    2014-03-01

    Novel magnetic field sensor based on magnetic fluids infiltrated dual-core Photonic Crystal Fibers (PCFs) is proposed in this paper. Inside the cross-section of the designed PCFs, the two fiber cores filled with magnetic fluids (Fe3O4) are separated by an air hole, and then form two independent waveguides with mode coupling. The mode coupling under different magnetic field strength is investigated theoretically. A novel and simple magnetic field sensing system is proposed and its sensing performances have been studied numerically. The results show that the magnetic field sensor with 15-cm PCFs has a large sensing range and high sensitivity of 4.80 pm/Oe. It provides a new feasible method to design PCF-based magnetic field sensor.

  19. Rafting in single crystal nickel-base superalloys — An overview

    Indian Academy of Sciences (India)

    M Kamaraj

    2003-02-01

    Currently nickel-base single crystal (SX) superalloys are considered for the manufacture of critical components such as turbine blades, vanes etc., for aircraft engines as well as land-based power generation applications. Microstructure and high temperature mechanical properties are the major factors controlling the performance of SX superalloys. Rafting is an important phenomenon in these alloys which occurs during high temperature creep. It is essential to understand the rafting mechanism, and its characteristics on high temperature properties before considering the advanced applications. In this review article, the thermodynamic driving force for rafting with and without stress is explained. The nature and influence of rafting on creep properties including pre-rafted conditions are discussed. In addition, the effect of stress state on $\\gamma /\\gamma'$ rafting, kinetics and morphological evolution are discussed with the recent experimental results.

  20. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    International Nuclear Information System (INIS)

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques

  1. Polarization conversion system with liquid-crystal geometric-phase-based cylindrical lens

    Science.gov (United States)

    Honma, Michinori; Nose, Toshiaki

    2016-01-01

    We demonstrate a polarization conversion system by utilizing the polarization-splitting function of a liquid-crystal (LC) geometric-phase-based cylindrical lens. The system was constructed by combining the LC lens with a partially rubbed cell. The operation principle includes the following two steps. (i) The incident light is first decomposed into right- and left-handed circularly polarized light (RCP and LCP, respectively) as an attribute of geometric-phase-based optical elements. (ii) Then, only the RCP light is transformed into LCP light by passing it through the partially rubbed cell; as a result, the incident unpolarized light is converted into LCP light. We experimentally reveal the feasibility of the system by evaluating the effects, on the polarization conversion capability, of the diffraction efficiency, focal length, and partially rubbed cell’s retardation. The polarization conversion efficiency was obtained to be 65% on average for 400-700 nm and a maximum of 79% at 610 nm.

  2. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  3. Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity.

    Science.gov (United States)

    Maccaferri, Nicolò; Bergamini, Luca; Pancaldi, Matteo; Schmidt, Mikolaj K; Kataja, Mikko; Dijken, Sebastiaan van; Zabala, Nerea; Aizpurua, Javier; Vavassori, Paolo

    2016-04-13

    We present a novel concept of a magnetically tunable plasmonic crystal based on the excitation of Fano lattice surface modes in periodic arrays of magnetic and optically anisotropic nanoantennas. We show how coherent diffractive far-field coupling between elliptical nickel nanoantennas is governed by the two in-plane, orthogonal and spectrally detuned plasmonic responses of the individual building block, one directly induced by the incident radiation and the other induced by the application of an external magnetic field. The consequent excitation of magnetic field-induced Fano lattice surface modes leads to highly tunable and amplified magneto-optical effects as compared to a continuous film or metasurfaces made of disordered noninteracting magnetoplasmonic anisotropic nanoantennas. The concepts presented here can be exploited to design novel magnetoplasmonic sensors based on coupled localized plasmonic resonances, and nanoscale metamaterials for precise control and magnetically driven tunability of light polarization states. PMID:26967047

  4. A leap over Dirac cones in one-dimensional graphene-based photonic crystal

    Science.gov (United States)

    Jahani, D.; Abaspour, L.; Soltani-Vala, A.; Barvestani, J.

    2016-06-01

    The existence of a photonic bandgap in the visible range of light spectrum corresponding to a 1D graphene-based photonic crystal which recently has been proposed and is formed by embedding alternatively graphene layers into a dielectric background is investigated in this paper. By the use of the complete form of optical conductivity for the full expression of the tight-binding Hamiltonian of graphene layer, we numerically demonstrate an appeared bandgap in the visible region of the spectrum which can open up new route for further high-frequency applications of graphene-based photonic devices. It is revealed that the associated bandgap could be altered by changing the hopping energy and the amount of chemical potential leading to broadening the forbidden frequency regions with further increasing. Finally, it is also shown that the tunability feature of the photonic bandgap could be affected by changing the hopping energy.

  5. Flat lenses constructed by graded negative index-based photonic crystals with tuned configurations

    International Nuclear Information System (INIS)

    Flat lenses are designed by means of graded negative refractive index-based photonic crystals (PCs) constructed using air-holes tuned with different shapes. By gradually modifying the filling factor along the transverse direction, we obtain the graded negative index-based lenses for the purpose of focusing an incident plane wave. The finite-difference and time-domain (FDTD) algorithm is adopted for numerical calculation. Our calculation results indicate that these lenses can finely focus incident plane waves. Moreover, for the same size of air-holes, the focusing properties of the lens with rectangular air-holes are better than those with the other shaped air-holes. The graded negative index PCs lenses could possibly enable new applications in optoelectronic systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Directly diode-pumped femtosecond laser based on an Yb:KYW crystal

    Science.gov (United States)

    Kim, G. H.; Yang, J.; Lee, D. S.; Kulik, A. V.; Sall', E. G.; Chizhov, S. A.; Yashin, V. E.; Kang, U.

    2012-01-01

    Ultrashort pulse laser systems are widely used in many areas such as microprocessing of various materials, the generation of terahertz radiation, nonlinear optics, medical tomography, chemistry, and biology due to the high peak power and large spectral width. For a practical usage of the femtosecond lasers, they must be fairly compact and stable. These conditions are most fully met when laser media are used that allow direct pumping with the radiation from semiconductor injection lasers, which are more compact, reliable, and inexpensive than pumping with solid-state lasers. Since Ytterbium-doped crystals have a broad luminescence band for generating femtosecond pulses less than 500 fs wide, they are attractive as materials for lasers with direct diode pumping. Moreover, the position of the central luminescence wavelength of Yb:KGW and Yb:KYW crystals makes them promising priming sources of femtosecond pulses for amplifiers that operate at wavelengths close to 1 μm (Yb:KGW, Yb-glass, Nd-glass, Yb:YAG, etc.) We developed a femtosecond generator based on the Yb:KYW crystal with direct pumping by the radiation of a laser diode with fiber output of the pump radiation. The use of such pumping, as well as of chirped mirrors to compensate intracavity dispersion, made it possible to generate a continuous sequence of optical pulses 90 fs wide at a frequency of 87.8 MHz with a mean radiation power of more than 1 W. The product of the pulse width by the spectral width is close to the theoretical limit, and this indicates that there is no frequency modulation.

  7. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging

    International Nuclear Information System (INIS)

    The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér–Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques

  8. Determination of cleavage planes and fracture characterization of Ni-based single crystal superalloys

    Science.gov (United States)

    Merrill, John M.; Wilcox, Roy C.

    1992-01-01

    The room temperature fracture behavior of the Ge Rene N-4, CMSX-2, and CMSX-4C single crystal Ni-based superalloys was studied. All crystals were grown along the (001) direction and tensile tested in both helium and hydrogen atmospheres. A stereoscopic technique developed for use with a scanning electron microscope was applied to determine cleavage planes. Planar gamma(') morphologies also were examined to help determine cleavage planes. Helium charged specimens failed on a number of planes including the (111), (110), and (320). In most cases planes of the (111)-type initiated at the notch region and became smaller and smaller as they moved in radially. Tensile strengths in helium averaged 1000 MPa higher than that of the hydrogen charged specimens. Specimens tested in hydrogen generally failed on (100)-type planes originating from the notch region. This (100) region comprised 60 to 80 percent of the total fracture surface on most samples and appeared as large flat planes perpendicular to the growth direction of the crystal. The interior regions contained (100)-type planes as well as (321), (320), (210), and (111)-types. Hydrogen charged specimens also showed a high percentage of large cracks oriented at 90 deg to one another, indicative of the (100)-type fracture. The Ge Rene N4 and the CMSX-4C samples contained 3-5 percent gamma/gamma(') eutectic, while the CMSX-2 samples had little or no gamma/gamma(') eutectic. The relationship between gamma/gamma(') eutectic and the fracture surface has not been fully determined, but it is thought that the gamma/gamma(') eutectic may serve as a possible trapping site for hydrogen.

  9. Syntheses and Crystal Structures of Two VO(IV) Schiff Base Complexes with Oxyammonia Ligand

    Institute of Scientific and Technical Information of China (English)

    李连之; 许涛; 王大奇; 牛梅菊; 冀海伟

    2004-01-01

    Two novel VO(IV) Schiff base complexes, VO(SALHA)2[SALHA: salicyaldehydeoxyammonia] and VO(o-VANHA)2 [o-VANHA: o-vanillin-oxyammonia], have been synthesized with salicyaldehyde or o-vanilline, hydroxylammonium chloride and vanadyl sulfate in absolute methanol, and their crystal structures were determined by single-crystal X-ray diffraction. The vanadium(IV) centers in both complexes are five-coordinate in a distorted square pyramidal geometry. VO(SALHA)2 (C14H12N2O5V, Mr = 339.20) crystallizes in the monoclinic system, space group P21/n with a = 14.716(9), b = 7.175(5), c = 14.716(9) A, β = 113.130(7), V = 1428.8(15) A3, Z = 4, Dc = 1.577 g/cm3, β = 0.71073 A, μ(MoKα) = 0.720 mm-1, F(000) = 692, the final R = 0.0466 and wR = 0.0829 for 1561 observed reflections (I > 2σ(I)). VO(o-VANHA)2 (C16H16N2O7V, Mr = 399.25) is of monoclinic, space group P21/n with a = 11.386(12), b = 10.405(10), c = 14.627(15) A, β = 93.654(19), V = 1729(3) A3, Z = 4, Dc = 1.533 g/cm3, β = 0.71073 A, μ(MoKα) = 0.615 mm-1, F(000) = 820, the final R = 0.0513 and wR = 0.1129 for 1235 observed reflections (I > 2σ(I)).

  10. Crystal Growth of new charge-transfer salts based on $\\pi$-conjugated molecules

    CERN Document Server

    Morherr, Antonia; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-01-01

    New charge transfer crystals of $\\pi$-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure is reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-F$_x$, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with $\\pi$-conjug...

  11. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    Science.gov (United States)

    Morherr, Antonia; Witt, Sebastian; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-Fx, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  12. Preparation and characterization of high performance Schiff-base liquid crystal diepoxide polymer

    International Nuclear Information System (INIS)

    Graphical abstract: The specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer were proposed first by us. From the point of view of structure-properties relationship, it can be considered that owing to the presence of the Schiff-base group, the high performance liquid crystal diepoxide polymer displayed improved thermal stability. Highlights: ► In this work, we first proposed that specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer. ► As one aim of this study, the thermal and thermal-oxidative stabilities of the thermosets were studied by TGA under nitrogen and under air. ► The second aim of this study was to further understand the thermal degradation mechanism. ► For thermal degradation mechanism of this polymer under nitrogen, TG-IR was used to investigate volatile components, and SEM/EDS was used to explore morphologies and chemical components of the residual char. ► From the point of view of structure-properties relationship, it can be considered that owing to the presence of the Schiff-base group, the high performance liquid crystal diepoxide polymer displayed the improved thermal stability. - Abstract: A novel Schiff-base liquid crystal diepoxide polymer was prepared via a thermal copolymerization of a Schiff-base epoxy monomer (PBMBA) with a diamine co-monomer (MDA). We first proposed that specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer (PBMBA/MDA). Thermal degradation behavior of the polymer was characterized using thermogravimetric analysis (TGA) under nitrogen and under air, respectively. Thermogravimetric data obtained from TGA under nitrogen and under air reveal that PBMBA/MDA exhibits higher thermal stability compared with bisphenol-A type epoxy polymer (DGEBA/MDA) and other mesogene-containing epoxy polymer. It is worth pointing out that the outstanding residual

  13. Switchable multiwavelength erbium-doped photonic crystal fiber ring laser based on a length of polarization-maintaining photonic crystal fiber

    Science.gov (United States)

    Cheng, Jianqun; Ruan, Shuangchen

    2012-03-01

    A switchable multi-wavelength Erbium-doped photonic crystal fiber (ED-PCF) ring laser based on a length of polarization-maintaining photonic crystal fiber(PM-PCF) is presented and demonstrated experimentally. A segment of ED-PCF is used as linear gain medium in the resonant cavity. Due to the polarization hole burning (PHB) caused by the PM-PCF and a polarization controller (PC), the laser can operate in stable dual- or triple- wavelength modes at room temperature. The optical signal-to-noise ratio (OSNR) of the laser without any wavelength-selective components is greater than 30 dB. The amplitude variations of lasing peaks in ten minutes are less than 0.26dB for two different operating modes.

  14. A Dibutyl Phthalate Sensor Based on a Nanofiber Polyaniline Coated Quartz Crystal Monitor

    OpenAIRE

    Guang Li; Zhiyuan Luo; Xingfa Ma; Jianming Zhang; Ruifen Hu; Pengfei Ding; You Wang

    2013-01-01

    Dibutyl phthalate (DBP) is a commonly used plasticizer and additive to adhesives, printing inks and nail polishes. Because it has been found to be a powerful reproductive and developmental toxicant, a sensor to monitor DBP in some working spaces and the environment is required. In this work polyaniline nanofibers were deposited on the electrode of a quartz crystal oscillator to form a Quartz Crystal Microbalance gas sensor. The coated quartz crystal and a non-coated quartz crystal were mounte...

  15. Crystal Quality and Light Output Power of GaN-Based LEDs Grown on Concave Patterned Sapphire Substrate

    OpenAIRE

    YewChung Sermon Wu; A. Panimaya Selvi Isabel; Jian-Hsuan Zheng; Bo-Wen Lin; Jhen-Hong Li; Chia-Chen Lin

    2015-01-01

    The crystal quality and light output power of GaN-based light-emitting diodes (LEDs) grown on concave patterned sapphire substrate (CPSS) were investigated. It was found that the crystal quality of GaN-based LEDs grown on CPSS improved with the decrease of the pattern space (percentage of c-plane). However, when the pattern space decreased to 0.41 μm (S0.41-GaN), the GaN crystallinity dropped. On the other hand, the light output power of GaN-based LEDs was increased with the decrease of the p...

  16. Guanine-based photonic crystals in fish scales form from an amorphous precursor.

    Science.gov (United States)

    Gur, Dvir; Politi, Yael; Sivan, Berta; Fratzl, Peter; Weiner, Steve; Addadi, Lia

    2013-01-01

    Starting from disorder: anhydrous guanine crystals compose the photonic arrays responsible for the skin and scale iridescence found in Japanese Koi fish. These guanine crystals were found to form in intracellular vesicles through an amorphous precursor phase. A combined cryo-SEM and synchrotron radiation X-ray diffraction study showed the evolution of the crystals in great detail. PMID:22951999

  17. Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor

    Directory of Open Access Journals (Sweden)

    Bailin Zhang

    2013-01-01

    Full Text Available The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

  18. A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films.

    Science.gov (United States)

    Chen, Songtao; Roh, Kwangdong; Lee, Joonhee; Chong, Wee Kiang; Lu, Yao; Mathews, Nripan; Sum, Tze Chien; Nurmikko, Arto

    2016-04-26

    Perovskite semiconductors are actively investigated for high performance solar cells. Their large optical absorption coefficient and facile solution-based, low-temperature synthesis of thin films make perovskites also a candidate for light-emitting devices across the visible and near-infrared. Specific to their potential as optical gain medium for lasers, early work has demonstrated amplified spontaneous emission and lasing at attractively low thresholds of photoexcitation. Here, we take an important step toward practically usable perovskite lasers where a solution-processed thin film is embedded within a two-dimensional photonic crystal resonator. We demonstrate high degree of temporally and spatially coherent lasing whereby well-defined directional emission is achieved near 788 nm wavelength at optical pumping energy density threshold of 68.5 ± 3.0 μJ/cm(2). The measured power conversion efficiency and differential quantum efficiency of the perovskite photonic crystal laser are 13.8 ± 0.8% and 35.8 ± 5.4%, respectively. Importantly, our approach enables scalability of the thin film lasers to a two-dimensional multielement pixelated array of microlasers which we demonstrate as a proof-of-concept for possible projection display applications. PMID:26997122

  19. Improvement of stress-rupture property by Cr addition in Ni-based single crystal superalloys

    International Nuclear Information System (INIS)

    Research highlights: → Cr improved the stress-rupture life of single crystal superalloys significantly. → Cr increased the Re partitioning ratio and resulted in more negative misfit. → Mechanism for improving the stress-rupture life by Cr addition is addressed here. - Abstract: The effects of Cr addition on the microstructure and stress-rupture property have been investigated in three experimental Ni-based single crystal superalloys containing various levels of Cr addition (0-5.7 wt.%). The Re partitioning ratio increased and the lattice misfit became more negative with increasing the Cr addition in both dendrite core and interdendritic region. The changes of elemental partitioning behaviors and the lattice misfit show good agreement with the change of γ' morphology. Cr addition increased the stress-rupture life at 1100 deg. C/140 MPa significantly due to higher γ' volume fraction, more negative lattice misfit and a well rafting structure as well as less width of γ channels. High Cr addition (5.7 wt.%) increased the degree of Re and Cr supersaturation in the γ phase and promoted the formation of topologically close-packed (TCP) phases significantly under thermal exposure and creep deformation at 1100 deg. C.

  20. Fast ellipsometric measurements based on a single crystal photo-elastic modulator.

    Science.gov (United States)

    Petkovšek, R; Petelin, Jaka; Možina, J; Bammer, F

    2010-09-27

    For quality control in high volume manufacturing of thin layers and for tracking of physical and chemical processes, ellipsometry is a common measurement technology. For such kinds of applications we present a novel approach of fast ellipsometric measurements. Instead of a conventional setup that uses a standard photo-elastic modulator, we use a 92 kHz Single Crystal Photo-Elastic Modulator (SCPEM), which is a LiTaO3 crystal with a size of 28 × 9 × 4 mm. This small, simple, and cost-effective solution also offers the advantage of direct control of the retardation via the current amplitude, which is important for repeatability of the measurements. Instead of a Lock-In Amplifier, an automated digital processing based on a fast analog to digital converter controlled by a highly flexible Field Programmable Gate Array is used. This and the extremely compact and efficient polarization modulation allow fast ellipsometric testing where the upper limit of measurement rates is mainly limited by the desired accuracy and repeatability of the measurements. The standard deviation that is related to the repeatability +/-0.002° for dielectric layers can be easily reached. PMID:20941038

  1. Detection of anthrax lef with DNA-based photonic crystal sensors

    Science.gov (United States)

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  2. Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators

    Science.gov (United States)

    Mansouri-Birjandi, Mohammad Ali; Tavousi, Alireza; Ghadrdan, Majid

    2016-09-01

    Here, we propose a full-optical tunable Add/Drop filter based on single (SR) and double-vertically (DR) aligned Kerr-like nonlinear photonic crystal ring resonators (PCRRs). Silicon (Si) nano-crystal is used as the nonlinear material inside and outside of PCRRs. The minimum optical power required to turn-on/turn-off the SR and DR filters are 2000 mW/μm2, and 150 mW/μm2, respectively. We believe since the DR filter has a higher Q-factor rather than SR and also since the optical power reads more nonlinear rods with a longer time to pass the structure, thus the optical power required is much lower (10 folds). In addition, the minimum power required to 1 nm redshift the center operating wavelength of SR filter is 125 mW/μm2 (i.e. ΔnNL = 0.005) and for DR is as low as 8 mW/μm2. Performance of the Add/Drop filter structure is simulated by means of finite difference time domain (FDTD) method, in which the simulations showed an ultra-compact size structure with promising ultrafast tune-ability speeds.

  3. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  4. Performance characteristics of thermal neutron detectors based on Li6Y(BO3)3:Ce single crystals

    Science.gov (United States)

    Singh, A. K.; Tyagi, M.; Singh, S. G.; Tiwari, B.; Desai, D. G.; Sen, S.; Desai, S. S.; Ghodke, S. S.; Gadkari, S. C.

    2015-12-01

    Crack-free single crystals of Ce doped Li6Y(BO3)3 (LYBO:Ce) have been grown using the Czochralski technique. Grown crystals were characterized for their optical and scintillation characteristics to explore their potential as neutron detectors. Scintillator detectors based on LYBO:Ce crystal were used successfully to record the pulse height spectra from various neutron sources in the flux range from 10 n/cm2/s to 107 n/cm2/s. The detection efficiency for thermal neutrons was found to be over 80% for a 2 mm thick LYBO:Ce crystal. The scintillation decay times measured for neutron and gamma radiations were about 27 ns and 49 ns, respectively.

  5. High-power nanosecond optical parametric oscillator based on a long LiB 3O 5 crystal

    Science.gov (United States)

    Li, H. Q.; Zhang, H. B.; Bao, Z.; Zhang, J.; Sun, Z. P.; Kong, Y. P.; Bi, Y.; Lin, X. C.; Yao, A. Y.; Wang, G. L.; Hou, W.; Li, R. N.; Cui, D. F.; Xu, Z. Y.

    2004-03-01

    We report on a compact high average power optical parametric oscillator (OPO) pumped by an all-solid-state nanosecond 532 nm laser. Based on the merit of non-critically phase-matched crystal without walk-off effect, a 50-mm-long LiB 3O 5 (LBO) crystal is used as OPO nonlinear crystal to enhance the conversion efficiency and increase the output power. With the available mirror set, continuous tuning from 778 to 1036 nm for signal wave is obtained by changing LBO phase-matching temperature. The maximum average power of signal output is up to 9.4 W at 900 nm for pump power of 18 W inside the LBO crystal, corresponding to a conversion efficiency of 52% only for the signal output. This is, to the best of our knowledge, the highest signal average power generated by nanosecond OPO in single bulk LBO.

  6. Effect of high-energy heavy ion irradiation on the crystallization kinetics of Co-based metallic glasses

    Indian Academy of Sciences (India)

    Rohit Jain; Deepika Bhandari; N S Saxena; S K Sharma; A Tripathi

    2001-02-01

    Differential scanning calorimeter (DSC) is employed to study the crystallization kinetics of irradiated (at three different fluences with high-energy heavy ion; Ni11+ of 150 MeV) specimens of two Co-based metallic glasses. It is found that the crystallization process in both the glasses is completed in two phases. The DSC data have been analysed in terms of kinetic parameters viz. activation energy (), Avrami exponent (), dimensionality of growth (), using two different theoretical models. The results obtained have been compared with that of virgin samples. The lower activation energy in case of second crystallization occurring at higher temperature indicates the easier nucleation of second phase. The abnormally high value of Avrami exponent in Co–Ni glass indicates very high nucleation rate during first crystallization.

  7. Influence of doping on thermal diffusivity of single crystals used in photonics: measurements based on thermal wave methods.

    Science.gov (United States)

    Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław

    2009-03-01

    Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally. PMID:19252616

  8. Superluminal media formed by photonic crystals for transformation optics-based invisibility cloaks

    Science.gov (United States)

    Semouchkina, Elena; Duan, Ran; Gandji, Navid P.; Jamilan, Saeid; Semouchkin, George; Pandey, Ravi

    2016-04-01

    We have developed an approach to building superluminal medium for transformation optics-based devices, including invisibility cloaks, from photonic crystals. Analysis of dispersion diagrams of 2D arrays composed from dielectric rods has shown that at frequencies corresponding to the second bands formed due to bandgap opening at increase of rod permittivity, the medium formed by arrays exhibits refractive indices providing for superluminal phase velocities of propagating waves. It is further demonstrated that rod arrays with various lattice constants could be used for realizing a range of superluminal index values prescribed by transformation optics for cylindrical cloaks at arbitrary chosen operating frequency. The performed studies allowed for solving a row of problems with employment rod arrays in the cloak medium: in particular, formulating transformation optics-based prescriptions for refractive index dispersion in the cloaking shell, defining the dimensions of array fragments capable of responding similar to infinite arrays, finding optimal distribution of linear arrays sets at their coiling to form concentric material layers in the cloaking shell, and employing interaction between neighboring array sets with various lattice constants to assist the realization of prescribed index dispersion. The performance of the superluminal medium formed by rod array sets was demonstrated on an example of a cloaking shell developed for microwave frequency range. In contrast to metamaterial-based cloak media, the developed media requires neither material homogenization, nor obtaining the effective parameters with peculiar values and Lorentz’s type resonances in rods. Combination of these advantages and low losses makes photonic crystals perspective materials for invisibility cloaks operating in THz and optical ranges.

  9. Compact and broadband waveguide taper based on partial bandgap photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Jin Hou; Dingshan Gao; Huaming Wu; Zhiping Zhou

    2009-01-01

    Partial bandgap characteristics of parallelogram lattice photonic crystals are proposed to suppress the radiation modes in a compact dielectric waveguide taper so as to obtain high transmittance in a large wavelength range. Band structure of the photonic crystals shows that there exists a partial bandgap. The photonic crystals with partial bandgap are then used as the cladding of a waveguide taper to reduce the radiation loss efficiently. In comparison with the conventional dielectric taper and the complete bandgap photonic crystal taper, the partial bandgap photonic crystal taper has a high transmittance of above 85% with a wide band of 170 nm.

  10. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images.

    Science.gov (United States)

    Ueda, Hiroshi; Ida, Yasuo; Kadota, Kazunori; Tozuka, Yuichi

    2014-02-28

    The feasibility of Raman mapping for understanding the crystallization mechanism of an amorphous drug was investigated using described images. The crystallization tendency of amorphous indomethacin under dry condition at 30 °C was kinetically evaluated by means of Raman mapping and X-ray powder diffraction (XRPD) with change in the calculated crystallinities. Raman images directly revealed the occurrence of particle size-dependent non-uniform crystallization; slow crystallization of large particles, but fast crystallization of small particles. Kinetic analysis by fitting to the Kolmogorov-Johnson-Mehl-Avrami equation was performed for the crystallization profiles of both Raman mapping and XRPD data. For the Raman mapping data, the distribution of large particles was characterized and examined. The kinetic parameters calculated from the whole Raman image area agreed well with those of XRPD, suggesting accurate prediction of both techniques for the entire crystallization. Raman images revealed the change in the crystallization mechanism for the focused area; the large particles showed a reduced crystallization rate constant and an increase in the dimensional crystal growth exponent. Raman mapping is an attractive tool for quantitative and kinetic investigation of the crystallization mechanism with distributional images. PMID:24368105

  11. Nuclear magnetic resonance study of epoxy- based polymer-dispersed liquid crystal droplets

    CERN Document Server

    Han, J W

    1998-01-01

    In this work, polymer-dispersed liquid crystals (PDLC) samples were prepared and studied by nuclear magnetic resonance. Proton NMR spectra and spin-lattice relaxations of 4-cyano-4'-pentylbiphenyl(5CB) and p-methoxybenzylidene-p-n-butylaniline (MBBA) liquid crystals confined in microdroplets were measured. The experimental results were compared with those of the liquid crystals in the pores of silica-gels and with those of the mixing components. The experimental results indicated that the nematic ordering in the microdroplets differed markedly from that observed in bulk nematic crystals. In addition, we examined spin-lattice relaxation mechanisms. The proton spin-lattice relaxation mechanisms in bulk nematic liquid crystals are well established. However, when nematic liquid crystals are confined in microdroplets, the relaxation mechanisms are expected to be affected. We examined possible relaxation mechanisms to explain the observed increase in the spin-lattice relaxation rate of liquid crystals confined in m...

  12. Low cycle fatigue damage in nickel-base superalloy single crystals at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, E. (Centre des Materiaux P.M. Fourt, Ecole des Mines, 91 Evry (France)); Remy, L. (Centre des Materiaux P.M. Fourt, Ecole des Mines, 91 Evry (France))

    1993-08-15

    Low cycle fatigue tests on AM1 nickel-base superalloy single crystals were conducted under axial strain control at 650, 950 and 1100 C. The behaviour of the 001 orientation was investigated at the three temperatures, that of the 111, 101 and 213 specimens was studied at the two lower temperatures. The orientation dependence of fatigue life-total strain range curves was mainly due to variations in Young's modulus with orientation. Most cracks grow in stage II mode whatever the temperature. Cracks nucleate at micropores and in the interior of specimens at low temperatures; surface cracks induced by oxidation are dominant at high temperatures and low strain ranges. Most of fatigue life is spent in microcrack growth. (orig.)

  13. Behavior of nickel-base superalloy single crystals under thermal-mechanical fatigue

    Science.gov (United States)

    Fleury, E.; Rémy, L.

    1994-12-01

    The thermal-mechanical fatigue behavior of AM1 nickel-base superalloy single crystals is studied using a cycle from 600 °C to 1100 °C. It is found to be strongly dependent on crystallo-graphic orientation, which leads to different shapes of the stress-strain hysteresis loops. The cyclic stress-strain response is influenced by variation in Young’s modulus, flow stress, and cyclic hardening with temperature for every crystallographic orientation. The thermalmechanical fatigue life is mainly spent in crack growth. Two main crack-initiation mechanisms occur, depending on the mechanical strain range. Oxidation-induced cracking is the dominant damage mechanism in the lifetime of interest for turbine blades.

  14. Behavior of nickel-base superalloy single crystals under thermal-mechanical fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, E.: Remy, L. (Ecole des Mines de Paris (France). Centre des Materiaux)

    1994-01-01

    The thermal-mechanical fatigue behavior of AM1 nickel-base superalloy single crystals is studied using a cycle from 600[degree]C to 1,100[degree]C. It is found to be strongly dependent on crystallographic orientation, which leads to different shapes of the stress-strain hysteresis loops. The cyclic stress-strain response is influenced by variation in Young's modulus, flow stress, and cyclic hardening with temperature for every crystallographic orientation. The thermal-mechanical fatigue life is mainly spent in crack growth. Two main crack-initiation mechanisms occur, depending on the mechanical strain range. Oxidation-induced cracking is the dominant damage mechanism in the lifetime of interest for turbine blades.

  15. A novel polarization splitter based on three-core photonic crystal fibers

    Institute of Scientific and Technical Information of China (English)

    YANG Qian-qian; HOU Lan-tian

    2011-01-01

    @@ A novel polarization splitter based on photonic crystal fibers (PCFs) with three cores of high birefringence is proposed.The 45° linearly polarized light is launched into a core.After a coupling length (about 1500 μm), the x-and y-polarized light beams are separated into different cores.When the light is launched into another core, the x-and y-polarized light from different cores can be obtained and the degree of separation can be also adjusted.The polarization splitter is highly flexible and adjustable.The length of the polarization splitter is about 1500 μm which is just the coupling length.So it has appreciate significance of manufacturing mini-type photonic apparatus in integrated optics.

  16. A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors

    DEFF Research Database (Denmark)

    Fidom, Kimberley; Isberg, Vignir; Hauser, Alexander Sebastian; Mordalski, Stefan; Lehto, Thomas; Bojarski, Andrzej J; Gloriam, David E

    2015-01-01

    We have developed a new method for the building of pharmacophores for G protein-coupled receptors, a major drug target family. The method is a combination of the ligand- and target-based pharmacophore methods and founded on the extraction of structural fragments, interacting ligand moiety and...... ligands are known. 47% of the class A G protein-coupled receptors can be targeted with at least four-element pharmacophores. The fragment libraries can also be used to grow known ligands or for rotamer refinement of homology models. Researchers can download the complete fragment library or a subset...... receptor residue pairs, from crystal structure complexes. We describe the procedure to collect a library with more than 250 fragments covering 29 residue positions within the generic transmembrane binding pocket. We describe how the library fragments are recombined and inferred to build pharmacophores for...

  17. Creep behaviour at 760 C of two nickel-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Diologent, F.; Caron, P. [ONERA, Chatillon (France)

    2003-07-01

    Creep tests have been performed at 760 C and 840 MPa on the AM1 and MC-NG nickel-based single crystal superalloys suited for gas turbine blade applications. The stress rupture life of MC-NG is slightly longer than that of AM1 but the creep behaviours of the two alloys are very different. Clear relationships have been established between the operative deformation mechanisms and the primary creep behaviours. Occurrence of these different deformation mechanisms is discussed by taking into account the effects of various parameters such as the Orowan stress, the {gamma}/{gamma}' lattice mismatch, the stacking fault energy and the solid solution strengthening of the {gamma} matrix. (orig.)

  18. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    International Nuclear Information System (INIS)

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g(2)(τ) is measured with a Hanbury Brown-Twiss setup. The measured g(2)(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber

  19. SYNTHESIS AND PROPERTIES OF METAL COMPLEXES OF β-DIKETONE BASED SIDE CHAIN LIQUID CRYSTAL POLYSILOXANE

    Institute of Scientific and Technical Information of China (English)

    WU Fuzhou; ZHANG Rongben; JIANG Yingyan

    1991-01-01

    A new type of metal coordinated liquid crystalline polymers has been synthesized by complexation of metal ions with β-diketone based side chain liquid crystal polysiloxane (DKLCP).The complexation of copper ions with DKLCP greatly increases the phase transition temperature Tk from crystalline state to liquid crystalline state and Tcl from LC to isotropic state and makes the range of phase transition △T(△T= Tcl- Tk ) widened. These complexes are soluble in common organic solvents. However, the incorporation of europium ions into DKLCP molecules gives rise to reduction in liquid crystallinity and crosslinking in some cases. The DKLCP coordinated with suitable amount of Eu ions can show good liquid crystallinity and fluorescent property.

  20. Effects of copper-based alloy on the synthesis of single-crystal diamond

    CERN Document Server

    Chen Li Xue; Ma Hong An; Jia Xiao Peng; Wakatsuki, M; Zou Guang Tian

    2002-01-01

    The catalytic effects of copper-based alloys in diamond growth have been investigated. A single crystal of diamond has been obtained by the temperature gradient method (TGM), using Cu-Mn-Co and Cu-Co alloys as catalysts. It was found that the melted Cu-Mn-Co and Cu-Co alloys show low viscosity. The eutectic temperatures of these two alloys with graphite were between 1130 and 1150 deg. C, and the temperature of the transition to diamond was over 1300 deg. C at 5.5 GPa. High-quality diamond could not be obtained in Cu-Co alloy by the TGM. Our results suggest that adding Cu to a catalyst cannot decrease the reaction temperature for diamond growth.

  1. The 1 × 4 Optical Splitters Based on Silicon Photonic Crystal Self-Collimation Ring Resonators

    International Nuclear Information System (INIS)

    We report 1 × 4 optical splitters (OSs) with different splitting ratios based on either rod-type or hole-type silicon photonic crystal self-collimation ring resonators (SCRRs). The four beam splitters of the OSs are formed by changing the radii of silicon rods or air holes. The light beam propagating along the SCRR can be controlled by the self-collimation effect. The transmission spectra at the through and drop ports are investigated by using the finite-difference time-domain (FDTD) method. The simulated results agree well with the theoretical calculation. For 1550-nm dropping wavelength, the free spectral ranges for rod-type and hole-type configurations are 28.8nm and 32.5nm, respectively, which almost cover the whole optical communication C-band window. The dimensions of these structures are only about 10 μm × 10 μm

  2. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    Science.gov (United States)

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows. PMID:26192469

  3. Light emitting devices based on Si nanoclusters: the integration with a photonic crystal and electroluminescence properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present the properties and potentialities of light emitting devices based on amorphous Si nanoclusters. Amorphous nanostructures may constitute an interesting alternative to Si nanocrystals for the monolithic integration of optical and electrical functions in Si technology. In fact, they exhibit an intense room temperature electroluminescence (EL). The EL properties of these devices have been studied as a function of current and of temperature. Moreover, to improve the extraction efficiency of the light, we have integrated the emitting system with a 2D photonic crystal structure opportunely fabricated by using conventional optical lithography to reduce the total internal reflection of the emitted light. The extraction efficiency in such devices increases by a factor of 4 at a resonance wavelength.

  4. A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity

    CERN Document Server

    Sun, Xiankai; Poot, Menno; Xiong, Chi; Tang, Hong X

    2012-01-01

    We develop an all-integrated optoelectromechanical system that operates in the superhigh frequency band. This system is based on an ultrahigh-Q slotted photonic crystal (PhC) nanocavity formed by two PhC membranes, one of which is patterned with electrode and capacitively driven. The strong simultaneous electromechanical and optomechanical interactions yield efficient electrical excitation and sensitive optical transduction of the bulk acoustic modes of the PhC membrane. These modes are identified up to a frequency of 4.20 GHz, with their mechanical Q factors ranging from 240 to 1,730. Directly linking signals in microwave and optical domains, such optoelectromechanical systems will find applications in microwave photonics in addition to those that utilize the electromechanical and optomechanical interactions separately.

  5. Variation of crystal dissolution rate based on a dissolution stepwave model.

    Science.gov (United States)

    Lasaga, A C; Luttge, A

    2001-03-23

    A formulation based on defect-generated dissolution stepwaves of the variation of dissolution rate with the degree of undersaturation is validated by near-atomic-scale observations of surfaces, Monte Carlo simulations, and experimental bulk dissolution rates. The dissolution stepwaves emanating from etch pits provide a train of steps similar to those of a spiral but with different behavior. Their role in accounting for the bulk dissolution rate of crystals provides a conceptual framework for mineral dissolution far from equilibrium. Furthermore, the law extends research to conditions closer to equilibrium and predicts a nonlinear decrease in the rate of dissolution as equilibrium is approached, which has implications for understanding artificial and natural processes involving solid-fluid reactions. PMID:11264534

  6. Thermoreflectance-based in-depth stress distribution measurement technique for single-crystal silicon structures

    Science.gov (United States)

    Miyake, Shugo; Kato, Takaaki; Taguchi, Hideyuki; Namazu, Takahiro

    2016-06-01

    In this paper, we suggest a new stress measurement technique based on the thermoreflectance method for the estimation of the in-depth stress distribution of fabricated silicon devices. Changing the modulated intensity of a heating laser beam of the frequency-domain thermoreflectance method (FD-TRM) can vary the estimation depth optionally. We developed a measurement system on the basis of the FD-TRM and demonstrated in-depth stress measurement for a single-crystal silicon (SCS) sample. The result measured at a modulation frequency of 3 MHz showed the phase distribution of the TR signal corresponding to the stress distribution determined by 632-nm-excited Raman spectroscopy. In addition, it was found that the phase distribution changed depending on the modulation frequency. The FD-TRM can be a powerful technique for estimating the in-depth stress distribution of silicon materials.

  7. Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor

    Science.gov (United States)

    Liu, Chao; Wang, Famei; Zheng, Shijie; Sun, Tao; Lv, Jingwei; Liu, Qiang; Yang, Lin; Mu, Haiwei; Chu, Paul K.

    2016-07-01

    A highly birefringent photonic crystal fibre is proposed and characterized based on a surface plasmon resonance sensor. The birefringence of the sensor is numerically analyzed by the finite-element method. In the numerical simulation, the resonance wavelength can be directly positioned at this birefringence abrupt change point and the depth of the abrupt change of birefringence reflects the intensity of excited surface plasmon. Consequently, the novel approach can accurately locate the resonance peak of the system without analyzing the loss spectrum. Simulated average sensitivity is as high as 1131 nm/RIU, corresponding to a resolution of 1 × 10-4 RIU in this sensor. Therefore, results obtained via the approach not only show polarization independence and less noble metal consumption, but also reveal better performance in terms of accuracy and computation efficiency.

  8. Smectic phases of liquid crystals based on dinuclear palladium(II) complexes with carboxylato bridge

    Energy Technology Data Exchange (ETDEWEB)

    Circu, V. [Inorganic Chemistry Department, University of Bucharest (Romania); Simonescu, C.M. [Department of Inorganic Technology and Environmental Protection, University Polytehnica Bucharest (Romania)

    2010-05-15

    In this paper we present the preparation and the investigation of the liquid crystal properties of a series of dinuclear carboxylato bridge Pd(II) complexes bearing six alkoxy peripheral chains in the molecule. Their structures were assigned based on elemental analysis, IR and {sup 1}H NMR spectroscopy whereas the thermal behaviour was investigated by polarizing optical microscopy and differential scanning calorimetry. The monotropic smectic A phase displayed by these materials was identified by miscibility studies with a previously reported mesogen. It was found that the transition temperatures and the SmA mesophase stability depend on the alkyl chain length of the carboxylato bridge. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Biocompatible Single-Crystal Selenium Nanobelt Based Nanodevice as a Temperature-Tunable Photosensor

    Directory of Open Access Journals (Sweden)

    Yongshan Niu

    2012-01-01

    Full Text Available Selenium materials are widely used in photoelectrical devices, owing to their unique semiconductive properties. Single-crystal selenium nanobelts with large specific surface area, fine photoconductivity, and biocompatibility provide potential applications in biomedical nanodevices, such as implantable artificial retina and rapid photon detector/stimulator for optogenetics. Here, we present a selenium nanobelt based nanodevice, which is fabricated with single Se nanobelt. This device shows a rapid photo response, different sensitivities to visible light of variable wave length, and temperature-tunable property. The biocompatibility of the Se nanobelts was proved by MTT test using two cell lines. Our investigation introduced a photosensor that will be important for multiple potential applications in human visual system, photocells in energy or MEMS, and temperature-tunable photoelectrical device for optogenetics research.

  10. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byeong-Hyeon, E-mail: seygene@kaist.ac.kr; Lee, Chang-Min; Lim, Hee-Jin [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Schlereth, Thomas W.; Kamp, Martin [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Lee, Yong-Hee [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Graduate School of Nanoscience and Technology (WCU), KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  11. High efficiency all-optical diode based on photonic crystal waveguide

    Science.gov (United States)

    Liu, Bin; Liu, Yun-Feng; Li, Shu-Jing; He, Xing-Dao

    2016-06-01

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a Fano cavity containing nonlinear Kerr medium and a F-P cavity in PC waveguide. Because of interference between two cavities, Fano peak and F-P peak can both appear in transmission spectra. Working wavelength is set between the two peaks and approaching to Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can be excited. It would result in red shift of Fano peak and achieving forward transmission. But due to the asymmetric design, backward launch need stronger incidence light to excite Kerr effect. This design has many advantages, including high maximum transmittance (>90%), high transmittance contrast ratio, low power threshold, short response time (picosecond level), ease of integration.

  12. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    International Nuclear Information System (INIS)

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits

  13. Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Rim Cherif

    2013-01-01

    Full Text Available Small core As2Se3-based photonic crystal fibers (PCFs are accurately characterized for compact, high power, ultrabroadband, and coherent supercontinuum generation within few millimeters fiber length. Bandwidths of ~5.3 μm, 5 μm, and 3.2 μm were calculated for hole-to-hole spacings Λ= 3.5 μm, 4.5 μm, and 5.5 μm, respectively. The spectral broadening in the chalcogenide PCF is mainly caused by self-phase modulation and Raman-induced soliton self-frequency shift. The results show that small core As2Se3 PCFs are a promising candidate for mid-IR SCG up to ~8 μm.

  14. Tensile behavior of nickel-base single-crystal superalloy DD6

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xinhong, E-mail: xiongxh@whut.edu.cn [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Quan, Dunmiao; Dai, Pengdan; Wang, Zhiping [School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063 (China); Zhang, Qiaoxin [School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070 (China); Yue, Zhufeng [School of Mechanics Civil Engineering and Architecture, Northwestern Polytechnical University, Xi' an 710072 (China)

    2015-06-11

    Tensile behavior of the nickel-base single-crystal superalloy DD6 was studied from room temperature to 1020 °C. The plate specimens were along [001] orientation parallel to the loading axis in tension. The microstructures on the surface and fracture morphology were investigated after tensile test to rupture by scanning electron microscopy (SEM). The results of the present investigation indicate that the yield strength at 650 °C is superior to that at room temperature, 850 °C and 1020 °C. Low ductility and serrated flow in stress–strain curves were also observed at 650 °C. The microstructures on the surface of the plate specimens and fracture morphology observation indicated that localized slip which resulted in glide plane decohesion caused the low ductility of DD6 alloy.

  15. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S., E-mail: mail2robinson@gmail.com [Department of Electronics and Communication Engineering, Mount Zion College of Engineering and Technology, Pudukkottai-622507, Tamil Nadu (India)

    2014-10-15

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits.

  16. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Zeltner, R.; Bykov, D. S.; Xie, S.; Euser, T. G.; Russell, P. St. J.

    2016-06-01

    We report an irradiation sensor based on a fluorescent "flying particle" that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ˜10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  17. Effect of Temperature on Photonic Band Gaps in Semiconductor-Based One-Dimensional Photonic Crystal

    Directory of Open Access Journals (Sweden)

    J. V. Malik

    2013-01-01

    Full Text Available The effect of the temperature and angle of incidence on the photonic band gap (PBG for semiconductor-based photonic crystals has been investigated. The refractive index of semiconductor layers is taken as a function of temperature and wavelength. Three structures have been analyzed by choosing a semiconductor material for one of the two materials in a bilayer structure. The semiconductor material is taken to be ZnS, Si, and Ge with air in first, second, and third structures respectively. The shifting of band gaps with temperature is more pronounced in the third structure than in the first two structures because the change in the refractive index of Ge layers with temperature is more than the change of refractive index of both ZnS and Si layers with temperature. The propagation characteristics of the proposed structures are analyzed by transfer matrix method.

  18. Interference based square lattice photonic crystal logic gates working with different wavelengths

    Science.gov (United States)

    D'souza, Nirmala Maria; Mathew, Vincent

    2016-06-01

    We propose a new configuration of interference based OR, XOR, NOT and AND optical logic gates on a two dimensional square lattice photonic crystal (PhC) platform. The working of these devices was analyzed by the FDTD method and the operating frequency range was explored using the plane wave expansion method. The XOR and NOT gates have high contrast ratio which is more than 35 dB between high and low logic states, for a particular wavelength. All these devices are operating with multiple wavelengths. The impact of structural parameter like radius on the operating wavelength and Contrast Ratio (CR) was analyzed. It is found that the optimization of structural parameters makes it possible to obtain the operating wavelength allowed by band structure. These proposed devices were made up of linear waveguides and square ring resonator waveguides, without using nonlinear materials, optical amplifiers and external phase shifters.

  19. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    Science.gov (United States)

    Jiao, Zheng; Ning, Renxia; Xu, Yuan; Bao, Jie

    2016-06-01

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident angle and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.

  20. Position algorithm for monolithic scintillation crystals based on charge projection readout

    International Nuclear Information System (INIS)

    Nuclear medicine imaging devices commonly use multi-element photo detection systems, composed of an array of N×N elements, each one providing an individual signal. Many strategies have been developed to reduce the number of readout channels, one of the main approaches is the Rows and Columns (R/C) projection logic. In this paper we proposed a modified version of Raised To the Power (RTP) algorithm adapted to R/C logic. In order to validate its efficiency a linear scanning irradiation on two 49×49 mm2 LaBr3:Ce (0.5%) crystals with different thickness (4 mm and 10 mm) was carried out. Imaging performance analysis was made in terms of position linearity, Field-of-View (FoV) enlargement and spatial resolution. Imaging results from Anger Logic, RTP algorithm based on single element readout and RTP algorithm based on R/C readout were compared. A notable advantage of using RTP algorithms instead of Anger Logic was found: the FoV widens from about 30% to more than 70% of the detector area whereas the spatial resolution is highly improved, especially for off-center interactions, both for 4 mm-thick and 10 mm-thick crystals. Furthermore, imaging performance with the R/C readout is just slightly different from the single element one (FoV reduction less than 7% and SR worsening less than 10%). The R/C adapted RTP algorithm opens doors to high imaging performance with a substantial reduction of complexity and cost in the readout electronics

  1. Position algorithm for monolithic scintillation crystals based on charge projection readout

    Science.gov (United States)

    Pani, R.; Bettiol, M.; Preziosi, E.; Cinti, M. N.; Borrazzo, C.; Pellegrini, R.; Di Castro, E.; Fabbri, A.

    2016-01-01

    Nuclear medicine imaging devices commonly use multi-element photo detection systems, composed of an array of N × N elements, each one providing an individual signal. Many strategies have been developed to reduce the number of readout channels, one of the main approaches is the Rows and Columns (R/C) projection logic. In this paper we proposed a modified version of Raised To the Power (RTP) algorithm adapted to R/C logic. In order to validate its efficiency a linear scanning irradiation on two 49× 49 mm2 LaBr3:Ce (0.5%) crystals with different thickness (4 mm and 10 mm) was carried out. Imaging performance analysis was made in terms of position linearity, Field-of-View (FoV) enlargement and spatial resolution. Imaging results from Anger Logic, RTP algorithm based on single element readout and RTP algorithm based on R/C readout were compared. A notable advantage of using RTP algorithms instead of Anger Logic was found: the FoV widens from about 30% to more than 70% of the detector area whereas the spatial resolution is highly improved, especially for off-center interactions, both for 4 mm-thick and 10 mm-thick crystals. Furthermore, imaging performance with the R/C readout is just slightly different from the single element one (FoV reduction less than 7% and SR worsening less than 10%). The R/C adapted RTP algorithm opens doors to high imaging performance with a substantial reduction of complexity and cost in the readout electronics.

  2. Towards UV imaging sensors based on single-crystal diamond chips for spectroscopic applications

    International Nuclear Information System (INIS)

    The recent improvements achieved in the Homoepitaxial Chemical Vapour Deposition technique have led to the production of high-quality detector-grade single-crystal diamonds. Diamond-based detectors have shown excellent performances in UV and X-ray detection, paving the way for applications of diamond technology to the fields of space astronomy and high-energy photon detection in harsh environments or against strong visible light emission. These applications are possible due to diamond's unique properties such as its chemical inertness and visible blindness, respectively. Actually, the development of linear array detectors represents the main issue for a full exploitation of diamond detectors. Linear arrays are a first step to study bi-dimensional sensors. Such devices allow one to face the problems related to pixel miniaturisation and of signal read-out from many channels. Immediate applications would be in spectroscopy, where such arrays are preferred. This paper reports on the development of imaging detectors made by our groups, starting from the material growth and characterisation, through the design, fabrication and packaging of 2xn pixel arrays, to their electro-optical characterisation in terms of UV sensitivity, uniformity of the response and to the development of an electronic circuit suitable to read-out very low photocurrent signals. The detector and its electronic read-out were then tested using a 2x5 pixel array based on a single-crystal diamond. The results will be discussed in the framework of the development of an imager device for X-UV astronomy applications in space missions

  3. Design and fabrication of Si-based photonic crystal stamps with electron beam lithography (EBL)

    Science.gov (United States)

    Jannesary, Reyhaneh; Bergmair, Iris; Zamiri, Saeid; Hingerl, Kurt; Hubbard, Graham; Abbott, Steven; Chen, Qin; Allsopp, Duncan

    2009-05-01

    The quest for mass replication has established technologies like nanoimprinting via hard stamps or PDMS stamps, where the stamps are usually produced via Electron Beam Lithography (EBL) for applications in the microelectronic industry. On the other hand, nanopatterning with self ordered structures1 or via holographic patterns provide the basis for large area imprints for applications for example, antireflection coatings based on biomimetic motheyes2. In this work we report on a technology for enabling the mass replication of custom-designed and e-beam lithographically prepared structures via establishing novel roll to roll nanoimprint processes for pattern transfer into UV curable pre-polymers. The new nano-fabrication technology is based on the concept of Disposal Master Technology (DMT) capable of patterning areas up to 1 x 1 m2 and is suitable for mass volume manufacturing of large area arrays of sub-wavelength photonic elements. As an example to show the potential of the application of the new nanoimprint technologies, we choose the fabrication of a photonic crystal (PhC) structure with integrated light coupling devices for low loss interconnection between PhC lightwave circuits and optical fibre systems. We present two methods for fabrication of nanoimprint lithography stamps in Si substrate. In the first method optimized electron beam lithography (EBL) and lift-off patterning of a 15-nm thick Cr mask, and then the pattern transfer into Si using reacting ion etching (RIE) with SF6 as etch gas. In the first method, we use 200nm of positive resist PMMA 950K for EBL exposure. In this method, resist thickness, exposure dose, development time and parameter for etching have been optimized and a photonic crystal of Si-rods in air was fabricated. In the second method lift-off has not been performed and metal mask has been used as master. The subsequent steps for fabricating the master will be presented in detail.

  4. Mechanical modeling of cholesterol crystallization in atherosclerotic plaques base on Micro-OCT images (Conference Presentation)

    Science.gov (United States)

    Luo, Yuemei; Liu, Xinyu; Chen, Si; Cui, Dongyao; Wang, Xianghong; Liu, Linbo

    2016-02-01

    Plaque rupture is the critical cause of cardiovascular thrombosis but this process is still under discussion. Recent studies show that, during crystallization, cholesterol crystals in atheromatous plaques accumulate rapidly in a limited space and may result in plaque rupture. However, the actual role of cholesterol crystals on plaque rupture remains unclear due to the lack of detailed morphological information of cholesterol crystals. In this study, we used a Micro-optical coherence tomography (µOCT) setup with 1-2 µm spatial resolution to extract the geometry of cholesterol crystals from human atherosclerotic artery ex vivo firstly. With measured dimensions of cholesterol crystals by this µOCT system (the average length and thickness of 269.1±80.16 µm and 3.0±0.33 µm), we developed a two-dimensional mechanical model in which rectangular shaped cholesterol crystals distribute at different locations spatially. We predicted the stress on the thin cap induced by the expansion of cholesterol crystals by use of finite-element method. Since a large portion of plaques (58%) rupture at points of peak circumferential stress (PCS), we used PCS as the primary indicator of plaque stability with blood pressure of 14.6 kPa on the lumen. The results demonstrate that loading of the concentrated crystals especially at the cap shoulder destabilize the plaque by proportionally increasing the PCS, while evenly distributed crystals loading along the cap might impose less PCS to the plaque than the concentrated case.

  5. Controlling the Vaterite CaCO3 Crystal Pores. Design of Tailor-Made Polymer Based Microcapsules by Hard Templating.

    Science.gov (United States)

    Feoktistova, Natalia; Rose, Juergen; Prokopović, Vladimir Z; Vikulina, Anna S; Skirtach, Andre; Volodkin, Dmitry

    2016-05-01

    The spherical vaterite CaCO3 microcrystals are nowadays widely used as sacrificial templates for fabrication of various microcarriers made of biopolymers (e.g., proteins, nucleic acids, enzymes) due to porous structure and mild template elimination conditions. Here, we demonstrated for the first time that polymer microcarriers with tuned internal nanoarchitecture can be designed by employing the CaCO3 crystals of controlled porosity. The layer-by-layer deposition has been utilized to assemble shell-like (hollow) and matrix-like (filled) polymer capsules due to restricted and free polymer diffusion through the crystal pores, respectively. The crystal pore size in the range of few tens of nanometers can be adjusted without any additives by variation of the crystal preparation temperature in the range 7-45 °C. The temperature-mediated growth mechanism is explained by the Ostwald ripening of nanocrystallites forming the crystal secondary structure. Various techniques including SEM, AFM, CLSM, Raman microscopy, nitrogen adsorption-desorption, and XRD have been employed for crystal and microcapsule analysis. A three-dimensional model is introduced to describe the crystal internal structure and predict the pore cutoff and available surface for the pore diffusing molecules. Inherent biocompatibility of CaCO3 and a possibility to scale the porosity in the size range of typical biomacromolecules make the CaCO3 crystals extremely attractive tools for template assisted designing tailor-made biopolymer-based architectures in 2D to 3D targeted at drug delivery and other bioapplications. PMID:27052835

  6. SHG Materials Based on the AlPO4-5 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Large AlPO4-5 molecular sieve single crystals with high optical quality were synthesized hydrothermally by using TPA as template. As-synthesized crystals were calcined under O2 atmosphere to remove the organic templates in the channels. Disperse-Red-1 (DR1) and p-nitroaniline (pNA) molecules have been successfully incorporated into the one-dimensional channels of AlPO4-5 single crystals respectively by means of vapor phase diffusion. XRD patterns reveal that the loading of organic molecules has not destroyed the structures of AlPO4-5 crystals. Polarizing microscope and SHG results indicate that the DR1 and pNA molecules are well aligned in a preferred direction along the crystal channels. The different polarization-dependence SH intensity shows that different SHG processes occur in the DR1- and pNA-loaded AlPO4-5 crystals.

  7. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors

    Science.gov (United States)

    Wang, Yuanyuan; Chen, Deyuan; Zhang, Gang; Wang, Juebin; Tao, Shangbin

    2016-03-01

    In this paper, a novel structure of super narrow band filter based on two-dimensional square lattice photonic crystals of silicon rods in air for 1.5 um communication is proposed and studied. COMSOL Multiphysics4.3b software is used to simulate the optical behavior of the filter. The filter consists of one point-defect-based resonator and two line-defect-based reflectors. The resonance frequency, transmission coefficient and quality factor are investigated by varying the parameters of the structure. In design, a silicon rod is removed to form the resonator; for the rows of rods above and below the resonator, a part of the rods are removed to form the reflectors. By optimizing the parameters of the filter, the quality factor and transmission coefficient of the filter at the resonance frequency of 2e14 Hz can reach 1330 and 0.953, respectively. The super narrow band filter can be integrated into optical circuit for its micron size. Also, it can be used for wavelength selection and noise filtering of optical amplifier in future communication application.

  8. Fabrication of photonic crystal circuits based on GaN ultrathin membranes by maskless lithography

    Science.gov (United States)

    Volciuc, Olesea; Braniste, Tudor; Sergentu, Vladimir; Ursaki, Veaceslav; Tiginyanu, Ion M.; Gutowski, Jürgen

    2015-06-01

    We report on maskless fabrication of photonic crystal (PhC) circuits based on ultrathin (d ~ 15 nm) nanoperforated GaN membranes exhibiting a triangular lattice arrangement of holes with diameters of 150 nm. In recent years, we have proposed and developed a cost-effective technology for GaN micro- and nanostructuring, the so-called surface charge lithography (SCL), which opened wide possibilities for a controlled fabrication of GaN ultrathin membranes. SCL is a maskless approach based on direct writing of negative charges on the surface of a semiconductor by a focused ion beam (FIB). These charges shield the material against photo-electrochemical (PEC) etching. Ultrathin GaN membranes suspended on specially designed GaN microstructures have been fabricated using a technological route based on SCL with two selected doses of ion beam treatment. Calculation of the dispersion law in nanoperforated membranes in the approximation of scalar waves is indicative of the occurrence of surface and bulk modes, and there is a range of frequencies where only surface modes can exist. Advantages of the occurrence of two types of modes in ultrathin nanoperforated GaN membranes from the point of view of their incorporation in photonic and optoelectronic integrated circuits are discussed. Along with this, we present the results of a comparative analysis of persistent photoconductivity (PPC) and optical quenching (OQ) effects occurring in continuous and nanoperforated ultrathin GaN suspended membranes, and assess the mechanisms behind these phenomena.

  9. Enabling structure-based drug design of Tyk2 through co-crystallization with a stabilizing aminoindazole inhibitor

    Directory of Open Access Journals (Sweden)

    Argiriadi Maria A

    2012-09-01

    Full Text Available Abstract Background Structure-based drug design (SBDD can accelerate inhibitor lead design and optimization, and efficient methods including protein purification, characterization, crystallization, and high-resolution diffraction are all needed for rapid, iterative structure determination. Janus kinases are important targets that are amenable to structure-based drug design. Here we present the first mouse Tyk2 crystal structures, which are complexed to 3-aminoindazole compounds. Results A comprehensive construct design effort included N- and C-terminal variations, kinase-inactive mutations, and multiple species orthologs. High-throughput cloning and expression methods were coupled with an abbreviated purification protocol to optimize protein solubility and stability. In total, 50 Tyk2 constructs were generated. Many displayed poor expression, inadequate solubility, or incomplete affinity tag processing. One kinase-inactive murine Tyk2 construct, complexed with an ATP-competitive 3-aminoindazole inhibitor, provided crystals that diffracted to 2.5–2.6 Å resolution. This structure revealed initial “hot-spot” regions for SBDD, and provided a robust platform for ligand soaking experiments. Compared to previously reported human Tyk2 inhibitor crystal structures (Chrencik et al. (2010 J Mol Biol 400:413, our structures revealed a key difference in the glycine-rich loop conformation that is induced by the inhibitor. Ligand binding also conferred resistance to proteolytic degradation by thermolysin. As crystals could not be obtained with the unliganded enzyme, this enhanced stability is likely important for successful crystallization and inhibitor soaking methods. Conclusions Practical criteria for construct performance and prioritization, the optimization of purification protocols to enhance protein yields and stability, and use of high-throughput construct exploration enable structure determination methods early in the drug discovery process

  10. Security devices based on liquid crystals doped with a colour dye

    OpenAIRE

    Carrasco Vela, Carlos; Quintana Arregui, Patxi Xabier; Otón, E.; Geday, Morten Andreas; Otón Sánchez, José Manuel

    2011-01-01

    Liquid crystal properties make them useful for the development of security devices in applications of authentication and detection of fakes. Induced orientation of liquid crystal molecules and birefringence are the two main properties used in security devices. Employing liquid crystal and dichroic colorants, we have developed devices that show, with the aid of a polarizer, multiple images on each side of the device. Rubbed polyimide is used as alignment layer on each substrate of the LC ce...

  11. Development of a task-based design approach for solution crystallization processes

    OpenAIRE

    Lakerveld, R.

    2010-01-01

    Crystallization is historically one of the most important separation and product formation technologies in chemical industry. The future impact of crystallization is expected to increase as new high-added value products are often in crystalline form and need to comply with increasingly stringent product quality requirements. This calls for better designs and performance of new crystallization units in chemical processes. A key challenge is to improve in the design phase the control over the p...

  12. A photonic crystal based sensing scheme for acetylcholine and acetylcholinesterase inhibitors

    OpenAIRE

    Fenzl, Christoph; Genslein, Christa; Zöpfl, Alexander; Baeumner, Antje; Hirsch, Thomas

    2015-01-01

    We present a new scheme for sensing biomolecules by combining an enzyme hydrogel with a photonic crystal hydrogel layer that responds to ionic strength and pH changes. We demonstrate this unique combination by successfully detecting acetylcholine (ACh) and acetylcholinesterase (AChE) inhibitors. Specifically, the sandwich assembly is composed of layers of photonic crystals and a polyacrylamide hydrogel functionalized with AChE. The photonic crystal film has a red color and turns dark purple w...

  13. Modelling of Active Semiconductor Photonic Crystal Waveguides and Robust Designs based on Topology Optimization

    DEFF Research Database (Denmark)

    Chen, Yaohui; Wang, Fengwen; Ek, Sara; Jensen, Jakob Søndergaard; Sigmund, Ole; Mørk, Jesper

    2011-01-01

    In this paper, we present a theoretical analysis of slow-light enhanced light amplification in an active semiconductor photonic crystal line defect waveguide. The impact of enhanced light-matter interactions on propagation effects and local carrier dynamics are investigated in the framework of the...... Lorentz reciprocity theorem. We highlight topology optimization as a systematic and robust design methodology considering manufacturing imperfections in optimizing active photonic crystal device performances, and compare the performance of standard photonic crystal waveguides with optimized structures....

  14. Low temperature y-ray spectrometers based on bulk superconducting and dielectric absorber crystals

    Energy Technology Data Exchange (ETDEWEB)

    Netel, H

    1999-11-19

    Many areas of research rely on the detection of radiation, in the form of single photons or particles. By measuring the photons or particles coming from an object a lot can be learned about the object under study. In some cases there is a simple need to know the number of photons coming from the source. In cases like this a simple counter, like a Geiger-Mueller survey meter, will suffice. In other cases one want to know the spectral distribution of the photons coming from the source. In cases like that a spectrometer is needed that can distinguish between photons with different energies, like a diffraction or transmission grating. The work presented in this thesis focused on the development of a new generation broad band spectrometer that has a high energy resolving power, combined with a high absorption efficiency for photon energies above 10 keV and up to 500 keV. The spectrometers we are developing are based on low-temperature sensors, like superconducting tunnel junctions or transition edge sensors, that are coupled to bulk absorber crystals. We use the low-temperature sensors because they can offer a significant improvement in energy resolving power, compared to conventional spectrometers. We couple the low-temperature sensors to bulk absorber crystals to increase the absorption efficiency. In this chapter I introduce different types of radiation detectors and spectrometers and areas where they are being used. I also discuss the history and motivation of low-temperature spectrometers and show some of the impressive results that have been achieved in this field over the last few years. Finally I discuss the outline of this thesis.

  15. Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces.

    Science.gov (United States)

    Pingle, Hitesh; Wang, Peng-Yuan; Thissen, Helmut; McArthur, Sally; Kingshott, Peter

    2015-01-01

    Biofilm formation on medical implants and subsequent infections are a global problem. A great deal of effort has focused on developing chemical contrasts based on micro- and nanopatterning for studying and controlling cells and bacteria at surfaces. It has been known that micro- and nanopatterns on surfaces can influence biomolecule adsorption, and subsequent cell and bacterial adhesion. However, less focus has been on precisely controlling patterns to study the initial bacterial attachment mechanisms and subsequently how the patterning influences the role played by biomolecular adsorption on biofilm formation. In this work, the authors have used colloidal self-assembly in a confined area to pattern surfaces with colloidal crystals and used them as masks during allylamine plasma polymer (AAMpp) deposition to generate highly ordered patterns from the micro- to the nanoscale. Polyethylene glycol (PEG)-aldehyde was grafted to the plasma regions via "cloud point" grafting to prevent the attachment of bacteria on the plasma patterned surface regions, thereby controlling the adhesive sites by choice of the colloidal crystal morphology. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these chemically patterned surfaces. Scanning electron microscope, x-ray photoelectron spectroscopy (XPS), atomic force microscopy, and epifluorescence microscopy were used for pattern characterization, surface chemical analysis, and imaging of attached bacteria. The AAMpp influenced bacterial attachment because of the amine groups displaying a positive charge. XPS results confirm the successful grafting of PEG on the AAMpp surfaces. The results showed that PEG patterns can be used as a surface for bacterial patterning including investigating the role of biomolecular patterning on bacterial attachment. These types of patterns are easy to fabricate and could be useful in further applications in biomedical research. PMID:26634448

  16. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    Science.gov (United States)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  17. Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands

    Science.gov (United States)

    Qiao, Rui; Chen, Shui-Sheng; Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong

    2015-08-01

    Four metal-organic coordination polymers [Zn(HL)(H2O)]·4H2O (1), [Zn(HL)(L1)]·4H2O (2), [Cu(HL)(H2O)]·3H2O (3) and [Cu(HL)(L1)]·5H2O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H3L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L1). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L1 has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (103) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 63-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear CuII subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C-H···π exist in complexes 1-4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated.

  18. High resolution detectors based on continuous crystals and SiPMs for small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, J. [Instituto de Física Corpuscular, Universitat de València/CSIC, Valencia (Spain); Barrillon, P. [Laboratoire de L' Accélérateur Linéaire (LAL), Orsay (France); Barrio, J. [Instituto de Física Corpuscular, Universitat de València/CSIC, Valencia (Spain); Bisogni, M.G.; Del Guerra, A. [Dipartimento di Fisica “E. Fermi“, Università di Pisa and INFN Pisa, Pisa (Italy); Lacasta, C. [Instituto de Física Corpuscular, Universitat de València/CSIC, Valencia (Spain); Rafecas, M. [Instituto de Física Corpuscular, Universitat de València/CSIC, Valencia (Spain); Departamento de Física Atómica, Nuclear y Molecular, Universitat de València, Valencia (Spain); Saikouk, H. [Laboratoire de Physique Nucléaire, Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Solaz, C.; Solevi, P. [Instituto de Física Corpuscular, Universitat de València/CSIC, Valencia (Spain); La Taille, C. de [Laboratoire de L' Accélérateur Linéaire (LAL), Orsay (France); Llosá, G., E-mail: gabriela.llosa@ific.uv.es [Instituto de Física Corpuscular, Universitat de València/CSIC, Valencia (Spain)

    2013-08-01

    Sensitivity and spatial resolution are the two main factors to maximize in emission imaging. The improvement of one factor deteriorates the other with pixelated crystals. In this work we combine SiPM matrices with monolithic crystals, using an accurate γ-ray interaction position determination algorithm that provides depth of interaction. Continuous crystals provide higher sensitivity than pixelated crystals, while an accurate interaction position determination does not degrade the spatial resolution. Monte Carlo simulations and experimental data show good agreement both demonstrating sub-millimetre intrinsic spatial resolution. A system consisting in two rotating detectors in coincidence is currently under operation already producing tomographic images.

  19. Performance of VATA64HDR16 ASIC for medical physics applications based on continuous crystals and SiPMs

    International Nuclear Information System (INIS)

    Detectors based on Silicon Photomultipliers (SiPMs) coupled to continuous crystals are being tested in medical physics applications due to their potential high resolution and sensitivity. To cope with the high granularity required for a very good spatial resolution, SiPM matrices with a large amount of elements are needed. To be able to read the information coming from each individual channel, dedicated ASICs are employed. The VATA64HDR16 ASIC is a 64-channel, charge-sensitive amplifier that converts the collected charge into a proportional current or voltage signal. A complete assessment of the suitability of that ASIC for medical physics applications based on continuous crystals and SiPMs has been carried out. The input charge range is linear from 0−2 pC up to 55 pC. The energy resolution obtained at 511 keV is 10% FWHM with a LaBr3 crystal and 16% FWHM with a LYSO crystal. A coincidence timing resolution of 24 ns FWHM is obtained with two LYSO crystals

  20. A method for measuring single-crystal elastic moduli using high-energy X-ray diffraction and a crystal-based finite element model

    International Nuclear Information System (INIS)

    This paper presents a method - based on high-energy synchrotron X-ray diffraction data and a crystal-based finite element simulation formulation - for understanding grain scale deformation behavior within a polycrystalline aggregate. We illustrate this method by using it to determine the single-crystal elastic moduli of β21s, a body-centered cubic titanium alloy. We employed a polycrystalline sample. Using in situ loading and high-energy X-rays at the Advanced Photon Source beamline 1-ID-C, we measured components of the lattice strain tensor from four individual grains embedded within a polycrystalline specimen. We implemented an optimization routine that minimized the difference between the experiment and simulation lattice strains. Sensitivity coefficients needed in the optimization routine are generated numerically using the finite element model. The elastic moduli that we computed for the β21s are C11 = 110 GPa, C12 = 74 GPa and C44 = 89 GPa. The resulting Zener anisotropic ratio is A = 5.

  1. Synthesis, crystal structure and thermodynamic properties of a new praseodymium Schiff-base complex

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan-Hua, E-mail: lichuanhua0526@126.com [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan (China); Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan (China); Song, Xiang-Zhi, E-mail: xzsong@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan (China); Jiang, Jian-Hong [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan (China); Gu, Hui-Wen [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan (China); Tao, Li-Ming; Yang, Ping; Li, Xu; Xiao, Sheng-Xiong; Yao, Fei-Hong; Liu, Wen-Qi; Xie, Jin-Qi; Peng, Meng-Na; Pan, Lan; Wu, Xi-Bin; Jiang, Chao; Wang, Song; Xu, Man-Fen [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan (China); Li, Qiang-Guo, E-mail: liqiangguo@163.com [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan (China)

    2014-04-01

    Highlights: • A new mononuclear Schiff base praseodymium complex was synthesized. • Based on Hess's law, thermochemical cycles of two reactions were designed. • The dissolution enthalpies were measured by a solution–reaction calorimeter. • The standard molar enthalpy of formation of the complex was calculated. - Abstract: The title complex [Pr(H{sub 2}vanen)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}·NO{sub 3}] was synthesized reacting of Valen Schiff-base ligand [H{sub 2}vanen = N,N′-ethylene-bis(3-methoxysalicylideneimine)] and Pr(NO{sub 3}){sub 3}·6H{sub 2}O in ethanol at 60 °C. The complex was crystallized in the monoclinic crystal system with space group P21/c. The coordination polyhedron of Pr(III) ion was consisted of two bidentate nitrate ions, two molecules of water and one ligand which coordinated through oxygen atoms of the two phenolic and methoxy groups. After designing two reasonable thermochemical cycles according to Hess's law, the calorimetric experiments were conducted using isoperibol solution–reaction calorimeter at a constant temperature of 298.15 K. The standard molar enthalpy changes of two reactions were determined to be Δ{sub r}H{sub m}{sup θ}(1a)=−(51.94±1.26) kJ mol{sup −1} and Δ{sub r}H{sub m}{sup θ}(1b)=−(8.62±1.34) kJ mol{sup −1}. Then the standard molar enthalpies of formation of the ligand and the title complex were calculated to be Δ{sub f}H{sub m}{sup θ} [H{sub 2}vanen(s), 298.15 K] = −(517.75 ± 2.36) kJ mol{sup −1} and Δ{sub f}H{sub m}{sup θ} [Pr(H{sub 2}vanen)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}·NO{sub 3} (s), 298.15 K] = −(2454.8 ± 2.7) kJ mol{sup −1}, respectively. The rationality of two thermochemical cycles was verified by UV spectra and refractive indexes.

  2. Synthesis, crystal structure and thermodynamic properties of a new praseodymium Schiff-base complex

    International Nuclear Information System (INIS)

    Highlights: • A new mononuclear Schiff base praseodymium complex was synthesized. • Based on Hess's law, thermochemical cycles of two reactions were designed. • The dissolution enthalpies were measured by a solution–reaction calorimeter. • The standard molar enthalpy of formation of the complex was calculated. - Abstract: The title complex [Pr(H2vanen)(NO3)2(H2O)2·NO3] was synthesized reacting of Valen Schiff-base ligand [H2vanen = N,N′-ethylene-bis(3-methoxysalicylideneimine)] and Pr(NO3)3·6H2O in ethanol at 60 °C. The complex was crystallized in the monoclinic crystal system with space group P21/c. The coordination polyhedron of Pr(III) ion was consisted of two bidentate nitrate ions, two molecules of water and one ligand which coordinated through oxygen atoms of the two phenolic and methoxy groups. After designing two reasonable thermochemical cycles according to Hess's law, the calorimetric experiments were conducted using isoperibol solution–reaction calorimeter at a constant temperature of 298.15 K. The standard molar enthalpy changes of two reactions were determined to be ΔrHmθ(1a)=−(51.94±1.26) kJ mol−1 and ΔrHmθ(1b)=−(8.62±1.34) kJ mol−1. Then the standard molar enthalpies of formation of the ligand and the title complex were calculated to be ΔfHmθ [H2vanen(s), 298.15 K] = −(517.75 ± 2.36) kJ mol−1 and ΔfHmθ [Pr(H2vanen)(NO3)2(H2O)2·NO3 (s), 298.15 K] = −(2454.8 ± 2.7) kJ mol−1, respectively. The rationality of two thermochemical cycles was verified by UV spectra and refractive indexes

  3. Synthesis, crystal structure and conformational studies of Schiff-base compound 2-{[4-(Phenyldiazenyl)phenyl] iminomethyl}-5-bromophenolc

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Fejfarová, Karla; Dušek, Michal; Chermahini, A.N.

    2012-01-01

    Roč. 42, č. 2 (2012), s. 136-140. ISSN 1074-1542 Grant ostatní: AV ČR(CZ) Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : Shiff bases * crystal structure * X-ray diffraction * Jana2006 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.513, year: 2012

  4. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source

    NARCIS (Netherlands)

    J.A. Palero (Jonathan); V.O. Boer (Vincent); J.C. Vijverberg (Jacob); H.C. Gerritsen (Hans); H.J.C.M. Sterenborg (Dick)

    2005-01-01

    textabstractWe report on a novel and simple light source for short-wavelength two-photon excitation fluorescence microscopy based on the visible nonsolitonic radiation from a photonic crystal fiber. We demonstrate tunability of the light source by varying the wavelength and intensity of the Ti:Sapph

  5. Synthesis, characterization, crystal structure and theoretical studies of new chiral Schiff base (E)-4-hydroxy[(1-phenylethyl)iminomethyl]benzyne

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Gholinejad, M.; Rad, S.M.; Grivani, G.; Fejfarová, Karla; Dušek, Michal

    2015-01-01

    Roč. 41, č. 3 (2015), 1635-1645. ISSN 0922-6168 R&D Projects: GA ČR(CZ) GC202/07/J007 Institutional support: RVO:68378271 Keywords : Schiff base * crystal structure * DFT calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.221, year: 2014

  6. High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

    2012-01-01

    Photonic crystal waveguides are optimized for modal confinement and loss related to slow light with high group index. A detailed comparison between optimized circular-hole based waveguides and optimized waveguides with free topology is performed. Design robustness with respect to manufacturing im...

  7. Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability

    International Nuclear Information System (INIS)

    In the present work we study and compare the crystallization behavior of Fe- and Co-based good bulk glass formers with an exceptionally high glass-forming ability leading to the critical thickness of cast samples reaching 1 cm. For Fe-based alloys we also investigate the effect of opposite C/B content ratio on the glass-forming ability and the crystallization behavior. The structure and phase composition of the glassy samples were examined by conventional X-ray diffractometry and transmission electron microscopy while thermal stability and phase transformations were studied by differential scanning calorimetry. The reasons for high glass-forming ability are discussed. The glass-forming ability of the studied alloys depends on both factors: the type of crystallization reaction and characteristic temperatures. - Highlights: • Crystallization of Fe-based and Co-based bulk glass-forming alloys. • The reasons for enhanced glass-forming ability of these alloys are discussed. • Low growth rate of χ-Fe36Cr12Mo10 phase. • Reduced liquidus temperature of Fe48Cr15Mo14C6B15RE2 alloys

  8. Optically fed microwave true-time delay based on a compact liquid-crystal hotonic-bandgap-fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically tunable liquid-crystal, photonic-bandgap-fiber-device-based, optically fed microwave true-time delay is demonstrated with the response time in the millisecond range. A maximum electrically controlled phase shift of around 70° at 15GHz and an averaged 12.9ps true time delay over the...

  9. All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Zhang, A. Ping;

    2011-01-01

    A highly sensitive fiber-optic interferometric sensor based on an all-solid birefringent hybrid photonic crystal fiber (PCF) is demonstrated for measuring strain and temperature. A strain sensitivity of similar to 23.8 pm/mu epsilon and a thermal sensitivity of similar to-1.12 nm/degrees C are...

  10. The Second Order Guided Modes Based on Photonic Bandgap Effects in Air/Glass Photonic Crystal Fibers

    International Nuclear Information System (INIS)

    We introduce a defect site in the periodic structure of a photonic bandgap fiber, to confine and guide the second order mode by photonic bandgap effects. Based on a high air-filling fraction photonic crystal cladding structure, a simplified model with an equivalent air cladding was proposed to explore and analyze the properties of this second order guided mode

  11. Versatile hydrogel-based nanocrystal microreactors towards uniform fluorescent photonic crystal supraballs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Tian, Yu; Ling, Lu-Ting; Yin, Su-Na; Wang, Cai-Feng; Chen, Su, E-mail: chensu-njut@163.com, E-mail: chensu@njtech.edu.cn [Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering (China)

    2014-12-15

    Versatile hydrogel-based nanocrystal (NC) microreactors were designed in this work for the construction of uniform fluorescence colloidal photonic crystal (CPC) supraballs. The hydrogel-based microspheres with sizes ranging from 150 to 300 nm were prepared by seeded copolymerization of acrylic acid and 2-hydroxyethyl methacrylate with micrometer-sized PS seed particles. As an independent NC microreactor, the as-synthesized hydrogel microsphere can effectively capture the guest cadmium ions due to the abundant carboxyl groups inside. Followed by the introduction of chalcogenides, in situ generation of higher-uptake NCs with sizes less than 5 nm was finally realized. Additionally, with the aid of the microfluidic device, the as-obtained NC–latex hybrids can be further self-assembled to bi-functional CPC supraballs bearing brilliant structural colors and uniform fluorescence. This research offers an alternative way to finely bind CPCs with NCs, which will facilitate progress in fields of self-assembled functional colloids and photonic materials.

  12. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    Directory of Open Access Journals (Sweden)

    Jooyeok Seo

    2014-09-01

    Full Text Available We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4′-pentylbiphenyl - 5CB on top of the 50 nm thick channel layer (poly(3-hexylthiophene - P3HT that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO. As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm2/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (VD and gate (VG voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of VD and VG. The best voltage combination was VD = −0.2 V and VG = −1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio. The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.

  13. Versatile hydrogel-based nanocrystal microreactors towards uniform fluorescent photonic crystal supraballs

    International Nuclear Information System (INIS)

    Versatile hydrogel-based nanocrystal (NC) microreactors were designed in this work for the construction of uniform fluorescence colloidal photonic crystal (CPC) supraballs. The hydrogel-based microspheres with sizes ranging from 150 to 300 nm were prepared by seeded copolymerization of acrylic acid and 2-hydroxyethyl methacrylate with micrometer-sized PS seed particles. As an independent NC microreactor, the as-synthesized hydrogel microsphere can effectively capture the guest cadmium ions due to the abundant carboxyl groups inside. Followed by the introduction of chalcogenides, in situ generation of higher-uptake NCs with sizes less than 5 nm was finally realized. Additionally, with the aid of the microfluidic device, the as-obtained NC–latex hybrids can be further self-assembled to bi-functional CPC supraballs bearing brilliant structural colors and uniform fluorescence. This research offers an alternative way to finely bind CPCs with NCs, which will facilitate progress in fields of self-assembled functional colloids and photonic materials

  14. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers.

    Science.gov (United States)

    Markos, Christos

    2016-01-01

    The possibility to combine silica photonic crystal fiber (PCF) as low-loss platform with advanced functional materials, offers an enormous range of choices for the development of fiber-based tunable devices. Here, we report a tunable hybrid silica PCF with integrated As2S3 glass nanolayers inside the air-capillaries of the fiber based on a solution-processed glass approach. The deposited high-index layers revealed antiresonant transmission windows from ~500 nm up to ~1300 nm. We experimentally demonstrate for the first time the possibility to thermally-tune the revealed antiresonances by taking advantage the high thermo-optic coefficient of the solution-processed nanolayers. Two different hybrid fiber structures, with core diameter 10 and 5 μm, were developed and characterized using a supercontinuum source. The maximum sensitivity was measured to be as high as 3.6 nm/°C at 1300 nm. The proposed fiber device could potentially constitute an efficient route towards realization of monolithic tunable fiber filters or sensing elements. PMID:27538726

  15. Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, R. M., E-mail: rpinto@inesc-mn.pt [INESC MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); CQFM, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Gouveia, W. [INESC MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); Neves, A. I. S. [INESC MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QL Exeter (United Kingdom); Alves, H. [INESC MN and IN, Rua Alves Redol 9, 1000-029 Lisboa (Portugal); CICECO, Physics Department, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2015-11-30

    We report on highly efficient organic phototransistors (OPTs) based on thin-film/single-crystal planar bilayer junctions between 5,6,11,12-tetraphenyltetracene (rubrene) and [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PC{sub 61}BM). The OPTs show good field-effect characteristics in the dark, with high hole-mobility (4–5 cm{sup 2} V{sup −1} s{sup −1}), low-contact resistance (20 kΩ cm), and low-operating voltage (≤5 V). Excellent sensing capabilities allow for light detection in the 400–750 nm range, with photocurrent/dark current ratio as high as 4 × 10{sup 4}, responsivity on the order of 20 AW{sup −1} at 27 μW cm{sup −2}, and an external quantum efficiency of 52 000%. Photocurrent generation is attributed to enhanced electron and hole transfer at the interface between rubrene and PC{sub 61}BM, and fast response times are observed as a consequence of the high-mobility of the interfaces. The optoelectronic properties exhibited in these OPTs outperform those typically provided by a-Si based devices, enabling future applications where multifunctionality in a single-device is sought.

  16. Ultrasensitive organic phototransistors with multispectral response based on thin-film/single-crystal bilayer structures

    International Nuclear Information System (INIS)

    We report on highly efficient organic phototransistors (OPTs) based on thin-film/single-crystal planar bilayer junctions between 5,6,11,12-tetraphenyltetracene (rubrene) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). The OPTs show good field-effect characteristics in the dark, with high hole-mobility (4–5 cm2 V−1 s−1), low-contact resistance (20 kΩ cm), and low-operating voltage (≤5 V). Excellent sensing capabilities allow for light detection in the 400–750 nm range, with photocurrent/dark current ratio as high as 4 × 104, responsivity on the order of 20 AW−1 at 27 μW cm−2, and an external quantum efficiency of 52 000%. Photocurrent generation is attributed to enhanced electron and hole transfer at the interface between rubrene and PC61BM, and fast response times are observed as a consequence of the high-mobility of the interfaces. The optoelectronic properties exhibited in these OPTs outperform those typically provided by a-Si based devices, enabling future applications where multifunctionality in a single-device is sought

  17. Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

    Science.gov (United States)

    Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; Hanks, Byron W.; Foulk, James W.; Battaile, Corbett C.

    2016-05-01

    The mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FE meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.

  18. Crystallization and structural investigation of Eu-doped fluorozirconate-based glass ceramics

    International Nuclear Information System (INIS)

    A series of Eu-doped fluorozirconate-based glass ceramics has been developed for medical and photovoltaic applications. In the first case, the materials can be used as X-ray scintillators or X-ray storage phosphors, in the latter case as down-converting top layers for highly efficient solar cells. The glasses are based on a modified ZBLAN composition, i.e. a mixture of Zr, Ba, La, Al, and Na fluorides. They are additionally doped with chlorine ions to initiate the growth of BaCl2 nanocrystals upon thermal processing. Eu2+ ions are incorporated into the nanocrystals during the annealing procedure enabling a strong fluorescence upon ultraviolet or x-ray excitation. The nanocrystal size and structural phase depend significantly on the heating conditions and Eu doping level. X-ray diffraction patterns show a structural phase change of the BaCl2 nanocrystals from hexagonal to orthorhombic as annealing temperatures are increased. DSC experiments were performed to obtain activation energies, thermal stability parameters and information on the crystal growth mechanisms.

  19. Effects of crystallization fractions on mechanical properties of Zr-based metallic glass matrix composites

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Zr41Ti14Cu12.5Ni10Be22.5 (at.%) bulk metallic glass composites with various crystallization fractions were prepared by pretreating the bulk metallic glassy samples with pulsing current, and then by isothermal annealing at near initial crystallization temperature for different periods of time. The precipitations and crystallization fractions were studied by X-ray diffraction (XRD) and differential scanning calorimetry (DSC), and their effects on mechanical properties of the composite were studied by microhardness, uniaxial compression test and scanning electron microscopy (SEM). The experimental results show that the primary precipitate is quasicrystalline phase and other metastable phases including Be2Zr, Zr2Cu and FCC would precipitate subsequently. In the initial crystallization process, in which the crystallization fraction increases from 0 to 8.2%, both fracture strength and plastic strain increase, with the maximum plastic strain up to 6.4%. When the crystallization fraction is larger than 8.2%, the fracture strength and the plastic strain decrease sharply. Furthermore, the alloy with low crystallization fraction is fractured by shearing, while for high crystallization fraction it is fractured by splitting and cleavage. The results show that the mechanical properties of the glassy alloy could be optimized by controlling the processing parameters.

  20. New method for computation of band structures in 1D photonic crystals based on the Fresnel equations

    Science.gov (United States)

    Roshan Entezar, S.

    2013-02-01

    In this paper, we present a new method for calculation of band structure in one-dimensional bilayer photonic crystals, based on the Fresnel equations. We derive a new relation to obtain the band structure without using the Floquet theorem. It is shown that this relation can be simplified under the assumption that the single-path phase-shift acquired through the individual layers of the photonic crystal be equal to ? . The results obtained by our method are compared with the ones obtained from the transfer matrix method to show that they are exactly identical.

  1. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal

    Science.gov (United States)

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  2. Experimental demonstration of broadband femtosecond optical parametric amplification based on YCOB crystal at near critical wavelength degeneracy

    Science.gov (United States)

    Guo, Xiaoyang; Leng, Yuxin; Li, Yanyan; Li, Wenkai; Lu, Xiaoming; Xu, Yi; Li, Ruxin

    2016-07-01

    Broadband optical parametric amplification (OPA) in the near-infrared region (1.3-1.8 μm) is demonstrated in YCOB crystal pumped by 1 kHz Ti:sapphire based femtosecond laser at near critical wavelength degeneracy phase matching condition at first time. The gain bandwidth is closed to BIBO or BBO crystal OPA gain bandwidth. The energy obtained with 3.5 mm-thick YCOB reached 20 μJ with RMS 1.9%. After second harmonic generation, 17.6 fs pulse is obtained, and the pulse compressibility is demonstrated.

  3. Fluorescence enhancement in a polymer-based photonic-crystal biosensor

    Science.gov (United States)

    Hamza, Bashar; Kadiyala, Anand; Kilemi, Caroline; Liu, Yuxin; Dawson, Jeremy

    2011-03-01

    Detecting labeled or naturally-fluorescent biomolecules at very low concentrations is of a significant importance for health sciences, agricultural sciences, and security-related applications. Photonic crystals (PhC) are microfabricated nano-structures of periodic dielectric permittivity in one, two, or three dimensions that possess unique light manipulation properties. These include the ability to localize electromagnetic waves at particular PhC lattice locations. Ultra-sensitive detection using thin-film PhC structures fabricated in semiconductor materials has been demonstrated in both "active" and "passive" modalities. In the active modality, the adsorption of target molecules to the PhC surface causes a refractive index change that is translated into reflectance or transmission peak shifts. The passive modality demonstrated by our group utilizes the PhC structure to observe enhanced fluorescent emission within resonant defect cavities in a 2D PhC lattice. Integrating these semiconductor-based PhC structures with biocompatible microfluidic channels is a challenging task that can significantly increase the final cost of the sensor system. We demonstrate here soft lithographic nanomolding techniques for polymer-based PhC structures that are easily integrated with microfluidic channels to provide a portable means of biosensing. A TE bandgap of 2.857% for a 2D PhC fabricated in poly(dimethylsiloxane) (PDMS) will allow these lattices to become core structures in PhC-based biosensors incorporating both active and passive modalities. Modeling and initial optical characterization results of the Si- and PDMS-based PhC biosensor will also be presented.

  4. Beam paths of flexural Lamb waves at high frequency in the first band within phononic crystal-based acoustic lenses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Boyko, O. [UPMC Univ Paris 06, UMR 7588, Institut des NanoSciences de Paris, F-75005, Paris (France); Bonello, B., E-mail: bernard.bonello@insp.jussieu.fr [CNRS, UMR 7588, Institut des NanoSciences de Paris, F-75005, Paris (France)

    2014-12-15

    This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.

  5. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm−2. (paper)

  6. Influence of pulsing current on the glass transition and crystallizing kinetics of a Zr base bulk amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    WU Wenfei; YAO Kefu; ZHAO Zhankui

    2004-01-01

    Based on the thermal analysis, the influence of pulsing current on the glass transition and crystallizing kinetics of Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy has been studied. The obtained results show that after the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy was pretreated by high-density pulsing current at low temperature, its glass transition temperature Tg, the initial crystallizing temperature Tx and the corresponding exothermic peak of crystallization Tpi were reduced. But the temperature range of supercooled liquid ΔT=Tx-Tg is almost the same. The calculated results with Kissinger equation show that the activation energy of glass transition of the alloy pretreated is reduced significantly, while the activation energy of crystallization is basically unchanged. The influence of pulsing current on the glass transition and crystallization of the Zr41.3Ti14.2Cu12.8Ni10.3Be21.4 bulk amorphous alloy is believed to be related with the structure relaxation of the glass caused by the current.

  7. Photosensitive structures based on CuIn{sub 5}Te{sub 8} single crystals: Development and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I. V. [Belarussian State University of Information Science and Radioelectronics (Belarus); Rud, V. Yu. [St. Petersburg State Polytechnical University (Russian Federation); Rud, Yu. V., E-mail: Yuryrud@mail.ioffe.ru; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Kovalchuk, A. M. [Belarussian State University of Information Science and Radioelectronics (Belarus)

    2011-05-15

    A new ternary compound is synthesized for the first time, and bulk CuIn{sub 5}Te{sub 8} single crystals are grown by directed crystallization of near-stoichiometric melt. It is established from X-ray diffraction patterns of grown crystals that they exhibit the structure of imperfect chalcopyrite with parameters of the unit cell of CuIn{sub 5}Te{sub 8}, which were close to those known for the CuInTe{sub 2} ternary compound with the composition index n = 0. First, photosensitive structures are fabricated based on CuIn{sub 5}Te{sub 8} crystals, and photosensitivity spectra are obtained for them; it is shown that it is possible to achieve broadband photosensitivity under illumination of the barrier side of these crystals. From the analysis of photosensitivity spectra, the character of band-to-band transitions and corresponding energies of these transitions in CuIn{sub 5}Te{sub 8} are determined. This opens up prospects to use this new semiconductor in photoconverters of solar radiation.

  8. Long-term evaluation of a liquid crystal polymer (LCP)-based retinal prosthesis

    Science.gov (United States)

    Jeong, Joonsoo; Bae, So Hyun; Seo, Jong-Mo; Chung, Hum; Kim, Sung June

    2016-04-01

    Objective. The aim of this study is to evaluate the long-term reliability of a recently presented liquid crystal polymer (LCP) -based retinal prosthesis in vitro as well as in vivo. Because an all-polymer implant introduces another intrinsic leak type due to gas permeation, for which the traditional helium leak test for metallic packages was not designed to quantify, a new method to investigate its durability is required. Approach. We designed and carried out a series of reliability tests specifically for all-polymer implants by quantitatively investigating moisture ingress through various pathways of the polymer surface, and the polymer-polymer and polymer-metal adhesions. Moisture permeation through the bulk material was estimated by analytic calculation, while water ingress through the adhesively sealed LCP-LCP and LCP-metal interfaces was investigated using the separate parts of an electrode array and a package in an accelerated aging condition. In vivo tests were done in rabbits to examine the long-term biocompatibility and implantation stability by fundus observation and optical coherence tomography (OCT) imaging. Main results. The analytic calculation estimated good barrier properties of the LCP. Samples of the LCP-based electrode array failed after 114 days in 87 °C saline as a result of water penetration through the LCP-metal interface. An eye-conformable LCP package survived for 87 days in an accelerated condition at 87 °C. The in vivo results confirmed that no adverse effects were observed around the retina 2.5 years after the implantation of the device. Significance. These long-term evaluation results show the potential for the chronic use of LCP-based biomedical implants to provide an alternative to traditional metallic packages.

  9. Thermo-mechanical fatigue behavior of a single crystal nickel-based superalloy

    International Nuclear Information System (INIS)

    Highlights: → The thermo-mechanical fatigue life of OP TMF is shorter than that of IP TMF. This is mainly attributed to the maximum tensile stress level at the minimum temperature. → Under out-of-phase condition, damage is controlled by oxidation. While under in-phase condition, damage is controlled by creep. → In terms of the fracture surface and microstructural evolution under different conditions, deformation and damage mechanisms are explained based on the relative contribution of oxidation, creep and fatigue. - Abstract: Thermo-mechanical fatigue (TMF) behavior in a oriented nickel-based single crystal superalloy was investigated under different cycles of strain and temperature. Fracture surface and microstructural evolution were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. It was found that the fatigue lives under in-phase (IP) TMF were longer than those of out-of-phase (OP) TMF, and the maximum tensile stress level was concluded to be the lifetime-limiting factor. Compared to isothermal low-cycle fatigue (LCF) lives obtained under the maximum temperature 900 deg. C, thermo-mechanical fatigue lifetime was much shorter. This result indicates that varying temperature superimposed mechanical strain greatly reduces the fatigue lifetime of superalloys. Based on observation of fracture surface and microstructure evolution, it was concluded that creep is the dominant damage mechanism under IP-TMF condition and oxidation causes shorter lifetime for OP-TMF tests. The similarities and differences in the changes of γ' morphology during in-phase (IP) and out-of-phase (OP) TMF tests were also discussed.

  10. Thermomechanical and Photophysical Properties of Crystal-Violet-Dye/H2O Based Dissolutions via the Pulsed Laser Photoacoustic Technique

    OpenAIRE

    Vicente Torres-Zúñiga; Rosalba Castañeda-Guzmán; Pérez-Ruiz, Santiago J.; Omar G. Morales-Saavedra

    2014-01-01

    Different thermoelastic parameters, for example, the acoustic attenuation and the speed of sound, are fundamental for instrumental calibration and quantitative characterization of organic-based dissolutions. In this work, these parameters as functions of the concentration of an organic dye (crystal-violet: CV) in distillated water (H2O) based dissolutions are investigated. The speed of sound was measured by the pulsed-laser photoacoustic technique (PLPA), which consists in the generation of a...

  11. Polarization modulators based on liquid crystal variable retarders for the Solar Orbiter mission

    Science.gov (United States)

    Alvarez-Herrero, A.; García Parejo, P.; Laguna, H.; Villanueva, J.; Barandiarán, J.; Bastide, L.; Reina, M.; Sánchez, A.; Gonzalo, A.; Navarro, R.; Vera, I.; Royo, M.

    2015-09-01

    A polarization modulator based on Liquid Crystal Variable Retarders (LCVRs) will be used in the Polarimetric and Helioseismic Imager (PHI) for the Solar Orbiter mission to measure the complete Stokes vector of the incoming light. PHI is one of the six remote sensing instruments onboard of this space mission led by the European Space Agency (ESA) with strong NASA participation. It is an imaging spectro-polarimeter that will acquire high resolution solar magnetograms. Also the LCVRs will be used in the polarization modulator of the METIS instrument (Multi Element Telescope for Imaging and Spectroscopy). METIS is a solar coronagraph that will analyze the linear polarization for observations of the visible-light K-corona. The polarization modulators are described in this work including the optical, mechanical, thermal and electrical aspects. Both modulators will consist of two identical LCVRs with a relative azimuth orientation of 45º for PHI and parallel for the METIS modulator. In the first case, the configuration allows the analysis of the full Stokes vector with maximum polarimetric efficiencies. In the second setup, wide acceptance angles (verification and environmental test campaign in progress currently. The main performances were measured and analyzed including polarimetric efficiencies, wavefront error transmission, beam deviation and transmittance. This valuable information will allow to consolidate the detailed design of these devices increasing its TRL to 6 and to proceed to the manufacturing of the Qualification Model (QM) and Flight Models (FM).

  12. Polycrystalline Silicon Films and Thin-Film Transistors Using Solution-Based Metal-Induced Crystallization

    Science.gov (United States)

    Meng, Zhiguo; Zhao, Shuyun; Wu, Chunya; Zhang, Bo; Wong, Man; Kwok, Hoi-Sing

    2006-09-01

    Polycrystalline silicon (poly-Si) films consisting of dish-like and wadding-like domains were obtained with solution-based metal-induced crystallization (SMIC) of amorphous silicon. The Hall mobility of poly-Si was much higher in dish-like domains than in wadding-like domains. Thin-film transistors (TFTs) have been prepared using those two kinds of poly-Si films as the active layer, followed by the phosphosilicate glass (PSG) nickel gettering. The field effect mobility of dish-like domain poly-Si TFTs and wadding-like poly-Si TFTs were 70 ~ 80 cm2/V · s and 40 ~ 50 cm2/V · s, respectively. With a multi-gate structure, the leakage current of poly-Si TFTs was reduced by 1 to 2 orders of magnitude. In addition, the gate-induced drain leakage current (GIDL) and uniformity of the drain current distribution were also improved. P-type TFTs fabricated using SMIC exhibited excellent reliability.

  13. Mueller matrix-based optimization of reflective type twisted nematic liquid crystal SLM at oblique incidences

    Science.gov (United States)

    Verma, R. S.; Swami, M. K.; Manhas, S. S.; Gupta, P. K.

    2010-06-01

    Mueller matrix measurements were used to characterize the polarization properties of liquid crystal-based reflective type twisted nematic (TN) special light modulator (SLM) at oblique incidence of the laser beam. The experimentally obtained Mueller matrices were used to obtain the combination of polarization optics required to optimize it for phase only modulation. The results indicate that minimum intensity modulation is obtained with the use of a polarizer followed by a quarter wave plate (QWP) in polarization state generator (PSG) arm and a QWP followed by an analyzer in polarization state analyzer arm (PSA). Polarization parameters such as retardance, rotation and depolarization were calculated from the experimentally obtained Mueller matrices using polar decomposition method at different angle of incidences of the laser beam and the results has been discussed. The similarity between retardance and depolarization curve as a function of address voltage of TNSLM indicated that depolarization is mainly associated with errors in retardance values. Further, spectral Mueller matrix measurements were used to obtain intensity modulation response in the range of wavelengths 450-700 nm for broadband applications.

  14. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  15. Crystal structure of 2-nitropropane dioxygenase complexed with FMN and substrate. Identification of the catalytic base.

    Science.gov (United States)

    Ha, Jun Yong; Min, Ji Young; Lee, Su Kyung; Kim, Hyoun Sook; Kim, Do Jin; Kim, Kyoung Hoon; Lee, Hyung Ho; Kim, Hye Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-07-01

    Nitroalkane compounds are widely used in chemical industry and are also produced by microorganisms and plants. Some nitroalkanes have been demonstrated to be carcinogenic, and enzymatic oxidation of nitroalkanes is of considerable interest. 2-Nitropropane dioxygenases from Neurospora crassa and Williopsis mrakii (Hansenula mrakii), members of one family of the nitroalkane-oxidizing enzymes, contain FMN and FAD, respectively. The enzymatic oxidation of nitroalkanes by 2-nitropropane dioxygenase operates by an oxidase-style catalytic mechanism, which was recently shown to involve the formation of an anionic flavin semiquinone. This represents a unique case in which an anionic flavin semiquinone has been experimentally observed in the catalytic pathway for oxidation catalyzed by a flavin-dependent enzyme. Here we report the first crystal structure of 2-nitropropane dioxygenase from Pseudomonas aeruginosa in two forms: a binary complex with FMN and a ternary complex with both FMN and 2-nitropropane. The structure identifies His(152) as the proposed catalytic base, thus providing a structural framework for a better understanding of the catalytic mechanism. PMID:16682407

  16. Drop filters in a rod-type photonic crystal based on self-collimation ring resonators

    Science.gov (United States)

    Lin, Guimin; Chen, Xiyao; Lin, Nan; Li, Junjun; Qiu, Yishen

    2010-10-01

    We design a rod-type drop filter (RTDF) in a two-dimensional photonic crystal (2D PhC) employing self-collimation (SC) effect. The perfect 2D PhC consists of a square-lattice of cylindrical silicon rods in air. The dielectric constant and the radius of host rods are ɛ=12.25 (correspondingly the refractive index n = 3.5) and r=0.40a respectively, where a is the lattice constant. In such a PhC, self-collimation phenomenon occurs for transverse-magnetic (TM) light beams with frequencies between 0.176c/a and 0.192c/a. The proposed RTDF based on a self-collimation ring resonator (SCRR) consists of two beam splitters and two mirrors. The performances of the SCRR are investigated with the finite-difference time-domain (FDTD) simulation technique. The calculation results show that the transmissivity spectrum at the drop port has nearly equal peak spacing which will decreases when the geometrical length of the SCRR is increased. Moreover, the full width at half maximum (FWHM) and thus quality (Q) factor of peaks can be easily tuned by changing the reflectivity of two beam splitters.

  17. Mono/dual-polarization refractive-index biosensors with enhanced sensitivity based on annular photonic crystals

    CERN Document Server

    Jiang, Liyong; Zhang, We; Li, Xiangyin

    2014-01-01

    To promote the development of two-dimensional (2D) photonic crystals (PCs) based refractive-index (RI) biosensors, there is an urgent requirement of an effective approach to improve the RI sensitivity of 2D PCs (usually less than 500 nm/RIU). In this work, the photonic band gap (PBG) feature and the corresponding RI sensitivity of the air-ring type 2D annular PCs (APCs) have been studied in detail. Such type of 2D PCs can easily and apparently improve the RI sensitivity in comparison with conventional air-hole type 2D PCs that have been widely studied in previous works. This is because the APCs can naturally exhibit suppressed up edge of PBG that can strongly affect the final RI sensitivity. In general, an enhanced sensing performance of as high as up to 2-3 times RI sensitivity can be obtained from pure 2D APCs. Such high RI sensitivity is also available in three typical waveguides developed from pure 2D APCs. Furthermore, a new conception of dual-polarization RI biosensors has been proposed by defining the ...

  18. New thermal neutron solid-state electronic detector based on HgI2 crystals

    International Nuclear Information System (INIS)

    We describe the development of a new solid-state electronic neutron detector, based on HgI2 single crystals. Incident neutrons are absorbed in high neutron absorbing foils, such as cadmium or gadolinium, which are placed in front of a HgI2 detector. Gamma rays, emitted as a result of the neutron absorbtion, are then absorbed in the HgI2, generating free charge carriers, which are collected by the electric field. The advantage of this system lies in it's manufacturing simplicity, low weight and small physical dimensions, compared to gas-filled conventional neutron detectors. The disadvantage is that the system does not discriminate between gamma rays and neutrons. A method to minimize this disadvantage is pointed out. It is as well possible to count neutrons by direct exposure of the HgI2 to neutrons. The neutron-to-gamma transformation in that case takes place by the material nuclei themselves. This method, however, is impractical due to the interference of delayed radioactivity whose origin are 129I nuclei. They are generated from 128I by absorbing a neutron, and decay with a 25 min half lifetime involving gamma emissions. (author)

  19. X-ray crystal structure and activity of fluorenyl-based compounds as transthyretin fibrillogenesis inhibitors.

    Science.gov (United States)

    Ciccone, Lidia; Nencetti, Susanna; Rossello, Armando; Tepshi, Livia; Stura, Enrico A; Orlandini, Elisabetta

    2016-10-01

    Transthyretin (TTR) is a 54 kDa homotetrameric protein that transports thyroxine (T4) and retinol (vitamin A), through its association with retinol binding protein (RBP). Under unknown conditions, it aggregates to form fibrils associated with TTR amyloidosis. Ligands able to inhibit fibril formation have been studied by X-ray crystallography. The use of polyethylene glycol (PEG) instead of ammonium sulphate or citrate has been evaluated as an alternative to obtain new TTR complexes with (R)-3-(9-fluoren-9-ylideneaminooxy)-2-methyl-N-(methylsulfonyl) propionamide (48R(1)) and 2-(9H-fluoren-9-ylideneaminooxy) acetic acid (ES8(2)). The previously described fluorenyl based inhibitors (S)-3-((9H-fluoren-9-ylideneamino)oxy)-2-methylpropanoic acid (6BD) and 3-((9H-fluoren-9-ylideneamino)oxy)propanoic acid (7BD) have been re-evaluated with the changed crystallization method. The new TTR complexes with compounds of the same family show that the 9-fluorenyl motif can occupy alternative hydrophobic binding sites. This augments the potential use of this scaffold to yield a large variety of differently substituted mono-aryl compounds able to inhibit TTR fibril formation. PMID:26235916

  20. Sensor Arrays Based on Polycyclic Aromatic Hydrocarbons: Chemiresistors versus Quartz-Crystal Microbalance.

    Science.gov (United States)

    Bachar, Nadav; Liberman, Lucy; Muallem, Fairouz; Feng, Xinliang; Müllen, Klaus; Haick, Hossam

    2013-11-27

    Arrays of broadly cross-reactive sensors are key elements of smart, self-training sensing systems. Chemically sensitive resistors and quartz-crystal microbalance (QCM) sensors are attractive for sensing applications that involve detection and classification of volatile organic compounds (VOCs) in the gas phase. Polycyclic aromatic hydrocarbon (PAH) derivatives as sensing materials can provide good sensitivity and robust selectivity towards different polar and nonpolar VOCs, while being quite tolerant to large humidity variations. Here, we present a comparative study of chemiresistor and QCM arrays based on a set of custom-designed PAH derivatives having either purely nonpolar coronas or alternating nonpolar and strongly polar side chain termination. The arrays were exposed to various concentrations of representative polar and nonpolar VOCs under extremely varying humidity conditions (5-80% RH). The sensor arrays' classification ability of VOC polarity, chemical class and compound separation was explained in terms of the sensing characteristics of the constituent sensors and their interaction with the VOCs. The results presented here contribute to the development of novel versatile and cost-effective real-world VOC sensing platforms. PMID:24147727

  1. Structural model of carnitine palmitoyltransferase I based on the carnitine acetyltransferase crystal.

    Science.gov (United States)

    Morillas, Montserrat; López-VViñas, Eduardo; Valencia, Alfonso; Serra, Dolors; Gómez-Puertas, Paulino; Hegardt, Fausto G; Asins, Guillermina

    2004-01-01

    CPT I (carnitine palmitoyltransferase I) catalyses the conversion of palmitoyl-CoA into palmitoylcarnitine in the presence of L-carnitine, facilitating the entry of fatty acids into mitochondria. We propose a 3-D (three-dimensional) structural model for L-CPT I (liver CPT I), based on the similarity of this enzyme to the recently crystallized mouse carnitine acetyltransferase. The model includes 607 of the 773 amino acids of L-CPT I, and the positions of carnitine, CoA and the palmitoyl group were assigned by superposition and docking analysis. Functional analysis of this 3-D model included the mutagenesis of several amino acids in order to identify putative catalytic residues. Mutants D477A, D567A and E590D showed reduced L-CPT I activity. In addition, individual mutation of amino acids forming the conserved Ser685-Thr686-Ser687 motif abolished enzyme activity in mutants T686A and S687A and altered K(m) and the catalytic efficiency for carnitine in mutant S685A. We conclude that the catalytic residues are His473 and Asp477, while Ser687 probably stabilizes the transition state. Several conserved lysines, i.e. Lys455, Lys505, Lys560 and Lys561, were also mutated. Only mutants K455A and K560A showed decreases in activity of 50%. The model rationalizes the finding of nine natural mutations in patients with hereditary L-CPT I deficiencies. PMID:14711372

  2. Temperature dependence of deformation mechanism in single crystal Ni-base superalloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuan; JIN Tao; ZHAO Nai-ren; WANG Zhi-hui; SUN Xiao-feng; GUAN Heng-rong; HU Zhuang-qi

    2005-01-01

    The tensile behavior of a new single crystal Ni-base superalloy was studied at various temperatures.Specimens were strained to fracture in the temperature range from 20 ℃ to 1 000 ℃. σ0.2 is essentially unaffected by temperatures between 20 ℃ and 400 ℃. At higher temperatures it increases until it reaches a maximum at about 800 ℃. Beyond 800 ℃ a sharp decrease of strength is observed. There is a slight fluctuation in ductility between 20 ℃ and 800 ℃. The elongation to fracture increases from 10% to 36% as the temperature increases from 800 ℃ to 1 000 ℃. The deformation is dominated by γ' shearing and the high-density dislocations are observed in matrix channels at low temperatures. The dislocation microstructure is inhomogeneous due to the formation of dislocation concentrations with high-density tangling at intermediate temperatures. The networks deposited at the γ'/γ'interfaces prevent dislocations from entering the γ' precipitates at high temperatures.

  3. Self-collimation-based photonic crystal Mach–Zehnder add-drop filters

    International Nuclear Information System (INIS)

    Photonic crystal Mach–Zehnder add-drop filters (PC-MZADFs) based on the self-collimation phenomenon in a two-dimensional (2D) PC are proposed and numerically studied using finite-difference time-domain (FDTD) simulations. Each PC-MZADF is composed of a symmetric Mach–Zehnder interferometer (MZI) with an identical filter in each of its two different optical paths. Zizag-box resonators (ZBRs) and Fano resonators (FRs) are employed as the optical filters in rod-type and hole-type PCs, respectively. It is shown that self-collimated beams with the ZBR and FR resonant frequencies can be dropped or added using multiple-beam interference. We also show that the resonant frequencies of the resonators can be adjusted by varying the radii of their rods or holes. Our results indicate that this device design may constitute an efficient approach to light propagation manipulation and increase the application range of self-collimated beams. (paper)

  4. Single-crystal microwires based on doped Bi for anisotropic thermoelectric devices

    International Nuclear Information System (INIS)

    We have investigated the possibility to use a microwire of BiSn to design an anisotropic thermoelectric generator. The glass-coated microwire of pure and Sn-doped bismuth was obtained by the Ulitovsky method; it was a cylindrical single-crystal with orientation (1011) along the wire axis; the C3 axis was inclined at an angle of 70 degrees to the microwire axis. It is found that doping of bismuth wires with tin increases the thermopower anisotropy in comparison with Bi by a factor of 2 - 3 in the temperature range of 200-300 K. For a Bi microwire with a core diameter of 10 μm with a glass coating with outer diameter of 35 μm, the transverse thermopower is ∼ 150 μV/(K*cm); for BiSn, 300 μV/(K*cm). The design of an anisotropic thermogenerator based on BiSn microwire is proposed. The miniature thermogenerator will be efficient for power supply of devices with low useful current. In addition to the considerable thermopower anisotropy of BiSn wires in a glass coating, they exhibit stable thermoelectric properties, high mechanical strength and flexibility, which allows designing thermoelectric devices of various configurations on their basis.

  5. Design of photonic crystal-based all-optical AND gate using T-shaped waveguide

    Science.gov (United States)

    haq Shaik, Enaul; Rangaswamy, Nakkeeran

    2016-05-01

    We present a new configuration of all-optical AND gate based on two-dimensional photonic crystal composed of Si rods in air. Two AND gate structures with and without probe input are proposed. The proposed structures are designed with T-shaped waveguide without using nonlinear materials and optical amplifiers. The performance of the proposed AND gate structures is analyzed and simulated by plane-wave expansion and finite difference time domain methods. The AND gate without probe input needs only one T-shaped waveguide, whereas the AND gate with probe input needs two T-shaped waveguides. The former AND gate offers a bit rate of 6.26 Tbps with a contrast ratio of 5.74 dB, whereas the latter AND gate offers a bit rate of 3.58 Tbps whose contrast ratio is 9.66 dB. It can be expected that these small size T-shaped structures are suitable for large-scale integration and can potentially be used in on-chip photonic integrated circuits.

  6. Design of photonic crystal based ring resonator for detection of different blood constituents

    Science.gov (United States)

    Sharma, Poonam; Sharan, Preeta

    2015-08-01

    In this paper a photonic crystal based ring resonator structure (PCRR) which can sense different bio-constituents in blood in the wavelength range of 1530-1565 nm for biomedical applications has been successfully demonstrated. Simulation and analysis has been done for Biotin-Streptavidin, Bovine Serum Albumin, Cytop (polymer), Ethanol, Glucose solution (40gm/100 ml), Hemoglobin, Blood Plasma, Polyacrylamide and Sylgard184. Finite Difference Time Domain (FDTD) method has been used for the analysis. MEEP (MIT Electromagnetic Equation Propagation) and MPB (MIT Photonic Bands) simulation tools have been used for modeling and designing of PCRR and IPKISS software framework has been used for generation of mask design which can be used for the fabrication of the PCRR sensor. The optical properties of different bio-constituents are studied and the normalized transmitted output power, transmission wavelength and Q factor have been observed for different blood-constituents which can be used for blood analysis.It has been observed that for little change in dielectric constant (ɛ) according to the blood-constituent taken there will be a moderate shift in the transmitted output power, transmission wavelength and quality factor and hence it acts as a sensor. This indicates that it is highly sensitive even for little change in refractive index. Our designed sensor has achieved sensitivity of 343 nm/RIU.

  7. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy

    International Nuclear Information System (INIS)

    Highlights: • Ta is beneficial to hot corrosion resistance. • Ta promoted the formation of a new type sulphide TaS2. • Thermodynamic factors affect the constituent of sulphide layer. • Ta can substitute Cr for sulphur catcher in hot corrosion. • The result provides new perspective in hot corrosion resistant superalloys design. - Abstract: Hot corrosion behaviour of a Ni-base single crystal superalloy with low Cr, Ti and high Ta contents in molten sodium sulphate (Na2SO4) at 900 °C in static air was investigated using the “deposit recoat” method. The corrosion scale was composed of an outer NiO layer, an inner Al2O3-dominant oxide network layer and a (CrSx(1.000

  8. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    International Nuclear Information System (INIS)

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature

  9. Self-collimation-based photonic crystal Mach-Zehnder add-drop filters

    Science.gov (United States)

    Lee, Sun-Goo; Park, Jong-Moon; Kee, Chul-Sik; Lee, Jongjin

    2016-02-01

    Photonic crystal Mach-Zehnder add-drop filters (PC-MZADFs) based on the self-collimation phenomenon in a two-dimensional (2D) PC are proposed and numerically studied using finite-difference time-domain (FDTD) simulations. Each PC-MZADF is composed of a symmetric Mach-Zehnder interferometer (MZI) with an identical filter in each of its two different optical paths. Zizag-box resonators (ZBRs) and Fano resonators (FRs) are employed as the optical filters in rod-type and hole-type PCs, respectively. It is shown that self-collimated beams with the ZBR and FR resonant frequencies can be dropped or added using multiple-beam interference. We also show that the resonant frequencies of the resonators can be adjusted by varying the radii of their rods or holes. Our results indicate that this device design may constitute an efficient approach to light propagation manipulation and increase the application range of self-collimated beams.

  10. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  11. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    International Nuclear Information System (INIS)

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper. (paper)

  12. Expression and functioning of retinal-based proton pumps in a saltern crystallizer brine.

    Science.gov (United States)

    Oren, Aharon; Abu-Ghosh, Said; Argov, Tal; Kara-Ivanov, Eliahu; Shitrit, Dror; Volpert, Adi; Horwitz, Rael

    2016-01-01

    We examined the presence of bacteriorhodopsin and other retinal protein pigments in the microbial community of the saltern crystallizer ponds in Eilat, Israel, and assessed the effect of the retinal-based proton pumps on the metabolic activity. The biota of the hypersaline (~309 g salts l(-1)) brine consisted of ~2200 β-carotene-rich Dunaliella cells and ~3.5 × 10(7) prokaryotes ml(-1), most of which were flat, square or rectangular Haloquadratum-like archaea. No indications were obtained for massive presence of Salinibacter. We estimated a concentration of bacteriorhodopsin and bacteriorhodopsin-like pigments of 3.6 nmol l(-1). When illuminated, the community respiration activity of the brine samples in which oxygenic photosynthesis was inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea, decreased by 40-43 %. This effect was interpreted to be the result of competition between two energy yielding systems: the bacteriorhodopsin proton pump and the respiratory chain. The results presented have important implications for the interpretation of many published data on photosynthetic and respiratory activities in hypersaline environments. PMID:26507954

  13. An immuno-biosensor system based on quartz crystal microbalance for avian influenza virus detection

    Science.gov (United States)

    Liu, Shengping; Chen, Guoming; Zhou, Qi; Wei, Yunlong

    2007-12-01

    For the quick detection of Avian Influenza Virus (AIV), a biosensor based on Quartz Crystal Microbalance (QCM) was fabricated according to the specific bonding principle between antibody and antigen. Staphylococcal Protein A (SPA) was extracted from Staphylococcus and purified. Then SPA was coated on the surface of QCM for immobilizing AIV monoclonal antibodies. The use of AIV monoclonal antibody could enhance the specificity of the immuno-biosensor. A multi-channel piezoelectricity detection system for the immuno-biosensor was developed. The system can work for the quick detection of AIV antigen in the case of the entirely aqueous status owe to one special oscillating circuit designed in this work. The optimum conditions of SPA coating and AIV monoclonal antibody immobilization were investigated utilizing the multi-channel detection system. The preliminary application of the immuno-biosensor system for detection of AIV was evaluated. Results indicate that the immuno-biosensor system can detect the AIV antigens with a linear range of 3-200ng/ml. The system can accomplish the detection of AIV antigens around 40 minutes.

  14. Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures

    International Nuclear Information System (INIS)

    The tensile behaviors of an experimental nickel-base single crystal superalloy have been studied from room temperature to 1100 °C. Obvious work hardening during the tensile tests from room temperature to 760 °C has been observed. In contrast, at 900 °C and 1000 °C only a slight work hardening occurs. Furthermore, by using transmission electron microscopy (TEM), the microstructures of the alloy after tensile tests at various temperatures have been investigated. Detailed analysis demonstrates the stacking faults (SFs) presented in the γ matrix at room temperature, 600 °C and 760 °C, which were seldom reported previously. These stacking faults are responsible for the appearance of stress jump (named steps) on the stress–strain curves. On the other hand, these stacking faults effectively prevent slipping of the dislocations and have a great contribution to work hardening. Apart from that, the stacking faults in γ' precipitates from room temperature to 900 °C have also been observed. The interfacial dislocation networks at 1000 °C and 1100 °C cause a weak resistance to the slip dislocations because of the high flow stress. The a/3<121> and a/2<011> type dislocations are of vital importance for plastic deformation and rupture of the experimental alloy. At last, the relation between deformation mechanisms and tensile behaviors has been reasonably explained

  15. Surface Plasmon Resonance Temperature Sensor Based on Photonic Crystal Fibers Randomly Filled with Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Nannan Luan

    2014-08-01

    Full Text Available We propose a temperature sensor design based on surface plasmon resonances (SPRs supported by filling the holes of a six-hole photonic crystal fiber (PCF with a silver nanowire. A liquid mixture (ethanol and chloroform with a large thermo-optic coefficient is filled into the PCF holes as sensing medium. The filled silver nanowires can support resonance peaks and the peak will shift when temperature variations induce changes in the refractive indices of the mixture. By measuring the peak shift, the temperature change can be detected. The resonance peak is extremely sensitive to temperature because the refractive index of the filled mixture is close to that of the PCF material. Our numerical results indicate that a temperature sensitivity as high as 4 nm/K can be achieved and that the most sensitive range of the sensor can be tuned by changing the volume ratios of ethanol and chloroform. Moreover, the maximal sensitivity is relatively stable with random filled nanowires, which will be very convenient for the sensor fabrication.

  16. Active optics null test system based on a liquid crystal programmable spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Ares, Miguel; Royo, Santiago; Sergievskaya, Irina; Riu, Jordi

    2010-11-10

    We present an active null test system adapted to test lenses and wavefronts with complex shapes and strong local deformations. This system provides greater flexibility than conventional static null tests that match only a precisely positioned, individual wavefront. The system is based on a cylindrical Shack-Hartmann wavefront sensor, a commercial liquid crystal programmable phase modulator (PPM), which acts as the active null corrector, enabling the compensation of large strokes with high fidelity in a single iteration, and a spatial filter to remove unmodulated light when steep phase changes are compensated. We have evaluated the PPM's phase response at 635 nm and checked its performance by measuring its capability to generate different amounts of defocus aberration, finding root mean squared errors below {lambda}/18 for spherical wavefronts with peak-to-valley heights of up to 78.7{lambda}, which stands as the limit from which diffractive artifacts created by the PPM have been found to be critical under no spatial filtering. Results of a null test for a complex lens (an ophthalmic customized progressive addition lens) are presented and discussed.

  17. Converting Nonliquid Crystals into Liquid Crystals by N-Methylation in the Central Linker of Triazine-Based Dendrimers.

    Science.gov (United States)

    Tsai, Meng-Jung; Hsieh, Jei-Way; Lai, Long-Li; Cheng, Kung-Lung; Liu, Shih-Hsien; Lee, Jey-Jau; Hsu, Hsiu-Fu

    2016-06-17

    Two triazine-based dendrimers were successfully prepared in 60-75% yields. These newly prepared dendrimers 2a and 2b containing the -NMe(CH2)2NMe- and the -NMe(CH2)4NMe- linkers between two G3 dendrons, respectively, exhibit columnar phases during the thermal process. However, the corresponding dendrimers 1a and 1b containing the -NH(CH2)2NH- and the -NH(CH2)4NH- linkers between two G3 dendrons, respectively, do not show any LC phases on thermal treatment. Computational investigations on molecular conformations reveal that N-methylation of the dendritic central linker leads dendrimers to possess more isomeric conformations and thus successfully converts non-LC dendrimers (1a and 1b) into LC dendrimers (2a and 2b). PMID:27203100

  18. Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Rui [School of Chemistry and Chemical Engineering, Fuyang University, Fuyang 236041 (China); Chen, Shui-Sheng, E-mail: chenss@fync.edu.cn [School of Chemistry and Chemical Engineering, Fuyang University, Fuyang 236041 (China); Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong [School of Chemistry and Chemical Engineering, Fuyang University, Fuyang 236041 (China)

    2015-08-15

    Four metal–organic coordination polymers [Zn(HL)(H{sub 2}O)]·4H{sub 2}O (1), [Zn(HL)(L{sub 1})]·4H{sub 2}O (2), [Cu(HL)(H{sub 2}O)]·3H{sub 2}O (3) and [Cu(HL)(L{sub 1})]·5H{sub 2}O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H{sub 3}L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L{sub 1}). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L{sub 1} has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (10{sup 3}) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 6{sup 3}-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear Cu{sup II} subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C–H···π exist in complexes 1–4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated. - Graphical abstract: Four new coordination polymers have been obtained and their photoluminescent and gas sorption properties have also been investigated. - Highlights: • Two pairs of Zn{sup II}/ Cu{sup II} compounds have been synthesized. • Auxiliary ligand-controlled assembly of the complexes is reported. • The luminescent properties of complexes 1–2 were investigated. • The gas sorption property of 4 has been investigated.

  19. Syntheses, crystal structures, and properties of four complexes based on polycarboxylate and imidazole ligands

    International Nuclear Information System (INIS)

    Four metal–organic coordination polymers [Zn(HL)(H2O)]·4H2O (1), [Zn(HL)(L1)]·4H2O (2), [Cu(HL)(H2O)]·3H2O (3) and [Cu(HL)(L1)]·5H2O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H3L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L1). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L1 has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (103) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 63-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear CuII subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C–H···π exist in complexes 1–4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated. - Graphical abstract: Four new coordination polymers have been obtained and their photoluminescent and gas sorption properties have also been investigated. - Highlights: • Two pairs of ZnII/ CuII compounds have been synthesized. • Auxiliary ligand-controlled assembly of the complexes is reported. • The luminescent properties of complexes 1–2 were investigated. • The gas sorption property of 4 has been investigated

  20. The impact of carbon on single crystal nickel-base superalloys: Carbide behavior and alloy performance

    Science.gov (United States)

    Wasson, Andrew Jay

    Advanced single crystal nickel-base superalloys are prone to the formation of casting grain defects, which hinders their practical implementation in large gas turbine components. Additions of carbon (C) have recently been identified as a means of reducing grain defects, but the full impact of C on single crystal superalloy behavior is not entirely understood. A study was conducted to determine the effects of C and other minor elemental additions on the behavior of CMSX-4, a commercially relevant 2nd generation single crystal superalloy. Baseline CMSX-4 and three alloy modifications (CMSX-4 + 0.05 wt. % C, CMSX-4 + 0.05 wt. % C and 68 ppm boron (B), and CMSX-4 + 0.05 wt. % C and 23 ppm nitrogen (N)) were heat treated before being tested in high temperature creep and high cycle fatigue (HCF). Select samples were subjected to long term thermal exposure (1000 °C/1000 hrs) to assess microstructural stability. The C modifications resulted in significant differences in microstructure and alloy performance as compared to the baseline. These variations were generally attributed to the behavior of carbide phases in the alloy modifications. The C modification and the C+B modification, which both exhibited script carbide networks, were 25% more effective than the C+N modification (small blocky carbides) and 10% more effective than the baseline at preventing grain defects in cast bars. All C-modified alloys exhibited reduced as-cast gamma/gamma' eutectic and increased casting porosity as compared to baseline CMSX-4. The higher levels of porosity (volume fractions 0.002 - 0.005 greater than the baseline) were attributed to carbides blocking molten fluid flow during the final stages of solidification. Although the minor additions resulted in reduced solidus temperature by up to 16 °C, all alloys were successfully heat treated without incipient melting by modifying commercial heat treatment schedules. In the B-containing alloy, heat treatment resulted in the transformation of

  1. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  2. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    International Nuclear Information System (INIS)

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm−1. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  3. Controlled synthesis of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method

    International Nuclear Information System (INIS)

    This paper reports on the controlled growth of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method for the first time. The morphological transformation from one-dimension (1D) nanostructures to 2D hierarchical flowerlike microarchitecture has been observed. The nanorods and nanowires with a well-defined crystallographical structure and the hierarchical flowers microarchitecture were obtained by changing the Lewis acids/bases. Lewis acids/bases were found to be crucial for the formation of the products by not only acting as the pH regulator but also as the shape controller, owing to their hydrolysis in the solvent to in situ form H+/OH− and hydrates. The results suggest that this should be an effective approach to the control the growth of t-Te crystals with interesting multiple morphologies, which are of interest for both theoretical investigations and practical applications.

  4. Crystal Quality and Light Output Power of GaN-Based LEDs Grown on Concave Patterned Sapphire Substrate

    Directory of Open Access Journals (Sweden)

    YewChung Sermon Wu

    2015-04-01

    Full Text Available The crystal quality and light output power of GaN-based light-emitting diodes (LEDs grown on concave patterned sapphire substrate (CPSS were investigated. It was found that the crystal quality of GaN-based LEDs grown on CPSS improved with the decrease of the pattern space (percentage of c-plane. However, when the pattern space decreased to 0.41 μm (S0.41-GaN, the GaN crystallinity dropped. On the other hand, the light output power of GaN-based LEDs was increased with the decrease of the pattern space due to the change of the light extraction efficiency.

  5. Touch sensors based on planar liquid crystal-gated-organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jooyeok; Lee, Chulyeon; Han, Hyemi; Lee, Sooyong; Nam, Sungho; Kim, Youngkyoo, E-mail: ykimm@knu.ac.kr [Organic Nanoelectronics Laboratory, Department of Chemical Engineering and Graduate School of Applied Chemical Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Kim, Hwajeong [Organic Nanoelectronics Laboratory, Department of Chemical Engineering and Graduate School of Applied Chemical Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Priority Research Center, Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Lee, Joon-Hyung [School of Materials Science and Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Park, Soo-Young; Kang, Inn-Kyu [Department of Polymer Science and Engineering and Graduate School of Applied Chemical Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of)

    2014-09-15

    We report a tactile touch sensor based on a planar liquid crystal-gated-organic field-effect transistor (LC-g-OFET) structure. The LC-g-OFET touch sensors were fabricated by forming the 10 μm thick LC layer (4-cyano-4{sup ′}-pentylbiphenyl - 5CB) on top of the 50 nm thick channel layer (poly(3-hexylthiophene) - P3HT) that is coated on the in-plane aligned drain/source/gate electrodes (indium-tin oxide - ITO). As an external physical stimulation to examine the tactile touch performance, a weak nitrogen flow (83.3 μl/s) was employed to stimulate the LC layer of the touch device. The LC-g-OFET device exhibited p-type transistor characteristics with a hole mobility of 1.5 cm{sup 2}/Vs, but no sensing current by the nitrogen flow touch was measured at sufficiently high drain (V{sub D}) and gate (V{sub G}) voltages. However, a clear sensing current signal was detected at lower voltages, which was quite sensitive to the combination of V{sub D} and V{sub G}. The best voltage combination was V{sub D} = −0.2 V and V{sub G} = −1 V for the highest ratio of signal currents to base currents (i.e., signal-to-noise ratio). The change in the LC alignment upon the nitrogen flow touch was assigned as the mechanism for the present LC-g-OFET touch sensors.

  6. High-performance Refractive Index Sensor Based on Photonic Crystal Single Mode Resonant Micro-cavity

    Institute of Scientific and Technical Information of China (English)

    Shengye Huang; Junfeng Shi; Dongsheng Wang; Wei Li

    2006-01-01

    An effective refractive index sensor built with square lattice photonic crystal is proposed, which can be applicable to photonic integrated circuits. Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity. Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity. The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation. At the resonant wavelength of about 1500 nm, the resonant wavelength shifts up by 0.7 nm for each increment of △n=0.001. A transmission of more than 0.75 is observed. Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor,the transmission reduces rapidly as the disorder increases.

  7. Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Steel, A. B., E-mail: steel1@llnl.gov; Dunn, J.; Emig, J.; Beiersdorfer, P.; Brown, G. V.; Shepherd, R.; Marley, E. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoarty, D. J. [Atomic Weapons Establishment, Aldermaston (United Kingdom)

    2014-11-15

    We have developed and implemented a broadband X-ray spectrometer with a variable energy range for use at the Atomic Weapons Establishment's Orion Laser. The spectrometer covers an energy bandwidth of ∼1–2 keV using two independently mounted, movable Bragg diffraction crystals. Using combinations of cesium hydrogen pthlate, ammonium dihydrogen phosphate, and pentaerythritol crystals, spectra covering the 1.4–2.5, 1.85–3.15, or 3.55–5.1 keV energy bands have been measured. Image plate is used for detection owing to its high dynamic range. Background signals caused by high energy X-rays and particles commonly produced in high energy laser experiments are reduced by a series of tantalum baffles and filters installed between the source and crystal and also between the crystals and detector.

  8. Band gap and refractive index tunability in thallium based layered mixed crystals

    International Nuclear Information System (INIS)

    Compositional variation of the band gap energy and refractive index of TlMeX2-type (Me = Ga or In and X = S or Se) layered mixed crystals have been studied by the transmission and reflection measurements in the wavelength range of 400–1100 nm. The analysis of absorption data of TlGa1-xInxSe2, TlGa(S1−xSex)2, TlGa1−xInxS2, and TlIn(Se1−xSx)2 mixed crystals revealed the presence of both optical indirect and direct transitions. It was found that the energy band gaps of mixed crystals decrease at the replacing of gallium atoms by indium and of sulfur atoms by selenium ones. Through the similar replacing of atoms (smaller atoms by larger ones) in the studied mixed crystals, the refractive index shows the quite opposite behavior

  9. Crystallization Analysis and Control of Ammonia-Based Air Source Absorption Heat Pump in Cold Regions

    OpenAIRE

    Wu, Wei; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2013-01-01

    Energy consumption of heating and domestic hot water is very high and will keep increasing. Air source absorption heat pump (ASAHP) was proposed to overcome the problems of low energy efficiency and high air pollution existing in boiler systems, as well as the problem of bad performance under low ambient temperatures for electrical heat pumps. In order to investigate the crystallization possibility of ammonia-salt ASAHP, crystallization margin (evaluated by solution mass concentration) at gen...

  10. Interactions between high temperature deformation and crystallization in zirconium based bulk metallic glasses

    OpenAIRE

    Gravier, Sébastien; Blandin, Jean-Jacques; Donnadieu, Patricia

    2008-01-01

    Abstract High temperature deformation of a ZrTiCuNiBe bulk metallic glass (BMG) is investigated by compression tests in the supercooled liquid region. When temperature is decreased or strain rate is increased, the amorphous alloy exhibits the usual Newtonian ? non Newtonian behavior transition. Owing to appropriate heat treatments, partially crystallized alloys are produced, the associated microstructures are characterized and the volume fractions of crystal are measured. The inter...

  11. Evanescent Field Enhancement in Liquid Crystal Optical Fibers: A Field Characteristics Based Analysis

    Directory of Open Access Journals (Sweden)

    P. K. Choudhury

    2013-01-01

    Full Text Available The paper presents the analysis of the electromagnetic wave propagation through liquid crystal optical fibers (LCOFs of two different types—conventional guides loaded with liquid crystals (addressed as LCOFs and those with additional twists due to conducting helical windings (addressed as HCLCOFs. More precisely, the three-layer optical waveguide structures are considered along with its outermost region being loaded with radially anisotropic liquid crystal material and the inner regions being made of usual silica, as used in conventional optical fibers. In addition to that, LCOF with twists introduced in the form of conducting helical windings at the interface of the silica core and the liquid crystal clad is also taken into account. Emphasis has been put on the power confinements by the lower-order TE modes sustained in the different sections of the LCOF structure. The results demonstrate useful applications of these guides in integrated optics as the power sustained in the liquid crystal section by the excited TE modes remains very high. In the case of twisted clad liquid crystal guides, descriptions are limited to the nature of dispersion relation only under the TE mode excitation, and corresponding to the cases of helix orientations being parallel and perpendicular to the optical axis.

  12. A Dibutyl Phthalate Sensor Based on a Nanofiber Polyaniline Coated Quartz Crystal Monitor

    Directory of Open Access Journals (Sweden)

    Guang Li

    2013-03-01

    Full Text Available Dibutyl phthalate (DBP is a commonly used plasticizer and additive to adhesives, printing inks and nail polishes. Because it has been found to be a powerful reproductive and developmental toxicant, a sensor to monitor DBP in some working spaces and the environment is required. In this work polyaniline nanofibers were deposited on the electrode of a quartz crystal oscillator to form a Quartz Crystal Microbalance gas sensor. The coated quartz crystal and a non-coated quartz crystal were mounted in a sealed chamber, and their frequency difference was monitored. When DBP vapor was injected into the chamber, gas adsorption decreased the frequency of the coated quartz crystal oscillator and thereby caused an increase in the frequency difference between the two crystals. The change of the frequency difference was recorded as the sensor response. The sensor was extremely sensitive to DBP and could be easily recovered by N2 purging. A low measurement limit of 20 ppb was achieved. The morphologies of the polyaniline films prepared by different approaches have been studied by SEM and BET. How the nanofiber-structure can improve the sensitivity and stability is discussed, while its selectivity and long-term stability were investigated.

  13. A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN′O′ Schiff base ligand: synthesis, characterization, crystal structure determination, thermal study and catalytic activity

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Ghavami, A.; Eigner, Václav; Dušek, Michal; Khalaji, A.D.

    2015-01-01

    Roč. 26, č. 6 (2015), s. 779-784. ISSN 1001-8417 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * crystal structure * nanoparticle * epoxidation Subject RIV: CC - Organic Chemistry Impact factor: 1.587, year: 2014

  14. Synthesis, characterization, crystal structure, catalytic activity in oxidative bromination, and thermal study of a new oxidovanadium Schiff base complex containing O, N-bidentate Schiff base ligand

    Czech Academy of Sciences Publication Activity Database

    Grivani, G.; Tahmasebi, V.; Khalaji, A.D.; Eigner, Václav; Dušek, Michal

    2014-01-01

    Roč. 67, č. 22 (2014), s. 3664-3677. ISSN 0095-8972 Institutional support: RVO:68378271 Keywords : oxidovanadium(IV) * Schiff base * single crystal * oxidative bromination Subject RIV: CA - Inorganic Chemistry Impact factor: 2.012, year: 2014

  15. GWAS-based pathway analysis differentiates between fluid and crystallized intelligence.

    Science.gov (United States)

    Christoforou, A; Espeseth, T; Davies, G; Fernandes, C P D; Giddaluru, S; Mattheisen, M; Tenesa, A; Harris, S E; Liewald, D C; Payton, A; Ollier, W; Horan, M; Pendleton, N; Haggarty, P; Djurovic, S; Herms, S; Hoffman, P; Cichon, S; Starr, J M; Lundervold, A; Reinvang, I; Steen, V M; Deary, I J; Le Hellard, S

    2014-09-01

    Cognitive abilities vary among people. About 40-50% of this variability is due to general intelligence (g), which reflects the positive correlation among individuals' scores on diverse cognitive ability tests. g is positively correlated with many life outcomes, such as education, occupational status and health, motivating the investigation of its underlying biology. In psychometric research, a distinction is made between general fluid intelligence (gF) - the ability to reason in novel situations - and general crystallized intelligence (gC) - the ability to apply acquired knowledge. This distinction is supported by developmental and cognitive neuroscience studies. Classical epidemiological studies and recent genome-wide association studies (GWASs) have established that these cognitive traits have a large genetic component. However, no robust genetic associations have been published thus far due largely to the known polygenic nature of these traits and insufficient sample sizes. Here, using two GWAS datasets, in which the polygenicity of gF and gC traits was previously confirmed, a gene- and pathway-based approach was undertaken with the aim of characterizing and differentiating their genetic architecture. Pathway analysis, using genes selected on the basis of relaxed criteria, revealed notable differences between these two traits. gF appeared to be characterized by genes affecting the quantity and quality of neurons and therefore neuronal efficiency, whereas long-term depression (LTD) seemed to underlie gC. Thus, this study supports the gF-gC distinction at the genetic level and identifies functional annotations and pathways worthy of further investigation. PMID:24975275

  16. Gapped Surface Plasmon Polariton Waveguide Device Based on a Liquid Crystal.

    Science.gov (United States)

    Lee, Dong Hun; Lee, Myung-Hyun

    2015-10-01

    We propose a gapped surface plasmon polariton waveguide (G-SPPW) device based on a liquid crystal (LC) at a wavelength of 1.55 μm. The G-SPPW device is composed of an input 2.0-μm-wide and 5.0-μm-long insulator-metal-insulator waveguide (IMI-W), an 8-μm-long gap, and an output 2.0-μm-wide and 25.0-μm-long IMI-W. The LC is used for the gap and the 5.15-μm-thick upper and lower dielectric layers. The input surface plasmon polaritons (SPPs) propagate and jump over the gap in the G-SPPW with a coupling loss of less than ~0.68 dB. The propagation and coupling losses of the 38-μm-long G-SPPW device are varied in the range of ~0.5268 dB to ~2.6716 dB and ~0.1446 dB to ~0.6784 dB, respectively, with LC tilt angles (θ1,2) = 0°~90° at a fixed 90° twist angle. The normalized transmission of the G-SPPW device is also varied in the range from -3.351 dB to -0.6714 dB with θ1,2 = 0°~90° at a fixed 90° twist angle. The output SPP characteristics of the G-SPPW device can be properly controlled by the orientation of the LC molecules. The proposed G-SPPW device shows potential for new active plasmonic device applications. PMID:26726399

  17. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    Science.gov (United States)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  18. Periodically tapered photonic crystal fibre based strain sensor fabricated by a CO2 laser technique

    Science.gov (United States)

    Farrell, Gerald; Bo, Lin; Guan, Chunying; Semenova, Yuliya; Wang, Pengfei

    2014-05-01

    A focused CO2 laser beam has been previously used to successfully fabricate both symmetric and asymmetric long period fiber gratings which have been used for a variety of sensing applications. However fabrication by a CO2 laser beam demands a time consuming laser scanning process which increases the difficulty and cost of fabrication. In this paper a fibre sensor based on a fibre heterostructure with a simple configuration consisting of a series of periodical tapers in a photonic crystal fibre (PCF) sandwiched between two singlemode fibres is proposed and investigated experimentally. The tapers are periodically fabricated along the PCF section using a CO2 laser beam. The proposed fibre heterostructure can be used for strain sensing by measuring the wavelength blueshift of the multimode interference dip of the transmission spectrum as a function of strain. An average stain sensitivity of -68.4 pm/μ ɛ has been experimentally achieved over a microstrain range from 0 to 100 μ ɛ. Assuming in practice that the sensor is interrrogated with a ratiometric power measurement system, then the strain resolution is estimated to be better than 1.18×10-2 microstrain. The mechanisms for refractive index modulation periodically tapered PCF under tensile strain measurements are complex but may be regarded as a combination of stress-relaxation and refractive index perturbations over the length of the tapered PCF induced by strain and by tapering. The proposed fibre strain sensor has the advantage of low temperature sensitivity (average 8.4 pm/°C) and an experimental demonstration of this reduced sensitivity is also presented. The proposed strain sensor benefits from simplicity of fabrication and achieves a competitive sensitivity compared with other existing fibre-optic sensors.

  19. Automated detection and characterization of microstructural features: application to eutectic particles in single crystal Ni-based superalloys

    Science.gov (United States)

    Tschopp, M. A.; Groeber, M. A.; Fahringer, R.; Simmons, J. P.; Rosenberger, A. H.; Woodward, C.

    2010-03-01

    Serial sectioning methods continue to produce an abundant amount of image data for quantifying the three-dimensional nature of material microstructures. Here, we discuss a methodology to automate detecting and characterizing eutectic particles taken from serial images of a production turbine blade made of a heat-treated single crystal Ni-based superalloy (PWA 1484). This method includes two important steps for unassisted eutectic particle characterization: automatically identifying a seed point within each particle and segmenting the particle using a region growing algorithm with an automated stop point. Once detected, the segmented eutectic particles are used to calculate microstructural statistics for characterizing and reconstructing statistically representative synthetic microstructures for single crystal Ni-based superalloys. The significance of this work is its ability to automate characterization for analysing the 3D nature of eutectic particles.

  20. A Crystallization Study of Nanocrystalline PZT 53/47Granular Arrays Using a Sol-Gel Based Precursor

    Institute of Scientific and Technical Information of China (English)

    A. Suárez-Gómez; J.M. Saniger-Blesa; F. Calderón-Pi(n)ar

    2011-01-01

    In this work, we intend to perform a detailed study on the crystallization process of PZT 53/47 nanostructured powders by starting out with an amorphous precursor synthesized by a sol-gel based solution. Our interests also lie in the feasibility for controlling the average grain size of the final structure in the submicron range on an ab initio basis. Purposely, Fourier transform infrared spectroscopy (FT-IR), Raman (Stokes and Anti-Stokes), X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to examine the microstructural characteristics based on previously reported differential thermal analysis/thermal gravimetric analysis (DTA/TGA) data. The results show a crystallization temperature of 800℃ to attain pure perovskite phase with excellent morphological quality, average grain size <DG>< 300 nm and with average crystallite size <DC><15 nm.

  1. Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. E.; Lee, S. K.; Lee, Y. G.; Kim, K. M.; Yang, Y. S.; Yang, W. S.; Kim, J. [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)

    2012-01-15

    In this paper, we present the calculations and the results for vibration-energy-scavenging performances based on a piezoelectric single-crystal beam. Using the measured mechanical damping ratio and electro-mechanical coupling coefficient of a novel cantilever structure device, we calculated the output performances and compared them with the measured results. A device based on a bimorph cantilever structure with a proof mass was designed to have a natural resonance frequency of about 60 Hz, and the energy-scavenging capability of piezoelectric single crystal was measured. The results showed that several tens of AC volts and a few milliwatts power were achieved under a 0.1 g{sub rms} vibration condition. Also using this device and a commercial power management circuit, we performed Li-ion battery charging experiment.

  2. Automated detection and characterization of microstructural features: application to eutectic particles in single crystal Ni-based superalloys

    International Nuclear Information System (INIS)

    Serial sectioning methods continue to produce an abundant amount of image data for quantifying the three-dimensional nature of material microstructures. Here, we discuss a methodology to automate detecting and characterizing eutectic particles taken from serial images of a production turbine blade made of a heat-treated single crystal Ni-based superalloy (PWA 1484). This method includes two important steps for unassisted eutectic particle characterization: automatically identifying a seed point within each particle and segmenting the particle using a region growing algorithm with an automated stop point. Once detected, the segmented eutectic particles are used to calculate microstructural statistics for characterizing and reconstructing statistically representative synthetic microstructures for single crystal Ni-based superalloys. The significance of this work is its ability to automate characterization for analysing the 3D nature of eutectic particles

  3. Influence of Y, Gd and Sm on the glass forming ability and thermal crystallization of aluminum based alloy

    International Nuclear Information System (INIS)

    Al-based amorphous alloys represent an important family of metals and a great scientific activity has been devoted to determine the main features of both glass forming ability (GFA) and crystallization behavior in order to have a comprehensive framework aimed at potential technological applications. Nowadays, it is well known that the best Al-based amorphous alloys are formed in ternary systems such as Al- RE-TM, where RE is a rare earth and TM a transition metal. This paper presents results of research in Al85Ni10RE5 alloys (RE = Y, Gd and Sm). Amorphous ribbons were processed by melt-spinning under the same conditions and subsequently characterized by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show appreciable micro structural differences as function of the rare earth, thus crystal is obtained for Y, nano-glassy for Gd and, fully amorphous structure for Sm. (author)

  4. Effect of H impurity on misfit dislocation in Ni-based single-crystal superalloy: molecular dynamic simulations

    International Nuclear Information System (INIS)

    The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and Ni3Al, the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation. The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γ' interface and Ni3Al and H impurity on the glide plane can obstruct the glide of misfit dislocation, which is beneficial to improving the mechanical properties of Ni based superalloys. (condensed matter: structural, mechanical, and thermal properties)

  5. Design and Development of a Robot-Based Automation System for Cryogenic Crystal Sample Mounting at the Advanced Photon Source

    International Nuclear Information System (INIS)

    X-ray crystallography is the primary method to determine the 3D structures of complex macromolecules at high resolution. In the years to come, the Advanced Photon Source (APS) and similar 3rd-generation synchrotron sources elsewhere will become the most powerful tools for studying atomic structures of biological molecules. One of the major bottlenecks in the x-ray data collection process is the constant need to change and realign the crystal sample. This is a very time- and manpower-consuming task. An automated sample mounting system will help to solve this bottleneck problem. We have developed a novel robot-based automation system for cryogenic crystal sample mounting at the APS. Design of the robot-based automation system, as well as its on-line test results at the Argonne Structural Biology Center (SBC) 19-BM experimental station, are presented in this paper

  6. On Post-Weld Heat Treatment of a Single Crystal Nickel-Based Superalloy Joint by Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    T. J. Ma

    2015-09-01

    Full Text Available Three types of post-weld heat treatment (PWHT, i.e. solution treatment + primary aging + secondary aging (I, secondary aging (II, and primary aging + secondary aging (III, were applied to a single crystal nickel-based superalloy joint made with linear friction welding (LFW. The results show that the grains in the thermomechanically affected zone (TMAZ coarsen seriously and the primary γ' phase in the TMAZ precipitates unevenly after PWHT I. The primary γ' phase in the TMAZ and weld zone (WZ precipitates insufficiently and fine granular secondary γ' phase is observed in the matrix after PWHT II. After PWHT III, the primary γ' phase precipitates more sufficiently and evenly compared to PWHTs I and II. Moreover, the grains in the TMAZ have not coarsened seriously and fine granular secondary γ' phase is not found after PWHT III. PWHT III seems more suitable to the LFWed single crystal nickel-based superalloy joints when performing PWHT.

  7. Novel and simple route to fabricate 2D ordered gold nanobowl arrays based on 3D colloidal crystals.

    Science.gov (United States)

    Rao, Yanying; Tao, Qin; An, Ming; Rong, Chunhui; Dong, Jian; Dai, Yurong; Qian, Weiping

    2011-11-01

    In this study, we present a new method to fabricate large-area two-dimensionally (2D) ordered gold nanobowl arrays based on 3D colloidal crystals by wet chemosynthesis, which combines the advantages of a very simple preparation and an applicability to "real" nanomaterials. By combination of in situ growth of gold nanoshell (GNSs) arrays based on three-dimensional (3D) colloidal silica crystals, a monolayer ordered reversed GNS array (2D ordered GNS array) was conveniently manufactured by an acrylic ester modified biaxial oriented polypropylene (BOPP). 2D ordered gold nanobowl array with adjustable periodic holes, good stability, reproducibility, and repeatability could be obtained when the silica core was etched by HF solution. The surface-enhanced Raman scattering (SERS) enhancement factor (EF) of this 2D ordered gold nanobowl array could reach 1.27 × 10(7), which shows high SERS enhancing activity and can be used as a universal SERS substrate. PMID:21932785

  8. Crystallization of copper(II) sulfate based minerals and MOF from solution: Chemical insights into the supramolecular interactions

    Indian Academy of Sciences (India)

    M Singh; D Kumar; J Thomas; A Ramanan

    2010-09-01

    Crystallization of solids, molecular or non-molecular from solution is a supramolecular reaction. Nucleation of a lattice structure at supersaturation can be conceived to result from a critical nucleus, a high energy intermediate (supramolecular transition state). Conceptualization of a structure for the critical nucleus in terms of aggregation of tectons through non-covalent interactions provides chemical insights into the architecture of a solid. The retrosynthetic analysis of copper-based minerals and materials offers an elegant description for the crystal packing. It addresses the influence of the geometry, functionality and reactivity of copper tecton(s) in directing a specific supramolecular aggregation. The mechanistic approach provides guiding principles to chemists to account for the experimentally crystallized solids and a platform to practice structure-synthesis correlation. Rationalization of the same composition with different atomic arrangements (polymorphs), compositional variation leading to different pseudopolymorphs, degree of hydration (anhydrous to hydrated), water clusters, role of solvent, etc. can all be justified on molecular basis. Also, the method gives predictive components including directions to synthesize new solids. In a nutshell, the paper is an attempt to generalize the crystallization of inorganic solids from solution by recognizing supramolecular interactions between metal tectons and gain insights for designing new MOF.

  9. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  10. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo [Institute of Fluid Physics, China Academy of Engineering Physics, 621900 Mianyang (China)

    2015-01-07

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.

  11. Separation of 1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol precipitation and dilution crystallization

    Institute of Scientific and Technical Information of China (English)

    GAO Sujun; ZHANG Daijia; SUN Yaqin; XIU Zhilong

    2007-01-01

    The separation of 1,3-propanediol from the glycerol-based fermentation broth of Klebsiella pneumoniae plays an important role during the microbial production of 1,3-propanediol.In this paper,the separation of 1,3-propanediol from fermentative broth by a combination of ultrafiltration and alcohol dilution crystallization was investigated.The broth was first filtered by ultrafiltration,and 99%of cells,89.4% of proteins and 69% of nucleic acids were removed.The obtained broth was further condensed by vacuum distillation,and then alcohol was added.The macromolecular impurities,such as nucleic acids,polysaccharides and proteins,were precipitated,and inorganic and organic salts were crystallized.The optimal volume ratio of alcohol added to the condensed fermentation broth was determined to tivity decreased by 97.4%,89.7% and 95.8%,respectively,compared with the fermentative broth.The influences of pH and water content in condensed broth on alcohol precipitation and dilution crystallization were also investigated.The experimental results indicated that alcohol precipitation and dilution crystallization was feasible and effective for the separation of 1,3-propanediol from actual fermentation broth.

  12. Characterization of submillisecond response optical addressing phase modulator based on low light scattering polymer network liquid crystal

    International Nuclear Information System (INIS)

    Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured

  13. Crystal Engineering of HIV-1 Reverse Transcriptase for structure-Based Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Bauman,J.; Das, K.; Ho, W.; Baweja, M.; Himmel, D.; Clark, A.; Oren, D.; Shatkin, A.; Arnold, E.

    2008-01-01

    HIV-1 reverse transcriptase (RT) is a primary target for anti-AIDS drugs. Structures of HIV-1 RT, usually determined at {approx}2.5-3.0 Angstroms resolution, are important for understanding enzyme function and mechanisms of drug resistance in addition to being helpful in the design of RT inhibitors. Despite hundreds of attempts, it was not possible to obtain the structure of a complex of HIV-1 RT with TMC278, a nonnucleoside RT inhibitor (NNRTI) in advanced clinical trials. A systematic and iterative protein crystal engineering approach was developed to optimize RT for obtaining crystals in complexes with TMC278 and other NNRTIs that diffract X-rays to 1.8 Angstroms resolution. Another form of engineered RT was optimized to produce a high-resolution apo-RT crystal form, reported here at 1.85 Angstroms resolution, with a distinct RT conformation. Engineered RTs were mutagenized using a new, flexible and cost effective method called methylated overlap-extension ligation independent cloning. Our analysis suggests that reducing the solvent content, increasing lattice contacts, and stabilizing the internal low-energy conformations of RT are critical for the growth of crystals that diffract to high resolution. The new RTs enable rapid crystallization and yield high-resolution structures that are useful in designing/developing new anti-AIDS drugs.

  14. Charge carrier trapping in highly-ordered lyotropic chromonic liquid crystal films based on ionic perylene diimide derivatives

    OpenAIRE

    Soroka, Pavlo V.; Vakhnin, Alexander Yu; Skryshevskiy, Yuriy A; Boiko, Oleksandr P.; Anisimov, Maksim I; Slominskiy, Yuriy L; Nazarenko, Vassili G.; Genoe, Jan; Kadashchuk, Andrey

    2014-01-01

    Charge carrier trapping in thin films of lyotropic chromonic liquid crystals (LCLCs) based on ionic perylene diimide derivative and in chemically-similar neutral N,N′-dipentyl-3,4,9,10-perylene-dicarboximide (PTCDI-C5) films is investigated by thermally-stimulated luminescence (TSL) technique. The LCLC films comprise elongated molecular aggregates featuring a long-range orientational order. The obtained results provide direct evidence for the improved energetic ordering (smaller effective ene...

  15. Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals

    Science.gov (United States)

    Yadav, Ashish; Danesh, Mohammad; Zhong, Liubiao; Cheng, Gary J.; Jiang, Lin; Chi, Lifeng

    2016-04-01

    We demonstrated three-dimensional PMMA-based photonic crystal (3D-PC) nanostructures attached to Au nanoparticles (AuNPs), which undergo self-organization into super lattice planes and enhance the fluorescence properties. This new structure exhibited interesting tunable spectral, peak broadening plasmonic behavior because of strong plasmonic interaction at high laser powers. The presented work provides an important tool to improve the efficiency of dye laser applications.

  16. Characterization of heavy oxide inorganic scintillator crystals for direct detection of fast neutrons based on inelastic scattering

    OpenAIRE

    Rusiecki, Philip R.

    2015-01-01

    Approved for public release; distribution is unlimited Heavy oxide inorganic scintillators may prove viable in the detection of fast neutrons based on the mechanism of inelastic neutron scattering. A candidate set of crystals incorporating constituents of heavy atomic mass, namely bismuth germinate (BGO), zinc tungstate (ZWO), cadmium tungstate (CWO), lead tungstate (PWO), lutetium-gadolinium orthosilicate activated with cerium (LGSO:Ce) and lutetium-aluminum garnet with cerium (LuAG:Ce), ...

  17. Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals.

    Science.gov (United States)

    Yadav, Ashish; Danesh, Mohammad; Zhong, Liubiao; Cheng, Gary J; Jiang, Lin; Chi, Lifeng

    2016-04-22

    We demonstrated three-dimensional PMMA-based photonic crystal (3D-PC) nanostructures attached to Au nanoparticles (AuNPs), which undergo self-organization into super lattice planes and enhance the fluorescence properties. This new structure exhibited interesting tunable spectral, peak broadening plasmonic behavior because of strong plasmonic interaction at high laser powers. The presented work provides an important tool to improve the efficiency of dye laser applications. PMID:26954366

  18. An Electronic Nose Based on Coated Piezoelectric Quartz Crystals to Certify Ewes’ Cheese and to Discriminate between Cheese Varieties

    OpenAIRE

    Gomes, Maria Teresa S. R.; Oliveira, João A. B. P.; Pais, Vânia F.

    2012-01-01

    An electronic nose based on coated piezoelectric quartz crystals was used to distinguish cheese made from ewes’ milk, and to distinguish cheese varieties. Two sensors coated with Nafion and Carbowax could certify half the ewes’ cheese samples, exclude 32 cheeses made from cow’s milk and to classify half of the ewes’ cheese samples as possibly authentic. Two other sensors, coated with polyvinylpyrrolidone and triethanolamine clearly distinguished between Flamengo, Brie, Gruyère and Mozzarella ...

  19. Crystal plasticity based finite element model for simulation of high temperature deformation behavior of Niobium based alloys for high temperature reactors

    International Nuclear Information System (INIS)

    For structural components of compact high temperature reactors, Niobium based alloys are some of the candidate materials which are being studied extensively by various researchers. These alloys have excellent high temperature mechanical properties for temperature range as high as 1000 to 1300 deg. C. The NbZrC alloys form different types of carbides which impart high temperature strength to these alloys. The alloy also possesses good ductility at elevated temperatures. In order to understand the material deformation behavior of the alloy, a crystal plasticity based model has been used in simulation of material stress-strain curve at various elevated temperatures. It is very important to take into account of the underlying microstructure of the material in order to develop a reliable constitutive model for predicting the elevated temperature strength of these alloys. Crystal plasticity based models are suitable for this purpose as these take into account of the crystal orientations of different grains as well as the effect of various microstructural features on the onset of plasticity and plastic hardening mechanisms in these materials. However, it is computationally expensive to incorporate the explicit models of different features of the microstructure in a crystal plasticity based framework to simulate the response of the polycrystalline micro-structure of these alloys. The aim of this work is to develop a physically motivated multi-scale approach for simulation of response of these types of alloys. At the lower scale, i.e., at the grain level, the crystal plasticity model simulates the response of various types of microstructures (with different morphology of precipitates) within a single crystal. The microstructures are designed with various shapes and volume fractions of precipitates. The lower scale model is homogenized as a function of various microstructural parameters and the homogenized model is used at the polycrystalline level of crystal plasticity

  20. Influences of ruthenium and crystallographic orientation on creep behavior of aluminized nickel-base single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Latief, F.H., E-mail: fahamsyah78@gmail.com [Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397 (Japan); Kakehi, K. [Department of Mechanical Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-shi, Tokyo 192-0397 (Japan); An-Chou Yeh, H. [Department of Materials Science and Engineering, National TsingHua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Murakami, H. [Hybrid Materials Center, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-01-13

    The influences of ruthenium and surface orientation on creep behavior of aluminized Ni-base single crystal superalloys were investigated by comparing two different types of NKH superalloys. The aluminized coated specimens were then subjected to creep rupture tests at a temperature of 900 °C and a stress of 392 MPa. The coating treatment resulted in a significant decrease in creep rupture lives for both superalloys. The diffusion zones between the coating and substrate led to changes in microstructure, which diminished the creep behavior of the aluminized superalloys. Because of the interdiffusion of Ru, Al and Ni, the solubility of some of the refractory elements, such as W, Re. Mo, Co and Cr decreased in the diffusion zone; the precipitation of topologically close-packed (TCP) phases was thus inevitable. In the present study, the addition of Ru increased the degree of Re and Cr supersaturation in the γ matrix. Consequently, the addition of Ru indirectly promoted the precipitation of TCP phases in aluminized Ni-base single crystal superalloys. Furthermore, the growth of TCP precipitates was greatly influenced by the specific surface orientations of the Ni-base single crystal superalloys. In conclusion, the {110} specimens showed shorter creep rupture life than the {100} specimens, this was due to the difference in the crystallographic geometry of {111}〈101〉 slip system and TCP precipitates between the two side-surface orientations of the specimens.

  1. Rapid yet accurate first principle based predictions of alkali halide crystal phases using alchemical perturbation

    CERN Document Server

    Solovyeva, Alisa

    2016-01-01

    We assess the predictive power of alchemical perturbations for estimating fundamental properties in ionic crystals. Using density functional theory we have calculated formation energies, lattice constants, and bulk moduli for all sixteen iso-valence-electronic combinations of pure pristine alkali halides involving elements $A \\in \\{$Na, K, Rb, Cs$\\}$ and $X \\in \\{$F, Cl, Br, I$\\}$. For rock salt, zincblende and cesium chloride symmetry, alchemical Hellmann-Feynman derivatives, evaluated along lattice scans of sixteen reference crystals, have been obtained for all respective 16$\\times$15 combinations of reference and predicted target crystals. Mean absolute errors (MAE) are on par with density functional theory level of accuracy for energies and bulk modulus. Predicted lattice constants are less accurate. NaCl is the best reference salt for alchemical estimates of relative energies (MAE $<$ 40 meV/atom) while alkali fluorides are the worst. By contrast, lattice constants are predicted best using NaF as a re...

  2. Tunable flat band slow light in reconfigurable photonic crystal waveguides based on magnetic fluids

    DEFF Research Database (Denmark)

    Pu, Shengli; Wang, Haotian; Wang, Ning;

    2013-01-01

    A kind of two-dimensional photonic crystal line-defect waveguide with 45 -rotated square lattice is proposed to present slow light phenomena. Infiltrating the photonic crystal waveguide with appropriate magnetic fluids can generate very wide flat bands of guided modes, which give rise to the...... light speed in vacuum, respectively). Simultaneously, the normalized delay-bandwidth product is relatively large compared with other works. Reconfiguring the photonic crystal waveguide with magnetic fluids of different concentrations can remarkably tune the slow light parameters and the trade......-off between them, while the type of magnetic nanoparticles constituting the magnetic fluids negligibly affect the slow light properties. The explicit linear variation of the slow light parameters with the magnetic fluid concentration is convenient for the practical tuning....

  3. Optimization of detection system based on inorganic scintillation crystal coupled with a long lightguide

    CERN Document Server

    Globus, M; Ratner, M

    2002-01-01

    Operation characteristics of a scintillation crystal, linked with the photomultiplier by a long transparent lightguide, are considered (such detection systems are used for monitoring the seawater pollution, scintillation measurements in magnetic field, etc.). This system is optimized with respect to the refractive index of the liquid, coupling the crystal with the lightguide, and the roughness degree of the crystal surface. It is shown that the energy resolution of the system can be significantly improved by using the coupling liquid with a refractive index somewhat less than that of the lightguide (a difference of about 0.2 is optimal). Light output and especially energy resolution becomes better with an increase of the roughness degree of the reflecting surface.

  4. CaWO4 single crystal and detectors of ionizing radiation on their base

    International Nuclear Information System (INIS)

    CaWO4 crystals up to 65 mm in diameter and ∼ 100 mm in length for the cylindrical part are grown by the Czochralski method from iridium crucibles in the Ar atmosphere. The induced color centers caused by oxygen vacancies are completely eliminated by annealing of the crystals in the oxidizing atmosphere at 1200 deg C. The origin of the light scattering centers is mainly associated with Ca3WO6 inclusions. No phosphorescence is revealed in CaWO4 scintillators. The comparative evaluation of the scintillation characteristics of CaWO4 and CdWO4 crystals with the size of 40 x 40 mm at excitation by γ-quanta from 137Cs (662 keV) showed the advantage of CaWO4 in the light output by 40%. The anisotropy of the light output and energy resolution is found in CaO4 scintillators

  5. Tunable phononic crystals based on piezoelectric composites with 1-3 connectivity.

    Science.gov (United States)

    Croënne, Charles; Ponge, Marie-Fraise; Dubus, Bertrand; Granger, Christian; Haumesser, Lionel; Levassort, Franck; Vasseur, Jérôme O; Lordereau, Albert; Pham Thi, Mai; Hladky-Hennion, Anne-Christine

    2016-06-01

    Phononic crystals made of piezoelectric composites with 1-3 connectivity are studied theoretically and experimentally. It is shown that they present Bragg band gaps that depend on the periodic electrical boundary conditions. These structures have improved properties compared to phononic crystals composed of bulk piezoelectric elements, especially the existence of larger band gaps and the fact that they do not require severe constraints on their aspect ratios. Experimental results present an overall agreement with the theoretical predictions and clearly show that the pass bands and stop bands of the device under study are easily tunable by only changing the electrical boundary conditions applied on each piezocomposite layer. PMID:27369154

  6. Study on crystal transformation process of magnesium carbonate hydrate based on salt lake magnesium resource utilization

    OpenAIRE

    Du, Juan; Chen, Zhen; WU, Yu-Long; YANG, Ming-De

    2013-01-01

    The crystal transformation process of magnesium carbonate hydrate by the reaction of magnesium sulfate (MgSO4) with ammonium carbonate [(NH4)2CO3] was investigated. MgSO4 is one of the main magnesium resources of the Lop Nur salt lake in the Xinjiang Autonomous Region of China. Magnesium carbonate hydrates with different chemical compositions were prepared. The transformation process of the 2 crystals, MgSO4 and (NH4)2CO3, was analyzed by Raman spectroscopy, and the associated chang...

  7. Refractive index sensor based on a 1D photonic crystal in a microfluidic channel

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Mortensen, Asger; Kutter, Jörg Peter;

    2010-01-01

    A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental demonstrat......A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental...

  8. Iron-based composition for magnetocaloric effect (MCE) applications and method of making a single crystal

    Science.gov (United States)

    Evans, III, Boyd Mccutchen; Kisner, Roger A.; Ludtka, Gail Mackiewicz; Ludtka, Gerard Michael; Melin, Alexander M.; Nicholson, Donald M.; Parish; , Chad M.; Rios, Orlando; Sefat, Athena S.; West, David L.; Wilgen, John B.

    2016-02-09

    A method of making a single crystal comprises heating a material comprising magnetic anisotropy to a temperature T sufficient to form a melt of the material. A magnetic field of at least about 1 Tesla is applied to the melt at the temperature T, where a magnetic free energy difference .DELTA.G.sub.m between different crystallographic axes is greater than a thermal energy kT. While applying the magnetic field, the melt is cooled at a rate of about 30.degree. C./min or higher, and the melt solidifies to form a single crystal of the material.

  9. Photonic crystal-based resonant antenna with a very high directivity

    International Nuclear Information System (INIS)

    We investigate the radiation properties of an antenna that was formed by a hybrid combination of a monopole radiation source and a cavity built around a dielectric layer-by-layer three-dimensional photonic crystal. We measured a maximum directivity of 310, and a power enhancement of 180 at the resonant frequency of the cavity. We observed that the antenna has a narrow bandwidth determined by the cavity, where the resonant frequency can be tuned within the band gap of the photonic crystal. The measured radiation patterns agree well with our theoretical results. (c) 2000 American Institute of Physics

  10. Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal

    Science.gov (United States)

    Tao, Chen; Rong, Shu; Ye, Ge; Zhuo, Chen

    2016-01-01

    We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators (OPO) in different wavelength tuning ranges, where the primary signals from the OPO process are recycled to enhance the pump-to-idler conversion efficiencies via the simultaneous difference frequency generation (DFG) process by monolithic aperiodically poled, magnesium oxide doped lithium niobate (APMgLN) crystals. The APMgLN crystals are designed with different chirp parameters for the DFG process to broaden their thermal acceptance bandwidths to different extents. The idler wavelength tuning of the cascaded OPO is realized by changing the temperature of the designed APMgLN crystal and the cascaded oscillation is achieved in a single pump pass singly resonant linear cavity. The pump-to-idler conversion efficiencies with respect to the pump pulse duration and ratio of OPO coefficient to DFG coefficient are calculated by numerically solving the coupled wave equations. The optimal working conditions of the tunable cascaded OPOs pumped by pulses with energies of 350 μJ and 700 μJ are compared to obtain the general rules of optimization. It is concluded that the optimization becomes the interplay between the ratio of OPO coefficient to DFG coefficient and the pump pulse duration when the idler wavelength tuning range and the pump pulse energy are fixed. Besides, higher pump pulse energy is beneficial for reaching higher optimal pump-to-idler conversion efficiency as long as the APMgLN crystal is optimized according to this pump condition. To the best of our knowledge, this is the first numerical analysis of idler wavelength tunable cascaded OPOs based on chirp-assisted APMgLN crystals. Project supported by the National Natural Science Foundation of China (Grant No. 61505236), the Innovation Program of Shanghai Institute of Technical Physics, China (Grant No. CX-2), and the Program of Shanghai

  11. Artistic Crystal Creations

    Science.gov (United States)

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  12. Environment-dependent crystal-field tight-binding based on density-functional theory

    International Nuclear Information System (INIS)

    Electronic structure calculations based on Kohn-Sham density-functional theory (DFT) allow the accurate prediction of chemical bonding and materials properties. Due to the high computational demand DFT calculations are, however, restricted to structures containing at most several hundreds of atoms, i.e., to length scales of a few nanometers. Though, many processes of technological relevance, for example in the field of nanoelectronics, are governed by phenomena that occur on a slightly larger length scale of up to 100 nanometers, which corresponds to tens of thousands of atoms. The semiempirical Slater-Koster tight-binding (TB) method makes it feasible to calculate the electronic structure of such large systems. In contrast to first-principles-based DFT, which is universally applicable to almost all chemical species, the TB method is based on parametrized models that are usually specialized for a particular application or for one certain class of compounds. Usually the model parameters (Slater-Koster tables) are empirically adjusted to reproduce either experimental reference data (e.g., geometries, elastic constants) or data from first-principles methods such as DFT. The construction of a new TB model is therefore connected with a considerable effort that is often contrasted by a low transferability of the parametrization. In this thesis we develop a systematic methodology for the derivation of accurate and transferable TB models from DFT calculations. Our procedure exploits the formal relationship between the two methods, according to which the TB total energy can be understood as a direct approximation of the Kohn--Sham energy functional. The concept of our method is different to previous approaches such as the DFTB method, since it allows to extract TB parameters from converged DFT wave functions and Hamiltonians of arbitrary reference structures. In the following the different subjects of this thesis are briefly summarized. We introduce a new technique for the

  13. A Highly Linear All Optical Gate Based on Coupled Photonic Crystal Cavities

    OpenAIRE

    Moille, Gregory; De Rossi, Alfredo; Lehoucq, Gaelle; Martin, Aude; Bramerie, Laurent; Gay, Mathilde; Combrie, Sylvain

    2014-01-01

    International audience A photonic crystal molecule is used as an all-optical gate to perform sampling of microwave signals. We demonstrate a very linear operation over a 50dB still with a 1.2mW power consumption.

  14. Security devices based on liquid crystals doped with a colour dye

    Science.gov (United States)

    Carrasco-Vela, C.; Quintana, X.; Otón, E.; Geday, M. A.; Otón, J. M.

    2011-12-01

    Liquid crystal properties make them useful for the development of security devices in applications of authentication and detection of fakes. Induced orientation of liquid crystal molecules and birefringence are the two main properties used in security devices. Employing liquid crystal and dichroic colorants, we have developed devices that show, with the aid of a polarizer, multiple images on each side of the device. Rubbed polyimide is used as alignment layer on each substrate of the LC cell. By rubbing the polyimide in different directions in each substrate it is possible to create any kind of symbols, drawings or motifs with a greyscale; the more complex the created device is, the more difficult is to fake it. To identify the motifs it is necessary to use polarized light. Depending on whether the polarizer is located in front of the LC cell or behind it, different motifs from one or the other substrate are shown. The effect arises from the dopant colour dye added to the liquid crystal, the induced orientation and the twist structure. In practice, a grazing reflection on a dielectric surface is polarized enough to see the effect. Any LC flat panel display can obviously be used as backlight as well.

  15. Nanoassembly of Polydisperse Photonic Crystals based on Binary and Ternary Polymer Opal Alloys

    CERN Document Server

    Zhao, Qibin; Schafer, Christian; Spahn, Peter; Gallei, Markus; Herrmann, Lars; Petukhov, Andrei; Baumberg, Jeremy J

    2016-01-01

    Ordered binary and ternary photonic crystals, composed of different sized polymer-composite spheres with diameter ratios up to 120%, are generated using bending induced oscillatory shearing (BIOS). This viscoelastic system creates polydisperse equilibrium structures, producing mixed opaline colored films with greatly reduced requirements for particle monodispersity, and very different sphere size ratios, compared to other methods of nano-assembly.

  16. Microcontroller-based servo for two-crystal X-ray monochromators.

    Science.gov (United States)

    Siddons, D P

    1998-05-01

    Microcontrollers have become increasingly easy to incorporate into instruments as the architectures and support tools have developed. The PIC series is particularly easy to use, and this paper describes a controller used to stabilize the output of a two-crystal X-ray monochromator at a given offset from its peak intensity position, as such monochromators are generally used. PMID:15263619

  17. Bent-shaped liquid crystals based on 4-substituted 3-hydroxybenzoic acid central core

    Czech Academy of Sciences Publication Activity Database

    Kohout, M.; Kozmík, V.; Slabochová, M.; Tůma, J.; Svoboda, J.; Novotná, Vladimíra; Pociecha, D.

    2015-01-01

    Roč. 42, č. 1 (2015), s. 87-103. ISSN 0267-8292 R&D Projects: GA ČR GA13-14133S Institutional support: RVO:68378271 Keywords : liquid crystals * bent-shaped mesogens * hydroxybenzoic acid Subject RIV: JJ - Other Materials Impact factor: 2.486, year: 2014

  18. Investigation on possibility of neutron electric optical devices based on piezoelectric single crystals

    Czech Academy of Sciences Publication Activity Database

    Kaneko, JH.; Otake, Y.; Fujimoto, H.; Kawamura, S.; Watanabe, M.; Fujita, F.; Sawamura, T.; Mikula, Pavol; Furusaka, M.

    2004-01-01

    Roč. 529, č. 1 (2004), s. 166-168. ISSN 0168-9002 Institutional research plan: CEZ:AV0Z1048901 Keywords : cold neutrons * optical device * piezoelectric single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.349, year: 2004

  19. Spatial mode effects in a cavity-EIT based quantum memory with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Zangenberg, Kasper Rothe; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency are investigated theoretically. It is found that when both the control and the probe fields are coupled to the same spatial cavity mode, their transverse mode profile affects the...

  20. Refractive Index Measurement within a Photonic Crystal Fibre Based on Short Wavelength Diffraction

    Directory of Open Access Journals (Sweden)

    Nathaniel Groothoff

    2007-10-01

    Full Text Available A new class of refractive index sensors using solid core photonic crystal fibres isdemonstrated. Coherent scattering at the cladding lattice is used to optically characterizematerials inserted into the fibre holes. The liquid to solid phase transition of water uponfreezing to ice 1h is characterized by determining the refractive index.