WorldWideScience

Sample records for cadmium-air batteries

  1. Button batteries

    Science.gov (United States)

    Swallowing batteries ... These devices use button batteries: Calculators Cameras Hearing aids Penlights Watches ... If a person puts the battery up their nose and breathes it further in, ... problems Cough Pneumonia (if the battery goes unnoticed) ...

  2. Battery Modeling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,

  3. Paintable battery

    National Research Council Canada - National Science Library

    Singh, Neelam; Galande, Charudatta; Miranda, Andrea; Mathkar, Akshay; Gao, Wei; Reddy, Arava Leela Mohana; Vlad, Alexandru; Ajayan, Pulickel M

    2012-01-01

    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary...

  4. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  5. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  6. Battery Safety Basics

    Science.gov (United States)

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  7. Batteries for Electric Vehicles

    Science.gov (United States)

    Conover, R. A.

    1985-01-01

    Report summarizes results of test on "near-term" electrochemical batteries - (batteries approaching commercial production). Nickel/iron, nickel/zinc, and advanced lead/acid batteries included in tests and compared with conventional lead/acid batteries. Batteries operated in electric vehicles at constant speed and repetitive schedule of accerlerating, coasting, and braking.

  8. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  9. Battery systems engineering

    CERN Document Server

    Rahn, Christopher D

    2012-01-01

    A complete all-in-one reference on the important interdisciplinary topic of Battery Systems Engineering Focusing on the interdisciplinary area of battery systems engineering, this book provides the background, models, solution techniques, and systems theory that are necessary for the development of advanced battery management systems. It covers the topic from the perspective of basic electrochemistry as well as systems engineering topics and provides a basis for battery modeling for system engineering of electric and hybrid electric vehicle platforms. This original

  10. Handbook of Battery Materials

    Science.gov (United States)

    Besenhard, J. O.

    1999-04-01

    Batteries find their applications in an increasing range of every-day products: discmen, mobile phones and electric cars need very different battery types. This handbook gives a concise survey about the materials used in modern battery technology. The physico-chemical fundamentals are as well treated as are the environmental and recycling aspects. It will be a profound reference source for anyone working in the research and development of new battery systems, regardless if chemist, physicist or engineer.

  11. Rechargeable batteries applications handbook

    CERN Document Server

    1998-01-01

    Represents the first widely available compendium of the information needed by those design professionals responsible for using rechargeable batteries. This handbook introduces the most common forms of rechargeable batteries, including their history, the basic chemistry that governs their operation, and common design approaches. The introduction also exposes reader to common battery design terms and concepts.Two sections of the handbook provide performance information on two principal types of rechargeable batteries commonly found in consumer and industrial products: sealed nickel-cad

  12. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2016-01-01

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when

  13. Battery Aging and the Kinetic Battery Model

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    Batteries are omnipresent, and with the uprise of the electrical vehicles will their use will grow even more. However, the batteries can deliver their required power for a limited time span. They slowly degrade with every charge-discharge cycle. This degradation needs to be taken into account when

  14. Electric Vehicle Battery Challenge

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    A serious drawback to electric vehicles [batteries only] is the idle time needed to recharge their batteries. In this challenge, students can develop ideas and concepts for battery change-out at automotive service stations. Such a capability would extend the range of electric vehicles.

  15. Lithium batteries. Lithiumbatterien

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Ludwig, G.; Bischoff, H.; Hauke, I.; Machill, S.; Siury, K.; Wiesener, K. (TU Dresden (Germany). Inst. fuer Physikalische Chemie und Elektrochemie)

    1992-01-01

    General rules on the method of operation of lithium batteries are worked out from the many commercially available lithium batteries or the systems examined by research, and some trends in development are indicated. It is shown from some selected research results that the the development of rechargeable lithium batteries is a demanding task for basic electrochemical research. (orig.).

  16. Electrochemical accumulators batteries; Accumulateurs electrochimiques batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ansart, F.; Castillo, S.; Laberty- Robert, C.; Pellizon-Birelli, M. [Universite Paul Sabatier, Lab. de Chimie des Materiaux Inorganiques et Energetiques, CIRIMAT, UMR CNRS 5085, 31 - Toulouse (France)] [and others

    2000-07-01

    It is necessary to storage the electric power in batteries to join the production and the utilization. In this domain progresses are done every days in the technics and also in the available materials. These technical days present the state of the art in this domain. Many papers were presented during these two days giving the research programs and recent results on the following subjects: the lithium batteries, the electrolytes performances and behaviour, lead accumulators, economic analysis of the electrochemical storage market, the batteries applied to the transportation sector and the telephones. (A.L.B.)

  17. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  18. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  19. Potassium Secondary Batteries.

    Science.gov (United States)

    Eftekhari, Ali; Jian, Zelang; Ji, Xiulei

    2017-02-08

    Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

  20. A Desalination Battery

    KAUST Repository

    Pasta, Mauro

    2012-02-08

    Water desalination is an important approach to provide fresh water around the world, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse on our previously reported mixing entropy battery. Rather than generating electricity from salinity differences, as in mixing entropy batteries, desalination batteries use an electrical energy input to extract sodium and chloride ions from seawater and to generate fresh water. The desalination battery is comprised by a Na 2-xMn 5O 10 nanorod positive electrode and Ag/AgCl negative electrode. Here, we demonstrate an energy consumption of 0.29 Wh l -1 for the removal of 25% salt using this novel desalination battery, which is promising when compared to reverse osmosis (∼ 0.2 Wh l -1), the most efficient technique presently available. © 2012 American Chemical Society.

  1. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  2. Printed battery power management

    OpenAIRE

    Josefsson, Magnus

    2015-01-01

    Printed electronics and low power radio has evolved significantly in recent years. This has made it possible to implement electronic worn on the body or clothing. Printed batteries internal resistance is much higher compared to regular batteries. Unless a battery power management circuit is used, the radio peak current makes that the terminal voltage may drop to a level below the specified supply voltage for the radio, causing operation failure. A large capacitor solves this but a large surfa...

  3. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  4. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  5. COPPERHEAD battery tester

    Science.gov (United States)

    Cruickshank, W. J.

    1983-06-01

    The development of a tester for the control section battery of the M712 Cannon-Launched Guided Projectile has fulfilled a requirement for the automatic testing of a series of batteries. The tester is a self-contained instrument that is used with a shock test system to rapidly perform complete tests after an initial setup.

  6. Computing Battery Lifetime Distributions

    NARCIS (Netherlands)

    Cloth, L.; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.

    The usage of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  7. Battery energy storage system

    NARCIS (Netherlands)

    Tol, C.S.P.; Evenblij, B.H.

    2009-01-01

    The ability to store electrical energy adds several interesting features to a ships distribution network, as silent power, peak shaving and a ride through in case of generator failure. Modern intrinsically safe Li-ion batteries bring these within reach. For this modern lithium battery applications

  8. Batteries for terrestrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulin, T.M.

    1998-07-01

    Extensive research has been conducted in the design and manufacture of very long life vented and sealed maintenance free nickel-cadmium aircraft batteries. These batteries have also been used in a number of terrestrial applications with good success. This study presents an overview of the Ni-Cd chemistry and technology as well as detailed analysis of the advantages and disadvantages of the Ni-Cd couple for terrestrial applications. The performance characteristics of both sealed and vented Ni-Cd's are presented. Various charge algorithms are examined and evaluated for effectiveness and ease of implementation. Hardware requirements for charging are also presented and evaluated. The discharge characteristics of vented and sealed Ni-Cd's are presented and compared to other battery chemistries. The performance of Ni-Cd's under extreme environmental conditions is also compared to other battery chemistries. The history of various terrestrial applications is reviewed and some of the lessons learned are presented. Applications discussed include the NASA Middeck Payload Battery, Raytheon Aegis Missile System Battery, THAAD Launcher battery, and the Titan IV battery. The suitability of the Ni-Cd chemistry for other terrestrial applications such as electric vehicles and Uninterruptible Power Supply is discussed.

  9. The zinc bromine battery

    Energy Technology Data Exchange (ETDEWEB)

    Jonshagen, B. [ZBB (Australia) Ltd., West Perth, WA (Australia)

    1996-12-31

    The Zinc Bromine Battery electrolyte is essentially zinc bromide salt dissolved in water. Unlike the lead acid and most other batteries, the Zinc Bromine Battery uses electrodes that cannot and do not take part in the reactions but merely serve as substrates for the reactions. There is therefore no loss of performance, as in most re-chargeable batteries, from repeated cycling which causes electrode material deterioration. When the Zinc Bromine Battery is completely discharged all the metal zinc plated on the negative electrodes is dissolved in the electrolyte and again produced the next time the batter is charged. In the discharged state the battery can be shorted and left that way indefinitely. This paper presents an overview of large scale Zinc Bromine battery systems that are currently being commercialized as an economically attractive alternative to utility upgrades. Also outlined is how the battery can improve the viability of renewable energy and reduce diesel use in isolated grids and remote power installations. (author). 11 figs., 2 refs.

  10. Lithium Battery Diaper Ulceration.

    Science.gov (United States)

    Maridet, Claire; Taïeb, Alain

    2016-01-01

    We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge. © 2015 Wiley Periodicals, Inc.

  11. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  12. 29 CFR 1926.441 - Batteries and battery charging.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Batteries and battery charging. 1926.441 Section 1926.441..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Electrical Safety Requirements for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1...

  13. Thermal management of batteries

    Science.gov (United States)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  14. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  15. Sodium sulfur battery seal

    Science.gov (United States)

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  16. Thermal battery degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Missert, Nancy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunke, Lyle Brent [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  17. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  18. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  19. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  20. Battery Cell Balancing Optimisation for Battery Management System

    Science.gov (United States)

    Yusof, M. S.; Toha, S. F.; Kamisan, N. A.; Hashim, N. N. W. N.; Abdullah, M. A.

    2017-03-01

    Battery cell balancing in every electrical component such as home electronic equipment and electric vehicle is very important to extend battery run time which is simplified known as battery life. The underlying solution to equalize the balance of cell voltage and SOC between the cells when they are in complete charge. In order to control and extend the battery life, the battery cell balancing is design and manipulated in such way as well as shorten the charging process. Active and passive cell balancing strategies as a unique hallmark enables the balancing of the battery with the excellent performances configuration so that the charging process will be faster. The experimental and simulation covers an analysis of how fast the battery can balance for certain time. The simulation based analysis is conducted to certify the use of optimisation in active or passive cell balancing to extend battery life for long periods of time.

  1. Used batteries - REMINDER

    CERN Multimedia

    2006-01-01

    With colder weather drawing in, it is quite likely that older car batteries will fail. On this subject, the Safety Commission wishes to remind everyone that CERN is not responsible for the disposal of used batteries from private vehicles. So please refrain from abandoning them on pavements or around or inside buildings. Used batteries can be disposed of safely, free-of-charge and without any damage to the environment at waste disposal sites (déchetteries) close to CERN in both France (Ain and Haute-Savoie) and in the Canton of Geneva in Switzerland (Cheneviers). Since the average car battery lasts a number of years, this only represents a small effort on your part over the whole lifetime of your vehicle. Most people don't need reminding that car batteries contain concentrated sulphuric acid, which can cause severe burns. Despite this, we frequently find them casually dumped in scrap metal bins! For more information, please contact R. Magnier/SC-GS 160879 We all have a responsibility for safety and th...

  2. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  3. A Martian Air Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will investigate an entirely new battery chemistry by developing A Martian Air Battery. Specifically the project will explore the concept of a Martian...

  4. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  5. Impact resistant battery enclosure systems

    Science.gov (United States)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  6. Joint Battery Industry Sector Study.

    Science.gov (United States)

    1994-08-31

    batteries for 3 wheelchairs , commercial marine, commercial general aviation aircraft (corporate and private airplanes - not commercial jetliners), and...hour battery and pilot plan production. Wheelchairs are the designated preliminary test application for this battery with the hope of being able to...and Rockwell. ARPA also has contracted with Photovoltaics regarding research on solar charging batteries. 3 8.13.6 DOE 3 DOE is conducting research on

  7. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  8. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  9. Batteries, from Cradle to Grave

    Science.gov (United States)

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  10. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  11. Seal for sodium sulfur battery

    Science.gov (United States)

    Topouzian, Armenag; Minck, Robert W.; Williams, William J.

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  12. Batteries: Discharging the right product

    Science.gov (United States)

    Lau, Sampson; Archer, Lynden A.

    2016-03-01

    The chemistry of the discharge products of metal-oxygen batteries is related to the battery's efficiency but knowledge of their formation mechanism is incomplete. Now, the initial discharge product in sodium-oxygen batteries is shown to be sodium superoxide, which undergoes dissolution and then transforms to sodium peroxide dihydrate.

  13. Weston Standard battery

    CERN Multimedia

    This is a Weston AOIP standard battery with its calibration certificate (1956). Inside, the glassware forms an "H". Its name comes from the British physicist Edward Weston. A standard is the materialization of a given quantity whose value is known with great accuracy.

  14. USED BATTERIES-REMINDER

    CERN Multimedia

    2002-01-01

    Note from the TIS Division: Although it is not an obligation for CERN to collect, store and dispose of used batteries from private vehicles, they are often found abandoned on the site and even in the scrap metal bins. As well as being very dangerous (they contain sulphuric acid which is highly corrosive), this practise costs CERN a non-negligible amount of money to dispose of them safely. The disposal of used batteries in the host state could not be simpler, there are 'déchetteries' in neighbouring France at Saint-Genis, Gaillard and Annemasse as well as in other communes. In Geneva Canton the centre de traitement des déchets spéciaux, at Cheneviers on the river Rhône a few kilometers from CERN, will dispose of your batterie free of charge. So we ask you to use a little common sense and to help protect the environnement from the lead and acid in these batteries and even more important, to avoid the possibility of a colleague being seriously injured. It doesn't take m...

  15. Remote RF Battery Charging

    NARCIS (Netherlands)

    Visser, H.J.; Pop, V.; Op het Veld, J.H.G.; Vullers, R.J.M.

    2011-01-01

    The design of a remote RF battery charger is discussed through the analysis and design of the subsystems of a rectenna (rectifying antenna): antenna, rectifying circuit and loaded DC-to-DC voltage (buck-boost) converter. Optimum system power generation performance is obtained by adopting a system

  16. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  17. Modular Battery Charge Controller

    Science.gov (United States)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  18. Advanced Battery Manufacturing (VA)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease

  19. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  20. Modular Battery Controller

    Science.gov (United States)

    Button, Robert M (Inventor); Gonzalez, Marcelo C (Inventor)

    2017-01-01

    Some embodiments of the present invention describe a battery including a plurality of master-less controllers. Each controller is operatively connected to a corresponding cell in a string of cells, and each controller is configured to bypass a fraction of current around the corresponding cell when the corresponding cell has a greater charge than one or more other cells in the string of cells.

  1. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    Science.gov (United States)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  2. Wireless battery management control and monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Zumstein, James M.; Chang, John T.; Farmer, Joseph C.; Kovotsky, Jack; Lavietes, Anthony; Trebes, James Edward

    2018-01-16

    A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.

  3. 78 FR 38093 - Thirteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-06-25

    ... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal... Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY... Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size. DATES: The meeting...

  4. 78 FR 55773 - Fourteenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-09-11

    ... Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to... Battery and Battery Systems--Small and Medium Size DATES: The meeting will be held October 1-3, 2013, from...

  5. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  6. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  7. Vaporization Would Cool Primary Battery

    Science.gov (United States)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  8. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  9. Membranes in Lithium Ion Batteries

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  10. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  11. Trends in Cardiac Pacemaker Batteries

    Directory of Open Access Journals (Sweden)

    Venkateswara Sarma Mallela

    2004-10-01

    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  12. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  13. Optimised battery capacity utilisation within battery management systems

    NARCIS (Netherlands)

    Wilkins, S.; Rosca, B.; Jacob, J.; Hoedmaekers, E.

    2015-01-01

    Battery Management Systems (BMSs) play a key role in the performance of both hybrid and fully electric vehicles. Typically, the role of the BMS is to help maintain safety, performance, and overall efficiency of the battery pack. One important aspect of its operation is the estimation of the state of

  14. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  15. EXAFS studies of battery materials

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1991-01-01

    X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

  16. EXAFS studies of battery materials

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1991-12-31

    X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

  17. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    The use of mobile devices like cell phones, navigation systems, or laptop computers, is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed, however, it also depends on the usage pattern of the battery. Continuous drawing of a

  18. Which battery model to use?

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    2009-01-01

    The use of mobile devices like cell phones, navigation systems or laptop computers is limited by the lifetime of the included batteries. This lifetime depends naturally on the rate at which energy is consumed; however, it also depends on the usage pattern of the battery. Continuous drawing of a high

  19. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  20. Redox Flow Batteries, a Review

    Energy Technology Data Exchange (ETDEWEB)

    Knoxville, U. Tennessee; U. Texas Austin; U, McGill; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  1. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  2. Redox Flow Batteries, a Review

    OpenAIRE

    Weber, Adam Z.

    2013-01-01

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  3. A Mobile Battery Swapping Service for Electric Vehicles Based on a Battery Swapping Van

    OpenAIRE

    Sujie Shao; Shaoyong Guo; Xuesong Qiu

    2017-01-01

    This paper presents a novel approach for providing a mobile battery swapping service for electric vehicles (EVs) that is provided by a mobile battery swapping van. This battery swapping van can carry many fully charged batteries and drive up to an EV to swap a battery within a few minutes. First, a reasonable EV battery swapping architecture based on a battery swapping van is established in this paper. The function and role of each participant and the relationships between each participant ar...

  4. Principles of an atomtronic battery

    Science.gov (United States)

    Zozulya, Alex A.; Anderson, Dana Z.

    2013-10-01

    An asymmetric atom trap is investigated as a means to implement a “battery” that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a nondissipative atom trap proposed by Roos [C. F. Roos, P. Cren, D. Guery-Odelin, and J. Dalibard, Europhys. Lett.EULEEJ0295-507510.1209/epl/i2003-00211-3 61, 187 (2003)]. The trap is defined by longitudinal and transverse trap frequencies fz and f⊥ and corresponding trap energy heights Uz and U⊥. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power, Iin and Pin=Iin(1+ɛ)Uz, respectively, where ɛ is an excess fractional energy. For given trap parameters, the battery is shown to have a resonantly optimum value of ɛ. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Thévenin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and the noise that will be imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented by a Thévenin equivalent and that its performance will likewise be determined by an internal resistance.

  5. Principles of an Atomtronic Battery

    CERN Document Server

    Zozulya, Alex A

    2013-01-01

    An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circui...

  6. Open stack thermal battery tests

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Headley, Alexander J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fenton, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wong, Dennis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-17

    We present selected results from a series of Open Stack thermal battery tests performed in FY14 and FY15 and discuss our findings. These tests were meant to provide validation data for the comprehensive thermal battery simulation tools currently under development in Sierra/Aria under known conditions compared with as-manufactured batteries. We are able to satisfy this original objective in the present study for some test conditions. Measurements from each test include: nominal stack pressure (axial stress) vs. time in the cold state and during battery ignition, battery voltage vs. time against a prescribed current draw with periodic pulses, and images transverse to the battery axis from which cell displacements are computed. Six battery configurations were evaluated: 3, 5, and 10 cell stacks sandwiched between 4 layers of the materials used for axial thermal insulation, either Fiberfrax Board or MinK. In addition to the results from 3, 5, and 10 cell stacks with either in-line Fiberfrax Board or MinK insulation, a series of cell-free “control” tests were performed that show the inherent settling and stress relaxation based on the interaction between the insulation and heat pellets alone.

  7. Aqueous lithium air batteries

    Science.gov (United States)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  8. 46 CFR 169.668 - Batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  9. STS lithium/CF(x) battery

    Science.gov (United States)

    Gnacek, Dee

    1991-01-01

    Lithium carbon fluoride batteries are used on Space Shuttle Rocket Boosters and external tanks. These batteries have been extremely successful in terms of mission reliability with the exception of cell yield variances. The function/system and battery descriptions are given. A description is given of the battery range safety system.

  10. Maximizing System Lifetime by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the

  11. Cell for making secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  12. Battery Ownership Model - Medium Duty HEV Battery Leasing & Standardization

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ken; Smith, Kandler; Cosgrove, Jon; Prohaska, Robert; Pesaran, Ahmad; Paul, James; Wiseman, Marc

    2015-12-01

    Prepared for the U.S. Department of Energy, this milestone report focuses on the economics of leasing versus owning batteries for medium-duty hybrid electric vehicles as well as various battery standardization scenarios. The work described in this report was performed by members of the Energy Storage Team and the Vehicle Simulation Team in NREL's Transportation and Hydrogen Systems Center along with members of the Vehicles Analysis Team at Ricardo.

  13. Prognostics in Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Batteries represent complex systems whose internal state vari- ables are either inaccessible to sensors or hard to measure un- der operational conditions. This work...

  14. Polymer-Based Organic Batteries.

    Science.gov (United States)

    Muench, Simon; Wild, Andreas; Friebe, Christian; Häupler, Bernhard; Janoschka, Tobias; Schubert, Ulrich S

    2016-08-24

    The storage of electric energy is of ever growing importance for our modern, technology-based society, and novel battery systems are in the focus of research. The substitution of conventional metals as redox-active material by organic materials offers a promising alternative for the next generation of rechargeable batteries since these organic batteries are excelling in charging speed and cycling stability. This review provides a comprehensive overview of these systems and discusses the numerous classes of organic, polymer-based active materials as well as auxiliary components of the battery, like additives or electrolytes. Moreover, a definition of important cell characteristics and an introduction to selected characterization techniques is provided, completed by the discussion of potential socio-economic impacts.

  15. Rechargeable Aluminum-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [ORNL; Liu, Hansan [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  16. Flexible Hybrid Battery/Pseudocapacitor

    Science.gov (United States)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  17. Composite materials for battery applications

    Science.gov (United States)

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  18. Electroactive materials for rechargeable batteries

    Science.gov (United States)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2015-04-21

    An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.

  19. Electric vehicle battery charging controller

    OpenAIRE

    Pedersen, Anders Bro; Andersen, Peter Bach; Sørensen, Thomas Meier; Martinenas, Sergejus

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for contr...

  20. Iron-Air Rechargeable Battery

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  1. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  2. Metal-air battery assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

    1988-05-01

    The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

  3. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  4. Carbon-enhanced VRLA batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  5. Computer Aided Battery Engineering Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-07

    A multi-national lab collaborative team was assembled that includes experts from academia and industry to enhance recently developed Computer-Aided Battery Engineering for Electric Drive Vehicles (CAEBAT)-II battery crush modeling tools and to develop microstructure models for electrode design - both computationally efficient. Task 1. The new Multi-Scale Multi-Domain model framework (GH-MSMD) provides 100x to 1,000x computation speed-up in battery electrochemical/thermal simulation while retaining modularity of particles and electrode-, cell-, and pack-level domains. The increased speed enables direct use of the full model in parameter identification. Task 2. Mechanical-electrochemical-thermal (MECT) models for mechanical abuse simulation were simultaneously coupled, enabling simultaneous modeling of electrochemical reactions during the short circuit, when necessary. The interactions between mechanical failure and battery cell performance were studied, and the flexibility of the model for various batteries structures and loading conditions was improved. Model validation is ongoing to compare with test data from Sandia National Laboratories. The ABDT tool was established in ANSYS. Task 3. Microstructural modeling was conducted to enhance next-generation electrode designs. This 3- year project will validate models for a variety of electrodes, complementing Advanced Battery Research programs. Prototype tools have been developed for electrochemical simulation and geometric reconstruction.

  6. Functional materials for rechargeable batteries.

    Science.gov (United States)

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Technical feasibility for commercialization of lithium ion battery as a substitute dry battery for motorcycle

    Science.gov (United States)

    Kurniyati, Indah; Sutopo, Wahyudi; Zakaria, Roni; Kadir, Evizal Abdul

    2017-11-01

    Dry battery on a motorcycle has a rapid rate of voltage drop, life time is not too long, and a long charging time. These are problems for users of dry battery for motorcycle. When the rate in the voltage decreases, the energy storage in the battery is reduced, then at the age of one to two years of battery will be dead and cannot be used, it makes the user should replace the battery. New technology development of a motorcycle battery is lithium ion battery. Lithium ion battery has a specification that has been tested and possible to replace dry battery. Characteristics of lithium ion battery can answer the question on the dry battery service life, the rate of decrease in voltage and charging time. This paper discusses about the technical feasibility for commercialization of lithium ion battery for motorcycle battery. Our proposed methodology of technical feasibility by using a goldsmith commercialization model of the technical feasibility and reconfirm the technical standard using the national standard of motorcycle battery. The battery has been through all the stages of the technical feasibility of the goldsmith model. Based on the results of the study, lithium ion batteries have the minimum technical requirements to be commercialized and has been confirmed in accordance with the standard motorcycle battery. This paper results that the lithium ion battery is visible to commercialized by the technical aspect.

  8. Evaluation of Batteries for Safe Air Transport

    Directory of Open Access Journals (Sweden)

    Nicholas Williard

    2016-05-01

    Full Text Available Lithium-ion batteries are shipped worldwide with many limitations implemented to ensure safety and to prevent loss of cargo. Many of the transportation guidelines focus on new batteries; however, the shipment requirements for used or degraded batteries are less clear. Current international regulations regarding the air transport of lithium-ion batteries are critically reviewed. The pre-shipping tests are outlined and evaluated to assess their ability to fully mitigate risks during battery transport. In particular, the guidelines for shipping second-use batteries are considered. Because the electrochemical state of previously used batteries is inherently different from that of new batteries, additional considerations must be made to evaluate these types of cells. Additional tests are suggested that evaluate the risks of second-use batteries, which may or may not contain incipient faults.

  9. Air Force Phillips Laboratory Battery Program overview

    Science.gov (United States)

    House, Shaun

    1992-02-01

    Battery development and testing efforts at Phillips Laboratory fall into three main categories: nickel hydrogen, sodium sulfur, and solid state batteries. Nickel hydrogen work is broken down into a Low Earth Orbit (LEO) Life Test Program, a LEO Pulse Test Program, and a Hydrogen Embrittlement Investigation. Sodium sulfur work is broken down into a Geosynchronous Earth Orbit (GEO) Battery Flight Test and a Hot Launch Evaluation. Solid state polymer battery work consists of a GEO Battery Development Program, a Pulse Power Battery Small Business Innovation Research (SBIR), and an in-house evaluation of current generation laboratory cells. An overview of the program is presented.

  10. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  11. Lead batteries. Citations from the Engineering Index data base

    Science.gov (United States)

    Cavagnaro, D. M.

    1980-07-01

    Worldwide research on lead battery components, charging, corrosion, and testing is cited. The majority of studies concern battery use in electric vehicles. Studies on lead recovery from battery scrap and air pollution at battery factories are also included.

  12. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Characterization of Vanadium Flow Battery

    DEFF Research Database (Denmark)

    Bindner, Henrik W.; Krog Ekman, Claus; Gehrke, Oliver

    This report summarizes the work done at Risø-DTU testing a vanadium flow battery as part of the project “Characterisation of Vanadium Batteries” (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery...... has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risø DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration...... of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses...

  14. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  15. Alternator control for battery charging

    Science.gov (United States)

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  16. Vehicle Battery Safety Roadmap Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D. H.

    2012-10-01

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  17. Li-ion Battery Aging Datasets

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set has been collected from a custom built battery prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE). Li-ion batteries were run...

  18. Validation of Battery Safety for Space Missions

    Science.gov (United States)

    Jeevarajan, Judith

    2012-01-01

    Presentation covers: (1) Safety Certification Process at NASA (2) Safety Testing for Lithium-ion Batteries (3) Limitations Observed with Li-ion Batteries in High Voltage and High Capacity Configurations.

  19. Practical Methods in Li-ion Batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela

    to parameterize battery models based solely on manufacturer’s datasheets • Manuscript II presents a parameterization method for battery models based on the notion of direct current resistance • Manuscript III proposes a battery electric vehicle design that combines fixed and swappable packs • Manuscript IV......This thesis presents, as a collection of papers, practical methods in Li-ion batteries for simplified modeling (Manuscript I and II), battery electric vehicle design (III), battery management system testing (IV and V) and balancing system control (VI and VII). • Manuscript I tackles methodologies...... develops a battery system model for battery management system testing on a hardware-in-the-loop simulator • Manuscript V extends the previous work, introducing theoretical principles and presenting a practical method to develop ad hoc software and strategies for testing • Manuscript VI presents...

  20. Materials science: Pulley protection in batteries

    Science.gov (United States)

    McDowell, Matthew T.

    2017-09-01

    High-energy battery electrodes can break apart during operation. Conventional rope-and-pulley systems have inspired the development of a polymer that holds electrodes together at the molecular scale, enabling durable batteries to be made.

  1. Market for nickel-cadmium batteries

    Science.gov (United States)

    Putois, F.

    Besides the lead/acid battery market, which has seen a tremendous development linked with the car industry, the alkaline rechargeable battery market has also been expanded for more than twenty years, especially in the field of portable applications with nickel-cadmium batteries. Today, nickel-cadmium batteries have to face newcomers on the market, such as nickel-metal hydride, which is another alkaline couple, and rechargeable lithium batteries; these new battery systems have better performances in some areas. This work illustrates the status of the market for nickel-cadmium batteries and their applications. Also, for two major applications—the cordless tool and the electric vehicles—the competitive situation of nickel-cadmium batteries; facing new systems such as nickel-metal hydride and lithium ion cells are discussed.

  2. 78 FR 6845 - Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-01-31

    ... Federal Aviation Administration Eleventh Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  3. 78 FR 16031 - Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2013-03-13

    ... Federal Aviation Administration Twelfth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  4. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  5. 77 FR 39321 - Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems...

    Science.gov (United States)

    2012-07-02

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Sizes. SUMMARY: The FAA is issuing this notice to...

  6. 49 CFR 173.185 - Lithium cells and batteries.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of the...

  7. Survey of rechargeable battery technology

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

  8. Efficient Electrolytes for Lithium–Sulfur Batteries

    OpenAIRE

    Natarajan eAngulakshmi; Arul Manuel Stephan

    2015-01-01

    This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium–sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium–sulfur batteries. The electrolytes for lithium–sulfur batteries are broadly classified as (i) non-aqueous liquid electrolytes, (ii) ionic liquids, (iii) solid polyme...

  9. Principles and applications of lithium secondary batteries

    CERN Document Server

    Park, Jung-Ki

    2012-01-01

    Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energystorage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a centralrole in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development onlithium secondary batteries.The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineer

  10. Ion-batterier - "The Next Generation"

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Becker, Jacob; Shen, Yanbin

    2014-01-01

    Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på.......Lithium-ion batterier er strømkilden, der har revolutioneret vores transportable elektronik. Familien af ion-batterier er imidlertid større end som så og har meget, meget mere at byde på....

  11. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...

  12. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  13. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  14. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  15. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  16. Modelling of rechargeable NiMH batteries

    NARCIS (Netherlands)

    Ledovskikh, A.; Verbitskiy, E.; Ayeb, A.; Notten, P.H.L.

    2003-01-01

    A new mathematical model has been developed for rechargeable NiMH batteries, which is based on the occurring physical–chemical processes inside. This model enables one to simultaneously simulate the battery voltage, internal gas pressures (both PO2 and PH2) and temperature during battery operation.

  17. 33 CFR 183.420 - Batteries.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Batteries. 183.420 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Electrical Systems Manufacturer Requirements § 183.420 Batteries. (a) Each installed battery must not move more than one inch in any direction when a pulling force of...

  18. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Shimul Kumar Dam

    Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring. 1. Introduction. Batteries play an important role as energy storage devices for renewable energy sources, electric vehicle and many other applications. A battery bank is interfaced to load through a power converter, which controls ...

  19. Review of storage battery system cost estimates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  20. Propagation testing multi-cell batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Orendorff, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steele, Leigh Anna Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spangler, Scott Wilmer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  1. A rechargeable carbon-oxygen battery

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a rechargeable battery and a method to operate a rechargeable battery having high efficiency and high energy density for storing energy. The battery stores electrical energy in the bonds of carbon and oxygen atoms by converting carbon dioxide into solid carbon and oxygen....

  2. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  3. Circuit prevents overcharging of secondary cell batteries

    Science.gov (United States)

    Hennigan, T. J.; Potter, N. H.; Sizemore, K. O.

    1966-01-01

    Circuit prevents battery cell overcharging by detecting and reducing the charging voltage to the open-circuit voltage of the battery when this current falls to a predetermined value. The voltage control depends on the fact that the charging current falls significantly when the battery nears its fully charged state.

  4. Canadian consumer battery baseline study : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    This report provided information about the estimated number of consumer and household batteries sold, re-used, stored, recycled, and disposed each year in Canada. The report discussed the ways in which different batteries posed risks to human health and the environment, and legislative trends were also reviewed. Data used in the report were obtained from a literature review as well as through a series of interviews. The study showed that alkaline batteries are the most common primary batteries used by Canadians, followed by zinc carbon batteries. However, lithium primary batteries are gaining in popularity, and silver oxide and zinc air button cell batteries are also used in applications requiring a flat voltage and high energy. Secondary batteries used in laptop computers, and cell phones are often made of nickel-cadmium, nickel-metal-hydroxide, and lithium ion. Small sealed lead batteries are also commonly used in emergency lighting and alarm systems. Annual consumption statistics for all types of batteries were provided. Results of the study showed that the primary battery market is expected to decline. Total units of secondary batteries are expected to increase to 38.6 million units by 2010. The report also used a spreadsheet model to estimate the flow of consumer batteries through the Canadian waste management system. An estimated 347 million consumer batteries were discarded in 2004. By 2010, it is expected that an estimated 494 million units will be discarded by consumers. The study also considered issues related to lead, cadmium, mercury, and nickel disposal and the potential for groundwater contamination. It was concluded that neither Canada nor its provinces or territories have initiated legislative or producer responsibility programs targeting primary or secondary consumer batteries. 79 refs., 37 tabs., 1 fig.

  5. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  6. Transparent lithium-ion batteries

    KAUST Repository

    Yang, Y.

    2011-07-25

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries.

  7. Phthalocyanines in batteries and supercapacitors

    CSIR Research Space (South Africa)

    Oni, J

    2012-08-01

    Full Text Available of their lower cost. This review article looks through a very narrow window of the applications of phthalocyanines in batteries and supercapacitors as a means of improving the qualities such as cycle property, energy density, capacity, open circuit voltage, etc...

  8. A nanoview of battery operation

    DEFF Research Database (Denmark)

    Schougaard, Steen Brian

    2016-01-01

    The redox-active materials in lithium-ion batteries have relatively poor electronic and ionic conduction and may experience stress from charge-discharge volume changes, so their formulation into structures with nanosized features is highly desirable. On page 566 of this issue, Lim et al. (1...

  9. Transparent lithium-ion batteries

    Science.gov (United States)

    Yang, Yuan; Jeong, Sangmoo; Hu, Liangbing; Wu, Hui; Lee, Seok Woo; Cui, Yi

    2011-01-01

    Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries. PMID:21788483

  10. The Science of Battery Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; McCarty, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Sugar, Joshua Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Talin, Alec A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Physics; Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Design and Development; Harris, Charles Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Jungjohann, Katherine Leigh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanosystems Synthesis/Analysis; Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Kliewer, Christopher Jesse [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Combustion Chemistry Dept.; Hudak, Nicholas S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Power Sources Research and Development; Leung, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics; McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Hydrogen and Combustion Technology; Tenney, Craig M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Chemical and Biological Systems; Zavadil, Kevin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Lab.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  11. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  12. Battery Fault Detection with Saturating Transformers

    Science.gov (United States)

    Davies, Francis J. (Inventor); Graika, Jason R. (Inventor)

    2013-01-01

    A battery monitoring system utilizes a plurality of transformers interconnected with a battery having a plurality of battery cells. Windings of the transformers are driven with an excitation waveform whereupon signals are responsively detected, which indicate a health of the battery. In one embodiment, excitation windings and sense windings are separately provided for the plurality of transformers such that the excitation waveform is applied to the excitation windings and the signals are detected on the sense windings. In one embodiment, the number of sense windings and/or excitation windings is varied to permit location of underperforming battery cells utilizing a peak voltage detector.

  13. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  14. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  15. The Mechanical Response of Multifunctional Battery Systems

    Science.gov (United States)

    Tsutsui, Waterloo

    The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following

  16. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  17. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  18. Automatic Battery Swap System for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2012-12-01

    Full Text Available This paper presents the design and implementation of an automatic battery swap system for the prolonged activities of home robots. A battery swap station is proposed to implement battery off-line recharging and on-line exchanging functions. It consists of a loading and unloading mechanism, a shifting mechanism, a locking device and a shell. The home robot is a palm-sized wheeled robot with an onboard camera and a removable battery case in the front. It communicates with the battery swap station wirelessly through ZigBee. The influences of battery case deflection and robot docking deflection on the battery swap operations have been investigated. The experimental results show that it takes an average time of 84.2s to complete the battery swap operations. The home robot does not have to wait several hours for the batteries to be fully charged. The proposed battery swap system is proved to be efficient in home robot applications that need the robots to work continuously over a long period.

  19. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  20. Sodium-metal chloride batteries

    Science.gov (United States)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1992-02-01

    It was concluded that rapid development in the technology of sodium metal chloride batteries has been achieved in the last decade mainly due to the: expertise available with sodium sulfur system; safety; and flexibility in design and fabrication. Long cycle lives of over 1000 and high energy densities of approx. 100 Wh/kg have been demonstrated in both Na/FeCl2 and Na/NiCl2 cells. Optimization of porous cathode and solid electrolyte geometries are essential for further enhancing the battery performance. Fundamental studies confirm the capabilities of these systems. Nickel dichloride emerges as the candidate cathode material for high power density applications such as electric vehicle and space.

  1. A Mobile Battery Swapping Service for Electric Vehicles Based on a Battery Swapping Van

    Directory of Open Access Journals (Sweden)

    Sujie Shao

    2017-10-01

    Full Text Available This paper presents a novel approach for providing a mobile battery swapping service for electric vehicles (EVs that is provided by a mobile battery swapping van. This battery swapping van can carry many fully charged batteries and drive up to an EV to swap a battery within a few minutes. First, a reasonable EV battery swapping architecture based on a battery swapping van is established in this paper. The function and role of each participant and the relationships between each participant are determined, especially their changes compared with the battery charging service. Second, the battery swapping service is described, including the service request priority and service request queuing model. To provide the battery swapping service efficiently and effectively, the battery swapping service request scheduling is analyzed well, and a minimum waiting time based on priority and satisfaction scheduling strategy (MWT-PS is proposed. Finally, the battery swapping service is simulated, and the performance of MWT-PS is evaluated in simulation scenarios. The simulation results show that this novel approach can be used as a reference for a future system that provides reasonable and satisfying battery swapping service for EVs.

  2. Measuring and Monitoring Battery Status

    OpenAIRE

    Owona, Ignace Flavien

    2014-01-01

    Embedded systems are the most widespread technologies today. These technologies include hardware and software. We may meet them from simple household appliances such as the washing machine and microwave oven to more sophisticated appliances such as aircraft, medical appliances, and automobiles not to mention mobile phones, TVs and radio receivers, leisure gadgets, etc. This project thesis goal is the measurement and the monitoring of the discharge of the battery used as the energy supplier in...

  3. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  4. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  5. Electrode materials for rechargeable battery

    Science.gov (United States)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0replace sodium ions of a precursor material with lithium ions.

  6. Batteries for electric road vehicles.

    Science.gov (United States)

    Goodenough, John B; Braga, M Helena

    2018-01-15

    The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.

  7. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  8. 46 CFR 111.15-30 - Battery chargers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery chargers. 111.15-30 Section 111.15-30 Shipping... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-30 Battery chargers. Each battery charger enclosure must meet § 111.01-9. Additionally, each charger must be suitable for...

  9. Model-based energy analysis of battery powered systems

    NARCIS (Netherlands)

    Jongerden, M.R.

    2010-01-01

    The use of mobile devices is often limited by the lifetime of the included batteries. This lifetime naturally depends on the battery's capacity and on the rate at which the battery is discharged. However, it also depends on the usage pattern, i.e., the workload, of the battery. When a battery is

  10. A Battery Power Bank with Series-Connected Buck-Boost-Type Battery Power Modules

    National Research Council Canada - National Science Library

    Tsung-Hsi Wu; Chin-Sien Moo; Chih-Hao Hou

    2017-01-01

    .... With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs...

  11. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-01-01

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  12. Household batteries: Evaluation of collection methods

    Energy Technology Data Exchange (ETDEWEB)

    Seeberger, D.A.

    1992-12-31

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  13. High specific power lithium polymer rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Chu, M.Y.; De Jonghe, L.; Visco, S. [PolyPlus Battery Co., Berkeley, CA (United States)

    1996-11-01

    PolyPlus Battery Company (PPBC) is developing an advanced lithium polymer rechargeable battery based on its proprietary positive electrode. This battery offers high steady-state (> 250 W/kg) and peak power densities (3,000 W/kg), in a low cost and environmentally benign format. This PolyPlus lithium polymer battery also delivers high specific energy. The first generation battery has an energy density of 100 Wh/kg (120 Wh/l) and subsequent generations increases the performance in excess of 500 Wh/kg (600 Wh/l). The high power and energy densities, along with the low toxicity and low cost of materials used in the PolyPlus solid-state cell makes this battery exceptionally attractive for both hybrid and electric vehicle applications.

  14. Enabling fast charging - Battery thermal considerations

    Science.gov (United States)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  15. Zinc-air battery/fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Li, H.; Qu, W. [National Research Council Canada, Vancouver, BC (United States). Inst. for Fuel Cell Innovation

    2010-07-01

    The zinc-air battery/fuel cell is an old technology invented one hundred years ago. However, there is renewed interest in this technology in response to the growing need for clean energy technology. The zinc-air battery/fuel cell is more attractive than similar technologies because its characteristics include high power density, safe operation and storage, and low cost. Zinc-air battery/fuel cells can be made in milliwatts to mega watts to accommodate different applications. The zinc-air battery/fuel cell has four major designs, namely primary, mechanically rechargeable, continuous feed and electrically rechargeable zinc-air battery/fuel cells. Among the different designs, the most common is the air cathode. There are 3 generations of catalysts used in the air cathodes. This paper discussed the different designs of the zinc-air battery/fuel cell, and more specifically, the air cathode structure and performance.

  16. Batteries for electromobiles; Batterien fuer Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Garche, Juergen [Fuel Cell and Battery Consulting (FCBAT), Ulm (Germany)

    2011-05-15

    As resources are getting shorter and environmental considerations are getting more attention, vehicle drive technologies are under revision. There are various approaches for reducing CO2 emissions and energy consumption. Electric vehicles are a feasible solution, with batteries for shorter distances of 150 - 200 km and with fuel cells for longer distances over 400 km. The contribution outlines the CO2 reduction potential and presents a detailed review of the status of battery development for electric vehicles, especially Li batteries.

  17. Fiber optical sensors for enhanced battery safety

    Science.gov (United States)

    Meyer, Jan; Nedjalkov, Antonio; Doering, Alexander; Angelmahr, Martin; Schade, Wolfgang

    2015-05-01

    Over the last years, battery safety becomes more and more important due to the wide spread of high-capacity lithium ion batteries applied in e.g. consumer electronics and electrical power storages for vehicles or stationary energy storage systems. However, for these types of batteries, malfunctions could be highly dangerous and all aspects of safety issues are not sufficiently considered, yet. Therefore, the improvement of the battery safety behavior is one of the most important issues discussed in actual research projects. In this paper the application of fiber optical sensors for enhanced battery safety is presented. The temperature is one of the most critical parameters indicating a failure of the cell, but even state-to-the-art battery management systems (BMS) are not able to monitor and interpret the distributed temperature field of a total battery storage system sufficiently. Furthermore, the volume expansion of the battery cell, which could be monitored by the strain on the cells' surfaces, is one additional parameter not considered up to now. Both parameters could be simultaneous monitored by fiber optical sensor arrays, consisting of discrete fiber Bragg grating (FBG) elements. The FBG sensors are directly attached on the surface of the cell, recording the temperature as well as the strain distribution highly accurate and close-meshed. Failures and malfunction such as overcharging, gassing, and thermal runaway can be early predicted and avoided to extend the battery lifetime and enhance the operational battery safety. Moreover, battery aging effects lead to variations in the volume change behavior which can be detected additionally. Hence, a battery fully equipped with fiber optical sensor arrays in combination with an appropriate BMS enables a safe and continuous utilization of the energy storage system even under harsh conditions like rapid charging.

  18. ESA Simulation Language (ESL) battery model upgrade

    Science.gov (United States)

    Hay, J. L.; Owen, J. R.

    1988-03-01

    An ESL nickel-cadmium battery model was extended to match the battery manufacturer's steady state cycling characteristics, and to increase the temperature range over which the model is valid. The model was validated by comparisons with test results in the ambient temperature range 0 to 20 C. Less confidence must be attached to results produced by the model outside the 0 to 20 C range, there being no battery cycling data outside this range with which to judge model performance.

  19. Polymer Electrolytes for Lithium/Sulfur Batteries

    OpenAIRE

    The Nam Long Doan; Denise Gosselink; Yongguang Zhang; Mikhail Sadhu; Ho-Jae Cheang; Pu Chen; Yan Zhao

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  20. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  1. Safety & Usage Procedure for Lithium Polymer Batteries

    OpenAIRE

    Naval Postgraduate School (U.S.)

    2014-01-01

    Version 1.4; July 2014 This document establishes procedures for safety and use of Lithium Polymer Battery technology in the Naval Postgraduate School (NPS), including Unmanned Aircraft Systems (UAS). All faculty, staff and students wishing to become Authorized Users of Lithium Polymer batteries shall be required to read and acknowledge this document and act in accordance with all procedures contained herein to be granted access to Lithium Polymer batteries.

  2. Polymer Electrolytes for Lithium/Sulfur Batteries

    Science.gov (United States)

    Zhao, Yan; Zhang, Yongguang; Gosselink, Denise; Doan, The Nam Long; Sadhu, Mikhail; Cheang, Ho-Jae; Chen, Pu

    2012-01-01

    This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S) batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes. PMID:24958296

  3. Battery Simulation and Investigation Utilizing Matlab Simulink

    OpenAIRE

    Klussmann, Annika

    2016-01-01

    Approved for public release; distribution is unlimited. As a self-sufficient power system, a satellite has to be equipped with an electrical energy storage system enabled with a rechargeable battery. To improve the quality of the energy supply at space satellite systems the new high performance battery cell technology, lithium iron phosphate (LiFePO4), is presented and investigated in this work. Evaluation factors of battery cells for an assessment of the technology are explained ...

  4. Overview of NASA battery technology program

    Science.gov (United States)

    Riebling, R. W.

    1980-01-01

    Highlights of NASA's technology program in batteries for space applications are presented. Program elements include: (1) advanced ambient temperature alkaline secondaries, which are primarily nickel-cadmium cells in batteries; (2) a toroidal nickel cadmium secondaries with multi-kilowatt-hour storage capacity primarily for lower orbital applications; (3) ambient temperature lithium batteries, both primary and secondaries, primarily silver hydrogen and high-capacity nickel hydrogen.

  5. Lifetime modelling of lead acid batteries

    OpenAIRE

    Bindner, H.; Cronin, T.; Lundsager, P.; Manwell, J.F.; Abdulwahid, U.; Baring-Gould, I.

    2005-01-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole lifecycle costs. Poor prediction of lifetime can, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies ...

  6. A Cable-Shaped Lithium Sulfur Battery.

    Science.gov (United States)

    Fang, Xin; Weng, Wei; Ren, Jing; Peng, Huisheng

    2016-01-20

    A carbon nanostructured hybrid fiber is developed by integrating mesoporous carbon and graphene oxide into aligned carbon nanotubes. This hybrid fiber is used as a 1D cathode to fabricate a new cable-shaped lithium-sulfur battery. The fiber cathode exhibits a decent specific capacity and lifespan, which makes the cable-shaped lithium-sulfur battery rank far ahead of other fiber-shaped batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of vanadium flow battery. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2011-02-15

    This report summarizes the work done at Risoe-DTU testing a vanadium flow battery as part of the project ''Characterisation of Vanadium Batteries'' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The efficiency was not influenced by the cycling of the battery. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. The battery was operated together with a 11kW stall-regulated Gaia wind turbine to smooth the output of the wind turbine and during the tests the battery proved capable of firming the output of the wind turbine. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  8. The battery that will save the electric powered automobile; La batterie qui sauvera la voiture electrique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-05-15

    Twelve years have been necessary to conceive a battery with polymer metal lithium ( anode in metal lithium, electrolyte in polymer). This new battery will be more compact, its weight will be 150 kilograms instead of 400 kg for cadmium nickel batteries and 650 kg for lead batteries. Its autonomy will be 250 to 300 kilometers. Its price of utilization will be one euro for 100 kilometers. (N.C.)

  9. Batteries used to Power Implantable Biomedical Devices

    Science.gov (United States)

    Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2012-01-01

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease. PMID:24179249

  10. Advances and Future Challenges in Printed Batteries.

    Science.gov (United States)

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  12. Testing of sealed lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bush, D.M.; Sealey, J.D.; Miller, D.W.

    1984-02-01

    In early January 1981, Sandia National Laboratories began testing sealed lead-acid batteries which were being developed under Sandia contracts. The goal was to develop a totally maintenance-free sealed lead-acid battery capable of deep-discharge operation in a photovoltaic power system. Sealed lead-acid batteries and a group of conventional, flooded lead-acid batteries were exposed to a matrix test plan, with some approaching 1000 cycles. This performance was achieved with the standard National Electrical Manufacturers' Association cycle test, as well as the partial-state-of-charge cycle test. Modes of failure are being investigated.

  13. Lithium batteries advanced technologies and applications

    CERN Document Server

    Scrosati, Bruno; Schalkwijk, Walter A van; Hassoun, Jusef

    2013-01-01

    Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and ident

  14. Lead acid batteries simulation including experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Achaibou, N.; Malek, A. [Division Energie Solaire Photovoltaique, Centre de Developpement des Energies Renouvelables, B.P. 62, Route de l' Observatoire, Bouzareah, Alger (Algeria); Haddadi, M. [Laboratoire de Dispositif de Communication et de Conversion Photovoltaique Ecole Nationale Polytechnique, Rue Hassen Badi, El Harrach, Alger (Algeria)

    2008-12-01

    The storage of energy in batteries is a cause of the failure and loss of reliability in PV systems. The battery behavior has been largely described in the literature by many authors; the selected models are of Monegon and CIEMAT. This paper reviews the two general lead acid battery models and their agreement with experimental data. In order to validate these models, the behavior of different battery cycling currents has been simulated. Results obtained have been compared to real data. The CIEMAT model presents a good performance compared to Monegon's model. (author)

  15. Bacterial Acclimation Inside an Aqueous Battery.

    Directory of Open Access Journals (Sweden)

    Dexian Dong

    Full Text Available Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2 and 1.4-2.1 V. Bacterial addition within 1.0×10(10 cells mL(-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  16. Lithium batteries and other electrochemical storage systems

    CERN Document Server

    Glaize, Christian

    2013-01-01

    Lithium batteries were introduced relatively recently in comparison to lead- or nickel-based batteries, which have been around for over 100 years. Nevertheless, in the space of 20 years, they have acquired a considerable market share - particularly for the supply of mobile devices. We are still a long way from exhausting the possibilities that they offer. Numerous projects will undoubtedly further improve their performances in the years to come. For large-scale storage systems, other types of batteries are also worthy of consideration: hot batteries and redox flow systems, for example.

  17. Bacterial Acclimation Inside an Aqueous Battery.

    Science.gov (United States)

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  18. Sodium sulfur battery flight experiment definition study

    Science.gov (United States)

    Chang, Rebecca R.; Minck, Robert

    1989-01-01

    Sodium-sulfur batteries were identified as the most likely successor to nickel-hydrogen batteries for space applications. One advantage of the Na/S battery system is that the usable specific energy is two to three times that of nickel-hydrogen batteries. This represents a significant launch cost savings or increased payload mass capabilities. Sodium-sulfur batteries support NASA OAST's proposed Civil Space Technology Initiative goal of a factor of two improvement in spacecraft power system performance, as well as the proposed Spacecraft 2000 initiative. The sodium-sulfur battery operates at between 300 and 400 C, using liquid sodium and sulfur/polysulfide electrodes and solid ceramic electrolyte. The transport of the electrode materials to the surface of the electrolyte is through wicking/capillary forces. These critical transport functions must be demonstrated under actual microgravity conditions before sodium-sulfur batteries can be confidently utilized in space. Ford Aerospace Corporation, under contract to NASA Lewis Research Center, is currently working on the sodium-sulfur battery space flight experiment definition study. The objective is to design the experiment that will demonstrate operation of the sodium-sulfur battery/cell in the space environment with particular emphasis on evaluation of microgravity effects. Experimental payload definitions were completed and preliminary designs of the experiment were defined.

  19. Machine Learning Based Diagnosis of Lithium Batteries

    Science.gov (United States)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed

  20. Rechargeable batteries materials, technologies and new trends

    CERN Document Server

    Zhang, Zhengcheng

    2015-01-01

    This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write

  1. Lead-acid batteries with foam grids

    Science.gov (United States)

    Tabaatabaai, S. M.; Rahmanifar, M. S.; Mousavi, S. A.; Shekofteh, S.; Khonsari, Jh.; Oweisi, A.; Hejabi, M.; Tabrizi, H.; Shirzadi, S.; Cheraghi, B.

    Conventional lead-acid batteries are relatively heavy and thus have a low specific energy. Therefore, to improve the energy density, a lighter grid has been proposed. In this work, a novel lead-acid battery with high specific surface area negative foam current collectors was designed and constructed. The collectors were studied by cyclic voltametery (CV) and electrochemical impedance spectroscopy (EIS). The foam collectors were designed and suitable paste composition and formation algorithm was obtained. The basic cells were manufactured and its performance was evaluated. The results showed that the foam grids resistance was lower than that for lead grids and the specific surface area of the foam grids was very greater than lead grids. The foam battery has good discharge characteristics compared with common lead-acid batteries. The discharge curve was flat and negative mass utilization efficiency was higher than 50% when the cell was discharged with C5/5 A (137 Ah kg -1 negative active materials). The foam grids were used as negative electrode for various types of lead-acid batteries such as 60 Ah starter battery, 2, 3 and 10 Ah VRLA batteries. The batteries with foam grids were shown longer cycle life than conventional lead-acid batteries.

  2. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  3. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, Paulus P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  4. Updating United States Advanced Battery Consortium and Department of Energy battery technology targets for battery electric vehicles

    Science.gov (United States)

    Neubauer, Jeremy; Pesaran, Ahmad; Bae, Chulheung; Elder, Ron; Cunningham, Brian

    2014-12-01

    Battery electric vehicles (BEVs) offer significant potential to reduce the nation's consumption of petroleum based products and the production of greenhouse gases however, their widespread adoption is limited largely by the cost and performance limitations of modern batteries. With recent growth in efforts to accelerate BEV adoption (e.g. the Department of Energy's (DOE) EV Everywhere Grand Challenge) and the age of existing BEV battery technology targets, there is sufficient motivation to re-evaluate the industry's technology targets for battery performance and cost. Herein we document the analysis process that supported the selection of the United States Advanced Battery Consortium's (USABC) updated BEV battery technology targets. Our technology agnostic approach identifies the necessary battery performance characteristics that will enable the vehicle level performance required for a commercially successful, mass market full BEV, as guided by the workgroup's OEM members. The result is an aggressive target, implying that batteries need to advance considerably before BEVs can be both cost and performance competitive with existing petroleum powered vehicles.

  5. Research on Activators for Lead-Acid Batteries

    OpenAIRE

    Sugawara, Michio; Kozawa, Akiya

    2008-01-01

    Abstract : The ITE Battery Research group has developed a new organic battery activator for new and used lead-acid batteries. Ten years of investigation have established the validity of the ITE activator that prolongs the useful life of lead-acid batteries. It has been shown that the specific gravity of spent batteries can be restored to the original level in automotive, motive power; uninterruptible power supplies (UPS) and stationary energy storage batteries. Our results show that the disca...

  6. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  7. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  8. Anodes for rechargeable lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  9. Battery Cell Thermal Runaway Calorimeter

    Science.gov (United States)

    Darcy, Eric

    2017-01-01

    We currently have several methods for determining total energy output of an 18650 lithium ion cell. We do not, however, have a good method for determining the fraction of energy that dissipates via conduction through the cell can vs. the energy that is released in the form of ejecta. Knowledge of this fraction informs the design of our models, battery packs, and storage devices; (a) No longer need to assume cell stays together in modeling (b) Increase efficiency of TR mitigation (c) Shave off excess protection.

  10. Lead-nickel electrochemical batteries

    CERN Document Server

    Glaize, Christian

    2012-01-01

    The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena.This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of

  11. Electroactive materials for rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2016-10-25

    A secondary battery including a cathode having a primary cathode active material and an alkaline source material selected from the group consisting of Li.sub.2O, Li.sub.2O.sub.2, Li.sub.2S, LiF, LiCl, Li.sub.2Br, Na.sub.2O, Na.sub.2O.sub.2, Na.sub.2S, NaF, NaCl, and a mixture of any two or more thereof; an anode having an anode active material; an electrolyte; and a separator.

  12. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  13. Batteries at NASA - Today and Beyond

    Science.gov (United States)

    Reid, Concha M.

    2015-01-01

    NASA uses batteries for virtually all of its space missions. Batteries can be bulky and heavy, and some chemistries are more prone to safety issues than others. To meet NASA's needs for safe, lightweight, compact and reliable batteries, scientists and engineers at NASA develop advanced battery technologies that are suitable for space applications and that can satisfy these multiple objectives. Many times, these objectives compete with one another, as the demand for more and more energy in smaller packages dictates that we use higher energy chemistries that are also more energetic by nature. NASA partners with companies and universities, like Xavier University of Louisiana, to pool our collective knowledge and discover innovative technical solutions to these challenges. This talk will discuss a little about NASA's use of batteries and why NASA seeks more advanced chemistries. A short primer on battery chemistries and their chemical reactions is included. Finally, the talk will touch on how the work under the Solid High Energy Lithium Battery (SHELiB) grant to develop solid lithium-ion conducting electrolytes and solid-state batteries can contribute to NASA's mission.

  14. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez

    2013-01-01

    systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...... even with forecast errors. ICLOCS software has been used for the numerical implementation....

  15. Handbook of solid state batteries & capacitors

    National Research Council Canada - National Science Library

    Munshi, M. Z. A

    1995-01-01

    ... is witnessing a metamorphosis in the area of solid state power sources. The genesis of solid state battery research commenced with the discovery of highly conductive silver solid state and copper solid state electrolytes in the sixties and seventies, and their subsequent use in solid state batteries. These discoveries were major breakthroughs for those ti...

  16. Anodes for Rechargeable Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  17. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  18. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  19. Investigating improvements on redox flow batteries

    CSIR Research Space (South Africa)

    Swartbooi, AM

    2006-09-01

    Full Text Available storage devices coupled to most of their applications. Lead-acid batteries have long been used as the most economical option to store electricity in many small scale applications, but lately more interest have been shown in redox flow batteries. The low...

  20. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  1. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  2. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie

    2016-08-19

    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  3. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill....... The higher stability is explained by a smaller volume expansion during charge. It is shown than sodium can substitute for calcium forming the compound Ca0.8Na0.2Ni5. The compound had CaCu5 structure and a capacity of 365 mAh/g but a poor electrochemical cycle life. The alloys Ca0.8Na0.2Ni4Mg0.5Cu0.5 and Ca...

  4. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O2 battery is lower than that of the lithium-oxygen (Li-O2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O2 and Na-O2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  6. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  7. A Foldable Lithium-Sulfur Battery.

    Science.gov (United States)

    Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil

    2015-11-24

    The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.

  8. Lifetime modelling of lead acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-04-01

    The performance and lifetime of energy storage in batteries are an important part of many renewable based energy systems. Not only do batteries impact on the system performance but they are also a significant expenditure when considering the whole life cycle costs. Poor prediction of lifetime can, therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies with specific reference to their use in hybrid renewable energy systems. Alongside this, results from battery tests designed to exercise batteries in similar modes to those that they experience in hybrid systems have also been analysed. These have yielded battery specific parameters for use in the prediction software and the first results in the validation process of the software are also given. This work has been part of the European Union Benchmarking research project (ENK6-CT-2001-80576), funded by the European Union, the United States and Australian governments together with other European states and other public and private financing bodies. The project has concentrated on lead acid batteries as this technology is the most commonly used. Through this work the project partner institutions have intended to provide useful tools to improve the design capabilities of organizations, private and public, in remote power systems. (au)

  9. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  10. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  11. Lead toxicity in battery workers.

    Science.gov (United States)

    Qasim, Saeeda Fouzia; Baloch, Malka

    2014-11-01

    Lead poisoning is a medical condition caused by increased levels of lead in the body. Routes of exposure include contaminated air, water, soil, food and consumer products. Occupational exposure is the main cause of lead poisoning in the adults. Two cases of occupational lead poisoning in adult battery workers are hereby presented. Both male patients had initial non-specific symptoms of intermittent abdominal pain, fatigue and headache for 6 - 8 years. Later on, they developed psychosis, slurred speech, tremors of hands and initially underwent treatment for Parkinsonism and Wilson's disease because of clinical misdiagnosis. They were diagnosed with lead poisoning later and were treated successfully with lead chelator (CaNa2 EDTA).

  12. 40 CFR 273.2 - Applicability-batteries.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Applicability-batteries. 273.2 Section...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.2 Applicability—batteries. (a) Batteries covered under 40 CFR part 273. (1) The requirements of this part apply to persons managing batteries, as...

  13. 46 CFR 112.55-15 - Capacity of storage batteries.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Capacity of storage batteries. 112.55-15 Section 112.55... LIGHTING AND POWER SYSTEMS Storage Battery Installation § 112.55-15 Capacity of storage batteries. (a) A storage battery for an emergency lighting and power system must have the capacity— (1) To close all...

  14. Nickel-Cadmium Battery Operation Management Optimization Using Robust Design

    Science.gov (United States)

    Blosiu, Julian O.; Deligiannis, Frank; DiStefano, Salvador

    1996-01-01

    In recent years following several spacecraft battery anomalies, it was determined that managing the operational factors of NASA flight NiCd rechargeable battery was very important in order to maintain space flight battery nominal performance. The optimization of existing flight battery operational performance was viewed as something new for a Taguchi Methods application.

  15. 49 CFR 229.43 - Exhaust and battery gases.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively. ...

  16. Model-based energy analysis of battery powered systems

    NARCIS (Netherlands)

    Jongerden, M.R.

    2010-01-01

    The use of mobile devices is often limited by the lifetime of the included batteries. This lifetime naturally depends on the battery’s capacity and on the rate at which the battery is discharged. However, it also depends on the usage pattern, i.e., the workload, of the battery. When a battery is

  17. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  18. Ionic Liquids in Lithium-Ion Batteries.

    Science.gov (United States)

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  19. Distribution of electrolytes in a flow battery

    Science.gov (United States)

    Darling, Robert Mason; Smeltz, Andrew; Junker, Sven Tobias; Perry, Michael L.

    2017-12-26

    A method of determining a distribution of electrolytes in a flow battery includes providing a flow battery with a fixed amount of fluid electrolyte having a common electrochemically active specie, a portion of the fluid electrolyte serving as an anolyte and a remainder of the fluid electrolyte serving as a catholyte. An average oxidation state of the common electrochemically active specie is determined in the anolyte and the catholyte and, responsive to the determined average oxidation state, a molar ratio of the common electrochemically active specie between the anolyte and the catholyte is adjusted to increase an energy discharge capacity of the flow battery for the determined average oxidation state.

  20. Lifetime modelling of lead acid batteries

    DEFF Research Database (Denmark)

    Bindner, H.; Cronin, T.; Lundsager, P.

    2005-01-01

    , therefore, lead to uncertainty in the viability of the system in the long term. This report details the work undertaken to investigate and develop two different battery life prediction methodologies withspecific reference to their use in hybrid renewable energy systems. Alongside this, results from battery...... been part of the European Union Benchmarking research project (ENK6-CT-2001-80576), funded by theEuropean Union, the United States and Australian governments together with other European states and other public and private financing bodies. The project has concentrated on lead acid batteries...

  1. Method of making a sodium sulfur battery

    Science.gov (United States)

    Elkins, Perry E.

    1981-01-01

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

  2. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  3. All silicon lithium-ion batteries

    OpenAIRE

    Xu, Chao

    2015-01-01

    Lithium-ion batteries have been widely used as power supplies for portable electronic devices due to their higher gravimetric and volumetric energy densities compared to other electrochemical energy storage technologies, such as lead-acid, Ni-Cd and Ni-MH batteries. Developing a novel battery chemistry, ‘‘all silicon lithium-ion batteries’’, using lithium iron silicate as the cathode and silicon as the anode, is the primary aim of this Ph.D project. This licentiate thesis is focused on improv...

  4. Towards an Ultimate Battery Thermal Management System

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    The prevailing standards and scientific literature offer a wide range of options for the construction of a battery thermal management system (BTMS). The design of an innovative yet well-functioning BTMS requires strict supervision, quality audit and continuous improvement of the whole process....... It must address all the current quality and safety (Q&S) standards. In this review article, an effective battery thermal management is sought considering the existing battery Q&S standards and scientific literature. The article contains a broad overview of the current existing standards and literature...

  5. Battery Grouping with Time Series Clustering Based on Affinity Propagation

    Directory of Open Access Journals (Sweden)

    Zhiwei He

    2016-07-01

    Full Text Available Battery grouping is a technology widely used to improve the performance of battery packs. In this paper, we propose a time series clustering based battery grouping method. The proposed method utilizes the whole battery charge/discharge sequence for battery grouping. The time sequences are first denoised with a wavelet denoising technique. The similarity matrix is then computed with the dynamic time warping distance, and finally the time series are clustered with the affinity propagation algorithm according to the calculated similarity matrices. The silhouette index is utilized for assessing the performance of the proposed battery grouping method. Test results show that the proposed battery grouping method is effective.

  6. Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-02-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.

  7. FY2016 Advanced Batteries R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview; the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.

  8. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  9. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  10. 77 FR 66084 - Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-11-01

    ... Federal Aviation Administration Tenth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  11. 76 FR 70531 - Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2011-11-14

    ... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to advise the...

  12. 77 FR 56253 - Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems-Small...

    Science.gov (United States)

    2012-09-12

    ... Federal Aviation Administration Ninth Meeting: RTCA Special Committee 225, Rechargeable Lithium Battery and Battery Systems--Small and Medium Size AGENCY: Federal Aviation Administration (FAA), U.S... Lithium Battery and Battery Systems--Small and Medium Size. SUMMARY: The FAA is issuing this notice to...

  13. Aerospace Battery Activities at NASA/Goddard Space Flight Center

    Science.gov (United States)

    Rao, Gopalakrishna M.

    2006-01-01

    Goddard Space Flight Center has "pioneered" rechargeable secondary battery design, test, infusion and in-orbit battery management among NASA installations. Nickel cadmium batteries of various designs and sizes have been infused for LEO, GEO and Libration Point spacecraft. Nickel-Hydrogen batteries have currently been baselined for the majority of our missions. Li-Ion batteries from ABSL, JSB, SaFT and Lithion have been designed and tested for aerospace application.

  14. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  15. Battery Grouping with Time Series Clustering Based on Affinity Propagation

    OpenAIRE

    Zhiwei He; Mingyu Gao; Guojin Ma; Yuanyuan Liu; Lijun Tang

    2016-01-01

    Battery grouping is a technology widely used to improve the performance of battery packs. In this paper, we propose a time series clustering based battery grouping method. The proposed method utilizes the whole battery charge/discharge sequence for battery grouping. The time sequences are first denoised with a wavelet denoising technique. The similarity matrix is then computed with the dynamic time warping distance, and finally the time series are clustered with the affinity propagation algor...

  16. Status of the lead/acid battery industry in Taiwan

    Science.gov (United States)

    Chen, Richard

    Since 1985, the marked appreciation of the Taiwanese currency has exerted a strong influence on the local lead/acid battery industry. In particular, imports of automotive and motorcycle batteries have risen steadily. By contrast, there has been a significant increase in the production of small sealed batteries. The battery industry has recognized the need both to satisfy new environmental requirements and to invest in advanced equipment for battery manufacture.

  17. Higher Capacity, Improved Conductive Matrix VB2/Air Batteries (Postprint)

    Science.gov (United States)

    2016-02-18

    drives the need for increased energy density batteries . Zinc - air batteries are primary batteries with the highest commercial energy capacity. They...energyautonomoussystem.wordpress.com/2013/01/24/ zinc - air - battery -the-revolution/ inert in the alkaline electrolyte environment, displaying zero capacity in control...AFRL-RX-WP-JA-2016-0326 HIGHER CAPACITY, IMPROVED CONDUCTIVE MATRIX VB2/ AIR BATTERIES (POSTPRINT) Matthew Lefler, Jessica

  18. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  19. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... for automotive batteries. Three parallel strategies will be followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC materials will allow the performance, stability and cyclability of state of the art cells to be improved. (ii) Understanding ageing...

  20. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    , whilst batteries will handle all the load dynamics, such as acceleration, lifting, climbing and so on. The electrical part of the whole propulsion system for forklift has been investigated in details. The energy management strategy is explained and verified through simulation. Finally, experimental......A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  1. Lithium Battery Fire Tests and Mitigation

    Science.gov (United States)

    2014-08-25

    hydrogen explosion) Potable Water Flooding Suppression, cooling, exposure protection Shorting, collateral damage, electrolysis (hydrogen......this objective is to rapidly submerse the battery pack in water . The severity of the initial reaction, the proximity of the adjacent cells, and the

  2. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  3. Battery Health Management System for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — In summary, this paper lays out a novel battery health management technique for application onboard an electric UAV. This technique is also applicable to other...

  4. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  5. 400 Wh/kg Secondary Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Summary Lithium-ion battery technology will not provide significant breakthroughs beyond 200 Wh/kg. It will not provide adequate specific energy and cycle life for...

  6. Organic electronics: Battery-like artificial synapses

    Science.gov (United States)

    Yang, J. Joshua; Xia, Qiangfei

    2017-04-01

    Borrowing the operating principles of a battery, a three-terminal organic switch has been developed on a flexible plastic substrate. The device consumes very little power and can be used as an artificial synapse for brain-inspired computing.

  7. Electrochemistry-based Battery Modeling for Prognostics

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2013-01-01

    Batteries are used in a wide variety of applications. In recent years, they have become popular as a source of power for electric vehicles such as cars, unmanned aerial vehicles, and commericial passenger aircraft. In such application domains, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. To implement such technologies, it is crucial to understand how batteries work and to capture that knowledge in the form of models that can be used by monitoring, diagnosis, and prognosis algorithms. In this work, we develop electrochemistry-based models of lithium-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles. This paper reports on the progress of such a model, with results demonstrating the model validity and accurate EOD predictions.

  8. The Breakthrough Behind the Chevy Volt Battery

    Science.gov (United States)

    Lerner, Louise

    2011-03-28

    A revolutionary breakthrough cathode for lithium-ion batteries—the kind in your cell phone, laptop and new hybrid cars—makes them last longer, run more safely and perform better than batteries currently on the market.

  9. Sodium sulfur batteries for space applications

    Science.gov (United States)

    Degruson, James A.

    1992-02-01

    In 1986, Eagle-Picher Industries was selected by the Air Force to develop sodium sulfur cells for satellite applications. Specifically, the development program was geared toward low earth orbit goals requiring high charge and/or discharge rates. A number of improvements have been made on the cell level and a transition to a complete space battery was initiated at Eagle-Picher. The results of six months of testing a 250 watt/hour sodium sulfur space battery look very promising. With over 1000 LEO cycles conducted on this first battery, the next generation battery is being designed. This next design will focus on achieving greater energy densities associated with the sodium sulfur chemistry.

  10. Battery components employing a silicate binder

    Science.gov (United States)

    Delnick, Frank M [Albuquerque, NM; Reinhardt, Frederick W [Albuquerque, NM; Odinek, Judy G [Rio Rancho, NM

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  11. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  12. Predicting Battery Life for Electric UAVs

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a novel battery health management technology for the new generation of electric unmanned aerial vehicles powered by long-life, high-density,...

  13. Recent advances in zinc-air batteries.

    Science.gov (United States)

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  14. A Responsive Battery with Controlled Energy Release.

    Science.gov (United States)

    Wang, Xiaopeng; Gao, Jian; Cheng, Zhihua; Chen, Nan; Qu, Liangti

    2016-11-14

    A new type of responsive battery with the fascinating feature of pressure perceptibility has been developed, which can spontaneously, timely and reliably control the power outputs (e.g., current and voltage) in response to pressure changes. The device design is based on the structure of the Zn-air battery, in which graphene-coated sponge serves as pressure-sensitive air cathode that endows the whole system with the capability of self-controlled energy release. The responsive batteries exhibit superior battery performance with high open-circuit voltage (1.3 V), and competitive areal capacity of 1.25 mAh cm -2 . This work presents an important move towards next-generation intelligent energy storage devices with energy management function. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New batteries, fuel cells energize electric aviation

    National Research Council Canada - National Science Library

    Philip Butterworth-Hayes

    2010-01-01

    .... Over the next few months, the team will test new battery management systems to see how they can be integrated with other electrical components in ways that keep them at optimal temperatures during all phases of flight...

  16. Multi-Cell Thermal Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The multi-cell thermal battery (MCTB) is a device that can recover a large fraction of the thermal energy from heated regolith and subsequently apply this energy to...

  17. Technology status: Batteries and fuel cells

    Science.gov (United States)

    Fordyce, J. S.

    1978-01-01

    The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.

  18. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  19. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  20. Electrode Nanostructures in Lithium‐Based Batteries

    Science.gov (United States)

    Mahmood, Nasir

    2014-01-01

    Lithium‐based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium‐based (Li‐ion, Li‐air and Li‐S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium‐based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures. PMID:27980896

  1. Nickel-Zinc Batteries for RPV Applications.

    Science.gov (United States)

    1982-02-01

    Aspergillus Niger Aspergillus Flavus Penicillium Citrinum After the twenty-eight (28) day exposure, the battery was visually inspected without observing...buffered electrolyte reduces the soluability of zinc in the electrolyte and delays the process of zinc dendritic growth . 3) Compare the effect of various...Demonstrate calendar life under actual rate of cycling 2) Optimize the procedure for electrical conditioning 54 3.0 MAR-5013 BATTERY 3.4. Calendar and Cycle

  2. The rechargeable aluminum-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Navaneedhakrishnan, Jayaprakash; Das, Shyamal K; Archer, Lynden A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl₃ in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V₂O₅ nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g⁻¹ in the first cycle and 273 mAh g⁻¹ after 20 cycles, with very stable electrochemical behaviour.

  3. The rechargeable aluminum-ion battery

    KAUST Repository

    Jayaprakash, N.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl3 in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V2O5 nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g-1 in the first cycle and 273 mAh g-1 after 20 cycles, with very stable electrochemical behaviour. © The Royal Society of Chemistry 2011.

  4. High-discharge-rate lithium ion battery

    Science.gov (United States)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  5. High Capacity Battery Cell Flight Qualified

    Science.gov (United States)

    McKissock, Barbara I.

    1997-01-01

    The High Capacity Battery Cell project is an effort equally funded by the NASA Lewis Research Center and Hughes Space and Communications Company (a unit of Hughes Aircraft Company) to develop and flight qualify a higher capacity nickel hydrogen battery for continuing use on commercial spacecraft. The larger diameter, individual pressure vessel cell will provide approximately twice the power, while occupying the same volume, as the current state-of-the-art nickel hydrogen cell. These cells are also anticipated to reduce battery cost by 20 percent. The battery is currently booked for use on 26 spacecraft, with the first flight scheduled in 1997. A strong requirement for batteries with higher power levels (6 to 12 kW), long life, and reduced cost was identified in studies of the needs of commercial communications spacecraft. With the design developed in this effort, the higher power level was accommodated without having to modify the rest of the existing spacecraft bus. This design scaled-up the existing state-of-the-art nickel hydrogen battery cell from a 3.5-in., 50-Ahr cell to a 5.5-in., 350-Ahr cell. An improvement in cycle life was also achieved by the use of the 26-percent KOH electrolyte design developed by NASA Lewis. The cell design was completed, and flight batteries were built and flight qualified by Hughes Space and Communications Company with input from NASA Lewis. Two batteries were shipped in September 1996 to undergo life cycle testing under the purview of NASA Lewis.

  6. Further Cost Reduction of Battery Manufacturing

    Directory of Open Access Journals (Sweden)

    Amir A. Asif

    2017-06-01

    Full Text Available The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV and wind energy installation as well as electric vehicle (EV, hybrid electric vehicle (HEV and plug-in hybrid electric vehicle (PHEV. Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in physical and electrical properties. These properties can be improved and made uniform by considering the electrical model of batteries and adopting novel manufacturing approaches. Using quantum-photo effect, the incorporation of ultra-violet (UV assisted photo-thermal processing can reduce metal surface roughness. Using in-situ measurements, advanced process control (APC can help ensure uniformity among the constituent electrochemical cells. Industrial internet of things (IIoT can streamline the production flow. In this article, we have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from cell-level to battery-level process variability, and proposed potential areas where improvements in the manufacturing process can be made. By incorporating these practices in the manufacturing process we expect reduced cost of energy management system, improved reliability and yield gain with the net saving of manufacturing cost being at least 20%.

  7. Lithium Ion Battery Anode Aging Mechanisms

    Science.gov (United States)

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  8. Determination of battery stability with advanced diagnostics.

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Torres-Castro, Loraine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Orendorff, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dufek, Eric [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walker, Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ho, Chinh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-01

    Lithium ion batteries for use in battery electric vehicles (BEVs) has seen considerable expansion over the last several years. It is expected that market share and the total number of BEVs will continue to increase over coming years and that there will be changes in the environmental and use conditions for BEV batteries. Specifically aging of the batteries and exposure to an increased number of crash conditions presents a distinct possibility that batteries may be in an unknown state posing danger to the operator, emergency response personnel and other support personnel. The present work expands on earlier efforts to explore the ability to rapidly monitor using impedance spectroscopy techniques and characterize the state of different battery systems during both typical operations and under abusive conditions. The work has found that it is possible to detect key changes in performance for strings of up to four cells in both series and parallel configurations for both typical and abusive response. As a method the sensitivity for detecting change is enhanced for series configurations. For parallel configurations distinct changes are more difficult to ascertain, but under abusive conditions and for key frequencies it is feasible to use current rapid impedance techniques to identify change. The work has also found it feasible to use rapid impedance as an evaluation method for underload conditions, especially for series strings of cells.

  9. Esophageal button battery ingestion in children.

    Science.gov (United States)

    Şencan, Arzu; Genişol, İncinur; Hoşgör, Münevver

    2017-07-01

    Button battery lodged in the esophagus carries a high risk of morbidity and mortality. The purpose of this study was to present cases of patients with esophageal button battery ingestion treated at our clinic and to emphasize the importance of early diagnosis and treatment. Records of patients admitted to our hospital for foreign body ingestion between January 2010 and May 2015 were retrospectively reviewed. Cases with button battery lodged in the esophagus were included in the study. Patient data regarding age, sex, length of time after ingestion until admission, presenting clinical symptoms, type and localization of the battery, management, and prognosis were analyzed. Among 1891 foreign body ingestions, 71 were localized in the esophagus, and 8 of those (11.2%) were cases of button battery ingestion. Mean age was 1.7 years. Admission was within 6 hours of ingestion in 5 cases, after 24 hours had elapsed in 2, and 1 month after ingestion in 1 case. All patients but 1 knew the history of ingestion. Prompt endoscopic removal was performed for all patients. Three patients developed esophageal stricture, which responded to dilatation. Early recognition and timely endoscopic removal is mandatory in esophageal button battery ingestion. It should be suspected in the differential diagnosis of patients with persistent respiratory and gastrointestinal symptoms.

  10. Enabling fast charging – Battery thermal considerations

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  11. Nanomaterials for lithium-ion rechargeable batteries.

    Science.gov (United States)

    Liu, Hua Kun; Wang, Guo Xiu; Guo, Zaiping; Wang, Jiazhao; Konstantinov, Kosta

    2006-01-01

    In lithium-ion batteries, nanocrystalline intermetallic alloys, nanosized composite materials, carbon nanotubes, and nanosized transition-metal oxides are all promising new anode materials, while nanosized LiCoO2, LiFePO4, LiMn2O4, and LiMn2O4 show higher capacity and better cycle life as cathode materials than their usual larger-particle equivalents. The addition of nanosized metal-oxide powders to polymer electrolyte improves the performance of the polymer electrolyte for all solid-state lithium rechargeable batteries. To meet the challenge of global warming, a new generation of lithium rechargeable batteries with excellent safety, reliability, and cycling life is needed, i.e., not only for applications in consumer electronics, but especially for clean energy storage and for use in hybrid electric vehicles and aerospace. Nanomaterials and nanotechnologies can lead to a new generation of lithium secondary batteries. The aim of this paper is to review the recent developments on nanomaterials and nanotechniques used for anode, cathode, and electrolyte materials, the impact of nanomaterials on the performance of lithium batteries, and the modes of action of the nanomaterials in lithium rechargeable batteries.

  12. SUBAT: An assessment of sustainable battery technology

    Science.gov (United States)

    Van den Bossche, Peter; Vergels, Frédéric; Van Mierlo, Joeri; Matheys, Julien; Van Autenboer, Wout

    The SUBAT-project evaluates the opportunity to keep nickel-cadmium traction batteries for electric vehicles on the exemption list of European Directive 2000/53 on End-of-Life Vehicles. The aim of the SUBAT-project is to deliver a complete assessment of commercially available and forthcoming battery technologies for battery-electric, hybrid or fuel cell vehicles. This assessment includes a technical, an economical and an environmental study of the different battery technologies, including the nickel-cadmium technology. In a general perspective, the impacts of the different battery technologies should be analysed individually to allow the comparison of the different chemistries (lead-acid, nickel-cadmium, nickel-metal hydride, lithium-ion, sodium-nickel chloride, …) and to enable the definition of the most environmentally friendly battery technology for electrically propelled vehicles. The project officially ran from 2004-01-01 to 2005-03-31. This paper summarizes the outcome of the project at the time of the submission of the paper, i.e. January 2005.

  13. Management of deep brain stimulator battery failure: battery estimators, charge density, and importance of clinical symptoms.

    Directory of Open Access Journals (Sweden)

    Kaihan Fakhar

    Full Text Available OBJECTIVE: We aimed in this investigation to study deep brain stimulation (DBS battery drain with special attention directed toward patient symptoms prior to and following battery replacement. BACKGROUND: Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. METHODS: A cohort of 320 patients undergoing DBS battery replacement from 2002-2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY. RESULTS: The mean charge density for treatment of Parkinson's disease was 7.2 µC/cm(2/phase (SD = 3.82, for dystonia was 17.5 µC/cm(2/phase (SD = 8.53, for essential tremor was 8.3 µC/cm(2/phase (SD = 4.85, and for OCD was 18.0 µC/cm(2/phase (SD = 4.35. There was a significant relationship between charge density and battery life (r = -.59, p<.001, as well as total power and battery life (r = -.64, p<.001. The UF estimator (r = .67, p<.001 and the Medtronic helpline (r = .74, p<.001 predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001. CONCLUSIONS: Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain.

  14. Application of nonwovens in batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, H.G. [Freudenberg Nonwovens, Weinheim (Germany)

    1995-07-01

    Nonwovens are textile products that are manufactured directly from fibers. According to ISO 9092: 1988 nonwovens are defined as a manufactured sheet, web or batt of directionally or randomly oriented fibers, bonded by friction, and/or cohesion, and/or adhesion excluding paper and products which are woven, tufted, stitchbonded incorporating binding yarns or filaments, or felted by wetmilling whether or not additionally needled. The fibers may be of natural or man-made origin. They may be staple or continuous filaments or be formed in situ. The production of nonwovens can be described as taking place in three stages, although modern technology allows an overlapping of the stages. The three stages are: web formation, web bonding, and finishing treatments. The opportunity to combine different raw materials and different techniques accounts for the diversity of the industry and its products. This diversity is enhanced by the ability to engineer nonwovens to have specific properties and to perform specific tasks. This paper describes the production and applications of nonwovens in primary and secondary electric batteries.

  15. Electrode materials for rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0

  16. Volume efficient sodium sulfur battery

    Science.gov (United States)

    Mikkor, Mati

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  17. Crewed Space Vehicle Battery Safety Requirements Revision D

    Science.gov (United States)

    Russell, Samuel

    2017-01-01

    The Crewed Space Vehicle Battery Safety Requirements document has been prepared for use by designers of battery-powered vehicles, portable equipment, and experiments intended for crewed spaceflight. The purpose of the requirements document is to provide battery designers with information on design provisions to be incorporated in and around the battery and on the verification to be undertaken to demonstrate a safe battery is provided. The term "safe battery" means that the battery is safe for ground personnel and crew members to handle and use; safe to be used in the enclosed environment of a crewed space vehicle; and safe to be mounted or used in unpressurized spaces adjacent to habitable areas. Battery design review, approval, and certification is required before the batteries can be used for ground operations and be certified for flight.

  18. Standby battery requirements for telecommunications power

    Science.gov (United States)

    May, G. J.

    The requirements for standby power for telecommunications are changing as the network moves from conventional systems to Internet Protocol (IP) telephony. These new systems require higher power levels closer to the user but the level of availability and reliability cannot be compromised if the network is to provide service in the event of a failure of the public utility. Many parts of these new networks are ac rather than dc powered with UPS systems for back-up power. These generally have lower levels of reliability than dc systems and the network needs to be designed such that overall reliability is not reduced through appropriate levels of redundancy. Mobile networks have different power requirements. Where there is a high density of nodes, continuity of service can be reasonably assured with short autonomy times. Furthermore, there is generally no requirement that these networks are the provider of last resort and therefore, specifications for continuity of power are directed towards revenue protection and overall reliability targets. As a result of these changes, battery requirements for reserve power are evolving. Shorter autonomy times are specified for parts of the network although a large part will continue to need support for hours rather minutes. Operational temperatures are increasing and battery solutions that provide longer life in extreme conditions are becoming important. Different battery technologies will be discussed in the context of these requirements. Conventional large flooded lead/acid cells both with pasted and tubular plates are used in larger central office applications but the majority of requirements are met with valve-regulated lead/acid (VRLA) batteries. The different types of VRLA battery will be described and their suitability for various applications outlined. New developments in battery construction and battery materials have improved both performance and reliability in recent years. Alternative technologies are also being proposed

  19. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  20. Modelling Thermal Effects of Battery Cells inside Electric Vehicle Battery Packs

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    -physical characteristics and their impact on the electrical state of battery cells(Khan, Mulder et al. 2013, Khan, Andreasen et al. 2014, Khan et al. 2014, Khan, Mulder et al. 2014, Khan, Nielsen et al. 2014). Based on this analysis, we derive strategies in achieving the goal, and then propose a battery thermal management...

  1. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  2. A Thermal Runaway Simulation on a Lithium Titanate Battery and the Battery Module

    Directory of Open Access Journals (Sweden)

    Man Chen

    2015-01-01

    Full Text Available Based on the electrochemical and thermal model, a coupled electro-thermal runaway model was developed and implemented using finite element methods. The thermal decomposition reactions when the battery temperature exceeds the material decomposition temperature were embedded into the model. The temperature variations of a lithium titanate battery during a series of charge-discharge cycles under different current rates were simulated. The results of temperature and heat generation rate demonstrate that the greater the current, the faster the battery temperature is rising. Furthermore, the thermal influence of the overheated cell on surrounding batteries in the module was simulated, and the variation of temperature and heat generation during thermal runaway was obtained. It was found that the overheated cell can induce thermal runaway in other adjacent cells within 3 mm distance in the battery module if the accumulated heat is not dissipated rapidly.

  3. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries

    Science.gov (United States)

    Kim, Haegyeom; Park, Kyu-Young; Hong, Jihyun; Kang, Kisuk

    2014-01-01

    Herein, we propose an advanced energy-storage system: all-graphene-battery. It operates based on fast surface-reactions in both electrodes, thus delivering a remarkably high power density of 6,450 W kg−1total electrode while also retaining a high energy density of 225 Wh kg−1total electrode, which is comparable to that of conventional lithium ion battery. The performance and operating mechanism of all-graphene-battery resemble those of both supercapacitors and batteries, thereby blurring the conventional distinction between supercapacitors and batteries. This work demonstrates that the energy storage system made with carbonaceous materials in both the anode and cathode are promising alternative energy-storage devices. PMID:24923290

  4. An All-Organic Proton Battery.

    Science.gov (United States)

    Emanuelsson, Rikard; Sterby, Mia; Strømme, Maria; Sjödin, Martin

    2017-04-05

    Rechargeable batteries that use organic matter as the capacity-carrying material have previously been considered a technology for the future. Earlier batteries in which both the anode and cathode consisted of organic material required significant amounts of conductive additives and were often based on metal-ion electrolytes containing Li(+) or Na(+). However, we have used conducting poly(3,4-ethylenedioxythiophene) (PEDOT), functionalized with anthraquinone (PEDOT-AQ) or benzonquinone (PEDOT-BQ) pendant groups as the negative and positive electrode materials, respectively, to make an all-organic proton battery devoid of metals. The electrolyte consists of a proton donor and acceptor slurry containing substituted pyridinium triflates and the corresponding pyridine base. This slurry allows the 2e(-)/2H(+) quinone/hydroquinone redox reactions while suppressing proton reduction in the battery cell. By using strong (acidic) proton donors, the formal potential of the quinone redox reactions is tuned into the potential region in which the PEDOT backbone is conductive, thus eliminating the need for conducting additives. In this all-organic proton battery cell, PEDOT-AQ and PEDOT-BQ deliver 103 and 120 mAh g(-1), which correspond to 78% and 75%, respectively, of the theoretical specific capacity of the materials at an average cell potential of 0.5 V. We show that PEDOT-BQ determines the cycling stability of the device while PEDOT-AQ provides excellent reversibility for at least 1000 cycles. This proof-of-concept shows the feasibility of assembling all-organic proton batteries which require no conductive additives and also reveals where the challenges and opportunities lie on the path to producing plastic batteries.

  5. Solar Battery Charger in CMOS 0.25 um Technology

    OpenAIRE

    Tao Wang; Chang-Ching Huang; Tian-Jen Wang

    2014-01-01

    A solar cell powered Li-ion battery charger in CMOS 0.25um is proposed. The solar battery charger consists of a DC/DC boost converter and a battery charger. The voltage generated by a solar cell is up converted from 0.65V to 1.8V, which is used as the VDD of the battery charger.  In this way, the solar battery charger automatically converts solar energy to electricity and stores it directly to a Li-ion rechargeable battery. In this system, a super capacitor is needed as a charge buffer betwee...

  6. Batteries: from alkaline to zinc-air.

    Science.gov (United States)

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  7. Evolution of strategies for modern rechargeable batteries.

    Science.gov (United States)

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  8. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  9. Method and apparatus for assembling battery components

    Energy Technology Data Exchange (ETDEWEB)

    Sabatino, A.; Romanchuk, R. N.; Schaumburg, E. G.; Stanefski, E. F.

    1985-04-09

    A method and apparatus for assembling battery components including a battery case having a plurality of divider walls defining a plurality of side-by-side cell spaces opening through a top portion of the case. A plurality of intermediate cell elements are provided in the cell spaces intermediate the end cell spaces and end cell elements having terminal post portions are inserted in the end cell spaces. The apparatus effects an automatic pickup of the cell elements at one or more insert stations from delivery conveyors suitably positions the picked-up cell elements for proper polarity relationship in the inserted disposition within the battery case, and after moving the picked-up cell elements to overlying relationship with the battery case, inserts the cell elements automatically into the proper cell spaces. Control of delivery of the battery cases to the respective insert positions is effected and coordinated with the delivery of the necessary cell elements from apparatus for preforming the cell elements. Apparatus is provided for accurately spacing the end cell elements upon delivery thereof to the pickup position. The pickup structure includes finger devices arranged to engage plate connecting straps provided on the cell elements in effecting positive pickup, transfer and insertion thereof.

  10. Photovoltaic battery charging experience in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of the island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.

  11. Fibrous zinc anodes for high power batteries

    Science.gov (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  12. Life cycle assessment of lithium sulfur battery for electric vehicles

    Science.gov (United States)

    Deng, Yelin; Li, Jianyang; Li, Tonghui; Gao, Xianfeng; Yuan, Chris

    2017-03-01

    Lithium-sulfur (Li-S) battery is widely recognized as the most promising battery technology for future electric vehicles (EV). To understand the environmental sustainability performance of Li-S battery on future EVs, here a novel life cycle assessment (LCA) model is developed for comprehensive environmental impact assessment of a Li-S battery pack using a graphene sulfur composite cathode and a lithium metal anode protected by a lithium-ion conductive layer, for actual EV applications. The Li-S battery pack is configured with a 61.3 kWh capacity to power a mid-size EV for 320 km range. The life cycle inventory model is developed with a hybrid approach, based on our lab-scale synthesis of the graphene sulfur composite, our lab fabrication of Li-S battery cell, and our industrial partner's battery production processes. The impacts of the Li-S battery are assessed using the ReCiPe method and benchmarked with those of a conventional Nickle-Cobalt-Manganese (NCM)-Graphite battery pack under the same driving distance per charge. The environmental impact assessment results illustrate that Li-S battery is more environmentally friendly than conventional NCM-Graphite battery, with 9%-90% lower impact. Finally, the improvement pathways for the Li-S battery to meet the USABC (U.S. Advanced Battery Consortium) targets are presented with the corresponding environmental impact changes.

  13. Anode-Free Rechargeable Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jiangfeng [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Adams, Brian D. [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zheng, Jianming [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Henderson, Wesley A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Wang, Jun [A123 Systems Research and Development, Waltham MA 02451 USA; Bowden, Mark E. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Suochang [Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hu, Jianzhi [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2016-08-18

    Anode-free rechargeable lithium (Li) batteries (AFLBs) are phenomenal energy storage systems due to their significantly increased energy density and reduced cost relative to Li-ion batteries, as well as ease of assembly owing to the absence of an active (reactive) anode material. However, significant challenges, including Li dendrite growth and low cycling Coulombic efficiency (CE), have prevented their practical implementation. Here, we report for the first time an anode-free rechargeable lithium battery based on a Cu||LiFePO4 cell structure with an extremely high CE (> 99.8%). This results from the utilization of both an exceptionally stable electrolyte and optimized charge/discharge protocols which minimize the corrosion of the in-situ formed Li metal anode.

  14. High-energy metal air batteries

    Science.gov (United States)

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  15. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  16. Roll up nanowire battery from silicon chips.

    Science.gov (United States)

    Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M

    2012-09-18

    Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li(+) gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions.

  17. PNGV Battery Performance Testing and Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Motloch, Chester George; Belt, Jeffrey R; Christophersen, Jon Petter; Wright, Randy Ben; Hunt, Gary Lynn; Sutula, Raymond; Duong, T.Q.; Barnes, J.A.; Miller, Ted J.; Haskind, H. J.; Tartamella, T. J.

    2002-03-01

    In support of the Partnership for a New Generation of Vehicles (PNGV), the Idaho National Engineering and Environmental Laboratory (INEEL) has developed novel testing procedures and analytical methodologies to assess the performance of batteries for use in hybrid electric vehicles (HEV’s). Tests have been designed for both Power Assist and Dual Mode applications. They include both characterization and cycle life and/or calendar life. At periodic intervals during life testing, a series of Reference Performance Tests are executed to determine changes in the baseline performance of the batteries. Analytical procedures include a battery scaling methodology, the calculation of pulse resistance, pulse power, available energy, and differential capacity, and the modeling of calendar- and cycle-life data. PNGV goals, test procedures, analytical methodologies, and representative results are presented.

  18. Porous graphene nanocages for battery applications

    Science.gov (United States)

    Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.

    2017-03-07

    An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.

  19. Enhancing the Charging Power of Quantum Batteries

    Science.gov (United States)

    Campaioli, Francesco; Pollock, Felix A.; Binder, Felix C.; Céleri, Lucas; Goold, John; Vinjanampathy, Sai; Modi, Kavan

    2017-04-01

    Can collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the amount of work deposited per unit time, i.e., the charging power, when N batteries are charged collectively. We first derive analytic upper bounds for the collective quantum advantage in charging power for two choices of constraints on the charging Hamiltonian. We then demonstrate that even in the absence of quantum entanglement this advantage can be extensive. For our main result, we provide an upper bound to the achievable quantum advantage when the interaction order is restricted; i.e., at most k batteries are interacting. This constitutes a fundamental limit on the advantage offered by quantum technologies over their classical counterparts.

  20. Electrochemical stiffness in lithium-ion batteries

    Science.gov (United States)

    Tavassol, Hadi; Jones, Elizabeth M. C.; Sottos, Nancy R.; Gewirth, Andrew A.

    2016-11-01

    Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite-lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.

  1. Use of lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Kennedy, B.; Patterson, D.; Camilleri, S.

    An account is given of the lithium-ion (Li-ion) battery pack used in the Northern Territory University's solar car, Fuji Xerox Desert Rose, which competed in the 1999 World Solar Challenge (WSC). The reasons for the choice of Li-ion batteries over silver-zinc batteries are outlined, and the construction techniques used, the management of the batteries, and the battery protection boards are described. Data from both pre-race trialling and race telemetry, and an analysis of both the coulombic and the energy efficiencies of the battery are presented. It is concluded that Li-ion batteries show a real advantage over other commercially available batteries for traction applications of this kind.

  2. Exploring the Model Design Space for Battery Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery...

  3. Rosetta Lander Batteries Experience During All Operation Phases

    Directory of Open Access Journals (Sweden)

    Cénac-Morthé Céline

    2017-01-01

    Firstly, this paper will describe the Philae mission. In a second part, the batteries system will be presented. The ground strategy will be detailed. Finally, the operations of Philae batteries system will be described.

  4. Adaptation of The Western Aphasia Battery in Bangla

    National Research Council Canada - National Science Library

    Nirnay Kumar Keshree; Suman Kumar; Shriya Basu; Madhushree Chakrabarty; Thomas Kishore

    2013-01-01

    .... Of all the tools available for aphasia diagnosis, the Western Aphasia Battery (WAB; Kertesz, 1982) has proved to be one of the most comprehensive test batteries for describing the aphasia symptom complex...

  5. A highly efficient polysulfide mediator for lithium-sulfur batteries

    National Research Council Canada - National Science Library

    Liang, Xiao; Hart, Connor; Pang, Quan; Garsuch, Arnd; Weiss, Thomas; Nazar, Linda F

    2015-01-01

    The lithium-sulfur battery is receiving intense interest because its theoretical energy density exceeds that of lithium-ion batteries at much lower cost, but practical applications are still hindered...

  6. Simulation of a hydrogen hybrid battery-fuel cell vehicle

    National Research Council Canada - National Science Library

    Víctor Alfonsín; Andrés Suárez; Rocío Maceiras; Ángeles Cancela; Ángel Sánchez

    2015-01-01

    .... Battery and hydrogen consumption, hydrogen storage tank level, battery state of charge, power consumption and fuel cell energy production, maximum range and maximum number of cycles for a real route can be determined...

  7. Safety via Thermal Shutdown for Space Rated Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Li-ion battery safety has inspired many safety features from CID, to safety valves. However, none of the current features protect a battery from internal...

  8. Recharge unit provides for optimum recharging of battery cells

    Science.gov (United States)

    Baer, D.; Ford, F. E.

    1968-01-01

    Percent recharge unit permits each cell of a rechargeable battery to be charged to a preset capacity of the cell. The unit automatically monitors and controls a rechargeable battery subjected to charge-discharge cycling tests.

  9. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  10. Bipolar lead-acid batteries for electrical actuation applications

    Science.gov (United States)

    Pierce, Douglas C.; Gentry, William O.; Hall, David

    1994-01-01

    This document presents in viewgraph format information on bipolar battery development at Johnson Controls, Incorporated. The organization structure, goals, progress to date, future plans, and battery parameters and electrical properties are given.

  11. Battery cycling and calendar aging: year one testing results.

    Science.gov (United States)

    2016-07-01

    This report is meant to provide an update on the ongoing battery testing performed by the Hawaii Natural Energy Institute to evaluate Electric Vehicle (EV) battery durability and reliability under electric utility grid operations. Commercial EV batte...

  12. [European Portuguese EARS test battery adaptation].

    Science.gov (United States)

    Alves, Marisa; Ramos, Daniela; Oliveira, Graça; Alves, Helena; Anderson, Ilona; Magalhães, Isabel; Martins, Jorge H; Simões, Margarida; Ferreira, Raquel; Fonseca, Rita; Andrade, Susana; Silva, Luís; Ribeiro, Carlos; Ferreira, Pedro Lopes

    2014-01-01

    The use of adequate assessment tools in health care is crucial for the management of care. The lack of specific tools in Portugal for assessing the performance of children who use cochlear implants motivated the translation and adaptation of the EARS (Evaluation of Auditory Responses to Speech) test battery into European Portuguese. This test battery is today one of the most commonly used by (re)habilitation teams of deaf children who use cochlear implants worldwide. The goal to be achieved with the validation of EARS was to provide (re)habilitation teams an instrument that enables: (i) monitoring the progress of individual (re)habilitation, (ii) managing a (re)habilitation program according to objective results, comparable between different (re)habilitation teams, (iii) obtaining data that can be compared with the results of international teams, and (iv) improving engagement and motivation of the family and other professionals from local teams. For the test battery translation and adaptation process, the adopted procedures were the following: (i) translation of the English version into European Portuguese by a professional translator, (ii) revision of the translation performed by an expert panel, including doctors, speech-language pathologists and audiologists, (iii) adaptation of the test stimuli by the team's speechlanguage pathologist, and (iv) further review by the expert panel. For each of the tests that belong to the EARS battery, the introduced adaptations and adjustments are presented, combining the characteristics and objectives of the original tests with the linguistic and cultural specificities of the Portuguese population. The difficulties that have been encountered during the translation and adaptation process and the adopted solutions are discussed. Comparisons are made with other versions of the EARS battery. We defend that the translation and the adaptation process followed for the EARS test battery into European Portuguese was correctly conducted

  13. Data-driven battery product development: Turn battery performance into a competitive advantage.

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal [Voltaiq, Inc.

    2016-04-19

    Poor battery performance is a primary source of user dissatisfaction across a broad range of applications, and is a key bottleneck hindering the growth of mobile technology, wearables, electric vehicles, and grid energy storage. Engineering battery systems is difficult, requiring extensive testing for vendor selection, BMS programming, and application-specific lifetime testing. This work also generates huge quantities of data. This presentation will explain how to leverage this data to help ship quality products faster using fewer resources while ensuring safety and reliability in the field, ultimately turning battery performance into a competitive advantage.

  14. Ni-cd Battery Life Expectancy in Geosynchronous Orbit

    Science.gov (United States)

    Broderick, R. J.

    1984-01-01

    The feasibility of using nickel cadmium batteries as an alternate if flight qualified NiH2 batteries are not available is explored. Battery life expectancy data being a key element of power system design, an attempt is made to review the literature, life test data and in orbit performance data to develop an up to date estimate of life expectancy for NiCd batteries in a geosynchronous orbit.

  15. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  16. Battery Calendar Life Estimator Manual Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

    2012-10-01

    The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

  17. Electrical characterization of the Magellan batteries after storage

    Science.gov (United States)

    Deligiannis, Frank; Perrone, D.; Distefano, Sal; Timmerman, Paul

    1993-01-01

    Two 22 cell batteries designed by Martin Marietta were tested. The batteries were rated at 26.5 Amp-Hr. The battery design is characterized by the following: Gates Aerospace 42B030AB15, 11 pos/12 neg, Pellon 2536 separator, passivated pos/teflonated neg. The tests can be summarized as follows: (1) no noticeable capacity loss after storage period; and (2) batteries exhibited larger non-uniformity of cell voltages during constant current charge.

  18. Electrode structures and surfaces for Li batteries

    Science.gov (United States)

    Thackeray, Michael M.; Kang, Sun-Ho; Balasubramanian, Mahalingam; Croy, Jason

    2017-03-14

    This invention relates to methods of preparing positive electrode materials for electrochemical cells and batteries. It relates, in particular, to a method for fabricating lithium-metal-oxide electrode materials for lithium cells and batteries. The method comprises contacting a hydrogen-lithium-manganese-oxide material with one or more metal ions, preferably in an acidic solution, to insert the one or more metal ions into the hydrogen-lithium-manganese-oxide material; heat-treating the resulting product to form a powdered metal oxide composition; and forming an electrode from the powdered metal oxide composition.

  19. Advances in lithium—sulfur batteries

    OpenAIRE

    Zhang, X.; Zhang, X.; Xie, H.; Kim, C.-S.; Zaghib, K.; Mauger, A.; Julien, C.M.

    2017-01-01

    International audience; This review is focused on the state-of-the-art of lithium-sulfur batteries. The great advantage of these energy storage devices in view of their theoretical specific capacity (2500 Wh kg−1, 2800 Wh L−1, assuming complete reaction to Li2S) has been the motivation for a huge amount of works. However, these batteries suffer of disadvantages that have restricted their applications such as high electrical resistance, capacity fading, self-discharge, mainly due to the so-cal...

  20. A Polymer Lithium-Oxygen Battery

    OpenAIRE

    Giuseppe Antonio Elia; Jusef Hassoun

    2015-01-01

    Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000?mAh gC ?1 reflected in a surface capacity of 12.5?mAh cm?2. The electrochemical formation and dissolution of the lithium peroxide during Li-O2...

  1. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-08-25

    ... 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final... for the outbound mailing of lithium batteries. This is consistent with recent amendments to the... a subject line of ``International Lithium Batteries.'' Faxed comments are not accepted. FOR FURTHER...

  2. 46 CFR 129.350 - Batteries-general.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Batteries-general. 129.350 Section 129.350 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each battery...

  3. Datasheet-based modeling of Li-Ion batteries

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Schaltz, Erik; Andreasen, Søren Juhl

    2012-01-01

    Researchers and developers use battery models in order to predict the performance of batteries depending on external and internal conditions, such as temperature, C-rate, Depth-of-Discharge (DoD) or State-of-Health (SoH). Most battery models proposed in the literature require specific laboratory...

  4. 76 FR 55799 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2011-09-09

    ... 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final... maximum limits for the outbound mailing of lithium batteries to international, or APO, FPO or DPO... metal or lithium-ion batteries that were to be effective October 3, 2011. These revisions were...

  5. 75 FR 9147 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-03-01

    ...-AE44 Hazardous Materials: Transportation of Lithium Batteries AGENCY: Pipeline and Hazardous Materials... associated with the air transport of lithium cells and batteries. PHMSA and FAA will hold a public meeting on... they will be attending the Lithium Battery Public Meeting and wait to be escorted to the Conference...

  6. 77 FR 68069 - Outbound International Mailings of Lithium Batteries

    Science.gov (United States)

    2012-11-15

    ... 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final... batteries internationally, or to and from an APO, FPO, or DPO destinations. DATES: Effective date: November... international standards effective May 16, 2012, that prohibited the mailing of lithium batteries and cells...

  7. Effects of automobile battery wastes on physicochemical properties ...

    African Journals Online (AJOL)

    Battery wastes were found to be significant sources of Cadmium and Chromium, as none of both was detected in the control soil sample. The daily activities of auto-mechanic battery workshops have negative impacts on soil physicochemical properties. Note, the soil in mechanic battery workshops needs urgent cleanup to ...

  8. High performance batteries with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen [Littleton, CO

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  9. Gradient porous electrode architectures for rechargeable metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  10. Performance of Automotive SLI Battery under Constant Current ...

    African Journals Online (AJOL)

    The high initial cost of deep-cycle PV battery and its high replacement cost constitute an important barrier to the deployment of solar PV technology, particularly in poor rural settings. Battery lifetime depends on effective charge control and load management. In this project, a cost-effective 12V battery charge controller was ...

  11. 46 CFR 111.105-41 - Battery rooms.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Battery rooms. 111.105-41 Section 111.105-41 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-41 Battery rooms. Each electrical installation in a battery room...

  12. 75 FR 1302 - Hazardous Materials: Transportation of Lithium Batteries

    Science.gov (United States)

    2010-01-11

    ... battery size and chemistry. The high energy density (i.e., high energy to weight ratio) of lithium... known as primary lithium batteries), and lithium ion, including lithium ion polymer (also known as... that packages of lithium batteries are placed into a well- established and high-functioning cargo...

  13. Monitoring sealed automotive lead-acid batteries by sparse ...

    Indian Academy of Sciences (India)

    Unknown

    charge; internal resistance. 1. Introduction. The state-of-charge α. (SOC) of a battery is reflected by the electrical response associated with the battery's resistance and inductance where the application of a load causes the battery voltage to drop ...

  14. Thin-film polymer batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Visco, S.J.; Doeff, M.M.; De Jonghe, L.C. [Lawrence Berkeley Lab, CA (United States)

    1994-12-31

    Lithium polymer battery systems represent low cost, high performance technologies capable of fulfilling the demands of electric vehicles. The composition and performance of these batteries is discussed in the article. The positive electrode in a lithium battery is composed of a solid redox polymerization electrode which is an organodisulfide polymer and carbon black. 7 refs.

  15. The Salty Science of the Aluminum-Air Battery

    Science.gov (United States)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-01-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an…

  16. The Pimsleur Battery as a Predictor of Student Performance.

    Science.gov (United States)

    Curtin, Constance; And Others

    1983-01-01

    A study was undertaken of the predictive validity of the Pimsleur Language Aptitude Battery at a university high school. Correlations of foreign language final grades and total scores on the Pimsleur battery are presented. Reliance on the battery score as a simple predictor of foreign language achievement is not recommended. (MSE)

  17. Self-balancing feature of Lithium-Sulfur batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel-Ioan; Christensen, Andreas Elkjær

    2017-01-01

    The Li-S batteries are a prospective battery technology, which despite to its currently remaining drawbacks offers useable performance and interesting features. The polysulfide shuttle mechanism, a characteristic phenomenon for the Li-S batteries, causes a significant self-discharge at higher state...

  18. Will Your Battery Survive a World With Fast Chargers?

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  19. Primary and secondary battery consumption trends in Sweden 1996-2013: method development and detailed accounting by battery type.

    Science.gov (United States)

    Patrício, João; Kalmykova, Yuliya; Berg, Per E O; Rosado, Leonardo; Åberg, Helena

    2015-05-01

    In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows - due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996-2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese dioxide batteries, the value achieved 74%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Phase I Advanced Battery Materials for Rechargeable Advanced Space-Rated Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy (up to 200 Wh/kg),...

  1. Future batteries will be environment-friendly; Les batteries du futur seront ecologiques

    Energy Technology Data Exchange (ETDEWEB)

    Larcher, D.; Tarascon, J.M. [Universite de Picardie Jules-Verne, Amiens (France)

    2012-02-15

    Since the beginning of the nineties, efficient batteries have been built thanks to lithium. The use of nano-materials for the electrodes have recently opened the way to a cheaper and more environmental friendly technologies like lithium-iron-phosphate (LiFePO{sub 4}) batteries instead of classical lithium-ion batteries. Nano-materials enable the batteries to use more efficiently the electrode and to store more energy. Sustainable development requires the elaboration of clean processes to produce nano-materials, it appears that micro-organisms might be able to produce nano-metric minerals through bio-mineralisation, it is particularly true for FePO{sub 4} because iron and phosphates are abundant biological components. (A.C.)

  2. An Advanced HIL Simulation Battery Model for Battery Management System Testing

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Fleischer, Christian; Christensen, Andreas Elkjær

    2016-01-01

    Developers and manufacturers of battery management systems (BMSs) require extensive testing of controller Hardware (HW) and Software (SW), such as analog front-end and performance of generated control code. In comparison with the tests conducted on real batteries, tests conducted on a state......-of-the-art hardware-in-the-loop (HIL) simulator can be more cost and time effective, easier to reproduce, and safer beyond the normal range of operation, especially at early stages in the development process or during fault insertion. In this paper, an HIL simulation battery model is developed for purposes of BMS...... testing on a commercial HIL simulator. A multicell electrothermal Li-ion battery (LIB) model is integrated in a system-level simulation. Then, the LIB system model is converted to C code and run in real time with the HIL simulator. Finally, in order to demonstrate the capabilities of the setup...

  3. Economic considerations of battery recycling based on the Recytec process

    Science.gov (United States)

    Ammann, Pierre

    The Recytec process is successfully operated on a continuous industrial base since autumn 1994. All the products are regularly re-used without any problems and environmental limits are fully respected. The European Community Battery Directive is valid since many years and only a few countries like Switzerland and The Netherlands have implemented it in national guidelines. In the meantime, battery producers have accepted the necessity of the recycling of mercury-free batteries in order to prevent the contamination of municipal waste streams by other heavy metals, such as zinc and cadmium. Recycling processes like the Recytec process are considered by the battery producers as highly expensive and they are looking for cheaper alternatives. Steel works are confronted with a market change and have to produce less quantities of better quality steels with more stringent environmental limits. The electric arc furnace (EAF), one of the chosen battery destruction techniques, is producing 20% of the European steel. Even if the battery mixes contain only mercury-free batteries, the residual mercury content and the zinc concentration will be too high to insure a good steel quality, if all collected batteries will be fed in EAF. In Waelz kilns (production of zinc oxide concentrates for zinc producers) the situation is the same with regard to the residual mercury concentration and environmental limits. Sorting technologies for the separation of battery mixes into the different battery chemistries will presently fail because the re-users of these sorted mercury-free batteries are not able to accept raw waste batteries but they are interested in some fractions of them. This means that in any case pretreatment is an unavoidable step before selective reclamation of waste batteries. The Recytec process is the low-cost partner in a global strategy for battery recycling. This process is very flexible and will be able to follow, with slight and inexpensive adaptations of the equipment

  4. Recovery of discarded sulfated lead-acid batteries

    Science.gov (United States)

    Karami, Hassan; Asadi, Raziyeh

    The aim of this research is to recover discarded sulfated lead-acid batteries. In this work, the effect of two methods (inverse charge and chemical charge) on the reactivation of sulfated active materials was investigated. At the inverse charge, the battery is deeply discharged and the electrolyte of battery is replaced with a new sulfuric acid solution of 1.28 g cm -3. Then, the battery is inversely charged with constant current method (2 A for the battery with the nominal capacity of 40 Ah) for 24 h. At the final stage, the inversely charged battery is directly charged for 48 h. Through these processes, a discarded battery can recover its capacity to more than 80% of a similar fresh and non-sulfated battery. At the chemical charge method, there are some effective parameters that including ammonium persulfate [(NH 4) 2S 2O 8] concentration, recovery temperature and recovery time. The effect of all parameters was optimized by one at a time method. The sulfated battery is deeply discharged and then, its electrolyte was replaced by a 40% ammonium persulfate solution (as oxidant) at temperature of 50 °C. By adding of oxidant solution, the chemical charging of positive and negative plates was performed for optimum time of 1 h. The chemically charged batteries were charged with constant voltage method (2.66 V for the battery with nominal voltage and nominal capacity of 2 V and 10 Ah, respectively) for 24 h. By performing of these processes, a discarded battery can recovers its capacity to more than 84% of the similar fresh and non-sulfated battery. Discharge and cyclelife behaviors of the recovered batteries were investigated and compared with similar healthy battery. The morphology and structure of plates was studied by scanning electron microscopy (SEM) before and after recovery.

  5. What is the target battery cost at which Battery Electric Vehicles are socially cost competitive?

    OpenAIRE

    Newbery, D.; Strbac, G

    2014-01-01

    Battery electric vehicles (BEVs) could be key to decarbonizing transport, but are heavily subsidized. Most assessments of BEVs use highly taxed road fuel prices and ignore efficient pricing of electricity. We use efficient prices for transport fuels and electricity, to judge what battery costs would make BEVs cost competitive. High mileage, low discount rates and high oil prices could make BEVs cost competitive by 2020, and by 2030 fuel costs are comparable over a wider range. Its contributio...

  6. Cursor Control Device Test Battery

    Science.gov (United States)

    Holden, Kritina; Sandor, Aniko; Pace, John; Thompson, Shelby

    2013-01-01

    The test battery was developed to provide a standard procedure for cursor control device evaluation. The software was built in Visual Basic and consists of nine tasks and a main menu that integrates the set-up of the tasks. The tasks can be used individually, or in a series defined in the main menu. Task 1, the Unidirectional Pointing Task, tests the speed and accuracy of clicking on targets. Two rectangles with an adjustable width and adjustable center- to-center distance are presented. The task is to click back and forth between the two rectangles. Clicks outside of the rectangles are recorded as errors. Task 2, Multidirectional Pointing Task, measures speed and accuracy of clicking on targets approached from different angles. Twenty-five numbered squares of adjustable width are arranged around an adjustable diameter circle. The task is to point and click on the numbered squares (placed on opposite sides of the circle) in consecutive order. Clicks outside of the squares are recorded as errors. Task 3, Unidirectional (horizontal) Dragging Task, is similar to dragging a file into a folder on a computer desktop. Task 3 requires dragging a square of adjustable width from one rectangle and dropping it into another. The width of each rectangle is adjustable, as well as the distance between the two rectangles. Dropping the square outside of the rectangles is recorded as an error. Task 4, Unidirectional Path Following, is similar to Task 3. The task is to drag a square through a tunnel consisting of two lines. The size of the square and the width of the tunnel are adjustable. If the square touches any of the lines, it is counted as an error and the task is restarted. Task 5, Text Selection, involves clicking on a Start button, and then moving directly to the underlined portion of the displayed text and highlighting it. The pointing distance to the text is adjustable, as well as the to-be-selected font size and the underlined character length. If the selection does not

  7. Problem of the vacillating mathematician/Batteries

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 6. Problem of the vacillating mathematician / Batteries. Think It Over Volume 1 Issue 6 June 1996 pp 79-80. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/06/0079-0080. Resonance – Journal of ...

  8. A validated battery of vocal emotional expressions

    Directory of Open Access Journals (Sweden)

    Pierre Maurage

    2007-11-01

    Full Text Available For a long time, the exploration of emotions focused on facial expression, and vocal expression of emotion has only recently received interest. However, no validated battery of emotional vocal expressions has been published and made available to the researchers’ community. This paper aims at validating and proposing such material. 20 actors (10 men recorded sounds (words and interjections expressing six basic emotions (anger, disgust, fear, happiness, neutral and sadness. These stimuli were then submitted to a double validation phase: (1 preselection by experts; (2 quantitative and qualitative validation by 70 participants. 195 stimuli were selected for the final battery, each one depicting a precise emotion. The ratings provide a complete measure of intensity and specificity for each stimulus. This paper provides, to our knowledge, the first validated, freely available and highly standardized battery of emotional vocal expressions (words and intonations. This battery could constitute an interesting tool for the exploration of prosody processing among normal and pathological populations, in neuropsychology as well as psychiatry. Further works are nevertheless needed to complement the present material.

  9. Overview of ENEA's Projects on lithium batteries

    Science.gov (United States)

    Alessandrini, F.; Conte, M.; Passerini, S.; Prosini, P. P.

    The increasing need of high performance batteries in various small-scale and large-scale applications (portable electronics, notebooks, palmtops, cellular phones, electric vehicles, UPS, load levelling) in Italy is motivating the R&D efforts of various public and private organizations. Research of lithium batteries in Italy goes back to the beginning of the technological development of primary and secondary lithium systems with national know-how spread in various academic and public institutions with a few private stakeholders. In the field of lithium polymer batteries, ENEA has been dedicating significant efforts in almost two decades to promote and carry out basic R&D and pre-industrial development projects. In recent years, three major national projects have been performed and coordinated by ENEA in co-operation with some universities, governmental research organizations and industry. In these projects novel polymer electrolytes with ceramic additives, low cost manganese oxide-based composite cathodes, environmentally friendly process for polymer electrolyte, fabrication processes of components and cells have been investigated and developed in order to fulfill long-term needs of cost-effective and highly performant lithium polymer batteries.

  10. Rechargeable solid polymer electrolyte battery cell

    Science.gov (United States)

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  11. High Rate Performing Li-ion Battery

    Science.gov (United States)

    2015-02-09

    permeable to lithium ions and efficient in transferring the electrons into/from the LVP surface to the corresponding current collector. a) b) c) d) e...PO4)3/C for High Rate Lithium-ion Battery Applications”, Lee Hwang Sheng, Nail Suleimanov, Vishwanathan Ramar, Mangayarkarasi Murugan, Kuppan

  12. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  13. Electric charger for an accumulator or battery

    NARCIS (Netherlands)

    Robers, E.W.J.; Molenaar, B.A.M.; Smit, W.; Bech, L.P.; Bouman, C.

    2009-01-01

    The invention relates to an electric charger for an accumulator or a battery or the like, which is adapted for rapid charging during an on-period and comprises for this purpose control means for starting and ending the on-period. The charger is provided with a circuit for converting a supply voltage

  14. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    Science.gov (United States)

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  15. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Keywords. Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring ... impedance by frequency sweep, avoiding transients. The measured impedance has been compared to that from a commercially available impedance measurement equipment and is shown to have a good match.

  16. ESL batteries and multi-segment applications

    Science.gov (United States)

    Hay, J. L.; Pearce, J. G.; Turnbull, L.; Owen, J. R.

    1987-06-01

    A simulation model for nickel cadmium battery cells operating in the environment of a low Earth orbit satellite; simulation applications to investigate the performance of the ESA Simulation Language (ESL) segment or multiprocessor emulation features; a double-precision version of ESL; and development of ESL in equation sorting, segmentation, character handling, and file input/output are described.

  17. 49 CFR 173.159 - Batteries, wet.

    Science.gov (United States)

    2010-10-01

    ... impact resistant, the outer packaging must not be used as the sole means of protecting the battery... SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.159... amount of heat sufficient to be dangerous to packaging or personal safety to include charring of...

  18. Nuclear Energy Assessment Battery. Form C.

    Science.gov (United States)

    Showers, Dennis Edward

    This publication consists of a nuclear energy assessment battery for secondary level students. The test contains 44 multiple choice items and is organized into four major sections. Parts include: (1) a knowledge scale; (2) attitudes toward nuclear energy; (3) a behaviors and intentions scale; and (4) an anxiety scale. Directions are provided for…

  19. Polymer nanocomposites for lithium battery applications

    Science.gov (United States)

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  20. Nanowire Electrodes for Advanced Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Lei eHuang

    2014-10-01

    Full Text Available Since the commercialization of lithium ion batteries (LIBs in the past two decades, rechargeable LIBs have become widespread power sources for portable devices used in daily life. However, current demands require higher energy density and power density of batteries. The electrochemical energy storage performance of LIBs could be improved by applying nanomaterial electrodes, but their fast capacity fading is still one of the key limitations and the mechanism needs to be clearly understood. Single nanowire electrode devices are considered as a versatile platform for in situ probing the direct relationship between electrical transport, structure change, and other properties of the single nanowire electrode along with the charge/discharge process. The results indicate the conductivity decrease of the nanowire electrode and the structural disorder/destruction during electrochemical reactions which limit the cycling performance of LIBs. Based on the in situ observations, some feasible structure architecture strategies, including prelithiation, coaxial structure, nanowire arrays and hierarchical structure architecture, are proposed and utilized to restrain the conductivity decrease and structural disorder/destruction. Further, the applications of nanowire electrodes in some beyond Li-ion batteries, such as Li-S and Li-air battery, are also described.

  1. Lithium-Oxygen Batteries: At a Crossroads?

    DEFF Research Database (Denmark)

    Vegge, Tejs; García Lastra, Juan Maria; Siegel, Donald Jason

    2017-01-01

    In this current opinion, we critically review and discuss some of the most important recent findings in the field of rechargeable lithium-oxygen batteries. We discuss recent discoveries like the evolution of reactive singlet oxygen and the use of organic additives to bypass reactive LiO2 reaction...

  2. Overview of battery technology for HEV

    NARCIS (Netherlands)

    Smets, S.; Debal, P.; Conte, V.; Alaküla, M.; Santini, D.; Duvall, M.; Winkel, R.; Badin, F.

    2006-01-01

    Several electric energy storage systems exist with different principles and characteristics. On the other hand, there are also various hybrid electric vehicles with specific requirements. This paper gives an overview of the advantages/disadvantages and practical aspects of battery technologies and

  3. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  4. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  5. Transferring the Incremental Capacity Analysis to Lithium-Sulfur Batteries

    OpenAIRE

    Knap, Vaclav; Kalogiannis, Theodoros; Purkayastha, Rajlakshmi; Beczkowski, Szymon; Stroe, Daniel-Ioan; Schaltz, Erik; Teodorescu, Remus

    2017-01-01

    In order to investigate the battery degradation and to estimate their health, various techniques can be applied. One of them, which is widely used for Lithium-ion batteries, is the incremental capacity analysis (ICA). In this work, we apply the ICA to Lithium-Sulfur batteries, which differ in many aspects from Lithium-ion batteries and possess unique behavior. One of the challenges of applying the ICA to Lithium-Sulfur batteries is the representation of the IC curves, as their voltage profile...

  6. Disc Battery - An Unusual Vaginal Foreign Body in a Child.

    Science.gov (United States)

    Khan, Yousuf Aziz; Mahmood, Mansoor; Taqi, Esmaeel

    2016-01-01

    Disc battery ingestion and esophageal injury is well-known in children. Insertion of a disc/lithium battery into body's natural orifices is rarely reported. We present a case of self-insertion of a lithium battery into the vagina by a 2 ½ year old female. Vaginoscopy was performed and the battery was retrieved which had corroded and caused vaginal ulceration. Post-operative outcome was favorable. Treating physicians must be aware of the hazardous effects of insertion of lithium batteries as it may cause significant damage in a short period.

  7. A Novel In-Flight Space Battery Health Assessment System

    Directory of Open Access Journals (Sweden)

    Buergler Brandon

    2017-01-01

    In this paper a novel health assessment system is proposed by which a more straight forward and accurate assessment of the battery health in terms of capacity and energy can be performed. The proposed system consists to use one or some battery string(s, which can be safely disconnected via the PCDU (Power Conditioning and Distribution Unit from the battery for a dedicated capacity measurement while the main part of the battery continues to operate normally. In this paper, the viability of the proposed system is demonstrated and the implications on the battery and the power system are discussed.

  8. Methods for thermodynamic evaluation of battery state of health

    Science.gov (United States)

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2013-05-21

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  9. Health risks following ingestion of mercury and zinc air batteries.

    Science.gov (United States)

    Nolan, M; Tucker, I

    1981-01-01

    This paper reports on a study set up to assess the corrosive behaviour of mercury and zinc air batteries in the gastric juice environment of the stomach. The results show a relatively rapid rate of corrosion for charged mercury batteries. In contrast, the zinc air battery showed no visible corrosion under the same conditions. In view of the toxic dangers from leakage of mercury batteries, it is recommended that steps be taken to ensure that such batteries do not remain in the acidic environment of the stomach, should ingestion occur.

  10. Electrical energy storage for the grid: a battery of choices.

    Science.gov (United States)

    Dunn, Bruce; Kamath, Haresh; Tarascon, Jean-Marie

    2011-11-18

    The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

  11. Transferring the Incremental Capacity Analysis to Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Kalogiannis, Theodoros; Purkayastha, Rajlakshmi

    2017-01-01

    In order to investigate the battery degradation and to estimate their health, various techniques can be applied. One of them, which is widely used for Lithium-ion batteries, is the incremental capacity analysis (ICA). In this work, we apply the ICA to Lithium-Sulfur batteries, which differ in many...... aspects from Lithium-ion batteries and possess unique behavior. One of the challenges of applying the ICA to Lithium-Sulfur batteries is the representation of the IC curves, as their voltage profiles are often non-monotonic, resulting in more complex IC curves. The ICA is at first applied to charge...

  12. Hemorrhagic shock secondary to button battery ingestion

    Directory of Open Access Journals (Sweden)

    Naomi Andreia Takesaki

    Full Text Available CONTEXT:Button battery ingestion is a frequent pediatric complaint. The serious complications resulting from accidental ingestion have increased significantly over the last two decades due to easy access to gadgets and electronic toys. Over recent years, the increasing use of lithium batteries of diameter 20 mm has brought new challenges, because these are more detrimental to the mucosa, compared with other types, with high morbidity and mortality. The clinical complaints, which are often nonspecific, may lead to delayed diagnosis, thereby increasing the risk of severe complications.CASE REPORT:A five-year-old boy who had been complaining of abdominal pain for ten days, was brought to the emergency service with a clinical condition of hematemesis that started two hours earlier. On admission, he presented pallor, tachycardia and hypotension. A plain abdominal x-ray produced an image suggestive of a button battery. Digestive endoscopy showed a deep ulcerated lesion in the esophagus without active bleeding. After this procedure, the patient presented profuse hematemesis and severe hypotension, followed by cardiorespiratory arrest, which was reversed. He then underwent emergency exploratory laparotomy and presented a new episode of cardiorespiratory arrest, which he did not survive. The battery was removed through rectal exploration.CONCLUSION:This case describes a fatal evolution of button battery ingestion with late diagnosis and severe associated injury of the digestive mucosa. A high level of clinical suspicion is essential for preventing this evolution. Preventive strategies are required, as well as health education, with warnings to parents, caregivers and healthcare professionals.

  13. Multilayer Approach for Advanced Hybrid Lithium Battery

    KAUST Repository

    Ming, Jun

    2016-06-06

    Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.

  14. More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects.

    Science.gov (United States)

    Fang, Ruopian; Zhao, Shiyong; Sun, Zhenhua; Wang, Da-Wei; Cheng, Hui-Ming; Li, Feng

    2017-12-01

    Lithium-sulfur (Li-S) batteries have attracted tremendous interest because of their high theoretical energy density and cost effectiveness. The target of Li-S battery research is to produce batteries with a high useful energy density that at least outperforms state-of-the-art lithium-ion batteries. However, due to an intrinsic gap between fundamental research and practical applications, the outstanding electrochemical results obtained in most Li-S battery studies indeed correspond to low useful energy densities and are not really suitable for practical requirements. The Li-S battery is a complex device and its useful energy density is determined by a number of design parameters, most of which are often ignored, leading to the failure to meet commercial requirements. The purpose of this review is to discuss how to pave the way for reliable Li-S batteries. First, the current research status of Li-S batteries is briefly reviewed based on statistical information obtained from literature. This includes an analysis of how the various parameters influence the useful energy density and a summary of existing problems in the current Li-S battery research. Possible solutions and some concerns regarding the construction of reliable Li-S batteries are comprehensively discussed. Finally, insights are offered on the future directions and prospects in Li-S battery field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Caustic esophageal injury by impaction of cell batteries.

    Science.gov (United States)

    García Fernández, Francisco José; León Montañés, Rafael; Bozada Garcia, Juan Manuel

    2016-12-01

    The ingestion of cell batteries can cause serious complications (fistula, perforation or stenosis) at the esophageal level. The damage starts soon after ingestion (approximately 2 hours) and is directly related to the amount of time the battery is lodged in said location, the amount of electrical charge remaining in the battery, and the size of the battery itself. Injury is produced by the combination of electrochemical and chemical mechanisms and pressure necrosis. The ingestion of multiple cells and a size > = 20 mm are related with more severe and clinically significant outcomes. A female patient, 39 years old, with a history of previous suicide attempts, was admitted to the Emergency Room with chest pain and dysphagia after voluntary ingestion of 2 cell batteries. Two cell batteries are easily detected in a routine chest X-ray, presenting a characteristic double-ring shadow, or peripheral halo. Urgent oral endoscopy was performed 10 hours after ingestion, showing a greenish-gray lumpy magma-like consistency due to leakage of battery contents. The 2 batteries were sequentially removed with alligator-jaw forceps. After flushing and aspiration of the chemical material, a broad and circumferential injury with denudation of the mucosa and two deep ulcerations with necrosis were observed where the batteries had been. The batteries' seals were eroded, releasing chemical contents. Despite the severity of the injuries, the patient progressed favorably and there was no esophageal perforation. Esophageal impaction of cell batteries should always be considered an endoscopic urgency.

  16. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang

    2017-05-01

    Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Potential use of battery packs from NCAP tested vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Joshua; Orendorff, Christopher J.

    2013-10-01

    Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

  18. Battery-Aware Scheduling of Mixed Criticality Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Hansen, Rene Rydhof; Larsen, Kim Guldstrand

    2014-01-01

    Wireless systems such as satellites and sensor networks are often battery-powered. To operate optimally they must therefore take the performance properties of real batteries into account. Additionally, these systems, and therefore their batteries, are often exposed to loads with uncertain timings....... Mixed criticality and soft real-time systems may accept deadline violations and therefore enable trade-offs and evaluation of performance by criteria such as the number of tasks that can be completed with a given battery. We model a task set in combination with the kinetic battery model as a stochastic...... model we also calculate an upper bound on the attainable number of task instances from a battery, and we provide a battery-aware scheduler that wastes no energy on instances that are not guaranteed to make their deadlines....

  19. Third International Conference on Batteries for Utility Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-18

    This is a collection of essays presented at the above-named conference held at Kobe, Japan, from March 18 through 22, 1991. At the utility energy storage session, a power research program plan, operational and economic benefits of BESP (battery energy storage plant), the Moonlight Project, etc., were presented, respectively, by EPRI (Electric Power Research Institute) of the U.S., BEWAG Corporation of Germany, and NEDO (New Energy and Industrial Technology Development Organization) of Japan, etc. At the improved lead-acid batteries session, the characteristics of improved lead-acid batteries, load levelling and life cycle, problems in BESP, comparisons and tests, etc., were presented by Japan, Italy, the U.S., etc. At the advanced batteries session, presentations were made about the sodium-sulfur battery, zinc-bromine battery, redox battery, etc. Furthermore, there were sessions on consumer energy systems, control and power conditioning technology, and commercialization and economic studies. A total 53 presentations were made. (NEDO)

  20. New Horizons for Conventional Lithium Ion Battery Technology.

    Science.gov (United States)

    Erickson, Evan M; Ghanty, Chandan; Aurbach, Doron

    2014-10-02

    Secondary lithium ion battery technology has made deliberate, incremental improvements over the past four decades, providing sufficient energy densities to sustain a significant mobile electronic device industry. Because current battery systems provide ∼100-150 km of driving distance per charge, ∼5-fold improvements are required to fully compete with internal combustion engines that provide >500 km range per tank. Despite expected improvements, the authors believe that lithium ion batteries are unlikely to replace combustion engines in fully electric vehicles. However, high fidelity and safe Li ion batteries can be used in full EVs plus range extenders (e.g., metal air batteries, generators with ICE or gas turbines). This perspective article describes advanced materials and directions that can take this technology further in terms of energy density, and aims at delineating realistic horizons for the next generations of Li ion batteries. This article concentrates on Li intercalation and Li alloying electrodes, relevant to the term Li ion batteries.

  1. Battery system including batteries that have a plurality of positive terminals and a plurality of negative terminals

    Science.gov (United States)

    Dougherty, Thomas J; Symanski, James S; Kuempers, Joerg A; Miles, Ronald C; Hansen, Scott A; Smith, Nels R; Taghikhani, Majid; Mrotek, Edward N; Andrew, Michael G

    2014-01-21

    A lithium battery for use in a vehicle includes a container, a plurality of positive terminals extending from a first end of the lithium battery, and a plurality of negative terminals extending from a second end of the lithium battery. The plurality of positive terminals are provided in a first configuration and the plurality of negative terminals are provided in a second configuration, the first configuration differing from the second configuration. A battery system for use in a vehicle may include a plurality of electrically connected lithium cells or batteries.

  2. Study on the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles

    DEFF Research Database (Denmark)

    Pinto, Cláudio; Barreras, Jorge V.; de Castro, Ricardo

    2017-01-01

    This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles....... Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear...

  3. Investigating Electrochemical Processes in Secondary Batteries

    Science.gov (United States)

    Cama, Christina A.

    For the past twenty-six years, the lithium-ion battery has been the most popular recharge- able battery for portable devices and electric vehicles. Despite its success, the energy storage capability of lithium-ion batteries (LIBs) is significantly limited by both the electrodes and electrolytes employed. Typical LIBs rely on intercalation-type electrodes, that are not capable of storing more than 1 Li+ per formula unit. The energy storage capability of LIBs can be improved through the application of conversion-type materials and beyond lithium chemistries. This research involves multiple projects which explore the electrochemistry of conversion electrodes, magnesium-ion chemistry, and lithium-sulfur chemistry. Application of conversion-electrodes like copper ferrite, CuFe2O4, and magnetite, Fe3O4, are capable of lithium storage over five times greater than that achieved by electrodes used in commercial LIBs. The drawback to utilizing the conversion mechanism is that significant energy storage capability is lost during charge. In this research, X- ray characterization methods, including X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) are used to elucidate the lithiation and delithiation mechanism for CuFe2O4 and to understand the source of the irreversibility. These experiments provide significant insight into the reduction processes and cation migration within the structure. During lithiation, CuFe2O4 undergoes a three-step reduction mechanism involving (1) lithiation of CuFe2O4, (2) extrusion of copper metal nanoparticles and formation of rock- salt LiFeO2, followed by the (3) formation of iron metal nanoparticles. Upon delithiation, XAS spectra clearly demonstrate the feasibility of Fe0 oxidation to a rock-salt iron oxide; however, Cu0 oxidation is not observed. Additional experiments explored the kinetic limitations of lithiating Fe3O4 nanoparticles, with different crystallite sizes. The experiments demonstrate that the kinetics of the lithiation

  4. Prospects and Limits of Energy Storage in Batteries.

    Science.gov (United States)

    Abraham, K M

    2015-03-05

    Energy densities of Li ion batteries, limited by the capacities of cathode materials, must increase by a factor of 2 or more to give all-electric automobiles a 300 mile driving range on a single charge. Battery chemical couples with very low equivalent weights have to be sought to produce such batteries. Advanced Li ion batteries may not be able to meet this challenge in the near term. The state-of-the-art of Li ion batteries is discussed, and the challenges of developing ultrahigh energy density rechargeable batteries are identified. Examples of ultrahigh energy density battery chemical couples include Li/O2, Li/S, Li/metal halide, and Li/metal oxide systems. Future efforts are also expected to involve all-solid-state batteries with performance similar to their liquid electrolyte counterparts, biodegradable batteries to address environmental challenges, and low-cost long cycle-life batteries for large-scale energy storage. Ultimately, energy densities of electrochemical energy storage systems are limited by chemistry constraints.

  5. Utility Battery Storage Systems Program plan: FY 1994--FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Utility Battery Storage Systems Program, sponsored by the US Department of Energy (DOE), is addressing needed improvements so that the full benefits of these systems can be realized. A key element of the Program is the quantification of the benefits of batteries used in utility applications. The analyses of the applications and benefits are ongoing, but preliminary results indicate that the widespread introduction of battery storage by utilities could benefit the US economy by more than $26 billion by 2010 and create thousands of new jobs. Other critical elements of the DOE Program focus on improving the batteries, power electronics, and control subsystems and reducing their costs. These subsystems are then integrated and the systems undergo field evaluation. Finally, the most important element of the Program is the communication of the capabilities and benefits of battery systems to utility companies. Justifiably conservative, utilities must have proven, reliable equipment that is economical before they can adopt new technologies. While several utilities are leading the industry by demonstrating battery systems, a key task of the DOE program is to inform the entire industry of the value, characteristics, and availability of utility battery systems so that knowledgeable decisions can be made regarding future investments. This program plan for the DOE Utility Battery Storage Systems Program describes the technical and programmatic activities needed to bring about the widespread use of batteries by utilities. By following this plan, the DOE anticipates that many of the significant national benefits from battery storage will be achieved in the near future.

  6. Recycling zinc batteries: an economical challenge in consumer waste management

    Science.gov (United States)

    Wiaux, J.-P.; Waefler, J.-P.

    The zinc battery has become the most popular source of portable electrical energy. Worldwide, more than 300 000 tons of batteries are sold yearly. As the battery weight becomes less and less important for a given delivered power, battery weight averages between 10 g per unit for AAA models and 140 g for D-size batteries. It is reckoned that 25 000 units are present per ton and a number as big as 7.5 billion cells are sold yearly to consumers: more than one cell per inhabitant of the world. It is a human challenge to achieve the recycling of consumer-type batteries. Individuals should cooperate in such a program in order to ensure its success. For spent consumer batteries, collection rates as high as 60% have been reported in countries like Austria, Denmark and Switzerland. Such performances will be achieved with difficulty in other bigger countries. Is it necessary or useful to recycle zinc batteries? In order to answer this fundamental question, various elements will be considered in this paper, such as the energetic balance of the chemically active part of the battery, the value and the supply of the materials and finally the important steps and alternative routes to the recycling of zinc batteries.

  7. A Temperature-Dependent Battery Model for Wireless Sensor Networks.

    Science.gov (United States)

    Rodrigues, Leonardo M; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-02-22

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.

  8. International Space Station Lithium-Ion Battery Start-Up

    Science.gov (United States)

    Dalton, Penni J.; North, Tim; Bowens, Ebony; Balcer, Sonia

    2017-01-01

    International Space Station Lithium-Ion Battery Start-Up.The International Space Station (ISS) primary Electric Power System (EPS) was originally designed to use Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. As the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. The first set of 6 Li-ion battery replacements were launched in December 2016 and deployed in January 2017. This paper will discuss the Li-ion battery on-orbit start-up and the status of the Li-Ion cell and ORU life cycle testing.

  9. Numerical simulation of bromine crossover behavior in flow battery

    Science.gov (United States)

    Jia, Yaobin; Cheng, Shijian; Chu, Dandan; Li, Xin

    2017-03-01

    Br2 and HBr has its own series of advantages as the positive electrolyte solution, so some batteries select the Br2/Br- as the positive electrolyte solution, such as sodium polysulfide/bromine flow battery, zinc/bromine flow battery, vanadium/ bromine flow batteries and hydrogen/bromine flow batteries. But the crossover benavior of bromine occurs in these batteries too, resulting in cross-contamination, capacity loss and affecting battery's performance. In this work, we build numerical models to study the influence of bromine crossover phenomenon on the three forms of bromine crossover, the concentration of electrolyte on the cathode side and the flow rate of the negative side in the quinone bromine flow battery, to find the main models affecting the bromine crossover and the impact of bromine crossover on battery performance. It was found that the three ways of crossover through the membranes was mainly by diffusion. By reducing the concentration of positive electrolyte solution, the bromine crossover can be reduced and Coulomb Efficiency can be improved. Rising the flow rate of the electrolyte solution on the negative side and reducing the differential between positive side's pressure and negative side's pressure can also reduce the amount of bromine crossover to improve Coulomb efficiency in the battery.

  10. A Temperature-Dependent Battery Model for Wireless Sensor Networks

    Science.gov (United States)

    Rodrigues, Leonardo M.; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments. PMID:28241444

  11. Silver manganese oxide electrodes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  12. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  13. Solid-state rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chusid, O.; Gofer, Y.; Gizbar, H.; Vestfrid, Y.; Levi, E.; Aurbach, D. [Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900 (Israel); Riech, I. [Ortal Magnesium Diecasting Ltd, Kibbutz Neve Ur 10875 (Israel)

    2003-04-17

    The development of all solid-state rechargeable magnesium battery systems is reported, with components that are environmentally friendly and relatively simple in their structure and preparation. As anodes, magnesium alloys containing Zn and Al are used, and the cathode is the chevrel phase, Mo{sub 6}S{sub 8}, which can insert two magnesium atoms per unit (Mg{sub 2}Mo{sub 6}S{sub 8}, 122 mA h g{sup -1}). The solid electrolyte is a gel comprising polyvinylidene difluoride, Mg(AlCl{sub 2}EtBt){sub 2} complex salt, and tetraglyme as a plasticizer. These batteries are found to function well in a temperature range of 0-80 C with a voltage range of 1.3-0.8V. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  14. A Polymer Lithium-Oxygen Battery.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Hassoun, Jusef

    2015-08-04

    Herein we report the characteristics of a lithium-oxygen battery using a solid polymer membrane as the electrolyte separator. The polymer electrolyte, fully characterized in terms of electrochemical properties, shows suitable conductivity at room temperature allowing the reversible cycling of the Li-O2 battery with a specific capacity as high as 25,000 mAh gC(-1) reflected in a surface capacity of 12.5 mAh cm(-2). The electrochemical formation and dissolution of the lithium peroxide during Li-O2 polymer cell operation is investigated by electrochemical techniques combined with X-ray diffraction study, demonstrating the process reversibility. The excellent cell performances in terms of delivered capacity, in addition to its solid configuration allowing the safe use of lithium metal as high capacity anode, demonstrate the suitability of the polymer lithium-oxygen as high-energy storage system.

  15. Process to produce lithium-polymer batteries

    Science.gov (United States)

    MacFadden, Kenneth Orville

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  16. The requirements for batteries for electric vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1976-01-01

    The paper reassesses the role of electric vehicles in the modern transportation system and their potential impact on oil consumption. Three major factors determining the size of this impact are discussed: the market potential, the date of introduction, and the rate of consumer acceptance. The strategy of selecting the battery type for an urban car to introduce in coming years is analyzed. The results of the analysis suggest that the research and development emphasis should be placed on near- and mid-term battery technology. From the standpoint of maximizing both the cumulative impact and the benefits derived in the year 2000, however, a strategy of early introduction of near-term and mid-term cars followed by the far-term vehicles seems to produce the optimum result.

  17. The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal

    Directory of Open Access Journals (Sweden)

    Minfang Huang

    2016-06-01

    Full Text Available Electric vehicles play a key role for developing an eco-sustainable transport system. One critical component of an electric vehicle is its battery, which can be quickly charged or exchanged before it runs out. The problem of electric vehicle dispatching falls into the category of the shortest path problem with resource renewal. In this paper, we study the shortest path problems in (1 electric transit bus scheduling and (2 electric truck routing with time windows. In these applications, a fully-charged battery allows running a limited operational distance, and the battery before depletion needs to be quickly charged or exchanged with a fully-charged one at a battery management facility. The limited distance and battery renewal result in a shortest path problem with resource renewal. We develop a label-correcting algorithm with state space relaxation to find optimal solutions. In the computational experiments, real-world road geometry data are used to generate realistic travel distances, and other types of data are obtained from the real world or randomly generated. The computational results show that the label-correcting algorithm performs very well.

  18. Conductive polymeric compositions for lithium batteries

    Science.gov (United States)

    Angell, Charles A [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  19. Nanomaterials for sodium-ion batteries

    Science.gov (United States)

    Liu, Jun; Cao, Yuliang; Xiao, Lifen; Yang, Zhenguo; Wang, Wei; Choi, Daiwon; Nie, Zimin

    2015-05-05

    A crystalline nanowire and method of making a crystalline nanowire are disclosed. The method includes dissolving a first nitrate salt and a second nitrate salt in an acrylic acid aqueous solution. An initiator is added to the solution, which is then heated to form polyacrylatyes. The polyacrylates are dried and calcined. The nanowires show high reversible capacity, enhanced cycleability, and promising rate capability for a battery or capacitor.

  20. Using smartphone batteries as an urban thermometer

    Science.gov (United States)

    Droste, Arjan; Pape, Jan-Jaap; Overeem, Aart; Leijnse, Hidde; Steeneveld, Gert-Jan; Van Delden, Aarnout; Uijlenhoet, Remko

    2017-04-01

    Taking meteorological measurements in the urban environment is notoriously difficult due to the complex geometry at street and neighbourhood level. Traditional weather stations are absent in cities because of WMO regulations, so urban data has to come from typically expensive measurement-networks, or short intensive campaigns. While traditional measurements are scarce, there is an abundance of smart devices in cities: the well-known Internet of Things. It is for these reasons that crowdsourcing data has an enormous potential in cities, to deliver vast quantities of data without the maintenance costs of a measurement network. A promising source of potentially valuable data is the smartphone, because of its ubiquity and the many sensors most newer phone models now possess. Since most people nowadays have a smartphone, and carry it around wherever they go, data logged by the phone can be used to estimate the urban air temperature. A persistent log taken by nearly all smartphone models, even those without air temperature sensors, is the smartphone's battery temperature. The free OpenSignal smartphone application logs this battery temperature (among many other variables) and the position of the smartphone, which makes it possible to estimate the urban air temperature through a straightforward heat transfer model relating battery temperature to air and body temperature. The obtained urban temperatures are accurate within 1 to 2 degrees of certified measurement stations, proving the huge potential of this innovative method. This poster focuses on describing how thousands of daily smartphone battery temperature measurements can be translated to a relatively robust estimation of an urban air temperature, using 2 years of data from São Paulo in Brazil. Analysis of the results is presented in a separate session.

  1. Controlled battery charger for electric vehicles

    OpenAIRE

    Geske, M.; Winkler, T; Komarnicki, P.; Heideck, G.

    2010-01-01

    Due to rising fuel consumption, price of CO2 emissions and growing urban air pollution, the global interest of the automobile industry, politics and scientists in electric mobility is increasing in the recent years worldwide. Thus, future challenges will be the integration of electric vehicles in distribution networks under the scope of balancing multiple charging processes while, at the same time, increasing dispersed generation. The development of a controlled battery charger for traction b...

  2. Thermal fuse for high-temperature batteries

    Science.gov (United States)

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  3. Passive magnetic bearings for vehicular electromechanical batteries

    Energy Technology Data Exchange (ETDEWEB)

    Post, R

    1996-03-01

    This report describes the design of a passive magnetic bearing system to be used in electromechanical batteries (flywheel energy storage modules) suitable for vehicular use. One or two such EMB modules might, for example, be employed in a hybrid-electric automobile, providing efficient means for power peaking, i.e., for handling acceleration and regenerative braking power demands at high power levels. The bearing design described herein will be based on a ''dual-mode'' operating regime.

  4. Frontier battery development for hybrid vehicles.

    Science.gov (United States)

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-04-23

    Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  5. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  6. Intercalation materials for lithium rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Machill, S.; Schloerb, H.; Siury, K.; Kloss, M.; Plieth, W. [Dresden University of Technology, Institute of Physical Chemistry and Electrochemistry, Dresden (Germany)

    1996-07-20

    In this contribution an overview will be given about the intercalation materials both for the negative and positive electrode of lithium batteries in comparison with results of our own research. Besides lithium metal as a negative electrode, interest is focused on insertion materials based on aluminium alloys. In the case of the positive electrode metal-oxides, those based on manganese, nickel and cobalt are discussed

  7. Flow Battery Solution for Smart Grid Applications

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-30

    To address future grid requirements, a U.S. Department of Energy ARRA Storage Demonstration program was launched in 2009 to commercialize promising technologies needed for stronger and more renewables-intensive grids. Raytheon Ktech and EnerVault received a cost-share grant award from the U.S. Department of Energy to develop a grid-scale storage system based on EnerVault’s iron-chromium redox flow battery technology.

  8. Rechargeable lithium battery technology - A survey

    Science.gov (United States)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  9. Redox Flow Batteries, Hydrogen and Distributed Storage

    OpenAIRE

    Dennison, C. R.; Vrubel, Heron; Amstutz, Véronique; Peljo, Pekka Eero; Toghill, Kathryn E.; GIRAULT Hubert

    2015-01-01

    Social, economic, and political pressures are causing a shift in the global energy mix, with a preference toward renewable energy sources. In order to realize widespread implementation of these resources, large-scale storage of renewable energy is needed. Among the proposed energy storage technologies, redox flow batteries offer many unique advantages. The primary limitation of these systems, however, is their limited energy density which necessitates very large installations. In order to enh...

  10. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  11. FY2016 Advanced Batteries R&D Annual Progress Report - Part 5 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section cover Advanced Battery Materials Research (BMR) part 2, Battery500 Innovation Centers project summaries, and appendices.

  12. Development and characterization of textile batteries

    Science.gov (United States)

    Normann, M.; Grethe, T.; Schwarz-Pfeiffer, A.; Ehrmann, A.

    2017-02-01

    During the past years, smart textiles have gained more and more attention. Products cover a broad range of possible applications, from fashion items such as LED garments to sensory shirts detecting vital signs to clothes with included electrical stimulation of muscles. For all electrical or electronic features included in garments, a power supply is needed - which is usually the bottleneck in the development of smart textiles, since common power supplies are not flexible and often not lightweight, prohibiting their unobtrusive integration in electronic textiles. In a recent project, textile-based batteries are developed. For this, metallized woven fabrics (e.g. copper, zinc, or silver) are used in combinations with carbon fabrics. The article gives an overview of our recent advances in optimizing power storage capacity and durability of the textile batteries by tailoring the gel-electrolyte. The gel-electrolyte is modified with respect to thickness and electrolyte concentration; additionally, the influence of additives on the long-time stability of the batteries is examined.

  13. Dithiophenedione-containing polymers for battery application.

    Science.gov (United States)

    Häupler, Bernhard; Hagemann, Tino; Friebe, Christian; Wild, Andreas; Schubert, Ulrich S

    2015-02-18

    Redox-active polymers have received recently significant interest as active materials in secondary organic batteries. We designed a redox-active monomer, namely 2-vinyl-4,8-dihydrobenzo[1,2-b:4,5-b']dithiophene-4,8-dione that exhibits two one-electron redox reactions and has a low molar mass, resulting in a high theoretical capacity of 217 mAh/g. The free radical polymerization of the monomer was optimized by variation of solvent and initiator. The electrochemical behavior of the obtained polymer was investigated using cyclic voltammetry. The utilization of lithium salts in the supporting electrolyte leads to a merging of the redox waves accompanied by a shift to higher redox potentials. Prototype batteries manufactured with 10 wt % polymer as active material exhibit full material activity at the first charge/discharge cycle. During the first 100 cycles, the capacity drops to 50%. Higher contents of polymer (up to 40 wt %) leads to a lower material activity. Furthermore, the battery system reveals a fast charge/discharge ability, allowing a maximum speed up to 10C (6 min) with only a negligible loss of capacity.

  14. Low Energy Desalination Using Battery Electrode Deionization

    KAUST Repository

    Kim, Taeyoung

    2017-09-21

    New electrochemical technologies that use capacitive or battery electrodes are being developed to minimize energy requirements for desalinating brackish waters. When a pair of electrodes is charged in capacitive deionization (CDI) systems, cations bind to the cathode and anions bind to the anode, but high applied voltages (>1.2 V) result in parasitic reactions and irreversible electrode oxidation. In the battery electrode deionization (BDI) system developed here, two identical copper hexacyanoferrate (CuHCF) battery electrodes were used that release and bind cations, with anion separation occurring via an anion exchange membrane. The system used an applied voltage of 0.6 V, which avoided parasitic reactions, achieved high electrode desalination capacities (up to 100 mg-NaCl/g-electrode, 50 mM NaCl influent), and consumed less energy than CDI. Simultaneous production of desalinated and concentrated solutions in two channels avoided a two-cycle approach needed for CDI. Stacking additional membranes between CuHCF electrodes (up to three anion and two cation exchange membranes) reduced energy consumption to only 0.02 kWh/m3 (approximately an order of magnitude lower than values reported for CDI), for an influent desalination similar to CDI (25 mM decreased to 17 mM). These results show that BDI could be effective as a very low energy method for brackish water desalination.

  15. Safety of lithium batteries in transportation

    Science.gov (United States)

    Farrington, Michael D.

    UN Document ["Recommendations on the Transport of Dangerous Goods Manual of Tests and Criteria", 3rd Revised Edition, 1999] outlines a test plan that is fundamental to the classification for transport of lithium batteries with metallic lithium, lithium alloy or lithium-ion intercalation electrodes. The tests can be divided into two categories: safety tests (internal and external short circuit, forced-over-discharge, charge) and environmental tests (reduced pressure, thermal, vibration and shock). These safety tests are intended to assess known unsafe behavior in abusive circumstances. This paper discusses the importance of environmental tests in the transport scenario and presents a discussion on how the existing safety tests provide only a false sense of security. Simple measures that prevent abuses in transport are suggested that would be more effective and ensure greater safety. A recent incident at Los Angeles International Airport (LAX), where lithium cells in transit were abused and caused to burn, is now cited by some regulators as proof that safety testing is required. This paper describes how that logic is flawed. Testing would not have prevented the LAX incident. Therefore, continued promotion of and focus on safety testing is working against the ultimate goal of improved safety in transport. This paper concludes that effective regulations should promote and maximize safe transportation of lithium batteries through environmental testing and the elimination of unsafe circumstances that enable lithium batteries to become a hazard in transport.

  16. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  17. HIL Development and Validation of Lithium-ion Battery Packs (SAE 2014-01-1863)

    Science.gov (United States)

    A Battery Test Facility (BTF) has been constructed at United States Environmental Protection Agency (EPA) to test various automotive battery packs for HEV, PHEV, and EV vehicles. Battery pack tests were performed in the BTF using a battery cycler, testing controllers, battery pa...

  18. Recycling application of Li-MnO₂ batteries as rechargeable lithium-air batteries.

    Science.gov (United States)

    Hu, Yuxiang; Zhang, Tianran; Cheng, Fangyi; Zhao, Qing; Han, Xiaopeng; Chen, Jun

    2015-03-27

    The ever-increasing consumption of a huge quantity of lithium batteries, for example, Li-MnO2 cells, raises critical concern about their recycling. We demonstrate herein that decayed Li-MnO2 cells can be further utilized as rechargeable lithium-air cells with admitted oxygen. We further investigated the effects of lithiated manganese dioxide on the electrocatalytic properties of oxygen-reduction and oxygen-evolution reactions (ORR/OER). The catalytic activity was found to be correlated with the composition of Li(x)MnO2 electrodes (0batteries can be prolonged by their application as rechargeable lithium-air batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    Science.gov (United States)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  20. Batteries 2020 – Lithium - ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters

    DEFF Research Database (Denmark)

    Timmermans, Jean-Marc; Nikolian, Alexandros; De Hoog, Joris

    2016-01-01

    The European Project “Batteries 2020” unites nine partners jointly working on research and the development of competitive European automotive batteries. The project aims at increasing both the energy density and lifetime of large format pouch lithium-ion batteries towards the goals targeted...... for automotive batteries (250 Wh/kg at cell level, over 4000 cycles at 80% depth of discharge). Three parallel strategies are followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC cathode materials allows to improve the performance, stability...... and cyclability of state of the art battery cells. (ii) Better understanding of the ageing phenomena; a robust and realistic testing methodology has been developed and was carried out. Combined accelerated, real driving cycle tests, real field data, post - mortem analysis, modelling and validation with real...

  1. An Overview of Different Approaches for Battery Lifetime Prediction

    Science.gov (United States)

    Zhang, Peng; Liang, Jun; Zhang, Feng

    2017-05-01

    With the rapid development of renewable energy and the continuous improvement of the power supply reliability, battery energy storage technology has been wildly used in power system. Battery degradation is a nonnegligible issue when battery energy storage system participates in system design and operation strategies optimization. The health assessment and remaining cycle life estimation of battery gradually become a challenge and research hotspot in many engineering areas. In this paper, the battery capacity falling and internal resistance increase are presented on the basis of chemical reactions inside the battery. The general life prediction models are analysed from several aspects. The characteristics of them as well as their application scenarios are discussed in the survey. In addition, a novel weighted Ah ageing model with the introduction of the Ragone curve is proposed to provide a detailed understanding of the ageing processes. A rigorous proof of the mathematical theory about the proposed model is given in the paper.

  2. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  3. Design And Construction Of Microcontroller Based Solar Battery Charger

    Directory of Open Access Journals (Sweden)

    Zar Ni Tun

    2015-08-01

    Full Text Available This research paper describes a microcontroller based battery charger by using solar energy. Solar-powered charging systems are already available in rural as well as urban areas. Solar energy is widely used around the worldwide. This system converts solar energy to electrical energy and stores it in a battery. Photovoltaic panel is used to convert solar energy to electrical energy and stored in a 12V battery. Battery is the main component in solar charging system to store the energy generated from sunlight for various application. This system requires sensor to sense whether the battery is fully charged or not. Microcontroller is the heart of the circuit. Lead-acid batteries are the most commonly used power source for many applications. This system consists of voltage sensing charging controlling and display unit.

  4. Characterization of electrochemical systems and batteries: Materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1992-01-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  5. Characterization of electrochemical systems and batteries: Materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1992-12-01

    Materials are a pacing problem in battery development. The battery environment, particularly in rechargeable batteries, places great demands on materials. Characterization of battery materials is difficult because of their complex nature. In many cases meaningful characterization requires iii situ methods. Fortunately, several new electrochemical and spectroscopic techniques for in situ characterization studies have recently become available, and reports of new techniques have become more frequent. The opportunity now exists to utilize advanced instrumentation to define detailed features, participating chemical species and interfacial structure of battery materials with a precision heretofore not possible. This overview gives key references to these techniques and discusses the application of x-ray absorption spectroscopy to the study of battery materials.

  6. Testing of sealed lead-acid batteries. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Bush, D.M.; Sealey, J.D.; Miller, D.W.

    1985-05-01

    In early January 1981, Sandia began testing sealed lead-acid batteries which were being developed under Sandia contracts. Goal was to develop a totally maintenance-free sealed lead-acid battery capable of deep-discharge operation in a photovoltaic power system. During contracts with Gould and Eagle-Picher, batteries were received quarterly and placed on test. Testing of these batteries has now been completed. With proper charging, battery life averaged over 800 deep cycles. This was achieved with both the standard NEMA cycle test as well as a partial state of charge test. Charging voltages above 2.50 volts per cell appeared to be detrimental to the performance of the Gould batteries.

  7. Sealed lead-acid batteries for solar applications

    Energy Technology Data Exchange (ETDEWEB)

    Bush, D.; Sealey, D.

    1984-01-01

    Sandia National Laboratories is involved in the development of sealed lead-acid batteries capable of deep-discharge operation. This effort is an extension of existing technology employing an immobilized, starved electrolyte system with internal recombination of oxygen. Since watering is not required and there is no acid mist to cause external corrosion, the battery is maintenance-free. During contracts with Gould and Eagle-Picher, batteries were received quarterly and placed on test. With few exceptions, testing of these batteries has been completed. With proper charging, battery life averaged over 800 deep cycles. This was achieved with both the standard NEMA cycle test as well as a partial state of charge test. Charging voltages above 2.50 volts per cell appeared to be detrimental to the performance of the Gould batteries.

  8. Sealed lead-acid batteries for solar applications

    Energy Technology Data Exchange (ETDEWEB)

    Bush, D.; Sealey, D.

    1984-10-01

    Sandia National Laboratories is involved in the development of sealed lead-acid batteries capable of deep-discharge operation. This effort is an extension of existing technology employing an immobilized, starved electrolyte system with internal recombination of oxygen. Since watering is not required and there is no acid mist to cause external corrosion, the battery is maintenance-free. During contracts with Gould and Eagle-Picher, batteries were received quarterly and placed on test. With few exceptions, testing of these batteries has been completed. With proper charging, battery life averaged over 800 deep cycles. This was achieved with both the standard NEMA cycle test as well as a partial state of charge test. Charging voltages above 2.50 volts per cell appeared to be detrimental to the performance of the Gould batteries.

  9. Characterization of microglass wet laid nonwovens used as battery separators

    Energy Technology Data Exchange (ETDEWEB)

    Zientek, M.J.; Bender, R.J. [Schuller International, Inc., Toledo, OH (United States)

    1996-11-01

    Significant advancements have been made during the past few years in the battery industry with the development of Valve Regulated Lead-Acid (VRLA) cells for a variety of applications. Today, most sealed or gas recombining, lead-acid batteries utilize absorptive microglass separators in their design. The 100% microglass battery separator mat used in rechargeable lead-acid batteries has been identified as being a critical component necessary for the operation of these cells. With the growing importance of the microglass separator in modern battery technology, an understanding of the various properties of the separator is essential to better understand the impact separators have on battery performance. A method for characterizing microglass separators is described by surface area, mechanical, chemical, and microscopy techniques.

  10. Battery related cobalt and REE flows in WEEE treatment.

    Science.gov (United States)

    Sommer, P; Rotter, V S; Ueberschaar, M

    2015-11-01

    In batteries associated with waste electrical and electronic equipment (WEEE), battery systems can be found with a higher content of valuable and critical raw materials like cobalt and rare earth elements (REE) relative to the general mix of portable batteries. Based on a material flow model, this study estimates the flows of REE and cobalt associated to WEEE and the fate of these metals in the end-of-life systems. In 2011, approximately 40 Mg REE and 325 Mg cobalt were disposed of with WEEE-batteries. The end-of-life recycling rate for cobalt was 14%, for REE 0%. The volume of waste batteries can be expected to grow, but variation in the battery composition makes it difficult to forecast the future secondary raw material potential. Nevertheless, product specific treatment strategies ought to be implemented throughout the stages of the value chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Toxicity of materials used in the manufacture of lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  12. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodates volumetric expansion of silicon electrodes.

  13. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives.

    Science.gov (United States)

    Fu, Jing; Cano, Zachary Paul; Park, Moon Gyu; Yu, Aiping; Fowler, Michael; Chen, Zhongwei

    2017-02-01

    Zinc-air batteries have attracted much attention and received revived research efforts recently due to their high energy density, which makes them a promising candidate for emerging mobile and electronic applications. Besides their high energy density, they also demonstrate other desirable characteristics, such as abundant raw materials, environmental friendliness, safety, and low cost. Here, the reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance. Additionally, a section dedicated to battery-testing techniques and corresponding recommendations for best practices are included. Finally, a general perspective on the current limitations, recent application-targeted developments, and recommended future research directions to prolong the lifespan of electrically rechargeable zinc-air batteries is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Battery Management Systems in Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Michael Pecht

    2011-10-01

    Full Text Available The battery management system (BMS is a critical component of electric and hybrid electric vehicles. The purpose of the BMS is to guarantee safe and reliable battery operation. To maintain the safety and reliability of the battery, state monitoring and evaluation, charge control, and cell balancing are functionalities that have been implemented in BMS. As an electrochemical product, a battery acts differently under different operational and environmental conditions. The uncertainty of a battery’s performance poses a challenge to the implementation of these functions. This paper addresses concerns for current BMSs. State evaluation of a battery, including state of charge, state of health, and state of life, is a critical task for a BMS. Through reviewing the latest methodologies for the state evaluation of batteries, the future challenges for BMSs are presented and possible solutions are proposed as well.

  15. Lithium battery fires: implications for air medical transport.

    Science.gov (United States)

    Thomas, Frank; Mills, Gordon; Howe, Robert; Zobell, Jim

    2012-01-01

    Lithium-ion batteries provide more power and longer life to electronic medical devices, with the benefits of reduced size and weight. It is no wonder medical device manufacturers are designing these batteries into their products. Lithium batteries are found in cell phones, electronic tablets, computers, and portable medical devices such as ventilators, intravenous pumps, pacemakers, incubators, and ventricular assist devices. Yet, if improperly handled, lithium batteries can pose a serious fire threat to air medical transport personnel. Specifically, this article discusses how lithium-ion batteries work, the fire danger associated with them, preventive measures to reduce the likelihood of a lithium battery fire, and emergency procedures that should be performed in that event. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  16. Oral Exposure of a Child to a Lithium Ion Battery.

    Science.gov (United States)

    Townsend, Janice A; Curran, Ronald

    2016-01-01

    Battery exposure has the potential for severe morbidity and possible mortality. Accidental exposure is rising with the increased use of button batteries, and young children and older adults are at highest risk for accidental exposure. The purpose of this paper is to report a case of mouth exposure to a lithium ion battery in a boy. A review of the current literature on incidence, diagnosis, and outcomes of battery exposure is presented. When symptoms such as diarrhea, vomiting, and abdominal distress of non-specific origin are present, battery ingestion should be included in the differential diagnosis. Dentists may be the first health professionals to encounter battery exposure, especially in the case of mouth exposures. Knowledge of signs and symptoms are necessary to properly diagnose and refer for medical management.

  17. Impact of Fast Charging on Life of EV Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan; Smith, Kandler; Pesaran, Ahmad A.

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  18. Utility battery storage systems program report for FY 94

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  19. Thermally-related safety issues associated with thermal batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  20. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  1. Battery-driven motor arrangement. [design to prevent hydrogen explosions

    Energy Technology Data Exchange (ETDEWEB)

    Mabuchi, K.

    1976-01-15

    Hydrogen can escape from nickel--cadmium batteries. If they are used in conventional battery operated motor arrangements, there is then a danger of oxyhydrogen gas explosions if the hydrogen penetrates into spaces in which oxyhydrogen gas can be ignited by switch-on and switch-off arcs of electrical contacts or motor brushes. The present invention removes this danger by suitable construction of the battery--motor casing and the contacts.

  2. Batteries in electric vehicle and solar conversion applications

    Science.gov (United States)

    Murphy, K. D.; Clark, R. P.

    This paper reviews sodium-sulfur, zinc-bromine, sealed lead-acid, hydrogen-nickel oxide, and other advanced battery systems. At this time, there is not a clear winner in the race for the ultimate battery. Each system demonstrates particular advantages, such as performance, cost, or durability, but these are often offset by weaknesses that require focused developmental efforts. However, based on projected characteristics, several advanced batteries have great promise for satisfying future energy storage needs.

  3. Research on Battery Charging-Discharging in New Energy Systems

    OpenAIRE

    Che Yanbo; Zhou Yan; Sun Yue; Hu Bo

    2013-01-01

    As an energy storage component, the battery plays increasingly important role in new energy industry. Charging and discharging system is the vital part of the application of the battery, but the charge and discharge are always designed separately and carried by different part in the traditional application. Additionally, most battery discharge mode and method are always simplified which cannot ensure to meet the demand of power utilization. In the actual energy storage system, the design of t...

  4. Clinical Evaluation of Disc Battery Ingestion in Children

    OpenAIRE

    Mirshemirani, Alireza; Khaleghnejad-Tabari, Ahmad; Kouranloo, Jaefar; Sadeghian, Naser; Rouzrokh, Mohsen; Roshanzamir, Fatolah; Razavi, Sajad; Sayary, Ali Akbar; IMANZADEH, Farid

    2012-01-01

    BACKGROUND The purpose of this study was to evaluate the characteristics, management, and outcomes of disc battery ingestion in children. METHODS We reviewed the medical records of children admitted to Mofid Children’s Hospital due to disc battery ingestion from January 2006 to January 2010. Clear history, clinical symptoms and results of imaging studies revealed diagnosis of disc battery ingestion in suspected patients. The clinical data reviewed included age, gender, clinical manifestation,...

  5. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    Science.gov (United States)

    2016-09-18

    FINAL REPORT Zinc Bromide Flow Battery Installation for Islanding and Backup Power ESTCP Project EW-201242 SEPTEMBER 2016 Ryan...Bromide (Zn/Br) Flow Battery -based Energy Storage System (ESS) at the Marine Corps Air Station (MCAS) Miramar. The effort integrates an innovative Zn...Zn/Br) Flow Battery -based Energy Storage System (ESS) at the Marine Corps Air Station (MCAS) Miramar. The effort integrates an innovative Zn/Br

  6. From fuel cells to batteries: Synergies, scales and simulation methods

    OpenAIRE

    Bessler, Wolfgang G.

    2011-01-01

    The recent years have shown a dynamic growth of battery research and development activities both in academia and industry, supported by large governmental funding initiatives throughout the world. A particular focus is being put on lithium-based battery technologies. This situation provides a stimulating environment for the fuel cell modeling community, as there are considerable synergies in the modeling and simulation methods for fuel cells and batteries. At the same time, batter...

  7. A cost analysis of electric vehicle batteries second life businesses

    OpenAIRE

    Canals Casals, Lluc; Amante García, Beatriz; González Benítez, María Margarita

    2014-01-01

    In the following years thousands of electric cars are expected to be sold. Knowing that these batteries are not useful anymore for traction services after they have lost a 20% of its capacity, there will be thousands of batteries able for re-use. The re-use represents a considerable environment improvement compared to the immediate recycling. According to battery recycling enterprises, not even half of them are collected back after their use but car manufacturers should ensure that their elec...

  8. DNA Based Electrolyte/Separator for Lithium Battery Application (Postprint)

    Science.gov (United States)

    2015-10-07

    AFRL-RX-WP-JA-2016-0302 DNA BASED ELECTROLYTE/SEPARATOR FOR LITHIUM BATTERY APPLICATION (POSTPRINT) Jitendra Kumar1, Fahima...BASED ELECTROLYTE/SEPARATOR FOR LITHIUM BATTERY APPLICATION (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0001 5b. GRANT NUMBER 5c. PROGRAM...OH 45469 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 DNA based electrolyte/separator for lithium battery

  9. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    Science.gov (United States)

    2015-04-24

    Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries Siu on Tung, Krista L. Hawthorne, Yi Ding, James Mainero, and Levi T. Thompson...Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries , cathode...2014 to 00-00-2015 4. TITLE AND SUBTITLE High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries 5a. CONTRACT NUMBER 5b. GRANT

  10. Battery system and method for sensing and balancing the charge state of battery cells

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2012-01-01

    A battery system utilizes a plurality of transformers interconnected with the battery cells. The transformers each have at least one transformer core operable for magnetization in at least a first magnetic state with a magnetic flux in a first direction and a second magnetic state with a magnetic flux in a second direction. The transformer cores retain the first magnetic state and the second magnetic state without current flow through said plurality of transformers. Circuitry is utilized for switching a selected transformer core between the first and second magnetic states to sense voltage and/or balance particular cells or particular banks of cells.

  11. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  12. Cell overcharge testing inside sodium metal halide battery

    Science.gov (United States)

    Frutschy, Kris; Chatwin, Troy; Bull, Roger

    2015-09-01

    Testing was conducted to measure electrical performance and safety of the General Electric Durathon™ E620 battery module (600 V class 20 kWh) during cell overcharge. Data gathered from this test was consistent with SAE Electric Vehicle Battery Abuse Testing specification J2464 [1]. After cell overcharge failure and 24 A current flow for additional 60 minutes, battery was then discharged at 7.5 KW average power to 12% state of charge (SOC) and recharged back to 100% SOC. This overcharging test was performed on two cells. No hydrogen chloride (HCl) gas was detected during front cell (B1) test, and small amount (6.2 ppm peak) was measured outside the battery after center cell (F13) overcharge. An additional overcharge test was performed per UL Standard 1973 - Batteries for Use in Light Electric Rail (LER) Applications and Stationary Applications[2]. With the battery at 11% SOC and 280 °C float temperature, an individual cell near the front (D1) was deliberately imbalanced by charging it to 62% SOC. The battery was then recharged to 100% SOC. In all three tests, the battery cell pack was stable and individual cell failure did not propagate to other cells. Battery discharge performance, charge performance, and electrical isolation were normal after all three tests.

  13. The Asian battery market—a decade of change

    Science.gov (United States)

    Eckfeld, S.; Manders, J. E.; Stevenson, M. W.

    The Asian battery industry will undergo significant change over the next decade as it adapts to the enormous economic and technological pressures of our rapidly changing world. Europe and North America in recent years have seen significant rationalisation in battery manufacturing capacity and ownership for a variety of reasons. Into the future, Asia will be no exception, but the rate and magnitude of change may conceivably be greater than that already experienced elsewhere. Rationalisation in battery manufacturing plants will occur as a result of the establishment of super plants to manufacture batteries in order to improve the economies of scale and to facilitate the heavy investment in new capital and equipment that will be required to supply the newer technology battery types. The impact of 42 V automotive systems and valve-regulated lead-acid (VRLA) batteries will be influential on this scenario. It is expected that China, Japan, South Korea, and Thailand will feature heavily in the future Asian battery scene at the expense of some established countries and producers. The current state of the battery industry in Asia, factors driving change in Asia, and the likely implications for those companies that are currently manufacturing batteries in Asia or considering a future role in Asia within the coming decade are examined in this paper.

  14. Exploring the Model Design Space for Battery Health Management

    Science.gov (United States)

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  15. Costs of lithium-ion batteries for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  16. Button Battery Foreign Bodies in Children: Hazards, Management, and Recommendations

    Directory of Open Access Journals (Sweden)

    Mohammed Hossam Thabet

    2013-01-01

    Full Text Available Objective. The demand and usage of button batteries have risen. They are frequently inadvertently placed by children in their ears or noses and occasionally are swallowed and lodged along the upper aerodigestive tract. The purpose of this work is to study the different presentations of button battery foreign bodies and present our experience in the diagnosis and management of this hazardous problem in children. Patients and Methods. This study included 13 patients. The diagnostic protocol was comprised of a thorough history, head and neck physical examination, and appropriate radiographic evaluation. The button batteries were emergently extracted under general anesthesia. Results. The average follow-up period was 4.3 months. Five patients had a nasal button battery. Four patients had an esophageal button battery. Three patients had a button battery in the stomach. One patient had a button battery impacted in the left external ear canal. Apart from a nasal septal perforation and a tympanic membrane perforation, no major complications were detected. Conclusion. Early detection is the key in the management of button battery foreign bodies. They have a distinctive appearance on radiography, and its prompt removal is mandatory, especially for batteries lodged in the esophagus. Physicians must recognize the hazardous potential and serious implications of such an accident. There is a need for more public education about this serious problem.

  17. The anesthetic management of button battery ingestion in children.

    Science.gov (United States)

    Ing, Richard J; Hoagland, Monica; Mayes, Lena; Twite, Mark

    2018-03-01

    Injuries related to button battery ingestion are common in children. This review provides an outline of the epidemiology, pathophysiology, management, and anesthetic implications in children who have ingested a button battery. A literature search was conducted in the United States National Library of Medicine PubMed database using the terms "button battery ingestion" and "children' and "removal" and "surgery" and "anesthesia". Ninety-six articles published in English were found from 1983-2017, and 62 of these articles were incorporated into this review. Additionally, the Internet was searched with the terms "button battery ingestion and children" to identify further entities, organizations, and resources affiliated with button battery ingestion in children. These additional sources were studied and included in this review. Button batteries are ubiquitous in homes and electronic devices. Since 2006, larger-diameter and higher-voltage batteries have become available. These are more likely to become impacted in the esophagus after ingestion and lead to an increase in severe morbidity and mortality due to caustic tissue injury. Children at the highest risk for complications are those under six years of age who have ingested batteries > 20 mm in diameter and sustain prolonged esophageal impaction at the level of the aortic arch with the negative pole oriented anteriorly. Anesthesiologists need to know about the epidemiology, pathophysiology, complications, and anesthetic management of children who have ingested button batteries.

  18. Use of Hardware Battery Drill in Orthopedic Surgery.

    Science.gov (United States)

    Satish, Bhava R J; Shahdi, Masood; Ramarao, Duddupudi; Ranganadham, Atmakuri V; Kalamegam, Sundaresan

    2017-03-01

    Among the power drills (Electrical/Pneumatic/Battery) used in Orthopedic surgery, battery drill has got several advantages. Surgeons in low resource settings could not routinely use Orthopedic battery drills (OBD) due to the prohibitive cost of good drills or poor quality of other drills. "Hardware" or Engineering battery drill (HBD) is a viable alternative to OBD. HBD is easy to procure, rugged in nature, easy to maintain, durable, easily serviceable and 70 to 75 times cheaper than the standard high end OBD. We consider HBD as one of the cost effective equipment in Orthopedic operation theatres.

  19. Single stage grid converters for battery energy storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2010-01-01

    Integration of renewable energy systems in the power system network such as wind and solar is still a challenge in our days. Energy storage systems (ESS) can overcome the disadvantage of volatile generation of the renewable energy sources. This paper presents power converters for battery energy...... storage systems (BESS) which can interface mediumvoltage batteries to the grid. Converter topologies comparison is performed in terms of efficiency, common mode voltage and redundancy for a 6kV series connected medium voltage batteries with a nominal power of 5MVA to act as a battery charger/discharger....

  20. Battery Diagnostics and Prognostics for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Technology Connection, Inc., in collaboration with Georgia Tech (Center for Fuel Cell and Battery Technologies) and our industrial partner, Eagle Pichers,...

  1. Energy storage and the environment: the role of battery technology

    Science.gov (United States)

    Ruetschi, Paul

    Batteries can store energy in a clean, convenient and efficient manner. Battery-powered electric vehicles are expected to contribute to a cleaner environment. In today's world, batteries are used everywhere: in electronic watches, pocket calculators, flashlights, toys, radios, tape recorders, cameras, camcorders, laptop computers, cordless telephones, paging devices, hearing aids, heart pacers, instruments, detectors, sensors, memory back-up devices, drug dispensing, wireless tools, toothbrushes, razors, stationary emergency power equipment, automobile starters, electric vehicles, boats, submarines, airplanes and satellites. Worldwide, about 15 billion primary batteries, and well over 200 million starter batteries are produced per year. What is the impact of this widespread use of batteries on the environment? What role can battery technology play in order to reduce undue effects on the environment? Since this paper is presented at a lead/acid battery conference, the discussion refers, in particular, to this system. The following aspects are covered: (i) the three "E" criteria that are applicable to batteries: Energy, Economics, Environment; (ii) service life and environment; (iii) judicious use and service life; (iv) recycling.

  2. Fundamental mechanisms in Li-air battery electrochemistry

    DEFF Research Database (Denmark)

    Højberg, Jonathan

    The lithium-air (or Li-O2) batteries have received wide attention as an enabling technology for a mass market entry of electric vehicles due to a potential capacity much higher than current Li-ion technology. The technology is a relatively new battery concept proposed in 1996, and the current...... research still focuses on developing an understanding of the reactions inside the battery. This thesis is dedicated to increase this understanding and use the knowledge to improve the performance of the battery, and the work span from detailed investigation of the atom positions to the proposal of a system...

  3. Finger wear detection for production line battery tester

    Science.gov (United States)

    Depiante, Eduardo V.

    1997-01-01

    A method for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change.

  4. Lead-acid battery technologies fundamentals, materials, and applications

    CERN Document Server

    Jung, Joey; Zhang, Jiujun

    2015-01-01

    Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications offers a systematic and state-of-the-art overview of the materials, system design, and related issues for the development of lead-acid rechargeable battery technologies. Featuring contributions from leading scientists and engineers in industry and academia, this book:Describes the underlying science involved in the operation of lead-acid batteriesHighlights advances in materials science and engineering for materials fabricationDelivers a detailed discussion of the mathematical modeling of lead-acid batteriesAnalyzes the

  5. Development of a Test Battery to Select Navy Recruiters

    National Research Council Canada - National Science Library

    Penney, Lisa M; Borman, Walter C; Bearden, Ronald M

    2007-01-01

    .... the students were administered a trial predictor battery while at the school, and performance ratings and production data were collected after participants had been assigned to recruiting duty...

  6. HSTSS Battery Development for Missile and Ballistic Telemetry Applications

    National Research Council Canada - National Science Library

    Burke, Lawrence

    2000-01-01

    .... Along with improvements in energy density, temperature performance, and environmentally friendly materials, these batteries offer greater packaging options at a significantly lower development cost...

  7. Battery Test Facility- Electrochemical Analysis and Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrochemical Analysis and Diagnostics Laboratory (EADL) provides battery developers with reliable, independent, and unbiased performance evaluations of their...

  8. Advanced analytical electron microscopy for lithium-ion batteries

    National Research Council Canada - National Science Library

    Danna Qian; Cheng Ma; Karren L More; Ying Shirley Meng; Miaofang Chi

    2015-01-01

    ... and their synergistic behaviors during battery operation. With the capability of resolving the structure and chemistry at an atomic resolution, advanced analytical transmission electron microscopy (AEM...

  9. Optimal bidding strategy of battery storage in power markets considering performance based regulation and battery cycle life

    DEFF Research Database (Denmark)

    He, Guannan; Chen, Qixin; Kang, Chongqing

    2016-01-01

    Large-scale battery storage will become an essential part of the future smart grid. This paper investigates the optimal bidding strategy for battery storage in power markets. Battery storage could increase its profitability by providing fast regulation service under a performance-based regulation...... mechanism, which better exploits a battery’s fast ramping capability. However, battery life might be decreased by frequent charge–discharge cycling, especially when providing fast regulation service. It is profitable for battery storage to extend its service life by limiting its operational strategy to some...... degree. Thus, we incorporate a battery cycle life model into a profit maximization model to determine the optimal bids in day-ahead energy, spinning reserve, and regulation markets. Then a decomposed online calculation method to compute cycle life under different operational strategies is proposed...

  10. Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System

    OpenAIRE

    Chien-Wei Ma; Jaw-Kuen Shiau

    2013-01-01

    This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit mod...

  11. Field investigation of the relationship between battery size and PV system performance

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.; Kratochvil, J. [Sandia National Labs., Albuquerque, NM (United States); Harrington, S. [Ktech Corp., Albuquerque, NM (United States)

    1993-07-01

    Four photovoltaic-powered lighting systems were installed in a National Forest Service campground in June of 1991. These systems have identical arrays, loads and charge controllers. The only difference was in the rated capacity of the battery bank for each system. The battery banks all use the same basic battery as a building block with the four systems utilizing either one battery, two batteries, three batteries or four batteries. The purpose of the experiment is to examine the effect of the various battery sizes on the ability of the system to charge the battery, energy available to the load, and battery lifetime. Results show an important trend in system performance concerning the impact of charge controllers on the relation between array size and battery size which results in an inability to achieve the days of battery storage originally designed for.

  12. Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System

    Directory of Open Access Journals (Sweden)

    Chien-Wei Ma

    2013-03-01

    Full Text Available This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit model for a Li-ion battery. A dynamic model for the battery charging process is then constructed based on the Li-ion battery electrochemical model and the buck-boost power converter dynamic model. The battery charging process forms a system with multiple interconnections. Characteristics, including battery charging system stability margins for each individual operating mode, are analyzed and discussed. Because of supply voltage variation, the system can switch between buck, buck-boost, and boost modes. The system is modeled as a Markov jump system to evaluate the mean square stability of the system. The MATLAB based Simulink piecewise linear electric circuit simulation tool is used to verify the battery charging model.

  13. A Pulsed Power System Design Using Lithium-ion Batteries and One Charger per Battery

    Science.gov (United States)

    2009-12-01

    Metal Oxide Semiconductor Field Effect Transistor OPAMP Operational Amplifiers RMS Root, Mean, Square SMES Superconducting Magnetic Energy... resistance in cells developed during repeated discharge and charge cycles, the voltage of individual Li-ion batteries in strings must be...cell shunting, resistive equalization, and transformer equalization. All of these methods rely on using either resistive means to dissipate energy

  14. Charging performance of automotive batteries-An underestimated factor influencing lifetime and reliable battery operation

    Science.gov (United States)

    Sauer, Dirk Uwe; Karden, Eckhard; Fricke, Birger; Blanke, Holger; Thele, Marc; Bohlen, Oliver; Schiffer, Julia; Gerschler, Jochen Bernhard; Kaiser, Rudi

    Dynamic charge acceptance and charge acceptance under constant voltage charging conditions are for two reasons essential for lead-acid battery operation: energy efficiency in applications with limited charging time (e.g. PV systems or regenerative braking in vehicles) and avoidance of accelerated ageing due to sulphation. Laboratory tests often use charge regimes which are beneficial for the battery life, but which differ significantly from the operating conditions in the field. Lead-acid batteries in applications with limited charging time and partial-state-of-charge operation are rarely fully charged due to their limited charge acceptance. Therefore, they suffer from sulphation and early capacity loss. However, when appropriate charging strategies are applied most of the lost capacity and thus performance for the user may be recovered. The paper presents several aspects of charging regimes and charge acceptance. Theoretical and experimental investigations show that temperature is the most critical parameter. Full charging within short times can be achieved only at elevated temperatures. A strong dependency of the charge acceptance during charging pulses on the pre-treatment of the battery can be observed, which is not yet fully understood. But these effects have a significant impact on the fuel efficiency of micro-hybrid electric vehicles.

  15. Materials: zeolite for lithium batteries; Materiaux: de la zeolithe dans les batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2002-02-01

    A Spain researchers team has developed a new conducting material: a polymer (polyacetylene or derived compound) in a meso-porous zeolite. This material has a high electric conductivity and a good resistance to oxidation. It can be used for the fabrication of photovoltaic cells and lithium batteries. (O.M.)

  16. Validating a standardised test battery for synesthesia: Does the Synesthesia Battery reliably detect synesthesia?

    Science.gov (United States)

    Carmichael, D A; Down, M P; Shillcock, R C; Eagleman, D M; Simner, J

    2015-05-01

    Synesthesia is a neurological condition that gives rise to unusual secondary sensations (e.g., reading letters might trigger the experience of colour). Testing the consistency of these sensations over long time intervals is the behavioural gold standard assessment for detecting synesthesia (e.g., Simner, Mulvenna et al., 2006). In 2007 however, Eagleman and colleagues presented an online 'Synesthesia Battery' of tests aimed at identifying synesthesia by assessing consistency but within a single test session. This battery has been widely used but has never been previously validated against conventional long-term retesting, and with a randomly recruited sample from the general population. We recruited 2847 participants to complete The Synesthesia Battery and found the prevalence of grapheme-colour synesthesia in the general population to be 1.2%. This prevalence was in line with previous conventional prevalence estimates based on conventional long-term testing (e.g., Simner, Mulvenna et al., 2006). This reproduction of similar prevalence rates suggests that the Synesthesia Battery is indeed a valid methodology for assessing synesthesia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Extending battery life: A low-cost practical diagnostic technique for lithium-ion batteries

    Science.gov (United States)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-11-01

    Modern applications of lithium-ion batteries such as smartphones, hybrid & electric vehicles and grid scale electricity storage demand long lifetime and high performance which typically makes them the limiting factor in a system. Understanding the state-of-health during operation is important in order to optimise for long term durability and performance. However, this requires accurate in-operando diagnostic techniques that are cost effective and practical. We present a novel diagnosis method based upon differential thermal voltammetry demonstrated on a battery pack made from commercial lithium-ion cells where one cell was deliberately aged prior to experiment. The cells were in parallel whilst being thermally managed with forced air convection. We show for the first time, a diagnosis method capable of quantitatively determining the state-of-health of four cells simultaneously by only using temperature and voltage readings for both charge and discharge. Measurements are achieved using low-cost thermocouples and a single voltage measurement at a frequency of 1 Hz, demonstrating the feasibility of implementing this approach on real world battery management systems. The technique could be particularly useful under charge when constant current or constant power is common, this therefore should be of significant interest to all lithium-ion battery users.

  18. Battery recycling machine; Maquina recicladora de pilas

    Energy Technology Data Exchange (ETDEWEB)

    Higuera Gonzalez, R.M; Esquivel Montes, C.E; Perez Razo, E; Sanchez Guerrero, O.A. [Tecnologico de Estudios Superiores de Ixtapaluca, Ixtapaluca, Estado de Mexico (Mexico)

    2013-03-15

    Batteries pollute the environment and therefore require special treatment or confine recycling in appropriate places, Mexico only has places for confining the batteries and send them to other countries for recycling. The purpose of this project is to reduce the contamination of soil and create a culture for the recycling of batteries. The prototype performs the separation of metals and chemical residues, so that later they can be processed separately. The machine is divided into two parts, mechanics and electronics, the mechanical part was designed to disarm it for easy maintenance, another advantage in the field of electronics and security is to control the machine from a computer at a distance significantly reducing accidents. To automate the machine will use a PLC clock for easy programming. [Spanish] Las pilas contaminan el medio ambiente y por ello requieren un tratamiento especial de reciclaje o confinarlos en lugares adecuados, Mexico solo cuenta con lugares para confinar las pilas y mandarlas a otros paises para su reciclaje. El proposito de este proyecto es reducir la contaminacion del suelo y crear una cultura para el reciclaje de pilas. El prototipo realiza la separacion de metales y residuos quimicos, para que mas adelante se puedan procesar por separado. La maquina se divide en dos partes; la mecanica y la electronica, la parte mecanica fue disenada para desarmarse esto para su facil mantenimiento, otra de las ventajas en el campo de electronica y seguridad es poder controlar el prototipo desde una computadora, a una distancia considerable reduciendo asi los accidentes. Para automatizar la maquina se utilizo un reloj PLC por su facil programacion.

  19. Redox shuttles for lithium ion batteries

    Science.gov (United States)

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  20. Negative electrodes for lithium cells and batteries

    Science.gov (United States)

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.