WorldWideScience

Sample records for cadmium toxicity cross

  1. Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine

    Directory of Open Access Journals (Sweden)

    Benjaphorn Prapagdee

    2009-12-01

    Full Text Available Cadmium (Cd is a major environmental hazard, which usually is detected in its ionic form of Cd2+. It also causes adverse toxic effects on human health and other living organisms. Cd-resistant bacteria were isolated from Cd-contaminated soils. One isolate, TAK1, was highly resistance level to Cd toxicity. TAK1 was isolated from soil contaminated with a high Cd concentration (204.1 mg.kg-1. The result of 16S rDNA sequence analysis found that the TAK1 showed the similarity to Ralstonia sp. Physiological adaptive and cross-protective responses to Cd and Zn killing were investigated in Ralstonia sp.TAK1. Exposure to a low concentration of Cd induced adaptive resistance to higher concentrations of Cd. In addition, pretreatment of Ralstonia sp.TAK1 with an inducing concentration of Cd conferred cross-protective response against subsequent exposure to the lethal concentrations of Zn. The induced adaptive and cross-protective response Ralstonia sp.TAK1 required newly synthesized protein(s. Cd-induced adaptive and cross-protective responses against Cd and Zn toxicity are the important mechanisms used by Ralstonia sp.TAK1 to survive in the heavy metal contaminated environments. These findings might lead to the use of Ralstonia sp.TAK1 for microbial based remediation in Cd and Zn-contaminated soils.

  2. Cadmium Toxicity to Ringed Seals (Phoca hispida)

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, R.; Riget, F. F.;

    as laboratory mammals. We have studied possible cadmium induced histopathological changes in the kidneys as well as a demineralisation of the skeletal system (DXA-scanning of lumbal vertebraes). No obvious cadmium induced toxic changes were found. Food composition and physiological adaptations may explain......Cadmium concentrations in kidneys from ringed seals (Phoca hispida) from North West Greenland (Qaanaaq) are high. Concentrations range at level known to induce renal toxic effects (mainly tubulopathy) and demineralisation (osteopenia) of the skeletal system (Fanconi's Syndrome) in humans as well...

  3. Cadmium inhalation and male reproductive toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, H.A.; Mast, T.J. (Battelle Pacific Northwest Laboratories, Richland, WA (USA))

    1990-01-01

    Cadmium is a highly toxic element that is cumulative and has a long biological half-life in mammals. The severe toxicity of cadmium in man has been known for more than 100 years. Despite the knowledge that cadmium is toxic, only 20 human cases of poisoning via ingestion were recorded prior to 1941, whereas in the ensuing five-year period more than 680 cases of cadmium poisonings from accidental oral ingestion of this metal were documented. Some of the recorded effects of exposure to cadmium in laboratory animals include renal tubular damage, placental and testicular necrosis, structural and functional liver damage, osteomalacia, testicular tumors, teratogenic malformations, anemia, hypertension, pulmonary edema, chronic pulmonary emphysema, and induced deficiencies of iron, copper, and zinc. Some of these effects have also been observed in human after accidental exposures to cadmium oxide fumes and are characteristic of the syndrome described in Japan as Itai Itai disease in which ingestion of cadmium is the inciting chemical.134 references.

  4. Cadmium potentiates toxicity of cypermethrin in zebrafish.

    Science.gov (United States)

    Yang, Ye; Ye, Xiaoqing; He, Buyuan; Liu, Jing

    2016-02-01

    Co-occurrence of pesticides such as synthetic pyrethroids and metals in aquatic ecosystems raises concerns over their combined ecological effects. Cypermethrin, 1 of the top 5 synthetic pyrethroids in use, has been extensively detected in surface water. Cadmium (Cd) has been recognized as 1 of the most toxic metals and is a common contaminant in the aquatic system. However, little information is available regarding their joint toxicity. In the present study, combined toxicity of cypermethrin and Cd and the underlying mechanisms were investigated. Zebrafish embryos and adults were exposed to the individual contaminant or binary mixtures. Co-exposure to cypermethrin and Cd produced synergistic effects on the occurrence of crooked body, pericardial edema, and noninflation of swim bladder. The addition of Cd significantly potentiated cypermethrin-induced spasms and caused more oxidative stress in zebrafish larvae. Cypermethrin-mediated induction of transcription levels and catalytic activities of cytochrome P450 (CYP) enzyme were significantly down-regulated by Cd in both zebrafish larvae and adults. Chemical analytical data showed that in vitro elimination of cypermethrin by CYP1A1 was inhibited by Cd. The addition of Cd caused an elevation of in vivo cypermethrin residue levels in the mixture-exposed adult zebrafish. These results suggest that the enhanced toxicity of cypermethrin in the presence of Cd results from the inhibitory effects of Cd on CYP-mediated biotransformation of this pesticide. The authors' findings provide a deeper understanding of the mechanistic basis accounting for the joint toxicity of cypermethrin and Cd.

  5. Hepatoprotective activity of Moringa oleifera against cadmium toxicity in rats

    Directory of Open Access Journals (Sweden)

    Reetu Toppo

    2015-04-01

    Full Text Available Aim: The present investigation has been conducted to evaluate the hepatoprotective activity of Moringa oleifera against cadmium-induced toxicity in rats. Materials and Methods: For this study, 18 Wistar albino rats were taken. Control group, Group I rats were given cadmium chloride @ 200 ppm per kg and Group II rats were treated with M. oleifera extract @ 500 mg/kg along with cadmium chloride @ 200 ppm per kg (daily oral for 28 days. On 29th day, animals were slaughtered and various parameters were determined. Serum biomarkers, oxidative stress parameters, histomorphological examination were carried out with estimation of cadmium concentration in liver tissues. Results: Oral administration of cadmium chloride @ 200 ppm/kg for 28 days resulted in a significant increase in aspartate aminotransferase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP, significant (p≤0.01 increase of lipid peroxidation (LPO and decrease in superoxide dismutase (SOD, and increase in cadmium accumulation in liver. Treatment with M. oleifera @ 500 mg/kg significantly (p<0.01 decreased the elevated ALP, AST, ALT, LPO levels and increase in SOD levels, and as compared to cadmium chloride treated group. However, there was no significant difference in cadmium concentration in liver when compared with cadmium chloride treated group. Conclusion: The study conclude that supplementation of M. oleifera (500 mg/kg, daily oral for 28 days has shown protection against cadmium-induced hepatotoxicity.

  6. Effect of anions on Toxicity of Cadmium Applied to MIcrobial Biomass in Red Soil

    Institute of Scientific and Technical Information of China (English)

    K.S.KHAN; XIEZHENGMIAO; 等

    1997-01-01

    A laboratory incubation experiment was conducted to elucidat the effects of associated anions on toxicity of cadmium applied to microbial biomass in the red soil. Cadmium was applied at six different levels,i.e.,O(background),5,15,30,60 and 100μg g-1 soil in the form of either cadmium acetate or cadmium chloride. Application of cadmium as cadmium acetate markedly reduced the soil microbial biomass carbon compared to cadmium applied as cadmium chlorde at all the tested levels.Similarly,organic carbon to biomass carbon ration in the soil was markedly increased by increasing the level of the cadmium in the soil as cadmium acetate,while the change wa much smaller in the case of cadmium chloride at the same cadmium levels.The results suggested that due consideration should be given to the source of cadmium while deciding the cadmium levles in experiments.

  7. Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Stoeppler, M. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Piscator, M. (Karolinska Inst., Stockholm (Sweden). Dept. of Environmental Hygiene) (eds.)

    1988-01-01

    The proceedings contain the 18 papers presented at the workshop. They are dealing with the following themes: Toxicity, carcinogenesis and metabolism of cadmium, epidemiology; environmental occurrence; quantitative analysis and quality assessment. (MG) With 57 figs., 79 tabs.

  8. Role of oxidative stress in cadmium toxicity and carcinogenesis

    OpenAIRE

    2009-01-01

    Cadmium (Cd) is a toxic metal, targeting the lung, liver, kidney, and testes following acute intoxication, and causing nephrotoxicity, immunotoxicity, osteotoxicity and tumors after prolonged exposures. Reactive oxygen species (ROS) are often implicated in Cd toxicology. This minireview focused on direct evidence for the generation of free radicals in intact animals following acute Cd overload and discussed the association of ROS in chronic Cd toxicity and carcinogenesis. Cd-generated superox...

  9. Comparison of toxicity and disposition of cadmium chloride and cadmium metallothionein in rats.

    NARCIS (Netherlands)

    Groten, J.P.

    1992-01-01

    In Chapter 1 of this thesis a general introduction is presented with a survey of the literature. It gives a brief overview of the factors involved in the absorption, metabolism and toxicity of Cd after oral intake.In short, the main source of environmental exposure to cadmium for no

  10. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Li; Zhou, Weihui; Dai, Huaxin; Cao, Fangbin; Zhang, Guoping [Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 (China); Wu, Feibo, E-mail: wufeibo@zju.edu.cn [Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Se alleviated Cd-toxicity, reduced Cd content and O{sub 2}{center_dot}{sup -}, H{sub 2}O{sub 2}, MDA in rice plants. Black-Right-Pointing-Pointer Se counteracted Cd-induced alterations of antioxidant enzymes. Black-Right-Pointing-Pointer Se suppressed Cd-induced increase in SOD, APX, but elevated depressed CAT activity. Black-Right-Pointing-Pointer Se markedly increased H{sup +}-ATPase, Ca{sup 2+}-ATPase activities in roots under Cd exposure. - Abstract: Hydroponic experiments were performed to investigate physiological mechanisms of selenium (Se) mitigation of Cd toxicity in rice. Exogenous Se markedly reduced Cd concentration in leaves, roots, and stems. Addition or pretreatment of 3 {mu}M Se in 50 {mu}M Cd solution significantly addressed Cd-induced growth inhibition, recovered root cell viability, and dramatically depressed O{sub 2}{center_dot}{sup -}, H{sub 2}O{sub 2}, and malondialdehyde (MDA) accumulation. Supplemental Se counteracted 50 {mu}M Cd-induced alterations of certain antioxidant enzymes, and uptake of nutrients, e.g. depressed Cd-induced increase in leaf and root superoxide dismutase (SOD) and leaf peroxidase (POD) activities, but elevated depressed catalase (CAT) activity; decreased Cd-induced high S and Cu concentrations in both leaves and roots. External Se counteracted the pattern of alterations in ATPase activities induced by Cd, e.g. significantly elevated the depressed root H{sup +}- and Ca{sup 2+}-ATPase activities, but decreased the ascent root Na{sup +}K{sup +}-ATP activity. Results indicate that alleviated Cd toxicity by Se application is related to reduced Cd uptake and ROS accumulation, balanced nutrients, and increased H{sup +}- and Ca{sup 2+}-ATPase activities in rice.

  11. Photosynthetic and cellular toxicity of cadmium in Chlorella vulgaris.

    Science.gov (United States)

    Ou-Yang, Hui-Ling; Kong, Xiang-Zhen; Lavoie, Michel; He, Wei; Qin, Ning; He, Qi-Shuang; Yang, Bin; Wang, Rong; Xu, Fu-Liu

    2013-12-01

    The toxic effects of cadmium (Cd) on the green alga Chlorella vulgaris were investigated by following the response to Cd of various toxicity endpoints (cell growth, cell size, photochemical efficiency of PSII in the light or Φ(PSII), maximal photochemical efficiency or Fv/Fm, chlorophyll a fluorescence, esterase activity, and cell viability). These toxicity endpoints were studied in laboratory batch cultures of C. vulgaris over a long-term 96-h exposure to different Cd concentrations using flow cytometry and pulse amplitude modulated fluorometry. The sequence of sensitivity of these toxicity endpoints was: cell yield > Φ(PSII) ≈ esterase activity > Fv/Fm > chlorophyll a fluorescence ≈ cell viability. It is shown that cell apoptosis or cell death only accounted for a minor part of the reduction in cell yield even at very high algistatic free Cd²⁺ concentrations, and other mechanisms such as blocked cell divisions are major contributors to cell yield inhibition. Furthermore, cadmium may affect both the electron donors and acceptors of the electron transport chain at high free Cd²⁺ concentration. Finally, the resistance of cells to cell death was size-dependent; medium-sized cells had the highest toxicity threshold. The present study brings new insights into the toxicity mechanisms of Cd in C. vulgaris and provides a detailed comparison of the sensitivity of various Cd toxicity endpoints.

  12. Cadmium toxicity in the thyroid gland of pregnant rats

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizuka, M.; Mori, N.; Hamasaki, K.; Tanaka, I.; Yokoyama, M.; Hara, K.; Doi, Y.; Umezu, Y.; Araki, H.; Sakamoto, Y. (Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu (Japan))

    1991-08-01

    The toxic effects of cadmium on the thyroid gland of pregnant rats were studied with an electron microscope and an X-ray microanalyzer. Serum levels of thyroid hormones (T3 and T4) were also analyzed. Deterioration of the rough-surfaced endoplasmic reticulum occurred in the thyroid follicular epithelium on the fifth day of cadmium treatment. Large intracellular vacuoles, which arose from dilated cisternae of the rough-surfaced endoplasmic reticulum, were fused together, and marked swelling of the mitochondria was also noted. Thyroglobulin-secreting granules at the apical cytoplasm were decreased in number. By energy dispersive X-ray microanalysis, cadmium peaks were preferentially obtained from swollen mitochondria in the follicular epithelial cells. Serum levels of T3 and T4 were significantly decreased in cadmium-treated rats dams when compared to those of controls. In the present experiment, cycloheximide also caused degenerative changes in the rough-surfaced endoplasmic reticulum and the disappearance of thyroglobulin-secreting granules. Cycloheximide is a known inhibitor of protein synthesis on cytosolic ribosomes. These results indicated that accumulated cadmium in the mitochondria of thyroid follicular epithelial cells might disturb the oxidative phosphorylation of this organelle and the loss of energy supply possibly caused the inhibition of the synthesis and release of thyroid hormones.

  13. Neurobehavioral toxicity of cadmium sulfate to the planarian Dugesia dorotocephala

    Energy Technology Data Exchange (ETDEWEB)

    Grebe, E.; Schaeffer, D.J. (Univ. of Illinois, Urbana (United States))

    1991-05-01

    The authors are developing bioassays which use planarians (free-living platyhelminthes) for the rapid determination of various types of toxicity, including acute mortality, tumorigenicity, and short-term neurobehavioral responses. Their motivation for using these animals is due to their importance as components of the aquatic ecology of unpolluted streams their sensitivity to low concentrations of environmental toxicants and the presence of a sensitive neurological system with a true brain which allows for complex social behavior. A previous paper described the results of a neurobehavioral bioassay using phenol in a crossover study. This paper reports a similar crossover study using cadmium sulfate.

  14. Ecological toxicity of reactive X-3B red dye and cadmium acting on wheat (Triticum aestivum)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ecological toxicity of reactive X-3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single-factor exposure indicated that the inhibitory rate of wheat root elongation was significantly increased with the increase in the concentration of the dye in the cultural solution, although seed germination of wheat was not sensitive to the dye. The toxicity of cadmium was greatly higher than that of the dye, but low concentration cadmium (< 40 mg/L) could promote the germination of wheat seed. Interactive effects of the dye and cadmium on wheat were complicated. There was no significant correlation between the inhibitory rate of seed germination and the concentrations of the dye and cadmium. Low concentration cadmium could strengthen the toxicity of the dye acting on root elongation. On the contrary, high concentration cadmium could weaken the toxicity of the dye acting on root elongation.

  15. Joint toxicity of methamidophos and cadmium acting on Abelmoschus manihot

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-fei; ZHOU Qi-xing

    2005-01-01

    Joint toxicity of methamidophos and cadmium(Cd) on the ornamental Abelmoschus manihot was firstly examined and compared with single-factor effects of the two pollutants using ecotoxicological indexes including the inhibitory rate of seed germination, root elongation and inhibitory concentration 50% (IC50). The results indicated that methamidophos and Cd had unobvious( p > 0.05) effects on seed germination of the ornamental. There were significant( p < 0.05) inhibitory effects of Cd on root elongation of the tested plant. When the concentration of added Cd was low( < 20 mg/L), significant antagonistic effects on root elongation were observed. And synergic effects were observed when Cd was added in high dose( > 20 mg/L). However, the analysis of joint effects indicated that there were antagonistic effects between Cd and methamidophos under all the treatments. At the high concentration of Cd, joint toxicity of methamidophos and Cd was more dependent on concentration of Cd.

  16. Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chantarawong, Wipa [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan); Inter Departmental Multidisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok (Thailand); Takeda, Kazuhisa; Sangartit, Weerapon; Yoshizawa, Miki [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan); Pradermwong, Kantimanee [Department of Zoology, Faculty of Science, Kasetsart University, Bangkok (Thailand); Shibahara, Shigeki, E-mail: shibahar@med.tohoku.ac.jp [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan)

    2014-11-28

    Highlights: • In human melanocytes, cadmium decreases the expression of MITF-M and tyrosinase and their mRNAs. • In human melanoma cells, cadmium decreases the expression of MITF-M protein and tyrosinase mRNA. • Expression of MITF-H is less sensitive to cadmium toxicity in melanocyte-linage cells. • Cadmium does not decrease the expression of MITF-H in retinal pigment epithelial cells. • MITF-M is the molecular target of cadmium toxicity in melanocytes. - Abstract: Dietary intake of cadmium is inevitable, causing age-related increase in cadmium accumulation in many organs, including hair, choroid and retinal pigment epithelium (RPE). Cadmium has been implicated in the pathogenesis of hearing loss and macular degeneration. The functions of cochlea and retina are maintained by melanocytes and RPE, respectively, and the differentiation of these pigment cells is regulated by microphthalmia-associated transcription factor (MITF). In the present study, we explored the potential toxicity of cadmium in the cochlea and retina by using cultured human melanocytes and human RPE cell lines. MITF consists of multiple isoforms, including melanocyte-specific MITF-M and widely expressed MITF-H. Levels of MITF-M protein and its mRNA in human epidermal melanocytes and HMV-II melanoma cells were decreased significantly by cadmium. In parallel with the MITF reduction, mRNA levels of tyrosinase, the key enzyme of melanin biosynthesis that is regulated by MITF-M, were also decreased. In RPE cells, however, the levels of total MITF protein, constituting mainly MITF-H, were not decreased by cadmium. We thus identify MITF-M as the molecular target of cadmium toxicity in melanocytes, thereby accounting for the increased risk of disability from melanocyte malfunction, such as hearing and vision loss among people with elevated cadmium exposure.

  17. Adsorbent Potential of Tea Waste to Control Cadmium Toxicity on

    Directory of Open Access Journals (Sweden)

    R. Perveen

    2012-03-01

    Full Text Available The disposal of industrial wastage without proper treatment is responsible for the lowering of crop productivity with the accumulation of essential and non essential trace metals in the land. The present research was designed to evaluate Cadmium toxicity on plant growth and to describe the remedial effect of tea wastage against Cd(II toxicity with reference to the growth of wheat (Triticum aestivum L.Application of Cd2+ decreased the wheat seedling growth along with alleviated concentration. It was dose-dependent, and significant at higher concentration of CdCl2. The result showed the inhibitory effect of Cd2+ ion on plant growth which includes reduction in shoot and root length, plant fresh and dry biomass and soluble carbohydrate and significant increase in total phenol contents as defense biomolecule against external stress. Adsorption is a promising alternative method to treat industrial effluents. Mainly because of its low cost and high metal binding capacity tea waste is one of the low cost and easily available adsorbent having strong adsorptivity towards heavy metals. The consumed tea leaves were found to be able to remove substantial amounts of Cd+2ions from aqueous solution. Thus it can be inferred that the addition of tea waste at appropriate rate may be useful approach to enhance the plant growth and to immobilize Cd2+ by depressing its bioavailability.

  18. Cadmium toxicity in the free-living nematode, Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Popham, J.D.; Webster, J.M.

    1979-10-01

    The effect of cadmium on the fecundity, growth, and fine structure of the free-living nematode Caenorhabditis elegans was studied. High concentrations of cadmium significantly decreased the fecundity and growth of these organisms. Electron microscopy showed that cadmium modifies the structure of the mitochondria in the esophagus and intestine, causes the formation of inclusion bodies in the nucleus of esophageal cells, and alters the morphology of cytosomes in the intestinal cells. The results suggest that the decreased fecundity and growth of cadmium-exposed C. elegans may be due to cadmium interfering with nutrient uptake or assimilation or both.

  19. Evaluation of ATC as an Orally Administered Drug in Treatment of Cadmium Toxicity of Rat Organs

    Directory of Open Access Journals (Sweden)

    S. Nabilaldine Fatemi

    2009-01-01

    Full Text Available The effect of N-tetramethylene dithiocarbamate (ATC as a chelating agent on the excretion of cadmium was evaluated in cadmium-poisoned Wistar rats following administration through food and drink. The present research aimed to characterize the potential efficiency of ATC as an orally administered chelator drug after cadmium administration for 60 days. This chelator significantly enhanced the urinary and biliary excretion of cadmium and restored the altered levels of iron. Cadmium and iron concentrations in different tissues were determined by graphite furnace and flame atomic absorption spectrometry (GF AAS and F AAS methods, respectively. The chelation therapy results show that ATC is able to remove cadmium ions from different tissues while iron concentration returned to the normal level and the clinical symptoms were also reduced. In summary, we conclude that ATC is able to mobilize and promote the excretion of cadmium in rat organs and reduce the side effects and general symptoms of toxicity caused by cadmium and might be useful for preliminary testing of the efficacy of chelating agents in human body. However, these results should be confirmed in different experimental models before extrapolation to other systems. This testing procedure of course does not provide all the relevant answers for evaluating the efficiency of chelating agents in cadmium toxicity.

  20. Cadmium toxicity to the cornea of pregnant rats: Electron microscopy and x-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizuka, M.; McCarthy, K.J.; Kaye, G.I.; Fujimoto, S. (Univ. of Occupational and Environmental Health, School of Medicine, Kitakyushu (Japan))

    1990-05-01

    Cadmium toxicity to the cornea of pregnant rats was studied using the electron microscope and x-ray microanalyzer. In in-vivo experiments, severe corneal edema occurred in pregnant dams that received intraperitoneal injections of cadmium sulphate for 4 days during gestation, but not in nonpregnant rats. Prominent swelling of mitochondria and the occurrence of intra- and intercellular vacuoles in the corneal endothelium were observed only in pregnant dams. In in-vitro experiments, electron-dense deposits consisting of cadmium-oxine complexes were preferentially found in swollen mitochondria of the endothelial cells. Cadmium peaks were obtained from these deposits with x-ray microanalysis. These data suggest that the corneal edema observed after administration of cadmium may imply the disturbance of pump function and barrier function of the corneal endothelium due to the primary toxic effects of this metal on mitochondria.

  1. Investigation of cadmium toxicity on renal epithelial cells using nuclear microprobe analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khodja, Hicham E-mail: khodja@drecam.cea.fr; Avoscan, Laure; Carriere, Marie; Carrot, Francine; Gouget, Barbara

    2003-09-01

    Cadmium is a highly toxic metal that causes well-known severe renal damages. Its toxicity is frequently investigated in vitro using numerous epithelial models. The accumulation and transport of cadmium in cultured renal epithelial cells has been studied by means of nuclear microscopy (micro-PIXE coupled with micro-RBS) for cell monolayer analyses, and by ICP-MS for culture medium analyses. Cell viability, measured by biochemical tests, was used as toxicity indicator. Dependence on cadmium concentration (1-100 {mu}M) and exposure time (1-24 h) was found. Micro-PIXE reveals a strong anti-correlation of intra-cellular cadmium concentration with zinc concentration, a biological metal, suggesting substitution mechanism of both metals.

  2. A cross-sectional survey of cadmium biomarkers and cigarette smoking.

    Science.gov (United States)

    Hecht, Eric M; Arheart, Kris; Lee, David J; Hennekens, Charles H; Hlaing, WayWay M

    2016-07-01

    Cadmium contamination of tobacco may contribute to the health hazards of cigarette smoking. The 2005-2012 United States National Health and Nutrition Examination Survey data provided a unique opportunity to conduct a cross-sectional survey of cadmium biomarkers and cigarette smoking. Among a sample of 6761 participants, we evaluated mean differences and correlations between cadmium biomarkers in the blood and urine and characteristics of never, former and current smokers. We found statistically significant differences in mean cadmium biomarker levels between never and former smokers as well as between never and current smokers. In current smokers, duration in years had a higher correlation coefficient with urinary than blood cadmium levels. In contrast, number of cigarettes smoked per day had a higher correlation coefficient with blood than urinary cadmium levels. These data suggest that blood and urine cadmium biomarker levels differ by duration and dose. These findings should be considered in evaluating any association between cadmium and smoking related diseases, especially cardiovascular disease.

  3. Acute Toxicity of a Heavy Metal Cadmium to an Anuran, the Indian Skipper Frog Rana cyanophlyctis

    Directory of Open Access Journals (Sweden)

    Ajai Kumar Srivastav

    2016-08-01

    Full Text Available Background: There has been increasing awareness throughout the world regarding the remarkable decrease in amphibian population. For such amphibian population decline several causes have been given. Cadmium, a heavy metal is released both from natural sources (leaching of cadmium rich soils and anthropogenic activities to the aquatic and terrestrial environments. This study evaluated the toxicity of heavy metal cadmium to Indian skipper frog Rana cyanophlyctis. Methods: For the determination of LC50 values for cadmium, four-day static renewal acute toxicity test was used. Five replicates each containing ten frogs were subjected to each concentration of cadmium chloride (15, 20, 25, 30, 35, 40, 45 and 50 mg/L. At different exposure periods (24, 48, 72 and 96 h, the mortality of the frog was subjected to Probit analysis with the POLO-PC software (LeOra Software to calculate the LC50 and 95% confidence level. Results: The LC50 values of cadmium chloride for the frog R. cyanophlyctis at 24, 48, 72, and 96 h are 32.586, 29.994, 27.219 and 23.048 mg/L, respectively. The results have been discussed with the toxicity reported for other aquatic vertebrate --fish. Conclusion: Cadmium caused mortality to the frog and this could be one of the reasons for population decline of frogs which inhabit water contaminated with heavy metals.

  4. Alleviation of Cadmium Toxicity in Pisum sativum L. Seedlings by Calcium Chloride

    Directory of Open Access Journals (Sweden)

    Hossam S. EL-BELTAGI

    2013-05-01

    Full Text Available The present investigation was carried out to study the role of calcium chloride in enhancing tolerance and reducing cadmium toxicity in pea seedlings. Some treatment with 1 and 5 mM CaCl2 mitigated cadmium stress by increasing antioxidant enzyme activities: catalase (CAT, peroxidase (POD and polyphenol oxidase (PPO, as well as by elevating contents of ascorbic acid (ASA, tocopherol and carotenoids. On the other hand, total carbohydrate and total soluble proteins decreased with increasing cadmium concentrations in comparison with control plants. However, total phenol, total free amino acids, proline and lipid peroxidation increased with increasing concentrations of cadmium acetate. Electrophoretic studies of protein revealed that cadmium treatments alone or in combination with calcium chloride were associated with the disappearance of some bands or appearance of new bands in pea seedlings. Electrophoretic studies of α-esterase, β-esterase and acid phosphatase isozymes showed wide variations in their intensities and densities.

  5. 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S.A. [Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P. (India); Hayat, S. [Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P. (India)], E-mail: shayat@lycos.com; Ali, B.; Ahmad, A. [Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2008-01-15

    In the present experiment the seeds of Cicer arietinum (L.) cv. Uday were inoculated with specific Rhizobium grown in sandy loam soil and were allowed to grow for 15 days. At this stage, the seedlings were supplied with 0, 50, 100 or 150 {mu}M of cadmium in the form of cadmium chloride and sprayed with 0.01 {mu}M of 28-homobrassinolide (HBL) at 30-day stage. The data indicated that plant fresh and dry mass, number of nodules, their fresh and dry mass, leghemoglobin content, nitrogen and carbohydrate content in the nodules, leaf chlorophyll content, nitrate reductase and carbonic anhydrase activities decreased proportionately with the increasing concentrations of cadmium but the content of proline and the activities of catalase, peroxidase and superoxide dismutase increased. The ill effect, generated by cadmium, was overcome if the stressed plants were sprayed with HBL. - The cadmium toxicity can be overcome by the foliar application of 28-homobrassinolide.

  6. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mera, Roi; Torres, Enrique, E-mail: torres@udc.es; Abalde, Julio

    2014-03-01

    Highlights: • Sulphate effect on cadmium toxicity in the microalga Chlamydomonas moewusii Gerloff. • Cadmium increases the sulphur requirements in Chlamydomonas moewusii. • Kinetic coefficients for sulphate utilization and cadmium effect on them. • Sulphate and cadmium influence on the biosynthesis of low-molecular mass thiols. • Cadmium toxicity reduction by sulphate due to higher biosynthesis of thiols. - Abstract: Sulphur is an essential macroelement that plays important roles in living organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu–Cys, glutathione and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of inorganic sulphate. The aim of this study was to investigate, using a bifactorial experimental design, the effect of different sulphate concentrations in the nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular concentrations of low-molecular mass thiol compounds were determined. A mathematical model to describe the growth of this microalga based on the effects of sulphate and cadmium was obtained. An ANOVA revealed an interaction between them, 16% of the effect sizes was explained by this interaction. A higher amount of sulphate in the culture medium allowed a higher cadmium tolerance due to an increase in the thiol compound biosynthesis. The amount of low-molecular mass thiol compounds, mainly phytochelatins, synthesized by this microalga was significantly dependent on the sulphate and cadmium concentrations; the higher phytochelatin content was obtained in cultures with 4 mg Cd/L and 1 mM sulphate. The maximum EC{sub 50} value (based on nominal cadmium concentration) reached for this microalga was 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was also 1 m

  7. Protective role of pectin against cadmium-induced testicular toxicity and oxidative stress in rats.

    Science.gov (United States)

    Koriem, Khaled M M; Fathi, Gamal E; Salem, Huda A; Akram, Nabil H; Gamil, Sofie A

    2013-05-01

    Cadmium has been classified as an environmental pollutant and human carcinogen. Pectin is a family of complex polysaccharides that function as hydrating agents and cementing materials for the cellulosic network. The aim of this study was to evaluate the protective role of pectin against cadmium-induced testicular toxicity and oxidative stress in rats. Forty male Wistar rats were divided into five equal groups. Groups 1 and 2 were injected intraperitoneally (i.p.) saline (1 mg/kg) and pectin (50 mg/kg), respectively, two days/weeks over three weeks period. Groups 3-5 were injected i.p. with 1 mg/kg cadmium two days/week while groups 4 and 5 co-administrated i.p. with 25 and 50 mg/kg pectin, respectively, three days/week over three weeks period. The results of the present work revealed that cadmium-exposed rats showed decrease in serum testosterone, dehydroepiandrosterone sulfate and lactate dehydrogenase. Testicular cholesterol, total protein, glucose-6-phosphate dehydrogenase, 3β-hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, catalase, glutathione S-transferase and reduced glutathione levels were also decreased while testicular malondialdehyde level was increased after cadmium injection. On the other hand, serum luteinizing hormone, follicle stimulating hormone, sex hormone binding globulin and γ-glutamyl transpeptidase were increased after cadmium exposure. Cadmium also induced sperms loss. Co-administration of pectin with cadmium restores all the above parameters and sperms to the normal levels where pectin at higher dose was more effective than lower one. These results were supported by histochemical investigations. In conclusion, pectin can counteract the testicular toxicity and oxidative stress induced by cadmium and the effect was dose-dependent.

  8. Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.

    Science.gov (United States)

    Kimberly, David A; Salice, Christopher J

    2014-07-01

    The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects.

  9. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells.

    Science.gov (United States)

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek

    2016-03-01

    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion.

  10. Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii.

    Science.gov (United States)

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2016-06-01

    Cadmium is considered as one of the most hazardous metals for living organism and ecosystems. Environmental factors play an important role since they alter the toxicity of metals by varying the bioavailability of these elements for the organisms. The aim of the present study was to investigate, using the freshwater microalga Chlamydomonas moewusii, the existence of an interaction between cadmium and sulphate as a factor that varied the toxicity of this metal. Different cell parameters such as cell growth, content of chlorophylls and biosynthesis of phytochelatins (PCs) were determined. A two-way ANOVA showed that the interaction had a significant effect size of 21% (pmicroalga and around of a 6% on the content of chlorophylls/cell. The effect of this inhibition was that when the concentration of sulphate increased, a lower toxic effect of cadmium on the growth and on the content of chlorophylls was observed. In addition, the increase of sulphate concentration allowed the biosynthesis of a higher amount of PCs and/or PCs with higher chain length. This higher biosynthesis was responsible for the reduction of the toxic effect of cadmium and explained the interaction.

  11. Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Crommentuijn, T.; Doodeman, C.J.A.M.; Doornekamp, A.; Pol, J.J.C. van der; Bedaux, J.J.M.; Gestel, C.A.M. van (Vrije Univ., Amsterdam (Netherlands))

    1994-11-01

    Time-dependent toxicity in bioassays is usually explained in terms of uptake and elimination kinetics of the toxicant. By comparing different species with essentially different accumulation kinetics, a firm test of this concept may be made. This article compares the sensitivity of six soil arthropods, the collembolans Orchesella cincta and Tomocerus minor, the oribatid mite Platynothrus peltifer, the isopods Porcellio scaber and Oniscus asellus, and the diplopod Cylindroiulus britannicus, when exposed to cadmium in the food. Survival was determined at various time intervals; accumulation of cadmium in the animals was measured at one time interval. Kinetic-based toxicity models were fitted to the data, and estimates were obtained for lethal body concentration, uptake rate constant, elimination rate constant, and ultimate LC50. Two different accumulation patterns could be discerned; these were correlated with time-survival relationships. One, species that have the possibility to eliminate cadmium will reach an equilibrium for the internal concentration and also an ultimate LC50. Two, species that are unable to eliminate cadmium but store it in the body will have an ultimate LC50 equal to zero. For these species the time in which the lethal body concentration is reached is more important. Taxonomically related species appeared to have comparable accumulation patterns, but lethal body concentrations differed. It is concluded that knowledge of the accumulation pattern is indispensable for the evaluation of species' sensitivities to toxicants.

  12. Effect of Liming on Cadmium Forms and Its Toxicity in Red Soils

    Institute of Scientific and Technical Information of China (English)

    A.M.FARAH; XIEZHENGMIAO; 等

    1996-01-01

    The effect of liming 4 soils developed from Quaternary red clay and red sandstone on the cadmium forms and its toxicity were investigated.Liming the acid red soils could greatly reduce Cd toxicity to plants because the soluble Cd and organic Cd in the soils decreased significantly while Cd bound to minerals/oxides and residual Cd increased markedly with increasing lime rates(pH).

  13. Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity.

    Science.gov (United States)

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2014-03-01

    Sulphur is an essential macroelement that plays important roles in living organisms. The thiol rich sulphur compounds, such as cysteine, γ-Glu-Cys, glutathione and phytochelatins participate in the tolerance mechanisms against cadmium toxicity. Plants, algae, yeasts and most prokaryotes cover their demand for reduced sulphur by reduction of inorganic sulphate. The aim of this study was to investigate, using a bifactorial experimental design, the effect of different sulphate concentrations in the nutrient solution on cadmium toxicity in the freshwater microalga Chlamydomonas moewusii. Cell growth, kinetic parameters of sulphate utilization and intracellular concentrations of low-molecular mass thiol compounds were determined. A mathematical model to describe the growth of this microalga based on the effects of sulphate and cadmium was obtained. An ANOVA revealed an interaction between them, 16% of the effect sizes was explained by this interaction. A higher amount of sulphate in the culture medium allowed a higher cadmium tolerance due to an increase in the thiol compound biosynthesis. The amount of low-molecular mass thiol compounds, mainly phytochelatins, synthesized by this microalga was significantly dependent on the sulphate and cadmium concentrations; the higher phytochelatin content was obtained in cultures with 4 mg Cd/L and 1mM sulphate. The maximum EC50 value (based on nominal cadmium concentration) reached for this microalga was 4.46 ± 0.42 mg Cd/L when the sulphate concentration added to the culture medium was also 1mM. An increase in the sulphate concentration, in deficient environments, could alleviate the toxic effect of this metal; however, a relative excess is also negative. The results obtained showed a substrate inhibition for this nutrient. An uncompetitive model for sulphate was chosen to establish the mathematical model that links both factors.

  14. Efficacy of Crocus sativus L. on reduction of cadmium-induced toxicity on spermatogenesis in adult rats.

    Science.gov (United States)

    Yari, A; Sarveazad, A; Asadi, E; Raouf Sarshoori, J; Babahajian, A; Amini, N; Amidi, F; Bahadoran, H; Joghataei, M T; Asadi, M H; Shams, A

    2016-12-01

    Cadmium is a toxic heavy metal element, which probably cause infertility by impairment in spermatogenesis. The present work aimed (i) to study the toxic effect of cadmium on spermatogenesis in rat, as well as (ii) the protective effect of Crocus sativus L. on cadmium-intoxicated rats. Cadmium chloride was administered intraperitoneally during 16 days at intervals of 48 h between subsequent treatments. Crocus sativus L. was pre-treated in both of control and cadmium-injected rats. Animals were sacrificed on day 17 after the first treatment. The left cauda epididymis was removed and immediately immersed into Hank's balanced salt solution for the evaluation of sperm count and viability, and left testis was fixed in 10% formalin for histological evaluation. Following contamination with cadmium, a decrease was observed in the number and viability of cauda epididymis sperm, which were increased by Crocus sativus L. pre-treatment (P spermatogenesis.

  15. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides)

    Energy Technology Data Exchange (ETDEWEB)

    Mehinto, Alvine C., E-mail: alvinam@sccwrp.org [Southern California Coastal Water Research Project, Costa Mesa, CA 92626 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Prucha, Melinda S. [Department of Human Genetics, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322 (United States); Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Colli-Dula, Reyna C.; Kroll, Kevin J.; Lavelle, Candice M.; Barber, David S. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Vulpe, Christopher D. [Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720 (United States); Denslow, Nancy D. [Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States)

    2014-07-01

    Highlights: • Low-level acute cadmium exposure elicited tissue-specific gene expression changes. • Molecular initiating events included oxidative stress and disruption of DNA repair. • Metallothionein, a marker of metal exposure, was not significantly affected. • We report effects of cadmium on cholesterol metabolism and steroid synthesis. • Diabetic complications and impaired reproduction are potential adverse outcomes. - Abstract: Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20 μg/kg of cadmium chloride (mean exposure level – 2.6 μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48 h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48 h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly

  16. Response of phytochelatins and their relationship with cadmium toxicity in a floating macrophyte Pistia stratiotes L. at environmentally relevant concentrations.

    Science.gov (United States)

    Wang, C; Wang, L Y; Sun, Q

    2010-02-01

    An indoor experiment was undertaken to investigate the response of phytochelatins and their relationship to cadmium toxicity in Pistia stratiotes L., a free-floating macrophyte, exposed to low concentrations of cadmium typically found in realistic environments. Cadmium concentrations of 0.01 to 0.08 microM had no toxic effects on the growth of this plant, as indicated by no significant changes in the fresh weights of leaves and roots and the slight induction of phytochelatins in plant tissues, whereas cadmium concentrations of 0.16 to 1 microM were toxic, and cadmium toxicity increased with the increase of cadmium concentrations in solutions, accompanied by the dramatic production of phytochelatins in plant tissues, especially in roots. There was a positive correction between root phytochelatin levels and cadmium toxicity, as measured by the growth inhibition rate of the root fresh weight. The results suggested that phytochelatins in aquatic macrophytes can serve as sensitive biomarkers for heavy metal toxicity in a moderately polluted water environment.

  17. Effect of Physalis peruviana L. on cadmium-induced testicular toxicity in rats.

    Science.gov (United States)

    Othman, Mohamed S; Nada, Ahmed; Zaki, Hassan S; Abdel Moneim, Ahmed E

    2014-06-01

    Cadmium (Cd) stimulates the production of reactive oxygen species and causes tissue damage. We investigated here the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced testes toxicity in rats. Twenty-eight Wistar albino rats were used. They were divided into four groups (n=7). Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg body weight (bwt) of cadmium chloride for 5 days. Group 3 was orally treated with 200 mg/kg bwt of methanolic extract of physalis (MEPh). Group 4 was pretreated with MEPh before cadmium for 5 days. Changes in body and testes weights were determined. Oxidative stress markers, antioxidant enzymes, and testosterone level were measured. Histopathological changes of testes were examined, and the immunohistochemical staining for the proapoptotic (caspase-3) protein was performed. The injection of cadmium caused a significant decrease in body weight, while a significant increase in testes weight and testes weight index was observed. Pretreatment with MEPh was associated with significant reduction in the toxic effects of Cd as shown by reduced testicular levels of malondialdehyde, nitric oxide, and caspase-3 expression and increased glutathione content, and the activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and testosterone were also increased. Testicular histopathology showed that Cd produced an extensive germ cell apoptosis, and the pretreatment of MEPh in Cd-treated rats significantly reduced Cd-induced testicular damage. On the basis of the above results, it can be hypothesized that P. peruviana L. has a protective effect against cadmium-induced testicular oxidative stress and apoptosis in the rat.

  18. Toxicity of a cadmium-contaminated diet to Hyalella azteca.

    Science.gov (United States)

    Ball, Angela L; Borgmann, Uwe; Dixon, D George

    2006-09-01

    Four- and 10-week chronic toxicity tests were conducted using the freshwater amphipod Hyalella azteca and Cd-contaminated Chlorella sp. as a food source. Chlorella sp. was cultured in various Cd concentrations, filtered from solution, rinsed, dried, and ground into food flakes for the H. azteca. Unlike Cd toxicity from water sources, growth was found to be a more sensitive toxicological endpoint than survival, with calculated 50 and 25% effect concentrations (EC50s and EC25s, respectively) of 5.43 and 2.82 nmol/g, respectively, for Cd measured in food. Based on the regression of Cd in Chlorella sp. against Cd in filtered culture medium, the EC50 and EC25 corresponded to dissolved Cd concentrations of 11.30 and 5.09 nmol/L, respectively. Little or no bioaccumulation of Cd was found in the tissues of H. azteca that were fed contaminated food. These results demonstrate an apparent toxicological effect (either direct or indirect) of Cd-contaminated Chlorella sp. to H. azteca that is not associated with Cd accumulation. Toxicity of Cd-contaminated Chlorella sp. differs from waterborne Cd toxicity both in terms of the most sensitive endpoint (growth vs survival) and the relationship between toxicity and bioaccumulation. Unlike Cd toxicity through water exposure, Cd bioaccumulation by H. azteca cannot, therefore, be used to infer toxicity of Cd in a diet of Chlorella sp. Although the concentration of Cd in the algal culture medium that ultimately reduced growth of H. azteca in the present study was higher than Cd in water, which caused mortality to H. azteca in water-only tests during previous studies, further research regarding the contribution of dietary Cd to overall Cd toxicity is needed to verify that water-quality guidelines and risk assessments based on water-only exposures are fully protective.

  19. Effects of calcium, magnesium, and sodium on alleviating cadmium toxicity to Hyalella azteca

    Science.gov (United States)

    Jackson, B.P.; Lasier, P.J.; Miller, W.P.; Winger, P.V.

    2000-01-01

    Toxicity of trace metal ions to aquatic organisms, arising through either anthropogenic inputs or acidification of surface waters, continues to be both a regulatory and environmental problem. It is generally accepted that the free metal ion is the major toxic species (Florence et a1.,1992) and that inorganic or organic complexation renders the metal ion non-bioavailable (Meador, 1991, Galvez and Wood, 1997). However, water chemistry parameters such as alkalinity, hardness, dissolved organic carbon and pH influence metal ion toxicity either directly by lowering free metal ion concentration or indirectly through synergistic or antagonistic effects. Alkalinity and salinity can affect the speciation of metal ions by increasing ion-pair formation, thus decreasing free metal ion concentration. For example, Cu was found to be less toxic to rainbow trout in waters of high alkalinity (Miller and Mackay, 1980), due to formation of CuCO3 ion pair, and corresponding reduction in free Cu2+ concentration. The influence of salinity on the toxicity of cadmium to various organisms has been demonstrated in a number of studies (Bervoets et al., 1995, Hall et al., 1995, Lin and Dunson, 1993, Blust et al., 1992). In all these studies the apparent toxicity of cadmium was lowered as salinity was increased due to increased formation of CdC1+ and CDCl2 aqueous complexes that are non-toxic or of much lower toxicity than the free Cd2+ ion. Changes in pH exert both a biological and chemical effect on metal ion toxicity (Campbell and Stokes, 1985). Low pH favors greater metal ion solubility, and, in the absence of complexing ions, reduced speciation of the metal ion, which tends to increase toxicity compared to higher pH. However, Iow pH also enhances competition between H+ and metal ion for cell surface binding sites, which tends to decrease metal ion toxicity.

  20. Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Martinez-Guitarte, J.L. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain); Morcillo, G. [Biologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28040, Madrid (Spain)]. E-mail: gmorcillo@ccia.uned.es

    2007-02-01

    Cadmium is a widespread environmental pollutant that causes severe impacts in organisms. Although the effects of cadmium on aquatic insects have been studied in terms of their toxicity and changes in developmental parameters, little is known about its molecular and genetic effects. We have investigated the alterations in the pattern of gene expression provoked by acute exposure to cadmium in Chironomus riparius Mg. (Diptera, Chironomidae), a sentinel organism widely used in aquatic toxicity testing. The early cytotoxic effects were evaluated using immunocytochemistry and specific fluorescent probes in fourth instar larvae after 12 h of 10 mM cadmium treatments; under these conditions no significant effect on larvae mortality was detected until after 36 h of exposure. The changes in the pattern of gene expression were analysed by means of DNA/RNA hybrid antibodies in the polytene chromosomes from salivary gland cells. A decrease in the activity of the nucleolus is especially remarkable, accompanied by a significant reduction in size and the modification in nucleolar architecture, as shown by FISH. The inhibition of rDNA transcription was further evaluated by Northern blot analysis, which showed a marked decrease in the level of preribosomal rRNA (54% 45S 12 h). However, the BR genes, whose products are the giant polypeptides that constitute the silk-like secretion for constructing housing tubes, remain active. Simultaneously, decondensation and activation take place at some chromosomal regions, especially at the centromeres. The changes observed in the pattern of gene expression do not resemble those found after heat shock or other cell stressors. These data provide the first evidence that cadmium interacts with ribosomal genes and results in a drastic impairment of the functional activity of the nucleolus, an essential organelle for cellular survival. Therefore, the depletion of ribosomes would be a long-term effect of Cd-induced cellular damage. These findings may

  1. Toxicity of cadmium and lead on tropical midge larvae, Chironomus kiiensis Tokunaga and Chironomus javanus Kieffer (Diptera:Chironomidae)

    Institute of Scientific and Technical Information of China (English)

    Warrin Ebau; Che Salmah Md Rawi; Zubir Din; Salman Abdo Al-Shami

    2012-01-01

    Objective: To investigate the acute toxicity of cadmium and lead on larvae of two tropical Chironomid species, Chironomus kiiensis (C. kiiensis) Tokunaga and Chironomus javanus (C. javanus) Kieffer. Methods: Different larval instars (first-fourth) were exposed using a static non-replacement testing procedures to various concentrations of cadmium and lead. Results:In general, younger larvae (first and second instars) of both species were more sensitive to both metals than older larvae (third and forth instars). The toxic effects of the metals on C. kiiensis and C. javanus were influenced by the age of the larvae (first to fourth instars), types of metals (cadmium or lead) and duration of larval exposure (24, 48, 72 and 96 h) to the metals. Conclusions: Cadmium was more toxic to the chironomids than lead and C. javanus was significantly more sensitive to both metals than C. kiiensis (P<0.05).

  2. The prospective role of abnormal methyl metabolism in cadmium toxicity.

    OpenAIRE

    Poirier, Lionel A; Vlasova, Tatyana I

    2002-01-01

    Several lines of evidence point to the probable role of abnormal methylation processes in the toxicology of metals and other xenobiotics. The spectrum of toxic effects exhibited by such metals as Ni, As, and Cd, as well as by Zn deficiency, often resemble those seen in animals chronically fed methyl-deficient diets. These metal-associated pathologies include cancer, atherosclerosis, birth defects, neurological disturbances, and pancreatic lesions. In addition, each of the above agents has bee...

  3. Toxicity of lead and cadmium to tropical marine phytoplankton

    DEFF Research Database (Denmark)

    Jensen, Susanne Dal; Panutrakul, Suwanna; Nyholm, Niels

    2000-01-01

    .02, 0.32, and 34.6 mg /L . EC50 values for Pb in artificial seawater were 1.4, 0.12, and 5.25 mg/L d and in natural seawater 0.18, 0.4 and 6.77 mg/L. Pb was consistently more toxic to the algae than Cd, and Chlorella sp was generally most sensitive followed by C. calcitrans while D. teriolecta...

  4. Evaluation and QSAR Study of Joint Toxicity of Substituted Phenols and Cadmium to Photobacterium phosphoreum

    Institute of Scientific and Technical Information of China (English)

    SU Li-min; YUAN Xing; MU Chun-fang; YAN Ji-chang; ZHAO Yuan-hui

    2008-01-01

    The single toxicity of cadmium(Cd) or 9 substituted phenols to Phtobacterium phosphoreum was determined,respectively. The results indicate that the single toxicity was related to group variety, group sum and substitutive positions. On the basis of single toxicity, the joint toxicity of Cd and 9 substituted phenols was measured. The result indicates that the joint toxicity was basically a simple addition of the single toxicity of them or close to simple addition of the single toxicity of them. QSAR equations were built from the joint toxicity and molecular structural descriptors of substituted phenols under the different Cd concentrations. It was shown that the joint toxicity under different Cd concentrations was related to the identical descriptors, the logarithm of n-octanol/water partition coefficient(lgP) and the heat of formation(△Hf), with R2=0.855, 0.878 and 0.780, respectively. Good agreement between the predicted and observed values was found with R2=0.837.

  5. Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida.

    Science.gov (United States)

    Zhou, Chui-Fan; Wang, Yu-Jun; Sun, Rui-Juan; Liu, Cun; Fan, Guang-Ping; Qin, Wen-Xiu; Li, Cheng-Cheng; Zhou, Dong-Mei

    2014-10-01

    The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio. The subcellular distribution of Cd in E. fetida tissues showed that internal Cd was dominant in the intact cells fraction and the heat-stable proteins fraction. The presence of glyphosate reduced the concentration of Cd in all fractions, especially the intact cells. During a longer period of exposure, the weight loss of earthworm and the total Cd absorption was alleviated by glyphosate. Thus, the herbicide glyphosate can reduce the toxicity and bioavailability of Cd in the soil ecosystems at both short- and long-term exposures.

  6. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity.

  7. Effects of benzoic acid and cadmium toxicity on wheat seedlings

    Directory of Open Access Journals (Sweden)

    Kavita Yadav

    2013-06-01

    Full Text Available Benzoic acid (BA and Cd exhibit cumulative effects on plants due to their accumulation in the soil. The present study reports the effects of BA an allelochemical, Cd and their combinations on seed germination, seedling growth, biochemical parameters, and response of antioxidant enzymes in Triticum aestivum L. The experiment was conducted in sand supplemented with Hoagland nutrient solution. Benzoic acid was applied at concentrations of 0.5, 1.0, and 1.5 mM with or without Cd (7 mg L-1 to observe effects of allelochemical and Cd alone and in combination on wheat. Both stresses exhibited inhibitory effect on growth and metabolism of wheat seedlings. The allelochemical in single and combined treatments with Cd decreased seedling growth as compared to Cd stress. The two stresses significantly enhanced malondialdehyde content of wheat seedlings. The activity of other antioxidant enzymes, viz. superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and guaiacol peroxidase (POX were also recorded. SOD increased in seedlings under the two stresses. CAT more prominently ameliorates the toxic effects of H2O2 as compared with APX and POX and protected wheat seedlings from oxidative stress. Allelochemical buttressed the toxic effect of Cd on wheat seedlings.

  8. Evaluation of Toxic Effects and Bioaccumulation of Cadmium and Copper in Spring Barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Jūratė Žaltauskaitė

    2013-07-01

    Full Text Available This paper deals with the analysis of toxic effects of cadmium and copper on the growth of spring barley (Hordeum vulgare L. cultivated in hydroponics. The seedlings of barley were treated with four different concentrations of cadmium and copper, ranging from 0.1 to 10 mg L-1. The aim of the study was to assess toxic effects of cadmium (Cd and copper (Cu on the growth of spring barley, and to determine metal accumulation in above-ground and underground parts of the plant. The impact of Cu and Cd on photosynthetic pigments (chlorophyll a, b, the content of malondialdehyde (MDA, and the essential micronutrients (Mn, Fe were examined. Metal treatment reduced the growth of roots (by 60%, shoots (Cd – 48 %, Cu – 57% and dry weight (Cd – 47 %, Cu – 52% of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. Regression analysis revealed that there was significant negative relationship between MDA content and biomass of barley treated with Cu (r=-0.99, p=0.01. The examined heavy metals were accumulated mainly in the roots and bioconcentration of Cu there was higher than that of Cd, indicating that roots tended to accumulate higher amounts of Cu than Cd. Though translocation of Cd from roots to above-ground tissues was higher, higher levels of Cd were observed in leaves.DOI: http://dx.doi.org/10.5755/j01.erem.64.2.1951

  9. Field and laboratory tests on acute toxicity of cadmium to freshwater crayfish

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    Environmental regulatory standards for cadmium (EPA 1980), like those for most pollutants, are based on acute, laboratory toxicity tests of single species. Such tests can be conducted rapidly and inexpensively in comparison to acute or chronic field studies, but their validity has often been questioned. Laboratory-based criteria are subject to two criticisms: (1) chemical and physical conditions differ greatly in degree and variability from laboratory to field, and (2) species are not isolated, but live in an ecosystem of interacting taxa and biofeedback. To investigate the validity of basing field toxicity standards on laboratory data, the authors subjected the freshwater crayfish Orconectes immunis for 96 h to various levels of cadmium in laboratory aquaria and experimental ponds. The study was designed to evaluate in part the first criticism of lab-based criteria. The studies were conducted concurrently with similar short-term experiments on the fathead minnow, Pimephales promelas, and coincided with studies of chronic cadmium stress on fathead minnows in experimental ponds.

  10. Glucose alleviates cadmium toxicity by increasing cadmium fixation in root cell wall and sequestration into vacuole in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yuan-Zhi Shi; Xiao-Fang Zhu; Jiang-Xue Wan; Gui-Xin Li; Shao-Jian Zheng

    2015-01-01

    Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu þ Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu þ Cd treatment compared with Cd treatment alone, which was in accordance with the significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles.

  11. Toxicity of quantum dots and cadmium to rainbow trout (Oncorhynchus mykiss in early ontogenesis

    Directory of Open Access Journals (Sweden)

    Živilė Cibulskaitė

    2015-11-01

    Full Text Available The aim of the study was to investigate toxic effects of CdSe/ZnS-COOH quantum dots (QD and cadmium (Cd on biological parameters of rainbow trout (Oncorhychus mykiss in its early stages of development (embryos and larvae. It was found that short-term (24-, 96-hour exposure to sublethal concentrations of QD and Cd increased mortality of embryos and larvae, disturbed function of the cardio-respiratory system (gill ventilation frequency, heart rate and affected behavioural responses (individuals making nests in rainbow trout larvae. The results indicated that toxic effects of QD and Cd on rainbow trout larvae depended on the type of chemical substance, affected stage of development and exposure duration. Comparative studies of the effects of QD and Cd on rainbow trout in early stages of development showed that larvae were more sensitive to Cd and QD as compared to embryos. It was suggested that the chorion envelopes of eggs surround and protect the embryo from QD and Cd. Cadmium was more toxic to larvae than QD. Longer exposure (96-hour of QD and Cd induced more remarkable changes in test-parameters. This original study requires more investigations evaluating the mechanism of toxicity of QD to fish.

  12. Cadmium-Induced Toxicity and the Hepatoprotective Potentials of Aqueous Extract of Jessiaea Nervosa Leaf

    Directory of Open Access Journals (Sweden)

    Ama Udu Ibiam

    2013-08-01

    Full Text Available Purpose: Hepatoprotective potentials of Jussiaea nervosa leaf extract against Cadmium-induced hepatotoxicity were investigated. Methods: Forty albino rats were randomly assigned into groups A-G with 4 rats in each of the groups A-F. Group A served as control and were given feed only while rats in groups B-F were orally exposed to varying concentrations of cadmium for six weeks. Effects of cadmium were most significant at 12 mg/Kg body weight (BW, and this dose was used for subsequent test involving oral administration of Jussiaea nervosa leaf extracts. In this segment, group G (n= 16 was sub-divided into four: G1-G4, with each sub-group containing four rats. Rats in sub-group G1 were given cadmium and feed only and served as positive control. Rats in sub-groups G2, G3, and G4 were given cadmium and 20, 50 and 100g/kg BW of Jussiaea nervosa extract, respectively, for six weeks. Blood and liver were analysed using standard laboratory techniques and methods. Results: Liver function parameters (ALT, AST, ALP, bilirubin were significantly (p<0.05 elevated in exposed rats in comparison to the controls, except for total protein and albumin, which were significantly decreased. Histopathological assessment reveals renal pathology in exposed rats in sharp contrast with the controls. Jussiaea nervosa extract however lowered the values of liver function parameters with 100mg/Kg BW dose producing the highest ameliorative effects. Similarly, the serum albumin and total protein significantly (p<0.05 improved with normal liver architecture. Conclusion: The results show the hepatoprotective potentials of Jussiaea nervosa extract against Cd toxicity.

  13. Toxicity of cadmium to Schistosoma mansoni cercariae: effects on vitality and developmental ability in white mice

    Energy Technology Data Exchange (ETDEWEB)

    Holliman, R.B. (Virginia Polytechnic Inst. and State Univ., Blacksburg); Esham, L.P.

    1977-09-29

    Time-until-death studies were run on cercariae of Schistosoma mansoni in 8 concentrations of cadmium (from cadmium sulfate) ranging from 100 ppM to 0.0001 ppM. All concentrations used were found to be toxic, and at 10 ppM all cercariae were dead within 4 hours, which coincides with their period of maximum infectability following emergence from the snail host. At 2 ppM, all cercariae died within 8 hours, and at 1 ppM all died within 16 hours. In addition, groups of cercariae were exposed to cadmium concentrations of 10, 1, and 0.1 ppM for periods of 30, 20, and 10 minutes. Thereafter, cercariae from these groups were allowed to penetrate the tails of white mice or were injected subcutaneously into mice. After 8 weeks, these mice were autopsied and the adult worms collected by perfusion. Maturation of cercariae from both methods of invasion was seriously impaired. Statistical analysis using a 3 x 4 x 2 factoral design for analysis of variance showed both time of exposure and concentration of cadmium ion to be significant factors in determining number of worms developing at p = 0.01. A significant interaction between time of exposure and concentration was found to exist. The two methods of infection did not have a significant effect on the number of worms recovered. Therefore, it appears that those toxicant-exposed cercariae capable of maturing do not need assistance in transversing the skin barrier but can penetrate and migrate to reach the mesenteric venules for maturation.

  14. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation.

    Science.gov (United States)

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Hussain, Saddam; Bao, Mingchen; Wang, Longchang; Khan, Imran; Ullah, Ehsan; Tung, Shahbaz Atta; Samad, Rana Abdul; Shahzad, Babar

    2015-11-01

    Increased cadmium (Cd) accumulation in soils has led to tremendous environmental problems, with pronounced effects on agricultural productivity. Present study investigated the effects of Cd stress imposed at various concentrations (0, 75, 150, 225, 300, 375 μM) on antioxidant activities, reactive oxygen species (ROS), Cd accumulation, and productivity of two maize (Zea mays L.) cultivars viz., Run Nong 35 and Wan Dan 13. Considerable variations in Cd accumulation and in behavior of antioxidants and ROS were observed under Cd stress in both maize cultivars, and such variations governed by Cd were concentration dependent. Exposure of plant to Cd stress considerably increased Cd concentration in all plant parts particularly in roots. Wan Dan 13 accumulated relatively higher Cd in root, stem, and leaves than Run Nong 35; however, in seeds, Run Nong 35 recorded higher Cd accumulation. All the Cd toxicity levels starting from 75 μM enhanced H2O2 and MDA concentrations and triggered electrolyte leakage in leaves of both cultivars, and such an increment was more in Run Nong 35. The ROS were scavenged by the enhanced activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione peroxidase in response to Cd stress, and these antioxidant activities were higher in Wan Dan 13 compared with Run Nong 35 at all Cd toxicity levels. The grain yield of maize was considerably reduced particularly for Run Nong 35 under different Cd toxicity levels as compared with control. The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd accumulation in roots may lead to improvement in Cd stress tolerance.

  15. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fan, Junpeng; Shao, Ming; Lai, Lu; Liu, Yi; Xie, Zhixiong

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L) were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L) to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator), combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells.

  16. Carboxymethyl-beta-cyclodextrin mitigates toxicity of cadmium, cobalt, and copper during naphthalene biodegradation.

    Science.gov (United States)

    Hoffman, Douglas R; Anderson, Phillip P; Schubert, Carissa M; Gault, Melissa B; Blanford, William J; Sandrin, Todd R

    2010-04-01

    Hazardous waste sites are commonly contaminated with both organic and metal pollutants. Many metal pollutants have been shown to inhibit organic pollutant biodegradation. We investigated the ability of a modified, polydentate cyclodextrin (carboxymethyl-beta-cyclodextrin, CMCD) to reduce the toxicity of 33.4 microM cadmium, cobalt or copper during naphthalene degradation by a Burkholderia sp. in 120 h aerobic, batch studies. The highest investigated concentration of CMCD, 3340 microM, reduced cadmium, cobalt, and copper toxicity. With each metal, the length of the lag phase was reduced (by as much as 108 h with cobalt or copper), the cell yield was increased (by as much as a factor of 16 with cobalt), and the growth rate was increased (by as much as a factor of 31 with cobalt). The degrader was unable to use CMCD as the sole source of carbon and energy. Our data suggest that the ability of CMCD to complex metals plays an important role in its ability to mitigate metal toxicity and that CMCD has the potential to enhance biodegradation in organic and metal co-contaminated environments.

  17. Effects of sulfur nutritional level on cadmium toxicity in barley

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yichang; Huerta, A.J. (Miami Univ., Oxford, OH (United States))

    1993-05-01

    The effects of S levels on Cd toxicity were studied in barley (Hordeum vulgare L.cv.UC 476). Barley was grown hydroponically in half-strength Hoagland's solution containing either 100% or 10% S in a growth chamber at constant 20 C, 290 umole M[sup [minus]2] s[sup [minus]1] light intensity, and a 16/18 hour light/dark period. Five days after the first true leaf appeared, 15 uM Cd was added to the nutrient solutions where appropriate. At 14 days after beginning of Cd treatment, plants were analyzed for photosynthetic characteristics. The photosynthetic characteristics measured were CO[sub 2] response curves (measured with a LICOR 6200 portable photosynthesis system), and fluorescence measurement system. At 21 days they were analyzed for morphological and biomass measurements. The CO[sub 2] response curves for leaves of plants treated with 10% S did not significantly differ from those of plants treated with 100% S. Treatment with Cd significantly reduced the CO[sup 2] saturated rates of photosynthesis and the reduction was more significant in the 10% S than in the 100% S plants. Photochemical efficiency of PSII (FV/FM) and fluorescence quenching capacity (FQ) were not affected by 10% S as compared to 100% S treatment. Interestingly, treatment with Cd significantly increased both FV/FM and FQ as compared to control., However, S level had no effect on the fluorescence parameters of Cd-treated plants. Leaf and root length, leaf area, root and shoot dry weight were only slightly affected (increased or decreased) by 10% S as compared to 100% S but very significantly reduced by treatment with Cd. Our results agree with the previous reports which show that S (an important component of glutathione and phytochelatins which are low molecular weight Cd binding proteins), is important in regulating Cd detoxification in plants. However, we are continuing to conduct experiments as even lower S concentrations and different Cd concentrations.

  18. Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-04-01

    Full Text Available Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd. The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (−Fe/−Cd or presence (−Fe/+Cd of cadmium but were well expressed in the presence of iron (+Fe/+Cd. Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  19. Cadmium toxicity induced alterations in the root proteome of green gram in contrasting response towards iron supplement.

    Science.gov (United States)

    Muneer, Sowbiya; Hakeem, Khalid Rehman; Mohamed, Rozi; Lee, Jeong Hyun

    2014-04-15

    Cadmium signifies a severe threat to crop productivity and green gram is a notably iron sensitive plant which shows considerable variation towards cadmium stress. A gel-based proteomics analysis was performed with the roots of green gram exposed to iron and cadmium combined treatments. The resulting data show that twenty three proteins were down-regulated in iron-deprived roots either in the absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium. These down-regulated proteins were however well expressed in roots under iron sufficient conditions, even in the presence of cadmium (+Fe/+Cd). The functional classification of these proteins determined that 21% of the proteins are associated with nutrient metabolism. The other proteins in higher quantities are involved in either transcription or translation regulation, and the rest are involved in biosynthesis metabolism, antioxidant pathways, molecular chaperones and stress response. On the other hand, several protein spots were also absent in roots in response to iron deprivation either in absence (-Fe/-Cd) or presence (-Fe/+Cd) of cadmium but were well expressed in the presence of iron (+Fe/+Cd). Results suggest that green gram plants exposed to cadmium stress are able to change the nutrient metabolic balance in roots, but in the mean time regulate cadmium toxicity through iron supplements.

  20. Evaluation on joint toxicity of chlorinated anilines and cadmium to Photobacterium phosphoreum and QSAR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hao, E-mail: realking163@163.com [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China); Wang, Chao; Shi, Jiaqi [State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Chen, Lei [School of Life and Chemistry, Jiangsu Second Normal University, Nanjing, Jiangsu 210013 (China)

    2014-08-30

    Highlights: • Cd has different effects on joint toxicity when in different concentrations. • The toxicity of most binary mixtures decreases when Cd concentration rises. • Different QSAR models are developed to predict the joint toxicity. • Descriptors in QSARs can help to elucidate the joint toxicity mechanism. • Van der Waals’ force or complexation may reduce the toxicity of mixtures. - Abstract: The individual IC{sub 50} (the concentrations causing a 50% inhibition of bioluminescence after 15 min exposure) of cadmium ion (Cd) and nine chlorinated anilines to Photobacterium phosphoreum (P. phosphoreum) were determined. In order to evaluate the combined effects of the nine chlorinated anilines and Cd, the toxicities of chlorinated anilines combined with different concentrations of Cd were determined, respectively. The results showed that the number of chlorinated anilines manifesting synergy with Cd decreased with the increasing Cd concentration, and the number manifesting antagonism decreased firstly and then increased. The joint toxicity of mixtures at low Cd concentration was weaker than that of most binary mixtures when combined with Cd at medium and high concentrations as indicated by TU{sub Total}. QSAR analysis showed that the single toxicity of chlorinated anilines was related to the energy of the lowest unoccupied molecular orbital (E{sub LUMO}). When combined with different concentrations of Cd, the toxicity was related to the energy difference (E{sub HOMO} − E{sub LUMO}) with different coefficients. Van der Waals’ force or the complexation between chlorinated anilines and Cd had an impact on the toxicity of combined systems, which could account for QSAR models with different physico-chemical descriptors.

  1. Interclonal variation in the acute and delayed toxicity of cadmium to the European prosobranch gastropod Potamopyrgus antipodarum (Gray).

    Science.gov (United States)

    Jensen, A; Forbes, V E

    2001-02-01

    The lethal responses of three European clones--A, B, and C-of the prosobranch snail Potamopyrgus antipodarum to acute cadmium exposure were examined by the use of a conventional LC50 test and a delayed toxicity test. The questions addressed were: (1) Are there differences in susceptibility (LC50 values and uniformity of response) among the three European clones of P. antipodarum? (2) Are the patterns of differences in susceptibility among clones observed in the LC50 test also observed for the delayed toxicity test? (3) Is there concordance in the ranking of susceptibility among clones under acute cadmium exposure and under chronic cadmium exposure? The results showed that the widths of the tolerance distribution differed among clones. Clones A and B had a steeper slope than clone C (for clone A the difference was marginally significant), which indicates that individuals from clones A and B showed a more uniform response to acute lethal cadmium stress than individuals from clone C. On the basis of the measured differences in LC50 values, clone A individuals showed the highest tolerance to acute cadmium (LC50 value: 1.92 mg Cd L(-1)) followed by clone B (LC50 value: 1.29 mg Cd L(-1)) and clone C (LC50 value: 0.56 mg Cd L(-1)). Clone C was significantly less tolerant than clones A and B. The delayed toxicity test showed a similar pattern to the LC50 test with regard to tolerance differences among clones; however, mortality continued following transfer to clean water, indicating that cadmium was lethal at much lower concentrations than indicated by the conventional LC50 test. Results of the LC50 test and the delayed toxicity test in the present study were in general agreement with results from chronic cadmium exposure experiments (Jensen et al. [2000] Ecol Appl [submitted]), i.e., the least susceptible clone A in the acute cadmium exposure test was also the least susceptible clone in the chronic cadmium exposure test. Based on the dramatic differences between the LC50

  2. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Zhilin Wu

    2016-12-01

    Full Text Available The present study investigated the beneficial role of selenium (Se in protecting oilseed rape (Brassica napus L. plants from cadmium (Cd+2 and lead (Pb+2 toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10 and 15 mg kg-1 alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se enhanced superoxide free radicals (O2-, hydrogen peroxide (H2O2 and lipid peroxidation, as indicated by malondialdehyde (MDA accumulation, but decreased superoxide dismutase (SOD and glutathione peroxidase (GPx activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant.

  3. Meta-analysis of cellular toxicity for cadmium-containing quantum dots

    Science.gov (United States)

    Oh, Eunkeu; Liu, Rong; Nel, Andre; Gemill, Kelly Boeneman; Bilal, Muhammad; Cohen, Yoram; Medintz, Igor L.

    2016-05-01

    Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.

  4. Imprinted Genes and the Environment: Links to the Toxic Metals Arsenic, Cadmium and Lead

    Directory of Open Access Journals (Sweden)

    Lisa Smeester

    2014-06-01

    Full Text Available Imprinted genes defy rules of Mendelian genetics with their expression tied to the parent from whom each allele was inherited. They are known to play a role in various diseases/disorders including fetal growth disruption, lower birth weight, obesity, and cancer. There is increasing interest in understanding their influence on environmentally-induced disease. The environment can be thought of broadly as including chemicals present in air, water and soil, as well as food. According to the Agency for Toxic Substances and Disease Registry (ATSDR, some of the highest ranking environmental chemicals of concern include metals/metalloids such as arsenic, cadmium, lead and mercury. The complex relationships between toxic metal exposure, imprinted gene regulation/expression and health outcomes are understudied. Herein we examine trends in imprinted gene biology, including an assessment of the imprinted genes and their known functional roles in the cell, particularly as they relate to toxic metals exposure and disease. The data highlight that many of the imprinted genes have known associations to developmental diseases and are enriched for their role in the TP53 and AhR pathways. Assessment of the promoter regions of the imprinted genes resulted in the identification of an enrichment of binding sites for two transcription factor families, namely the zinc finger family II and PLAG transcription factors. Taken together these data contribute insight into the complex relationships between toxic metals in the environment and imprinted gene biology.

  5. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-09-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations.

  6. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-01-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations. PMID:27669995

  7. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  8. Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity.

    Science.gov (United States)

    Langelueddecke, Christian; Lee, Wing-Kee; Thévenod, Frank

    2014-04-21

    The environmental toxicant cadmium (Cd) enters the food chain. A substantial proportion of Cd in nutrients of plant origin is present as Cd-metallothionein (CdMT) and Cd-phytochelatin (CdPC) complexes, which may be absorbed and transcytosed intact by colonic enterocytes following bacterial fermentation and contribute to systemic Cd toxicity, e.g. in liver and kidneys. We have recently demonstrated that the receptor for human neutrophil gelatinase-associated lipocalin (hNGAL) is expressed in human colon and colon-like Caco-2 BBE cells where it mediates transcytosis of MT and PC. Here we show in colon-like Caco-2 BBE cells that hNGAL receptor (hNGAL-R) dependent toxicity is significantly higher with CdMT than with CdPC3 (2.5-50μM Cd(2+) complexed to MT or PC3 for ≤24h), using MTT assay. Fluorescence-labelled A546-MT, but not A488-PC3 (both 700nM), co-localizes with the lysosomal marker cathepsin-B, as determined by confocal microscopy. In transwell experiments with confluent monolayers, transcytosis efficiency (i.e. the ratio of basal delivery to apical decrease) of A546-MT is decreased compared to A488-PC3 (both 700nM). The tubulin polymerization disruptor nocodazole (16.7μM) almost abolished CdMT and CdPC3 toxicity, reduced apical uptake of both A546-MT and A488-PC3, but increased transcytosis efficiency of A546-MT compared to that of A488-PC3 by preventing trafficking of A546-MT to lysosomes. Hence, following hNGAL-R dependent endocytosis of CdMT/CdPC3 in colonic epithelia, a nocodazole-sensitive trafficking pathway may preferentially target CdMT, but not CdPC3, to lysosomes, causing increased colonic epithelial toxicity but reduced systemic toxicity.

  9. Hepatoprotective effect of Arctium lappa root extract on cadmium toxicity in adult Wistar rats.

    Science.gov (United States)

    de Souza Predes, Fabricia; da Silva Diamante, Maria Aparecida; Foglio, Mary Ann; Camargo, Camila de Andrade; Camargo, Camila Almeida; Aoyama, Hiroshi; Miranda, Silvio Cesar; Cruz, Bread; Gomes Marcondes, Maria Cristina Cintra; Dolder, Heidi

    2014-08-01

    This study was performed to determine the effects of Arctium lappa (Al) to protect against cadmium damage in the rat liver. Male rats received a single i.p. dose of CdCl2 (1.2 mg/kg body weight (BW)) with or without Al extract administered daily by gavage (300 mg/kg BW) for 7 or 56 days. After 7 days, Al caused plasma transaminase activity to diminish in groups Al (glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT)) and CdAl (GPT). After 56 days, GOT and GPT plasma activities were reduced in the Cd group. No alteration in plasma levels of creatinine, total bilirubin, and total protein were observed. GOT liver activity increased in the Cd group. No alteration was observed in superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and malondialdehyde (MDA) dosage. In the Cd group, hepatocyte proportion decreased and sinusoid capillary proportion increased. In the Al and CdAl groups, the nuclear proportion increased and the cytoplasmic proportion decreased. The hepatocyte nucleus density reduced in Cd and increased in the Al group. After 56 days, there was no alteration in the Cd group. In Al and CdAl groups, the nuclear proportion increased without cytoplasmic proportion variation, but the sinusoid capillary proportion was reduced. The hepatocyte nucleus density decreased in the Cd group and increased in the Al and CdAl groups. In conclusion, the liver function indicators showed that A. lappa protected the liver against cadmium toxicity damage.

  10. Modeling chronic dietary cadmium bioaccumulation and toxicity from periphyton to Hyalella azteca.

    Science.gov (United States)

    Golding, Lisa A; Borgmann, Uwe; Dixon, D George

    2011-07-01

    A chronic (28-d) Cd saturation bioaccumulation model was developed to quantify the Cd contribution from a natural periphyton diet to Cd in the freshwater amphipod Hyalella azteca. Bioaccumulation was then linked to chronic toxic effects. Juvenile H. azteca were exposed to treatments of Cd in water (3.13-100 nmol/L nominal) and food (389-26,300 nmol/g ash-free dry mass). Cadmium bioaccumulation, survival, and growth were recorded. Dietary Cd was estimated to contribute 21 to 31, 59 to 94, and 40 to 55% to bioaccumulated Cd in H. azteca exposed to treatments of Cd primarily in water, food, and food + water, respectively. Survival as a function of Cd lethal body concentration (679 nmol/g; 95% confidence limits, 617-747) was the most robust endpoint. Body concentration integrated all exposure routes. Based on the lethal body concentration, dietary Cd was predicted to contribute markedly (26-90%) to Cd in H. azteca. Cadmium concentration and food nutritional quality (biomass, chlorophyll a, total lipid, fatty acids, total protein) had no effect on H. azteca nutritional quality (total lipid, fatty acids, total protein) but did influence H. azteca dry weight. This research highlighted the importance of including a dietary component when modeling chronic effects of Cd and when refining endpoints for use in ecological risk assessment and water quality guidelines.

  11. Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower

    Directory of Open Access Journals (Sweden)

    Moradkhani S.

    2012-11-01

    Full Text Available The ameliorative effect of salicylic acid (SA on cadmium (Cd toxicity in sunflower plants was studied by investigating plant growth and fatty acid composition. Sunflower plants in two leaves stage were exposed to CdCl2 treatment (0, 50, 100, 150 and 200 µM and then were treated with salicylic acid (0, 250 and 500 µM as foliage spraying. One week after the last salicylic acid treatment,plants were harvested and growth parameters were measured . Oil of leaf was extracted in a Soxhlet system and fatty acid composition were measured by gas chromatography (GC. Statistical analyses showed excess Cd reduced growth parameters (fresh weight and length of stems and roots, fresh weight and number of leavesand SA increased them compared with the control. Maximum reduction in these parameters was at 200 µmol Cd and 0µmol of SA. Cd caused a shift in fatty acids composition, resulting in a lower degree of their unsaturation and an increase in saturated fatty acids in sunflower leaves,whereas SA improved them. SA, particularly increased the percentage of linolenic acid and lowered that of palmitic acid by the same proportion. These results sugg membrane integrity due to lipids est that SA could be used as a potential growth regulator and a stabilizer ofprotection of cadmium-induced oxidative stress to improve plant resistance to Cd stress

  12. Cadmium Toxicity and Alleviating Effects of Exogenous Salicylic Acid in Iris hexagona.

    Science.gov (United States)

    Han, Ying; Chen, Gang; Chen, Yahua; Shen, Zhenguo

    2015-12-01

    Cadmium (Cd) toxictity and possible role of salicylic acid (SA) in alleviating Cd-induced toxicity were investigated on ornamental hydrophyte Iris hexagona. Compared to the control, treatments with 100 and 500 µM Cd for 7 days significantly decreased dry weight, the contents of chlorophyll, photosynthetic parameters, and increased the content of thiobarbituric acid reactive substance. Pretreatment of the roots of I. hexagona seedlings with 1 µM SA before Cd exposure may increase dry weight, photosynthetic rate, activities of antioxidant enzymes, improve the cell ultrastructure and protect plants from Cd-induced oxidative stress damage. However, SA pretreatment had no significant effect on Cd concentrations in the leaves and roots. It is suggested that SA-induced Cd tolerances in I. hexagona are likely associated with increases in antioxidant enzyme activities and vacuolar compartmentation, rather than Cd uptake.

  13. Protective Effects of Zinc Supplementation on Renal Toxicity in Rats Exposed to Cadmium

    Directory of Open Access Journals (Sweden)

    Morshedi

    2014-07-01

    Full Text Available Background Cadmium (Cd is a nonessential element with many industrial applications and is one of the most toxic pollutants in the environment. The ultimate goal of occupational health is prevention of health hazards on workplace; hence, is as a hazardous chemical contaminant in the workplace, Cd needs special attention. Objectives The object of this study was to determine the effect of ZnCl2 on Cd-induced nephrotoxicity in rats. Materials and Methods Adult male rats were given CdCl2 at doses of 0, 1, 2, and 3 mg/kg. Another series of rats were pretreated with 4 mg/kg of ZnCl2 30 minutes prior to administration of various doses of CdCl2. The experiment was repeated for seven consecutive days. Twenty-four hours after administering the latest dose, animals were sacrificed. Blood samples were analyzed for blood urea nitrogen (BUN and creatinine levels. Kidney tissues were excised for measuring malondialdehyde (MDA concentration. Results In contrast to the animals that received ZnCl2, CdCl2 induced a dose-dependent elevation in BUN, creatinine, and MDA in those without ZnCl2 pretreatment. Zinc chloride had significantly decreased all biochemical parameters and protected kidney cells against Cd-induced toxicity. Conclusions The results of this study supported the potential protective effects of ZnCl2 on rat kidney tissues against CdCl2 toxicity.

  14. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure.

    Science.gov (United States)

    Liu, Jie; Wang, Wen-Xiong

    2015-12-01

    With increasing application and commercial production, carbon nanotubes (CNTs) will inevitably be released into aquatic environments and affect the transport and toxicity of toxic metals in ecosystems. The present study examined how CNTs affected the biokinetics and toxicity of a toxic metal, cadmium (Cd), in the freshwater zooplankton Daphnia magna. The authors quantified the dissolved uptake and the 50% lethal concentration (LC50, 48 h and 72 h) of Cd in daphnids in the presence of functionalized multiwalled nanotubes (F-CNTs) with different lengths (10-30 µm vs 0.5-2 µm) and concentrations (4 mg/L and 8 mg/L). Compared with the control treatment without CNTs, both CNTs slowed down the accumulation rate of Cd in D. magna over 8 h of exposure and further reduced the accumulation thereafter. Mechanisms for the reduced Cd uptake were mainly related to the influences of CNTs on the physiological activity of daphnids. The LC50 of D. magna in the presence of Cd and shorter CNTs was almost the same as that of the control group without CNTs. However, the LC50 of the groups with normal CNTs was significantly higher than that of the control group (i.e., F-CNTs decreased Cd toxicity significantly). Meanwhile, CNTs also decreased the tolerance of D. magna to Cd. The present study suggests that different physical properties of CNTs, such as length, need to be considered in the environmental risk assessment of CNTs.

  15. Cell apoptosis of caprine spleen induced by toxicity of cadmium with different levels of molybdenum.

    Science.gov (United States)

    Gu, Xiaolong; Chen, Rongrong; Hu, Guoliang; Zhuang, Yu; Luo, Junrong; Zhang, Caiying; Guo, Xiaoquan; Huang, Aiming; Cao, Huabin

    2015-07-01

    In order to clarify the effects of the combination of Mo and Cd on goat and relationship between the two elements, combined chronic toxicity of cadmium with different levels of molybdenum in vivo on apoptosis gene and ultrastructure of spleen was evaluated with the methods of RT-qPCR and transmission electron microscopy. A total of thirty-six goats were randomly distributed in equal number into four groups. These groups were randomly assigned with one of three oral treatments of CdCl2 (0.5 mgCd kg(-1)) and [(NH4)6Mo7O24·4H2O] (15 mg Mo kg(-1), group I; 30 mg Mo kg(-1), group II; 45 mg Mo kg(-1), group III), while the control group received deionized water. Spleen tissues were taken from individual goat at different time intervals to measure the levels of apoptosis genes including Bcl-2, Bax, Cyt c, Caspase-3, Smac and ceruloplasmin (Cp). The results revealed that a significant suppression in Bcl-2 expression and increase in Cyt c, Caspase-3 and Cp expression in splenic cells. The Bax expression in group I and II was up-regulated, however, it displayed reduction in group III, whereas no statistical significance was observed on Smac expression. In addition, histopathologic injury revealed remarkable morphplogical changes on the splenocytes in the means of apoptosis including fragmentized nucleus, apoptotic body and vesiculation of cytoplasma and mitochondria. Taken together, combined chronic toxicity of cadmium with different levels of molybdenum induce goat spleen cell apoptosis associated with mitochondrial intrinsic pathway, and the two elements showed possible antergic relationship.

  16. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Gorinova, N. [AgroBioInstitute, 8 Dragan Tzankov Blvd., 1164 Sofia (Bulgaria)]. E-mail: noraig60@yahoo.co.uk; Nedkovska, M. [AgroBioInstitute, 8 Dragan Tzankov Blvd., 1164 Sofia (Bulgaria); Todorovska, E. [AgroBioInstitute, 8 Dragan Tzankov Blvd., 1164 Sofia (Bulgaria); Simova-Stoilova, L. [Institute of Plant Physiology, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Stoyanova, Z. [Institute of Plant Physiology, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Georgieva, K. [Institute of Plant Physiology, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Demirevska-Kepova, K. [Institute of Plant Physiology, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Atanassov, A. [AgroBioInstitute, 8 Dragan Tzankov Blvd., 1164 Sofia (Bulgaria); Herzig, R. [Phytotech-Foundation PT-F, Quartiergasse 12, CH 3013 Bern (Switzerland)

    2007-01-15

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 {mu}M CdCl{sub 2} resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 {mu}M CdCl{sub 2} led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium.

  17. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fan J

    2016-07-01

    Full Text Available Junpeng Fan,1–4 Ming Shao,1–4 Lu Lai,3–5 Yi Liu,3–5 Zhixiong Xie1–4,6 1College of Life Sciences, Wuhan University, 2Hubei Provincial Cooperative Innovation Center of Industrial Fermentation,3State Key Laboratory of Virology, 4Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE, 5College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 6School of Life Science and Technology, Hubei Engineering University, Xiaogan, People’s Republic of China Abstract: Cadmium telluride quantum dots (CdTe QDs are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator, combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. Keywords: CdTe quantum dots, Saccharomyces cerevisiae, toxicity, autophagy

  18. Adsorptive removal of lead and cadmium ions using Cross -linked CMC Schiff base: Isotherm, Kinetics and Catalytic Activity

    Directory of Open Access Journals (Sweden)

    P. Moganavally

    2016-03-01

    Full Text Available Water plays a vital role to human and other living organisms. Due to the effluent coming from chemical industries, the industrial activity, contamination of ground water level is goes on increasing nowadays. Therefore, there is a need to develop technologies that can remove toxic pollutants in wastewater. Hence the cross linked Carboxymethyl chitosan(CMC/ 2,3-dimethoxy Benzaldehyde Schiff base complex has been synthesized and characterized by using FT-IR and SEM analysis. All these results revealed that cross linked Schiff base has formed with high adsorption capacity. The prepared effective adsorbent used for the removal of heavy metals like lead (II and cadmium (II ions from aqueous solution and the adsorption data follow the Freundlich model, which follows pseudo first order kinetics. Effect of various parameters like solution pH, adsorbent dose and contact time for the removal of heavy metals has been studied. The synthesized sample undergoes catalytic oxidation process significantly at 24 hrs. The results showed that cross linked Schiff base is an effective, eco-friendly, low-cost adsorbent.

  19. Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress.

    Science.gov (United States)

    Sun, Q; Wang, X R; Ding, S M; Yuan, X F

    2005-06-01

    Phytochelatins (PCs) have been proposed as a potential biomarker for metal toxicity. In this study, cadmium (Cd) toxicity, PCs production and their relationship in wheat under Cd stress were examined using various exogenous organic chelator-buffered nutrient solutions. Single Cd stress produced strong toxic effects, as indicated by decreases of growth parameters, high level of lipid peroxidation in leaf and overproduction of PCs in root. Exogenous organic chelators with proper dose more or less reduced Cd toxicity by increasing growth parameters and decreasing lipid peroxidation in leaves. Of organic chelators (EDTA, DTPA, citric acid, malic acid and oxalic acid), EDTA was the most effective in decreasing Cd toxicity in plants, followed by DTPA and citric acid. Simultaneously, the concentrations of Cd-induced PCs in roots decreased, and the greatest decrease was caused by application of EDTA and DTPA. Linearly positive relationships were observed between Cd toxicity and root PCs concentrations under the influences of organic chelators, particularly EDTA, DTPA and citric acid. Furthermore, present results provide stronger evidence that PCs synthesis in plant cells was related to free Cd ion concentrations, not total Cd, and demonstrate that the levels of PCs production in plants correlated well with toxic effects caused by the bioavailable Cd levels.

  20. Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Kabir, Ahmad H; Hossain, Mohammad M; Khatun, Most A; Mandal, Abul; Haider, Syed A

    2016-01-01

    Cadmium (Cd) is one of the most phytotoxic elements causing an agricultural problem and human health hazards. This work investigates whether and how silicon (Si) ameliorates Cd toxicity in Alfalfa. The addition of Si in Cd-stressed plants caused significant improvement in morpho-physiological features as well as total protein and membrane stability, indicating that Si does have critical roles in Cd detoxification in Alfalfa. Furthermore, Si supplementation in Cd-stressed plants showed a significant decrease in Cd and Fe concentrations in both roots and shoots compared with Cd-stressed plants, revealing that Si-mediated tolerance to Cd stress is associated with Cd inhibition in Alfalfa. Results also showed no significant changes in the expression of two metal chelators [MsPCS1 (phytochelatin synthase) and MsMT2 (metallothionein)] and PC (phytochelatin) accumulation, indicating that there may be no metal sequestration or change in metal sequestration following Si application under Cd stress in Alfalfa. We further performed a targeted study on the effect of Si on Fe uptake mechanisms. We observed the consistent reduction in Fe reductase activity, expression of Fe-related genes [MsIRT1 (Fe transporter), MsNramp1 (metal transporter) and OsFRO1 (ferric chelate reductase] and Fe chelators (citrate and malate) by Si application to Cd stress in roots of Alfalfa. These results support that limiting Fe uptake through the down-regulation of Fe acquisition mechanisms confers Si-mediated alleviation of Cd toxicity in Alfalfa. Finally, an increase of catalase, ascorbate peroxidase, and superoxide dismutase activities along with elevated methionine and proline subjected to Si application might play roles, at least in part, to reduce H2O2 and to provide antioxidant defense against Cd stress in Alfalfa. The study shows evidence of the effect of Si on alleviating Cd toxicity in Alfalfa and can be further extended for phytoremediation of Cd toxicity in plants.

  1. Role of Silicon Counteracting Cadmium Toxicity in Alfalfa (Medicago sativa L.)

    Science.gov (United States)

    Kabir, Ahmad H.; Hossain, Mohammad M.; Khatun, Most A.; Mandal, Abul; Haider, Syed A.

    2016-01-01

    Cadmium (Cd) is one of the most phytotoxic elements causing an agricultural problem and human health hazards. This work investigates whether and how silicon (Si) ameliorates Cd toxicity in Alfalfa. The addition of Si in Cd-stressed plants caused significant improvement in morpho-physiological features as well as total protein and membrane stability, indicating that Si does have critical roles in Cd detoxification in Alfalfa. Furthermore, Si supplementation in Cd-stressed plants showed a significant decrease in Cd and Fe concentrations in both roots and shoots compared with Cd-stressed plants, revealing that Si-mediated tolerance to Cd stress is associated with Cd inhibition in Alfalfa. Results also showed no significant changes in the expression of two metal chelators [MsPCS1 (phytochelatin synthase) and MsMT2 (metallothionein)] and PC (phytochelatin) accumulation, indicating that there may be no metal sequestration or change in metal sequestration following Si application under Cd stress in Alfalfa. We further performed a targeted study on the effect of Si on Fe uptake mechanisms. We observed the consistent reduction in Fe reductase activity, expression of Fe-related genes [MsIRT1 (Fe transporter), MsNramp1 (metal transporter) and OsFRO1 (ferric chelate reductase] and Fe chelators (citrate and malate) by Si application to Cd stress in roots of Alfalfa. These results support that limiting Fe uptake through the down-regulation of Fe acquisition mechanisms confers Si-mediated alleviation of Cd toxicity in Alfalfa. Finally, an increase of catalase, ascorbate peroxidase, and superoxide dismutase activities along with elevated methionine and proline subjected to Si application might play roles, at least in part, to reduce H2O2 and to provide antioxidant defense against Cd stress in Alfalfa. The study shows evidence of the effect of Si on alleviating Cd toxicity in Alfalfa and can be further extended for phytoremediation of Cd toxicity in plants. PMID:27512401

  2. Role of silicon counteracting cadmium toxicity in Alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Ahmad H. Kabir

    2016-07-01

    Full Text Available Cadmium (Cd is one of the most phytotoxic elements causing an agricultural problem and human health hazards. This work investigates whether and how silicon (Si ameliorates Cd toxicity in Alfalfa. The addition of Si in Cd-stressed plants caused significant improvement in morpho-physiological features as well as total protein and membrane stability, indicating that Si does have critical roles in Cd detoxification in Alfalfa. Furthermore, Si supplementation in Cd-stressed plants showed a significant decrease in Cd and Fe concentrations in both roots and shoots compared with Cd-stressed plants, revealing that Si-mediated tolerance to Cd stress is associated with Cd inhibition in Alfalfa. Results also showed no significant changes in the expression of two metal chelators [MsPCS1 (phytochelatin synthase and MsMT2 (metallothionein] and PC (phytochelatin accumulation, indicating that there may be no metal sequestration or change in metal sequestration following Si application under Cd stress in Alfalfa. We further performed a targeted study on the effect of Si on Fe uptake mechanisms. We observed the consistent reduction in Fe reductase activity, expression of Fe-related genes [MsIRT1 (Fe transporter, MsNramp1 (metal transporter and OsFRO1 (ferric chelate reductase] and Fe chelators (citrate and malate by Si application to Cd stress in roots of Alfalfa. These results support that limiting Fe uptake through the down-regulation of Fe acquisition mechanisms confers Si-mediated alleviation of Cd toxicity in Alfalfa. Finally, an increase of catalase (CAT, ascorbate peroxidase (APX and superoxide dismutase (SOD activities along with elevated methionine and proline subjected to Si application might play roles, at least in part, to reduce H2O2 and to provide antioxidant defense against Cd stress in Alfalfa. The study shows evidence of the effect of Si on alleviating Cd toxicity in Alfalfa and can be further extended for phytoremediation of Cd toxicity in plants.

  3. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water.

    Science.gov (United States)

    Cui, Weiti; Gao, Cunyi; Fang, Peng; Lin, Guoqing; Shen, Wenbiao

    2013-09-15

    Hydrogen gas (H₂) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H₂ in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H₂ in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems.

  4. Minimising toxicity of cadmium in plants--role of plant growth regulators.

    Science.gov (United States)

    Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A

    2015-03-01

    A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.

  5. Influence of acclimation and exposure temperature on the acute toxicity of cadmium to the freshwater snail Potamopyrgus antipodarum (Hydrobiidae)

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, V.; Forbes, V.E.; Depledge, M.H. (Odense Univ. (Denmark). Ecotoxicology Group)

    1994-09-01

    Forty-eight-hour acute toxicity tests were performed to determine the influence of acclimation temperature (5, 15, and 20 C) and exposure temperature (5, 15, and 20 C) on the toxicity of cadmium to the freshwater gastropod Potamopyrgus antipodarum. Mortality varied with cadmium concentration and treatment conditions, but did not conform to conventional sigmoid concentration-response relationships. Because the shapes of the concentration-response curves were treatment dependent, a nontraditional approach for data analysis was employed. Regardless of acclimation temperature, mortality increased with increasing exposure temperature, and at all exposure temperatures snails acclimated at 15 C were most susceptible to cadmium toxicity. Estimated LC50 values were within 1 to 4 mg Cd/L. Although the shapes of the concentration-response curves were different for each treatment, the slopes were generally quite steep, indicating a uniform response for the whole population. At a given Cd concentration, acclimation temperature and exposure temperature accounted for 57 and 40%, respectively, of the variation in mortality, and LC50s changed by a factor of four. The results indicate that changes in environmental variables can alter both the degree of response and the response distribution of a population, and that past as well as prevailing environmental conditions can influence organismic responses to toxicants.

  6. Polyamine and nitric oxide crosstalk: Antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems.

    Science.gov (United States)

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md Mahabub; Rahman, Anisur; Suzuki, Toshisada; Fujita, Masayuki

    2016-04-01

    Cadmium (Cd) contamination is a serious agricultural and environmental hazard. The study investigates cross-protection roles of putrescine (Put, 0.2 mM) and nitric oxide (sodium nitroprusside; SNP, 1 mM) in conferring Cd (CdCl2, 1.5 mM) tolerance in mung bean (Vigna radiata L. cv. BARI Mung-2) seedlings. Cadmium stress increased root and shoot Cd content, reduced growth, destroyed chlorophyll (chl), modulated proline (Pro) and reduced leaf relative water content (RWC), increased oxidative damage [lipid peroxidation, H2O2 content, O2(∙-) generation rate, lipoxygenase (LOX) activity], methylglyoxal (MG) toxicity. Put and/or SNP reduced Cd uptake, increasd phytochelatin (PC) content, reduced oxidative damage enhancing non-enzymatic antioxidants (AsA and GSH) and activities of enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and glutathione peroxidase (GPX)]. Exogenous Put and/or SNP modulated endogenous polyamines, PAs (putrescine, Put; spermidine, Spd; spermine, Spm), and NO; improved glyoxalase system in detoxifying MG and improved physiology and growth where combined application showed better effects which designates possible crosstalk between NO and PAs to confer Cd-toxicity tolerance.

  7. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants.

    Science.gov (United States)

    Farzadfar, Soudeh; Zarinkamar, Fatemeh; Modarres-Sanavy, Seyed Ali Mohammad; Hojati, Mostafa

    2013-03-01

    Cadmium (Cd) toxicity in plants leads to serious disturbances of physiological processes, such as inhibition of chlorophyll synthesis, oxidative injury to the plant cells and water and nutrient uptake. Response of Matricaria chamomilla L. to calcium chloride (CaCl(2)) enrichment in growth medium for reducing Cd toxicity were studied in this study. Hydroponically cultured seedlings were treated with 0, 0.1, 1, and 5 mM CaCl(2), under 0, 120, and 180 μM CdCl(2) conditions, respectively. The study included measurements pertaining to physiological attributes such as growth parameters, Cd concentration and translocation, oxidative stress, and accumulation of phenolics. Addition of CaCl(2) to growth media decreased the Cd concentration, activity of antioxidant enzymes, and reactive oxygen species accumulation in the plants treated with different CdCl(2), but increased the growth parameters. Malondialdehyde and total phenolics in shoots and roots were not much affected when plants were treated only with different CaCl(2) levels, but it showed a rapid increase when the plants were exposed to 120 and 180 CdCl(2) levels. CaCl(2) amendment also ameliorated the CdCl(2)-induced stress by reducing oxidative injury. The beneficial effects of CaCl(2) in ameliorating CdCl(2) toxicity can be attributed to the Ca-induced reduction of Cd concentration, by reducing the cell-surface negativity and competing for Cd(2+) ion influx, activity enhancement of antioxidant enzymes, and biomass accumulation.

  8. Target or barrier? The cell wall of early- and later- diverging plants vs cadmium toxicity: differences in the response mechanisms

    Directory of Open Access Journals (Sweden)

    Luigi eParrotta

    2015-03-01

    Full Text Available Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e. barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators’ cell walls as a particular case, the review concludes by considering important aspects for plant engineering.

  9. Applications of Crown Ether Cross-Linked Chitosan for the Analysis of Lead and Cadmium in Environmental Water Samples

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type of crown ether cross-linked chitosan was synthesized by the reaction of chitosan with 4,4'-dibromodibenzo-18-crown-6 (Br-DBC). Its token structure was analyzed with FT-IR and NMR and the adsorption behaviors for lead and cadmium in environmental water samples by FAAS were studied. In addition the best analysis conditions were discussed and the adsorption mechanism was explained. As the enrichment factor is above 100, both recoveries are 94%-106%, the detection limits of lead and cadmium are 0.5μg*L-1and 0.04 μg*L-1 and the relatively standard deviations of lead and cadmium are 3.1% and 2.8% respectively, this new method was successfully applied to the determination of environmental water samples. This method is fast and simple and it greatly enhances the determination ability of FAAS for lead and cadmium.

  10. How toxic is the depleted uranium to crayfish Procambarus clarkii compared with cadmium?

    Science.gov (United States)

    Al Kaddissi, Simone; Simon, Olivier; Elia, Antonia Concetta; Gonzalez, Patrice; Floriani, Magali; Cavalie, Isabelle; Camilleri, Virginie; Frelon, Sandrine; Legeay, Alexia

    2016-02-01

    Due to a lack of information on the assessment of uranium's (U) toxicity, our work aimed to compare the effects of U on the crayfish Procambarus clarkii with those of the well documented metal: cadmium (Cd). Accumulation and impacts at different levels of biological organization were assessed after acute (40 µM Cd or U; 4-10 days) and chronic (0.1 µM Cd or U; 30-60 days) exposures. The survival rates demonstrated the high tolerance of this species toward both metals and showed that Cd had a greater effect on the sustainability of crayfish. The concentration levels of Cd and U accumulated in gills and hepatopancreas were compared between both conditions. Distinctions in the adsorption capacities and the mobility of the contaminants were suspected. Differences in the detoxification mechanisms of both metals using transmission electron microscopy equiped with an energy dispersive X-ray were also pointed out. In contrast, comparison between the histological structures of contaminated hepatopancreas showed similar symptoms. Principal component analyses revealed different impacts of each metal on the oxidative balance and mitochondria using enzymatic activities and gene expression levels as endpoints. The observation that U seemed to generate more oxidative stress than Cd in our conditions of exposure is discussed.

  11. Availability and toxicity of cadmium to forage grasses grown in contaminated soil.

    Science.gov (United States)

    Silva, Enilson B; Fonseca, Felipe G; Alleoni, Luís R F; Nascimento, Sandra S; Grazziotti, Paulo H; Nardis, Bárbara O

    2016-09-01

    It is important to know the mechanisms for forage development, especially those related to the tolerance of potentially toxic elements, when considering their use in phytoremediation in heavy metal contaminated areas. In this study, we evaluated plant growth, concentration, and the availability of cadmium (Cd) for forage grasses (Panicum maximum Jacq. cv. Aruana and cv. Tanzânia; Brachiaria decumbens cv. Basilisk; Brachiaria brizantha cv. Xaraés and cv. Marandu) cultivated in Cd contaminated soils. The experiments were performed under greenhouse conditions over a 90-day evaluation period, and the Cd rates were 2, 4, and 12 mg/kg of soil. The relative growth rate of the forage grasses decreased as Cd rates increased, and the following descending order of susceptibility was observed: Marandu > Xaraés > Aruana > Tanzânia > Basilisk, with regard to phytotoxicity in these plants. The forage Cd concentration increased in line with increases in the Cd rates. Cd contents extracted by Mehlich-1 and by diethylenetriaminepentaacetic acid presented high positive correlation with forage relative growth. The forage plants did not block Cd entry into the food chain because they were not capable of limiting Cd absorption.

  12. Protective effects of thymoquinone and l-cysteine on cadmium-induced reproductive toxicity in rats

    Directory of Open Access Journals (Sweden)

    Manal M. Sayed

    2014-01-01

    Full Text Available This study was conducted to investigate the possible protective role of thymoquinone (TQ and l-cysteine on the reproductive toxicity of male rats induced by cadmium chloride (CdCl2. Forty rats were divided into four even groups. The first group served as untreated control. The second, third and fourth groups received CdCl2, CdCl2 and TQ, and CdCl2 and l-cysteine, respectively for 56 days. Cd exposure caused spermatological damage (decrease sperm count and motility and increased the rates of sperm abnormalities, decrease serum testosterone level and increased oxidative stress. Histological alterations were also observed in the form of vascular and cellular changes in CdCl2 treated rats. The vascular changes were congestion of the blood vessels with interstitial edema in the testes, epididymis, seminal vesicle and prostate. The cellular changes were in the form of degenerative changes with presence of multinucleated giant cells in the lumen of seminiferous tubules, vacuolation and sloughing of the lining epithelium of the epididymis, seminal vesiculitis and prostatitis. Co-administration of TQ and l-cysteine with CdCl2 increased glutathione (GSH, superoxide dismutase (SOD, catalase (CAT and testosterone and reduced lipid peroxidation (LPO activity. In conclusion, our results showed that TQ and l-cysteine can ameliorate the deleterious effects of CdCl2 probably by activating testicular endocrine and antioxidant systems.

  13. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Weiti; Gao, Cunyi; Fang, Peng [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Lin, Guoqing [Laboratory Center of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095 (China); Shen, Wenbiao, E-mail: wbshenh@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2013-09-15

    Highlights: • HRW can alleviate Cd-induced alfalfa seedling growth inhibition and DNA laddering. • HRW alleviates Cd-induced oxidative stress by activating antioxidant enzymes. • Cd uptake in alfalfa seedling roots was decreased by HRW. • HRW can re-establish glutathione homeostasis under Cd stress. -- Abstract: Hydrogen gas (H{sub 2}) induces plant tolerance to several abiotic stresses, including salinity and paraquat exposure. However, the role of H{sub 2} in cadmium (Cd)-induced stress amelioration is largely unknown. Here, pretreatment with hydrogen-rich water (HRW) was used to characterize physiological roles and molecular mechanisms of H{sub 2} in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of HRW at 10% saturation significantly decreased contents of thiobarbituric acid reactive substances (TBARS) caused by Cd, and inhibited the appearance of Cd toxicity symptoms, including the improvement of root elongation and seedling growth. These responses were related to a significant increase in the total or isozymatic activities of representative antioxidant enzymes, or their corresponding transcripts. In vivo imaging of reactive oxygen species (ROS), and the detection of lipid peroxidation and the loss of plasma membrane integrity provided further evidence for the ability of HRW to improve Cd tolerance significantly, which was consistent with a significant enhancement of the ratio of reduced/oxidized (homo)glutathione ((h)GSH). Additionally, plants pretreated with HRW accumulated less amounts of Cd. Together, this study suggested that the usage of HRW could be an effective approach for Cd detoxification and could be explored in agricultural production systems.

  14. [Assessment of toxicity effects for cadmium contamination in soils by means of multi-indexes].

    Science.gov (United States)

    Chen, Lang; Song, Yu-fang; Zhang, Wei; Li, Xiu-ying; Wang, Lei; Ji, Pu-hui; Yang, Xiao-xia

    2008-09-01

    The genetic and eco-toxic effects of Cd (0-10 mg x kg(-1)) were studied with Vicia faba (broad bean) as the test species using meadow brown soil in pot experiments by means of several indexes, such as Vicia faba root tip micronucleus frequency (MCN), mitosis index (MI), and chromosomal aberrations frequency (CAF), antioxidant enzymes superoxide dismutases (SOD), peroxidases (POD), catalase (CAT) and phytohormone abscisic acid (ABA), gibberellic acid (GA3) and zeatin and zeatin riboside (Z&ZR). Results indicated the significant positive dose-response correlations were found between Cd2+ concentrations and the tested indexes (MI, MCN and CAF). Among of them, MCN is the most sensitive, and the MCN frequencies were 1.43-3.22 times higher in Cd treatment soils than that of in the controls. SOD and POD in seedling leaves of broad bean were response to the Cd stress, showing a trend of increase with Cd concentrations initially and then decreased. The CAT response to Cd in soils was opposite to that of SOD and POD. In addition, there were stimulation and inhabitation effects between Cd and ABA, GA3 and Z&ZR in lower and higher Cd concentrations. The highest contents of phytohormone (ABA, GA3 and Z&ZR) were found when Cd was at 2.5 mg x kg(-1), which was 6.6%, 4.0% and 12.6% higher than that in the control, respectively. Our study indicated that all indexes were response to the Cd stress in soils, but the sensitivity of each index was different from each other. All these indexes combined should be more efficiency in the diagnosis of geno-, and eco-toxicity of cadmium in soils.

  15. In Vitro Assessment of Cadmium Bioavailability in Chinese Cabbage Grown on Different Soils and Its Toxic Effects on Human Health.

    Science.gov (United States)

    Aziz, Rukhsanda; Rafiq, Muhammad Tariq; He, Zhenli; Liu, Di; Sun, Kewang; Xiaoe, Yang

    2015-01-01

    The minimum concentration of cadmium (Cd), by Chinese cabbage grown on Cd contaminated soils that can initiate toxicity in human liver cells using in vitro digestion coupled with Caco-2/HL-7702 cell models was studied. Cadmium bioaccessibility in the gastric phase for yellow soil (YS) cabbage (40.84%) and calcareous soil (CS) cabbage (21.54%) was significantly higher than small intestinal phase with the corresponding values of 21.2% and 11.11%, respectively. Cadmium bioavailability was higher in YS cabbage (5.27%-14.66%) than in CS cabbage (1.12%-9.64%). Cadmium concentrations (>0.74 μg) transported from YS and CS cabbage were able to induce oxidative (MDA, H2O2) stress by inhibiting antioxidant (SOD, GPx) enzyme activities in human liver cells (HL-7702). Additionally the study revealed that the ingestion of Cd contaminated Chinese cabbage grown in acidic soil (yellow soil) weakened the antioxidant defense system under all levels of contamination (2, 6, and 9 mg·kg(-1)) which ultimately escalated the oxidative stress in liver cells; however, in case of CS cabbage, a marked oxidative stress was observed only at 9 mg kg(-1) Cd level of soil. Therefore, it is necessary to monitor Cd concentrations in leafy vegetables grown on acidic soils to minimize human health risk.

  16. In Vitro Assessment of Cadmium Bioavailability in Chinese Cabbage Grown on Different Soils and Its Toxic Effects on Human Health

    Science.gov (United States)

    Aziz, Rukhsanda; Rafiq, Muhammad Tariq; He, Zhenli; Liu, Di; Sun, Kewang; Xiaoe, Yang

    2015-01-01

    The minimum concentration of cadmium (Cd), by Chinese cabbage grown on Cd contaminated soils that can initiate toxicity in human liver cells using in vitro digestion coupled with Caco-2/HL-7702 cell models was studied. Cadmium bioaccessibility in the gastric phase for yellow soil (YS) cabbage (40.84%) and calcareous soil (CS) cabbage (21.54%) was significantly higher than small intestinal phase with the corresponding values of 21.2% and 11.11%, respectively. Cadmium bioavailability was higher in YS cabbage (5.27%–14.66%) than in CS cabbage (1.12%–9.64%). Cadmium concentrations (>0.74 μg) transported from YS and CS cabbage were able to induce oxidative (MDA, H2O2) stress by inhibiting antioxidant (SOD, GPx) enzyme activities in human liver cells (HL-7702). Additionally the study revealed that the ingestion of Cd contaminated Chinese cabbage grown in acidic soil (yellow soil) weakened the antioxidant defense system under all levels of contamination (2, 6, and 9 mg·kg−1) which ultimately escalated the oxidative stress in liver cells; however, in case of CS cabbage, a marked oxidative stress was observed only at 9 mg kg−1 Cd level of soil. Therefore, it is necessary to monitor Cd concentrations in leafy vegetables grown on acidic soils to minimize human health risk. PMID:26167479

  17. Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction.

    Science.gov (United States)

    Tong, Fei; Zhao, Yanping; Gu, Xueyuan; Gu, Cheng; Lee, Charles C C

    2015-03-01

    Co-contamination of antibiotic and heavy metals commonly occurs in the environment. Tetracycline (TC), a common antibiotic, can behave as an efficient organic ligand to complex with cations. In this paper, the joint toxicity of TC with two commonly existing metals, copper(II) and cadmium(II), towards a luminescent bacteria, Vibrio fischeri, are investigated. Results showed that coexistence of TC and Cu(II) showed a significant antagonistic effect, while TC and Cd(II) showed a synergistic effect. The aqueous speciation of TC with two metal cations was calculated using a chemical equilibrium software Visual MINTEQ and results indicated that a strong complexation exist between TC and Cu(II), while much weaker interaction between TC and Cd(II). Traditional joint toxicity prediction model based on independent action failed to predict the combined toxicity of TC with metals. A new method based on speciation calculation was used to evaluate the joint toxicity of ligands and cations. It is assumed that the metal-ligand complexes are non-toxic to V. fischeri and the joint toxicity is determined by the sum of toxic unit of free metal-ions and free organic ligands. It explained the joint toxicity of the mixed systems reasonably well. Meanwhile, citric acid (CA) and fulvic acid (FA) were also introduced in this study to provide a benchmark comparison with TC. Results showed it is also valid for mixed systems of CA and FA with metals except for the Cd-CA mixture.

  18. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: Evidence from transcript expression to physiology

    Energy Technology Data Exchange (ETDEWEB)

    Vergauwen, Lucia, E-mail: lucia.vergauwen@ua.ac.be [Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Hagenaars, An, E-mail: an.hagenaars@ua.ac.be [Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Blust, Ronny, E-mail: ronny.blust@ua.ac.be [Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Knapen, Dries, E-mail: dries.knapen@ua.ac.be [Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Gamete Research Center (GRC), Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2013-01-15

    Standard ecotoxicity tests are performed at species' specific standard temperatures, but temperature is known to affect chemical toxicity. A temperature increase has been shown to increase cadmium toxicity in several aquatic species but information in fish is scarce. Based on literature we hypothesize that with increasing temperature, cadmium accumulation and oxidative stress increase, resulting in increased toxicity. In this study zebrafish acclimated to 12, 18, 26 (standard temperature) or 34 Degree-Sign C for one month, were exposed to 5 {mu}M cadmium for 4 or 28 days at the respective acclimation temperature. Cadmium toxicity (mortality) increased with increasing temperature. PCA showed that the high mortality at 34 Degree-Sign C was closely correlated to an increasing tissue cadmium accumulation with increasing temperature, but not to liver oxidative damage under the form of protein carbonyl content or lipid peroxidation (measured as malondialdehyde levels) or liver antioxidative potential. Instead, acclimation to 12 Degree-Sign C induced the highest oxidative damage to liver proteins and lipids, and transcript levels of glucose-6P-dehydrogenase, 6P-gluconate-dehydrogenase and glutathione peroxidase were particularly good markers of cold-induced oxidative stress. At this low temperature there was no interaction with cadmium exposure and there was no sign of cadmium sensitivity. Contrastingly, the combined effect of high temperature and cadmium exposure on mortality proved synergistic. Therefore we conclude that interactions between temperature and cadmium toxicity increased with increasing temperature and that this probably played part in increasing cadmium sensitivity. Increased cadmium compartmentalization and protein carbonyl content in liver of zebrafish acclimated to the standard temperature of 26 Degree-Sign C probably played part in increased sensitivity towards the same cadmium body burden compared to lower temperatures. On the one hand we

  19. Cadmium toxicity in perinatal rat hepatocytes: Electron microscopy, X-ray microanalysis, and morphometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, A.; Yoshizuka, M.; Hirano, T.; Ohsato, K.; Fujimoto, S. (Univ. of Occupational and Environmental Health, Kitakyushu (Japan))

    1990-10-01

    Effects of cadmium on the fetal and postnatal rat hepatocytes were studied with an electron microscope and an X-ray microanalyzer. Pregnant and lactating Wistar rat dams at 15 and 21 days of pregnancy and at 3 days after delivery received intraperitoneal injections of cadmium sulfate (1 mg/kg body weight) for 3 days. On the day following the last injection, the livers were isolated from the fetal and suckling rats and provided for electron microscopy. The livers from the untreated fetal and newborn rats served as control. Large bile canaliculi, which were formed by five or more hepatocytes, were frequently observed in the cadmium-treated perinatal rat livers. The intercellular space between each adjacent hepatocyte was widened. By X-ray microanalysis, cadmium peaks were preferentially detected out from intramitochondrial granules of the cadmium-treated hepatocytes. By morphometric analysis, the increase both in the mitochondria volume and in the number of intramitochondrial granules was evident in the cadmium-treated hepatocytes when compared to those of control. These data suggest the preferential accumulation of cadmium in mitochondria of the hepatocytes interferes with the morphogenesis of the perinatal rat liver.

  20. Captopril and telmisartan treatments attenuate cadmium-induced testicular toxicity in rats.

    Science.gov (United States)

    Fouad, Amr A; Jresat, Iyad

    2013-04-01

    The possible protective effect of captopril, an angiotensin-converting enzyme inhibitor, vs. telmisartan, an angiotensin II-receptor antagonist, was investigated in rats with testicular injury induced by a single i.p. injection of cadmium chloride (2 mg/kg). Captopril (60 mg/kg/day, p.o.) and telmisartan (10 mg/kg/day, p.o.) were given for five consecutive days, starting 3 days before cadmium administration. Both agents significantly increased serum testosterone level, which was reduced by cadmium, suppressed lipid peroxidation, restored the depleted reduced glutathione, decreased the elevations of nitric oxide, tumor necrosis factor-α, and cadmium ion levels, and attenuated the reductions of selenium and zinc ions in testicular tissue resulted from cadmium administration. Immunohistochemical analysis revealed that both captopril and telmisartan significantly reduced the cadmium-induced expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand, and caspase-3 in testicular tissue. The differences between the results obtained with captopril and telmisartan were insignificant, suggesting that both drugs equally protected the testicular tissue from the detrimental effects of cadmium.

  1. Effect of Nitric Oxide on Alleviating Cadmium Toxicity in Rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiu-feng; CHEN Lin; Muhammad IA Rehmani; WANG Qiang-sheng; WANG Shao-hua; HOU Peng-fu; LI Gang-hua; DING Yan-feng

    2013-01-01

    Nitric oxide (NO) is a gaseous signaling molecule in plants that plays a key role in mediating a wide range of physiological processes and responses to biotic and abiotic stresses. The present study was conducted to investigate the effects of the exogenous application of sodium nitroprusside (SNP), an NO donor, on cadmium (Cd)-induced oxidative stress and Cd uptake in rice plants. Rice plants were exposed to Cd stress (0.2 mmol L-1 CdCl2) and different concentrations of SNP (0.05, 0.1, 0.2, and 0.4 mmol L-1). A SNP concentration of 0.1 mmol L-1 (SNP10) significantly reduced the Cd-induced decrease in shoot and root dry weights and leaf chlorophyll concentrations. The addition of NO also reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2) and ascorbic acid (ASA) concentrations. However, the reduction in glutathione (GSH) concentration was inhibited by NO treatment. Moreover, NO prevented the Cd-induced increase in antioxidative enzyme activity. The amount of Cd accumulation in rice plants was also influenced by the addition of NO. The NO supplied by the SNP enhanced the Cd tolerance of the rice by increasing the Cd uptake by the roots and decreasing the Cd accumulation by the shoots. However, the application of potassium ferrocyanide (Cd+Fe) or sodium nitrate and nitrite (Cd+N) (without NO release), did not exhibit the effects of the SNP. Furthermore, the effects of the SNP were reversed by the addition of hemoglobin (an NO scavenger). Our results suggested that exogenous NO was involved in the resistance of rice to Cd-toxicity.

  2. Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings

    Institute of Scientific and Technical Information of China (English)

    Long Zhang; Zhen Chen; Cheng Zhu

    2012-01-01

    The effect of calcium chloride (CaCl2) on rice seedling growth under cadmium chloride (CdCl2) stress,as well as the possible role of endogenous nitric oxide (NO) in this process,was studied.The growth of rice seedlings was seriously inhibited by CdCl2,and the inhibition was significantly mitigated by CaCl2.However,hemoglobin (Hb) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline1-oxyl-3-oxide (cPTIO) weakened the promotion effect of CaCl2.The resuhs of NO fluorescence localization suggest that growth accelerated by CaCl2 might be associated with elevated NO levels.The content of Cd,protein thiols (PBT),and nonprotein thiols (NPT) in cell walls,cell organelles,and soluble fractions,respectively,of rice seedlings decreased considerably in the presence of CaCl2,whereas the content of pectin,hemicellulose 1 (HC1),and hemicellulose 2 (HC2) increased significantly.Elimination of endogenous NO in Cd+Ca treatment could promote the transportation of Cd2+ to cell organelles and soluble fractions and increase the content of NPT and PBT in leaves.In addition,transportation of Cd2+ to cell organelles and soluble fractions was retarded in roots,the content of NPT increased,and the content of PBT decreased.With elimination of endogenous NO in Cd+Ca treatment,the content of pectin,HC 1,and HC2 decreased significantly.Thus,Ca may alleviate Cd toxicity via endogenous NO with variation in the levels of NPT,PBT,and matrix polysaccharides.

  3. The antioxidant and anti-cadmium toxicity properties of garlic extracts.

    Science.gov (United States)

    Boonpeng, Suwannaporn; Siripongvutikorn, Sunisa; Sae-Wong, Chutha; Sutthirak, Pornpong

    2014-11-01

    Cadmium (Cd) contamination is a highly dangerous international problem because it can transfer into the food chain and become bioaccumulated, endangering human health. Cd detoxication is very interesting particularly the method providing no undesirable side effects. Cd also causes lipid oxidation that leads to undesired food quality. Garlic (Allium sativum L.) has been used as conventional food and in herbal therapy and folklore medicine as an antibacterial, antitumorogenic, and antioxidant agent for over 5000 years. In the present work, fresh garlic and pickled garlic extracted with distilled water was brought to determine antioxidant activities in terms of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, ferric reducing ability power (FRAP) assay, chelating activities, superoxide, and hydroxyl scavenging assay. The data showed that pickled garlic extracts significantly possessed more DPPH, ABTS, FRAP, superoxide, and hydroxyl scavenging assays as 11.86, 13.74, 4.9, 46.67, and 15.33 g trolox equivalent/g sample, respectively, compared with fresh one as 7.44, 7.62, 0.01, 4.07, and 8.09 g trolox equivalent/g sample, respectively. However, iron chelating activity of fresh garlic extract was higher than that of pickled garlic while there was no significant difference in the copper chelating activity of both extracts. For anti-Cd properties, pickled garlic was more effective than fresh garlic and contained less toxicity than standard diallyl disulfide (DADS). Therefore, therapeutic properties of pickled garlic favored its consumption compared with fresh and standard DADS for its antioxidant and anti-Cd properties.

  4. The toxic effect of cadmium on pure microbes using a microcalorimetric method and a biosensor technique.

    Science.gov (United States)

    Chen, Haiyan; Yao, Jun; Zhou, Yong; Chen, Huilun; Wang, Fei; Gai, Nan; Zhuang, Rensheng; Ceccanti, Brunello; Maskow, Thomas; Zaray, Gyula

    2008-12-01

    A microcalorimetric technique based on microbes heat-output was explored to evaluate the effect of Cd (II) on Bacillus subtilis and Candida humicola. The power-time curves of the growth metabolism of Bacillus subtilis and Candida humicola and the effect of Cd (II) on it were studied by using a TAM III microcalorimeter, ampoules method at 28 degrees C. For the evaluation of toxic effect on pure micro-organisms, the maximum peak-heat output power (P(max)) in the growth phase, the growth rate constants (k), the log phase heat effects (Q(log)), and the total heat effect (Q(T)) for Bacillus subtilis and Candida humicola were determined. Dissolved oxygen and biochemical oxygen demand (BOD) were evaluated by a biosensor. Cadmium has been regarded as the essential biological trace element. Cd (II) solutions of different concentration have different effects on Bacillus subtilis and Candida humicola growth metabolism. The higher concentrations of Cd (II) inhibit the growth of Candida humicola (1600-3200 microg.mL(-1)), Bacillus subtilis (240-480 microg.mL(-1)); the lower concentrations can promote the growth of both micro-organism. The values of cell dry weight is also showed in conformity in the cell dry weight changes to the micro-organisms' growth time. Comparison of growth curves of two micro-organisms showed that both the trends of biochemical oxygen demand were exhibiting regressive changes with the passage of time during their generation times (t(G)). Results from ultraviolet spectrophotometer and precision pH meter all showed that the control growth curves were visioning same trends with the thermodynamic curves of micro-organisms measured by microcalorimeter.

  5. Manganese-mitigation of cadmium toxicity to seedling growth of Phytolacca acinosa Roxb. is controlled by the manganese/cadmium molar ratio under hydroponic conditions.

    Science.gov (United States)

    Liu, Huimin; Zhang, Yuxiu; Chai, Tuanyao; Tan, Jinjuan; Wang, Jianwu; Feng, Shanshan; Liu, Geyu

    2013-12-01

    Manganese (Mn) can interact with cadmium (Cd) in environments and influence the toxic effect of Cd on plants. However, few studies have investigated the relationship between the Mn/Cd ratio and plant Cd-toxicity along Cd concentrations. In this paper, we studied the effects of external Mn/Cd molar ratios (0, 10, 30, 50 and 60) on Cd toxicity in the Mn hyperaccumulator and Cd tolerant plant, Phytolacca acinosa Roxb., at three Cd levels (50, 100 and 200 μM) under hydroponic conditions. Our result showed that seedling growth (y) under Cd stress was strongly positively related to the solution Mn/Cd molar ratio (SMCR). The relationship between the two variables under solution Cd concentrations was well explained by the linear regression model y=a+b1 (SMCR)+b2 (Solution-Cd). Increasing SMCR significantly reduced the Cd concentration and increased the Mn concentration in plant tissues. However, seedling growth was consistent with the shoot Mn/Cd molar ratio rather than with the Mn or Cd concentrations in plant tissues. At low levels of SMCR (e.g. 0 and 10), elevation of Mn distribution in shoot tissues might be a mechanism in P. acinosa seedlings to defend against Cd-toxicity. In comparison with low levels of SMCR, high levels of SMCR (e.g. 50 and 60) greatly alleviated lipid peroxidation and plant water-loss, and enhanced photosynthesis. However, the alleviated lipid peroxidation in the Mn-mitigation of Cd toxicity was likely to be the secondary effect resulting from the antagonism between Mn and Cd in the plant.

  6. Metallothionein and Hsp70 trade-off against one another in Daphnia magna cross-tolerance to cadmium and heat stress

    Energy Technology Data Exchange (ETDEWEB)

    Haap, Timo, E-mail: timo.haap@gmx.de; Schwarz, Simon; Köhler, Heinz-R.

    2016-01-15

    Highlights: • Cadmium acclimation of two Daphnia magna clones which differed in Cd sensitivity and Hsp70 levels. • Two distinct metal-handling strategies regarding Hsp70 and MT expression were observed. • High Hsp70 levels did not confer an increase in Cd and heat stress tolerance. • Our results indicate a trade-off between Hsp70 and MT. - Abstract: The association between the insensitivity of adapted ecotypes of invertebrates to environmental stress, such as heavy metal pollution, and overall low Hsp levels characterizing these organisms has been attracting attention in various studies. The present study seeks to induce and examine this phenomenon in Daphnia magna by multigenerational acclimation to cadmium in a controlled laboratory setting. In this experiment, interclonal variation was examined: two clones of D. magna that have previously been characterized to diverge regarding their cadmium resistance and levels of the stress protein Hsp70, were continuously exposed to a sublethal concentration of Cd over four generations to study the effects of acclimation on Hsp70, metallothionein (MT), reproduction and cross-tolerance to heat stress. The two clones differed in all the measured parameters in a characteristic way, clone T displaying Cd and heat resistance, lower Hsp70 levels and offspring numbers on the one hand and higher MT expression on the other hand, clone S the opposite for all these parameters. We observed only slight acclimation-induced changes in constitutive Hsp70 levels and reproductive output. The differences in MT expression between clones as well as between acclimated organisms and controls give evidence for MT accounting for the higher Cd tolerance of clone T. Overall high Hsp70 levels of clone S did not confer cross tolerance to heat stress, contrary to common expectations. Our results suggest a trade-off between the efforts to limit the proteotoxic symptoms of Cd toxicity by Hsp70 induction and those to sequester and detoxify Cd by

  7. Exposure of cultured human proximal tubular cells to cadmium, mercury, zinc and bismuth: toxicity and metallothionein induction.

    Science.gov (United States)

    Rodilla, V; Miles, A T; Jenner, W; Hawksworth, G M

    1998-08-14

    The kidney, in particular the proximal convoluted tubule, is a major target site for the toxic effects of various metals. However, little is known about the early effects of these metals after acute exposure in man. In the present study we have evaluated the toxicity of several inorganic metal compounds (CdCl2, HgCl2, ZnCl2, and Bi(NO3)3) and the induction of metallothionein by these compounds in cultured human proximal tubular (HPT) cells for up to 4 days. The results showed that bismuth was not toxic even at the highest dose (100 microM) used, while zinc, cadmium and mercury exhibited varying degrees of toxicity, zinc being the least toxic and mercury the most potent. A significant degree of interindividual variation between the different isolates used in these experiments was also observed. All metals used in the present study induced MT, as revealed by immunocytochemistry. All metals showed maximal induction between 1 and 3 days after treatment. Although a certain amount of constitutive MT was present in the cultures, the intensity of the staining varied with time in culture and between the different isolates studied. No correlation could be made between the intensity of the staining in control cultures (indicating total amount of constitutive MT) and the susceptibility of a given isolate to metal toxicity. Furthermore, no correlation could be made between metal-induced MT and the susceptibility of a given isolate to that particular metal.

  8. Genetic and Histopathological Responses to Cadmium Toxicity in Rabbit's Kidney and Liver: Protection by Ginger (Zingiber officinale).

    Science.gov (United States)

    Baiomy, Ahmed A; Mansour, Ahmed A

    2016-04-01

    This study aimed to examine the protective effects of ginger (G) on the genetic response induced by cadmium (Cd) and immunohistochemical expression of Caspase3 and MKI67 in the kidney and liver of rabbits. Male rabbits were divided into three groups; each group contains 10 animals: group (C) received basic diet and tap water for 12 weeks, the second group (Cd) received 200 mg/kg b.w CdCl2 in water for 12 weeks, group (Cd + G) was given 200 mg/kg b.w CdCl2 in water and 400 mg ginger/kg b.w in food for 12 weeks. Cd administration increased the activity of mRNA expression of the examined apoptotic (Caspase3), proliferation (MKI67), proto-oncogene (C-fos), and antioxidant (GST), while decreased the expression of anti-apoptotic (Bcl2). Ginger counteracted the effects of Cd in (Cd + G) group and downregulated the previously upregulated genes under Cd administration appeared in (Cd) group. The immunohistochemical expression of Caspase3 and MKI67 in the liver and kidney cells of the (C) group was shown very faint to negative reactions, strong staining in hepatocytes and the tubular epithelium in cadmium-treated group, while slight staining in some hepatocytes and tubular epithelium in co-administration with ginger in (Cd + G) group. In conclusion, ginger administration showed a protective effect against cadmium toxicity.

  9. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity.

    Science.gov (United States)

    Wang, Yuanpeng; Huang, Jing; Gao, Yanzheng

    2012-01-01

    Some plants can tolerate and even detoxify soils contaminated with heavy metals. This detoxification ability may depend on what chemical forms of metals are taken up by plants and how the plants distribute the toxins in their tissues. This, in turn, may have an important impact on phytoremediation. We investigated the impact of arbuscular mycorrhizal (AM) fungus, Glomus intraradices, on the subcellular distribution and chemical forms of cadmium (Cd) in alfalfa (Medicago sativa L.) that were grown in Cd-added soils. The fungus significantly colonized alfalfa roots by day 25 after planting. Colonization of alfalfa by G. intraradices in soils contaminated with Cd ranged from 17% to 69% after 25-60 days and then decreased to 43%. The biomass of plant shoots with AM fungi showed significant 1.7-fold increases compared to no AM fungi addition under the treatment of 20 mg kg(-1) Cd. Concentrations of Cd in the shoots of alfalfa under 0.5, 5, and 20 mgkg(-1) Cd without AM fungal inoculation are 1.87, 2.92, and 2.38 times higher, respectively, than those of fungi-inoculated plants. Fungal inoculation increased Cd (37.2-80.5%) in the cell walls of roots and shoots and decreased in membranes after 80 days of incubation compared to untreated plants. The proportion of the inactive forms of Cd in roots was higher in fungi-treated plants than in controls. Furthermore, although fungi-treated plants had less overall Cd in subcellular fragments in shoots, they had more inactive Cd in shoots than did control plants. These results provide a basis for further research on plant-microbe symbioses in soils contaminated with heavy metals, which may potentially help us develop management regimes for phytoremediation.

  10. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity.

    Directory of Open Access Journals (Sweden)

    Yuanpeng Wang

    Full Text Available Some plants can tolerate and even detoxify soils contaminated with heavy metals. This detoxification ability may depend on what chemical forms of metals are taken up by plants and how the plants distribute the toxins in their tissues. This, in turn, may have an important impact on phytoremediation. We investigated the impact of arbuscular mycorrhizal (AM fungus, Glomus intraradices, on the subcellular distribution and chemical forms of cadmium (Cd in alfalfa (Medicago sativa L. that were grown in Cd-added soils. The fungus significantly colonized alfalfa roots by day 25 after planting. Colonization of alfalfa by G. intraradices in soils contaminated with Cd ranged from 17% to 69% after 25-60 days and then decreased to 43%. The biomass of plant shoots with AM fungi showed significant 1.7-fold increases compared to no AM fungi addition under the treatment of 20 mg kg(-1 Cd. Concentrations of Cd in the shoots of alfalfa under 0.5, 5, and 20 mgkg(-1 Cd without AM fungal inoculation are 1.87, 2.92, and 2.38 times higher, respectively, than those of fungi-inoculated plants. Fungal inoculation increased Cd (37.2-80.5% in the cell walls of roots and shoots and decreased in membranes after 80 days of incubation compared to untreated plants. The proportion of the inactive forms of Cd in roots was higher in fungi-treated plants than in controls. Furthermore, although fungi-treated plants had less overall Cd in subcellular fragments in shoots, they had more inactive Cd in shoots than did control plants. These results provide a basis for further research on plant-microbe symbioses in soils contaminated with heavy metals, which may potentially help us develop management regimes for phytoremediation.

  11. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Jamers, An; Blust, Ronny; De Coen, Wim [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Griffin, Julian L. [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 2QA (United Kingdom); Jones, Oliver A.H., E-mail: oliver.jones@rmit.edu.au [School of Applied Sciences, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia)

    2013-01-15

    The effects of cadmium were assessed in the freshwater alga Chlamydomonas reinhardtii. Algae were exposed to concentrations of 0, 8.1 or 114.8 {mu}M of cadmium and growth rates, gene transcription and metabolite profiles were examined after 48 and 72 h of exposure. In algae exposed to 8.1 {mu}M Cd, several genes were differentially transcribed after 48 h but no adverse growth related effects were detected. A transient effect on both gene transcription patterns and metabolite profiles could be discerned after 48 h of exposure but the majority of these changes disappeared after 72 h. In contrast, all effects were more pronounced at the 114.8 {mu}M cadmium exposure. Here growth was clearly reduced and transcription of a large number of genes involved in oxidative stress defense mechanisms was differentially increased. Metabolites involved in the glutathione synthesis pathway (an important antioxidant defense) were also affected but the effects of cadmium were found to be more pronounced at the transcript level than in the metabolome, suggesting that the former exhibits greater sensitivity toward cadmium exposure.

  12. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lin [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhou Qixing [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)], E-mail: Zhouqx@nankai.edu.cn; Ding Lingling; Sun Yuebing [Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China)

    2008-06-15

    Hyperaccumulators are ideal plant species used for phytoremediation of soils contaminated by heavy metals. A full understanding of metal tolerance mechanisms of hyperaccumulators will facilitate enhancing their phytoremediation efficiency. However, how Cd affects N metabolism and which role plays the response of N metabolism to Cd toxicity in the tolerance of hyperaccumulators are still unknown. To clarify these questions, this study investigated the effects of various soil Cd levels on the concentrations of N forms and the activity of key enzymes involved in N metabolism in leaves of the Cd hyperaccumulator, Solanum nigrum L. The results showed that its growth and all N metabolism indicators were normal at low Cd exposure ({<=}12 mg kg{sup -1}). At 24 mg Cd kg{sup -1} soil, nitrate assimilation indicators (nitrate concentration and activity of nitrate reductase) were reduced significantly, whereas most ammonia assimilation indicators (ammonium concentration and activity of glutamine synthetase) remained normal. However, when exposed to a higher Cd level (48 mg kg{sup -1}), growth and most N metabolism indicators were reduced significantly. Therefore, N metabolism in leaves of S. nigrum could be tolerant of Cd toxicity to a certain extent (soil Cd concentration {<=}12 mg kg{sup -1}), and this might be involved in the Cd-tolerance of this Cd-hyperaccumulator.

  13. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.

    Science.gov (United States)

    Besson-Bard, Angélique; Gravot, Antoine; Richaud, Pierre; Auroy, Pascaline; Duc, Céline; Gaymard, Frédéric; Taconnat, Ludivine; Renou, Jean-Pierre; Pugin, Alain; Wendehenne, David

    2009-03-01

    Nitric oxide (NO) functions as a cell-signaling molecule in plants. In particular, a role for NO in the regulation of iron homeostasis and in the plant response to toxic metals has been proposed. Here, we investigated the synthesis and the role of NO in plants exposed to cadmium (Cd(2+)), a nonessential and toxic metal. We demonstrate that Cd(2+) induces NO synthesis in roots and leaves of Arabidopsis (Arabidopsis thaliana) seedlings. This production, which is sensitive to NO synthase inhibitors, does not involve nitrate reductase and AtNOA1 but requires IRT1, encoding a major plasma membrane transporter for iron but also Cd(2+). By analyzing the incidence of NO scavenging or inhibition of its synthesis during Cd(2+) treatment, we demonstrated that NO contributes to Cd(2+)-triggered inhibition of root growth. To understand the mechanisms underlying this process, a microarray analysis was performed in order to identify NO-modulated root genes up- and down-regulated during Cd(2+) treatment. Forty-three genes were identified encoding proteins related to iron homeostasis, proteolysis, nitrogen assimilation/metabolism, and root growth. These genes include IRT1. Investigation of the metal and ion contents in Cd(2+)-treated roots in which NO synthesis was impaired indicates that IRT1 up-regulation by NO was consistently correlated to NO's ability to promote Cd(2+) accumulation in roots. This analysis also highlights that NO is responsible for Cd(2+)-induced inhibition of root Ca(2+) accumulation. Taken together, our results suggest that NO contributes to Cd(2+) toxicity by favoring Cd(2+) versus Ca(2+) uptake and by initiating a cellular pathway resembling those activated upon iron deprivation.

  14. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Wang M

    2016-05-01

    Full Text Available Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equally to this work Abstract: A complete understanding of the toxicological behavior of quantum dots (QDs in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+ and hydroxyl radicals (·OH in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping ·OH with salicylic acid (SA as 2,3-dihydroxybenzoic acid (DHBA and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of

  15. Evaluation and Determination of Toxic Metals, Lead and Cadmium, in Incoming Raw Milk from Traditional and Industrial Farms to Milk Production Factories in Arak, Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Delavar

    2012-08-01

    Full Text Available Background: Milk is regarded as a unique source of food for all ages. When milk is exposed to various contaminants, including lead and cadmium, it is considered a risk to humans. The presence of some metal pollutants, especially Cd and Pb, facilitates their entry into the food chain and thus increases the possibility of their toxic effects on humans and animals. Therefore, we decided to check lead and cadmium levels in incoming raw milk in milk production factories in Arak city, Iran. Methods: In this study, 48 samples of milk were obtained from 28 industrial and 20 traditional farms. After the digestion process, at first, the metals were extracted with complexing agents, APDC, and MIBK solvent. Then atomic absorption method with graphite furnace was applied. Results: The results were analyzed by analytical tests such as Npar, Mann-Whitney, Kruskal-Wallis, and t-test using SPSS software and it was specified that the means of lead and cadmium were equal to 16.0456 and 20.09 ppb in raw milk. P-values equal to 0.009 and 0.002 ppb were considered significant for lead and cadmium, respectively. The standard levels for lead and cadmium in milk were 1000 and 100 ppb, respectively. In all milk samples, lead and cadmium pollution were less than the standard limit. Conclusion: The amounts of toxic metals (lead and cadmium in raw milk produced in traditional and industrial farms in all seasons were lower than the standard limits. Also, the mean amounts of lead and cadmium in all milk samples were less than the standard limits for milk.

  16. Molecular toxicity of earthworms induced by cadmium contaminated soil and biomarkers screening

    Institute of Scientific and Technical Information of China (English)

    Xiaohui MO; Yuhui Qiao; Zhenjun Sun; Xiaofei Sun; Yang Li

    2012-01-01

    Earthworms(Eiseniafetida)were used to study the impact of low-dose cadmium in treated artificial soil(0,0.6,3,6,15,30 mg/kg)and contaminated natural soil(1.46 mg/kg).The changes of earthworms' physiological related gene expressions of metallothionein (MT),annetocin,calreticulin and antimicrobial peptides were detected using real-time PCR after a 70-day incubation period.The results showed that low doses of cadmium could up regulate earthworms' MT and down regulate armetocin gene expression and show a significant positive and negative correlation respectively.The expression of two other genes,calreticulin and anti-microbial peptides,was induced at low doses of cadmium(highest gene expression at 0.6 mg/kg for calreticulin and 6 mg/kg for anti-microbial peptides)and inhibited at high doses.No significant correlation was found for these two genes.This study shows that MT and annetocin genes expression found in earthworms in contaminated soil have the potential to be developed as biomarkers of soil cadmium pollution.

  17. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  18. Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead.

    Science.gov (United States)

    Varaksin, Anatoly N; Katsnelson, Boris A; Panov, Vladimir G; Privalova, Larisa I; Kireyeva, Ekaterina P; Valamina, Irene E; Beresneva, Olga Yu

    2014-02-01

    Rats were exposed intraperitoneally (3 times a week up to 20 injections) to either Cadmium and Lead salts in doses equivalent to their 0.05 LD50 separately or combined in the same or halved doses. Toxic effects were assessed by more than 40 functional, biochemical and morphometric indices. We analysed the results obtained aiming at determination of the type of combined toxicity using either common sense considerations based on descriptive statistics or two mathematical models based (a) on ANOVA and (b) on Mathematical Theory of Experimental Design, which correspond, respectively, to the widely recognised paradigms of effect additivity and dose additivity. Nevertheless, these approaches have led us unanimously to the following conclusions: (1) The above paradigms are virtually interchangeable and should be regarded as different methods of modelling the combined toxicity rather than as reflecting fundamentally differing processes. (2) Within both models there exist not merely three traditionally used types of combined toxicity (additivity, subadditivity and superadditivity) but at least 10 variants of it depending on exactly which effect is considered and on its level, as well as on the dose levels and their ratio.

  19. Impact Assessment of Cadmium Toxicity and Its Bioavailability in Human Cell Lines (Caco-2 and HL-7702

    Directory of Open Access Journals (Sweden)

    Rukhsanda Aziz

    2014-01-01

    Full Text Available Cadmium (Cd is a widespread environmental toxic contaminant, which causes serious health-related problems. In this study, human intestinal cell line (Caco-2 cells and normal human liver cell line (HL-7702 cells were used to investigate the toxicity and bioavailability of Cd to both cell lines and to validate these cell lines as in vitro models for studying Cd accumulation and toxicity in human intestine and liver. Results showed that Cd uptake by both cell lines increased in a dose-dependent manner and its uptake by Caco-2 cells (720.15 µg mg−1 cell protein was significantly higher than HL-7702 cells (229.01 µg mg−1 cell protein at 10 mg L−1. A time- and dose-dependent effect of Cd on cytotoxicity assays (LDH release, MTT assay was observed in both Cd-treated cell lines. The activities of antioxidant enzymes and differentiation markers (SOD, GPX, and AKP of the HL-7702 cells were higher than those of Caco-2 cells, although both of them decreased significantly with raising Cd levels. The results from the present study indicate that Cd above a certain level inhibits cellular antioxidant activities and HL-7702 cells are more sensitive to Cd exposure than Caco-2 cells. However, Cd concentrations <0.5 mg L−1 pose no toxic effects on both cell lines.

  20. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S;

    2002-01-01

    . Experience from cadmium-poisoned humans and laboratory mammals indicates that concentrations above 50-200 microg/g wet wt. may induce histopathological changes. Overall, 31 of the ringed seals had cadmium concentrations in the kidney cortex above 50 microg/g wet wt., 11 had concentrations above 100 and one......The Greenland marine food chains contain high levels of cadmium, mercury and selenium. Concentrations of cadmium in the kidney of ringed seals (Phoca hispida) from the municipalities of Qaanaaq and Upernavik (Northwest Greenland) are among the highest recorded in the Arctic. The purpose...... of the study was to determine whether cadmium-induced damage in the kidneys and the skeletal system could be detected among 100 ringed seals from Northwest Greenland. The cadmium concentrations in the kidney cortex ranged from 0 to 248 microg/g wet weight (mean=44.5, N=100) in the 99 kidneys examined...

  1. Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein-cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L.).

    Science.gov (United States)

    Abdel-Tawwab, Mohsen; Wafeek, Mohammed

    2014-10-01

    Cadmium (Cd) is believed to be one of the most abundant and ubiquitously distributed toxins in the aquatic system. This metal is released to the aquatic environment from both anthropogenic sources, such as industrial, agricultural and urban effluents as well as natural sources, such as rocks and soils. Otherwise, the temperature increase of water bodies, which has been observed due to global climatic changes, has been shown to increase Cd toxicity for several aquatic animal species including fish. In the present study, Nile tilapia, Oreochromis niloticus (L.), (26.0 ± 0.38 g) were reared at 20, 24, 28, or 32 °C and exposed to 0.0 or 0.5mg Cd/L for 8 weeks to investigate effects of water temperature, Cd toxicity and their interaction on fish performance as well as metallothionein (MT) and Cd distribution in different fish organs. It was found that fish reared in Cd-free group at 28 °C showed the optimum growth and feed intake, while Cd-exposed fish showed low growth and feed intake irrespective to water temperature. A synergetic relationship between water temperature and Cd toxicity was observed where Cd toxicity increased as water temperature increased and the worse growth was obtained in Cd-exposed fish reared at 32 °C. Additionally, the highest Cd residues in different fish organs were detected in Cd-exposed fish reared at 32 °C. Similarly, MT concentrations in different fish organs increased as water temperature increased especially in Cd-exposed fish groups. A high positive correlation between MT and Cd concentrations in fish organs was detected. The distribution of MT and Cd levels was in the order of liver>kidney>gills>muscles. The present study revealed that the optimum water temperature suitable for Nile tilapia growth is 28 °C. Additionally, Cd exposure had a deteriorate effect on the growth and health of Nile tilapia. This hazardous effect increased as water temperature increased. Further, liver and kidney were the prime sites of Cd accumulation

  2. Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers.

    Science.gov (United States)

    Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F

    2013-09-01

    Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead).

  3. Investigation of the toxic effect of cadmium on Candida humicola and Bacillus subtilis using a microcalorimetric method.

    Science.gov (United States)

    Chen, Hai-Yan; Yao, Jun; Zhou, Yong; Chen, Hui-Lun; Wang, Fei; Gai, Nan; Zhuang, Ren-Sheng; Ceccanti, Brunello; Maskow, Thomas; Zaray, Gyula

    2008-11-30

    In this study, the technique of microcalorimetry based on heat-output by aerobic bacterial respiration was explored to evaluate the toxic effect of cadmium on Candida humicola, Bacillus subtilis, singularly or in a mixture of both. Power-time curves of the growth metabolism of C. humicola and B. subtilis and the effect of Cd(2+) were studied using the TAM III (the third generation thermal activity monitor) multi-channel microcalorimetric system, isothermal mode, at 28 degrees C. The differences in shape of the power-time curves and the thermodynamic and kinetic characteristics of microorganisms growth were compared. The effect of cadmium added into microorganism would significantly reduce the life cycle and change the thermal effect of microbial metabolic process with different concentrations of Cd(2+). The experimental results revealed that at the same concentration, the sequence of inhibitory ratio (I) and maximum thermal power (P(max)) of the Cd(2+) was: mixed microorganisms>C. humicola>B. subtilis. The sequence of total thermal effect (Q(total)) and growth rate constant (k) is mixed microorganisms>B. subtilis>C. humicola. These results are important to further studies of the physiology and pharmacology of C. humicola and B. subtilis and may support the theory of restoring contaminated soil.

  4. Investigation of the toxic effect of cadmium on Candida humicola and Bacillus subtilis using a microcalorimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haiyan [School of Environmental Studies and Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, 430074 Wuhan (China); Yao Jun [School of Environmental Studies and Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, 430074 Wuhan (China)], E-mail: yaojun@cug.edu.cn; Zhou Yong; Chen Huilun; Wang Fei; Gai Nan; Zhuang Rensheng [School of Environmental Studies and Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences, 430074 Wuhan (China); Ceccanti, Brunello [Institute of Ecosystem Studies(ISE) - Italian National Research Council (ICT-CNR) (Italy); Maskow, Thomas [UFZ Centre for Environmental Research Leipzig, 04318 Leipzig (Germany); Zaray, Gyula [Department of Chemical Technology and Environmental Chemistry, Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary)

    2008-11-30

    In this study, the technique of microcalorimetry based on heat-output by aerobic bacterial respiration was explored to evaluate the toxic effect of cadmium on Candida humicola, Bacillus subtilis, singularly or in a mixture of both. Power-time curves of the growth metabolism of C. humicola and B. subtilis and the effect of Cd{sup 2+} were studied using the TAM III (the third generation thermal activity monitor) multi-channel microcalorimetric system, isothermal mode, at 28 deg. C. The differences in shape of the power-time curves and the thermodynamic and kinetic characteristics of microorganisms growth were compared. The effect of cadmium added into microorganism would significantly reduce the life cycle and change the thermal effect of microbial metabolic process with different concentrations of Cd{sup 2+}. The experimental results revealed that at the same concentration, the sequence of inhibitory ratio (I) and maximum thermal power (P{sub max}) of the Cd{sup 2+} was: mixed microorganisms > C. humicola > B. subtilis. The sequence of total thermal effect (Q{sub total}) and growth rate constant (k) is mixed microorganisms > B. subtilis > C. humicola. These results are important to further studies of the physiology and pharmacology of C. humicola and B. subtilis and may support the theory of restoring contaminated soil.

  5. Follow up of Treatment of Cadmium and Copper Toxicity in Clarias Gariepinus Using Laser Techniques

    Science.gov (United States)

    Zaghloul, Khalid H.; Ali, Maha F.; El-Bary, Manal G. Abd; Abd El-Harith, Mohamed

    2010-04-01

    Two purified diets were formulated and fed to seven groups of the Nile catfish; Clarias gariepinus for 12 weeks. The formulated diets contained 50 or 500 mg/kg diet of an ascorbic acid equivalent, supplied by L-ascorbyl-2-monophosphate (Mg salt). Laser induced breakdown spectroscopy (LIDS) technique has been used to characterize the bioaccumulation of cadmium, copper and iron in some selected organs (Gills, liver, kidney and muscles) and disturbance in the distribution of sodium, calcium and magnesium in gills and muscles of fish fed the minimum requirement of vitamin C (50 mg/kg diet) and exposed to cadmium (0.165 mg/l) and copper (0.35 mg/l) individually or in combination. Heavy metals bioaccumulation affect histological structure of gills, liver and kidney and consequently, fish exhibited the lowest growth rate and meat quality with a progressive fall in RBCs count, Hb content and haematocrite value. These effects were concomitant with significant increase in the WBCs count, serum glucose, total protein, AST, ALT, creatinine and uric acid. On the contrary, serum total lipids and liver glycogen revealed a significant decrease. However, fish fed 500 mg vitamin C/kg diet and exposed to the same concentrations of cadmium and copper either individually or in mixture showed an improvement in the growth rate and meat quality and a tendency to exhibit close to the control values for most of the other studied physiological, biochemical and histopathological investigations.

  6. Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure.

    Science.gov (United States)

    Contreras, Elizabeth Q; Cho, Minjung; Zhu, Huiguang; Puppala, Hema L; Escalera, Gabriela; Zhong, Weiwei; Colvin, Vicki L

    2013-01-15

    To fully understand the biological and environmental impacts of nanomaterials requires studies that address both sublethal end points and multigenerational effects. Here, we use a nematode to examine these issues as they relate to exposure to two different types of quantum dots, core (CdSe) and core-shell (CdSe/ZnS), and to compare the effect to those observed after cadmium salt exposures. The strong fluorescence of the core-shell QDs allowed for the direct visualization of the materials in the digestive track within a few hours of exposure. Multiple end points, including both developmental and locomotive, were examined at QD exposures of low (10 mg/L Cd), medium (50 mg/L Cd), and high concentrations (100 mg/L Cd). While the core-shell QDs showed no effect on fitness (lifespan, fertility, growth, and three parameters of motility behavior), the core QDs caused acute effects similar to those found for cadmium salts, suggesting that biological effects may be attributed to cadmium leaching from the more soluble QDs. Over multiple generations, we commonly found that for lower life-cycle exposures to core QDs the parents response was generally a poor predictor of the effects on progeny. At the highest concentrations, however, biological effects found for the first generation were commonly similar in magnitude to those found in future generations.

  7. Use of oxygen consumption and ammonium excretion to evaluate the sublethal toxicity of cadmium and zinc on Litopenaeus schmitti (Burkenroad, 1936, Crustacea).

    Science.gov (United States)

    Barbieri, Edison

    2007-06-01

    Penaeid shrimps are important resources for worldwide fisheries and aquaculture. In Brazil, Litopenaeus schmitti (L. schmitti) is a important commercially exploited species and is an ideal animal for studying the impairment caused by the effects of heavy metals that are often detected in coastal areas. The main purpose of the present study was to detect the acute toxicity of cadmium and zinc to L. schmitti and investigate their effects on oxygen consumption and ammonium excretion, investigations that have not been carried out in this species before. First, the acute toxicity of cadmium and zinc to L. schmitti 24, 48, 72, and 96-hour medium lethal concentration was examined, which resulted in the following values: 0.98, 0.54, 0.32, and 0.18 mg/L for cadmium and 1.64, 1.22, 0.86, and 0.31 mg/L for zinc. Furthermore, we also found that exposure of shrimp to cadmium and zinc caused an inhibition in oxygen consumption of 55.92 and 44.09%, respectively, relative to the control. However, after separate exposure to cadmium and zinc, elevations in ammonium excretion were obtained, which were 174.28 and 162.5% higher than the control, respectively.

  8. Ex-vivo assessment of chronic toxicity of low levels of cadmium on testicular meiotic cells

    Energy Technology Data Exchange (ETDEWEB)

    Geoffroy-Siraudin, Cendrine [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Laboratoire de Biologie de la Reproduction, AP-HM, Hôpital de la Conception, 147, Boulevard Baille, 13385 Marseille cedex 5 (France); Perrard, Marie-Hélène [Institut de Génomique Fonctionnelle de Lyon, UMR 5242 CNRS INRA Ecole Normale Supérieure de Lyon 1, 46 allée d' Italie, F-69364 Lyon Cedex 07 (France); Ghalamoun-Slaimi, Rahma [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Laboratoire de Biologie de la Reproduction, AP-HM, Hôpital de la Conception, 147, Boulevard Baille, 13385 Marseille cedex 5 (France); Ali, Sazan [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Chaspoul, Florence [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Unité de Chimie-Physique, Faculté de Pharmacie 13005, Marseille (France); Lanteaume, André [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Achard, Vincent [Laboratoire de Biologie de la Reproduction, AP-HM, Hôpital de la Conception, 147, Boulevard Baille, 13385 Marseille cedex 5 (France); Gallice, Philippe [Aix-Marseille Univ, UMR CNRS IMBE 7263, FR 3098 ECCOREV, 13005, Marseille (France); Unité de Chimie-Physique, Faculté de Pharmacie 13005, Marseille (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, UMR 5242 CNRS INRA Ecole Normale Supérieure de Lyon 1, 46 allée d' Italie, F-69364 Lyon Cedex 07 (France); and others

    2012-08-01

    Using a validated model of culture of rat seminiferous tubules, we assessed the effects of 0.1, 1 and 10 μg/L cadmium (Cd) on spermatogenic cells over a 2‐week culture period. With concentrations of 1 and 10 μg/L in the culture medium, the Cd concentration in the cells, determined by ICP-MS, increased with concentration in the medium and the day of culture. Flow cytometric analysis enabled us to evaluate changes in the number of Sertoli cells and germ cells during the culture period. The number of Sertoli cells did not appear to be affected by Cd. By contrast, spermatogonia and meiotic cells were decreased by 1 and 10 μg/L Cd in a time and dose dependent manner. Stage distribution of the meiotic prophase I and qualitative study of the synaptonemal complexes (SC) at the pachytene stage were performed by immunocytochemistry with an anti SCP3 antibody. Cd caused a time-and-dose-dependent increase of total abnormalities, of fragmented SC and of asynapsis from concentration of 0.1 μg/L. Additionally, we observed a new SC abnormality, the “motheaten” SC. This abnormality is frequently associated with asynapsis and SC widening which increased with both the Cd concentration and the duration of exposure. This abnormality suggests that Cd disrupts the structure and function of proteins involved in pairing and/or meiotic recombination. These results show that Cd induces dose-and-time-dependent alterations of the meiotic process of spermatogenesis ex-vivo, and that the lowest metal concentration, which induces an adverse effect, may vary with the cell parameter studied. -- Highlights: ► Cadmium induces ex-vivo severe time- and dose-dependent germ cell abnormalities. ► Cadmium at very low concentration (0.1 µg/l) induces synaptonemal complex abnormalities. ► The lowest concentration inducing adverse effect varied with the cell parameter studied. ► Cadmium alters proteins involved in pairing and recombination. ► Cadmium leads to achiasmate univalents and

  9. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.

    Science.gov (United States)

    Hatano, Ayumi; Shoji, Ryo

    2008-06-01

    The biotic ligand model (BLM) of acute toxicity to aquatic organisms is based on the concept that metals binding onto biotic ligand may cause toxic effect on the organism. The BLM can take into incorporation between metal speciation and the protective effects of competing cations account. The demonstrated BLM can provide a good estimation of the amount of single metal effect under various conditions such as pH, coexistence of other non toxic cations. However, toxic metals are often found as mixture in nature. This study estimated combined toxicity of Cu and Cd examined by growth inhibition of Duckweed (Lemna paucicostata) by using single toxicity data as toxic unit (TU) derived by three types of model, BLM and two conventional models, free ion activity model (FIAM), and total metal concentration model. According to our results, single toxicity data derived by the BLM can estimate combined toxicity described as a function of TU. Particularly under the high level of heavy metals stress, BLM clearly predicted toxicity of heavy metals compared with other two models. According to numeric correlation (R(2), root mean square error), the order is BLM (R=0.83, RMSE=13.5)> total metal concentration model (R=0.41, RMSE=24.9)> FIAM (R=0.36, RMSE=26.1).

  10. 镉对雄(男)性生殖系统毒性的研究进展%Toxicity Effect of Cadmium on Male Reproductive System

    Institute of Scientific and Technical Information of China (English)

    陈娜; 苏萍

    2016-01-01

    镉(Cadmium)是有毒重金属,其对肝、肾、肺、骨骼、生殖系统及血液系统均有毒性,雄性生殖系统对镉的毒性更加敏感。镉进入机体后抑制类固醇激素合成急性调节蛋白(steroidogenic acute regulatory protein,StAR)、胆固醇侧链裂解酶(P450scc)、3β-羟类固醇脱氢酶(3β-HSD)以及17β-HSD等睾酮合成关键酶活性,使睾酮合成受到抑制,血浆睾酮水平下降。镉可诱导生殖细胞凋亡,引起睾丸细胞和细胞器的超微结构变化,最终损害雄性生殖系统的功能。内分泌紊乱、氧化应激失衡和凋亡通路的激活在镉毒性机制中发挥着重要作用,某些抗氧化剂和抗凋亡药物可在一定程度上拮抗镉的生殖毒性。综述镉对雄(男)性生殖能力的影响和毒性机制。%Cadmium is a kind of toxic heavy metals and hazardous pollutant which affects many organs and systems, such as liver, kidney, lung, bones and reproductive system. The male reproductive system is more sensitive to cadmium toxicity than others. The decreased levels of StAR, P450scc, 3β-HSD and 17β-HSD caused by the cadmium exposure lead to the inhibition of steroidogenesis and the reduction of testosterone level. Cadmium exposure induces the apoptosis of germ cells and the ultrastructure changes of organelles, which ultimately damage the function of male reproductive system. The endocrine disorder, imbalance of oxidative stress and the over-activation of apoptotic factors play an important role in the mechanism of cadmium toxicity. Some antioxidants and anti-apoptotic drugs could reduce the toxicity of cadmium to some extent. This paper discusses the effect of cadmium on the male reproductive system, as well as the treatment of cadmium exposure.

  11. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Dong, Fang; Lei, Gui Jie [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2013-12-15

    Highlights: • Cd reduces endogenous auxin levels in Arabidopsis. • Exogenous applied auxin NAA increases Cd accumulation in the roots but decreases in the shoots. • NAA increases cell wall hemicellulose 1 content. • Hemicellulose 1 retains Cd and makes it difficult to be translocated to shoots. • NAA rescues Cd-induced chlorosis. -- Abstract: Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd{sup 2+}) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd{sup 2+} concentration and rescued Cd{sup 2+}-induced chlorosis in Arabidopsis thaliana. Under Cd{sup 2+} stress conditions, NAA increased Cd{sup 2+} retention in the roots and most Cd{sup 2+} in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd{sup 2+}, whereas it significantly increased the content of hemicellulose 1 and the amount of Cd{sup 2+} retained in it. There were highly significant correlations between Cd{sup 2+} concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd{sup 2+} or NAA + Cd{sup 2+} treatment for 1 to 7 d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd{sup 2+} in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd{sup 2+} toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd{sup 2+} fixation in the root, thus reducing the translocation of Cd{sup 2+} from roots to shoots.

  12. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiaopeng; Xia Yan; Hu Wei [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Zhang Hongxiao, E-mail: hxzhang@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China); Shen Zhenguo, E-mail: zgshen@njau.edu.cn [College of Life Sciences, Nanjing Agricultural University, Weigang 1, Nanjing 210095 (China)

    2010-08-15

    The effects of cadmium (Cd) on the accumulation of hydrogen peroxide (H{sub 2}O{sub 2}) and antioxidant enzyme activities in roots of Solanum nigrum L. and the role of N-acetyl-L-cysteine (NAC) as a cysteine (Cys) donor against Cd toxicity were investigated. Cd at 50 and 200 {mu}M significantly increased the contents of thiobarbituric acid-reactive substances (TBARS), the production of H{sub 2}O{sub 2} and superoxide anion (O{sub 2}{center_dot}{sup -}), and the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, glutathione peroxidase (GSH-Px), glutathione reductase, and superoxide dismutase. Experiments with diphenylene iodonium as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and NaN{sub 3} as an inhibitor of peroxidase showed that the major source of Cd-induced reactive oxygen species in the roots may include plasma membrane-bound NADPH oxidase and peroxidase. In addition, the effects of NAC on plant growth, antioxidant enzyme activity, and non-protein thiol content were analyzed. Under Cd stress, the addition of 500 {mu}M NAC decreased the contents of TBARS and production of H{sub 2}O{sub 2} and O{sub 2}{center_dot}{sup -}, but increased levels of Cys and reduced glutathione (GSH), phytochelatins, and activity of GSH-Px in roots. These results suggest that NAC could protect plants from oxidative stress damage, and this protection seems to be performed via increased GSH biosynthesis. Furthermore, NAC treatment also increased the contents of protein thiols in S. nigrum roots. By using size-exclusion chromatography, we found involvement of NAC in the Cd tolerance mechanism through increased biosynthesis of Cd-binding proteins.

  13. Strain difference of cadmium-induced testicular toxicity in inbred Wistar-Imamichi and Fischer 344 rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hideaki; Narumi, Rika [Kumamoto University, Faculty of Education, Kumamoto (Japan); Nagano, Masaaki; Yasutake, Akira [National Institute for Minamata Disease, Biochemistry Section, Kumamoto (Japan); Waalkes, Michael P. [National Cancer Institute at the National Institute of Environmental Health Sciences, Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, Research Triangle Park, NC (United States); Imamura, Yorishige [Kumamoto University, Graduate School of Pharmaceutical Sciences, Kumamoto (Japan)

    2009-07-15

    Previously, we reported that Wistar-Imamichi (WI) rats are highly resistant to cadmium (Cd)-induced lethality and hepatotoxicity compared to Fischer 344 (F344) rats. Since the testes are one of the most sensitive organs to acute Cd toxicity, we examined possible strain-related differences in Cd-induced testicular toxicity between inbred WI and F344 rats. Rats were treated with a single dose of 0.5, 1.0 or 2.0 mg Cd/kg, as CdCl{sub 2}, sc and killed 24 h later. Cd at doses of 1.0 and 2.0 mg/kg induced severe testicular hemorrhage, as assessed by pathological and testis hemoglobin content, in F344 rats, but not WI rats. After Cd treatment (2.0 mg/kg), the testicular Cd content was significantly lower in WI rats than in the F344 rats, indicating a toxiokinetic mechanism for the observed strain difference. Thus, the remarkable resistance to Cd-induced testicular toxicity in WI rats is associated, at least in part, with lower testicular accumulation of Cd. When zinc (Zn; 10 mg/kg, sc) was administered in combination with Cd (2.0 mg/kg) to F344 rats, the Cd-induced increase in testicular hemoglobin content, indicative of hemorrhage, was significantly reduced. Similarly, the testicular Cd content was significantly decreased with Zn co-treatment compared to Cd treatment alone. Thus, it can be concluded that the testicular Cd accumulation partly competes with Zn transport systems and that these systems may play an important role in the strain-related differences in Cd-induced testicular toxicity between WI and F344 rats. (orig.)

  14. Plausible Mechanisms of Cadmium Carcinogenesis

    Science.gov (United States)

    Cadmium is a transition metal and an ubiquitous environmental and industrial pollutant. Laboratory animal studies and epidemiological studies have shown that exposure to cadmium is associated with various organ toxicities and carcinogenic effects. Several national and internation...

  15. Toxicity of cadmium, anthracene, and their mixture to Desmodesmus subspicatus estimated by algal growth-inhibition ISO standard test.

    Science.gov (United States)

    Baścik-Remisiewicz, Agnieszka; Aksmann, Anna; Żak, Adam; Kowalska, Maja; Tukaj, Zbigniew

    2011-05-01

    Cells of Desmodesmus subspicatus 86.81 were used to examine the toxicity of cadmium chloride (CdCl(2)) and anthracene (ANT) applied individually and in combination. The experiments were performed according to standardized ISO (International Organization for Standardization) 8692 protocol (2004). Parameters measured were the number of cells and chlorophyll a fluorescence parameters. E(r)C(10) and E(r)C(50) values (growth rate [r] inhibition by 10% and 50%, respectively) for single toxicants were determined separately. The effect of mixtures of the substances (Cd + ANT) at concentrations corresponding to E(r)C(10) (E(r)C(10) + E(r)C(10)) and E(r)C(50) (E(r)C(50) + E(r)C(50)) values was characterized. The toxicity of individual chemicals after a 72-h exposure was as follows: ANT (E(r)C(10) = 0.06; E(r)C(50) = 0.26 mg l(-1)) and CdCl(2) (E(r)C(10) = 0.12; E(r)C(50) = 0.30 mg l(-1)). The combination Cd + ANT decreased the population growth rate more strongly than the substances applied individually. Cadmium at a concentration corresponding to E(r)C(10) slightly influenced the parameters of chlorophyll a fluorescence as measured by the OJIP test (O, J, I, and P are the different steps of fluorescence induction curve), whereas the influence of ANT was not statistically significant. In Cd + ANT-treated samples, the photosynthetic "vitality" (PI), the maximum quantum yield of primary photochemistry (φ(Po)), and the fraction of active PS II reaction centre (RC) decreased, but the values of ABS/RC, TR(0)/RC, and DI(0)/RC increased. The type of interaction between Cd and ANT depended on the concentration of chemicals used. When the substances were applied at concentrations of E(r)C(10), synergistic effects were observed, whereas the mixture of chemicals used at an E(r)C(50) concentration showed an antagonistic interaction.

  16. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.

    Science.gov (United States)

    Vaculík, Marek; Pavlovič, Andrej; Lux, Alexander

    2015-10-01

    Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize.

  17. Ameliorative Effect of Green Tea Catechin Against Cadmium Chloride-Induced Testicular Toxicity in Mice.

    Science.gov (United States)

    Sharma, Priyanka; Goyal, Pradeep Kumar

    2015-01-01

    The present study was designed to evaluate the effect of green tea catechin (7500 µg/kg/animal/day) against cadmium-induced testicular dysfunctions and oxidative stress in the testes of mice. For this purpose, Swiss albino mice were divided into six groups: group I, negative control; group II, catechin-treated control; group III, cadmium chloride (CdCl2)-treated control; group IV, experimental group I; group V, experimental group II; and group VI, experimental group III. Animals from all of these groups were necropsied at various post-treatment intervals between 12 hours and 30 days for various biochemical alterations in the testes. CdCl2 intoxication resulted in a significant decline in testicular total proteins, cholesterol, and alkaline phosphatase, whereas acid phosphatase and lipid peroxidation exhibited a noticeable augmentation as compared to negative control. Catechin treatment effectively protected CdCl2-induced alterations in all such parameters throughout the experiment. Catechin was effective in reducing the CdCl2-induced augmentation of phase I (P450 and CYPB5) as well as phase II (DT-diaphorase and glutathione-S-transferase) enzymes in testes. Furthermore, CdCl2 intoxication was found to attenuate the antioxidant potential of testes, which was however augmented when supplemented with green tea extract. Compared to CdCl2-treated control mice, superoxide dismutase, glutathione peroxidase, glutathione, and catalase levels were significantly decreased in testes. Indeed, green tea catechin significantly increased testicular antioxidant enzymatic activities compared to those given CdCl2 alone. In conclusion, the use of green tea extract appeared to be beneficial to a great extent in inhibiting and restoring the testicular injuries induced by CdCl2 intoxication in mammals.

  18. Influence of bioaccessibility on the toxicity of heavy metal (nickel, chromium, cadmium and lead) species; Einfluss der Resorptionsverfuegbarkeit auf die Toxizitaet von Verbindungen der Schwermetalle Nickel, Chrom, Cadmium und Blei

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.; Oltmanns, J.; Kalberlah, F. [FoBiG Forschungs- und Beratungsinstitut Gefahrstoffe GmbH, Freiburg im Breisgau (Germany); Voss, J.U. [Toxikologische Beratung, Chemikalienbewertung - Risikoabschaetzung, Muellheim (Germany)

    2001-07-01

    The risk assessment of heavy metals at hazardous waste sites is based on total elemental concentrations in the soil without differentiation of metal species. This literature study investigates the correlation between bioaccessibility and toxicity of compounds of the heavy metals nickel, chromium, cadmium and lead with low water solubility. Chronic oral toxicity studies for sparsely soluble species are generally lacking. Only for chromic oxide (Cr{sub 2}O{sub 3}) derivation of a tolerable daily dose is possible based on chronic toxicity studies. The chronic oral toxicity of water-soluble chromium-III-compounds can be assessed by comparing effective doses with well-studied, highly toxic Cr-VI-compounds. In general, lower water-solubility is correlated with lower bioaccessibility and lower toxicity in case of the sulfides of nickel, lead and cadmium (and also with nickel oxide and lead chromate). However, some carbonates, oxides and hydroxides (lead oxide, lead carbonate, cadmium oxide, cadmium carbonate, nickel carbonate, nickel hydroxide) show a better solubility in biological media and higher toxicity than expected based solely on poor water solubility. This can be explained by a higher solubility of these compounds in acid environments. Compounds with poor water solubility like nickel oxide and cadmium sulfide are absorbed only to a minor extent from the respiratory tract after inhalation. However, absorption in the respiratory tract is not strictly correlated with bioaccessibility in the gastrointestinal tract. The influence of absorption on respiratory toxicity and on lung carcinogenicity of the heavy metals differs. For example, nickel sulfate, a compound with high water solubility, was toxic in the respiratory tract by inhalation, but not carcinogenic, whereas nickel subsulfide, a compound with lower water solubility, induced lung tumours. For the risk assessment of hazardous waste sites this means that results of in vitro digestive models (for the

  19. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiao Fang [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Jiang, Tao [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Wang, Zhi Wei [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Lei, Gui Jie [Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Shi, Yuan Zhi [The Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Yunqi Road 1, Hangzhou 310008 (China); Li, Gui Xin, E-mail: guixinli@zju.edu.cn [College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058 (China); Zheng, Shao Jian [State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Cd reduces endogenous GA levels in Arabidopsis. Black-Right-Pointing-Pointer GA exogenous applied decreases Cd accumulation in plant. Black-Right-Pointing-Pointer GA suppresses the Cd-induced accumulation of NO. Black-Right-Pointing-Pointer Decreased NO level downregulates the expression of IRT1. Black-Right-Pointing-Pointer Suppressed IRT1 expression reduces Cd transport across plasma membrane. - Abstract: Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 {mu}M for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd{sup 2+}, GA at 5 {mu}M improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd{sup 2+} increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd{sup 2+} absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd{sup 2+} uptake related gene-IRT1 in Arabidopsis.

  20. Cadmium-free sugar-chain-immobilized fluorescent nanoparticles containing low-toxicity ZnS-AgInS2 cores for probing lectin and cells.

    Science.gov (United States)

    Shinchi, Hiroyuki; Wakao, Masahiro; Nagata, Nonoka; Sakamoto, Masaya; Mochizuki, Eiko; Uematsu, Taro; Kuwabata, Susumu; Suda, Yasuo

    2014-02-19

    Sugar chains play a significant role in various biological processes through sugar chain-protein and sugar chain-sugar chain interactions. To date, various tools for analyzing sugar chains biofunctions have been developed. Fluorescent nanoparticles (FNPs) functionalized with carbohydrate, such as quantum dots (QDs), are an attractive imaging tool for analyzing carbohydrate biofunctions in vitro and in vivo. Most FNPs, however, consist of highly toxic elements such as cadmium, tellurium, selenium, and so on, causing problems in long-term bioimaging because of their cytotoxicity. In this study, we developed cadmium-free sugar-chain-immobilized fluorescent nanoparticles (SFNPs) using ZnS-AgInS2 (ZAIS) solid solution nanoparticles (NPs) of low or negligible toxicity as core components, and investigated their bioavailability and cytotoxicity. SFNPs were prepared by mixing our originally developed sugar-chain-ligand conjugates with ZAIS/ZnS core/shell NPs. In binding experiments with lectin, the obtained ZAIS/ZnS SFNPs interacted with an appropriate lectin to give specific aggregates, and their binding interaction was visually and/or spectroscopically detected. In addition, these SFNPs were successfully utilized for cytometry analysis and cellular imaging in which the cell was found to possess different sugar-binding properties. The results of the cytotoxicity assay indicated that SFNPs containing ZAIS/ZnS have much lower toxicity than those containing cadmium. These data strongly suggest that our designed SFNPs can be widely utilized in various biosensing applications involved in carbohydrates.

  1. Protective effect of magnesium and selenium on cadmium toxicity in the isolated perfused rat liver system.

    Directory of Open Access Journals (Sweden)

    Ali Ghaffarian-Bahraman

    2014-12-01

    Full Text Available The isolated perfused rat liver (IPRL model has been used into toxicology study of rat liver. This model provides an opportunity at evaluation of liver function in an isolated setting. Studies showed that Cd, in a dose-dependent manner, induced toxic effects in IPRL models, and these effects were associated with aminotransferase activity and lipid peroxidation. The aim of this study was to investigate whether Mg  and/or Se could have protective effects against the Cd toxicity in the IPRL model. Male Wistar rats (9-10 weeks weighing 260-300 gr were used in this study. They were randomly divided into 8 groups of 4-6 rats per cage. In group 1, liver was perfused by Krebs-Henseleit buffer without MgSO4 (Control. Groups 2-8 were exposed to Mg, Se, Cd, Mg +Se, Cd + Mg, Cd + Se, Cd + Mg + Se respectively in Krebs-Henseleit buffer with no added MgSo4. Biochemical changes in the liver were examined within 90 minutes, and the result showed that the exposure to Cd, lowered glutathione level, while it increased malondialdehyde level and aminotransferase activities in IPRL model. Mg administration during exposure to Cd reduces the toxicity of Cd in the liver isolated while Se administration during exposure to Cd did not decrease Cd hepatotoxicity. Nevertheless, simultaneous treatment with Se and Mg on Cd toxicity have strengthened protective effects than the supplementation of Se alone in the liver.

  2. Toxic effects of cadmium on Morus alba L. and Bombyx moril L.

    NARCIS (Netherlands)

    Wang, K.R.; Gong, H.; Wang, Y.; Zee, van der S.E.A.T.M.

    2004-01-01

    A 3-year micro-plot experiment of mulberry cultivation with Cd-polluted soil and silkworm breeding experiments by feeding with exogenous or endogenous ¿Cd-polluted mulberry leaves were conducted to evaluate the toxic effects of Cd on mulberry and silkworms. There was no apparent harmful effect on mu

  3. Single and combined toxicity of copper and cadmium to H. vulgare growth and heavy metal bioaccumulation

    Directory of Open Access Journals (Sweden)

    Žaltauskaitė J.

    2013-04-01

    Full Text Available The single and combined effects of copper (Cu and cadmium (Cd (0.1-10 mg L−1 in spring barley (Hordeum vulgare L. plants grown in hydroponics are investigated. The aim of the study was to investigate the interactive effect of the binary mixture of Cu and Cd to the growth of H. vulgare and accumulation of these metals by the plants. Single and combined metal treatment led to major effects in the growth of roots and shoots and dry weight of barley. Exposure to metals altered the content of photosynthetic pigments and caused lipid peroxidation. It was observed that combined effects of heavy metals to plants are endpoint and concentration depending. The binary mixture Cu+Cd exhibited additive or less than additive interaction for dry weight, root length and shoot height. Analysis of tissue metal concentrations showed that Cu and Cd were mainly accumulated in the roots and the combination of Cu+Cd had less than additive response of metal bioaccumulation in the leaves and roots.

  4. Low-molecular-weight-chitosan ameliorates cadmium-induced toxicity in the freshwater crab, Sinopotamon yangtsekiense.

    Science.gov (United States)

    Li, Ruijin; Zhou, Yanying; Wang, Lan; Ren, Guorui

    2011-07-01

    Cadmium (Cd) has been shown to induce oxidative stress. Low-molecular-weight-chitosan (LMWC) has been demonstrated to exhibit potent antioxidant effects. We investigated the regulation role in Cd²⁺-induced oxidative damage in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense and the protective effect of LMWC. The results showed that Cd²⁺ significantly increased the hepatopancreatic metallothionein (MT) mRNA levels and protein kinase C (PKC) activity while decreasing the activities of Na⁺,K⁺-ATPase and Ca²⁺-ATPase in crabs relative to the control group. Co-treatment with LMWC suppressed the levels of MT and PKC but raised the activities of Na⁺,K+-ATPase and Ca²⁺-ATPase in hepatopancreatic tissues compared with the crabs exposed to Cd²⁺ alone. We postulate that LMWC may exert its protective effect through regulating the expressions of MT, PKC, Na⁺,K⁺-ATPase and Ca²⁺-ATPase, thereby enhancing antioxidant defense. These observations suggest that LMWC may be beneficial because of its ability to alleviate the Cd²⁺-induced damages to the crabs.

  5. Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Thi Thuy, E-mail: duongthuy0712@yahoo.com [Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Morin, Soizic, E-mail: soizic.morin@cemagref.fr [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas Cedex (France); Coste, Michel [Cemagref, UR REBX, 50 avenue de Verdun, F-33612 Cestas Cedex (France); Herlory, Olivier; Feurtet-Mazel, Agnes; Boudou, Alain [Universite de Bordeaux 1, CNRS, UMR 5805 EPOC, Place du Dr Peyneau, 33120 Arcachon (France)

    2010-01-01

    A study was undertaken to examine cadmium accumulation in freshwater biofilm, its effects on biofilm development and on diatom community structure in laboratory experimental conditions. A suspension of a biofilm originated from the Riou-Mort River (South West France) was inoculated into three experimental units containing clean glass substrates under laboratory conditions. Settling and already developed biofilms were exposed to a Cd concentration of 100 {mu}g L{sup -1}. Metal accumulation (total and intracellular metal content) in biofilms, dry weight and ash-free dry mass, diatom cell density and diatom community composition were analyzed. Both total and intracellular Cd accumulated by the biofilm throughout the experiment increased with duration of metal exposure. Biofilms in the course of maturation were showed higher Cd content and less effective development than settled biofilms. However diatom communities in younger biofilms exposed to Cd increased their tolerance to Cd by a highly significant development of Nitzschia palea. In contrast, Cd exposure had different effect in installed biofilm and taxonomic composition. These results indicate that mature biofilm may limit Cd accumulation into its architecture and protect diatom communities from the effects of metals.

  6. Toxic effects of cadmium on testis of birds and mammals: a review.

    Science.gov (United States)

    Marettová, E; Maretta, M; Legáth, J

    2015-04-01

    In humans and other mammals, cadmium (Cd) causes various damages to different organs and tissues of the body. This review presents a comprehensive overview on the effect of Cd on the structure of seminiferous tubules, Leydig cells and blood vessels in the testis. The main observation of the effect of Cd is destruction of the seminiferous tubules with severe necrotic areas. Damage is to all stages of developing germ cells by inducing their structural changes and the apoptotic cell death. Sertoli supporting cells are considered the most vulnerable cells. Their damage results in cytoplasmic rearrangement and disruption of inter-Sertoli tight junctions resulting in increased permeability of the blood-testis barrier, structural changes in the Leydig cells and decreased testosterone secretion. After long time of Cd exposure an increase of the amount of interstitial connective tissue occurs. In blood vessels Cd exposure causes various morphological and physiological changes in vascular endothelial cells and smooth muscle cells. In humans and other mammals, the range of effect depends on the dose, route, ways, and duration of exposure. After necrosis of the sensitive cells Cd produced lesions in surrounding tissue and activate free cells. Atrophy of the seminiferous tubules is followed by Leydig cell regeneration and interstitial revascularization. In birds, spermatogenic cells underwent irreversible degeneration or atrophy of seminiferous tubules in the absence of significant vascular lesions.

  7. Cadmium toxicity to Microcystis aeruginosa PCC 7806 and its microcystin-lacking mutant.

    Directory of Open Access Journals (Sweden)

    Bin Huang

    Full Text Available The adverse effects of microcystin (MC produced by cyanobacteria have drawn considerable attention from the public. Yet it remains unclear whether MC confers any benefits to the cyanobacteria themselves. One suggested function of MC is complexation, which may influence the bioaccumulation and toxicity of trace metals. To test this hypothesis, we examined Cd toxicity to wild-type Microcystis aeruginosa PCC 7806 (WT and its MC-lacking mutant (MT under nutrient-enriched (+NP, phosphorus-limited (-P, and nitrogen-limited (-N conditions. The accumulation of Cd and the biochemical parameters associated with its detoxification [total phosphorus (TP, inorganic polyphosphate (Poly-P, and glutathione (GSH in the cells as well as intra- and extra-cellular carbohydrates] were quantified. Although the -P cyanobacteria accumulated less Cd than their +NP and -N counterparts, the different nutrient-conditioned cyanobacteria were similarly inhibited by similar free ion concentration of Cd in the medium ([Cd2+]F. Such good toxicity predictability of [Cd2+]F was ascribed to the synchronous decrease in the intracellular concentrations of Cd and TP. Nevertheless, Cd toxicity was still determined by the intracellular Cd to phosphorus ratio (Cd/P, in accordance with what has been reported in the literature. On the other hand, the concentrations of TP, Poly-P, and carbohydrates went up, but GSH concentration dropped down with the enhancement of [Cd2+]F, indicating their association with Cd detoxification. Although the inactivation of MC peptide synthetase gene had some nutrient and Cd concentration dependent effects on the parameters above, both cyanobacterial strains showed the same Cd accumulation ability and displayed similar Cd sensitivity. These results suggest that MC cannot affect metal toxicity either by regulating metal accumulation or by altering the detoxification ability of the cyanobacteria. Other possible functions of MC need to be further investigated.

  8. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S;

    2002-01-01

    of the study was to determine whether cadmium-induced damage in the kidneys and the skeletal system could be detected among 100 ringed seals from Northwest Greenland. The cadmium concentrations in the kidney cortex ranged from 0 to 248 microg/g wet weight (mean=44.5, N=100) in the 99 kidneys examined...... to the proximal kidney tubules is known to induce demineralisation of the skeletal system (Fanconi's syndrome). Therefore, the three lowest lumbar vertebrae were scanned in 91 seals to measure the content of calcium. The 10 cases of nephropathy could neither be linked to the degree of mineralisation...

  9. Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies.

    Science.gov (United States)

    Lee, Wing-Kee; Thévenod, Frank

    2008-12-01

    Apoptosis is a tightly regulated physiological process, which can be initiated by toxic stimuli, such as cadmium (Cd2+). Cd2+ (10-50 microM) induces a rapid increase in reactive oxygen species (ROS) (> or = 30 min) in a cell line derived from the S1 segment of rat kidney proximal tubule, without any apparent mitochondrial dysfunction. The sphingolipid ceramide is an important second messenger in apoptosis. Short exposure to Cd2+ (3h) causes an increase in ceramides, which occurs downstream of ROS formation, and may interact with cellular components, such as endoplasmic reticulum and mitochondria. Following apoptosis initiation, execution must take place. The classical executioners of apoptosis are caspases, a family of cysteine proteases. However, increasing studies report caspase-independent apoptosis, which questions the essentiality of caspases for apoptosis implementation. With low micromolar Cd2+ concentrations (calpains, has emerged. Calpain activation by Cd2+ (3-6h) seems to be regulated by ceramide levels, in order to induce apoptosis. Calpain and caspase substrates overlap but yield different fragments, which may explain their diverse downstream targets. Furthermore, calpains and caspases may interact with one another to enhance, as seen by Cd2+, or diminish apoptosis. In this review, we discuss novel roles for ceramides, calpains and caspases as part of Cd2+-induced apoptotic signalling pathways in the kidney proximal tubule and their in vivo relevance to Cd2+-induced nephrotoxicity.

  10. Reproductive toxicity of bisphenol A and cadmium in Potamopyrgus antipodarum and modulation of bisphenol A effects by different test temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sieratowicz, Agnes, E-mail: A.Sieratowicz@bio.uni-frankfurt.de [Johann Wolfgang Goethe University Frankfurt am Main, Department of Aquatic Ecotoxicology, Siesmayerstrasse 70, 60323 Frankfurt (Germany); Stange, Daniela, E-mail: stange@bio.uni-frankfurt.de [Johann Wolfgang Goethe University Frankfurt am Main, Department of Aquatic Ecotoxicology, Siesmayerstrasse 70, 60323 Frankfurt (Germany); Schulte-Oehlmann, Ulrike, E-mail: schulte-oehlmann@bio.uni-frankfurt.de [Johann Wolfgang Goethe University Frankfurt am Main, Department of Aquatic Ecotoxicology, Siesmayerstrasse 70, 60323 Frankfurt (Germany); Oehlmann, Joerg, E-mail: oehlmann@bio.uni-frankfurt.de [Johann Wolfgang Goethe University Frankfurt am Main, Department of Aquatic Ecotoxicology, Siesmayerstrasse 70, 60323 Frankfurt (Germany)

    2011-10-15

    An OECD initiative for the development of mollusc-based toxicity tests for endocrine disrupters and other chemicals has recommended three test species with respective test designs for further standardisation. Preparing a subsequent pre-validation study we performed a reproduction test with Potamopyrgus antipodarum, determining the concentration range of the selected test substances, bisphenol A (BPA) and cadmium (Cd). At 16 deg. C, the recommended test temperature, the number of embryos in the brood pouch was increased by BPA and decreased by Cd (NOEC: 20 {mu}g BPA/L and 1 {mu}g Cd/L). Coinstantaneous BPA tests at 7 deg. C and 25 deg. C demonstrated a temperature dependency of the response, resulting in lower NOECs (5 {mu}g/L respectively). As expected, reproduction in control groups significantly varied depending on temperature. Additional observations of the brood stock showed seasonal fluctuations in reproduction under constant laboratory conditions. The recommended temperature range and test conditions have to be further investigated. - Highlights: > We performed a reproduction test with the mollusc Potamopyrgus antipodarum. > We defined the test substance concentration range for a pre-validation study. > The bisphenol A effect (increased reproduction) depends on the test temperature. > Reproduction of control groups significantly varies depending on temperature. > The brood stock shows seasonal fluctuations in reproduction at constant conditions. - A reproduction test with Potamopyrgus antipodarum with 2 substances for subsequent pre-validation is presented and bisphenol A effects show a temperature dependency.

  11. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation.

    Science.gov (United States)

    Kumar, Manoj; Bijo, A J; Baghel, Ravi S; Reddy, C R K; Jha, Bhavanath

    2012-02-01

    The protective role of exogenously supplied selenium (Se) and polyamines (PAs) such as putrescine (Put) and spermine (Spm) in detoxifying the cadmium (Cd) induced toxicity was studied in the marine red alga Gracilaria dura in laboratory conditions. The Cd exposure (0.4 mM) impede the growth of alga while triggering the reactive oxygen species (ROS viz. O(2)(•-) and H(2)O(2)) generation, inhibition of antioxidant system, and enhancing the lipoxygenase (LOX) activity, malondialdehyde (MDA) level and demethylation of DNA. Additions of Se (50 μM) and/or Spm (1 mM) to the culture medium in contrast to Put, efficiently ameliorated the Cd toxicity by decreasing the accumulation of ROS and MDA contents, while restoring or enhancing the level of enzymatic and nonenzymatic antioxidants and their redox ratio, phycobiliproteins and phytochelatins, over the controls. The isoforms of antioxidant enzymes namely superoxide dismutase (Mn-SOD, ~150 kDa; Fe-SOD ~120 kDa), glutathione peroxidase (GSH-Px, ~120 and 140 kDa), glutathione reductase (GR, ~110 kDa) regulated differentially to Se and/or Spm supplementation. Furthermore, it has also resulted in enhanced levels of endogenous PAs (specially free and bound insoluble Put and Spm) and n-6 PUFAs (C20-3, n-6 and C20-4, n-6). This is for the first time wherein Se and Spm were found to regulate the stabilization of DNA methylation by reducing the events of cytosine demethylation in a mechanism to alleviate the Cd stress in marine alga. The present findings reveal that both Se and Spm play a crucial role in controlling the Cd induced oxidative stress in G. dura.

  12. Phytoremediation potential of charophytes: Bioaccumulation and toxicity studies of cadmium, lead and zinc

    Institute of Scientific and Technical Information of China (English)

    Najjapak Sooksawat; Metha Meetam; Maleeya Kruatrachue; Prayad Pokethitiyook; Koravisd Nathalang

    2013-01-01

    The ability for usage of common freshwater charophytes,Chara aculeolata and Nitella opaca in removal of cadmium (Cd),lead (Pb)and zinc (Zn) from wastewater was examined.C aculeolata and N.opaca were exposed to various concentrations of Cd (0.25 and 0.5 mg/L),Pb (5 and 10 mg/L) and Zn (5 and 10 mg/L) solutions under hydroponic conditions for 6 days.C.aculeolata was more tolerant of Cd and Pb than N.opaca.The relative growth rate of N.opaca was drastically reduced at high concentrations of Cd and Pb although both were tolerant of Zn.Both macroalgae showed a reduction in chloroplast,chlorophyll and carotenoid content after Cd and Pb exposure,while Zn exposure had little effects.The bioaccumulation of both Cd and Pb was higher in N.opaca (1544.3 μg/g at 0.5 mg/L Cd,21657.0 μg/g at 10 mg/L Pb) whereas higher Zn accumulation was observed in C.aculeolata (6703.5 μg/g at 10 mg/L Zn).In addition,high bioconcentration factor values (> 1000) for Cd and Pb were observed in both species.C.aculeolata showed higher percentage of Cd and Pb removal (> 95%) than N.opaca and seemed to be a better choice for Cd and Pb removal from wastewater due to its tolerance to these metals.

  13. In Vitro Toxicity Evaluation of Engineered Cadmium-Coated Silica Nanoparticles on Human Pulmonary Cells

    Directory of Open Access Journals (Sweden)

    Uliana De Simone

    2013-01-01

    Full Text Available Cytotoxicity of cadmium-containing silica nanoparticles Cd-SiO2NPs (0.05–100 µg/mL versus SiO2NPs and CdCl2 was evaluated by an in vitro test battery in A549 by assessing (i mitochondrial function, (ii membrane integrity/cell morphology, (iii cell growth/proliferation, (iv apoptotic pathway, (v oxidative stress, after short- (24–48 h and long-term (10 days exposure. Both Cd-SiO2NPs and CdCl2 produced dose-dependent cytotoxic effects: (i MTT-assay: similar cytotoxicity pattern was observed at both 24 and 48 h, with a more Cd-SiO2NPs pronounced effect than CdCl2. Cd-SiO2NPs induced mortality (about 50% at 1 μg/mL, CdCl2 at 25 μg/mL; (ii calcein-AM/PI staining: decrease in cell viability, noticeable at 25 μg/mL, enhanced markedly at 50 and 100 μg/mL, after 24 h. Cd-SiO2NPs induced higher mortality than CdCl2 (25% versus 4%, resp., at 25 μg/mL with further exacerbation after 48h; (iii clonogenic assay: exposure for longer period (10 days compromised the A549 proliferative capacity at very low dose (0.05 μg/mL; (iv a progressive activation of caspase-3 immunolabelling was detected already at 1 μg/mL; (v GSH intracellular level was modified by all compounds. In summary, in vitro data demonstrated that both Cd-SiO2NPs and CdCl2 affected all investigated endpoints, more markedly after Cd-SiO2NPs, while SiO2NPs influenced GSH only.

  14. Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    HUANG Yizong; HU Ying; LIU Yunxia

    2009-01-01

    Accumulation of copper (Cu) and cadmium (Cd) in six rice cultivars (94D-22, 94D-54, 94D-64, Gui630, YY-1 and KY1360) was evaluated through exposure to heavy metal contamination (100 mg/kg Cu, 1.0 mg/kg Cd, and 100 mg/kg Cu + 1.0 mg/kg Cd) in a greenhouse. The dry weight of shoot and root, concentrations of Cu and Cd in plant tissues and the Cu, Cd, P, Fe concentrations in the root surface iron plaques were analyzed eight weeks later after treatment. The results indicated that the plant biomass was mainly determined by rice genotypes, not Cu and Cd content in soil. Separated treatment with Cu/Cd increased each metal level in shoot, root and iron plaques. Soil Cu enhanced Cd accumulation in tissues. In contrast, Cu concentrations in shoot and root was unaffected by soil Cd. Compared to single metal contamination, combined treatment increased Cd content by 110.6%, 77.0% and 45.2% in shoot, and by 112.7%, 51.2% and 18.4% in root for Gui630, YY-1 and KY1360, respectively. The content level of Cu or Cd in root surface iron plaques was not affected by their soil content. Cu promoted Fe accumulation in iron plaques, while Cd has no effect on P and Fe accumulation in it. The translocation of Cu and Cd from iron plaques to root and shoot was also discussed. These results might be beneficial in selecting cultivars with low heavy metal accumulation and designing strategies for soil bioremediation.

  15. Ex-vivo assessment of chronic toxicity of low levels of cadmium on testicular meiotic cells.

    Science.gov (United States)

    Geoffroy-Siraudin, Cendrine; Perrard, Marie-Hélène; Ghalamoun-Slaimi, Rahma; Ali, Sazan; Chaspoul, Florence; Lanteaume, André; Achard, Vincent; Gallice, Philippe; Durand, Philippe; Guichaoua, Marie-Roberte

    2012-08-01

    Using a validated model of culture of rat seminiferous tubules, we assessed the effects of 0.1, 1 and 10 μg/L cadmium (Cd) on spermatogenic cells over a 2-week culture period. With concentrations of 1 and 10 μg/L in the culture medium, the Cd concentration in the cells, determined by ICP-MS, increased with concentration in the medium and the day of culture. Flow cytometric analysis enabled us to evaluate changes in the number of Sertoli cells and germ cells during the culture period. The number of Sertoli cells did not appear to be affected by Cd. By contrast, spermatogonia and meiotic cells were decreased by 1 and 10 μg/L Cd in a time and dose dependent manner. Stage distribution of the meiotic prophase I and qualitative study of the synaptonemal complexes (SC) at the pachytene stage were performed by immunocytochemistry with an anti SCP3 antibody. Cd caused a time-and-dose-dependent increase of total abnormalities, of fragmented SC and of asynapsis from concentration of 0.1 μg/L. Additionally, we observed a new SC abnormality, the "motheaten" SC. This abnormality is frequently associated with asynapsis and SC widening which increased with both the Cd concentration and the duration of exposure. This abnormality suggests that Cd disrupts the structure and function of proteins involved in pairing and/or meiotic recombination. These results show that Cd induces dose-and-time-dependent alterations of the meiotic process of spermatogenesis ex-vivo, and that the lowest metal concentration, which induces an adverse effect, may vary with the cell parameter studied.

  16. Cadmium toxicity to ringed seals (Phoca hispida): an epidemiological study of possible cadmium-induced nephropathy and osteodystrophy in ringed seals (Phoca hispida) from Qaanaaq in Northwest Greenland

    DEFF Research Database (Denmark)

    Sonne-Hansen, C; Dietz, R; Leifsson, P S

    2002-01-01

    or osteodystrophy. This might be explained by the composition of the ringed seals diet, which contains high levels of vitamin D, calcium, phosphorus, zinc, selenium and protein. These elements are all likely to counteract cadmium-induced damage. It is speculated that ringed seal are not particularly vulnerable...

  17. Tissue concentrations as the dose metric to assess potential toxic effects of metals in field-collected fish: Copper and cadmium.

    Science.gov (United States)

    Meador, James P

    2015-06-01

    The present study examined the available literature linking whole-body tissue concentrations with toxic effects in fish species for copper and cadmium. The variability in effect concentration for both copper and cadmium among species occurred within an order of magnitude for all responses, whereas the range for lethal toxicity based on water exposure spanned approximately 4 to 5 orders of magnitude. Fish tissue concentrations causing adverse effects were just above background concentrations, occurring between 1 μg/g and 10 μg/g for copper and 0.1 μg/g to 4 μg/g for cadmium. The results also show that salmonids are especially sensitive to cadmium, which appears to be a function of chemical potency. No studies were found that indicated adverse effects without increases in whole-body concentration of these metals. This narrow range for dose-response implies that a toxicological spillover point occurs when the detoxification capacity of various tissues within the animal are exceeded, and this likely occurs at a similar whole-body concentration for all naïvely exposed fish species. Elevated whole-body concentrations in fish from the field may be indicative of possible acclimation to metals that may or may not result in effects for target species. Acclimation concentrations may be useful in that they signal excessive metal concentrations in water, sediment, or prey species for a given site and indicate likely toxic effects for species unable to acclimate to excess metal exposure. Using tissue residues as the dose metric for these metals provides another line of evidence for assessing impaired ecosystems and greater confidence that hazard concentrations are protective for all fish species.

  18. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar, E-mail: dr.samirmukherjee@gmail.com

    2013-09-15

    Highlights: • Toxic effect of CdS NPs on the growth and cell division in E. coli was studied. • CdS NPs affected cell surface topology and cell division. • Downregulation of both FtsZ and FtsQ was observed due to NPs exposure. • CdS NPs affected HeLa cell morphology with fragmented nuclei. • All such effects might be due to elevated oxidative stress. -- Abstract: The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC{sub 50} value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  19. Bone resorption and environmental exposure to cadmium in children: a cross - sectional study

    Directory of Open Access Journals (Sweden)

    Sughis Muhammad

    2011-12-01

    Full Text Available Abstract Background Exposure to cadmium has been associated with osteoporosis and fracture risk in women and elderly, but studies in children are lacking. In the present study we investigate the association between markers of bone demineralization [urinary calcium (Ca and deoxypyridinoline (DPD excretion] and urinary cadmium (Cd excretion (as an index of lifetime body burden. Methods 155 schoolchildren from 2 elementary schools in Lahore, Pakistan were included. Urinary Cd was measured as an index of lifetime exposure. We assessed the multivariate-adjusted association of exposure with markers of bone resorption, urinary DPD as well as with Ca excretion. Results Urinary Cd averaged 0.50 nmol/mmol creatinine and was not influenced by age, height, weight and socio-economic status (SES. Independent of gender, age, height, weight and SES a doubling of urinary Cd was associated with a 1.72 times (p Conclusions Even in young children, low-level environmental exposure to cadmium is associated with evidence of bone resorption, suggesting a direct osteotoxic effect with increased calciuria. These findings might have clinical relevance at older age.

  20. Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates.

    Science.gov (United States)

    Mebane, Christopher A; Dillon, Frank S; Hennessy, Daniel P

    2012-06-01

    The authors conducted 150 tests of the acute toxicity of resident fish and invertebrates to Cd, Pb, and Zn, separately and in mixtures, in waters from the South Fork Coeur d'Alene River watershed, Idaho, USA. Field-collected shorthead sculpin (Cottus confusus), westslope cutthroat trout (Oncorhynchus clarkii lewisi), two mayflies (Baetis tricaudatus and Rhithrogena sp.), a stonefly (Sweltsa sp.), a caddisfly (Arctopsyche sp.), a snail (Gyraulus sp.), and hatchery rainbow trout (Oncorhynchus mykiss), were tested with all three metals. With Pb, the mayflies (Drunella sp., Epeorus sp., and Leptophlebiidae), a Simuliidae black fly, a Chironomidae midge, a Tipula sp. crane fly, a Dytiscidae beetle, and another snail (Physa sp.), were also tested. Adult westslope cutthroat trout were captured to establish a broodstock to provide fry of known ages for testing. With Cd, the range of 96-h median effect concentrations (EC50s) was 0.4 to >5,329 µg/L, and the relative resistances of taxa were westslope cutthroat trout ≈ rainbow trout ≈ sculpin fish size was observed. In metal mixtures, the toxicities of the three metals were less than additive on a concentration-addition basis.

  1. Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates

    Science.gov (United States)

    Mebane, Christopher A.; Dillon, Frank S.; Hennessy, Daniel P.

    2012-01-01

    The authors conducted 150 tests of the acute toxicity of resident fish and invertebrates to Cd, Pb, and Zn, separately and in mixtures, in waters from the South Fork Coeur d'Alene River watershed, Idaho, USA. Field-collected shorthead sculpin (Cottus confusus), westslope cutthroat trout (Oncorhynchus clarkii lewisi), two mayflies (Baetis tricaudatus and Rhithrogena sp.), a stonefly (Sweltsa sp.), a caddisfly (Arctopsyche sp.), a snail (Gyraulus sp.), and hatchery rainbow trout (Oncorhynchus mykiss), were tested with all three metals. With Pb, the mayflies (Drunella sp., Epeorus sp., and Leptophlebiidae), a Simuliidae black fly, a Chironomidae midge, a Tipula sp. crane fly, a Dytiscidae beetle, and another snail (Physa sp.), were also tested. Adult westslope cutthroat trout were captured to establish a broodstock to provide fry of known ages for testing. With Cd, the range of 96-h median effect concentrations (EC50s) was 0.4 to >5,329μg/L, and the relative resistances of taxa were westslope cutthroat trout ≈ rainbow trout ≈ sculpin toxicities of the three metals were less than additive on a concentration-addition basis.

  2. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.

    Science.gov (United States)

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-09-15

    The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC₅₀ value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  3. Influence of Cadmium(II Ions and Brewery Sludge on Metallothionein Level in Earthworms (Eisenia fetida – Bio- transforming of Toxic Wastes

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2008-02-01

    Full Text Available Metallothioneins belong to a group of intracellular, high molecular andcysteine-rich proteins whose content in an organism increase with increasing concentrationof a heavy metal. The aim of this work was to apply the electrochemical analysis for theanalysis of metallothioneins in earthworms exposed to cadmium ions and brewery sludge.Here we utilized adsorptive transfer technique coupled with differential pulse voltammetryBrdicka reaction to determine metallothionein in different biological samples. By meansthis very sensitive technique it was possible to analyze metallothionein in concentrationsbelow 1 μmol.l-1 with the standard deviation of 4-5%. We found out that the average MTlevel in the non-treated earthworms oscillated between 19 and 48 μmol.l-1. When weanalysed samples of earthworms treated by cadmium, we observed that the MT contentincreased with the exposition length and increase dose of cadmium ions. Finally, weattempted to study and compare the toxicity of the raw sludge and its leach by using ofearthworms. The raw brewery sludge caused the death of the earthworms quickly.Earthworms held in the presence of leach from brewery sludge increased their weight of147 % of their original weight because they ingested the nutrients from the sludge. Themetallothionein level changes markedly with increasing time of exposition and applieddose of toxic compound. It clearly follows from the obtained results that the MT synthesisis insufficient in the first hours of the exposition and increases after more than 24 h.

  4. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702).

    Science.gov (United States)

    Aziz, Rukhsanda; Rafiq, Muhammad Tariq; Li, Tingqiang; Liu, Di; He, Zhenli; Stoffella, P J; Sun, Kewang; Xiaoe, Yang

    2015-04-01

    Cadmium (Cd) enters the food chain from polluted soils via contaminated cereals and vegetables; therefore, an understanding of Cd bioaccessibility, bioavailability, and toxicity in humans through rice grain is needed. This study assessed the Cd bioaccessibility, bioavailability, and toxicity to humans from rice grown on Cd-contaminated soils using an in vitro digestion method combined with a Caco-2/HL-7702 cell model. Cadmium bioaccessibility (18.45-30.41%) and bioavailability (4.04-8.62%) were found to be significantly higher in yellow soil (YS) rice than calcareous soil (CS) rice with the corresponding values of 6.89-11.43 and 1.77-2.25%, respectively. Toxicity assays showed an initial toxicity in YS rice at 6 mg kg(-1) Cd, whereas CS rice did not show any significant change due to low Cd concentrations. The acidic soils of Cd-contaminated areas can contribute to a higher dietary intake of Cd. Therefore, it is imperative to monitor Cd concentration in rice to minimize human health risk.

  5. Antioxidants, cadmium-induced toxicity, serum biochemical and the histological abnormalities of the kidney and testes of the male Wistar rats.

    Science.gov (United States)

    Obianime, A W; Roberts, I I

    2009-12-01

    The effect of different doses of cadmium [CD] on some biochemical, hormonal and histopathological parameters of the liver, kidney and testes of the Wistar rate were investigated. Cadmium in the dose range 0-40 mg/kg while causing a time-and dose-dependent decrease of the basal serum levels of alkaline phosphatase [ALP] also caused a dose-dependent increase in the serum concentration of the acid and prostatic acid phosphatases. The value of the ALP changed from 148.7+/-1.0 IU/L in the control to 53.7+/-0.098 at 40 mg/kg of cadmium. While the ACP and ACPT changed from 32.6+/-0.72 and 7 Units in the control to 54 and 17 units respectively at 40 mg/kg of CD. Furthermore cadmium also caused positively correlated dose-and time-dependent destruction of the histology of the liver, kidney and testes. These were characterized by vascular congestion, vacuolation, destruction of the seminal epithelial layers, focal necrosis of nucleus, oedema of the seminal epithelia layers, focal necrosis of nucleus, oedema of the seminiferous tubules and reduction of spermatogenesis. CD also caused granular and eosinophilic cytoplasm, enlargement of sinusoids with kupffer cells, haemorrhage and apoptosis of cells. Finally pre-treatment with vitamin C [0.0015/kg], vitamin E [1.51/g] and selenium [0.25 mg] which on their own had little or no effects on the serum basal phosphatases, hormonal and histological stability caused a reversal of the cadmium-induced biochemical, hormonal and histological toxicities of the liver, kidney and testes. These results may be explained by the oxidational/antioxidational properties of these xenobiotics and their mechanisms of actions.

  6. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss. by calcium application involves various physiological and biochemical strategies.

    Directory of Open Access Journals (Sweden)

    Parvaiz Ahmad

    Full Text Available Calcium (Ca plays important role in plant development and response to various environmental stresses. However, its involvement in mitigation of heavy metal stress in plants remains elusive. In this study, we examined the effect of Ca (50 mM in controlling cadmium (Cd uptake in mustard (Brassica juncea L. plants exposed to toxic levels of Cd (200 mg L(-1 and 300 mg L(-1. The Cd treatment showed substantial decrease in plant height, root length, dry weight, pigments and protein content. Application of Ca improved the growth and biomass yield of the Cd-stressed mustard seedlings. More importantly, the oil content of mustard seeds of Cd-stressed plants was also enhanced with Ca treatment. Proline was significantly increased in mustard plants under Cd stress, and exogenously sprayed Ca was found to have a positive impact on proline content in Cd-stressed plants. Different concentrations of Cd increased lipid peroxidation but the application of Ca minimized it to appreciable level in Cd-treated plants. Excessive Cd treatment enhanced the activities of antioxidant enzymes superoxide dismutase, ascorbate peroxidase and glutathione reductase, which were further enhanced by the addition of Ca. Additionally, Cd stress caused reduced uptake of essential elements and increased Cd accumulation in roots and shoots. However, application of Ca enhanced the concentration of essential elements and decreased Cd accumulation in Cd-stressed plants. Our results indicated that application of Ca enables mustard plant to withstand the deleterious effect of Cd, resulting in improved growth and seed quality of mustard plants.

  7. Influences of Chloropazine, Nimodipine and Their Combination on the Toxic Effects of Cadmium in Liver and Kidney of Mice

    Institute of Scientific and Technical Information of China (English)

    TANG LING-FANG; YANG YONG-NIAN; CHEN YAN-MENG; ZHANG ZHEN-LING; SONG LING; FENG ZHU-YING

    1999-01-01

    The influences of the calmodulin antagonist chlorpromazine (CPZ), and calcium chanmel blocker nimodipine (NLMO) and their combination on cadmium (Cd) poisoning of mice were studied.A series of biochemical parameters including urinary enzyme activities, blood and urine Cd levels, metallothionein (MT) contents in liver and kidney, hepatic ultrastructure and Ca2+ -Mg2- AT Pase activitv in erythrocyte membrane were determined. Animal models for Cd poisoning were established by peritoneal injection of 1/5 LD50 CdCl2. The experimental groups were protected by administration of CPZ, NIMO and CPZ and NIMO in combination I h before the injection of CdCl2. Five days later, samples were collected for analysis. The data showed that CPZ could protect kidney tissue against Cd-induced damage, as the urinary y-glutamyl-traspeptidase (γ-GT) and N-acetyl-β-D-glucosaminidase (NAG) activities were reduced significantly. There was neither evidence of the protective effect of NIMO on kidney tissue nor an indication of a synergistic effecf of CPZ and NIMO.Both CPZ and NIMO showed a considerable protective effect against the decrease in Ca2+ -Mg2+ AT-Pase activity, and a synergistic action was observed. Cd content in blood was reduced significantly by CPZ or the combination of CPZ and NIMO, but elevated by NIMO. Both CPZ and NIMO considerably increased MT contents in livers and kidneys and ameliorated damaged to the hepatic ultrastructures caused by Cd. The results indicated that these inhibitors could protect mice against the toxic effects of Cd in liver and kidney tissues, while CPZ was more efficient than NIMO. The combination of CPZ and NIMO excrted a synergistic action. The protective action of these two drugs might be relevent to the function of MT.

  8. Chronic cadmium exposure: relation to male reproductive toxicity and subsequent fetal outcome

    Energy Technology Data Exchange (ETDEWEB)

    Zenick, H. (Univ. of Cincinnati, OH); Hastings, L.; Goldsmith, M.; Niewenhuis, R.J.

    1982-03-01

    Acute injections of high doses of Cd induced marked testicular necrosis. However, the effects of low-dose, oral Cd exposure on a chronic basis are not well documented. The present investigation was designed to examine the effects of such exposure as reflected in parameters of spermatotoxicity and histology. Moreover, the impact on fetal outcome was measured by evaluating teratological and postnatal neurobehavior endpoints. Male Long-Evans hooded rats (100 d of age) were exposed to 0, 17.2, 34.4, or 68.8 ppm Cd for 70 d. During this period, the animals were maintained on a semipurified diet to control for the contribution of Zn and other trace elements. Near the end of exposure the males were mated to three female rats. One was sacrificed on d 21 of pregnancy for teratological assessment, including fetal weight, and determination of preimplantation and postimplantation loss. The other two dams were allowed to deliver, and their offspring were tested on tasks of exploratory behavior (d 21) and learning (d 90). Subsequently, the male parent was sacrified and a variety of measures recorded including weights of testes and caudae epididymides, sperm count and sperm morphology, and Cd content of liver and kidney. One of the testes was also evaluated histologically. No significant effects were observed on any of the parameters of reproductive toxicity or fetal outcome. These findings suggest that, at the doses employed in this study, Cd did not have signficant deleterious effects on the male reproductive system. Morever, the traditional view of Cd-related testicular insult, based on acute exposure, injection protocols, needs to be reevaluated in terms of environmental relevance.

  9. Reciprocal enhancement of uptake and toxicity of cadmium and calcium in rainbow trout (Oncorhynchus mykiss) liver mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Adiele, Reginald C.; Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)

    2010-03-01

    The interactive effects of cadmium (Cd) and calcium (Ca) on energy metabolism in rainbow trout liver mitochondria were studied to test the prediction that Ca would protect against Cd-induced mitochondrial liability. Isolated rainbow trout liver mitochondria were energized with malate and glutamate and exposed to increasing concentrations (5-100 {mu}M) of Cd and Ca singly and in combination at 15 {sup o}C. Accumulation of Cd and Ca in the mitochondria and mitochondrial respiration (oxygen consumption) rates were measured. Additionally, un-energized mitochondria were incubated with low doses (1 {mu}M) of Cd and Ca singly and in combination, with time-course measurements of cation accumulation/binding and oxygen consumption rates. In energized actively phosphorylating mitochondria, the uptake rates of both Cd and Ca were dose-dependent and enhanced when administered concurrently. Upon low-dose incubation, Cd accumulation was rapid and peaked in 5 min, while no appreciable uptake of Ca occurred. Functionally, the resting (state 4, ADP-limited) respiration rate was not affected in the dose-response exposure, but it decreased remarkably on low-dose incubation. Adenosine diphosphate (ADP)-stimulated respiration (state 3) rate was impaired dose-dependently with maximal inhibitions (at the highest dose, 100 {mu}M) of 32, 64 and 73% for Ca, Cd, and combined exposures, respectively. The combined effects of Ca and Cd suggested synergistic (more than additive) action and partial additivity of effects at low and higher doses of the two cations, respectively. Moreover, on a molar basis, Cd was twice as toxic as Ca to rainbow trout liver mitochondria and when combined, approximately 90% of the effects were attributable to Cd. The coupling efficiency, as measured by respiratory control ratio (RCR) and phosphorylation efficiency, measured as ADP/O ratio, both decreased as the exposure dosage and duration increased. In addition, Cd and Ca exposure decreased mitochondrial proton leak

  10. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    CERN Document Server

    Ditrói, F; Haba, H; Komori, Y; Aikawa, M

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope $^{117m}$Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets $^{117m}$Sn, $^{113}$Sn, $^{110}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In, $^{114m}$In, $^{113m}$In, $^{111}$In, $^{110m,g}$In, $^{109m}$I...

  11. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay.

    Science.gov (United States)

    Hemachandra, Chamini K; Pathiratne, Asoka

    2015-02-01

    Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems.

  12. Biochemical biomarker responses of green-lipped mussel, Perna canaliculus, to acute and subchronic waterborne cadmium toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Chandurvelan, Rathishri, E-mail: rch118@uclive.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Marsden, Islay D., E-mail: islay.marsden@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Gaw, Sally, E-mail: sally.gaw@canterbury.ac.nz [Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Glover, Chris N., E-mail: chris.glover@canterbury.ac.nz [School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2013-09-15

    Highlights: •Biochemical biomarkers were measured to assess effects of Cd on Perna canaliculus. •Biochemical responses varied between acute and subchronic exposure to Cd. •MTLP induction correlated strongly with Cd accumulation. •Alkaline phosphatase and glycogen levels decreased during subchronic Cd exposure. •Duration of Cd exposure influenced biochemical biomarker responses in mussels. -- Abstract: The biochemical responses of the green-lipped mussel, Perna canaliculus, to waterborne cadmium (Cd) were investigated in order to delineate toxic mechanisms, and the impacts of exposure dose and duration, of this important toxicant in a potential sentinel species. Mussels were exposed for either 96 h (acute: 0, 2000, 4000 μg L{sup −1} Cd) or for 28 d (subchronic: 0, 200, 2000 μg L{sup −1} Cd), and the digestive gland, gill and haemolymph were examined for impacts. Biochemical responses measured included those associated with metal detoxification (metallothionein-like protein; MTLP), oxidative stress (catalase, lipid peroxidation), cellular homeostasis (alkaline phosphatase, Na{sup +}, K{sup +}-ATPase; NKA), and energy utilisation (glycogen, haemolymph protein). Following acute exposure, digestive gland glycogen and gill NKA activity were significantly altered by Cd exposure relative to levels in mussels exposed to Cd-free seawater. Subchronic Cd exposure resulted in a significant increase in MTLP levels in both the gill and the digestive gland. This increase was correlated strongly with the levels of Cd accumulation measured in these tissues (R = 0.957 for gill, 0.964 for digestive gland). Catalase activity followed a similar pattern, although the correlation with tissue Cd accumulation was not as strong (R = 0.907 for gill, 0.708 for digestive gland) as that for MTLP. Lipid peroxidation increased in the digestive gland at Days 7 and 14 at both subchronic Cd levels tested, but this effect had largely dissipated by Days 21 and 28 (with the exception of

  13. Toxicity of cadmium to soil microbial biomass and its activity: Effect of incubation time on Cd ecological dose in a paddy soil

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; LUO Yun-kuo; ZHAO Xiao-min; Huang Chang-yong

    2005-01-01

    Cadmium (Cd) is ubiquitous in the human environment and has toxic effect on soil microbial biomass or its activity,including microbial biomass carbon (Cmic), dehydrogenase activity (DHA) and basal respiration (BR), etc., Cmic, DHA, BR were used as bioindicators of the toxic effect of Cd in soil. This study was conducted to determine the effects of Cd on soil microbial biomass and its activity in a paddy soil. The inhibition of microbial biomass and its activity by different Cd concentrations was described by the kinetic model (M1) and the sigmoid dose-response model (M2) in order to calculate three ecological doses of Cd:ED50, ED10 and ED5. Results showed that M2 was better fit than M1 for describing the ecological toxicity dose effect of cadmium on soil microbial biomass and its activity in a paddy soil. M2 for ED values (mg/kg soil) of Cmic, DHA, BR best fitted the measured paddy soil bioindicators. M2 showed that all ED values (mg/kg) increased in turn with increased incubation time. ED50, ED10 and ED5 of Cmic with M2 were increased in turn from 403.2, 141.1,100.4 to 1000.7, 230.9, 144.8, respectively, after 10 d to 60 d of incubation. ED50, ED10 and ED5 of DHA with M2 increased in turn from 67.6, 6.2, 1.5 to 101.1, 50.9, 41.0, respectively, after 10 d to 60 d of incubation. ED50, ED10 and ED5 of BR with M2 increased in turn from 149.7, 6.5, 1.8 to 156.5, 50.8, 35.5, respectively,after 10 d to 60 d of incubation. So the ecological dose increased in turn with increased incubation time for M2 showed that toxicity of cadmium to soil microbial biomass and its activity was decreased with increased incubation time.

  14. Relationship between the development of hepato-renal toxicity and cadmium accumulation in rats given minimum to large amounts of cadmium chloride in the long-term: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumori, K.; Shibutani, M.; Onodera, H. [Division of Pathology, National Institute of Health Sciences, Tokyo (Japan); Sato, S. [Ina Research Inc., Ina-shi, Nagano-ken (Japan); Nakagawa, J. [Division of Water Research, Tokyo Metropolitan Research Laboratory of Public Health (Japan); Hayashi, Y. [Department of Pharmaceutical Sciences, Kitasato University, Tokyo (Japan); Ando, M. [Division of Environmental Health Chemistry, National Institute of Health Sciences, Tokyo (Japan)

    1998-09-01

    We wished to clarify the relationship between the sensitivity to induce hepato-renal toxicity and the level of cadmium (Cd) in the organs of rats exposed to minimum to large amounts of cadmium chloride (CdCl{sub 2}). For this purpose, groups of female Sprague-Dawley (SD) rats, each consisting of 24 animals, were fed diet containing CdCl{sub 2} at concentrations of 0, 8, 40, 200, and 600 ppm for 2, 4, and 8 months from 5 weeks of age. All surviving rats given 600 ppm Cd were killed at 4 months because of deterioration of their general condition. Animals of this group showed anemia and decreased hematopoiesis in the bone marrow, in addition to reduction of cancellous bone in their femurs. Hepatotoxicity was observed after 2 months in the groups treated with {>=}200 ppm. By 4 months, the rats in the 600 ppm group had developed periportal liver cell necrosis. Renal toxicity characterized by degeneration of proximal tubular epithelia was apparent in the groups treated with {>=}200 ppm from 2 months, becoming more prominent in the high-dose rats at 4 months. Hepatic accumulation of Cd increased linearly with the duration of treatment. In contrast, the concentration of Cd in the renal cortex of rats treated with 600 ppm reached a plateau level of {proportional_to}250 {mu}g/g within the first 2 months. The renal concentration of Cd in the 200 ppm group when renal toxic lesions were first detected at 2 months ranged from 104 to 244 {mu}g/g. No renal lesions were observed in the 40 ppm group after 8 months, despite the presence of 91-183 {mu}g/g of Cd in the kidneys. The results thus suggest that renal toxicity would not be induced by treatment with minimum amounts of CdCl{sub 2} for periods longer than 8 months, although accumulation of Cd might gradually progress. A further 2-year feeding study of CdCl{sub 2} and Cd-polluted rice is now in progress. (orig.) (orig.) With 6 figs., 3 tabs., 20 refs.

  15. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells.

    Science.gov (United States)

    Muthusamy, Sasikumar; Peng, Cheng; Ng, Jack C

    2016-12-01

    Mixed contamination of benzo[a]pyrene (B[a]P), arsenic (As), cadmium (Cd), and lead (Pb) is a major environmental and human health concern. The mixture toxicity data on these co-contaminants are important for their risk assessment. In this study, we have determined the mixture toxicity of As, Cd and Pb, and B[a]P with As, Cd or Pb in HepG2 cells. The binary mixtures of Cd + As, Cd + Pb and As + Pb and B[a]P + metals (B[a]P + As, B[a]P + Cd and B[a]P + Pb) were evaluated for their interaction on the cytotoxicity using the MTS assay. A full factorial design (4 × 5) was used to determine the interaction toxicity and all the six mixtures showed significant interaction on the cytotoxicity. We further investigated the role of oxidative stress (reactive oxygen species (ROS) generation) and antioxidant defense mechanism (total glutathione (GSH) level) with the observed cytotoxicity. The mixtures of metals reduced the total GSH level and increased the ROS generation, respectively. In the case of mixtures of B[a]P and metals, both total GSH level and ROS generation were increased. Overall, the binary mixtures of metals and B[a]P with metals caused a dose dependent toxicity to HepG2 cells. The results also showed a significant contribution of oxidative stress to the observed toxicity and the potential protective role of the total GSH level against this mixture toxicity. The findings of interaction between B[a]P and metals might have an impact on the potential human health risk of this mixtures at contaminated sites.

  16. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Alin [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Zhaojun [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Jie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xue Gaofeng; Fan Fenliang [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liang Yongchao, E-mail: ycliang@caas.ac.cn [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003 (China)

    2009-12-15

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L{sup -1} Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H{sub 2}O{sub 2} concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  17. Isotherm studies for the determination of Cd (II) ions removal capacity in living biomass of a microalga with high tolerance to cadmium toxicity.

    Science.gov (United States)

    Torres, Enrique; Mera, Roi; Herrero, Concepción; Abalde, Julio

    2014-11-01

    The biosorption characteristics of Cd (II) ions using the living biomass of the marine diatom Phaeodactylum tricornutum were investigated. This microalga is a highly tolerant species to cadmium toxicity; for this reason, it is interesting to know its potential for use in the removal of this metal. The use of living biomass offers better possibilities than that of dead biomass since cadmium can also be bioaccumulated inside the cells. For this purpose, tolerant species are necessary. P. tricornutum is within this category with an EC50,96h of 19.1 ± 3.5 mg Cd (II)/L, and in the present manuscript, it is demonstrated that this microalga has a very good potential for bioremediation of Cd (II) ions in saline habitats. Cadmium removed by the cells was divided into three fractions: total, intracellular and bioadsorbed. The experiments were conducted for 96 h in natural seawater with a concentration range of 1-100 mg Cd (II)/L. Each fraction was characterized every 24 h by sorption isotherms. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin equations. The biosorption was well described by Langmuir isotherm followed by Freundlich. The worst model was Temkin. The biosorption capacity of this microalga for Cd (II) ions was found to be 67.1 ± 3.2 mg/g after 96 h with approximately 40 % of this capacity in the intracellular fraction. The bioconcentration factor determined was 2,204.7 after 96 h and with an initial Cd (II) concentration of 1 mg/L.

  18. Study on the protective role of selenium against cadmium toxicity in lactic acid bacteria: An advanced application of ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Caballero Arauz, Iris Liliana [Instituto de Investigaciones Cientificas, Universidad de Guanajuato, L. de Retana No. 5, 36000 Guanajuato (Mexico); Afton, Scott [Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172 (United States); Wrobel, Kazimierz [Instituto de Investigaciones Cientificas, Universidad de Guanajuato, L. de Retana No. 5, 36000 Guanajuato (Mexico); University of Cincinnati Metallomics Center of the Ameritas, University of Cincinnati, Cincinnati, OH 45221 (United States); Caruso, Joseph A. [Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172 (United States); University of Cincinnati Metallomics Center of the Ameritas, University of Cincinnati, Cincinnati, OH 45221 (United States); Gutierrez Corona, J. Felix [Instituto de Investigacion en Biologia Experimental, Facultad de Quimica, Universidad de Guanajuato, L de Retana No. 5, 36000 Guanajuato (Mexico); Wrobel, Katarzyna [Instituto de Investigaciones Cientificas, Universidad de Guanajuato, L. de Retana No. 5, 36000 Guanajuato (Mexico); University of Cincinnati Metallomics Center of the Ameritas, University of Cincinnati, Cincinnati, OH 45221 (United States)], E-mail: katarzyn@quijote.ugto.mx

    2008-05-30

    In this work, Lactobacillus casei rhamnosus were obtained from the commercial product of fermented milk and possible antagonistic effect of selenium (as sodium selenite) against cadmium toxicity was studied. The bacteria capability to incorporate Se was demonstrated: after 1 week exposure to Se(IV), its total concentration in the freeze-dried biomass was 405 {+-} 28 {mu}g/g (7.4 {+-} 0.8 {mu}g/g in control). In the presence of Se(IV) and Cd(II), the bacterial growth and cell viability were improved and lipid peroxidation less marked with respect to bacteria exposed to Cd(II) alone. The distribution of Se and Cd in molecular mass fractions of bacteria extracts was investigated by size exclusion chromatography with diode array and ICP-MS detection. The results obtained suggest that the antagonistic effect of Se is due to lower incorporation of cadmium at a high molecular mass (MM < 600 kDa). Slightly different distribution of elements in the fractions of MM < 40 kDa suggests the formation of new chemical species involving Cd and Se in bacteria exposed to Cd(II) + Se(IV) as compared to those exposed to Cd(II) alone. The study illustrates the high utility of atomic spectrometry to critically inform molecular questions that could be important in the industrial processes based on bacterial activity.

  19. Limnothrix sp. KO05: A newly characterized cyanobacterial biosorbent for cadmium removal: the enzymatic and non-enzymatic antioxidant reactions to cadmium toxicity.

    Science.gov (United States)

    Haghighi, Omid; Shahryari, Shahab; Ebadi, Mojgan; Modiri, Sima; Zahiri, Hossein Shahbani; Maleki, Hadi; Noghabi, Kambiz Akbari

    2017-03-18

    In this study, we isolated five indigenous cyanobacterial strains from different aqueous environments, with heavy metals contamination, in East Azerbaijan Province (northwest portion of Iran). A strain was identified by morphological and 16S rRNA sequence analysis as Limnothrix sp. KO05 and selected for further studies as having the greatest potential for cadmium uptake. Scanning electron microscopy (SEM) demonstrated cyanobacterium Limnothrix sp. KO05 forms filamentous structures and is straight or curved to some extent. The utmost biosorption capacity was found to be 82.18±1.22mgg(-1) at a Cd (II) concentration level of 150mgL(-1). Langmuir adsorption isotherm indicated a better fit to the experimental data. Response surface methodology (RSM) on the basis of four independent variables and the predicted maximum biosorption efficiency was 98.7% under the optimum condition. FT-IR spectroscopy profile of the Cd treated sample as demonstrated in confirmation of the benefits of various functional groups of proteins and polysaccharides of cyanobacterial biomass, involved in surface binding of Cd. The determination of catalase (CAT) activity in strain KO05 exposed to Cd (II) concentrations of 2, 5 and 10mgL(-1) showed an increase in enzyme activity after 24h exposure compared to unexposed cells. Correspondingly, CAT activity showed a significant decrease after 48h of treatment with Cd (II) concentrations of 5 and 10mgL(-1). CAT activity was decreased significantly at all concentrations within 72h after exposure to Cd. On the contrary, while ascorbate peroxidase (APX) gave the expected lower activity compared to the CAT within 24h after Cd treatment, its activity lasted up to 72h. Limnothrix sp. KO05 cells treated with 5 and 10mgL(-1) Cd (II) over 72h exposure showed a reduction in chlorophyll a contents compared to the controls. However, following exposure to Cd, chlorophyll a and carotenoid contents is reduced and after overcoming stress and deployment of an adaptation

  20. Urinary cadmium concentration and risk of breast cancer: a systematic review and dose-response meta-analysis.

    Science.gov (United States)

    Larsson, Susanna C; Orsini, Nicola; Wolk, Alicja

    2015-09-01

    Cadmium is a toxic and persistent heavy metal with estrogenic activities. We conducted a systematic review and meta-analysis of cohort, case-control, and cross-sectional studies of the association between urinary cadmium concentration, a biomarker of cadmium exposure, and breast cancer risk. Studies were identified by searching PubMed and Embase (to March 15, 2015) and by reviewing the reference lists of pertinent articles. Study-specific risk estimates were combined by using a random-effects model. We identified 2 cohort studies (with 67 breast cancer deaths) and 5 case-control studies and 1 cross-sectional study (with 1,416 cases and 5,083 controls) on urinary cadmium concentration in relation to breast cancer risk. The studies were published during the past 10 years (2006-2015). There was no consistent association between urinary cadmium and breast cancer mortality in the cohort studies. In case-control and cross-sectional studies, the pooled odds ratios were 2.24 (95% confidence interval: 1.50, 3.34; I(2) = 63.4%) for the highest versus lowest category of cadmium concentration and 1.66 (95% confidence interval: 1.23, 2.25) for each 0.5-µg/g creatinine increase of cadmium concentration. This meta-analysis suggests that a high cadmium exposure may be a risk factor for breast cancer, but large prospective studies are needed to confirm this finding.

  1. 23种常见作物对镉毒害的敏感性差异%Different Sensitivity of 23 Common Crop Species to Cadmium Toxicity

    Institute of Scientific and Technical Information of China (English)

    丁枫华; 刘术新; 罗丹; 王果

    2011-01-01

    通过水培苗期毒性试验,研究了9个科23种常见作物幼苗对镉毒害敏感性的差异.结果表明,大部分供试植物在0.1~0.25 mg·L-1镉浓度条件下开始出现表观毒害症状.不同种类作物所表现的毒害症状有较大的差异.作物地上部鲜重对较低浓度镉(0.1~0.5 mg·L-1)胁迫的响应比其他生长性状指标更加敏感和稳定.可作为植物对镉敏感性的筛选指标.不同种类作物EC20值(地上部生物量降低20%时培养液中Cd的浓度)的变化范围为0.03~24.67 mg·L-1.根据表观毒性响应端点和EC20对作物镉毒害敏感性分别进行分类,2种分类结果基本一致.大白菜、油白菜、油麦菜、芥菜、小白菜属于镉敏感作物,可以作为确定土壤和植物中镉的毒害临界值的生态毒性受体以及土壤镉污染的监测植物.黄瓜为镉抗性较强作物.%Cadmiun toxicity to 23 kinds of commonly cultivated crops of 9 families was studied by solution culture with different cadmium concentrations. Most of the studied crop seedlings showed cadmium toxicity symptoms with O. 1-0. 25 mg.L-1. The toxic effects of cadmium on the crops were quite different. The effect of Cd on shoot biomass was more obvious and stable than the other parameters at low Cd concentrations (0.1-0.5 mg.L-1), Therefore, shoot fresh weight was selected to be the indicator of plant sensitivity to Cd. The EC20 ( effective concentration causing a 20% inhibition of shoot biomass) values of Cd for the studied crops ranged from O. 03 to 24.67 mg.L-1. The Cd sensitivity of the crops is classified according to the response endpoint of apparent symptoms and the EC20 values. Chinese cabbage, brassica napus, youmai lettuce, mustard and pakchoi are sensitive species to Cd toxicity that can be used as ecological receptors to determine the critical value of the toxicity of soil Cd to crops or as monitoring crop species of soil Cd pollution. Cucumber is most tolerant to Cd toxicity among the

  2. Oral cadmium chloride intoxication in mice

    DEFF Research Database (Denmark)

    Andersen, O; Nielsen, J B; Svendsen, P

    1988-01-01

    Diethyldithiocarbamate (DDC) is known to alleviate acute toxicity due to injection of cadmium salts. However, when cadmium chloride was administered by the oral route, DDC enhanced rather than alleviated the acute toxicity; both oral and intraperitoneal (i.p.) administration of DDC had this effect....... Thus, orally administered DDC enhanced cadmium-induced duodenal and ileal tissue damage and inhibition of peristalsis, as indicated by an increased intestinal transit time. At low cadmium doses, the whole-body retention of cadmium was increased by oral DDC administration. Intraperitoneally administered...

  3. Cadmium effects on the thyroid gland.

    Science.gov (United States)

    Jancic, Snezana A; Stosic, Bojan Z

    2014-01-01

    Cadmium has been listed as one of the 126 priority pollutants and a category I carcinogen. Carcinogenic effects of cadmium on the lungs, testicles, and prostate are widely recognized, but there has been insufficient research on the effect of cadmium on the thyroid gland. Cadmium has the affinity to accumulate not only in the liver, kidneys, and pancreas but also in the thyroid gland. It has been established that cadmium blood concentration correlates positively with its accumulation in the thyroid gland. Women of fertile age have higher cadmium blood and urine concentrations than men. In spite of its redox inertia, cadmium brings about oxidative stress and damage to the tissue by indirect mechanisms. Mitochondria are considered to be the main intracellular targets for cadmium. Colloid cystic goiter, adenomatoid follicular hyperplasia with low-grade dysplasia and thyroglobulin hypo- and asecretion, and parafollicular cell diffuse and nodular hyperplasia and hypertrophy are often found in chronic cadmium toxicity.

  4. Role of certain environmental factors on cadmium uptake and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br.

    Science.gov (United States)

    Gaur, J P; Noraho, N

    1995-09-01

    Effects of pH, temperature, EDTA and photosynthetically available radiation on the uptake and toxicity of Cd was investigated in Spirodela polyrhiza (L.) Schleid. and Azolla pinnata R. Br. In general, Cd toxicity was accentuated in conditions which favoured enhanced intracellular Cd uptake. Extracellular binding and intracellular uptake of Cd were lowered at pH values > 7 due to reduced availability of the aquo ion; consequently, toxicity was markedly reduced. At pH value 99%) remains available as the aquo ion. The presence of EDTA in the medium decreased extracellular binding, intracellular uptake and toxicity of Cd in test plants. This was due to formation of Cd-EDTA complex which was obviously not available to test plants. Elevation of temperature increased intracellular Cd uptake and this resulted in enhanced toxic effects. Similarly, increase in photosynthetically available radiation caused a slight increase in Cd uptake and toxicity in test plants. Obviously, rise in temperature or PAR increased metabolic activities of test plants thereby leading to increased Cd transport and toxicity.

  5. Validation of a chronic dietary cadmium bioaccumulation and toxicity model for Hyalella azteca exposed to field-contaminated periphyton and lake water.

    Science.gov (United States)

    Golding, Lisa A; Borgmann, Uwe; Dixon, D George

    2011-11-01

    A model previously developed in the laboratory to predict chronic bioaccumulation and toxicity of cadmium to Hyalella azteca from a diet of periphyton was validated by comparing predictions with measurements of Cd in two exposure scenarios: laboratory-cultured H. azteca exposed for 28 d to field-contaminated water and periphyton, and Cd measured in field-collected H. azteca. In both exposure scenarios, model predictions of bioaccumulation were shown to be robust; however, effects on Cd bioaccumulation from complexation with dissolved organic carbon (DOC) and inhibition of Cd bioaccumulation by Ca²⁺ must be incorporated into the model to permit its wider application. The model predicted that 80 to 84% of Cd in H. azteca came from periphyton when H. azteca were chronically exposed to dissolved Cd in lake water at 2.63 to 3.01 nmol/L and periphyton at 1,880 to 2,630 nmol/g ash-free dry mass. Dietary Cd contributed markedly to the model-predicted decrease in 28-d survival to 74% at environmental Cd concentrations in food and water. In reality, survival decreased to 10%. The lower than predicted survival likely was due to the higher nutritional quality of periphyton used to develop the model in the laboratory compared with the field-collected periphyton. Overall, this research demonstrated that Cd in a periphyton diet at environmental concentrations can contribute to chronic toxicity in H. azteca.

  6. Effects of soil organic matter content on cadmium toxicity in Eisenia fetida: implications for the use of biomarkers and standard toxicity tests.

    Science.gov (United States)

    Irizar, A; Rodríguez, M P; Izquierdo, A; Cancio, I; Marigómez, I; Soto, M

    2015-01-01

    Bioavailability is affected by soil physicochemical characteristics such as pH and organic matter (OM) content. In addition, OM constitutes the energy source of Eisenia fetida, a well established model species for soil toxicity assessment. The present work aimed at assessing the effects of changes in OM content on the toxicity of Cd in E. fetida through the measurement of neutral red uptake (NRU) and mortality, growth, and reproduction (Organisation for Economic Co-operation and Development [OECD] Nos. 207 and 222). Complementarily, metallothionein (MT) and catalase transcription levels were measured. To decrease variability inherent to natural soils, artificial soils (Organization for Economic Cooperation and Development 1984) with different OM content (6, 10, and 14%) and spiked with Cd solutions at increasing concentrations were used. Low OM in soil decreased soil ingestion and Cd bioaccumulation but also increased Cd toxicity causing lower NRU of coelomocytes, 100 % mortality, and stronger reproduction impairment, probably due to the lack of energy to maintain protection mechanisms (production of MT).Cd bioaccumulation did not reflect toxicity, and OM played a pivotal role in Cd toxicity. Thus, OM content should be taken into account when using E. fetida in in vivo exposures for soil health assessment.

  7. Mixture toxicity and interactions of copper, nickel, cadmium, and zinc to barley at low effect levels: Something from nothing?

    Science.gov (United States)

    Versieren, Liske; Evers, Steffie; De Schamphelaere, Karel; Blust, Ronny; Smolders, Erik

    2016-10-01

    Metal contamination is mostly a mixture of different metals, and these multicomponent mixtures can produce significant mixture effects. The present study was set up to investigate the toxicity of multiple metal mixtures of Cu, Ni, Cd, and Zn to plants at metal doses individually causing low-level phytotoxic effects. Barley (Hordeum vulgare L.) root elongation toxicity tests were performed in resin-buffered nutrient solutions to control metal speciation. Treatments included single-metal concentrations and binary, ternary, and quaternary mixtures. Mixtures of different metals at free ion concentrations, each causing <10% inhibition of root elongation, yielded significant mixture effects, with inhibition reaching up to 50%. The independent action (IA) model predicted mixture toxicity statistically better than the concentration addition (CA) model, but some synergisms relative to the IA model were observed. These synergisms relative to IA were most pronounced in quaternary mixtures and when the dose-response curves had steep slopes. Generally, antagonistic interactions relative to the CA model were observed. Increasing solution Zn concentrations shifted metal interactions (CA based) from additive or slightly synergistic at background Zn concentrations to antagonistic at higher Zn concentrations, suggesting a protective effect of Zn. Overall, the present study shows that the CA model can be used as a conservative model to predict metal mixture toxicity to barley. Environ Toxicol Chem 2016;35:2483-2492. © 2016 SETAC.

  8. Identification of a regulation network in response to cadmium toxicity using blood clam Tegillarca granosa as model

    Science.gov (United States)

    Bao, Yongbo; Liu, Xiao; Zhang, Weiwei; Cao, Jianping; Li, Wei; Li, Chenghua; Lin, Zhihua

    2016-01-01

    Clam, a filter-feeding lamellibranch mollusk, is capable to accumulate high levels of trace metals and has therefore become a model for investigation the mechanism of heavy metal toxification. In this study, the effects of cadmium were characterized in the gills of Tegillarca granosa during a 96-hour exposure course using integrated metabolomic and proteomic approaches. Neurotoxicity and disturbances in energy metabolism were implicated according to the metabolic responses after Cd exposure, and eventually affected the osmotic function of gill tissue. Proteomic analysis showed that oxidative stress, calcium-binding and sulfur-compound metabolism proteins were key factors responding to Cd challenge. A knowledge-based network regulation model was constructed with both metabolic and proteomic data. The model suggests that Cd stimulation mainly inhibits a core regulation network that is associated with histone function, ribosome processing and tight junctions, with the hub proteins actin, gamma 1 and Calmodulin 1. Moreover, myosin complex inhibition causes abnormal tight junctions and is linked to the irregular synthesis of amino acids. For the first time, this study provides insight into the proteomic and metabolomic changes caused by Cd in the blood clam T. granosa and suggests a potential toxicological pathway for Cd. PMID:27760991

  9. Toxic effects of two sources of dietborne cadmium on the juvenile cobia, Rachycentron canadum L. and tissue-specific accumulation of related minerals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang [Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong (China); Guangdong Yuehai Feed Group Co., Ltd., Zhanjiang, Guangdong (China); Chi, Shuyan; Liu, Hongyu; Dong, Xiaohui; Yang, Qihui; Zhang, Shuang [Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong (China); Tan, Beiping, E-mail: bptan@126.com [Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong (China)

    2015-08-15

    Highlights: • CdCl{sub 2}–Cd showed a higher toxicity than SVM-Cd for cobia. • Cd accumulation in cobia fed diets contaminated SVM-Cd was higher than in cobia fed diets contaminated CdCl{sub 2}–Cd. • Cd accumulation in tissues of cobia fed both types of Cd was kidney > liver > intestine > gill muscle. • Dietborne Cd decreased the Fe concentration in kidney and liver, Ca concentrations in vertebra and scale. - Abstract: In the present study, juvenile cobia, Rachycentron canadum L. were fed diets contaminated by two different sources of cadmium: squid viscera meal (SVM-Cd, organic form) and cadmium chloride (CdCl{sub 2}–Cd, inorganic form). The Cd concentrations in fish diet were approximate 3.0, 5.0 and 10.0 mg Cd kg{sup −1} for both inorganic and organic forms. In the control diet (0.312 mg Cd kg{sup −1} diet, Cd mainly come from fish meal), no cadmium was added. The experiment lasted for 16 weeks and a statistically significant inverse relationship was observed between specific growth rate (SGR) and the concentration of dietary Cd. The SGR of cobia fed a diet with SVM-Cd increased at the lowest doses and decreased with the increasing level of dietary SVM. Fish fed diet contaminated SVM-Cd had significantly higher SGR than those fed diets contaminated CdCl{sub 2}–Cd among the high Cd level diets treatments. The dietary Cd levels also significantly affected the survival rate of the fish. Among the hematological characteristics and plasma constituents, glutamic-pyruvic transaminase activities and alkaline phosphatase activities in serum and liver increased and hepatic superoxide dismutase activity decreased with the increasing dietary Cd levels. The cobia fed diet contaminated by high level of CdCl{sub 2}–Cd had significantly higher ALP activity than cobia fed diet contaminated by high level of SVM-Cd. The results from these studies indicate no differences in toxicity response to dietborne SVM-Cd and CdCl{sub 2}–Cd at a low level of Cd

  10. Phytoavailability of cadmium (Cd) to Pak choi (Brassica chinensis L.) grown in Chinese soils: a model to evaluate the impact of soil Cd pollution on potential dietary toxicity.

    Science.gov (United States)

    Rafiq, Muhammad Tariq; Aziz, Rukhsanda; Yang, Xiaoe; Xiao, Wendan; Stoffella, Peter J; Saghir, Aamir; Azam, Muhammad; Li, Tingqiang

    2014-01-01

    Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. Therefore, an understanding is needed on the relationship between the phytoavailability of Cd in soils and its uptake in edible tissues of vegetables. The purpose of this study was to establish soil Cd thresholds of representative Chinese soils based on dietary toxicity to humans and develop a model to evaluate the phytoavailability of Cd to Pak choi (Brassica chinensis L.) based on soil properties. Mehlich-3 extractable Cd thresholds were more suitable for Stagnic Anthrosols, Calcareous, Ustic Cambosols, Typic Haplustalfs, Udic Ferrisols and Periudic Argosols with values of 0.30, 0.25, 0.18, 0.16, 0.15 and 0.03 mg kg-1, respectively, while total Cd is adequate threshold for Mollisols with a value of 0.86 mg kg-1. A stepwise regression model indicated that Cd phytoavailability to Pak choi was significantly influenced by soil pH, organic matter, total Zinc and Cd concentrations in soil. Therefore, since Cd accumulation in Pak choi varied with soil characteristics, they should be considered while assessing the environmental quality of soils to ensure the hygienically safe food production.

  11. Toxic Elements

    DEFF Research Database (Denmark)

    Hajeb, Parvaneh; Shakibazadeh, Shahram; Sloth, Jens Jørgen

    2016-01-01

    Food is considered the main source of toxic element (arsenic, cadmium, lead, and mercury) exposure to humans, and they can cause major public health effects. In this chapter, we discuss the most important sources for toxic element in food and the foodstuffs which are significant contributors to h...

  12. Cadmium and Chrome Concentrations in Human Milk

    Directory of Open Access Journals (Sweden)

    Sima Nazarpour

    2014-04-01

    Full Text Available Introduction: Nutrition of children has the highest priority in any program aimed at children's health care. Milk contaminated with various toxic elements can have adverse effects on children's health. This study aimed to determine the concentration of heavy metals including cadmium(Cd and chromium (Cr of breast feeding women’s milk in Varamin. Methods: This is a cross sectional study. In the present study, chromium and cadmium levels in milk of 100 mothers attending clinics in the city of Varamin were measured in four to eight weeks after delivery, using atomic absorption spectrometry. Results: The mean values (±SD of Cd and Cr in human milk were 5±6.9 μg/ml and 3±2.7 μg/ml respectively. Result of Linear regression showed that cadmium levels were higher in breast milk of people living close to the factory or industrial center. Also, the chromium levels were higher in the breast milk of women in cases of: Smoking by spouses, consumption of imported rice, consumption of mineral water, and living close to the factory or an industrial center. Conclusion: This study showed that the relationship of some factors such as living near a factory or an industrial center, smoking by spouse, the type of consumed rice and water, with the level of cadmium and chromium. Cadmium and chromium levels of breast milk in this study were higher than the levels of these elements mentioned in the reviewed articles and international standard. Because some variables, such as living near a factory or an industrial center, smoking by spouse, the type of consumed rice and water can affect the amount of entering elements in breast milk. Actions can be taken to reduce or eliminate these variables in order to decrease the mentioned elements in human milk.

  13. Bioaccumulation and single and joint toxicities of penta-BDE and cadmium to earthworms (Eisenia fetida) exposed to spiked soils

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bioaccumulation of penta-BDE(DE-71) in earthworms(Eisenia fetida) and the induced toxicities on the growth and reproduction of earthworms were investigated.All the major congeners in DE-71 could be bioaccumulated in earthworms and the concentration found in earthworms correlated to the spiked concentration in soil.DE-71 might inhibit the growth and reproduction of cocoons and juveniles of earthworms.The toxicities were dose dependent and increased with exposure time.Exposing earthworms to combination of DE-71 and Cd resulted in enhanced mortality and reduction of cocoons or juveniles in a synergistic mode.The presence of DE-71 may affect the relocation of Cd in earthworms.When the earthworms were exposed to Cd alone,Cd up-taken by earthworms was mainly partitioned in the cytosolic fraction.While DE-71 was present,Cd in the cytosolic fraction decreased significantly.It is perhaps that DE-71 inhibits the synthesis of matallothioneins,and then reduces the detoxification ability of earthworms.This is the first report about the toxicity of PBDEs to earthworms.The result would be useful for ecological risk assessment of PBDEs in terrestrial ecosystem.

  14. Prediction of acute toxicity of cadmium and lead to zebrafish larvae by using a refined toxicokinetic-toxicodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yongfei; Feng, Jianfeng, E-mail: fengjf@nankai.edu.cn; Zhu, Lin, E-mail: zhulin@nankai.edu.cn

    2015-12-15

    Highlights: • We developed a BLM-aided TK-TD model that considers the effects of H{sup +}. • The time-course metal concentration in larvae was well described by the TK model. • The time-course survival of zebrafish larvae was well simulated by the TD model. - Abstract: The biotic ligand model (BLM) and the toxicokinetic-toxicodynamic (TK-TD) model are essential in predicting the acute toxicity of metals in various species and exposure conditions; however, these models are usually separately utilized. In this study, a mechanistic TK-TD model was developed to predict the acute toxicity of 10{sup −6} M Cd and 10{sup −6} M Pb to zebrafish (Danio rerio) larvae. The novel approach links the BLM with relevant TK processes to simulate the bioaccumulation processes of Cd or Pb as a function of the maximum uptake rate of each metal, the affinity constants, and the concentrations of free metal ions and H{sup +} in test solutions. Results showed that the refined TK-TD model can accurately predict the accumulation and acute toxicity of Cd and Pb to zebrafish larvae at pH 5.5, 6.5, and 7.0.

  15. Cadmium in Sweden - environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H.; Iverfeldt, Aa. [Swedish Environmental Research Inst. (Sweden); Borg, H.; Lithner, G. [Stockholm Univ. (Sweden). Inst. for Applied Environmental Research

    1998-03-01

    This report aims at assessing possible effects of cadmium in the Swedish environment. Swedish soils and soft freshwater systems are, due to a generally poor buffering capacity, severely affected by acidification. In addition, the low salinity in the Baltic Sea imply a naturally poor organism structure, with some important organisms living close to their limit of physiological tolerance. Cadmium in soils is mobilized at low pH, and the availability and toxicity of cadmium in marine systems are enhanced at low salinity. The Swedish environment is therefore extra vulnerable to cadmium pollution. The average concentrations of cadmium in the forest mor layers, agricultural soils, and fresh-waters in Sweden are enhanced compared to `back-ground concentrations`, with a general increasing trend from the north to the south-west, indicating strong impact of atmospheric deposition of cadmium originating from the central parts of Europe. In Swedish sea water, total cadmium concentrations, and the fraction of bio-available `free` cadmium, generally increases with decreasing salinity. Decreased emissions of cadmium to the environment have led to decreasing atmospheric deposition during the last decade. The net accumulation of cadmium in the forest mor layer has stopped, and even started to decrease. In northern Sweden, this is due to the decreased deposition, but in southern Sweden the main reason is increased leakage of cadmium from the topsoil as a consequence of acidification. As a result, cadmium in the Swedish environments is undergoing an extended redistribution between different soil compartments, and from the soils to the aquatic systems. 90 refs, 23 figs, 2 tabs. With 3 page summary in Swedish

  16. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Petriello, Michael C. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); University of Kentucky Superfund Research Center, Lexington, KY 40536 (United States); Han, Sung Gu [University of Kentucky Superfund Research Center, Lexington, KY 40536 (United States); Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701 (Korea, Republic of); Newsome, Bradley J. [University of Kentucky Superfund Research Center, Lexington, KY 40536 (United States); Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506 (United States); Hennig, Bernhard [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); University of Kentucky Superfund Research Center, Lexington, KY 40536 (United States); Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, KY 40506 (United States)

    2014-06-01

    Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehicle and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1 −/− mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1 −/− endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1 −/− endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation. - Highlights: • Reduction of caveolin-1 protein protects against polychlorinated biphenyl toxicity. • Decreasing

  17. Encapsulation of cadmium selenide quantum dots using a self-assembling nanoemulsion (SANE) reduces their in vitro toxicity.

    Science.gov (United States)

    Edmund, Anton R; Kambalapally, Swetha; Wilson, Thomas A; Nicolosi, Robert J

    2011-02-01

    Although, nanometer-scale semi-conductor quantum dots (QDs) have attracted widespread interest in medical diagnosis and treatment, many can have intrinsic toxicities, especially those composed of CdSe, associated with their elemental composition. Using our self-assembling nanoemulsion (SANE) formulations which we have previously reported to be composed of non-toxic components, i.e., such as vegetable oil, surfactant and water, we hypothesized that their appropriate utilization would reduce the toxicity of QDs by encapsulating the CdSe QDs in our (SANE) system using a modified phase-inversion temperature (PIT) method. SANE encapsulation of the QDs did not alter their emission wavelength of 600nm which remained unchanged during the encapsulation process. In contrast, zeta potential of encapsulated QDs was reduced from -30 to -6.59 mV, which we have previously reported to be associated with beneficial properties (increased bioavailability and efficacy) for SANE-encapsulated bioactives such as pharmaceuticals. Relative to the untreated controls, the viability of HeLa cells exposed for 48 h to un-encapsulated CdSe QDs at a concentration of 115 μg/mL was 22.7±1.7% (p<0.05). In contrast, the percentage of viable HeLa cells following exposure to SANE-encapsulated CdSe QDs at the same concentration was 91.6±3.5% (p<0.05) or a 307% increase in the number of viable cells (p<0.05). When the dose of CdSe QDs was increased to 230 μg/mL, the percentage of viable HeLa cells after exposure to the un-encapsulated CdSe QDs was 16.1±1.3% compared to controls (p<0.05). In contrast, at the same increased concentration (230 μg/mL) of un-encapsulated CdSe QDs, the percentage of viable HeLa cells following exposure to SANE-encapsulated CdSe QDs was 87.9±3.3% relative to controls (p<0.05) or a 448% increase in the number of viable cells (p<0.05). Exposure of HeLa cells to a nanoblank, (nanoemulsion without QDs), showed no significant effect on cell viability (97.2±2.5%) compared to

  18. Toxicity and sorption kinetics of dissolved cadmium and chromium III on tropical freshwater phytoperiphyton in laboratory mesocosm experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bere, Taurai, E-mail: taubere@yahoo.com [Instituto Internacional de Ecologia, Rua Bento Carlos, 750, Centro, Sao Carlos, Sao Paulo (Brazil); Univeridade Federal De Sao Carlos, Programa de Pos-Graduacao em Ecologia e Recursos Naturais, Rodovia Washington Luis, km 235, SP-310, Sao Carlos, Sao Paulo (Brazil); Tundisi, Jose Galizia [Instituto Internacional de Ecologia, Rua Bento Carlos, 750, Centro, Sao Carlos, Sao Paulo (Brazil)

    2011-10-15

    The objective of this study was to assess the interactive effects of Cd and Cr III on tropical phytoperiphyton community growth, metal sorption kinetics, as well as Cd and Cr mixtures toxicity to diatom assemblages in laboratory mesocosm experiments. A natural phytoperiphyton community sampled from the Monjolinho River (South of Brazil) was inoculated into seven experimental systems containing clean glass substrates for phytoperiphyton colonization. The communities were exposed to mixtures of dissolved Cd and Cr concentrations of 0.01 and 0.1 mg.L{sup -1} Cd and 0.05 and 0.2 mg.L{sup -1} Cr. Phytoperiphyton chlorophyll a, ash-free dry mass, growth rate, diatom cell density and diatom community composition were analyzed on samples collected after 1, 2 and 3 weeks of colonization. High Cd concentration (0.1 mg.L{sup -1}) affects phytoperiphyton growth while high concentration of Cr (0.2 mg.L{sup -1}) decreased the toxic effects of Cd on phytoperiphyton growth demonstrating the importance of studying metal mixtures in field studies. Shifts in species composition (development of more resistant species like Achnanthidium minutissimum (Kuetzing) Czarnecki, and Nitzschia palea (Kuetzing) Smith and reduction of sensitive ones like Fragilaria capucina Desmazieres, Navicula cryptocephala (Grunow) Cleve, Encyonema silesiacum (Bleisch) Mann, Eunotia bilunaris (Ehrenberg) Mills and Gomphonema parvulum (Kuetzing) Kuetzing), of phytoperiphyton communities with increasing Cd and Cr concentrations and exposure duration have been demonstrated in this study making phytoperiphyton communities appropriate monitors of metal mixtures in aquatic systems. Good Cd and Cr accumulation capacity by phytoperiphyton was demonstrated with total and intracellular metal content in phytoperiphyton reflecting the effects of dissolved concentrations of metal in the culture media and exposure duration. Increase in both Cd and Cr reduced sequestration of each other, with generally more Cd being

  19. Effects of acclimation on the toxicity of stream water contaminated with zinc and cadmium to juvenile cutthroat trout

    Science.gov (United States)

    Harper, D.D.; Farag, A.M.; Brumbaugh, W.G.

    2008-01-01

    We investigated the influence of acclimation on results of in situ bioassays with cutthroat trout in metal-contaminated streams. Cutthroat trout (Oncorhynchus clarki) were held for 21 days (1) in live containers at a reference or "clean" site having dissolved metals near detection limits (0.01 ??g/L cadmium [Cd] and 2.8 ??g/L zinc [Zn]; hardness 32 mg/L as CaCO3) and (2) at a site in a mining-impacted watershed having moderately increased metals (0.07 ??g/L Cd and 38 to 40 ??g/L Zn; hardness 50 mg/L as CaCO3). The 96-hour survival of each treatment group was then tested in situ at five sites from September 5 to 9, 2002, and each group exhibited a range of metal concentrations (0.44 to 39 ??g/L arsenic [As], 0.01 to 2.2 ??g/L Cd, and 0.49 to 856 ??g/L Zn). Survival was 100% at three sites for both treatments. However, a higher percentage of metal-acclimated fish survived at the site with the second highest concentrations of Cd and Zn (0.90 and 238 ??g/L, respectively) compared with fish acclimated at the reference site (100% vs. 55%, respectively). Survival was 65% for acclimated fish and 0% for metal-nai??ve fish at the site with the largest metal concentrations (2.2 ??g/L Cd and 856 ??g/L Zn). Water collected from the site with the largest concentrations of dissolved metals (on October 30, 2002) was used in a laboratory serial dilution to determine 96-hour LC50 values. The 96-hour LC50 estimates of nai??ve fish during the in situ and laboratory experiments were similar (0.60 ??g Cd/L and 226 ??g Zn/L for in situ and 0.64 ??g Cd/L and 201 ??g Zn/L for laboratory serial dilutions). However, mortality of nai??ve cutthroat trout tested under laboratory conditions was more rapid in dilutions of 100%, 75%, and 38% site water than in situ experiments. ?? 2007 Springer Science+Business Media, LLC.

  20. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling.

    Science.gov (United States)

    Petriello, Michael C; Han, Sung Gu; Newsome, Bradley J; Hennig, Bernhard

    2014-06-01

    Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehicle and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1-/- mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1-/- endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1-/- endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation.

  1. Cadmium-Induced Testicular Toxicity, Oxidative Stress and Histopathology in Wistar Rats: Sustained Effects of Polyphenol-Rich Extract of Vernonia Amygdalina (Del. Leaf

    Directory of Open Access Journals (Sweden)

    Christian Eseigbe Imafidon

    2016-09-01

    Full Text Available Background: Cadmium (Cd is a toxic heavy metal of both environmental and occupational concerns. The health impact of ethno-botanical approaches in attempts to ameliorate its deleterious effects in biological systems should be an area of scientific interest since established therapies are often burdened with undesirable side effects. Aim: To determine the effects of polyphenol-rich extract of the leaf of Vernonia amygdalina (PEVA on Cd-induced testicular toxicity, oxidative stress, and histopathology in Wistar rats. Materials and Methods: A total of twenty five (25 male Wistar rats were divided into five groups as follows: Group 1 (Control received distilled water (0.2 ml/100 g i.p. for 5 consecutive days and thereafter left untreated for 28 days. Group 2 received Cd alone at 5 mg/kg (i.p. for 5 consecutive days. Group 3 was pre-treated with Cd as Group 2 and thereafter left untreated for a period of 28 days, whereas Groups 4 and 5 were pre-treated with Cd as Group 2 and thereafter received PEVA (orally at two dose levels (200 and 400 mg/kg, respectively for 28 days. Results: Cd administration induced reproductive toxicity as evidenced by lowered level of follicle stimulating hormone, luteinizing hormone, and testosterone (P < 0.05; perturbation of sperm characterization (P < 0.05; deleterious disruptions of the antioxidant system as evidenced by lowered levels of reduced glutathione and superoxide dismutase as well as elevation in thiobarbituric acid reactive substances level (P < 0.05; decrease in relative testicular weight (P < 0.05; and severe disseminated necrosis of the seminiferous tubules with terminally undifferentiated/necrotic cells as revealed by the histopathological examination. These conditions were sustained following administration of the two dose levels of PEVA. Conclusion: PEVA administration is not a suitable therapeutic choice for fertility enhancement in male Wistar rat model of Cd-induced decline in reproductive function

  2. Toxicity of copper, lead, and cadmium on the motility of two marine microalgae Isochrysis galbana and Tetraselmis chui

    Institute of Scientific and Technical Information of China (English)

    Guangxu Liu; Xueliang Chai; Yanqing Shao; Lihua Hu; Qilang Xie; Hongxi Wu

    2011-01-01

    Computer assisted movement tracking was used to characterize the motility of two marine microalgae, lsochrysis galbana and Tetraselrnis chui, and to investigate the toxicity of Cu, Pb, and Cd on motile percentage, curvilinear velocity, average path velocity, straight line velocity, linearity, straightness, and wobble. Except for motile percentage, all other motility parameters differed significantly between I. galbana and T. chui. Based on relative motile percentage data, the median effective concentration (EC50) of Cu on the motility of I. galbana and T. chui was 31.4 and 1.3 μmol/L, respectively, while for Pb it was 37.8 and 10.9 μmol/L and for Cd it was 121.6 and 37.8 μmol/L, respectively. Compared to I. galbana, T. chui was more sensitive to all tested metals. The toxic effect of the heavy metals on motility exhibited the following decreasing order for both species: Cu > Pb > Cd. Our results indicate that I. galbana and T. chui motility is sensitive to heavy metals and can be used as an indicator for toxicology bioassays.

  3. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Khataee, Alireza, E-mail: ar_khataee@yahoo.com [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Movafeghi, Ali [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Nazari, Fatemeh [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Vafaei, Fatemeh [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Dadpour, Mohammad Reza [University of Tabriz, Department of Horticultural Science, Faculty of Agriculture (Iran, Islamic Republic of); Hanifehpour, Younes; Joo, Sang Woo, E-mail: swjoo@yu.ac.kr [Yeungnam University, School of Mechanical Engineering (Korea, Republic of)

    2014-12-15

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract.

  4. Hazards to wildlife from soil-borne cadmium reconsidered

    Science.gov (United States)

    Beyer, W.N.

    2000-01-01

    Cadmium is a toxic element that should be included in environmental risk assessments of contaminated soils. This paper argues, however, that hazards to wildlife from cadmium have often been overstated. The literature contains only meager evidence that wild animals have been seriously harmed by cadmium, even at severely contaminated sites. Although some researchers have reported that wildlife have accumulated concentrations of cadmium in their kidneys that were above suggested injury thresholds, the thresholds may be disputed, since they were well below the World Health Organization criterion of 200 mg/kg (wet weight) of cadmium in the renal cortex for protecting human health. Recent risk assessments have concluded that soil cadmium concentrations less than 1 mg/kg are toxic to soil organisms and wildlife, which implies that background concentrations of cadmium naturally found in soils are hazardous. An examination of the databases used to support these assessments suggested that the toxicity of cadmium has been exaggerated.

  5. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Sam [School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL (United Kingdom); School of Biomedical and Health Sciences, Pharmaceutical Sciences Research Division, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom); Stuerzenbaum, Stephen R. [School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL (United Kingdom) and School of Biomedical and Health Sciences, Pharmaceutical Sciences Research Division, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom)]. E-mail: stephen.sturzenbaum@kcl.ac.uk

    2007-01-15

    The genome of the nematode Caenorhabditis elegans contains two metallothionein genes, both involved in metal homeostasis and/or detoxification. Single metallothionein knockout mutants have been created and now, for the first time, a double mutant has been isolated. Life history studies in the presence or absence of cadmium showed that all metallothionein mutants are viable. Although cadmium did not influence longevity, a dose dependent reduction in total brood size and volumetric growth was observed in wild type animals, which was magnified in single knockouts and further exacerbated in the double knockout. However, the metallothionein deletion caused two effects that are independent of cadmium exposure, namely all knockout strains displayed a reduced total brood size and the deletion of both metallothionein loci caused a significant reduction in volumetric growth. In summary, metallothionein is undoubtedly an important player in cadmium detoxification, but evidently also an important factor in cadmium independent pathways. - Metallothionein is a modifier of life-history parameters.

  6. Bioavailability and toxicity of trace metals to the cladoceran Daphnia magna in relation to cadmium exposure history

    Science.gov (United States)

    Guan, Rui

    The cladoceran Daphnia magna is widely used in freshwater bioassessments and ecological risk assessments. This study designed a series of experiments employing radiotracer methodology to quantify the trace metals (mainly Cd and Zn) biokinetics in D. magna under different environmental and biological conditions and to investigate the influences of different Cd exposure histories on the bioavailability and toxicity of trace metals to D. magna. A bioenergetic-based kinetic model was finally applied in predicting the Cd accumulation dynamics in D. magna and the model validity under non-steady state was assessed. Cd assimilation was found in this study to be influenced by the food characteristics (e.g., metal concentration in food particles), the metal exposure history of the animals, and the genetic characteristics. Some of these influences could be interpreted by the capacity and/or competition of those metal binding sites within the digestive tract and/or the detoxifying proteins metallothionein (MT). My study demonstrated a significant induction of MT in response to Cd exposure and it was the dominant fraction in sequestering the internal nonessential trace metals in D. magna. The ratio of Cd body burden to MT might better predict the Cd toxicity on the digestion systems of D. magna than the Cd tissue burden alone within one-generational exposure to Cd. It was found that metal elimination (rate constant and contribution of different release routes) was independent of the food concentration and the dietary metal concentration, implying that the elimination may not be metabolically controlled. The incorporation of the bioenergetic-based kinetic model, especially under non-steady state, is invaluable in helping to understand the fate of trace metals in aquatic systems and potential environmental risks. The dependence of biokinetic parameters on environmental factors rather than on genotypes implies a great potential of using biokinetics in inter-laboratory comparisons.

  7. Cadmium toxicity in diazotrophic Anabaena spp. adjudged by hasty up-accumulation of transporter and signaling and severe down-accumulation of nitrogen metabolism proteins.

    Science.gov (United States)

    Singh, Prashant Kumar; Shrivastava, Alok Kumar; Chatterjee, Antra; Pandey, Sarita; Rai, Snigdha; Singh, Shilpi; Rai, L C

    2015-09-01

    Present study demonstrates interspecies variation in proteome and survival strategy of three Anabaena species i.e., Anabaena L31, Anabaena sp. PCC 7120 and Anabaena doliolum subjected to respective LC50 doses of Cd at 0, 1, 3, 5 and 7day intervals. The proteome coverage with 452 differentially accumulated proteins unveiled species and time specific expression and interaction network of proteins involved in important cellular functions. Statistical analysis of protein abundance across Cd-treated proteomes clustered their co-expression pattern into four groups viz., (i) early (days 1 and 3) accumulated proteins, (ii) proteins up-accumulated for longer duration, (iii) late (days 5 and 7) accumulated proteins, and (iv) mostly down-accumulated proteins. Appreciable growth of Cd treated A L31 over other two species may be ascribed to proteins contained in the first and second groups (belonging to energy and carbohydrate metabolism (TK, G6-PI, PGD, FBA, PPA, ATP synthase)), sulfur metabolism (GR, GST, PGDH, PAPS reductase, GDC-P, and SAM synthetase), fatty acid metabolism (AspD, PspA, SQD-1), phosphorous metabolism (PhoD, PstB and SQD1), molecular chaperones (Gro-EL, FKBP-type peptidylprolyl isomerase), and antioxidative defense enzymes (SOD-A, catalase). Anabaena sp. PCC 7120 harboring proteins largely from the third group qualified as a late accumulator and A. doliolum housing majority of proteins from the fourth group emerged as the most sensitive species. Thus early up-accumulation of transporter and signaling category proteins and drastic reduction of nitrogen assimilation proteins could be taken as a vital indicator of cadmium toxicity in Anabaena spp. This article is part of a Special Issue entitled: Proteomics in India.

  8. Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro- and macroelements uptake in Phragmites australis.

    Science.gov (United States)

    Wang, Li; Huang, Xiaochen; Ma, Fang; Ho, Shih-Hsin; Wu, Jieting; Zhu, Shishu

    2017-02-01

    Arbuscular mycorrhizal (AM) fungi have been used to alleviate heavy metal stress on plant growth and uptake of micro- and macroelements. A greenhouse pot experiment was conducted to verify the effects of AM fungus Rhizophagus irregularis on the growth, physiological characteristics, total Cd, and element uptake of Phragmites australis under different Cd stress (in the range of 0-20 mg L(-1)). The results showed that the symbiosis could effectively alleviate Cd toxicity with greater root biomass, higher photosynthesis rate, and lower levels of malonaldehyde (MDA) and proline than non-mycorrhizal plants could. However, reduced transpiration rate (Tr) and stomatal conductance (g s) indicated R. irregularis protected host plants from Cd stress (≥5 mg L(-1)) via the stomatal closure. Although micro- and macroelements displayed differently in the presence of Cd, higher concentrations were still detected in mycorrhizal plants in contrast to non-mycorrhizal plants. Moreover, step multiple regression significantly demonstrated Pnmax, stem diameter (Sd), and g s were the important factors with regard to total Cd uptake in the symbiosis, but Mn affected to non-mycorrhizal plants. These results suggested R. irregularis could alleviate the competition between Mn and Cd by altering plant physiology. This work clearly demonstrated that R. irregularis can be able to support P. australis growth better even though under high Cd stress (>1 mg L(-1)), suggesting its good potential for practical use in high Cd-contaminated areas.

  9. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution

    Institute of Scientific and Technical Information of China (English)

    SONG Wen-en[1; CHEN Shi-bao[1; LIU Ji-fang[2; CHEN Li[3; SONG Ning-ning[1; LINing[1; LIU Bin[1

    2015-01-01

    It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con- centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg-1 (T1) and 0.6 mg kg-1(T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed significant difference (P〈0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143-0.202, 0.128-0.458 and 0.332-0.806 mg kg-1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300-1.112 and 0.342-0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with significant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300-1.112 and 0.342-0.817, respectively. The species-sensitivity distribu- tion (SSD) of Cd sensitivity of the rice species could be fitted well with Burr-Ill (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg-1 in the present study.

  10. Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution

    Institute of Scientific and Technical Information of China (English)

    SONG Wen-en; CHEN Shi-bao; LIU Ji-fang; CHEN Li; SONG Ning-ning; LI Ning; LIU Bin

    2015-01-01

    It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg–1 (T1) and 0.6 mg kg–1 (T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed signiifcant difference (P<0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143–0.202, 0.128–0.458 and 0.332–0.806 mg kg–1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300–1.112 and 0.342–0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with signiifcant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300–1.112 and 0.342–0.817, respectively. The species-sensitivity distribu-tion (SSD) of Cd sensitivity of the rice species could be iftted wel with Burr-III (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg–1 in the present study.

  11. Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser transmontanus) in laboratory and Columbia River water.

    Science.gov (United States)

    Vardy, David W; Santore, Robert; Ryan, Adam; Giesy, John P; Hecker, Markus

    2014-01-01

    Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors. Previous work has demonstrated that early life stage white sturgeon are particularly sensitive to certain metals, and concerns over the level of protectiveness of water quality standards are justified. Here we report results from acute (96-h) toxicity tests for copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb) from parallel studies that were conducted in laboratory water and in the field with Columbia River water. Water effect ratios (WERs) and sensitivity parameters (i.e., median lethal accumulations, or LA50s) were calculated to assess relative bioavailability of these metals in Columbia River water compared to laboratory water, and to elucidate possible differences in sensitivity of early life stage white sturgeon to the same concentrations of metals when tested in the different water sources. For Cu and Pb, white sturgeon toxicity tests were initiated at two life stages, 8 and 40 days post-hatch (dph), and median lethal concentrations (LC50s) ranged between 9-25 μg Cu/L and 177-1,556 μg Pb/L. LC50s for 8 dph white sturgeon exposed to Cd in laboratory water and river water were 14.5 and 72 μg/L, respectively. Exposure of 8 dph white sturgeon to Zn in laboratory and river water resulted in LC50s of 150 and 625 μg/L, respectively. Threshold concentrations were consistently less in laboratory water compared with river water, and as a result, WERs were greater than 1 in all cases. In addition, LA50s were consistently greater in river water exposures compared with laboratory exposures in all paired tests. These results, in combination with results from the biotic ligand model, suggest that the observed

  12. The Epigenetic Effects of Prenatal Cadmium Exposure.

    Science.gov (United States)

    Vilahur, Nadia; Vahter, Marie; Broberg, Karin

    2015-06-01

    Prenatal exposure to the highly toxic and common pollutant cadmium has been associated with adverse effects on child health and development. However, the underlying biological mechanisms of cadmium toxicity remain partially unsolved. Epigenetic disruption due to early cadmium exposure has gained attention as a plausible mode of action, since epigenetic signatures respond to environmental stimuli and the fetus undergoes drastic epigenomic rearrangements during embryogenesis. In the current review, we provide a critical examination of the literature addressing prenatal cadmium exposure and epigenetic effects in human, animal, and in vitro studies. We conducted a PubMed search and obtained eight recent studies addressing this topic, focusing almost exclusively on DNA methylation. These studies provide evidence that cadmium alters epigenetic signatures in the DNA of the placenta and of the newborns, and some studies indicated marked sexual differences for cadmium-related DNA methylation changes. Associations between early cadmium exposure and DNA methylation might reflect interference with de novo DNA methyltransferases. More studies, especially those including environmentally relevant doses, are needed to confirm the toxicoepigenomic effects of prenatal cadmium exposure and how that relates to the observed health effects of cadmium in childhood and later life.

  13. Significant Association of Urinary Toxic Metals and Autism-Related Symptoms—A Nonlinear Statistical Analysis with Cross Validation

    Science.gov (United States)

    Adams, James; Kruger, Uwe; Geis, Elizabeth; Gehn, Eva; Fimbres, Valeria; Pollard, Elena; Mitchell, Jessica; Ingram, Julie; Hellmers, Robert; Quig, David; Hahn, Juergen

    2017-01-01

    Introduction A number of previous studies examined a possible association of toxic metals and autism, and over half of those studies suggest that toxic metal levels are different in individuals with Autism Spectrum Disorders (ASD). Additionally, several studies found that those levels correlate with the severity of ASD. Methods In order to further investigate these points, this paper performs the most detailed statistical analysis to date of a data set in this field. First morning urine samples were collected from 67 children and adults with ASD and 50 neurotypical controls of similar age and gender. The samples were analyzed to determine the levels of 10 urinary toxic metals (UTM). Autism-related symptoms were assessed with eleven behavioral measures. Statistical analysis was used to distinguish participants on the ASD spectrum and neurotypical participants based upon the UTM data alone. The analysis also included examining the association of autism severity with toxic metal excretion data using linear and nonlinear analysis. “Leave-one-out” cross-validation was used to ensure statistical independence of results. Results and Discussion Average excretion levels of several toxic metals (lead, tin, thallium, antimony) were significantly higher in the ASD group. However, ASD classification using univariate statistics proved difficult due to large variability, but nonlinear multivariate statistical analysis significantly improved ASD classification with Type I/II errors of 15% and 18%, respectively. These results clearly indicate that the urinary toxic metal excretion profiles of participants in the ASD group were significantly different from those of the neurotypical participants. Similarly, nonlinear methods determined a significantly stronger association between the behavioral measures and toxic metal excretion. The association was strongest for the Aberrant Behavior Checklist (including subscales on Irritability, Stereotypy, Hyperactivity, and Inappropriate

  14. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  15. Cadmium in the environment: a toxicological and epidemiological appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Friberg, L.; Piscator, M.; Nordberg, G.

    1971-01-01

    This book is a review of the toxicity of cadmium, and has focused on information considered important for understanding the toxic action of cadmium on animals and man. Dose-response relationships are discussed as are effects on specific organ systems and modes of uptake.

  16. CADMIUM – ENVIRONMENTAL HAZARD

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-06-01

    Full Text Available The paper presents some information about current status of cadmium as an environmental health problem. Agricultural uses of phosphate fertilizers, sewage sludge and industrial uses of Cd are the major source of widespread of this metal at trace levels into the general environment and human foodstuffs. It is well known that high cadmium (Cd exposure causes renal damage, anemia, enteropathy, osteoporosis, osteomalacia, whereas the dose-response relationship at low levels exposure is less established. During the last decade an increasing number of studies have found an adverse health effects due to low environmental exposure to Cd. Many authors try to determine the relationship between Cd intake and Cd toxicity indicators, especially dealing renal tubular damage. The level of b2-microglobulin in urine is regarded as the most sensitive biomarker of renal disfunction due to low environmental Cd concentrations.

  17. Bioaccumulation and toxic effects of cadmium on feeding and growth of an Indian pond snail Lymnaea luteola L. under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sangita [Ecotoxicology Laboratory, Indian Institute of Toxicology Research, (Formerly: Industrial Toxicology Research Centre), Council of Scientific and Industrial Research (CSIR), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226 001 (India); Khangarot, B.S., E-mail: bkhangarot@hotmail.com [Ecotoxicology Laboratory, Indian Institute of Toxicology Research, (Formerly: Industrial Toxicology Research Centre), Council of Scientific and Industrial Research (CSIR), Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226 001 (India)

    2010-10-15

    Effects of dissolved cadmium exposure on the survival, feeding, growth rates and accumulation in Indian pond snails Lymnaea luteola L. were examined for a period of 7 weeks. The concentrations of cadmium tested were 0, 10, 32, 100, 320, 560, and 1000 {mu}g l{sup -1}. Cadmium exposure significantly inhibited the feeding and growth rates. At higher Cd concentrations snails refused to consume food offered as plant Marsilia sp. leaves. Cadmium mainly accumulated in soft tissues in a dose-dependent manner. After 4 and 7 weeks of exposure, the no observed effect concentration (NOEC) of Cd was 10 {mu}g l{sup -1} and the lowest observed effect concentration (LOEC) was 32 {mu}g l{sup -1}. Reduction of growth (decrease in wet weight) was noticed followed by a high mortality in higher Cd concentrations. Significant reduction in food consumption and growth rates was found at 32 {mu}g l{sup -1} and above Cd concentration. A significant relationship between Cd exposure and growth and feeding rates was noticed. The results obtained with these key aquatic organisms in the food chains complement those obtained with other aquatic organisms and gastropod snails. The findings of the present study and those of earlier studies suggested that Indian pond snail L. luteola are useful test organisms for ecotoxicology bioassays.

  18. Bioaccumulation and toxic effects of cadmium on feeding and growth of an Indian pond snail Lymnaea luteola L. under laboratory conditions.

    Science.gov (United States)

    Das, Sangita; Khangarot, B S

    2010-10-15

    Effects of dissolved cadmium exposure on the survival, feeding, growth rates and accumulation in Indian pond snails Lymnaea luteola L. were examined for a period of 7 weeks. The concentrations of cadmium tested were 0, 10, 32, 100, 320, 560, and 1000 microg l(-1). Cadmium exposure significantly inhibited the feeding and growth rates. At higher Cd concentrations snails refused to consume food offered as plant Marsilia sp. leaves. Cadmium mainly accumulated in soft tissues in a dose-dependent manner. After 4 and 7 weeks of exposure, the no observed effect concentration (NOEC) of Cd was 10 microg l(-1) and the lowest observed effect concentration (LOEC) was 32 microg l(-1). Reduction of growth (decrease in wet weight) was noticed followed by a high mortality in higher Cd concentrations. Significant reduction in food consumption and growth rates was found at 32 microg l(-1) and above Cd concentration. A significant relationship between Cd exposure and growth and feeding rates was noticed. The results obtained with these key aquatic organisms in the food chains complement those obtained with other aquatic organisms and gastropod snails. The findings of the present study and those of earlier studies suggested that Indian pond snail L. luteola are useful test organisms for ecotoxicology bioassays.

  19. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.

    Science.gov (United States)

    Sangthong, Chirawee; Setkit, Kunchaya; Prapagdee, Benjaphorn

    2016-01-01

    Cadmium-resistant Micrococcus sp. TISTR2221, a plant growth-promoting bacterium, has stimulatory effects on the root lengths of Zea mays L. seedlings under toxic cadmium conditions compared to uninoculated seedlings. The performance of Micrococcus sp. TISTR2221 on promoting growth and cadmium accumulation in Z. mays L. was investigated in a pot experiment. The results indicated that Micrococcus sp. TISTR2221significantly promoted the root length, shoot length, and dry biomass of Z. mays L. transplanted in both uncontaminated and cadmium-contaminated soils. Micrococcus sp. TISTR2221 significantly increased cadmium accumulation in the roots and shoots of Z. mays L. compared to uninoculated plants. At the beginning of the planting period, cadmium accumulated mainly in the shoots. With a prolonged duration of cultivation, cadmium content increased in the roots. As expected, little cadmium was found in maize grains. Soil cadmium was significantly reduced with time, and the highest percentage of cadmium removal was found in the bacterial-inoculated Z. mays L. after transplantation for 6 weeks. We conclude that Micrococcus sp. TISTR2221 is a potent bioaugmenting agent, facilitating cadmium phytoextraction in Z. mays L.

  20. 镉胁迫对昆虫的毒性效应及昆虫防御机制的研究进展%Toxicity effect of cadmium stress exposure to insects and defense mechanism of insects

    Institute of Scientific and Technical Information of China (English)

    付伟利; 杜移珍; 张敏

    2015-01-01

    Cadmium is one of the important heavy metal pollutants with strong toxicity and wide distribution. It poses a threat to human health and invertebrates,especially to insects. It has been demonstrated that cadmium can infiltrate into insects through respiration ,food intake and so on. It can affect their development,and even induce apoptosis via oxidative damage. Insects can gradually develop defense mechanisms against cadmium with the help of metallothionein,antioxidant enzymes, excretion and heat shock protein. Toxicity effect varies among different species. This paper reviewsed the effect of cadmium on development,cell apoptosis mechanism and defense mechanism in insects.%镉是重要的重金属污染物之一,其毒性大,蓄积性强,易对人类健康造成严重危害,这种危害也涉及到无脊椎动物,尤其是镉胁迫对昆虫的影响已引起人们关注。环境中的镉可通过摄食和呼吸等途径进入昆虫体内,影响昆虫的生长发育,并通过氧化损伤等途径诱导细胞凋亡。昆虫对镉胁迫有一定的防御能力,可在一定程度上依靠金属结合蛋白、抗氧化酶、热休克蛋白的保护作用及排泄行为的解毒作用减少镉对机体的损害。镉的毒性效应可能随昆虫种类不同而不同。本文就镉胁迫对昆虫生长和发育的影响、诱导细胞凋亡的分子机制以及昆虫对镉胁迫的防御机制等研究进展进行回顾综述。

  1. Lead, mercury, and cadmium in breast milk

    OpenAIRE

    Kadriye Yurdakök

    2015-01-01

    Toxic heavy metals are the major source of environmental pollution in this new millennium. Lead, mercury, and cadmium are the most common toxic heavy metals in the environment. There is no known function of these toxic heavy metals in the human body. In females, toxic heavy metals can be accumulated in maternal body before pregnancy and may be transferred to fetus through placenta and later, via breast milk. Lead previously accumulated in maternal bones can be mobilized along with calcium in ...

  2. Cross-Sector Review of Drivers and Available 3Rs Approaches for Acute Systemic Toxicity Testing

    Science.gov (United States)

    Seidle, Troy; Robinson, Sally; Holmes, Tom; Creton, Stuart; Prieto, Pilar; Scheel, Julia; Chlebus, Magda

    2010-01-01

    Acute systemic toxicity studies are carried out in many sectors in which synthetic chemicals are manufactured or used and are among the most criticized of all toxicology tests on both scientific and ethical grounds. A review of the drivers for acute toxicity testing within the pharmaceutical industry led to a paradigm shift whereby in vivo acute toxicity data are no longer routinely required in advance of human clinical trials. Based on this experience, the following review was undertaken to identify (1) regulatory and scientific drivers for acute toxicity testing in other industrial sectors, (2) activities aimed at replacing, reducing, or refining the use of animals, and (3) recommendations for future work in this area. PMID:20484382

  3. Reviews of the environmental effects of pollutants: IV. Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, A.S.; Huff, J.E.; Braunstein, H.M.; Drury, J.S.; Shriner, C.R.; Lewis, E.B.; Whitfield, B.L.; Towill, L.E.

    1978-06-01

    This report is a comprehensive, multidisciplinary review of the health and environmental effects of cadmium and specific cadmium derivatives. More than 500 references are cited. The cadmium body burden in animals and humans results mainly from the diet. In the United States, the normal intake of cadmium for adult humans is estimated at about 50 ..mu..g per day. Tobacco smoke is a significant additional source of cadmium exposure. The kidneys and liver together contain about 50% of the total cadmium body burden. Acute cadmium poisoning is primarily an occupational problem, generally from inhalation of cadmium fumes or dusts. In the general population, incidents of acute poisoning by inhaled or ingested cadmium or its compounds are relatively rare. The kidney is the primary target organ for toxicity from prolonged low-level exposure to cadmium. No causal relationship has been established between cadmium exposure and human cancer, although a possible link between cadmium and prostate cancer has been indicated. Cadmium has been shown to be teratogenic in rats, hamsters, and mice, but no such effects have been proven in humans. Cadmium has been reported to increase the frequency of chromosomal aberrations in cultured Chinese hamster ovary cells and in human peripheral leukocytes. The major concern about environmental cadmium is the potential effects on the general population. There is no substantial evidence of hazard from current levels of cadmium in air, water, or food. However, because cadmium is a cumulative poison and because present intake provides a relatively small safety margin, there are adequate reasons for concern over possible future increases in background levels.

  4. Extension of activation cross-section data of deuteron induced nuclear reactions on cadmium up to 50 MeV

    Science.gov (United States)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2016-10-01

    The excitation functions for 109,110g,111m+g,113m,114m,115mIn, 107,109,115m,115gCd and 105g,106m,110g,111Ag are presented for stacked foil irradiations on natCd targets in the 49-33 MeV deuteron energy domain. Reduced uncertainty is obtained by determining incident particle flux and energy scale relative to re-measured monitor reactions natAl(d,x)22,24Na. The results were compared to our earlier studies on natCd and on enriched 112Cd targets. The merit of the values predicted by the TALYS 1.6 code (resulting from a weighted combination of reaction cross-section data on all stable Cd isotopes as available in the on-line libraries TENDL-2014 and TENDL-2015) is discussed. Influence on optimal production routes for several radionuclides with practical applications (111In, 114mIn, 115Cd, 109,107Cd….) is reviewed.

  5. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce.

    Science.gov (United States)

    Zorrig, Walid; Rouached, Aïda; Shahzad, Zaigham; Abdelly, Chedly; Davidian, Jean-Claude; Berthomieu, Pierre

    2010-10-15

    Lettuce (Lactuca sativa) is a plant species that shows high accumulation of cadmium, a toxic heavy metal. Lettuce is therefore a good model both for identifying determinants controlling cadmium accumulation in plant tissues and for developing breeding strategies aimed at limiting cadmium accumulation in edible tissues. In this work, 14-day-old plants from three lettuce varieties were grown for 8 days on media supplemented with cadmium concentrations ranging from 0 to 50 microM. Growth, as well as Cd(2+), Zn(2+), K(+), Ca(2+), NO(3)(-), SO(4)(2-), Cl(-), phosphate, malate and citrate root an shoot contents were analyzed. The three lettuce varieties Paris Island Cos, Red Salad Bowl and Kordaat displayed differential abilities to accumulate cadmium in roots and shoots, Paris Island Cos displaying the lowest cadmium content and Kordaat the highest. From the global analysis of the three varieties, three main trends were identified. First, a common negative correlation linked cadmium tissue content and relative dry weight reduction in response to cadmium treatments in the three varieties. Second, increasing cadmium concentration in the culture medium resulted in a parallel increase in zinc tissue content in all lettuce varieties. A common strong positive correlation between cadmium and zinc contents was observed for all varieties. This suggested that systems enabling zinc and cadmium transport were induced by cadmium. Finally, the cadmium treatments had a contrasting effect on anion contents in tissues. Interestingly, citrate content in shoots was correlated with cadmium translocation from roots to shoots, suggesting that citrate might play a role in cadmium transport in the xylem vessels. Altogether, these results shed light on three main strategies developed by lettuce to cope with cadmium, which could help to develop breeding strategies aimed at limiting cadmium accumulation in lettuce.

  6. Murine strain differences and the effects of zinc on cadmium concentrations in tissues after acute cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    King, L.M. [ARS USDA, Germplasm and Gamete Physiology Lab., Beltsville, MD (United States); Anderson, M.B. [Dept. of Anatomy, Tulane Univ. School of Medicine, New Orleans, LA (United States); Sikka, S.C. [Dept. of Urology, Tulane Univ. School of Medicine, New Orleans, LA (United States); George, W.J. [Dept. of Pharmacology, Tulane Univ. School of Medicine, New Orleans, LA (United States)

    1998-10-01

    The role of strain differences in cadmium tissue distribution was studied using sensitive (129/J) and resistant (A/J) mice. These murine strains have previously been shown to differ in their susceptibility to cadmium-induced testicular toxicity. Cadmium concentration was measured in testis, epididymis, seminal vesicle, liver, and kidney at 24 h after cadmium chloride exposure (4, 10, and 20 {mu}mol/kg CdCl{sub 2}). The 129/J mice exhibited a significant increase in cadmium concentration in testis, epididymis, and seminal vesicle at all cadmium doses used, compared to A/J mice. However, cadmium concentrations in liver and kidney were not different between the strains, at any dose, indicating that cadmium uptake is similar in these organs at 24 h. These murine strains demonstrate similar hepatic and renal cadmium uptake but significantly different cadmium accumulation in the reproductive organs at 24 h. The mechanism of the protective effect of zinc on cadmium toxicity was studied by assessing the impact of zinc acetate (ZnAc) treatment on cadmium concentrations in 129/J mice after 24 h. Zinc pretreatment (250 {mu}mol/kg ZnAc), given 24 h prior to 20 {mu}mol/kg CdCl{sub 2} administration, significantly decreased the amount of cadmium in the testis, epididymis, and seminal vesicle of 129/J mice, and significantly increased the cadmium content of the liver after 24 h. Cadmium levels in the kidney were unaffected at this time. Zinc pretreatment also prevented the cadmium-induced decrease in testicular sperm concentration and epididymal sperm motility seen in 129/J mice. These findings suggest that the differences in the two murine strains may be attributed partly to the differential accumulation of cadmium in murine gonads. This may be caused by strain differences in the specificity of cadmium transport mechanisms. The protective role of zinc in cadmium-induced testicular toxicity in the sensitive strain may be due to an interference in the cadmium uptake by susceptible

  7. Relative toxicities of DNA cross-links and monoadducts: new insights from studies of decarbamoyl mitomycin C and mitomycin C.

    Science.gov (United States)

    Palom, Yolanda; Suresh Kumar, Gopinatha; Tang, Li-Qian; Paz, Manuel M; Musser, Steven M; Rockwell, Sara; Tomasz, Maria

    2002-11-01

    Mitomycin C (MC), a cytotoxic anticancer drug and bifunctional DNA DNA alkylating agent, induces cross-linking of the complementary strands of DNA. The DNA interstrand cross-links (ICLs) are thought to be the critical cytotoxic lesions produced by MC. Decarbamoyl mitomycin C (DMC) has been regarded as a monofunctional mitomycin, incapable of causing ICLs. Paradoxically, DMC is slightly more toxic than MC to hypoxic EMT6 mouse mammary tumor cells as well as to CHO cells. To resolve this paradox, EMT6 cells were treated with MC or DMC under hypoxia at equimolar concentrations and the resulting DNA adducts were analyzed using HPLC and UV detection. MC treatment generated both intrastrand and interstrand cross-link adducts and four monoadducts, as shown previously. DMC generated two stereoisomeric monoadducts and two stereoisomeric ICL adducts, all of which were structurally characterized; one was identical with that formed with MC, the other was new and unique to DMC. Overall, adduct frequencies were strikingly higher (20-30-fold) with DMC than with MC. Although DMC monoadducts greatly exceeded DMC cross-link adducts ( approximately 10:1 ratio), the latter were equal or higher in number than the cross-link adducts from MC. DMC displayed a much higher monoadduct:cross-link ratio than MC. The similar cytotoxicities of the two drug show a correlation with their similar DNA cross-link adduct frequencies, but not with their total adduct or monoadduct frequencies. This provides specific experimental evidence that the ICLs rather than the monoadducts are critical factors in the cell death induced by MC. In vitro, overall alkylation of calf thymus DNA by DMC was much less efficient than by MC. Nevertheless, ICLs formed with DMC were clearly detectable. The chemical pathway of the cross-linking was shown to be analogous to that occurring with MC. These results also suggest that the differential sensitivity of Fanconi's Anemia cells to MC and DMC is related to factors other

  8. Exposure dose response relationships of the freshwater bivalve Hyridella australis to cadmium spiked sediments

    Energy Technology Data Exchange (ETDEWEB)

    Marasinghe Wadige, Chamani P.M., E-mail: chamani.marasinghe.wadige@canberra.edu.au; Maher, William A.; Taylor, Anne M.; Krikowa, Frank

    2014-07-01

    Highlights: • The exposure–dose–response approach was used to assess cadmium exposure and toxicity. • Accumulated cadmium in H. australis reflected the sediment cadmium exposure. • Spill over of cadmium into the biologically active pool was observed. • Increased cadmium resulted in measurable biological effects. • H. australis has the potential to be a cadmium biomonitor in freshwater environments. - Abstract: To understand how benthic biota may respond to the additive or antagonistic effects of metal mixtures in the environment it is first necessary to examine their responses to the individual metals. In this context, laboratory controlled single metal-spiked sediment toxicity tests are useful to assess this. The exposure–dose–response relationships of Hyridella australis to cadmium-spiked sediments were, therefore, investigated in laboratory microcosms. H. australis was exposed to individual cadmium spiked sediments (<0.05 (control), 4 ± 0.3 (low) and 15 ± 1 (high) μg/g dry mass) for 28 days. Dose was measured as cadmium accumulation in whole soft body and individual tissues at weekly intervals over the exposure period. Dose was further examined as sub-cellular localisation of cadmium in hepatopancreas tissues. The biological responses in terms of enzymatic and cellular biomarkers were measured in hepatopancreas tissues at day 28. H. australis accumulated cadmium from spiked sediments with an 8-fold (low exposure organisms) and 16-fold (high exposure organisms) increase at day 28 compared to control organisms. The accumulated tissue cadmium concentrations reflected the sediment cadmium exposure at day 28. Cadmium accumulation in high exposure organisms was inversely related to the tissue calcium concentrations. Gills of H. australis showed significantly higher cadmium accumulation than the other tissues. Accumulated cadmium in biologically active and biologically detoxified metal pools was not significantly different in cadmium exposed

  9. Epigenetic Effects of Cadmium [Abstract and Poster 2014

    Science.gov (United States)

    We have reviewed the literature on in vitro and in vivo experiments as well as human studies on cadmium to understand the epigenetic mechanisms involved in cadmium- induced toxicity and carcinogenicity. This presentation will identify gaps in our current understanding and suggest...

  10. Cadmium-induced cancers in animals and in humans.

    Science.gov (United States)

    Huff, James; Lunn, Ruth M; Waalkes, Michael P; Tomatis, Lorenzo; Infante, Peter F

    2007-01-01

    Discovered in the early 1800s, the use of cadmium and various cadmium salts started to become industrially important near the close of the 19th century, rapidly thereafter began to flourish, yet has diminished more recently. Most cadmium used in the United States is a byproduct from the smelting of zinc, lead, or copper ores, and is used to manufacture batteries. Carcinogenic activity of cadmium was discovered first in animals and only subsequently in humans. Cadmium and cadmium compounds have been classified as known human carcinogens by the International Agency for Research on Cancer and the National Toxicology Program based on epidemiologic studies showing a causal association with lung cancer, and possibly prostate cancer, and studies in experimental animals, demonstrating that cadmium causes tumors at multiple tissue sites, by various routes of exposure, and in several species and strains. Epidemiologic studies published since these evaluations suggest that cadmium is also associated with cancers of the breast, kidney, pancreas, and urinary bladder. The basic metal cationic portion of cadmium is responsible for both toxic and carcinogenic activity, and the mechanism of carcinogenicity appears to be multifactorial. Available information about the carcinogenicity of cadmium and cadmium compounds is reviewed, evaluated, and discussed.

  11. Effect of Herbal Preparation on Heavy Metal (Cadmium) Induced Antioxidant System in Female Wistar Rats

    OpenAIRE

    2011-01-01

    Cadmium is one of the elements found to damage antioxidant systems in mammals. To ameliorate cadmium toxicity and to prevent oxidative stress, natural products may be useful. In Indian ethnobotanical practice, a mixture of 17 herbal products is used to fortify the reproductive system of women after parturition and to reverse ovarian oxidative stress. Oral administration of this extract to rats exposed to cadmium was useful in reversing oxidative stress. Two different doses of cadmium (50 ppm ...

  12. Response of Pleurotus ostreatus to cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Favero, N.; Bressa, G.; Costa, P. (Univ. of Padua (Italy))

    1990-08-01

    The possibility of utilizing agroindustrial wastes in the production of edible, high-quality products (e.g., mushrooms) implies the risk of bringing toxic substances, such as heavy metals, into the human food chain. Thus, growth in the presence of cadmium and cadmium accumulation limits have been studied in the industrially cultivated fungus P. ostreatus. Fruit body production is substantially unaffected in the presence of 25, 139, and 285 mg Cd/kg of dried substrate. Cadmium concentration in fruit bodies is related to cadmium substrate level, the metal being present at higher levels in caps (22-56 mg/kg dry wt) than in stems (13-36 mg/kg dry wt). Concentration factor (CF), very low in the controls (about 2), further decreases in treated specimens. The presence of a cadmium control mechanism in this fungi species is suggested. Fruit body cadmium levels could, however, represent a risk for P. ostreatus consumers, according to FAO/WHO limits related to weekly cadmium intake.

  13. Associations between Urinary Excretion of Cadmium and Renal Biomarkers in Nonsmoking Females: A Cross-Sectional Study in Rural Areas of South China

    Directory of Open Access Journals (Sweden)

    Yun-rui Zhang

    2015-09-01

    Full Text Available Objectives: The aim of this study was to systematically evaluate the relationship between urinary excretion of cadmium (U-Cd and biomarkers of renal dysfunction. Methods: One hundred eighty five non-smoking female farmers (aged from 44 to 71 years were recruited from two rural areas with different cadmium levels of exposure in southern China. Morning spot urine samples were collected for detecting U-Cd, urinary creatinine (U-cre, β2-microglobulin (β2-MG, α1-microglobulin (α1-MG, metallothionein (MT, retinol binding protein (RBP, albumin (AB, N-acetyl-β-D-glucosaminidase (NAG, alkaline phosphatase (ALP, γ-glutamyl transpeptidase (GGT and kidney injury molecule-1 (KIM-1. Spearman’s rank correlation was carried out to assess pairwise bivariate associations between continuous variables. Three different models of multiple linear regression (the cre-corrected, un-corrected and cre-adjusted model were used to model the dose-response relationships between U-Cd and nine urine markers. Results: Spearman’s rank correlation showed that NAG, ALP, RBP, β2-MG and MT were significantly associated with U-Cd for both cre-corrected and observed data. Generally, NAG correlated best with U-Cd among the nine biomarkers studied, followed by ALP and MT. In the un-corrected model and cre-adjusted model, the regression coefficients and R2 of nine biomarkers were larger than the corresponding values in the cre-corrected model, indicating that the use of observed data was better for investigating the relationship between biomarkers and U-Cd than cre-corrected data. Conclusions: Our results suggest that NAG, MT and ALP in urine were better biomarkers for long-term environmental cadmium exposure assessment among the nine biomarkers studied. Further, data without normalization with creatinine show better relationships between cadmium exposure and renal dysfunction.

  14. An assessment of cadmium toxicity on cytochrome P-450 and flavin monooxygenase-mediated metabolic pathways of dimethylaniline in male rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, F.; Raman, A.; Shakoori, A.R.; Gorrod, J.W. (Zoology Department, University of the Punjab, Lahore (Pakistan))

    1992-07-01

    Cadmium is an environmental pollutant and its effect on the in vitro metabolism of N,N-dimethylaniline (DMA) using male rabbits was investigated. Activities of cytochrome P-450 and FMO-dependent monooxygenases were studied using hepatic microsomes. Following CdCl2 (i.p.) administration (6 mg/kg/day for 6 days), both DMA-N-oxidation and DMA-N-demethylation decreased by 86%. The effects of CdCl2 on the phenobarbitone (PB)-induced form of P-450 were also studied. Intraperitoneal pretreatment of rabbits with PB (5 mg/kg/day for 5 days) increased N-demethylation by 82%, while N-oxidation decreased by 49%. Both reactions decreased significantly on additional treatment with CdCl2. Promethazine (5 mg/kg/day for 5 days) did not produce any change in the activities of either enzyme. The enzymes remained unaffected by CdCl2 treatment in promethazine-pretreated animals thus confirming its role as a hepatoprotective agent.

  15. Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil.

    Science.gov (United States)

    Zhao, Shuyan; Fan, Ziyan; Sun, Lihui; Zhou, Tao; Xing, Yuliang; Liu, Lifen

    2017-03-01

    A vegetation study was conducted to investigate the interactive effects of perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and Cadmium (Cd) on soil enzyme activities, phytotoxicity and bioaccumulation of wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Soil urease activities were inhibited significantly but catalase activities were promoted significantly by interaction of PFASs and Cd which had few effects on sucrase activities. Joint stress with PFASs and Cd decreased the biomass of plants and chlorophyll (Chl) content in both wheat and rapeseed, and malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities were increased in wheat but inhibited in rapeseed compared with single treatments. The bioconcentration abilities of PFASs in wheat and rapeseed were decreased, and the translocation factor of PFASs was decreased in wheat but increased in rapeseed with Cd addition. The bioaccumulation and translocation abilities of Cd were increased significantly in both wheat and rapeseed with PFASs addition. These findings suggested important evidence that the co-existence of PFASs and Cd reduced the bioavailability of PFASs while enhanced the bioavailability of Cd in soil, which increased the associated environmental risk for Cd but decreased for PFASs.

  16. Effect of cadmium on cytogenetic toxicity in hairy roots of Wedelia trilobata L. and their alleviation by exogenous CaCl2.

    Science.gov (United States)

    Shi, He Ping; Zhu, Yuan Feng; Wang, Yun Ling; Tsang, Po Keung Eric

    2014-01-01

    Effects of cadmium (Cd) alone and in combination with calcium on mitosis and chromosomal aberration in the hairy root tips of Wedelia trilobata were investigated. The results showed that Cd concentrations below 50 μmol/L had a lesser or even a promoting effect on the mitotic index (MI) and the rate of chromosomal aberration in hairy root tips, while those higher than 100 μmol/L significantly decreased the MI and gradually stimulated the rate of chromosomal aberrations with prolonged time and increasing concentrations of Cd. Concentrations of 50 μmol/L Cd mainly induced C-mitosis, while more than 100 μmol/L Cd mainly caused chromosome breakage and chromosome adhesion in hairy root tip cells. When cultured with 300 μmol/L Cd, micronuclei were only observed in the interphase, middle, and late phase of hairy root tip cells. Compared with untreated controls, exogenous calcium had an alleviating effect on Cd-induced cytotoxicity by effectively enhancing the MI and reducing the rate of chromosomal aberration in root tip cells. The results presented here provide evidence that W. trilobata hairy roots with rapid autonomous growth could be used as a sensitive tool for monitoring and evaluation of Cd pollution in the environment.

  17. The removal of toxic metals from liquid effluents by ion exchange resins. Part II: cadmium(II/ sulphate/Lewatit TP260

    Directory of Open Access Journals (Sweden)

    Alguacil, F. J.

    2002-10-01

    Full Text Available The adsorption of cadmium (II, from aqueous sulphate solutions, on Lewatit TP260 resin has been investigated in batch equilibrium experiments. The influence of pH and temperature on metal adsorption capacity have also been examined. The kinetic performance of the resin has been assesed and the results have been correlated by the pore diffusion model. The resin has been used in mini-columns to study its performance under dynamics conditions. The desorption of metal ion is achieved using sulphuric acid (0.25M and 0.5M.

    Se estudia la adsorción de cadmio(II, de disoluciones en medio sulfato, sobre la resina Lewatit TP260. La adsorción del metal se ha investigado en función del pH, la temperatura y el tiempo de contacto con la resina. Los estudios cinéticos permiten correlacionar el proceso de intercambio iónico con el modelo de difusión en poro. Se ha empleado el sistema en mini columnas para evaluar el comportamiento de la resina bajo condiciones dinámicas. La desorción del metal se lleva a cabo con disoluciones de ácido sulfúrico (0,25M y 0,5M.

  18. Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects.

    Directory of Open Access Journals (Sweden)

    Karen Windey

    Full Text Available OBJECTIVE: Protein fermentation results in production of metabolites such as ammonia, amines and indolic, phenolic and sulfur-containing compounds. In vitro studies suggest that these metabolites might be toxic. However, human and animal studies do not consistently support these findings. We modified protein fermentation in healthy subjects to assess the effects on colonic metabolism and parameters of gut health, and to identify metabolites associated with toxicity. DESIGN: After a 2-week run-in period with normal protein intake (NP, 20 healthy subjects followed an isocaloric high protein (HP and low protein (LP diet for 2 weeks in a cross-over design. Protein fermentation was estimated from urinary p-cresol excretion. Fecal metabolite profiles were analyzed using GC-MS and compared using cluster analysis. DGGE was used to analyze microbiota composition. Fecal water genotoxicity and cytotoxicity were determined using the Comet assay and the WST-1-assay, respectively, and were related to the metabolite profiles. RESULTS: Dietary protein intake was significantly higher during the HP diet compared to the NP and LP diet. Urinary p-cresol excretion correlated positively with protein intake. Fecal water cytotoxicity correlated negatively with protein fermentation, while fecal water genotoxicity was not correlated with protein fermentation. Heptanal, 3-methyl-2-butanone, dimethyl disulfide and 2-propenyl ester of acetic acid are associated with genotoxicity and indole, 1-octanol, heptanal, 2,4-dithiapentane, allyl-isothiocyanate, 1-methyl-4-(1-methylethenyl-benzene, propionic acid, octanoic acid, nonanoic acid and decanoic acid with cytotoxicity. CONCLUSION: This study does not support a role of protein fermentation in gut toxicity. The identified metabolites can provide new insight into colonic health. TRIAL REGISTRATION: ClinicalTrial.gov NCT01280513.

  19. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc and copper. Progress report, January 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1980-01-01

    Investigations were continued to elucidate the mode of transepithelial transport of toxic metal ions across the gastrointestinal tract, as well as their interactions with biological processes and other metal ions. All experimental details that are either published, submitted for publication or in press during this report period are included in the Appendix. Primary attention for this report has been given to the intestinal absorption of lead and its interaction with other biological moieties.

  20. Multi-linear regression analysis, preliminary biotic ligand modeling, and cross species comparison of the effects of water chemistry on chronic lead toxicity in invertebrates.

    Science.gov (United States)

    Esbaugh, A J; Brix, K V; Mager, E M; De Schamphelaere, K; Grosell, M

    2012-03-01

    The current study examined the chronic toxicity of lead (Pb) to three invertebrate species: the cladoceran Ceriodaphnia dubia, the snail Lymnaea stagnalis and the rotifer Philodina rapida. The test media consisted of natural waters from across North America, varying in pertinent water chemistry parameters including dissolved organic carbon (DOC), calcium, pH and total CO(2). Chronic toxicity was assessed using reproductive endpoints for C. dubia and P. rapida while growth was assessed for L. stagnalis, with chronic toxicity varying markedly according to water chemistry. A multi-linear regression (MLR) approach was used to identify the relative importance of individual water chemistry components in predicting chronic Pb toxicity for each species. DOC was an integral component of MLR models for C. dubia and L. stagnalis, but surprisingly had no predictive impact on chronic Pb toxicity for P. rapida. Furthermore, sodium and total CO(2) were also identified as important factors affecting C. dubia toxicity; no other factors were predictive for L. stagnalis. The Pb toxicity of P. rapida was predicted by calcium and pH. The predictive power of the C. dubia and L. stagnalis MLR models was generally similar to that of the current C. dubia BLM, with R(2) values of 0.55 and 0.82 for the respective MLR models, compared to 0.45 and 0.79 for the respective BLMs. In contrast the BLM poorly predicted P. rapida toxicity (R(2)=0.19), as compared to the MLR (R(2)=0.92). The cross species variability in the effects of water chemistry, especially with respect to rotifers, suggests that cross species modeling of invertebrate chronic Pb toxicity using a C. dubia model may not always be appropriate.

  1. Impacts of major cations (K(+), Na (+), Ca (2+), Mg (2+)) and protons on toxicity predictions of nickel and cadmium to lettuce (Lactuca sativa L.) using exposure models.

    Science.gov (United States)

    Liu, Yang; Vijver, Martina G; Peijnenburg, Willie J G M

    2014-04-01

    Biotic ligand models (BLM) explicitly accounting for hypothetical interactions with biotic ligands and bioavailability as dictated by water chemistry have been developed for various metals and different organisms. It is only recently that BLMs for plants have received increasing attention. Lettuce is one of the most important vegetable crops in the world. This study investigated the impacts of Ca(2+), Mg(2+), K(+), Na(+) and pH, on acute toxicity of Ni and Cd to butter-head lettuce seedlings (Lactuca sativa L.). 4-day assays with the root elongation inhibition (REI) as the endpoint were performed in hydroponic solutions. Magnesium was found to be the sole cation significantly enhancing the median inhibition concentration (IC50) of Ni(2+) with increasing concentration. By incorporating the competitive effects of Mg(2+), the Ni-toxicity prediction was improved significantly as compared to the total metal model (TMM) and the free ion activity model (FIAM). The conditional stability constants derived from the Ni-BLM were log K MgBL = 2.86, log K NiBL = 5.1, and f NiBL (50%)  = 0.57. A slight downtrend was observed in the 4-d IC50 of Cd(2+) at increasing H(+) concentrations, but this tendency was not consistent and statistically significant (p = 0.07) over the whole range. The overall variations of Cd-toxicity within the tested Na(+), K(+), Ca(2+) and Mg(2+) concentration ranges were relatively small and not statistically significant. 80 % of lettuce REI by Cd could be explained using both TMM and FIAM instead of BLM in the present study. Thus, the mechanistically underpinned models for soil quality guidelines should be developed on a metal-specific basis across different exposure conditions.

  2. Cadmium and zinc relationships.

    Science.gov (United States)

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  3. Cadmium exposure induces hematuria in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Seok [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Kim, Myounghee, E-mail: dkkim73@gmail.com [Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do 461-713 (Korea, Republic of); Lee, Su Mi [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jung Pyo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Sejoong [Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 463-707 (Korea, Republic of); Joo, Kwon Wook [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lim, Chun Soo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Yon Su; Kim, Dong Ki [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  4. Cadmium and zinc reversibly arrest development of Artemia larvae

    Energy Technology Data Exchange (ETDEWEB)

    Bagshaw, J.C.; Rafiee, P.; Matthews, C.O.; MacRae, T.H.

    1986-08-01

    Despite the widespread distribution of heavy metals such as cadmium and zinc in the environment and their well-known cytotoxicity and embryotoxicity in mammals, comparatively little is known about their effect on aquatic organisms, particularly invertebrates. Post-gastrula and early larval development of the brine shrimp, Artemia, present some useful advantages for studies of developmental aspects of environmental toxicology. Dormant encysted gastrulae, erroneously called brine shrimp eggs, can be obtained commercially and raised in the laboratory under completely defined conditions. Following a period of post-gastrula development within the cyst, pre-nauplius larvae emerge through a crack in the cyst shell. A few hours later, free-swimming nauplius larvae hatch. Cadmium is acutely toxic to both adults and nauplius larvae of Artemia, but the reported LC50s are as high as 10 mM, depending on larval age. In this paper the authors show that pre-nauplius larvae prior to hatching are much more sensitive to cadmium than are hatched nauplius larvae. At 0.1 ..mu..m, cadmium retards development and hatching of larvae; higher concentrations block hatching almost completely and thus are lethal. However, the larvae arrested at the emergence stage survive for 24 hours or more before succumbing to the effects of cadmium, and during this period the potentially lethal effect is reversible if the larvae are placed in cadmium-free medium. The effects of zinc parallel those of cadmium, although zinc is somewhat less toxic than cadmium at equal concentrations.

  5. Ligand exchange on the surface of cadmium telluride quantum dots with fluorosurfactant-capped gold nanoparticles: synthesis, characterization and toxicity evaluation.

    Science.gov (United States)

    Wang, Lingyun; Zhang, Hongxia; Lu, Chao; Zhao, Lixia

    2014-01-01

    CdTe quantum dots (QDs) can provide high-intensity and photostable luminescent signals when they are used as labeling materials for sensing trace amounts of bioanalytes. However, a major concern is whether the capping ligands of CdTe QDs cause toxic effects in living systems. In the current study, we address this problem through the complete ligand transformation of CdTe QDs from toxic thiolglycolic acid (TGA) to green citrate, which is attributed to the Cd-S bond breaking and the Au-S bond formation. The highly efficient depletion of S atom from the surface of the CdTe QDs occurs after the addition of fluorosurfactant (FSN)-capped gold nanoparticles into TGA-capped CdTe QDs, accompanying with the rapid aggregation of FSN-capped gold nanoparticles via noncrosslinking mechanism in the presence of high salt. After the ligand transformation, negligible differences are observed on both photoluminescence spectra and luminescent quantum yield. In addition, the cytotoxicity of the original and new-born CdTe QDs is detected by measuring cell viability after the nanoparticle treatment. In comparison with the original TGA-capped QDs, the new-born CdTe QDs can induce minimal cytotoxicity against human hepatocellular liver carcinoma (HepG2) cells even at high dosages. Our study indicates that the extremely simple method herein opens up novel pathways for the synthesis of green CdTe QDs, and the as-prepared citrate-capped CdTe QDs might have great potential for biological labeling and imaging applications.

  6. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress.

    Science.gov (United States)

    Zhang, Wenlin; Tan, Nicole G J; Fu, Baohui; Li, Sam F Y

    2015-03-01

    Industrial wastewaters often contain high levels of metal mixtures, in which metal mixtures may have synergistic or antagonistic effects on aquatic organisms. A combination of metallomics and nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was employed to understand the consequences of multi-metal systems (Cu, Cd, Pb) on freshwater microalgae. Morphological characterization, cell viability and chlorophyll a determination of metal-spiked Chlorella sp. suggested synergistic effects of Cu and Cd on growth inhibition and toxicity. While Pb has no apparent effect on Chlorella sp. metabolome, a substantial decrease of sucrose, amino acid content and glycerophospholipid precursors in Cu-spiked microalgae revealed Cu-induced oxidative stress. Addition of Cd to Cu-spiked cultures induced more drastic metabolic perturbations, hence we confirmed that Cu and Cd synergistically influenced photosynthesis inhibition, oxidative stress and membrane degradation. Total elemental analysis revealed a significant decrease in K, and an increase in Na, Mg, Zn and Mn concentrations in Cu-spiked cultures. This indicated that Cu is more toxic to Chlorella sp. as compared to Cd or Pb, and the combination of Cu and Cd has a strong synergistic effect on Chlorella sp. oxidative stress induction. Oxidative stress is confirmed by liquid chromatography tandem mass spectrometry analysis, which demonstrated a drastic decrease in the GSH/GSSG ratio solely in Cu-spiked cultures. Interestingly, we observed Cu-facilitated Cd and Pb bioconcentration in Chlorella sp. The absence of phytochelatins and an increment of extracellular polymeric substances (EPS) yields in Cu-spiked cultures suggested that the mode of bioconcentration of Cd and Pb is through adsorption of free metals onto the algal EPS rather than intracellular chelation to phytochelatins.

  7. Influence of a high level of dietary cadmium on cadmium content in milk, excretion, and cow performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.J.; Lampp, B.; Powell, G.W.; Salotti, C.A.; Blackmon, D.M.

    1967-01-01

    Three Holstein cows were each given 3.0 g of cadmium daily (two equal doses) for two weeks by gelatin capsules. There was a sharp drop in concentrate consumption for the first few days of cadmium administration but, by the second week, consumption returned to normal. Milk production declined sharply for several days and then increased appreciably, but to a level still substantially lower than that of controls during the last five days cadmium was given. When cadmium treatments ceased, milk production increased by 50%. Fat content of milk was elevated considerably during the week when production was most reduced. Cows given cadmium lost considerable weight. There were no other clinical manifestations of toxicity. As determined by the chromic oxide indicator method and twice-daily grab samples, fecal excretion of cadmium for the second week averaged 82% of that given. The cadmium level in the urine was below the limits of detectability of the method (0.5 ppm of urine). The cadmium content of the milk was less than 0.1 ppm of the milk, which was the lower reliability limit of the procedure used. On this basis less than 0.22% of the amount administered appeared in the milk. In vitro studies demonstrated that cadmium combines with the casein and whey protein fractions of the milk readily, with the amount combined being linear when levels from 1.0 to 25.0 ppm are added to milk. Smaller amounts were present in the lactose and mineral fractions.

  8. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation.

    Science.gov (United States)

    Seth, Chandra Shekhar; Chaturvedi, Pranav Kumar; Misra, Virendra

    2007-12-01

    To evaluate the biological effects of wastewater samples containing heavy metals, the effects of metal Cd (II) and As (V) were studied on Spirodela polyrrhiza L. The plants were exposed at metal concentrations 0.1, 0.5, 1, 2 microM of Cd (II) and 1, 5, 10, 20 microM of As (V) for a period of 1, 4, 7 d (day) alone and in combination of both. Plants accumulated 1855 mg kg(-1) dw (dry weight) Cd and 1230 mg kg(-1) dw As after 7 d in alone, whereas it was 885 mg kg(-1) dw Cd and 865 mg kg(-1) dw As in combination. The toxicological parameters such as fresh biomass, photosynthetic pigments, and total protein contents increased up to 2 microM of Cd (II) after 1 d and 10 microM of As (V) after 4 d with respect to control (Hormesis effect), followed by gradual decline at higher concentrations and duration. In case of Cd (II) a maximum decrease of 58% in protein content, 62% in fresh biomass, and 78% in total chlorophyll was observed at 2 microM, whereas, with As (V) 38% decrease in protein content, 34% in fresh biomass, and 52% in total chlorophyll was shown at 20 microM after 7 d. The metal tolerance strategy against metal induced reactive oxygen species adopted by the plants was investigated with reference to nonprotein thiols (NP-SH), cysteine, and ascorbic acid. The results of combined treatment revealed reduced toxicity at the level of fresh biomass, protein content, and chlorophyll; however, the amount of nonenzymatic antioxidant did not significantly (P = 0.172) increase as compared to alone treatment. Finally, it was concluded that due to high metal accumulation coupled with defense potential, the plant appears to have a potential for its use as phytoremediator species of aquatic environments.

  9. Cadmium versus copper toxicity: Insights from an integrated dissection of protein synthesis pathway in the digestive glands of mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Pytharopoulou, S.; Kournoutou, G.G. [Laboratory of Biochemistry, School of Medicine, University of Patras, 26504 Patras (Greece); Leotsinidis, M. [Laboratory of Public Health, School of Medicine, University of Patras, 26504 Patras (Greece); Georgiou, C.D. [Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, 26504 Patras (Greece); Kalpaxis, D.L., E-mail: dimkal@med.upatras.gr [Laboratory of Biochemistry, School of Medicine, University of Patras, 26504 Patras (Greece)

    2013-09-15

    Highlights: • Cu{sup 2+}-exposure of mussels results in genotoxicity, without affecting MTs production. •Cd{sup 2+}-exposure of mussels causes low genotoxicity, but induces MTs production. • Both metals induce oxidative stress in mussels, with Cd being the strongest inducer. • Translation is suppressed by both metals, mainly at the initiation and elongation steps. • MTs abrogate translational defects caused by Cd{sup 2+}, by trapping the toxic metal. -- Abstract: The main purpose of this study was to investigate the impact of metal-mediated stress on the protein-synthesis pathway in mussels. To this end, mussels (Mytilus galloprovincialis) underwent a 15 days exposure to 100 μg/L Cu{sup 2+} or Cd{sup 2+}. Both metals, in particular Cd{sup 2+}, accumulated in mussel digestive glands and generated a specific status of oxidative-stress. Exposure of mussels to each metal resulted in 40% decrease of the tRNA-aminoacylation efficiency, at the end of exposure. Cu{sup 2+} also caused a progressive loss in the capability of 40S-ribosomal subunits to form 48S pre-initiation complex, which reached 34% of the control at the end of exposure. Other steps of translation underwent less pronounced, but measurable damages. Mussels exposed to Cd{sup 2+} for 5 days presented a similar pattern of translational dysfunctions in digestive glands, but during the following days of exposure the ribosomal efficiency was gradually restored. Meanwhile, metallothionein levels significantly increased, suggesting that upon Cd{sup 2+}-mediated stress the protein-synthesizing activity was reorganized both quantitatively and qualitatively. Conclusively, Cd{sup 2+} and Cu{sup 2+} affect translation at several levels. However, the pattern of translational responses differs, largely depending on the capability of each metal to affect cytotoxic pathways in the tissues, such as induction of antioxidant defense and specific repair mechanisms.

  10. Effects of Cadmium on the Glial Architecture in Lizard Brain

    Science.gov (United States)

    Favorito, Rossana; Monaco, Antonio; Grimaldi, Maria C.; Ferrandino, Ida

    2017-01-01

    The glial cells are positioned to be the first cells of the brain parenchyma to face molecules crossing the blood-brain barrier with a relevant neuroprotective role from cytotoxic action of heavy metals on the nervous system. Cadmium is a highly toxic metal and its levels in the environment are increasing due to industrial activities. This element can pass the blood-brain barrier and have neurotoxic activity. For this reason we have studied the effects of cadmium on the glial architecture in the lizard Podarcis siculus, a significant bioindicator of chemical exposure due to its persistence in a variety of habitats. The study was performed on two groups of lizards. The first group of P. siculus was exposed to an acute treatment by a single i.p. injection (2 mg/kg-BW) of CdCl2 and sacrificed after 2, 7 and 16 days. The second one was used as control. The histology of the brain was studied by Hematoxylin/Eosin and Cresyl/Violet stains while the glial structures were analyzed by immunodetection of the glial fibrillary acidic protein (GFAP), the most widely accepted marker for astroglial cells. Evident morphological alterations of the brain were observed at 7 and 16 days from the injection, when we revealed also a decrease of the GFAP-immunopositive structures in particular in the rhombencephalic ventricle, telencephalon and optic tectum. These results show that in the lizards an acute exposure to cadmium provokes morphological cellular alterations in the brain but also a decrement of the expression of GFAP marker with possible consequent damage of glial cells functions.

  11. Effects of cadmium accumulation from suspended sediments and phytoplankton on the Oyster Saccostrea glomerata

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Helena A.; Maher, William A., E-mail: bill.maher@canberra.edu.au; Taylor, Anne M.; Krikowa, Frank

    2015-03-15

    Highlights: • Saccostrea glomerata accumulated cadmium from sediments and phytoplankton. • Effects were similar for both pathways. • Antioxidant capacity, lipid peroxidation and lysosomal destabilisation were affected. • Clear exposure–dose–response relationships were demonstrated. - Abstract: Metals are accumulated by filter feeding organisms via water, ingestion of suspended sediments or food. The uptake pathway can affect metal toxicity. Saccostrea glomerata were exposed to cadmium through cadmium-spiked suspended sediments (19 and 93 μg/g dry mass) and cadmium-enriched phytoplankton (1.6–3 μg/g dry mass) and cadmium uptake and effects measured. Oysters accumulated appreciable amounts of cadmium from both low and high cadmium spiked suspended sediment treatments (5.9 ± 0.4 μg/g and 23 ± 2 μg/g respectively compared to controls 0.97 ± 0.05 μg/g dry mass). Only a small amount of cadmium was accumulated by ingestion of cadmium-enriched phytoplankton (1.9 ± 0.1 μg/g compared to controls 1.2 ± 0.1 μg/g). In the cadmium spiked suspended sediment experiments, most cadmium was desorbed from sediments and cadmium concentrations in S. glomerata were significantly related to dissolved cadmium concentrations (4–21 μg/L) in the overlying water. In the phytoplankton feeding experiment cadmium concentrations in overlying water were <0.01 μg/L. In both exposure experiments, cadmium-exposed oysters showed a significant reduction in total antioxidant capacity and significantly increased lipid peroxidation and percentage of destabilised lysosomes. Destabilised lysosomes in the suspended sediments experiments also resulted from stress of exposure to the suspended sediments. The study demonstrated that exposure to cadmium via suspended sediments and to low concentrations of cadmium through the ingestion of phytoplankton, can cause sublethal stress to S. glomerata.

  12. Changes in Tissue Metals After Cadmium Intoxication and Intervention With Chlorpromazine in Male Rats 

    Institute of Scientific and Technical Information of China (English)

    YANGXIAO-FANG; WANGSHU-YI; 等

    2000-01-01

    Cadmium(Cd),one of the most dangerous heavy metals,has a very similar ionic radius to calcium(Ca),The interference of cadmium in calcium homeostasis may play an important role in cadmium toxicity.Recent reports indicate that calmodulin(CaM) inhibitors such as trifluoperazine and chlorpromazine(CPZ) could protect rodents against cadmium toxicity,It was also reported that pretreatment of mice with zine(Zn)could reduce the adverse effects induced by cadmium.The aim of this study is to determine whether Cd changes the balance of other essential metals such as Zn and copper(Cu) in rat tissues,and whether CPZ can reverse these changes which are induced by cadmium intoxication.Adult male Sprague-Dawley(SD) rats were injected intraperitoneally(ip) with cadmium chloride(CdCl2)(0.2,0.4,0.8mg Cd/kg body wight) alone and 0.4mg Cd/kg in association with CPZ(5mg/kg) daily for a week.The control animals were injected with normal saline only.The results showed that the cadmium content in the liver,kidney,and testis increased significantly with a dose-response relationship.Cadmium treatment markedly increased the Zn and Ca content in some of the tissues,Hepatic and renal metallothionein(MT) increased significantly after cadmium intoxication,CPZ treatment,howerver,reduced cadmium content in liver,but not blood and kidney.CPZ seemed to decrease the content of MT in liver and significantly increase the amounts of MT in kidney.These data suggest that the intervention of cadmium with tissue essential metals may play a role in cadium toxicity in rats,and calmodulin inhibitors to some extent can reduce the adverse effect of cadmium by decreasing the cadmium load in tissues and reversing the unbalance of essetial metals.

  13. Urinary cadmium and mammographic density in premenopausal women.

    Science.gov (United States)

    Adams, Scott V; Newcomb, Polly A; Shafer, Martin M; Atkinson, Charlotte; Bowles, Erin J Aiello; Newton, Katherine M; Lampe, Johanna W

    2011-08-01

    Mammographic density (MD), a strong marker of breast cancer risk, is influenced by genetic, environmental, and hormonal factors. Cadmium, a persistent and widespread environmental pollutant, has been associated with risk of breast cancer, and laboratory evidence suggests cadmium is a carcinogen in the breast. We investigated the hypothesis that cadmium exposure is associated with higher MD. In a cross-sectional study of MD and urinary cadmium concentration, percentage MD (MD%) and Breast Imaging-Reporting and Data Systems (BI-RADS®) density category were determined from screening mammograms of 190 premenopausal women ages 40-45 years. Women completed a health questionnaire, and the cadmium content of spot urine samples was measured with inductively coupled plasma mass spectrometry and corrected for urine creatinine. Urinary cadmium concentrations are thought to reflect exposure to cadmium during a period of 20-30 years. Multivariable linear regression and logistic regression were used to estimate the strength of association between urinary cadmium and mammographic breast density. Adjusted mean MD% among women in the upper tertile of creatinine-corrected urinary cadmium was 4.6% higher (95% CI: -2.3 to 11.6%) than in women in the lowest cadmium tertile. Each twofold increase in urinary cadmium was associated with higher odds of MD% in the upper tertile (OR: 1.29, 95% CI: 0.82-2.02) or a BI-RADS category rating of "extremely dense" (OR: 1.75, 95% CI: 1.14-2.70). Stronger associations were observed among nulliparous women, and current or former smokers. Exposure to cadmium may be associated with increased breast density in premenopausal women.

  14. Protective effect of cannabidiol against cadmium hepatotoxicity in rats.

    Science.gov (United States)

    Fouad, Amr A; Al-Mulhim, Abdulruhman S; Gomaa, Wafaey

    2013-10-01

    The protective effect of cannabidiol, the non-psychoactive component of Cannabis sativa, against liver toxicity induced by a single dose of cadmium chloride (6.5 mgkg(-1) i.p.) was investigated in rats. Cannabidiol treatment (5 mgkg(-1)/day, i.p.) was applied for five days starting three days before cadmium administration. Cannabidiol significantly reduced serum alanine aminotransferase, and suppressed hepatic lipid peroxidation, prevented the depletion of reduced glutathione and nitric oxide, and catalase activity, and attenuated the elevation of cadmium level in the liver tissue resulted from cadmium administration. Histopathological examination showed that cadmium-induced liver tissue injury was ameliorated by cannabidiol treatment. Immunohistochemical analysis revealed that cannabidiol significantly decreased the cadmium-induced expression of tumor necrosis factor-α, cyclooxygenase-2, nuclear factor-κB, caspase-3, and caspase-9, and increased the expression of endothelial nitric oxide synthase in liver tissue. It was concluded that cannabidiol may represent a potential option to protect the liver tissue from the detrimental effects of cadmium toxicity.

  15. Epidemiological aspects of cadmium in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Piscator, M.

    1973-01-01

    Cadmium is highly toxic to man and it has an extremely long biological half-time. Under long-term low level exposure about one third of the total body burden is in the kidneys. In some European countries and USA mean renal cortical concentrations of cadmium 24-50 ppM wet weight at age 50 have been reported. In three areas in Japan the corresponding concentrations were 60 to 125 ppM wet weight. These normal concentrations have been thought to cause hypertension but so far epidemiological data are not available to support such a hypothesis. Renal tubular dysfunction may begin at a renal cortical concentration of about 200 ppM wet weight. In Japan extensive investigations have been carried out in several areas polluted by cadmium. Available data indicate that the prevalence of proteinuria is higher in the cadmium polluted areas and that the proteinuria is of the tubular type. Studies on dose-response relationships must include accurate and sensitive methods for the detection of low molecular weight proteinuria, which is an early sign in cadmium intoxication. 6 references, 1 table.

  16. Digital gene expression profiling (DGE) of cadmium-treated Drosophila melanogaster.

    Science.gov (United States)

    Guan, Delong; Mo, Fei; Han, Yan; Gu, Wei; Zhang, Min

    2015-01-01

    Cadmium is highly toxic and can cause oxidative damage, metabolic disorders, and reduced lifespan and fertility in animals. In this study, we investigated the effects of cadmium in Drosophila melanogaster, performing transcriptome analysis by using tag-based digital gene expression (DGE) profiling. Among 1970 candidate genes, 1443 were up-regulated and 527 were down-regulated following cadmium exposure. Using Gene Ontology analysis, we found that cadmium stress affects three processes: transferase activity, stress response, and the cell cycle. Furthermore, we identified five differentially expressed genes (confirmed by real-time PCR) involved in all three processes: Ald, Cdc2, skpA, tefu, and Pvr. Pathway analysis revealed that these genes were involved in the cell cycle pathway and fat digestion and absorption pathway. This study reveals the gene expression response to cadmium stress in Drosophila, it provides insights into the mechanisms of this response, and it could contribute to our understanding of cadmium toxicity in humans.

  17. Correlative characteristic of cadmium in soils of steppe Dnieper region

    Directory of Open Access Journals (Sweden)

    N. M. Tsvetkova

    2015-09-01

    Full Text Available Much attention is paid to searching for methods of establishing environmental standards for objective assessment of admissibility of anthropogenic load on the biosphere. The main pollutants of the environment are xenobiotics; heavy metals such as cadmium occupy hold a special place among them. Cadmium is one of the most dangerous environmental toxic agents, belonging to the 1stclass of hazard. Due to insufficient and fragmented information available on the distribution of cadmium in the city edaphotopes, it’s necessary to conduct additional research, taking into account the properties of soils and the biological characteristics of every element. The paper shows the ratio of cadmium in soils and soil-forming rocks of steppe Dnieper region. Environmental assessment of cadmium content in Dniprodzerzhinsk city soilsis made, and the problem of topsoil contamination of the city as a territory of high anthropogenic load is considered. It is found that the content of cadmium down the profile in natural soil increases. Enrichment of the topsoil with cadmium occurs due to contamination. The value of movable forms content, expressed as a percentage of the total content, varies from 12% to 70%, providing the evidence of the technogenic origin of cadmium in Dniprodzerzhinsk city topsoil. General and proximate correlation analyses of interrelation of soil cadmium and specifically selected characteristics of soil (pH, humus, sulfate ions, dry solid, chloride ions, total alkalinity, hygroscopic moisture were made. It is established that cadmium concentration in the movable forms of natural soils of the steppe Dnieper region depends primarily on pH value. With the increase in pH value, concentration of movable cadmium in soil increases.

  18. Cadmium and zinc relationships

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.; Piscator, M.

    1978-08-01

    Higher mammals, such as homo sapiens, accumulate zinc in kidney cortex almost equimolarly with cadmium. A different pattern seems to be present in liverthere is a limited increase of zinc in two species of large farm animals compared with a marked increase in the laboratory. In large farm animals, an equimolar increase of zinc with cadmium in renal cortex seems to indicate that the form of metallothionein that binds equal amounts of cadmium and zinc in present. Differences in cadmium and zinc relationships in large animals and humans compared with laboratory animals must be carefully considered. (4 graphs, 26 references)

  19. Cadmium-induced ectopic apoptosis in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Po Kwok; Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2003-02-01

    In this study, we tested the hypothesis that cadmium-induced developmental toxicity was mediated via ectopic occurrence of apoptosis during embryonic development. We employed confocal microscopy to acquire images of whole-mount staining of apoptotic cells in zebrafish embryo exposed to 100 {mu}M cadmium from 5 hours post fertilisation (hpf) to 28 hpf. Three-dimensional reconstruction of the images was performed and the spatial and temporal distributions of apoptotic cells in the embryos were compared. In cadmium-treated embryos with varying degrees of gross developmental malformations, significantly higher numbers of apoptotic cells were detected with this method. In order to detect the precise locations of apoptotic cells, we performed terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay in sectioned embryos. In the degenerating neural tube of cadmium-treated embryos apoptotic cells were detected, while in the healthy neural tube of the untreated controls no apoptotic cells were found. We then employed flow cytometry to investigate whether cadmium exposure would affect the dynamics of apoptosis or induce any abnormalities in cell-cycle progression. It appeared that cadmium did not induce cell-cycle arrest. The percentages of apoptotic cells did not differ in the two groups at 13, 16 or 19 hpf. At 28 hpf, however, a significantly higher percentage of apoptotic cells were found in the cadmium-treated group. Exposure to cadmium, therefore, induced ectopic apoptosis at 28 hpf without affecting the dynamics of apoptosis at earlier developmental stages. (orig.)

  20. Dietary cadmium exposure and the risk of hormone-related cancers

    OpenAIRE

    2012-01-01

    The toxic metal cadmium has been widely dispersed into the environment mainly through anthropogenic activities. Even in industrially non-polluted areas, farmland and consequently foods are, to a varying degree, contaminated. Food is the main source of exposure besides tobacco smoking. Cadmium accumulates in the body, particularly in the kidney where it may cause renal tubular damage. Recently, cadmium was discovered to possess endocrine disrupting properties, mainly mimicking the in vivo- eff...

  1. Plasticity in offspring contaminant tolerance traits: developmental cadmium exposure trumps parental effects.

    Science.gov (United States)

    Plautz, Stephanie C; Salice, Christopher J

    2013-07-01

    Parental effects are non-genotypic influences on offspring phenotype that occur via parental phenotypes or environments, while developmental plasticity is phenotypic variation that arises during development in response to environmental cues. We evaluated the relative contribution of these two sources of phenotypic variation on offspring toxicant tolerance in Physa pomilia snails exposed to cadmium. We exposed adult snails to 0, 2, or 20 μg/L cadmium for 7 days, then exposed egg masses collected from these adults to 0 or 2 μg/L cadmium in a factorial design (adult cadmium exposure × egg mass cadmium exposure). Starting at 2 days old, we recorded time to death for hatchlings exposed to 150 μg/L cadmium for 72 h at 8 h intervals. Juveniles hatched from cadmium-exposed egg masses displayed higher cadmium tolerance than juveniles from unexposed egg masses. Among juveniles from egg masses not exposed to cadmium, offspring of parents exposed to 20 μg/L cadmium had higher cadmium tolerance than offspring of parents exposed to 0 or 2 μg/L cadmium. Our results show that both parental effects and developmental plasticity can impact offspring toxicant tolerance and point to the potential importance of both processes in understanding how offspring respond to chemical contaminants. When both parents and offspring are exposed to a toxicant, our results showed that the effects of parental exposure on offspring toxicant tolerance may be eclipsed by the effects of offspring exposure during development.

  2. Measured Copper Toxicity to Cnesterodon decemmaculatus (Pisces: Poeciliidae and Predicted by Biotic Ligand Model in Pilcomayo River Water: A Step for a Cross-Fish-Species Extrapolation

    Directory of Open Access Journals (Sweden)

    María Victoria Casares

    2012-01-01

    Full Text Available In order to determine copper toxicity (LC50 to a local species (Cnesterodon decemmaculatus in the South American Pilcomayo River water and evaluate a cross-fish-species extrapolation of Biotic Ligand Model, a 96 h acute copper toxicity test was performed. The dissolved copper concentrations tested were 0.05, 0.19, 0.39, 0.61, 0.73, 1.01, and 1.42 mg Cu L-1. The 96 h Cu LC50 calculated was 0.655 mg L-1 (0.823-0.488. 96-h Cu LC50 predicted by BLM for Pimephales promelas was 0.722 mg L-1. Analysis of the inter-seasonal variation of the main water quality parameters indicates that a higher protective effect of calcium, magnesium, sodium, sulphate, and chloride is expected during the dry season. The very high load of total suspended solids in this river might be a key factor in determining copper distribution between solid and solution phases. A cross-fish-species extrapolation of copper BLM is valid within the water quality parameters and experimental conditions of this toxicity test.

  3. Zinc and cadmium monosalicylates

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1984-06-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  4. Maternal Cadmium, Iron and Zinc Levels, DNA Methylation and Birth Weight

    Science.gov (United States)

    BACKGROUND:Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationsh...

  5. Disponibilidade, acúmulo e toxidez de cádmio e zinco em milho cultivado em solo contaminado Cadmium and zinc availability, accumulation and toxicity in maize grown in a contaminated soil

    Directory of Open Access Journals (Sweden)

    Karina Patrícia Vieira da Cunha

    2008-06-01

    ção das paredes celulares da epiderme e colênquima, do tecido vascular e da endoderme foi associado a níveis críticos tóxicos de Cd e de Zn no solo.A greenhouse experiment was carried out to evaluate: (a the soil Cd and Zn availability to maize plants with and without liming, using the DTPA, EDTA, Mehlich-1, and Mehlich-3 extractants; (b The effect of Cd and Zn doses on plant growth and metal accumulation in maize; and (c toxicity symptoms and anatomical changes in leaves and roots exposed to Cd and zinc. Maize was grown for 30 days in soil contaminated with either Cd (0, 1, 3, 5, 10, 20 mg kg-1 or Zn (0, 10, 30, 50, 100, 150 mg kg-1. Highly significant correlations were found between all extractants tested and metal plant contents. The metal addition to soil reduced biomass production and increased Cd and Zn plant contents. The critical toxicity value for Cd in soil varied from 8.7 to 13.1 mg kg-1, whereas for Zn this value lied between 74.1 to 110.7 mg kg-1, depending on liming and extractant type. Interveinal and marginal chlorosis together with necrosis in the leaf apex and along the margins were observed for Zn treatments. On the other hand, leaf chlorosis, shriveling and curling were the most common symptoms in cadmium-damaged plants. Increased cell wall lignification in vascular tissues, epidermis, collenchyma, and endoderm cells were associated to critical toxicity values of Cd and Zn in soil.

  6. Haematological changes in Bufo maculatus treated with sublethal concentrations of Cadmium

    Directory of Open Access Journals (Sweden)

    Lawrence Ikechukwu Ezemonye

    2011-12-01

    Full Text Available Adult Bufo maculatus was exposed to sublethal cadmium concentrations of 0.25, 0.50, 1.00 and 2.00 mg/L. The toxicant from which the cadmium concentrations were prepared was cadmium chloride (CdCl2.H2O. There were three replicate tanks per treatment and three individuals per tank including control groups. The hematologic alterations based on the examination of blood indices during the 28 days of exposure showed that total erythrocyte count (TEC, hematocrit (Hct and hemoglobin (Hb concentration decreased (P<0.05 relative to controls. The decline was concentration- dependent as concentration of cadmium increased. The decline in hemoglobin and hematocrit in the experimental organism could be due to a decrease in the synthesis or release of erythrocytes into the circulation or an increase in the rate of erythrocyte destruction inflicted by cadmium toxicity. There was significant (P<0.05 elevation in total leuko- leukocyte count (TLC with increase in the concen- cyte concentration of cadmium. The increase in total leukocyte count observed in this study could be attributed to a stimulation of the immune system in response to tissue damage caused by cadmium toxicity. The study has shown that the exposure of the Bufo maculatus toad to cadmium can inflict alterations in the hematologic indices, which could induce unfavorable physiological changes in the amphibian, which may lead to death. There is, therefore, the need to protect amphibians in order to sustain the biodiversity in the Nigerian Niger Delta ecological zone.

  7. Cadmium—Towards a rational use of a toxic element

    Science.gov (United States)

    Tötsch, Walter

    1990-05-01

    Because of its toxicity, cadmium creates an environmental problem as well as a health hazard for exposed workers. Most cadmium emissions arise from the intentional use of the element. It is therefore mandatory to reduce cadmium consumption to the lowest possible level. Cadmium pigments, mainly used in plastic processing, can be replaced in all applications where the processing temperature does not exceed 300°C. Newly developed polyvinyl chloride stabilizers promise to be an excellent substitute for cadmium stabilizers in even the most demanding applications. Cadmium plating, still extensively used in the United States and the West Germany, has been virtually abandoned in Japan. Improved lead acid batteries are replacing vented nickel cadmium batteries because of their cost effectiveness. While in these applications cadmium use is declining, more and more cadmium is needed for the manufacturing of sealed nickel cadmium batteries. These relatively small electrochemical cells are used mainly by individual consumers. Here cadmium can only be replaced in some marginal applications. The high cadmium content of these batteries (up to 22%) makes them a good candidate for recycling of the heavy metal.

  8. Cadmium status in Egypt

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is inferred from these studies that releases of Cd are still increasing and it is recommended that measures must be taken to reduce emissions of cadmium. Any cadmium discharged into the Egyptian environment may move from one compartment to another at varying rates,resulting in an accumulation in compartments such as soils and biota. Such accumulation can be expected to increase with continued emissions,and attention should be given to all sources of cadmium, natural as well as anthropogenic especially in the industrial cities in Egypt. Cadmium present in sewage, as well as industrial effluent (also, other liquid and solid wastes) and sewage sludge will increase levels in soils and is xpected to contribute to dietary levels and body burdens. The current information indicates that such effects may have to be evaluated over long periods of time, possibly as long as 50 - 100 years.

  9. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture.

    Science.gov (United States)

    López, E; Arce, C; Oset-Gasque, M J; Cañadas, S; González, M P

    2006-03-15

    Cadmium is a toxic agent that it is also an environmental contaminant. Cadmium exposure may be implicated in some humans disorders related to hyperactivity and increased aggressiveness. This study presents data indicating that cadmium induces cellular death in cortical neurons in culture. This death could be mediated by an apoptotic and a necrotic mechanism. The apoptotic death may be mediated by oxidative stress with reactive oxygen species (ROS) formation which could be induced by mitochondrial membrane dysfunction since this cation produces: (a) depletion of mitochondrial membrane potential and (b) diminution of ATP levels with ATP release. Necrotic death could be mediated by lipid peroxidation induced by cadmium through an indirect mechanism (ROS formation). On the other hand, 40% of the cells survive cadmium action. This survival seems to be mediated by the ability of these cells to activate antioxidant defense systems, since cadmium reduced the intracellular glutathione levels and induced catalase and SOD activation in these cells.

  10. Soluble Moringa oleifera leaf extract reduces intracellular cadmium accumulation and oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kerdsomboon, Kittikhun; Tatip, Supinda; Kosasih, Sattawat; Auesukaree, Choowong

    2016-05-01

    Moringa oleifera leaves are a well-known source of antioxidants and traditionally used for medicinal applications. In the present study, the protective action of soluble M. oleifera leaf extract (MOLE) against cadmium toxicity was investigated in the model eukaryote Saccharomyces cerevisiae. The results showed that this extract exhibited a protective effect against oxidative stress induced by cadmium and H2O2 through the reduction of intracellular reactive oxygen species. Interestingly, not only the co-exposure of soluble MOLE with cadmium but also pretreatment of this extract prior to cadmium exposure significantly reduced the cadmium uptake through an inhibition of Fet4p, a low-affinity iron(II) transporter. In addition, the supplementation of soluble MOLE significantly reduced intracellular iron accumulation in a Fet4p-independent manner. Our findings suggest the potential use of soluble extract from M. oleifera leaves as a dietary supplement for protection against cadmium accumulation and oxidative stress.

  11. Effects of Humic Acid on the Germination Traits of Pumpkin Seeds under Cadmium Stress

    Directory of Open Access Journals (Sweden)

    Maasoumeh ASADI

    2013-12-01

    Full Text Available The study tackled the effect of humic acid and cadmium concentrations on the pumpkin seed germination characteristics throughout were studied. Treatments were cadmium concentrations on three levels: 0, 100 and 200 ppm and humic acid concentration of 0, 100, 200, 300 and 400 mg lit-1. Results showed that interaction of humic acid and cadmium was not significant on germination traits, but there was a significant effect on seedling growth indexes. Radicle and plumule length increased by 86 and 192% in comparison with control, of the mixture of 200 ppm cadmium and 300 mg lit-1 of humic acid. Cadmium had stimulatory effect on radicle and cotyledon dry weight and the highest values obtained with 200 ppm in mixture with 200 mg lit-1 of humic acid. Also, maximum plumule dry weight was recorded in 200 ppm cadmium and 300 mg lit-1 of humic acid. The highest of indexes were observed of 200 ppm cadmium and 400 mg lit-1 humic acid. In conclusion, the humic acid had detoxifying effect on cadmium stress in the culture and responded antagonistically against cadmium, but it seems that these concentrations of cadmium are low for the pumpkin seed and can be increased in order to reach the toxicity level.

  12. 不同营养状态下方斑东风螺的镉生物积累及毒性%Cadmium bioaccumulation and its toxicity in Babylonia areolata under different nutritional status

    Institute of Scientific and Technical Information of China (English)

    薛明; 柯才焕

    2012-01-01

    An indoor exposure experiment with juvenile Babylonia areolata was conducted to study its survival, growth, cadmium (Cd) accumulation, metallothionein (MT) induction, and glycogen content as well as the DNA integrity of hepatopancreas tissue. The juveniles were starved or fed with mussel (Perna viridis) or clamworm (Perinereis aibuhitensis) , and exposed to 50 μg · L-1 of Cd 2+ for 10 weeks. Prolonged starvation and simultaneous exposure to Cd reduced the survival rate of B. areolata, and its glycogen was mobilized in great extent. Feeding with P. viridis or P. aibuhitensis helped the B. areolata to combat Cd toxicity and lessen mortality. After exposed to Cd, the damage of the DNA integrity of hepatopancreas tissue for the B. areolata fed with P. viridis or P. aibuhitensis could be recovered with time, but not for the starved B. areolata. Prolonged starvation caused tissue atrophy and led to Cd accumulation and MT increase, while feeding with P. viridis or P. aibuhitensis increased the B. areolata mass and lowered the Cd accumulation and MT level because of the tissue dilution effect. The B. areolata fed with P. viridis had better growth and lower Cd content than that fed with P. aibuhitensis. This study indicated that starvation intensified the toxicity of Cd to B. areolata, while prey type had significant effects on the growth rate of the B. areolata and indirectly affected its Cd accumulation, MT induction, and glycogen consumption. It was suggested that when using gastropods such as B. areolata as the indicator species to monitor marine environmental pollution, it would be necessary to consider the effects of habitat ecological data including food richness and prey type. Moreover, in the high-density cultivation of B. areolata in factory, rational feeding and periodic measurement of Cd concentration in seawater should be made.%采用室内模拟方式,研究了方斑东风螺在饥饿及摄食饵料分别为贻贝和沙蚕3种情况下暴露于水体镉(Cd2

  13. Chelidonium majus leaves methanol extract and its chelidonine alkaloid ingredient reduce cadmium-induced nephrotoxicity in rats.

    Science.gov (United States)

    Koriem, Khaled M M; Arbid, Mahmoud S; Asaad, Gihan F

    2013-01-01

    The kidney is one of the critical target organs for chronic cadmium toxicity. Cadmium is a cumulative nephrotoxicant, and preferentially accumulates and persists in the kidneys. The natriuretic and antidiuretic effects of methyl alcohol extracts of Chelidonium majus L. (C. majus) leaves were evaluated in kidney of cadmium-intoxicated rats. Ninety-six male Sprague-Dawley Albino rats were divided into two major groups (toxicity and biochemical, 60 and 36 rats, respectively). There was a decrease in kidney weight and serum electrolytes, but an increase in urinary volume, excretion of electrolytes, serum urea and creatinine, after 9 weeks of cadmium chloride intoxication. Treatment of C. majus methyl alcohol extract for 10 weeks starting 1 week before cadmium administration shifted the above parameters towards the normal values. These results were supported by molecular and histological investigations. Treatment with C. majus methyl alcohol extract has natriuretic and antidiuretic effects against cadmium-induced nephrotoxicity in rats.

  14. Cadmium and zinc accumulation in soybean: A threat to food safety?

    Energy Technology Data Exchange (ETDEWEB)

    Shute, Tracy [Department of Biology, University of Western Ontario, London, ON N6A 5B7 (Canada); Macfie, Sheila M. [Department of Biology, University of Western Ontario, London, ON N6A 5B7 (Canada)]. E-mail: smacfie@uwo.ca

    2006-12-01

    .2 mg/kg set by the Codex Alimentarius Commission. This was surprising given that cadmium in the soil was only 1 mg/kg well below the maximum allowable amount for agricultural soil. While it is possible that more cadmium was accumulated by plants in this study than that which might occur under agricultural field conditions, these results reinforce the need to monitor concentrations of toxic metals in food crops.

  15. Blood cadmium concentration and lipid profile in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kisok, E-mail: kimkisok@kmu.ac.kr [Department of Public Health, Keimyung University, 1000 Shindang-dong, Daegu 704-701 (Korea, Republic of)

    2012-01-15

    Although animal experiments have shown that cadmium exposure induces alterations in lipid profiles, no epidemiological study of this relationship has been performed. The objective of this study was to evaluate the association between blood cadmium concentration and blood lipid levels in Korean adults. A cross-sectional study comprising participants (n=3903) aged 20 years or older from the 2005, 2008, and 2009 Korea National Health and Nutrition Examination Surveys was conducted. Demographic characteristics and dietary intake were obtained from the participants by questionnaire, and cadmium and lipid levels were determined by analysis of blood samples. After adjusting for demographic and dietary factors, blood concentration of cadmium was positively associated with the risk of low high-density lipoprotein cholesterol (HDL-C) in a dose-dependent manner (p for trend <0.001). In addition, the odds ratios (ORs) of a high triglyceride to HDL-C ratio was significantly increased in the high blood cadmium groups [OR=1.36; 95% confidence interval (CI), 1.03-1.79 for fourth quintile and OR=1.41; 95% CI, 1.07-1.86 for fifth quintile] compared with the lowest quintile group. However, high blood cadmium was not associated with a risk of high total cholesterol, high low-density lipoprotein cholesterol, or high triglycerides. These data suggest that an increased cadmium body burden increases the risk of dyslipidemia, mainly due to the increased risk of low HDL-C and the high ratio of triglycerides to HDL-C.

  16. Effects of Cadmium Stress on Seed Germination, Seedling Growth and Seed Amylase Activities in Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    HE Jun-yu; REN Yan-fang; ZHU Cheng; JIANG De-an

    2008-01-01

    Two rice varieties, Xiushui 110 with high cadmium (Cd) tolerance and Xiushui 11 with low Cd tolerance were used to study the effects of Cd stress on seed germination, seedling growth and amylase activities. The low cadmium concentration had little effect on seed germination rate. However, cadmium stress could significantly inhibit plumule and radicle growth, especially for radicle growth. Germination index, vigour index, radicle length and amylase activities of Xiushui 11 decreased more significantly with the increasing cadmium level compared with Xiushui 110. The cadmium content in seedlings of Xiushui 11 was higher than that in Xiushui 110 when the cadmium concentration exceeded 5 μmol/L, which caused lower mitotic index in root tips and amylase activities, and more serious cadmium toxicity in Xiushui 11.

  17. Level of selected toxic elements in meat, liver, tallow and bone marrow of young semi-domesticated reindeer (Rangifer tarandus tarandus L. from Northern Norway

    Directory of Open Access Journals (Sweden)

    Ammar Ali Hassan

    2012-04-01

    Full Text Available Objectives. To gain knowledge on toxic elements in semi-domesticated reindeer and their distribution in meat, liver, tallow and bone marrow. The correlations between concentrations in meat and liver, as well as the use of the latter as an indicator for toxic elements in meat, were also investigated. Study design. Cross-sectional study on population of semi-domesticated reindeer from 2 northern Norwegian counties (Finnmark and Nordland. Methods. Semi-domesticated reindeer carcasses (n = 31 were randomly selected, from which meat, liver, tallow and bone marrow samples were collected. Selected toxic elements (cadmium, lead, arsenic, nickel and vanadium were studied. Results. Liver was the organ with the highest level of all elements except for nickel, which was highest in bone marrow. Meat had the lowest levels, whereas levels in tallow and bone marrow were between those of meat and liver. Concentrations of cadmium, lead and arsenic were significantly different (p < 0.05 between meat and liver, while only arsenic and cadmium were significantly correlated in meat (rs=0.71, p < 0.01 and liver (rs=0.72, p < 0.01. The cadmium level exceeded the European Commission's (EC maximum level set for bovine meat and live in 52% of the liver samples (n = 29. Nevertheless, the estimated monthly cadmium intake from liver of 2.29 µg/kg body weight was well below the provisional tolerable monthly intake of 25 µg/kg body weight set by the FAO/WHO Joint Expert Committee on Food Additives. Conclusions. Based on the measured levels and their relation to the maximum level and to the provisional tolerable weekly/monthly intake limits, it could be inferred that consumption of reindeer meat is not associated with any health risk related to the studied toxic elements for consumers.

  18. Sources of cadmium exposure among healthy premenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Scott V., E-mail: sadams@fhcrc.org [Fred Hutchinson Cancer Research Center, PO Box 19024, M4-B402, Seattle, WA 98109 (United States); Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195 (United States); Newcomb, Polly A. [Fred Hutchinson Cancer Research Center, PO Box 19024, M4-B402, Seattle, WA 98109 (United States); Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195 (United States); Shafer, Martin M. [Environmental Chemistry and Technology Program, University of Wisconsin and Wisconsin State Laboratory of Hygiene, Madison, WI (United States); Atkinson, Charlotte [Department of Oral and Dental Science, Bristol Dental School, Bristol (United Kingdom); Bowles, Erin J. Aiello [Group Health Research Institute, Seattle, WA (United States); Newton, Katherine M. [Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195 (United States); Group Health Research Institute, Seattle, WA (United States); Lampe, Johanna W. [Fred Hutchinson Cancer Research Center, PO Box 19024, M4-B402, Seattle, WA 98109 (United States); Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195 (United States)

    2011-04-01

    Background: Cadmium, a persistent and widespread environmental pollutant, has been associated with kidney function impairment and several diseases. Cigarettes are the dominant source of cadmium exposure among smokers; the primary source of cadmium in non-smokers is food. We investigated sources of cadmium exposure in a sample of healthy women. Methods: In a cross-sectional study, 191 premenopausal women completed a health questionnaire and a food frequency questionnaire. The cadmium content of spot urine samples was measured with inductively-coupled plasma mass spectrometry and normalized to urine creatinine content. Multivariable linear regression was used to estimate the strength of association between smoking habits and, among non-smokers, usual foods consumed and urinary cadmium, adjusted for age, race, multivitamin and supplement use, education, estimated total energy intake, and parity. Results: Geometric mean urine creatinine-normalized cadmium concentration (uCd) of women with any history of cigarette smoking was 0.43 {mu}g/g (95% confidence interval (CI): 0.38-0.48 {mu}g/g) and 0.30 {mu}g/g (0.27-0.33 {mu}g/g) among never-smokers, and increased with pack-years of smoking. Analysis of dietary data among women with no reported history of smoking suggested that regular consumption of eggs, hot cereals, organ meats, tofu, vegetable soups, leafy greens, green salad, and yams was associated with uCd. Consumption of tofu products showed the most robust association with uCd; each weekly serving of tofu was associated with a 22% (95% CI: 11-33%) increase in uCd. Thus, uCd was estimated to be 0.11 {mu}g/g (95% CI: 0.06-0.15 {mu}g/g) higher among women who consumed any tofu than among those who consumed none. Conclusions: Cigarette smoking is likely the most important source of cadmium exposure among smokers. Among non-smokers, consumption of specific foods, notably tofu, is associated with increased urine cadmium concentration. - Research highlights: {yields

  19. Toxicity of simple mixtures to the nematode Caenhorhabditis elegans in relation to soil sorption

    NARCIS (Netherlands)

    Jonker, M.J.; Sweijen, R.A.J.C.; Kammenga, J.E.

    2004-01-01

    Single and combined toxicity of copper-zinc, copper-cadmium, cadmium-lead, copper-carbendazim, and copper-carbendazimiprodione to the nematode Caenorhabditis elegans in soil was studied. The one-week population increase was estimated as the toxicity endpoint. The aim was to study the relationship be

  20. Impact of soil cadmium on land snails: a two-stage exposure approach under semi-field conditions using bioaccumulative and conchological end-points of exposure.

    Science.gov (United States)

    Nica, Dragos V; Filimon, Marioara Nicoleta; Bordean, Despina-Maria; Harmanescu, Monica; Draghici, George Andrei; Dragan, Simona; Gergen, Iosif I

    2015-01-01

    Land snails are highly tolerant to cadmium exposure and are able to accumulate soil cadmium independently of food ingestion. However, little information exists on the kinetics of cadmium retention in terrestrial gastropods exposed to an increase in the soil cadmium content, over time. There is also little knowledge about how exposure to cadmium-polluted soils influences shell growth and architecture. In this context, we examined cadmium accumulation in the hepatopancreas and shell of juvenile Cantareus aspersus exposed to elevating high levels of cadmium in soil. Also, the toxicity of cadmium to snails was assessed using a range of conchological endpoints, including shell height, width, volume, allometry and integrity. Test snails, aged three months, were reared under semi-field conditions, fed an uncontaminated diet and exposed first, for a period of 30 days, to a series of soil cadmium concentrations, and then, for a second period of 30 days, to soils with higher cadmium content. Cadmium showed a dose-dependent accumulation in both the hepatopancreas and shell. The kinetics of cadmium retention in the hepatopancreas of snails previously exposed to cadmium-spiked soils was significantly influenced by a new exposure event. The shell was not a relevant bioaccumulator for soil cadmium. Under the present experimental conditions, only high cadmium exposure significantly affected either the shell growth or snail survival. There was no consistent effect on shell allometry, but the shell integrity, especially in rapidly growing parts, appeared to be affected by high cadmium exposure. Our results attest to the value of hepatopancreas for describing cadmium retention in land snails and to the difficulty of using conchological parameters in field surveys for estimating the environmental hazard of soil cadmium.

  1. Impact of soil cadmium on land snails: a two-stage exposure approach under semi-field conditions using bioaccumulative and conchological end-points of exposure.

    Directory of Open Access Journals (Sweden)

    Dragos V Nica

    Full Text Available Land snails are highly tolerant to cadmium exposure and are able to accumulate soil cadmium independently of food ingestion. However, little information exists on the kinetics of cadmium retention in terrestrial gastropods exposed to an increase in the soil cadmium content, over time. There is also little knowledge about how exposure to cadmium-polluted soils influences shell growth and architecture. In this context, we examined cadmium accumulation in the hepatopancreas and shell of juvenile Cantareus aspersus exposed to elevating high levels of cadmium in soil. Also, the toxicity of cadmium to snails was assessed using a range of conchological endpoints, including shell height, width, volume, allometry and integrity. Test snails, aged three months, were reared under semi-field conditions, fed an uncontaminated diet and exposed first, for a period of 30 days, to a series of soil cadmium concentrations, and then, for a second period of 30 days, to soils with higher cadmium content. Cadmium showed a dose-dependent accumulation in both the hepatopancreas and shell. The kinetics of cadmium retention in the hepatopancreas of snails previously exposed to cadmium-spiked soils was significantly influenced by a new exposure event. The shell was not a relevant bioaccumulator for soil cadmium. Under the present experimental conditions, only high cadmium exposure significantly affected either the shell growth or snail survival. There was no consistent effect on shell allometry, but the shell integrity, especially in rapidly growing parts, appeared to be affected by high cadmium exposure. Our results attest to the value of hepatopancreas for describing cadmium retention in land snails and to the difficulty of using conchological parameters in field surveys for estimating the environmental hazard of soil cadmium.

  2. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  3. Cross talk between poly(ADP-ribose) polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles.

    Science.gov (United States)

    Bai, Wenlin; Chen, Yujiao; Gao, Ai

    2015-01-01

    Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs), concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose) polymerase 1 (PARP-1), a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm) for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS) scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs.

  4. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    Science.gov (United States)

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  5. Effect of herbal preparation on heavy metal (cadmium) induced antioxidant system in female Wistar rats.

    Science.gov (United States)

    Dailiah Roopha, P; Padmalatha, C

    2012-06-01

    Cadmium is one of the elements found to damage antioxidant systems in mammals. To ameliorate cadmium toxicity and to prevent oxidative stress, natural products may be useful. In Indian ethnobotanical practice, a mixture of 17 herbal products is used to fortify the reproductive system of women after parturition and to reverse ovarian oxidative stress. Oral administration of this extract to rats exposed to cadmium was useful in reversing oxidative stress. Two different doses of cadmium (50 ppm and 200 ppm) were given to Wistar rats aged 45 and 65 days. An herbal extract derived from 17 plants was administered orally every day at a dose level of 200 mg/kg of body weight to the rats exposed to cadmium. A battery of enzymes involved in antioxidant activity in the ovary, including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were measured in the control, cadmium-exposed rats without treatment and in the cadmium-exposed rats treated with herbal extract. The reduction in SOD, catalase, GPx and GST activity after cadmium exposure improved significantly in the rats treated with the herbal extract (p antioxidant enzymes due to cadmium exposure was reversed significantly with herbal extract administration. The synergistic effect of each bioactive compound in different herbal extracts requires further study.

  6. Effects of cadmium on aneuploidy and hemocyte parameters in the Pacific oyster, Crassostrea gigas

    Energy Technology Data Exchange (ETDEWEB)

    Bouilly, Karine [IFREMER, Laboratoire de Genetique et Pathologie, La Tremblade 17390 (France); Gagnaire, Beatrice [IFREMER, Laboratoire de Genetique et Pathologie, La Tremblade 17390 (France); Bonnard, Marc [IFREMER, Laboratoire de Genetique et Pathologie, La Tremblade 17390 (France); Thomas-Guyon, Helene [Laboratoire de Biologie et Environnement Marins, FRE-CNRS, 2727, Universite de La Rochelle, 22 Avenue Michel Crepeau, La Rochelle 17042 (France); Renault, Tristan [IFREMER, Laboratoire de Genetique et Pathologie, La Tremblade 17390 (France); Miramand, Pierre [Laboratoire de Biologie et Environnement Marins, FRE-CNRS, 2727, Universite de La Rochelle, 22 Avenue Michel Crepeau, La Rochelle 17042 (France); Lapegue, Sylvie [IFREMER, Laboratoire de Genetique et Pathologie, La Tremblade 17390 (France)]. E-mail: slapegue@ifremer.fr

    2006-06-15

    Pacific oysters, Crassostrea gigas, are commonly reared in estuaries where they are exposed to anthropogenic pollution. Much research has been made on the toxicity of cadmium to aquatic organisms because the compound recurrently contaminates their environment. Our study examined the influence of cadmium on aneuploidy level (lowered chromosome number in a percentage of somatic cells) and hemocyte parameters in C. gigas at different stages of life. Adults and juveniles were exposed to two different concentrations of cadmium. The first concentration applied was equivalent to a peak value found in Marennes-Oleron bay (Charente-Maritime, France; 50 ng L{sup -1}) and the second was 10 times higher (500 ng L{sup -1}). Exposure to 50 ng L{sup -1} cadmium caused a significant decrease in the survival time of C. gigas, but exposure to 500 ng L{sup -1} surprisingly affected the survival time positively. Significant differences in aneuploidy level were observed between the cadmium treatments and the control in adults but not in juveniles or the offspring of the adult groups. The effects of cadmium on hemocyte parameters were analyzed by flow cytometry. Several hemocyte parameters increased significantly after 21 days of cadmium exposure and subsequently decreased. Phenoloxidase-like activity, evaluated by spectrophotometry, varied over the time of the experiment and increased after 66 days of contact with 500 ng L{sup -1} cadmium. Taken together, cadmium at environmentally relevant concentrations seems to have only moderate effects on aneuploidy and hemocyte parameters.

  7. Principles for prevention of toxic effects from metals

    DEFF Research Database (Denmark)

    Landrigan, Philip J.; Kotelchuk, David; Grandjean, Philippe

    2007-01-01

    of the Toxic Effects of Metals Aluminum Antimony Arsenic Barium Beryllium Bismuth Cadmium Chromium Cobalt Copper Gallium and Semiconductor Compounds Germanium Indium Iron Lead Manganese Mercury Molybdenum Nickel Palladium Platinum Selenium Silver Tellurium Thallium Tin Titanium Tungsten Uranium Vanadium Zinc...

  8. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    Science.gov (United States)

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1 mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1 mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills.

  9. Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta.

    Directory of Open Access Journals (Sweden)

    Camila C P Almenara

    Full Text Available Cadmium is a highly toxic metal that is present in phosphate fertilizers, and the incidence of cadmium poisoning in the general population has increased, mainly due to cigarette smoking. Once absorbed, cadmium accumulates in the tissues, causing harmful effects including high blood pressure, endothelial damage and oxidative stress. Oxidative stress is known to efficiently produce oxidized low-density lipoprotein and consequently atherosclerosis, mainly in the aorta. However, the mechanisms through which endothelial damage is induced by cadmium have not been elucidated. Thus, the aim of this study was to investigate the effects of this metal in the isolated aorta and the possible role of oxidative stress. Rats received 100 mg.L(-1 cadmium chloride (CdCl2 in the drinking water or distilled water alone for four weeks. The pressor effect of cadmium was followed throughout the exposure period by tail plethysmography. At the end of the fourth week, the blood cadmium content was established, and the vascular reactivity of the isolated aorta to phenylephrine, acetylcholine and sodium nitroprusside was analyzed in the context of endothelium denudation and incubation with L-NAME, apocynin, losartan, enalapril, superoxide dismutase (SOD or catalase. We observed an increased response to phenylephrine in cadmium-treated rats. This increase was abolished by catalase and SOD incubation. Apocynin treatment reduced the phenylephrine response in both treatment groups, but its effect was greater in cadmium-treated rats, and NOX2 expression was greater in the cadmium group. These results suggested that cadmium in blood concentrations similar to those found in occupationally exposed populations is able to stimulate NOX2 expression, contributing to oxidative stress and reducing NO bioavailability, despite enhanced eNOS expression. These findings suggest that cadmium exposure promotes endothelial damage that might contribute to inflammation, vascular injury and the

  10. Soil ecotoxicity assessment using cadmium sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    An, Youn-Joo

    2004-01-01

    The crop plants, sorghum and cucumber, can be used as indicator species to assess ecotoxicity of soils contaminated by cadmium. - Four crop plant species (sweet corn, Zea may; wheat, Triticum aestivum; cucumber, Cucumis sativus; and sorghum, Sorghum bicolor) were tested to assess an ecotoxicity in cadmium-amended soils. The measurement endpoints used were seed germination and seedling growth (shoot and root). The presence of cadmium decreased the seedling growth. The medium effective concentration values (EC50) for shoot or root growth were calculated by the Trimmed Spearman-Karber method. Due to the greater accumulation of Cd to the roots, root growth was a more sensitive endpoint than shoot growth. Bioavailability and transport of Cd within plant were related to concentration and species. The ratio of bioaccumulation factor (BAF) in the shoots to the roots indicated high immobilization of Cd in the roots. Seed germination was insensitive to Cd toxicity, and is not recommended for a suitable assay. Among the test plants and test endpoints, root growth of sorghum and cucumber appears to be a good protocol to assess ecotoxicity of soils contaminated by Cd.

  11. Ranking the in vivo toxicity of nanomaterials in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Vecchio, G.; Galeone, A.; Malvindi, M. A. [Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnologies-UniLe (Italy); Cingolani, R. [Istituto Italiano di Tecnologia (IIT), Central Research Laboratories (Italy); Pompa, P. P., E-mail: pierpaolo.pompa@iit.it [Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnologies-UniLe (Italy)

    2013-09-15

    In this work, we propose a quantitative assessment of nanoparticles toxicity in vivo. We show a quantitative ranking of several types of nanoparticles (AuNPs, AgNPs, cadmium-based QDs, cadmium-free QDs, and iron oxide NPs, with different coating and/or surface chemistries), providing a categorization of their toxicity outcomes. This strategy may offer an innovative high-throughput screening tool of nanomaterials, of potential and broad interest to the nanoscience community.

  12. Ranking the in vivo toxicity of nanomaterials in Drosophila melanogaster

    Science.gov (United States)

    Vecchio, G.; Galeone, A.; Malvindi, M. A.; Cingolani, R.; Pompa, P. P.

    2013-09-01

    In this work, we propose a quantitative assessment of nanoparticles toxicity in vivo. We show a quantitative ranking of several types of nanoparticles (AuNPs, AgNPs, cadmium-based QDs, cadmium-free QDs, and iron oxide NPs, with different coating and/or surface chemistries), providing a categorization of their toxicity outcomes. This strategy may offer an innovative high-throughput screening tool of nanomaterials, of potential and broad interest to the nanoscience community.

  13. 29 CFR 1910.1027 - Cadmium.

    Science.gov (United States)

    2010-07-01

    ... battery Plate making, plate preparation 50 All other processes 15 Zinc/Cadmium refining* Cadmium refining... as an airborne concentration of cadmium of 2.5 micrograms per cubic meter of air (2.5 µg/m3... air cadmium level to which an employee is exposed means the exposure to airborne cadmium that...

  14. Selection and breeding of plant cultivars to minimize cadmium accumulation.

    Science.gov (United States)

    Grant, C A; Clarke, J M; Duguid, S; Chaney, R L

    2008-02-15

    Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding can be an important tool to both increase the concentration of desirable trace elements and reduce that of potentially harmful trace elements such as cadmium (Cd). Selection programs for a low-Cd content of various crops, including durum wheat, sunflower, rice and soybean have been established and low-Cd durum wheat cultivars and sunflower hybrids have been developed. In durum wheat (Triticum turgidum L. var durum), low-Cd concentration is controlled by a single dominant gene. The trait is highly heritable, and incorporation of the low-Cd allele can help to reduce the average grain Cd to levels below proposed international limits. The allele for low-Cd concentration does not appear to affect major economic traits and should not cause problems when incorporated into durum cultivars. The cost of Cd selection in a breeding program is initially large both in terms of Cd determination and reduced progress towards development of other economic traits, but declines as more breeding lines in the program carry the low-Cd trait and are utilized in new crosses. Production of low-Cd crop cultivars can be used as a tool to reduce the risk of movement of Cd into the human diet.

  15. Selection and breeding of plant cultivars to minimize cadmium accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C.A. [AAFC Brandon Research Centre, Box 1000A, R.R. 3, Brandon, MB, R7A 5Y3 (Canada)], E-mail: cgrant@agr.gc.ca; Clarke, J.M. [AAFC Semiarid Prairie Agricultural Research Centre, Swift Current, SK, S9H 3X2 (Canada); Duguid, S. [AAFC Morden Research Station, Morden, MB, R6M 1Y5 (Canada); Chaney, R.L. [USDA, ARS, Animal Manure and Byproducts Laboratory, Room 013, Building 007, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705-2350 (United States)

    2008-02-15

    Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding can be an important tool to both increase the concentration of desirable trace elements and reduce that of potentially harmful trace elements such as cadmium (Cd). Selection programs for a low-Cd content of various crops, including durum wheat, sunflower, rice and soybean have been established and low-Cd durum wheat cultivars and sunflower hybrids have been developed. In durum wheat (Triticum turgidum L. var durum), low-Cd concentration is controlled by a single dominant gene. The trait is highly heritable, and incorporation of the low-Cd allele can help to reduce the average grain Cd to levels below proposed international limits. The allele for low-Cd concentration does not appear to affect major economic traits and should not cause problems when incorporated into durum cultivars. The cost of Cd selection in a breeding program is initially large both in terms of Cd determination and reduced progress towards development of other economic traits, but declines as more breeding lines in the program carry the low-Cd trait and are utilized in new crosses. Production of low-Cd crop cultivars can be used as a tool to reduce the risk of movement of Cd into the human diet.

  16. Cadmium - is it hazardous

    Energy Technology Data Exchange (ETDEWEB)

    Zartner-Nyilas, G.; Valentin, H.; Schaller, K.H.; Schiele, R.

    1983-01-01

    The report summarizes the state of knowledge and experience on cadmium. Biological, toxicological and epidemiological data have been evaluated. Cd pollution of the environment is reviewed under the aspect of human health. Uptake in food, threshod values of Cd exposure of the population, types and extent of health hazards, possible carcinogenic effects and future fields of research are discussed.

  17. Cadmium and cancer.

    Science.gov (United States)

    Hartwig, Andrea

    2013-01-01

    Cadmium is an established human and animal carcinogen. Most evidence is available for elevated risk for lung cancer after occupational exposure; however, associations between cadmium exposure and tumors at other locations including kidney, breast, and prostate may be relevant as well. Furthermore, enhanced cancer risk may not be restricted to comparatively high occupational exposure, but may also occur via environmental exposure, for example in areas in close proximity to zinc smelters. The underlying mechanisms are still a matter of manifold research activities. While direct interactions with DNA appear to be of minor importance, elevated levels of reactive oxygen species (ROS) have been detected in diverse experimental systems, presumably due to an inactivation of detoxifying enzymes. Also, the interference with proteins involved in the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis appears to be involved in cadmium-induced carcinogenicity. Within this context, cadmium has been shown to disturb nucleotide excision repair, base excision repair, and mismatch repair. Particularly sensitive targets appear to be proteins with zinc-binding structures, present in DNA repair proteins such as XPA, PARP-1 as well as in the tumor suppressor protein p53. Whether or not these interactions are due to displacement of zinc or due to reactions with thiol groups involved in zinc complexation or in other critical positions under realistic exposure conditions remains to be elucidated. Further potential mechanisms relate to the interference with cellular redox regulation, either by enhanced generation of ROS or by reaction with thiol groups involved in the regulation of signaling pathways. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability evident in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development.

  18. Geostatistical validation and cross-validation of magnetometric measurements of soil pollution with Potentially Toxic Elements in problematic areas

    Science.gov (United States)

    Fabijańczyk, Piotr; Zawadzki, Jarosław

    2016-04-01

    Field magnetometry is fast method that was previously effectively used to assess the potential soil pollution. One of the most popular devices that are used to measure the soil magnetic susceptibility on the soil surface is a MS2D Bartington. Single reading using MS2D device of soil magnetic susceptibility is low time-consuming but often characterized by considerable errors related to the instrument or environmental and lithogenic factors. In this connection, measured values of soil magnetic susceptibility have to be usually validated using more precise, but also much more expensive, chemical measurements. The goal of this study was to analyze validation methods of magnetometric measurements using chemical analyses of a concentration of elements in soil. Additionally, validation of surface measurements of soil magnetic susceptibility was performed using selected parameters of a distribution of magnetic susceptibility in a soil profile. Validation was performed using selected geostatistical measures of cross-correlation. The geostatistical approach was compared with validation performed using the classic statistics. Measurements were performed at selected areas located in the Upper Silesian Industrial Area in Poland, and in the selected parts of Norway. In these areas soil magnetic susceptibility was measured on the soil surface using a MS2D Bartington device and in the soil profile using MS2C Bartington device. Additionally, soil samples were taken in order to perform chemical measurements. Acknowledgment The research leading to these results has received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009-2014 in the frame of Project IMPACT - Contract No Pol-Nor/199338/45/2013.

  19. Short term cadmium administration dose dependently elicits immediate biochemical, neurochemical and neurobehavioral dysfunction in male rats.

    Science.gov (United States)

    Haider, Saida; Anis, Lubna; Batool, Zehra; Sajid, Irfan; Naqvi, Fizza; Khaliq, Saima; Ahmed, Shoaib

    2015-02-01

    Cadmium is a toxic environmental and industrial pollutant. Cadmium toxicity has been reported to produce biochemical and behavioral dysfunction that may cause adverse effects on several organs including the central nervous system. The present study was designed to investigate the neurotoxic effects of Cadmium Chloride (CdCl2) at three different doses by using different behavioral models. Lipid peroxidation (LPO), superoxide dismutase (SOD) and acetylcholinesterase (AChE) activities were also monitored following acute intraperitoneal injection of cadmium. Twenty four adult locally bred Albino Wistar rats were divided into control and 3 test groups (n = 6). Control rats were injected intraperitoneally with saline (0.9% NaCl) and test groups were injected with CdCl2 (1 mg/kg, 2 mg/kg and 3 mg/kg) dissolved in physiological solution. Behavioral activities of rats were monitored after 1 h of cadmium injection. Locomotor activity and depression-like symptoms were measured by Open Field Test (OFT) and Forced Swimming Test (FST) respectively. Anxiety like behavior was monitored using Light-dark Transition (LDT) test and memory functions of rats were assessed by Morris Water Maze test (MWM). In the present study acute cadmium administration dose dependently increased anxiety in rats as compared to control rats. A significant increase in depression-like symptoms was also exhibited by cadmium treated rats. These behavioral dysfunctions may be attributed to the decreased superoxide dismutase (SOD) activity and simultaneously increased brain lipid peroxidation (LPO). Moreover learning and memory assessed by MWM showed dose dependent impairment in memory function in cadmium treated rats as compared to control rats. Acetylcholinesterase (AChE) activity was also decreased in brains of cadmium administered rats. It is suggested in this study that behavioral, biochemical and neurochemical dysfunctions caused by acute cadmium administration occur in a dose dependent manner.

  20. Interaction between cadmium and iron. Accumulation and distribution of metals and changes in growth parameters of Phaseolus vulgaris L. seedlings

    Directory of Open Access Journals (Sweden)

    Anna Siedlecka

    2014-01-01

    Full Text Available The interaction between cadmium, one of the most toxic heavy metals, and iron, an essential plant nutritional element, was investigated in Phaseolus vulgaris L. (cv. Słowianka seedlings. The interaction was externally induced by changing the content of both metals in the nutrient medium. Under iron deficiency conditions (0 and 0.5 of normal dose of this element, the toxic effects of cadmium on plant growth parameters, like fresh and dry weight accumulation, primary leaves area, etc., were generally much more pronounced than under normal iron supply. At normal and excess iron supply (1, 2 and 4 doses cadmium diminished iron accumulation in roots and primary leaves, but on the other hand excess iron decreased cadmium level, preventing plants from extreme toxicity of very high cadmium concentrations in the growth environment. It is to be noted that iron is classified also as a heavy metal, and its excess may become toxic, e.g. decreasing root dry weight or diminishing leaf area, especially at the highest dose. The detoxication role of iron against cadmium, and possibly other toxic metals is, however, limited to concentrations of this element in the nutrient solution which themselves are not toxic for the organism.

  1. Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic - potential alleviation by selenium

    Energy Technology Data Exchange (ETDEWEB)

    Skröder, Helena [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Hawkesworth, Sophie [Medical Research Council (MRC), International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK. (United Kingdom); Kippler, Maria [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); El Arifeen, Shams [International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka (Bangladesh); Wagatsuma, Yukiko [Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. (Japan); Moore, Sophie E. [MRC Human Nutrition Research, Cambridge (United Kingdom); Vahter, Marie, E-mail: marie.vahter@ki.se [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)

    2015-07-15

    Background: Early-life exposure to toxic compounds may cause long-lasting health effects, but few studies have investigated effects of childhood exposure to nephrotoxic metals on kidney and cardiovascular function. Objectives: To assess effects of exposure to arsenic and cadmium on kidney function and blood pressure in pre-school-aged children, and potential protection by selenium. Methods: This cross-sectional study was part of the 4.5 years of age (range: 4.4–5.4 years) follow-up of the children from a supplementation trial in pregnancy (MINIMat) in rural Bangladesh, and nested studies on early-life metal exposures. Exposure to arsenic, cadmium and selenium from food and drinking water was assessed by concentrations in children's urine, measured by ICP-MS. Kidney function was assessed by the estimated glomerular filtration rate (eGFR, n=1106), calculated from serum cystatin C, and by kidney volume, measured by ultrasound (n=375). Systolic and diastolic blood pressure was measured (n=1356) after five minutes rest. Results: Multivariable-adjusted regression analyzes showed that exposure to cadmium, but not arsenic, was inversely associated with eGFR, particularly in girls. A 0.5 µg/L increase in urinary cadmium among the girls (above spline knot at 0.12) was associated with a decrease in eGFR of 2.6 ml/min/1.73 m{sup 2}, corresponding to 0.2SD (p=0.022). A slightly weaker inverse association with cadmium was also indicated for kidney volume, but no significant associations were found with blood pressure. Stratifying on children's urinary selenium (below or above median of 12.6 µg/L) showed a three times stronger inverse association of U-Cd with eGFR (all children) in the lower selenium stratum (B=−2.8; 95% CI: −5.5, −0.20; p=0.035), compared to those with higher selenium (B=−0.79; 95% CI: −3.0, 1.4; p=0.49). Conclusions: Childhood cadmium exposure seems to adversely affect kidney function, but not blood pressure, in this population of young

  2. Cross talk between poly(ADP-ribose polymerase 1 methylation and oxidative stress involved in the toxic effect of anatase titanium dioxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bai W

    2015-09-01

    Full Text Available Wenlin Bai,1,2 Yujiao Chen,1,2 Ai Gao1,2 1Department of Occupational Health and Environmental Health, School of Public Health, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People’s Republic of China Abstract: Given the tremendous growth in the application of titanium dioxide nanoparticles (TNPs, concerns about the potential health hazards of TNPs to humans have been raised. Poly(ADP-ribose polymerase 1 (PARP-1, a highly conserved DNA-binding protein, is involved in many molecular and cellular processes. Limited data demonstrated that certain nanomaterials induced the aberrant hypermethylation of PARP-1. However, the mechanism involved in TNP-induced PARP-1 abnormal methylation has not been studied. A549 cells were incubated with anatase TNPs (22.1 nm for 24 hours pretreatment with or without methyltransferase inhibitor 5-aza-2'-deoxycytidine and the reactive oxygen species (ROS scavenger α-lipoic acid to assess the possible role of methylation and ROS in the toxic effect of TNPs. After TNPs characterization, a battery of assays was performed to evaluate the toxic effect of TNPs, PARP-1 methylation status, and oxidative damage. Results showed that TNPs decreased the cell viability in a dose-dependent manner, in accordance with the increase of lactate dehydrogenase activity, which indicated membrane damage of cells. Similar to the high level of PARP-1 methylation, the generation of ROS was significantly increased after exposure to TNPs for 24 hours. Furthermore, α-lipoic acid decreased TNP-induced ROS generation and then attenuated TNP-triggered PARP-1 hypermethylation. Meanwhile, 5-aza-2'-deoxycytidine simultaneously decreased the ROS generation induced by TNPs, resulting in the decline of PARP-1 methylation. In summary, TNPs triggered the aberrant hypermethylation of the PARP-1 promoter and there was a cross talk between oxidative stress and PARP-1 methylation in the toxic effect of TNPs

  3. The long-term effect of cadmium exposure through food on the postnatal development of the bank vole (Clethrionomys glareolus Schreber, 1780).

    Science.gov (United States)

    Białońska, Dobrosława; Zakrzewska, Marta; Sawicka-Kapusta, Katarzyna; Konior, Magdalena

    2002-01-01

    Cadmium is well known for its toxicity to the animal body. However, its effect on pregnancy and the development of young animals is still not well understood. This study examined such effects, using bank voles captured from the wild to make the results closer to those which could be expected in the natural environment. One group of animals was fed 7 microg g(-1) cadmium in the food, a second 35 microg g(-1), and a third no cadmium, as a control. The concentrations of cadmium in the whole bodies of young bank voles were determined on the 3rd, 5th, or 10th day of life. The cadmium level in the bodies of animals exposed to 35 microg g(-1) of cadmium was significantly higher than in those from either the control group or the group receiving 7 microg g(-1) of cadmium, which did not differ from each other. The cadmium level did not change with animal age in any of the study groups. Concentrations of Zn, Cu, and Fe were also determined in the whole body of young animals, as cadmium is known to disturb the metabolism of these essential metals through antagonistic activity. Both Cu and Fe levels were negatively correlated with cadmium concentrations, while a positive correlation was found between zinc and cadmium in the young animal bodies. Also found was higher offspring mortality in the group receiving 35 microg g(-1) of cadmium in food. There was no difference in young animal body weight between the study groups.

  4. Cadmium minimization in wheat: A critical review.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment.

  5. Renal cadmium overload without nephrotoxicity.

    OpenAIRE

    1981-01-01

    A redundant nickel/cadmium battery worker was investigated for non-specific fatigue after completing five years in the industry. Sensitive techniques for in-vivo organ cadmium measurement showed a moderate accumulation in the liver but a very large concentration in the kidneys. Despite this, overall glomerular and tubular function were not impaired. It was concluded that the mechanism of proteinuria observed in some cadmium workers is obscure and not clearly related to the degree of kidney sa...

  6. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

    Science.gov (United States)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Jeys, T. H.

    2016-02-01

    Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.

  7. Process for removing and detoxifying cadmium from scrap metal including mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1994-07-01

    Cadmium-bearing scrap from nuclear applications, such as neutron shielding and reactor control and safety rods, must usually be handled as mixed waste since it is radioactive and the cadmium in it is both leachable and highly toxic. Removing the cadmium from this scrap, and converting it to a nonleachable and minimally radioactive form, would greatly simplify disposal or recycling. A process now under development will do this by shredding the scrap; leaching it with reagents which selectively dissolve out the cadmium; reprecipitating the cadmium as its highly insoluble sulfide; then fusing the sulfide into a glassy matrix to bring its leachability below EPA limits before disposal. Alternatively, the cadmium may be recovered for reuse. A particular advantage of the process is that all reagents (except the glass frit) can easily be recovered and reused in a nearly closed cycle, minimizing the risk of radioactive release. The process does not harm common metals such as aluminum, iron and stainless steel, and is also applicable to non-nuclear cadmium-bearing scrap such as nickel-cadmium batteries.

  8. Cadmium analysis using field deployable nano-band electrode system and its removal using electrocoagulation

    Science.gov (United States)

    Guttula, Mallikarjuna Murthy

    Cadmium (Cd) is an extremely toxic metal commonly found in industrial workplaces. Major industrial releases of Cd stem from waste streams, leaching of landfills, and from a variety of operations that involve cadmium or zinc. Particularly, cadmium can be released to drinking water from the corrosion of some galvanized plumbing and water main pipe materials. The United State Environmental Protection Agency (USEPA) has set the Maximum Contaminant Level (MCL) for cadmium at 5 ppb. Long term exposure of cadmium above the MCL results in kidney, liver, bone and blood damage. An accurate and rapid measurement of cadmium in the field remains a technical challenge. In this work, a relatively new method of a Nano-Band Electrode system using anodic stripping voltammetry was optimized by changing deposition potential, electrolyte, and plating time. We efficiently used Electrocoagulation remove cadmium from wastewater and obtained a removal efficiency of +/-99%. Removal mechanism of cadmium in electrocoagulation was also proposed with the help of X-ray Diffraction (XRD), Attenuated Total Reflection - Fourier Transform Infra Red Spectroscopy (ATR-FTIR), and Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS).

  9. Estimation of dietary intake of cadmium and lead through food consumption.

    Science.gov (United States)

    Ciobanu, C; Slencu, B G; Cuciureanu, Rodica

    2012-01-01

    Cadmium and lead are toxic metals occurring in the environment naturally and from anthropogenic activities and can lead to chemical contamination of products entering in the human food chain. The consumption of polluted food is the main source of lead and cadmium intake in the non-smoking population. Lead is a heavy metal that can affect different organs and systems in humans including the peripheral and central nervous system, the gastrointestinal tract, muscles, kidneys, and the hemopoetic system. Neurological symptoms can range from fatigue, headache, and lethargy to peripheral neuropathy, severe convulsions, encephalopathy, and even coma. The direct neurotoxic actions of lead include apoptosis, excitotoxicity. Lead has been associated with impaired neurobehavioral functioning in children, decrements in intelligence quotient (IQ) while the critical effect of long-term exposure to cadmium is renal tubular dysfunction, which is irreversible; chronic renal failure is the final and severe endpoint. Cadmium is able to induce bone damage (Itai-ltai). The body burden of cadmium and lead depends mostly on the dietary intake of these elements. This paper aims to present a brief overview of cadmium and lead contents present in foodstuffs from different countries and the estimated dietary intake of cadmium and lead through food consumption. It has been shown that in some countries the concentrations of cadmium and lead contained in foodstuffs are higher than normal therefore the health of the people consuming them is in danger.

  10. The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status, but dominated by changes in cystathionine and phytochelatins.

    Science.gov (United States)

    Hughes, Samantha L; Bundy, Jacob G; Want, Elizabeth J; Kille, Peter; Stürzenbaum, Stephen R

    2009-07-01

    Cadmium is a widely distributed toxic environmental pollutant. Using proton NMR spectroscopy and UPLC-MS, we obtained metabolic profiles from the model organism Caenorhabditis elegans exposed to sublethal concentrations of cadmium. Neither in the presence nor absence of cadmium did the metallothionein status (single or double mtl knockouts) markedly modulate the metabolic profile. However, independent of strain, cadmium exposure resulted in a decrease in cystathionine concentrations and an increase in the nonribosomally synthesized peptides phytochelatin-2 and phytochelatin-3. This suggests that a primary response to low levels of cadmium is the differential regulation of the C. elegans trans-sulfuration pathway, which channels the flux from methionine through cysteine into phytochelatin synthesis. These results were backed up by the finding that phytochelatin synthase mutants (pcs-1) were at least an order of magnitude more sensitive to cadmium than single or double metallothionein mutants. However, an additive sensitivity toward cadmium was observed in the mtl-1; mtl-2; pcs-1 triple mutant.

  11. Speciation of Dissolved Cadmium

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Andersen, Sjur; Christensen, Thomas Højlund

    1995-01-01

    Equilibrium dialysis and ion exchange methods, as well as computer calculations (GEOCHEM), were applied for speciation of dissolved cadmium (Cd) in test solutions and leachate samples. The leachate samples originated from soil, compost, landfill waste and industrial waste. The ion exchange (IE...... leachates showed different Cd speciation patterns as expected. Some leachates were dominated by free divalent Cd (1-70%), some by inorganic complexes (1-87%), and some by organic complexes (7-98%)....

  12. Mechanisms of cadmium-caused eye hypoplasia and hypopigmentation in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ting, E-mail: zting@webmail.hzau.edu.cn; Zhou, Xin-Ying, E-mail: 290356082@qq.com; Ma, Xu-Fa, E-mail: xufama@mail.hzau.edu.cn; Liu, Jing-Xia, E-mail: ichliu@mail.hzau.edu.cn

    2015-10-15

    Highlights: Using high-throughput in situ hybridization screening, we found that genes labeling the neural crest and its derivative pigment cells were sensitive to cadmium toxicity during zebrafish organogenesis, which might contribute to the molecular mechanisms underlying the phenotype defects of head and eye hypoplasia and hypopigmentation in cadmium-exposed embryos. Based on neural crest markers, we identified the doses and times of cadmium exposure that cause damage to the zebrafish organogenesis, and we also found that compounds BIO or RA could neutralize the toxic effects of cadmium. - Abstract: Cadmium-caused head and eye hypoplasia and hypopigmentation has been recognized for a long time, but knowledge of the underlying mechanisms is limited. In this study, we found that high mortality occurred in exposed embryos after 24 hpf, when cadmium (Cd) dosage was above 17.8 μM. Using high-throughput in situ hybridization screening, we found that genes labelling the neural crest and its derivative pigment cells exhibited obviously reduced expression in Cd-exposed embryos from 24 hpf, 2 days earlier than head and eye hypoplasia and hypopigmentation occurred. Moreover, based on expression of crestin, a neural crest marker, we found that embryos before the gastrula stage were more sensitive to cadmium toxicity and that damage caused by Cd on embryogenesis was dosage dependent. In addition, by phenotype observation and detection of neural crest and pigment cell markers, we found that BIO and retinoic acid (RA) could neutralize the toxic effects of Cd on zebrafish embryogenesis. In this study, we first determined that Cd blocked the formation of the neural crest and inhibited specification of pigment cells, which might contribute to the molecular mechanisms underlying the phenotype defects of head and eye hypoplasia and hypopigmentation in Cd-exposed embryos. Moreover, we found that compounds BIO or RA could neutralize the toxic effects of Cd.

  13. Is cadmium hazardous to health. Cadmium - ein Gesundheitsrisiko

    Energy Technology Data Exchange (ETDEWEB)

    Zartner-Nyilas, G.; Valentin, H.; Schaller, K.H.; Schiele, R.

    1983-01-01

    This study entitled ''Is cadmium hazardous to health'' summarizes the current state of knowledge on and experience with cadmium. The authors have made efforts to take into account the more recent literature relating to cadmium. The data evaluated were, especially, biological, toxicological, and epidemiological ones. A principal object was to try to assess the importance of the presence of cadmium in the environment to man. The interest was focused on the uptake of heavy metals with food, danger thresholds for the cadmium exposure of the population, nature and extent of eventual damage to health including possible carcinogenous effects, and suggestions for further points of main emphasis in research. 3 figs., 12 tabs.

  14. Cadmium exposure in the Swedish environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report gives a thorough description of cadmium in the Swedish environment. It comprises three parts: Cadmium in Sweden - environmental risks;, Cadmium in goods - contribution to environmental exposure;, and Cadmium in fertilizers, soil, crops and foods - the Swedish situation. Separate abstracts have been prepared for all three parts

  15. Cadmium carcinogenesis – some key points

    OpenAIRE

    2011-01-01

    The article presents briefly the main mechanisms of cadmium carcinogenesis and the most important sites of cancer (lung, breast, prostate, testes, kidney) induced by cadmium. In spite of some evidence showing carcinogenic potential of cadmium, further research is still required to elucidate the relative contributions of various molecular mechanisms involved in cadmium carcinogenesis

  16. Cadmium carcinogenesis – some key points

    Directory of Open Access Journals (Sweden)

    Loreta Strumylaite

    2011-09-01

    Full Text Available The article presents briefly the main mechanisms of cadmium carcinogenesis and the most important sites of cancer (lung, breast, prostate, testes, kidney induced by cadmium. In spite of some evidence showing carcinogenic potential of cadmium, further research is still required to elucidate the relative contributions of various molecular mechanisms involved in cadmium carcinogenesis

  17. Cadmium – element completely unnecessary for the organi

    Directory of Open Access Journals (Sweden)

    Hanna Czeczot

    2010-02-01

    Full Text Available Cadmium (Cd is the main environmental pollutant. This metal presents a serious threat to the health of people and animals. The environmental risk can lead to the absorption of large quantities of cadmium and its toxic action on the organism. It adversely affects a number of organs in humans and animals, including the kidneys, liver, lungs, pancreas, and testis. The liver and kidneys, which are the primary organs involved in the elimination of this metal from the organism, are especially sensitive to its toxic effects. This paper presents the current state of knowledge related to the molecular mechanisms of the toxic action of cadmium in cells. Different mechanisms are discussed: the disruption of the cellular antioxidant system and decrease in thiol status, the generation of reactive oxygen species, inhibition of DNA repair and DNA methylation, the activation of cellular signals and protooncogenes, disruption of cell adhesion, cell damage leading to apoptosis, the promotion of cell proliferation, and the initiation of mutagenesis/¬carcinogenesis.

  18. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm−1

    Directory of Open Access Journals (Sweden)

    R. L. Aggarwal

    2016-02-01

    Full Text Available Raman spectra of ammonia (NH3, chlorine (Cl2, hydrogen sulfide (H2S, phosgene (COCl2, and sulfur dioxide (SO2 toxic gases have been measured in the fingerprint region 400-1400 cm−1. A relatively compact (<2′x2′x2′, sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm−1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm−1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm−1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10−32 cm2/sr (3.68 ± 0.26x10−36 m2/sr, 1.37 ± 0.10x10−30 cm2/sr (1.37 ± 0.10x10−34 m2/sr, 3.25 ± 0.23x10−31 cm2/sr (3.25 ± 0.23x10−35 m2/sr, 1.63 ± 0.14x10−30 cm2/sr (1.63 ± 0.14x10−34 m2/sr, and 3.08 ± 0.22x10−30 cm2/sr (and 3.08 ± 0.22x10−34 m2/sr were determined for the differential Raman cross section of the 967 cm−1 mode of NH3, sum of the 554, 547, and 539 cm−1 modes of Cl2, 870 cm−1 mode of H2S, 570 cm−1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10−31 cm2/sr (3.56 ± 0.14x10−35 m2/sr for the 1285 cm−1 mode of CO2 as the reference.

  19. Blood cadmium and its relationship with smoking in a hospital employee population

    Directory of Open Access Journals (Sweden)

    Avellaneda Díaz Díaz

    2012-12-01

    Full Text Available Exposure to cadmium is a public health problem due to the broad exposure to this toxic substance among the general population. The main sources of exposure are both tobacco consumption and tobacco smoke.The aim of this study was to determine the blood cadmium concentration in an employee population drawn from our hospital and its association with tobacco consumption.The exposure questionnaire PESA® was administered to 395 employees. Blood cadmium was measured by electrothermal atomization atomic absorption spectrometry.The median blood cadmium concentration was 0.29 μg/L. The median cadmium of current smokers (0.83 μg/L was the highest, while that for ex-smokers (0.31 μg/L was also higher than that for those who had never smoked. Among the smokers, an association was observed between the concentration of blood cadmium and the number of cigarettes inhaled.The group of ex-smokers showed an association with the number of cigarettes they had consumed and a negative correlation between the elapsed time between quitting smoking and the concentration of blood cadmium.In never smokers, there was a difference between the concentration of cadmium in those who were passive smokers (0.24 μg/L and those who were not (0.20 μg/L.The concentration of cadmium in blood is related to the tobacco consumption. Further studies are needed to confirm the finding of higher concentrations of cadmium in passive smokers.

  20. Blood and urine cadmium and bioelements profile in nickel-cadmium battery workers in Serbia.

    Science.gov (United States)

    Bulat, Z Plamenac; Dukic-Cosic, D; Dokic, M; Bulat, P; Matovic, V

    2009-03-01

    Although cadmium (Cd) is extensively used for nickel-cadmium battery production, few recent reports are available on the effect of this toxic metal on the imbalance of biometals in occupational exposure. The current study was carried out to determine the Cd level and its effect on the content of bioelements: zinc, cooper, magnesium, and iron in blood and urine of workers exposed to Cd during nickel-cadmium battery production. beta(2)-microglobulins (beta(2)-MG), as indicators of kidney damage, were determined in urine.The study group comprised 32 male nickel-cadmium battery workers, and the control group had 15 male construction workers with no history of Cd exposure. Levels of Cd and bioelements were determined in blood and urine by atomic absorption spectrophotometry.Cd concentration in blood of exposed workers was around 10 microg/L and in urine ranged from 1.93 to 8.76 microg/g creatinine (cr). Urine Cd concentration was significantly higher in exposed workers than in the controls, although no statistical difference in beta(2)-MG content was observed in urine between the two groups. Blood Zn and Mg level were significantly reduced and urine Zn level was increased in Cd-exposed group when compared with controls.The mean Cd concentrations in blood and urine did not exceed the recommended reference values of 10 microg/L in blood and 10 microg/g cr in urine. Cd exposure resulted in disturbances of Zn in blood and urine and Mg in blood but had no effect on Cu and Fe content in biological fluids.

  1. A simple method to reduce the risk of cadmium exposure from consumption of Iceland scallops (Chlamys islandica) fished in Greenland.

    Science.gov (United States)

    Bach, Lis; Sonne, Christian; Rigét, Frank F; Dietz, Rune; Asmund, Gert

    2014-08-01

    This paper studied the levels and organ distribution of the toxic heavy metal cadmium in scallops from unpolluted Greenlandic waters. The scallops had an average cadmium concentration of 2.93 ± 0.94 μg/g wet weight in the total soft tissues and no concentration dependent effect was found for gender or size (both p>0.05). The kidney was the primary organ for cadmium accumulation with a mean of 226.2 ± 111.7 μg/g wet weight, and despite the small weight of the kidney, it appeared as the principal contributor of cadmium with 92% of the total cadmium body burden. The cadmium concentrations in the total soft tissues far exceeded the EU-limit of 1 μg/g wet weight for cadmium in bivalves. Based on this, selective evisceration of the cadmium-rich kidney and digestive gland during processing can be regarded as a reliable measure to be taken in order to reduce the cadmium content of scallops used for human consumption.

  2. Efeitos do cádmio sobre o crescimento das leveduras Saccharomyces cerevisiae PE-2 e Saccharomyces cerevisiae IZ-1904, e a capacidade da vinhaça em atenuar a toxicidade Effect of cadmium on the growth of two Saccharomyces cerevisiae strains, and the vinasse capacity to atenuate the toxicity

    Directory of Open Access Journals (Sweden)

    Samuel Mariano-da-Silva

    2004-03-01

    , minimizando os efeitos deletérios do metal.The present study was carried out in order to evaluate the capability of different cadmium concentration (0; 0,05, 0,10 and 0,50mM to affect the growth of two S. cerevisiae strains (PE-2 and IZ-1904 in YED (yeast extract 1% and dextrose 2% medium, and to evaluate the three vinasse concentration capability (0,15 and 30% to attenuate the two cadmium concentration toxicity (0,1 and 0,5mM, using S. cerevisiae PE-2 strain in YED medium. In the first assay, the medium was inoculated in aseptic conditions with 1mL of 1% yeast suspension (PE-2 or IZ-1904 and incubated at 30ºC, 70 RPM for 18 hours. During anaerobic growth (0, 2, 4, 6, 8, 10, 12, 14, 16 and 18 hours, portions of cell suspension were taken out and biomass concentration was determined. At the end of fermentation, yeast viability, budding rate and bacterial contamination were determined. Both, initial and final trehalose, was measured. In the second assay, the medium was inoculated in aseptic conditions with 2mL of 1% PE-2 suspension and incubated at 30ºC, 120 rpm for 18 hours. During the anaerobic growth (0, 2, 4, 6, 8, 10, 12,14, 16 and 18 hours portions of cell suspension were taken out and biomass concentration was determined. At the end of fermentation, alcohol production, yeast viability, budding rate and bacterial contamination were determined. Both, initial and final trehalose, was measured. The increase of cadmium levels showed a reduction on yeast growth and cell viability. Vinasse showed low toxicity, but protected yeast cells very effectively against the toxic effects of cadmium.

  3. Cadmium causes delayed effects on renal function in the offspring of cadmium-contaminated pregnant female rats.

    Science.gov (United States)

    Jacquillet, G; Barbier, O; Rubera, I; Tauc, M; Borderie, A; Namorado, M C; Martin, D; Sierra, G; Reyes, J L; Poujeol, P; Cougnon, M

    2007-11-01

    In the adult rat, chronic cadmium intoxication induces nephropathy with Fanconi-like features. This result raises the question of whether intoxication of pregnant rats has any deleterious effects on renal function in their offspring. To test this hypothesis, we measured the renal function of 2- to 60-day-old postnatal offspring from female rats administered cadmium chloride by the oral route (0.5 mg.kg(-1).day(-1)) throughout their entire gestation. Investigations of rat offspring from contaminated pregnant rats showed the presence of cadmium in the kidney at gestational day 20. After birth, the cadmium kidney concentration increased from postnatal day 2 to day 60 (PND2 to PND60), presumably because of 1) milk contamination and 2) neonatal liver cadmium content release. Although the renal parameters (glomerular filtration, U/P inulin, and urinary excretion rate) were not significantly affected until PND45, renal failure appeared at PND60, as demonstrated by a dramatic decrease of the glomerular filtration rate associated with increased excretion of the main ions. In parallel, an immunofluorescence study of tight-junction protein expression of PND60 offspring from contaminated rats showed a disorganization of the tight-junction proteins claudin-2 and claudin-5, specifically expressed in the proximal tubule and glomerulus, respectively. In contrast, expression of a distal claudin protein, claudin-3, was not affected. In conclusion, in utero exposure of cadmium leads to toxic renal effects in adult offspring. These results suggest that contamination of pregnant rats is a serious and critical hazard for renal function of their offspring.

  4. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Faezeh Sajadi

    2016-05-01

    Full Text Available Background and Aim: Cadmium (Cd is one of the most toxic heavy metals in water that mostly enters the water cycle through industrial waste water. Silver nanoparticles have the capacity to remove heavy metals from the water resources through the mechanism of adsorption. The present study aimed at producing  silver bio-nanoparticles and optimizing . Cd removal from aquatic solutions. Materials and Methods: Silver bio-nanoparticles were extracted via a micro-algae Chlorella vulgaris extract and silver nitrate synthesis. Then, the characteristics of the particles were  determined using FT-IR, XRD, SEM devices. In order to optimize Cadmium adsorption by means of silver nanoparticles, parameters including pH, reaction time, initial concentration of Cd and concentrations of nanoparticles were studied under different conditions. Results: The resulting nanoparticles were spherical, single and crystalline, whose sizes were 10-45 nm.  Under the condition of PH = 8, the initial concentration of cadmium 0.5 mg/L, adsorbent dosage of 0.5 mg, reaction time of 10 min, temperature of 300C and mixing speed of 200 rpm, 99% of cadmium was removed. Isotherm of Cadmium-ion adsorption followed Langmuir (R2> 0/96 (and Freundlich (R2> 0/94 models. Conclusion: Under optimal conditions, silver bio-nanoparticles had the capacity of quick and effective adsorption of cadmium. Thus, with a cheap, non-toxic and environmentally friendly method  can remove heavy metals in a short time.

  5. Cadmium immobilization by hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Smičiklas Ivana D.

    2003-01-01

    Full Text Available The contamination of air, soil and water by cadmium is a great environmental problem. If cadmium occurs in nature in ionic form, soluble in water, it easily enters into the food chain. Hydroxyapatite (HAP, Ca-o(POAe(OH2 is a sparingly soluble salt and an excellent matrix for the removal of heavy metals from solutions. Considerable research attention has been paid to the bond between Cc/2+ ions and synthetic hydroxyapatite of known composition. The sorption mechanism is complex. The dominant process is ion exchange, but surface adsorption, surface complexation and coprecipitation can also contribute to the overall mechanism. The sorption capacity depends on the characteristics of hydroxyapatite itself and on the experimental conditions. Under optimum conditions a maximum capacity of 0.8 mol Cd2+/mol HAP can be achieved. HAP is a potential sorbent for the remediation of contaminated water and soil, for industrial waste treatment, and it is also referenced as a material that can be used as a barrier around waste depositories.

  6. Protective Effect of Cleistocalyx nervosum var. paniala Fruit Extract against Oxidative Renal Damage Caused by Cadmium

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2016-01-01

    Full Text Available Cadmium nephrotoxicity is a serious environmental health problem as it will eventually end up with end stage renal disease. The pathobiochemical mechanism of this toxic heavy metal is related to oxidative stress. This study investigated whether Cleistocalyx nervosum var. paniala fruit extract (CNFE could protect the kidney against oxidative injury caused by cadmium. Initial analysis of the extract revealed antioxidant abilities and high levels of polyphenols, particularly catechin. Its potential renal benefits was further explored in rats treated with vehicle, CNFE, cadmium (2 mg/kg, and cadmium plus CNFE (0.5, 1, 2 g/kg for four weeks. Oxidative renal injury was developed after cadmium exposure as evidenced by blood urea nitrogen and creatinine retention, glomerular filtration reduction, renal structural damage, together with increased nitric oxide and malondialdehyde, but decreased antioxidant thiols, superoxide dismutase, and catalase in renal tissues. Cadmium-induced nephrotoxicity was diminished in rats supplemented with CNFE, particularly at the doses of 1 and 2 g/kg. It is concluded that CNFE is able to protect against the progression of cadmium nephrotoxicity, mostly via its antioxidant power. The results also point towards a promising role for this naturally-occurring antioxidant to combat other human disorders elicited by disruption of redox homeostasis.

  7. Review of cadmium transfers from soil to humans and its health effects and Jamaican environment.

    Science.gov (United States)

    Lalor, Gerald C

    2008-08-01

    Concerns about the effects of cadmium on human health have led to numerous guidelines and regulations limiting its concentrations in soils and food and allowable human intakes. These have socio-economic consequences in terms of land use and the marketing of food. The bauxite soils in Jamaica, which are both aluminium ores and agricultural soils contain orders of magnitude higher than world normal concentrations of cadmium resulting in elevated Cd concentrations in several foodstuffs and significant transfers to humans, which would seem to represent a risk factor for increased mortality and/or morbidity in the local populations. But, as in Shipham and other examples, there is no evidence of cadmium-related human distress. Macro-indicators like life expectancy and median ages of death do not show cadmium related geographical distributions. The present review focuses on the soils and foods and illnesses of high incidence especially cancers and renal disease that have been traditionally associated with cadmium. In view of the remarkable concentrations of cadmium involved in Jamaica, and often contradictory reports in the literature, it appears that much remains to be learned about certain details of cadmium toxicity.

  8. Review of cadmium transfers from soil to humans and its health effects and Jamaican environment

    Energy Technology Data Exchange (ETDEWEB)

    Lalor, Gerald C. [International Centre for Environmental and Nuclear Sciences, University of the West Indies Mona, Kingston 7 (Jamaica)], E-mail: gerald.lalor@uwimona.edu.jm

    2008-08-01

    Concerns about the effects of cadmium on human health have led to numerous guidelines and regulations limiting its concentrations in soils and food and allowable human intakes. These have socio-economic consequences in terms of land use and the marketing of food. The bauxite soils in Jamaica, which are both aluminium ores and agricultural soils contain orders of magnitude higher than world normal concentrations of cadmium resulting in elevated Cd concentrations in several foodstuffs and significant transfers to humans, which would seem to represent a risk factor for increased mortality and/or morbidity in the local populations. But, as in Shipham and other examples, there is no evidence of cadmium-related human distress. Macro-indicators like life expectancy and median ages of death do not show cadmium related geographical distributions. The present review focuses on the soils and foods and illnesses of high incidence especially cancers and renal disease that have been traditionally associated with cadmium. In view of the remarkable concentrations of cadmium involved in Jamaica, and often contradictory reports in the literature, it appears that much remains to be learned about certain details of cadmium toxicity.

  9. Uptake of Cadmium by Lemna minor, a (hyper?- accumulator plant involved in phytoremediation applications

    Directory of Open Access Journals (Sweden)

    Bianconi D.

    2013-04-01

    Full Text Available Metal pollution in waters and soils is a major environmental and human health problem. Cadmium (Cd2+ is a heavy metal displaying toxic effects in plants. In this work we studied the potentiality of Lemna minor, a monocotyledonous aquatic macrophyte, to phytoremediate cadmium-polluted waters. The plants were exposed to different cadmium concentrations 0, 13, 22 and 46μM CdSO4 for a period of 24, 48 and 72 hours. Relative growth rates (RGR, bioconcentration factor (BCF, tolerance index (Ti, cadmium uptake in whole plant and maximum efficiency of PSII (Fv/Fm were measured under controlled climate conditions. RGR, Ti and Fv/Fm declined with increasing exposure time and cadmium concentrations, while the BCF and cadmium uptake showed an opposite behavior. Data analysis of RGR, BCF, Tiand FV/FM indicates that L. minor maintains a good capacity of growth, metal bioconcentration, tolerance and efficiency of PSII up to 48h in plants exposed to 13 and 22μM CdSO4. Our results exhibited that L. minor is a good cadmium accumulator and is able to remediate Cd-polluted waters, especially at low Cd concentrations.

  10. Cadmium determination in Lentinus edodes mushroom species

    Directory of Open Access Journals (Sweden)

    Vera Akiko Maihara

    2012-09-01

    Full Text Available Many studies have drawn attention to the occurrence and concentration of toxic elements found in the fruiting body of mushrooms. Some edible mushroom species are known to accumulate high levels of inorganic contaminants, mainly cadmium, mercury, and lead. There are about 2,000 known edible mushroom species, but only 25 of them are cultivated and used as food. In Brazil, the most marketed and consumed mushroom species are Agaricus bisporus, known as Paris champignon, Lentinus edodes, or Shitake and Pleurotus sp, also called Shimeji or Hiratake. In this study, the concentration of cadmium was determined in Lentinus edodes mushrooms from different cities in São Paulo state and some samples imported from Japan and China. The analyses were performed by graphite furnace atomic absorption spectrometry after HNO3-H2O2 digestion. The results showed a lower concentration of Cd in the mushrooms cultivated in São Paulo (0.0079 to 0.023 mg.kg-1 in natura than that of the mushrooms cultivated abroad (0.125 to 0.212 mg.kg-1 in natura. Although there is no tolerance limit for Cd in mushrooms in Brazil, the results show that Lentinus edodes mushrooms can be safely consumed.

  11. Effect of selenite and selenate on plant uptake of cadmium by maize (zea mays)

    Energy Technology Data Exchange (ETDEWEB)

    Shanker, K.; Mishra, S.; Srivastava, S. [Dayalbagh Educational Institute (India)

    1996-03-01

    Selenium has been reported to confer tolerance to toxicity of heavy metals including cadmium, a highly toxic and non essential heavy metal, which enters the food chain via plant uptake from soils. Selenium reduces availability of cadmium to plants along with other aspects of its toxicokinetics. When plants are supplied with selenite, selenium concentrations in the xylem exudate are lower than selenate. Most of the selenate was transported as selenate and unidentified organic Se compounds. In contrast, Se distribution among various Se fractions within plants does not depend significantly on whether selenite or selenate was used. Selenium has a strong tendency to form complexes with heavy metals like Cd, Hg, Ag and Tl. It has been suggested that the protective effects of selenium are due to the formation of non toxic Se-metal complexes, although the mechanism by which this protective effect is exerted remains unclear. Studies on the effect of selenium (selenite) and cadmium additions to the soil on their concentrations in lettuce and wheat has indicated the role of selenite in reduction of cadmium uptake. The cletoxifying effect of sodium selenite on cadmium ion in the freshwater fish Potyacuthus cupanus has been reported. The discovery that an element like selenium counteracts the toxicity, chemical carcinogenesis and reduces the plant uptake of other toxic metals, highlights the possibility of existence of a Se-metal interaction mechanism in soil plant systems. The uptake and translocation of root-absorbed chromium supplied through irrigation in the trivalent and hexavalant states in various parts of the onion plant (Allium cepa) grown in soil and sand culture has been recently reported by us. In continuation of that, this preliminary report describes the effect of selenite and selenate pretreatment on the uptake of cadmium in the maize plant (Zea mays).

  12. CADMIUM IN OCTOPUS VULGARIS: AN INPUT TO ASSESS HUMAN HEALTH RISK

    Directory of Open Access Journals (Sweden)

    E. Ceci

    2009-12-01

    Full Text Available Cadmium concentrations has been evaluated in Octopus vulgaris sampled from two sites of Apulian coast (South Italy and compared with import cephalopods to estimate if maximum levels of cadmium established for these organisms by the European Commission were exceed. In all local samples mean cadmium concentrations were higher in hepatopancreas than in flesh, this is an important evaluation if consider the traditional and unusual consumption in certain population of Mediterranean region of raw and whole cephalopods. The cadmium estimated weekly intake for whole cephalopods between 2,25 and 2,84 g Kg -1 of body weight underlines the necessity to determine the real risk and implications for public health through a correct assessment of contribution made by this specie among certain consumers group to the TWI set by the EFSA. A particular attention from competent authorities to prevent human toxicity is required.

  13. [Effect of cigarette smoking on coexistence of cadmium and zinc in retained wisdom teeth].

    Science.gov (United States)

    Malara, Piotr; Kwapuliński, Jerzy; Drugacz, Jan; Malara, Beata

    2005-01-01

    The change in coexistence pattern of elements (antagonism-synergism) in conditions of excessive level of toxic element is observed in many biological samples. The aim of this study was to establish the cadmium and zinc content in hard tissues of retained wisdom teeth of smokers and non-smokers and to find out if active exposure to cigarette smoke has an influence on coexistence of both metals in these tissues. Material consisted of 127 retained wisdom teeth (65 from smokers and 62 from non-smokers). Cadmium and zinc contents were determined by means of atomic absorption spectrometry. We found out that retained wisdom tooth from smokers exhibited higher cadmium and zinc contents compared to non-smokers' teeth. Moreover, coexistence pattern of cadmium and zinc in teeth depends on exposure to heavy metals and exhibits strong synergism in smokers.

  14. Effects of Cadmium on Phenolic Composition and Antioxidant Activities of Erica andevalensis

    Directory of Open Access Journals (Sweden)

    Belén Márquez-García

    2012-01-01

    Full Text Available We evaluated the effects of cadmium on phenolic composition of Erica andevalensis, an endemic protected heather that grows in mine affected soils. Plants cultivated under laboratory-controlled conditions were exposed to acute doses of cadmium to investigate the mechanisms this species possesses to survive in the presence of toxic metals in its natural habitat. Cadmium increased the total levels of phenolics and flavonoids compounds, and the total antioxidant capacity. Cinnamic acid derivatives, epicatechin, and rutin were increased in the presence of cadmium when applied in levels that did not alter the ratio of chlorophylls. Phenolic compounds play an important role in the metabolism of E. andevalensis to survive in heavy metal polluted soils.

  15. Ecotoxicological tests with cadmium and chromium using postlarvae of silverside Odontesthes (Austromenidia regia regia Hildebrand

    Directory of Open Access Journals (Sweden)

    Giovana Vera

    2014-06-01

    Full Text Available In the present paper, the mean effective concentrations (EC50% of cadmium (Cd+2 and chromium (Cr+6 using postlarvae of the silverside fish Odontesthes (Austromenidia regia regia were determined. The postlarvae were exposed to different concentrations of the metals, between 0,142 and 1,208 mg.L–1 of cadmium and between 0,53 and 33,74 mg.L–1 of chromium. The mean effective concentrations (EC50% obtained were 0,648 mg.L–1 of cadmium (at 96 h and 2,68 mg.L–1 of chromium (at 96 h. Comparatively, cadmium is more toxic than chromium, and silverside is more tolerant than other organisms.

  16. Factors influencing metabolism and toxicity of metals: a consensus report

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, G.F.; Fowler, B.A.; Friberg, L.; Jernelov, A.; Nelson, N.; Piscator, M.; Sandstead, H.H.

    1978-08-01

    The relationships between metals like lead, cadmium, and mercury and other factors that quantitatively and qualitatively modify their metabolism and toxicity are surveyed. Interactions are examined by scientists from a variety of fields covering biochemistry, ecology, epidemiology, nutrition, occupational health, and toxicology. Evidence of interactions among arsenic, cadmium, lead, and mercury, and between these elements and selenium, calcium, copper, zinc, and iron is considered. There is ample evidence from animal experiments that many interactions occur. The enhancing influence of marginal essential element intake on cadmium absorption and the deleterious effects of cadmium on essential metal metabolism may have public health implications in populations with borderline dietary status. The possibility of interaction between irritating substances, like tobacco smoke, and the toxicity of metals is discussed. (312 references)

  17. Toxicity of metal mixtures to chick embryos

    Energy Technology Data Exchange (ETDEWEB)

    Birge, W.J.; Roberts, O.W.; Black, J.A.

    1976-09-01

    The toxic effects of mercury/selenium and certain other metal mixtures on the chick embryo are examined to determine whether antagonistic, additive or synergistic interactions occur. White Plymouth Rock chicken eggs were treated by yolk injection with cadmium chloride, mercuric chloride, zinc chloride and sodium selenate. Test aliquots were injected prior to incubation using the needle track procedure. Using a sample size of 200, percent survival was determined as hatchability of experimental eggs/controls. Metal mixtures used included mercury/cadmium, mercury/selenium, mercury/zinc, cadmium/selenium, and cadmium/zinc. Except for mercury/selenium, all other metal mixtures gave actual values that were within 5% of those for additive toxic effects. Actual hatchability frequencies for test concentrations of mercury/selenium indicated a moderate degree of synergism. Results indicate that the strong mercury/selenium synergism which affects embryonic development in the carp does not apply for the chick embryo; that most two-way combinations of cadmium, mercury, selenium and zinc exert purely additive effects on chick hatchability; and that these metal mixtures give no discernible antagonistic interactions which affect survival of chick embryos. (MFB)

  18. Effect of cadmium on the bioelement composition of Nostoc UAM208: Interaction with calcium

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Pinas, F.; Mateo, P.; Bonilla, I. [Universidad Autonoma de Madrid (Spain)

    1997-04-01

    Heavy metals may cause effects on the cyanobacterial cell including possible damage to the membranes and leakage from cells resulting in the loss or reduction of essential bioelements. There are many reports in the literature concerning morphological, biochemical and physiological changes caused by cadmium in cyanobacteria, but data on the influence of cadmium on the ion balance of the cell dealing with the interactive effect of cadmium and calcium are limited. Calcium has been found to exert a protective role against heavy metal toxicity in a variety of organisms, We previously reported that calcium is able to counteract the toxic effect of cadmium towards growth, photosynthesis, nitrogenase activity and pigment content of the cyanobacterium Nostoc UAM208. In the present study, we analyzed the content of essential ions, as affected by cadmium treatment, to search for possible mechanisms of heavy metal damage and toxicity in Nostoc. We also studied whether calcium enrichment (1.1 mM final concentration) has any influence on the heavy metal effect on those ionic contents. 13 refs., 2 figs.

  19. An Examination of the Association of Selected Toxic Metals with Total and Central Obesity Indices: NHANES 99-02

    Directory of Open Access Journals (Sweden)

    Douglas M. Ruden

    2010-08-01

    Full Text Available It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, whereas deficiencies of chromium, copper, iron, and magnesium increases adiposity. This study utilized the NHANES 99-02 data to explore the association between waist circumference and body mass index with the body burdens of selected toxic metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten. Some of the associations were significant direct relationships (barium and thallium, and some of the associations were significant inverse relationships (cadmium, cobalt, cesium, and lead. Molybdenum, antimony, and tungsten had mostly insignificant associations with waist circumference and body mass index. This is novel result for most of the toxic metals studied, and a surprising result for lead because high stored lead levels have been shown to correlate with higher rates of diabetes, and obesity may be a key risk factor for developing diabetes. These associations suggest the possibility that environmental exposure to metals may contribute to variations in human weight gain/loss. Future research, such as prospective studies rather than the cross-sectional studies presented here, is warranted to confirm these findings.

  20. Hair Toxic Metal Concentrations and Autism Spectrum Disorder Severity in Young Children

    Directory of Open Access Journals (Sweden)

    Lisa K. Sykes

    2012-12-01

    Full Text Available Previous studies have found a higher body-burden of toxic metals, particularly mercury (Hg, among subjects diagnosed with an autism spectrum disorder (ASD in comparison to neurotypical controls. Moreover, Hg body-burden was associated with ASD severity. This cross-sectional study examined the potential correlation between hair toxic metal concentrations and ASD severity in a prospective cohort of participants diagnosed with moderate to severe ASD. The Institutional Review Board at the University of Texas Southwestern Medical Center at Dallas (Dallas, TX approved the present study. Qualifying study participants (n = 18 were evaluated for ASD severity using the Childhood Autism Rating Scale (CARS and quantitatively for arsenic, Hg, cadmium, lead, chromium, cobalt, nickel, aluminum, tin, uranium, and manganese using hair toxic element testing by Doctor’s Data (a CLIA-approved laboratory. CARS scoring and hair toxic element testing were blinded to one another. Increasing hair Hg concentrations significantly correlated with increased ASD severity. In contrast, no significant correlations were observed between any other of the hair toxic metals examined and ASD severity. This study helps to provide additional mechanistic support for Hg in the etiology of ASD severity, and is supported by an increasing number of recent critical reviews that provide biological plausibility for the role of Hg exposure in the pathogenesis of ASDs.

  1. Enrichment of cadmium in biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Gwenner, C.; Wittig, H.; Glombitza, F.

    1986-01-01

    The uptake of cadmium ions from an aqueous solution by living, resting, and dead biomasses was investigated. The dependence of the uptaked amounts on pH-value of the medium, temperature and concentration of cadmium ions is demonstrated as well as the rate of uptake. Maximum realisable concentrations were 12 mg/g biomass in living cells and about 20 mg/g biomass in resting or dead cells, respectively.

  2. Report: Central nervous system (CNS) toxicity caused by metal poisoning: Brain as a target organ.

    Science.gov (United States)

    Gilani, Syeda Rubina; Zaidi, Syed Raza Ali; Batool, Madeeha; Bhatti, Amanat Ali; Durrani, Arjumand Iqbal; Mahmood, Zaid

    2015-07-01

    People relate the neural disorders with either inheritance or psychological violence but there might be some other reasons responsible for the ailment of people that do not have such a background. The present study explains the chronic effect of heavy toxic metals on nervous system. During experimentation, rabbits used as laboratory animals, were given test metals in their diet. Concentration of metals given to them in the diet was less than their tolerable dietary intake. Behavioral changes were observed during experimentation. Periodic increase in the metal concentration was seen in the blood sample of rabbits. They were slaughtered after a period of eight months of slow poisoning. Histological examination of brain tissues was performed. The brain samples were analyzed by Atomic absorption spectroscopy and Inductively Coupled Plasma Mass Spectrometry to find the retention of heavy metals in mammalian brain. Concentration of lead, mercury and cadmium in the blood samples of occupationally exposed people and patients with neurological disorders at the time of neurosurgery was determined by using the same techniques. During circulation, toxic metals passes through the nerve capillaries to settle down in the brain. Heavy metals cross the blood brain barrier and 'may retain themselves in it. Brain tumors and biopsy samples of patients with neurological disorder were also analyzed to relate neurotoxicity and heavy metal poisoning. Results obtained shows that lead, mercury and cadmium retain themselves in the brain for longer period of time and are one of the causes of neurotoxicity.

  3. Lead and cadmium exposure in children living around a coal-mining area in Yataan, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Gulcin Yapici; Gunay Can; Ali Riza Kiziler (and others) [Mersin University, Mersin (Turkey). Department of Public Health

    2006-09-15

    The study was designed to determine asymptomatic lead poisoning prevalence and cadmium exposure of preschool children living in a coal-mining area in Yataan, Mugla, Turkey. The research was conducted between May and June 2002. The study included 236 healthy children (53.4% female and 46.6% male) between the ages of 6 months and 6 years. Assessments of the levels of blood lead and cadmium were performed by an atomic absorption spectrophotometer. Themean blood lead level of the males was higher than the females.There was a negative correlation between blood lead level and age in both sex groups. The blood lead level was found to be > 10 {mu}g/dL in 95.7% and > 20 {mu}g/dL in 87.6% of all children. The mean blood cadmium level of all children was 1.31{+-}0.72 mg/dL. The blood cadmium level was found to be > 0.5 {mu}g/dL, which is considered to be toxic, in 85% of all children. The difference in blood cadmium levels between sexes was not significant. A negative correlation was found between blood cadmium level and age of all children. Although it is not possible to understand from this study what proportion of the biological lead and cadmium burden results from mining waste and what proportion comes from other sources, these results indicate that asymptomatic lead poisoning and cadmium exposure are significant problems in children living in the Yataan area. Environmental lead measurements must be performed, the results must be compared with the normal limits, and precautions must be taken if necessary in the Yataan area. Public health research efforts should focus on reducing the excessive levels of lead and cadmium in the environment.

  4. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S., E-mail: rozekl@umich.edu

    2014-05-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity.

  5. Cd-Resistant Strains of B. cereus S5 with Endurance Capacity and Their Capacities for Cadmium Removal from Cadmium-Polluted Water.

    Science.gov (United States)

    Wu, Huiqing; Wu, Qingping; Wu, Guojie; Gu, Qihui; Wei, Linting

    2016-01-01

    The goal of this study was to identify Cd-resistant bacterial strains with endurance capacity and to evaluate their ability to remove cadmium ions from cadmium-polluted water. The Bacillus cereusS5 strain identified in this study had the closest genetic relationship with B. cereus sp. Cp1 and performed well in the removal of Cd2+ions from solution. The results showed that both the live and dead biomasses of the Cd2+-tolerant B. cereus S5 strain could absorb Cd2+ ions in solution but that the live biomass of the B. cereus S5 strain outperformed the dead biomass at lower Cd2+concentrations. An analysis of the cadmium tolerance genes of B. cereus S5 identified ATPase genes that were associated with cadmium tolerance and involved in the ATP pumping mechanism. The FTIR spectra revealed the presence of amino, carboxyl and hydroxyl groups on the pristine biomass and indicated that the cadmium ion removal ability was related to the structure of the strain. The maximum absorption capacity of the B. cereus S5 strain in viable spore biomass was 70.16 mg/g (dry weight) based on a pseudo-second-order kinetic model fit to the experimental data. The Langmuir and Langmuir-Freundlich isotherm adsorption models fit the cadmium ion adsorption data well, and the kinetic curves indicated that the adsorption rate was second-order. For Cd2+ concentrations (mg/L) of 1-109 mg/L, good removal efficiency (>80%) was achieved using approximately 3.48-10.3 g/L of active spore biomass of the B. cereus S5 strain. A cadmium-tolerant bacteria-activated carbon-immobilized column could be used for a longer duration and exhibited greater treatment efficacy than the control column in the treatment of cadmium-polluted water. In addition, a toxicity assessment using mice demonstrated that the biomass of the B. cereus S5 strain and its fermentation products were non-toxic. Thus, the isolated B. cereus S5 strain can be considered an alternative biological adsorbent for use in emergency responses to severe

  6. Lead, mercury, and cadmium in breast milk

    Directory of Open Access Journals (Sweden)

    Kadriye Yurdakök

    2015-10-01

    Full Text Available Toxic heavy metals are the major source of environmental pollution in this new millennium. Lead, mercury, and cadmium are the most common toxic heavy metals in the environment. There is no known function of these toxic heavy metals in the human body. In females, toxic heavy metals can be accumulated in maternal body before pregnancy and may be transferred to fetus through placenta and later, via breast milk. Lead previously accumulated in maternal bones can be mobilized along with calcium in order to meet increased calcium needs of the fetus in pregnant women and for the calcium needs in human milk during lactation. Human fetus and infants are susceptible to heavy metal toxicity passing through placenta and breastmilk due to rapid growth and development of organs and tissues, especially central nervous system. However most of the damage is already done by the time the infant is born. Intrauterine lead exposure can cause growth retardation, cognitive dysfunction, low IQ scores on ability tests, and low performance in school. Biological samples, such as umbilical cord blood and breast milk, and less commonly infant hair, are used for biomonitoring of intra-uterine exposure to these toxic chemicals. Although toxic metals and other pollutants may be excreted into breast milk, their effects are unknown and this topic is subject of a growing body of research. Despite the possibility of harm from environmental contaminants in breast milk, breastfeeding is still recommended as the best infant feeding method. In fact, the species-specific components present in breast milk protect infants against infections; promote immune and neurologic system development; and may decrease the risk of disease, including allergies, obesity, insulin-dependent diabetes mellitus, inflammatory bowel disease, and sudden infant death syndrome. Breastfeeding also facilitates maternal-infant attachment. The potential risk of environmental contaminants that can be transferred from

  7. Evaluation of toxic metals in canned fish market in Tehran

    Directory of Open Access Journals (Sweden)

    AyubEbadi Fathabad

    2015-05-01

    Full Text Available Introduction: Fish meat may be contaminated to toxic metals during commercial transport and processing depending on the raw material before processing occurs. Therefore, monitoring of these products is important with respect to toxic elements affecting human health. Objective: The aim of this study is to assess toxic metals in canned fish marketed in Tehran,Iran. Methods: This study based-cross-sectional was carried out in five different Iranian brands. Forty six canned fishes from this brands elected and toxic metal were determined using the flame and graphite furnace atomic absorption spectrometry after microwave digestion. The accuracy of the method was ascertained by standard reference material (NRCC-DORM-2 Dogfish Muscle. Result: In this study was observed that some cases may be containing iron, lead and mercury above the legal limit set by the health authorities. The concentration of the toxic metals in the canned fish samples were found to be in the ranges of 1.29 - 2.45 μg/g, , 8.34 - 36.4 μg/g, 1.20 - 2.70 μg/g, 11.2 - 28.3 μg/g, 1.30 - 3.65 μg/g, 0.49 - 2.15 μg/g, 0.90 - 1.87 μg/g, 0.58 - 1.04 μg/g, 0.18 - 0.38 μg/g, and 0.03 - 0.12 μg/g for copper, zinc, manganese, iron, selenium, aluminum, chromium, nickel, lead and cadmium, respectively. Conclusion: Comparison of the results obtained in this study with the values reported in literature showed that the consumption of the five (5 brands of the canned tuna does not pose any risk to the health of consumers particularly with respect to zinc, copper, cadmium and tin concentrations; though some of the brands contained iron, lead and mercury above the legal limits set up by some health authorities. It was, however, recommended that comprehensive and periodic monitoring of the trace metals in the canned tuna must continue to ensure the protection of the health of the consumers.

  8. Role of zinc as an antioxidant and anti-inflammatory to relieve cadmium oxidative stress induced testicular damage in rats

    Institute of Scientific and Technical Information of China (English)

    Samir Abd El-Monem Bashandy; Enayat Abdel Aziz Omara; Hossam Ebaid; Mohamed Mahmoud Amin; Mahmoud Sanad Soliman

    2016-01-01

    Objective: To investigate the role of zinc in reducing the deleterious effects of cadmium on male gonads. Methods: Rats were injected subcutaneously with CdCl2 and ZnCl2 at dose level of 2.2 mg/kg (1/40 of LD50 of cadmium per day). Results: The rats treated with cadmium exhibited a significant increase in levels of testicular malondialdehyde, tumor necrosis factor-alpha, nitrogen oxide and inducible nitrogen oxide synthase immunostaining reaction, as well as an elevation of blood hydroperoxide and follicle stimulating hormone. In addition, a significant decrease in testicular ascorbic acid, zinc, reduced glutathione, catalase, superoxide dismutase, sex organ weight, plasma testosterone and luteinizing hormone were observed in the cadmium group. Sperm motility and count were decreased with cadmium treatment, while sperm abnormalities elevated significantly. Zinc treatment was found to mitigate the toxic effects of cadmium on oxidative stress, spermatogenesis, sex hormones, and inflammatory markers. Rats injected with cadmium showed intense histopathological changes. Zinc manifested protective role and markedly reduced tissues damage induced by cadmium. Conclusions: The protective effect of zinc can be attributed to its antioxidant and anti-inflammatory properties.

  9. The relationship between observer-based toxicity scoring and patient assessed symptom severity after treatment for head and neck cancer. A correlative cross sectional study of the DAHANCA toxicity scoring system and the EORTC quality of life questionnaires

    DEFF Research Database (Denmark)

    Bonde Jensen, Anders; Grau, Cai; Jensen, Kenneth

    2006-01-01

    BACKGROUND AND PURPOSE: Morbidity is an important issue in cancer       research. The observer-based toxicity scoring system used by DAHANCA (the       Danish head and neck cancer study group) has proved itself sensitive to       differences in toxicity in a large randomised study, but like other......       toxicity scoring systems it has not been formally validated. Conversely,       the EORTC quality of life questionnaire (QLQ) has been validated as a tool       for collecting information about the consequences of disease and treatment       on the well being of cancer patients. The purpose of this study...... toxicity scoring system       and the EORTC QLQ correlated with several clinical endpoints. The       conceptually similar endpoints of the two methods correlated       significantly. The objective endpoints of the DAHANCA scoring system were       only correlated with quality of life endpoints to a very...

  10. Electrodialytic removal of cadmium from biomass combustion fly ash in larger scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter

    2005-01-01

    Due to a high concentration of the toxic heavy metal cadmium (Cd), biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. It has previously been shown that it is possible to reduce the concentration of Cd in different bio ashes sig...

  11. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum)

    OpenAIRE

    Wei Gao; Tiegui Nan; Guiyu Tan; Hongwei Zhao; Weiming Tan; Fanyun Meng; Zhaohu Li; Li, Qing X.; Baomin Wang

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanob...

  12. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  13. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Sheng, E-mail: Lin.Yu-Sheng@epa.gov [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC (United States); Ho, Wen-Chao [Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (China); Caffrey, James L. [Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX (United States); Sonawane, Babasaheb [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC (United States)

    2014-10-15

    Background: Despite animal evidence suggests that zinc modulates cadmium nephrotoxicity, limited human data are available. Objective: To test the hypothesis that low serum zinc concentrations may increase the risk of cadmium-mediated renal dysfunction in humans. Methods: Data from 1545 subjects aged 20 or older in the National Health and Nutrition Examination Survey (NHANES), 2011–2012 were analyzed. Renal function was defined as impaired when estimated glomerular filtration rate (eGFR) fell below 60 ml/min/1.73 m{sup 2} and/or the urinary albumin-to-creatinine ratio surpassed 2.5 in men and 3.5 mg/mmol in women. Results: Within the study cohort, 117 subjects had reduced eGFR and 214 had elevated urinary albumin. After adjusting for potential confounders, subjects with elevated blood cadmium (>0.53 μg/L) were more likely to have a reduced eGFR (odds ratio [OR]=2.21, 95% confidence interval [CI]: 1.09–4.50) and a higher urinary albumin (OR=2.04, 95% CI: 1.13–3.69) than their low cadmium (<0.18 μg/L) peers. In addition, for any given cadmium exposure, low serum zinc is associated with elevated risk of reduced eGFR (OR=3.38, 95% CI: 1.39–8.28). A similar increase in the odds ratio was observed between declining serum zinc and albuminuria but failed to reach statistical significance. Those with lower serum zinc/blood cadmium ratios were likewise at a greater risk of renal dysfunction (p<0.01). Conclusions: This study results suggest that low serum zinc concentrations are associated with an increased risk of cadmium nephrotoxicity. Elevated cadmium exposure is global public health issue and the assessment of zinc nutritional status may be an important covariate in determining its effective renal toxicity. - Highlights: • Blood cadmium was associated with increased risk of nephrotoxicity. • Low serum zinc may exacerbate risk of cadmium-mediated renal dysfunction. • Both zinc deficiency and elevated cadmium exposure are global public health issues.

  14. Metallothionein and bioaccumulation of cadmium in juvenile bluegills exposed to aqueous and sediment-associated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cope, W.G.

    1991-01-01

    The author evaluated metallothionein (MT), free (unbound) hepatic cadmium and whole body cadmium as indicators of cadmium exposure in juvenile bluegills Lepomis macrochirus in laboratory tests. Two types of cadmium exposure were tested; aqueous and sediment-associated. In the aqueous tests, fish were exposed to cadmium (0.0 to 32.3 [mu]g/L) in an intermittent-flow diluter. In the sediment-associated cadmium test, fish were exposed to resuspended river sidment containing 1.3 to 21.4 [mu]g Cd/g (dry weight) at a nominal total suspended solids concentration of 1,000 mg/L in revolving, circular glass exposure chambers. Total cadmium concentrations were measured in various bluegill liver fractions, whole bluegill, water, and resuspended sediment to assess the partitioning and bioaccumulation of cadmium after the tests. Mean concentrations of MT and free cadmium in bluegill livers and concentrations of cadmium in whole bluegills were positively correlated with aqueous cadmium concentration and were equally suitable as indicators of aqueous cadmium exposure. Sediment-associated cadmium was biologically available, but to a lesser extent than aqueous cadmium. Cadmium concentrations in whole bluegills exposed to resuspended river sediment were 1.5- to 3.5-fold the concentrations in bluegills in sediment-free controls. Free cadmium and MT concentrations in bluegill liver and whole-body cadmium concentrations in bluegills were positively correlated with the cadmium concentrations in filtered water, resuspended sediment, and bulk river sediment; however, whole-body cadmim concentrations were a more sensitive indicator of exposure to sediment-associated cadmium than either free cadmium or MT concentratons in liver.

  15. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Sloth, Jens Jørgen; Rasmussen, Rie Romme

    In Denmark and EU the exposure of cadmium from food is at a level that is relatively close to the Tolerable Daily Intake (TDI). This report describes an investigation of the bioavailability of cadmium in selected food items known to contain high levels of cadmium. The purpose was to provide data ...... or crushed linseed nor the intake of cocoa and chocolate....

  16. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Laura Cartularo

    Full Text Available Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress.

  17. Effects of Cadmium on Rat Sperm Motility Evaluated With Computer Assisted Sperm Analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To study effects of cadmium on rat sperm motility evaluated with computer assisted sperm analysis. Methods  Different doses of cadmium chloride (0.2,0.4,0.8mg Cd/kg BW) were administrated ip to adult male Sprague-Dawley rats. Control animals received the same volume of 0.9% NaCl solution. After 7 days, the rats were sacrificed with their testes removed. A part of one testis was used for testicular sperm head counts and daily sperm production observation. The motility of spermatozoa obtained from cauda epididymides using the “diffusion”method was measured by computer assisted sperm analysis(CASA). Results  The sperm head counts and daily sperm production decreased significantly in the high dose group. The motility of spermatozoa in the middle dose group was reduced significantly. No motile sperm was found in the high dose group. The results suggest that germinal epithelium was impaired irreversibly in a short time to produce toxic effects on spermatogenesis at high cadmium doses. Conclusion  Cadmium may reduce sperm motility at a dose far below the dose affecting sperm production at this time point. The motility of sperm is an early and sensitive endpoint for the assessment of cadmium toxicity on male reproduction.

  18. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast

    Science.gov (United States)

    Guo, Lan; Ganguly, Abantika; Sun, Lingling; Suo, Fang; Du, Li-Lin; Russell, Paul

    2016-01-01

    Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms. PMID:27558664

  19. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Lan Guo

    2016-10-01

    Full Text Available Heavy metals and metalloids such as cadmium [Cd(II] and arsenic [As(III] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.

  20. 硫酸镉与α-萘黄酮对斑马鱼发育的个体毒性与联合毒性研究%Individual and joint toxic effects of cadmium sulfate andα-naphthoflavone on the development of zebrafish embryo

    Institute of Scientific and Technical Information of China (English)

    Jian YIN; Jian-ming YANG; Feng ZHANG; Peng MIAO; Ying LIN; Ming-li CHEN

    2014-01-01

    研究目的:研究硫酸镉与α-萘黄酮对斑马鱼发育的个体毒性与联合毒性,并探讨其中的联合毒性机制。  创新要点:首次对硫酸镉与α-萘黄酮的联合毒性进行了研究,并探索了氧化应激、ATP结合盒式(ABC)转运蛋白及细胞色素P450蛋白(CYP)1A在化合物联合毒性中的作用。  研究方法:在不同时间点,依据形态学指标检测硫酸镉与α-萘黄酮单独使用与联合使用时对斑马鱼胚胎的致死与致畸性毒性。取样品,采用试剂盒检测不同处理状态下斑马鱼胚胎中谷胱甘肽(GSH)、超氧化物歧化酶(SOD)及丙二醛(MDA)三个氧化还原指标的改变,聚合酶链式反应(PCR)检测样品中多药耐药蛋白(mrp)1及cyp1a基因表达水平的改变。  重要结论:硫酸镉与α-萘黄酮的联用能够产生远大于个体且显著增强各自的毒性,而这种增强作用机理在于氧化应激压力的产生,以及两者合用下mrp1及cyp1a基因表达水平的改变。%This paper aims to evaluate the individual and joint toxicities of cadmium sulfate (CdSO4) andα-naphthoflavone (ANF) in zebrafish embryos. As a result, CdSO4 caused both lethal and sub-lethal effects, such as 24 h post-fertilization (hpf) death and 72 hpf delayed hatching. However, ANF only caused sub-lethal effects, including 48 hpf cardiac edema and 72 hpf delayed hatching. Taking 24 hpf death and 48 hpf cardiac edema as endpoints, the toxicities of CdSO4 and ANF were significantly enhanced by each other. Consistently, both CdSO4 and ANF caused significant oxidative stress, including decreases in the reduced glutathione (GSH) level, inhibition of superoxide dis-mutase (SOD) activity, as wel as increases in malondialdehyde (MDA) content in zebrafish embryos, but these mix-tures produced much more significant alterations on the biomarkers. Co-treatment of CdSO4 and ANF significantly down-regulated the mRNA level of

  1. Aspects of the biochemical toxicology of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R.L.; Merali, Z.; Hrdina, P.D.

    1976-01-01

    Cadmium, in addition to producing a variety of toxic manifestations, is known to accumulate in certain ''target'' organs which include liver and kidney where histological and functional damage becomes apparent. The daily intraperitoneal injection of cadmium chloride for 21 or 45 days stimulated the activities of hepatic pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase, elevated blood glucose and urea, and lowered hepatic glycogen in rats. Whereas chronic Cd treatment failed to alter adenosine-3',5'-monophosphate phosphodiesterase (PDE) activity, cyclic AMP (cAMP) and the activity of basal and fluoride-stimulated forms of hepatic adenylate cyclase (AC) were markedly increased. However, the cAMP binding to hepatic protein kinase was decreased as was the kinase activity ratio. An acute dose of Cd decreased hepatic glycogen content and increased blood glucose, serum urea, and hepatic cAMP. Chronic exposure to Cd induced adrenal hypertrophy and augmented adrenal norepinephrine and epinephrine as well as the activity of adrenal tyrosine hydroxylase. In most cases, the observed metabolic alterations persisted up to 28 days on cessation of Cd administration. Subacute Cd treatment suppressed pancreatic function as evidenced by lowered serum immunoreactive insulin in presence of hyperglycemia, as well as by partial inhibition of phentolamine-stimulated increases in serum IRI. Although chronic Cd treatment failed to alter the concentration of brain stem norepinephrine and cerebrocortical acetylcholine esterase activity, serotonin levels of brain stem were depressed and the concentration of striatal dopamine and cerebrocortical acetylcholine were significantly elevated when compared with the values seen in control nonexposed animals.

  2. Arsenic, Cadmium, Lead, and Mercury in Sweat: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2012-01-01

    Full Text Available Arsenic, cadmium, lead, and mercury exposures are ubiquitous. These toxic elements have no physiological benefits, engendering interest in minimizing body burden. The physiological process of sweating has long been regarded as “cleansing” and of low risk. Reports of toxicant levels in sweat were sought in Medline, Embase, Toxline, Biosis, and AMED as well as reference lists and grey literature, from inception to March 22, 2011. Of 122 records identified, 24 were included in evidence synthesis. Populations, and sweat collection methods and concentrations varied widely. In individuals with higher exposure or body burden, sweat generally exceeded plasma or urine concentrations, and dermal could match or surpass urinary daily excretion. Arsenic dermal excretion was severalfold higher in arsenic-exposed individuals than in unexposed controls. Cadmium was more concentrated in sweat than in blood plasma. Sweat lead was associated with high-molecular-weight molecules, and in an interventional study, levels were higher with endurance compared with intensive exercise. Mercury levels normalized with repeated saunas in a case report. Sweating deserves consideration for toxic element detoxification. Research including appropriately sized trials is needed to establish safe, effective therapeutic protocols.

  3. Protective Effects of Long Term Administration of Zinc on Bone Metabolism Parameters in Male Wistar Rats Treated with Cadmium

    Directory of Open Access Journals (Sweden)

    Shiva Najafi

    2016-10-01

    Full Text Available Background Violent poisoning by cadmium in human is created through drinks or meals which have packed in the metallic tins with cadmium plating. The symptoms of variation in the mineral metabolism of bones are observed and different conditions maybe appeared. The toxic (poisonous effect due to cadmium can be neutralized by intervening zinc. This study has been designed to investigate the protective effects of zinc for reducing the poisonous effects due to cadmium on the metabolism in the parameters related to the bone in rat. Methods In this experimental study, 48 male rats of wistar species were distributed in eight experimental groups and tested in the investigative lab of Falavarjan university. These groups were received 0.5 cc physiological serum, 0.5 mg/kg Zinc, 0.5, 1, 2 mg/kg Cadmium respectively and some groups were included in those were taken all there cadmium and zinc concentrations synchronously. Blood samples were taken in a 60 days period and those factors related to the bone metabolism were measured. The data were analyzed by 2-ANOVA Ways, complementary tests through software SPSS 16. Results The results showed that 0.5, 1, 2 mg/kg doses cadmium chloride caused to increase alkaline Phosphatase, calcium, phosphorus, magnesium and decrease albumin as compared with control group. Also, synchronous usage of all three cadmium chloride concentrations with zinc cause to decrease alkaline phosphatase, calcium, phosphorus, magnesium and increase albumin concentration. In a word, the other bone parameters have been significant in different cadmium and zinc doses (P < 0.05. Conclusions Findings showed that zinc can play a protective role on the metabolism parameters related to bone against to poisoning caused by cadmium.

  4. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, Taizo, E-mail: taizo@ynu.ac.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Fujimori, Akira [Heavy-Ion Radiobiology Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kinoshita, Keiji [Nagoya University Avian Bioscience Research Centre, Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-05-15

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by gamma-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  5. Arsenic-cadmium interaction in rats.

    Science.gov (United States)

    Díaz-Barriga, F; Llamas, E; Mejía, J J; Carrizales, L; Santoyo, M E; Vega-Vega, L; Yáñez, L

    1990-11-01

    Simultaneous exposure to cadmium and arsenic is highly probable in the urban area of San Luis Potosi, Mexico due to common localization of copper and zinc smelters. Therefore, in this work, rats were intraperitoneally exposed either to cadmium or arsenic alone, or simultaneously to both metals. The effects of these treatments on three different toxicological parameters were studied. Cadmium modified the LD50 of arsenic and conversely arsenic modified the LD50 for cadmium. At the histopathological level, arsenic appeared to protect against the cadmium effects, especially on testes. This protective effect seemed to be related to the glutathione levels found in this tissue: rats exposed to both arsenic and cadmium, presented glutathione values intermediate to those observed after exposure to either metal alone; arsenic had the highest value and cadmium the lowest. In liver, rats exposed to arsenic, cadmium or arsenic and cadmium, presented glutathione values below those in the saline group, with the lowest value corresponding to the arsenic and cadmium treatment. The results appear to support the proposed interaction between arsenic and cadmium and coexposure to both metals seems to alter certain effects produced by either metal alone.

  6. Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine.

    Science.gov (United States)

    Okyere, H; Voegborlo, R B; Agorku, S E

    2015-07-15

    Total mercury (Hg), cadmium (Cd) and lead (Pb) concentrations were determined in canned fish on the Ghanaian market. Total mercury was determined using an automatic mercury analyzer while cadmium and lead levels were determined by flame atomic absorption spectrophotometry. The metal contents in the samples, expressed in μg g(-1) (wet weight), varied from canned fish from the Ghanaian market have concentrations well below the permissible FAO/WHO for these toxic metals. Thus considering the Provisional Tolerable Weekly Intake (PTWI) of Hg, Pb and Cd the levels obtained in this study are unlikely to constitute a significant exposure to the public through consumption of moderate amounts.

  7. SERUM PROTEIN CHANGES IN RABBITS AFTER CHRONIC ADMINISTRATION OF LEAD AND CADMIUM

    Directory of Open Access Journals (Sweden)

    Hristo HRISTEV

    2008-07-01

    Full Text Available The infl uence of lead (5mg/kg b.w and cadmium (2mg/kg b.w after chronic treatment of the rabbits on serum protein is investigated. Signifi cantly raised content of the cholesterol, ASAT and ALAT; hypo-albuminemia and hyperbetaglobulinemia of the background of one hypoproteinemia and low A/G coeffi cient are established. On basis of obtained result can to show degree of liver parenchyma damage and as trial for used the hyperbeta-globulinemia (at chronic treatment with cadmium is stronger markedly as indicator for delimitation of enteral from parenteral toxication, at that is noted hypergamma-globulinemia.

  8. Determination of cadmium and lead in human biological samples by spectrometric techniques: a review.

    Science.gov (United States)

    Lemos, Valfredo Azevedo; de Carvalho, Anaildes Lago

    2010-12-01

    The analysis of human biological samples, such as blood, urine, nails, and hair, is generally used for the verification of human exposure to toxic metals. In this review, various spectrometric methods for the determination of cadmium and lead in biological samples are discussed and compared. Several spectrometric techniques are presented and discussed with respect to various characteristics such as sensitivity, selectivity, and cost. Special attention is drawn to the procedures for digestion prior to the determination of cadmium and lead in hair, nails, blood, and urine.

  9. Effects of exposure to cadmium in sperm cells of zebrafish, Danio rerio

    OpenAIRE

    Izani Bonel Acosta; Antonio Sergio Varela Junior; Estela Fernandes e Silva; Tainã Figueiredo Cardoso; Jôsie Schwartz Caldas; Rodrigo Desessards Jardim; Carine Dahl Corcini

    2016-01-01

    Cadmium is a natural element found in the earth’s crust; it is usually associated with other metals, but due to the impacts caused by human activity, its concentration has increased in the aquatic environment. This metal may damage aquatic animal reproduction, decreasing the rate of fertilization of organisms such as fish. Thus, this study aimed to evaluate the in vitro toxicity of different concentrations of cadmium (0 (control), 0.5, 5, and 10 μg/L) using sperm cells of model organism zebra...

  10. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thophon, S.; Kruatrachue, M.; Upatham, E.S.; Pokethitiyook, P.; Sahaphong, S.; Jaritkhuan, S

    2003-03-01

    White seabass responded differently to cadmium at chronic and subchronic levels. - Histopathological alterations to white seabass, Lates calcarifer aged 3 months in acute and subchronic cadmium exposure were studied by light and scanning electron microscopy. The 96-h LC{sub 50} values of cadmium to L. calcarifer was found to be 20.12{+-}0.61 mg/l and the maximum acceptable toxicant concentration (MATC) was 7.79 mg/l. Fish were exposed to 10 and 0.8 mg/l of Cd (as CdCl{sub 2}H{sub 2}O) for 96 h and 90 days, respectively. The study showed that gill lamellae and kidney tubules were the primary target organs for the acute toxic effect of cadmium while in the subchronic exposure, the toxic effect to gills was less than that of kidney and liver. Gill alterations included edema of the epithelial cells with the breakdown of pillar cell system, aneurisms with some ruptures, hypertrophy and hyperplasia of epithelial and chloride cells. The liver showed blood congestion in sinusoids and hydropic swelling of hepatocytes, vacuolation and dark granule accumulation. Lipid droplets and glycogen content were observed in hepatocytes at the second and third month of subchronic exposure. The kidney showed hydropic swelling of tubular cell vacuolation and numerous dark granule accumulation in many tubules. Tubular degeneration and necrosis were seen in some areas.

  11. Insulin Expression in Rats Exposed to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives To investigate the effects of cadmium exposure on insulin expression in rats. Methods Eighteen adult SD assessed. The levels of cadmium and zinc in pancreas, blood and urine glucose, serum insulin and urine NAG (N-acyetyl-β-glucosaminidase) were determined. The gene expressions of metallothionein (MT) and insulin were also measured,and the oral glucose tolerance tests (OGTT) were carried out. Results The contents of cadmium in pancreas in cadmium-treated rats were higher than that in the control group, which was associated with slight increase of zinc in pancreas.not change significantly after cadmium administration, and the UNAG had no change in Cd-treated group. The gene expression the change of the expression of insulin, MT-Ⅰ and MT-Ⅱ genes. Cadmium can influence the biosynthesis of insulin, but does not induce the release of insulin. The dysfunction of pancreas occurs earlier than that of kidney after administration of cadmium.

  12. Field effects of cadmium contamination in the radiation characteristics of maize

    Science.gov (United States)

    Illes, B.; Anda, A.

    2012-04-01

    Cadmium is one of the most common toxic heavy metals in our environment. Cadmium is a particularly dangerous element, because it dissolves readily, making it easily available to plants. It is thus able to accumulate in various links in the food chain, finally reaching humans, at the end of the chain. Adverse effects on human body was reported in 1858 at first. If it enters the body, damage to health, cause changes and can also cause cancer. Our study was designated to simulate the effects of cadmium on maize in field conditions, during the 2011 growing season. The impact of cadmium on maize was investigated at the Agro-meteorological Research Station in Keszthely. A Swiss-bred maize hybrid, Sperlona (FAO 340), with a short vegetation period, was sown in the experiments at the plant density (70,000 plants per hectare) widely used under Hungarian climatic conditions for growing grain maize. Effects of cadmium on corn life were studied under two water supplies. Evapotranspirometers of the Thornthwaite type were used for the "ad libitum" treatment and the the rainfed variant was sown in field plots. 0,5 M concentration of cadmium was used, which was sprayed weekly. The aim of the investigation was to simulate impact of atmospheric pollution of traffic origin (low and frequent doses in the field). Plant height was registered weekly similarly to leaf area index (LAI). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala). From this the most important radiative properties were calculated, so the net radiation balance, latent heat, sensible heat and the Bowen ratio. The values of LAI for the cadmium contaminated maize were significantly lower compared to the control maize. The net radiation balance was about the same in both treatments. Cadmium causes the latent heat decreased, while the sensible heat increased compared to the control treatment. The Bowen ratio in the polluted crops was higher, than the cadmium-untreated area. The yield of maize

  13. Electrochemical monitoring of phytochelatin accumulation in Nicotiana tabacum cells exposed to sub-cytotoxic and cytotoxic levels of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fojta, Miroslav [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic)]. E-mail: fojta@ibp.cz; Fojtova, Miloslava [Laboratory of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Havran, Ludek [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Pivonkova, Hana [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Dorcak, Vlastimil [Laboratory of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno (Czech Republic); Sestakova, Ivana [J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2006-02-03

    Cadmium belongs to the most dangerous environmental pollutants among the toxic heavy metals seriously affecting vital functions in both animal and plant cells. It has been previously shown that cadmium ions at 50-100 {mu}M concentrations caused tobacco BY-2 (TBY-2) cells to enter apoptosis within several days of exposure. Phytochelatins (PCs), the 'plant metallothioneins', are cysteine-rich peptides involved in detoxification of heavy metals in plants. The PCs are synthesized in response to the heavy metal exposure. In this paper, we utilized electrochemical analysis to monitor accumulation of PCs in the TBY-2 cells exposed to cadmium ions. Measurements of a characteristic PC signal at mercury electrode in the presence of cobalt ions made it possible to detect changes in the cellular PC levels during the time of cultivation, starting from 30 min after exposure. Upon TBY-2 cultivation in the presence of cytotoxic cadmium concentrations, the PC levels remarkably increased during the pre-apoptotic phase and reached a limiting value at cultivation times coinciding with apoptosis trigger. The PC level observed for a sub-cytotoxic cadmium concentration (10 {mu}M) was about three-times lower than that observed for the 50 or 100 {mu}M cadmium ions after 5 days of exposure. We show that using a simple electrochemical analysis, synthesis of PCs in plant cells can be easily followed in parallel with other tests of the cellular response to the toxic heavy metal stress.

  14. Suppression of the tert-butylhydroquinone toxicity by its grafting onto chitosan and further cross-linking to agavin toward a novel antioxidant and prebiotic material.

    Science.gov (United States)

    Hernández-Valdepeña, Miguel A; Pedraza-Chaverri, José; Gracia-Mora, Isabel; Hernández-Castro, Rigoberto; Sánchez-Bartez, Francisco; Nieto-Sotelo, Jorge; Montiel, Carmina; Shirai, Keiko; Gimeno, Miquel

    2016-05-15

    The enzyme-mediated grafting of tert-butylhydroquinone (TBHQ) onto chitosan and further crosslinking to agave inulin (agavin) has been successfully achieved in a mild and non-toxic two-step route. The resulting products were characterized by nuclear magnetic resonance (NMR) and Infra-red spectroscopies to assess the molecular structure. The study of acute oral toxicity in mice revealed no adverse short-term effects of consumption in the synthesized materials with non-toxicity evidence until 2000 mg/kg through an oral acute administration. Importantly, this study proves that the compound maintains the radical scavenging capacity of the phenolic antioxidant upon ferric-reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays with a measured half-maximal inhibitory concentration (IC50) for the best case of 1.54 g/L based on inhibition of 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid diammonium salt (ABTS). Additionally, the novel compound presented high prebiotic activities as ascertained in the presence of lactic acid bacteria (LAB).

  15. An in vitro model for the in vivo mobilization of cadmium by chelating agents using 113Cd-NMR spectroscopy.

    Science.gov (United States)

    Beaty, J A; Jones, M M; Wilson, D J; Ma, L

    1992-01-01

    An in vitro method, based on 113Cd-NMR spectroscopy, that provides an alternative to the use of animals for an initial screening of cadmium antagonists is presented. The relative values of the effective stability constants of potential chelating antagonists for cadmium are estimated by using 113Cd-NMR spectroscopy to determine the concentrations of the cadmium species involved in appropriate competitive equilibria. This is accomplished via an examination of the competition between the proposed antagonist and EDTA (ethylenediaminetetraacetic acid) for cadmium-113; previously, EDTA has been shown to be capable of removing cadmium from such in vivo binding sites as metallothionein. The reactions proceed via the stepwise addition of three dithiocarbamate groups to the cadmium accompanied by the concurrent stepwise release of donor groups from the EDTA. The resulting 113Cd-NMR data allow for the determination of the overall stability constant for the complex formed between cadmium and N-methyl-D-glucamine dithiocarbamate, iminodiacetic acid dithiocarbamate, proline dithiocarbamate, sarcosine dithiocarbamate. The use of 113Cd-NMR spectroscopy has the potential for providing direct evidence on the effectiveness of chelate antagonists to compete with endogenous ligands for other toxic metal ions. This technique could prove very useful for other compounds that are not stable enough toward acid and/or base to be examined by standard titrimetric methods.

  16. Sulforaphane Prevents Testicular Damage in Kunming Mice Exposed to Cadmium via Activation of Nrf2/ARE Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Shu-Hua Yang

    2016-10-01

    Full Text Available Sulforaphane (SFN is a natural and highly effective antioxidant. Studies suggest that SFN protects cells and tissues against cadmium (Cd toxicity. This study investigated the protective effect of SFN against oxidative damage in the testes of Kunming mice exposed to cadmium, and explored the possible molecular mechanisms involved. Cadmium greatly reduced the serum testosterone levels in mice, reduced sperm motility, total sperm count, and increased the sperm deformity rate. Cadmium also reduces superoxide dismutase (T-SOD and glutathione (GSH levels and increases malondialdehyde (MDA concentrations. SFN intervention improved sperm quality, serum testosterone, and antioxidant levels. Both mRNA and protein expression of mouse testicular nuclear factor-erythroid 2-related factor 2 (Nrf2 was reduced in cadmium-treated group. Furthermore, the downstream genes of Nrf2, glutathione peroxidase (GSH-Px, γ-glutamyl cysteine synthetase (γ-GCS, heme oxygenase-1 (HO-1, and NAD(PH:quinone oxidoreductase-1 (NQO1 were also decreased in cadmium-treated group. SFN intervention increases the expression of these genes. Sulforaphane prevents cadmium-induced testicular damage, probably via activation of Nrf2/ARE signaling.

  17. Acute toxicity and toxic interaction of chromium and nickel to common guppy Poecilia reticulata (Peters)

    Energy Technology Data Exchange (ETDEWEB)

    Khangarot, B.S.; Ray, P.K. (Industrial Toxicology Research Centre, Lucknow (India))

    1990-06-01

    The acute toxicity of heavy metals in combination to the common guppy has been reported. Information on the combined effects of chromium and nickel to fish is rather scarce. Toxicity of nickel and chromium to fish is generally low. These two elements are usually less toxic than silver, cadmium, copper and thallium; depending on test conditions, these may also be less hazardous than zinc, lead and arsenic. The present study was undertaken to investigate the acute toxicity of Ni and Cr singly and the toxic interaction of these two metal ions on survival of the common guppy, Poecilia reticulata (Peters). This species was selected for static bioassays because it can be easily cultured and raised under laboratory conditions through a complete life cycle, and it is one of the most common fish used for laboratory toxicity studies.

  18. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.

    Science.gov (United States)

    Ma, Ning; Li, Chunsheng; Zhang, Dandan; Yu, Jinzhi; Xu, Ying

    2016-07-01

    Application of growing microorganisms for cadmium removal is limited by the sensitivity of living cells to cadmium. The effects of sodium chloride (NaCl) preincubation on the cadmium bioaccumulation and tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation significantly reduced the intracellular and cell-surface cadmium bioaccumulation of P. kudriavzevii at both 6 and 20 mg L(-1) cadmium, while no obvious effect was observed in S. cerevisiae except that the intracellular cadmium bioaccumulation at 20 mg L(-1) cadmium was reduced obviously by 20-60 g L(-1)  NaCl. For both yeasts, the improved contents of protein and proline after NaCl preincubation contributed to the cadmium tolerance. The thiol contents in P. kudriavzevii under cadmium stress were alleviated by NaCl preincubation, which might be due to the decrease of intracellular cadmium bioaccumulation. NaCl preincubation enhanced the contents of glycerol and trehalose in P. kudriavzevii under cadmium stress, while no acceleration was observed in S. cerevisiae. The results suggested that NaCl preincubation could be applied in cadmium removal by growing P. kudriavzevii to increase the cadmium tolerance of the yeast.

  19. Blood cadmium levels are associated with a decline in lung function in males

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Chang-Mo [Department of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); The Korea Central Cancer Registry, National Cancer Center, Goyang (Korea, Republic of); Oh, In-Hwan; Lee, Jong-Keun [Department of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Park, Yoon Hyung [Departments of Preventive Medicine, School of Medicine, Soonchunhyang University, Seoul (Korea, Republic of); Choe, Bong-Keun; Yoon, Tai-Young [Department of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Choi, Joong-Myung, E-mail: jmchoi@khu.ac.kr [Department of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2014-07-15

    Background: Cadmium exposure was found to cause a decline in lung function among the general population, but these findings were limited to smokers and gender differences were not explored. Objectives: To examine the relationship between cadmium and chronic obstructive pulmonary disease (COPD) according to gender and smoking status in Korea. Methods: Cross-sectional data from the Korean National Health and Nutrition Examination Survey from 2008 to 2011 were analyzed. COPD was defined by a pre-bronchodilator forced expiratory volume in 1 s divided by forced vital capacity of <0.70. A logistic regression model was used to elucidate the association between blood cadmium levels and COPD according to gender and smoking status. Results: Among 3861 eligible participants, 3622 were included in the analysis. The prevalence of COPD demonstrated an increasing trend in males (P for trend<0.001), but not in females (P for trend=0.67). After adjusting for covariates, a higher blood cadmium level, but within the normal range, was associated with COPD in males, including those who had never-smoked (P for trend <0.001 and P for trend=0.008). However, a higher blood cadmium level was not significantly associated with COPD in females, including those who had never smoked (P for trend=0.39 and P for trend=0.43). Conclusions: A higher blood cadmium level, within the normal range, was associated with COPD in males, including those who had never smoked. However, there was no significant association between blood cadmium levels and COPD in females. - Highlights: • Elevated blood cadmium level is associated with chronic obstructive pulmonary disease in male. • This association can be seen even in never smoked male. • However, this association is present only in male, but not in female.

  20. Studies on the Interaction of Dinitratobis(phen) Cadmium Complex with DNA

    Institute of Scientific and Technical Information of China (English)

    YUAN,Cai-Xia; WU,Yan-Bo; WEI,Yi-Bin; YANG,Pin; ZHU,Miao-Li

    2007-01-01

    DNA-binding properties of the dinitratobis(phen) cadmium complex [Cd(phen)2(NO3)2] (where phen =1,10-phenanthroline) have been investigated with absorption titration, fluorescence spectroscopy, viscosity measurement, molecular modeling and density functional theory (DFT) calculations. The results indictate DNA-binding mode of the complex to be weak groove binding rather than partial intercalative interaction expected of the extended planar aromatic phen ring. In addition, the DNA cleavage study was carried out by gel electrophoresis experiment. The results showed that the complex both hardly cleaves pBR322 DNA in the absence and present ascorbate. So it is suggested that the formation of cadmium complex can decrease cadmium toxicity to some extents.

  1. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor).

    Science.gov (United States)

    Hou, Wenhua; Chen, Xiao; Song, Guanling; Wang, Qunhui; Chi Chang, Chein

    2007-01-01

    Aquatic plants have been identified as a potentially useful group for accumulating and bioconcentrating heavy metals. In the study, we investigated changes in the contents of soluble protein and photosynthetic pigments as well as the activity of antioxidant enzymes caused by copper sulfate and cadmium dichloride, respectively in duckweed (Lemna minor) during concentration-dependent exposure (0.05-20 mg l(-1)) to metal salt. The results demonstrated that exposure to high concentration heavy metals (Cu>10 mg l(-1), Cd>0.5 mg l(-1)) could result the disintegration of antioxidant system in duckweed. Also, the significant decrease of contents of soluble protein and photosynthetic pigments was observed to high-level metal stress. Additionally, cadmium was found to be more toxic than copper on plants. The outcome of this study corroborate that Lemna minor is a suitable candidate for the phytoremediation of low-level copper and cadmium contaminated waterbody.

  2. Water hyacinths for removal of cadmium and nickel from polluted waters

    Science.gov (United States)

    Wolverton, B. C.

    1975-01-01

    Removal of cadmium and nickel from static water systems utilizing water hyacinths (Eichhornia crassipes (Mart.) Solms) was investigated. This aquatic plant demonstrated the ability to rapidly remove heavy metals from aqueous systems by root absorption and concentration. Water hyacinths demonstrated the ability to absorb and concentrate up to 0.67 mg of cadmium and 0.50 mg of nickel per gram of dry plant material when exposed for a 24-hour period to waters polluted with from 0.578 to 2.00 ppm of these toxic metals. It is found that one hectare of water hyacinths has the potential of removing 300 g of cadmium or nickel from 240,000 liters of water polluted with these metals during a 24-hour period.

  3. Effect of dietary zinc deficiency on the accumulation of cadmium and metallothionein in selected tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, M.P.

    1986-01-01

    The effect of continuous dietary zinc deficiency on the metabolism of the toxic heavy metal cadmium has not been widely studied. This investigation was designed to assess the effects of subadequate dietary zinc intake on the accumulation of dietary cadmium and on metallothionein (MT) and zinc concentrations in target organs of cadmium toxicity. Adult male Wistar rats (180-200 g) were allowed, ad libitum, diets either adequate (60 ppm) or deficient (7 ppm) in zinc for a total of 9 wk. The zinc-deficient diet resulted in an approximately 40% reduction in plasma zinc (assessed at 3, 6, and 9 wk) in the absence of overt signs of zinc deficiency (i.e., reduced weight gain, alopecia, etc.). Separate groups of rats were also maintained on zinc-defined diets for a total of 9 wk, but cadmium was added to the diet (0, 12.5, 25, 50, 100, and 200 ppm) a the end of wk 3 and maintained at that level throughout the remaining 6 wk of the study, when the rats were killed. The feeding of the zinc-deficient diet markedly enhanced the accumulation of cadmium in the liver, kidney, and testes. Hepatic, renal, and testicular zinc concentrations were not affected by suboptimal zinc intake alone. However, marked reductions in renal and testicular zinc concentrations were caused by zinc deficiency in concert with cadmium exposure. MT levels, when related to tissue cadmium concentrations, were elevated to a significantly lesser extent in the kidneys of zinc-deficient animals. These results indicate that marginal zinc deficiency markedly increases cadmium accumulation in various organs and reduces zinc content and MT induction in some organs.

  4. Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kuetzing) W. Smith

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Diana; Lima, Ana [Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Almeida, Salome F.P. [GEOBIOTEC, Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal); Figueira, Etelvina, E-mail: efigueira@ua.pt [Centre for Cell Biology, Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2010-08-15

    Human activities have been increasing the cadmium levels in soils and waters, disturbing many organisms in the primary trophic levels such as microalgae. Toxic metal pollution is a focus point of serious concern and the examination and monitoring water quality are becoming essential procedures. Diatoms are important bioindicators to monitor the metal concentrations in diverse habitats. The present study was planned to determine the biochemical mechanisms used by freshwater diatoms to cope with cadmium stress and to identify biomarkers of metal stress. For this, Nitzschia palea (Kuetzing) W. Smith was grown under different concentrations of Cd (0.01-0.1 mg l{sup -1}) and the IC{sub 50} determined. Three concentrations (0.1, 0.2 and 0.3 mg Cd l{sup -1}) and a control (no cadmium) were used to undergo the experimental assays which allowed the determination of cadmium accumulation and several biochemical markers currently used to assess metal stress. N. palea was sensitive to cadmium, as the IC{sub 50} calculated was 0.0276 mg Cd l{sup -1}. Cadmium accumulation increased sharply and was mainly associated to the frustule. Total protein content increased with cadmium exposure, inducing increases and decreases in polypeptide expression, indicating an attempt of N. palea cells to adjust to the new prevailing conditions induced by metal stress. In order to cope with cadmium stress, cells induced the synthesis of chelating molecules such as phytochelatins (PCs). The enzymatic (SOD and CAT) and non-enzymatic (glutathione and proline) ROS scavenging mechanisms were also induced. Our results indicate the existence of diverse metal stress-mediated mechanisms in order to lessen metal damages to the cell. PCs showed to be a suitable biomarker of metal stress; besides being metal specific and concentration respondent it also allows to infer about the level of stress imposed to cells, constituting a useful tool to complement the evaluation of diatom communities when accessing

  5. Silicon-induced reversibility of cadmium toxicity in rice

    Science.gov (United States)

    Farooq, Muhammad Ansar; Detterbeck, Amelie; Clemens, Stephan; Dietz, Karl-Josef

    2016-01-01

    Silicon (Si) modulates tolerance to abiotic stresses, but little is known about the reversibility of stress effects by supplementing previously stressed plants with Si. This is surprising since recovery experiments might allow mechanisms of Si-mediated amelioration to be addressed. Rice was exposed to 10 µM CdCl2 for 4 d in hydroponics, followed by 0.6mM Si(OH)4 supplementation for 4 d. Si reversed the effects of Cd, as reflected in plant growth, photosynthesis, elemental composition, and some biochemical parameters. Cd-dependent deregulation of nutrient homeostasis was partially reversed by Si supply. Photosynthetic recovery within 48h following Si supply, coupled with strong stimulation of the ascorbate–glutathione system, indicates efficient activation of defense. The response was further verified by transcript analyses with emphasis on genes encoding members of the stress-associated protein (SAP) family. The transcriptional response to Cd was mostly reversed following Si supply. Reprogramming of the Cd response was obvious for Phytochelatin synthase 1, SAP1 , SAP14, and the transcription factor genes AP2/Erf020, Hsf31, and NAC6 whose transcript levels were strongly activated in roots of Cd-stressed rice, but down-regulated in the presence of Si. These findings, together with changes in biochemical parameters, highlight the significance of Si in growth recovery of Cd-stressed rice and indicate a decisive role for readjusting cell redox homeostasis. PMID:27122572

  6. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future.

  7. Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Li, Sishen;

    2012-01-01

    Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch×Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd...

  8. Metallothionein-like proteins induced by cadmium stress in the scallop Mizuhopecten yessoensis

    Science.gov (United States)

    Zhukovskaya, Avianna F.; Belcheva, Nina N.; Slobodskova, Valentina S.; Chelomin, Viktor P.

    2012-09-01

    Organisms have evolved a cellular response called stress protein response that increases their tolerance in adverse environmental conditions. Well known stress proteins that bind essential and toxic metals are metallothionein (MT). The scallop Mizuhopecten yessoensis is the most interesting organism because it is able to accumulate toxic cadmium in its digestive gland. However, in the tissue of the digestive gland of Mizuhopecten yessoensis MT (metallothioneins) have not been found. Eastern scallops, Mizuhopecten yessoensis, were collected from two locations — one clean and one polluted site. The concentrations of cadmium (Cd), copper (Cu) and zinc (Zn) were measured in the digestive gland. There was a significant increase in Cd concentrations in this studied tissue. We found that in the presence of cadmium Mizuhopecten yessoensis can induce high molecular proteins. The results of experiments have shown that Cd-binding ligands have a number of properties similar to MT: acetone and temperature stability; the ability to bind some metals, including Cd, Cu and Zn. Protein chromatography (FPLC, Superosa 12) from the digestive gland of scallop M. yessoensis has shown that cadmium is associated with high molecular weight Cd-binding proteins (72 kDa and 43 kDa). The major cadmium-binding protein 72 kDa is glycoprotein. In experiments we have demonstrated that Cd-binding proteins can be induced when there is cadmium exposure. The results of this study strongly suggest that the far eastern scallop Mizuhopecten yessoensis has a unique and well-developed system for the detoxification of heavy metals and it allows for biochemical systems to be maintained in a relatively stable manner in the presence of heavy metals.

  9. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior

    Energy Technology Data Exchange (ETDEWEB)

    López-Luna, J., E-mail: jlol_24@hotmail.com [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Silva-Silva, M.J. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Martinez-Vargas, S. [Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche (Mexico); Mijangos-Ricardez, O.F. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); González-Chávez, M.C. [Colegio de Postgraduados en Ciencias Agrícolas, Carr. México–Texcoco km 36.5, Montecillo 56230, Estado de México (Mexico); Solís-Domínguez, F.A. [Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Baja California Norte (Mexico); Cuevas-Díaz, M.C. [Facultad de Ciencias Químicas, Universidad Veracruzana, Coatzacoalcos 96535, Veracruz (Mexico)

    2016-09-15

    The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd{sup 2+} and Cr{sup 6+} levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67 mg Cd{sup 2+} kg{sup −1} and 5.53 mg Cr{sup 6+} kg{sup −1}. However, when magnetite NPs (1000 mg kg{sup −1}) were added, the root length of the plants increased by 25 and 50%. Cd{sup 2+} and Cr{sup 6+} showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated. - Highlights: • We assessed the effect of nanomagnetite on heavy metal toxicity in wheat plants. • Citrate-coated magnetite nanoparticles (NPs) exerted very low toxicity to plants. • Cadmium was more toxic than chromium and toxicity was mitigated by magnetite NPs. • Cadmium and chromium had a similar and noninteractive joint action on plants. • Metals showed an interactive infra-additive joint effect by adding magnetite NPs.

  10. Cadmium content of plants as affected by soil cadmium concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lehoczky, E. [Pannon Univ. of Agricultural Sciences, Keszthely (Hungary); Szabados, I.; Marth, P. [Plant Health and Soil Conservation Station, Higany (Hungary)

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  11. Cellular iron depletion weakens induction of heme oxygenase-1 by cadmium.

    Science.gov (United States)

    Lai, Chengzhi; Loo, George

    2011-01-01

    Heme oxygenase-1 is an inducible cytoprotective gene, although its induction by environmental factors is not completely understood. This study aimed to ascertain if specific nutritive factors or related compounds influence heme oxygenase-1 expression. In HCT-116 cells, cadmium increased heme oxygenase-1 enzymatic activity. This effect of cadmium was weaker in cells made iron-deficient with the iron chelator, desferrioxamine, which was associated with repression of heme oxygenase-1 protein and mRNA expression. The repression by desferrioxamine of cadmium-induced heme oxygenase-1 upregulation was reversed upon iron replenishment of the cells. Additionally, it was found that thiol antioxidants inhibited the heme oxygenase-1 upregulation caused by cadmium and also by ethacrynic acid, which each decreased intracellular glutathione as did buthionine sulfoxamine. Interestingly, cadmium and ethacrynic acid increased nuclear translocation of Nrf2 and subsequent heme oxygenase-1 expression, but buthionine sulfoxamine did not. Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin, and a superoxide scavenger (Tiron) inhibited cadmium-induced upregulation of heme oxygenase-1. Diphenyleneiodonium was the most potent and inhibited NADPH-cytochrome P450 reductase as well, whereas apocynin and Tiron did not. It is concluded that adequate amounts of iron, which at the atomic level can serve as the pivotal element of heme in NADPH oxidase, must be present in cells to permit what appears to be thiol redox-sensitive, NADPH oxidase-dependent upregulation of heme oxygenase-1. Thus, these findings are significant because they suggest that cells without adequate iron would be unable to fully express the stress gene, heme oxygenase-1, when confronted with the toxic metal, cadmium.

  12. Grape juice concentrate (G8000(®) ) intake mitigates testicular morphological and ultrastructural damage following cadmium intoxication.

    Science.gov (United States)

    Lamas, Celina A; Gollücke, Andrea P B; Dolder, Heidi

    2015-10-01

    Cadmium is a well-known testicular toxicant, and parts of the world population are exposed chronically by inhalation or by food and water intake. Grape products have been highlighted as important sources of bioactive compounds, having anti-inflammatory, anti-oxidant and metal chelating properties. Since maintenance of tissue morphology is essential for testicular sperm development and hence male fertility, we analysed the protective effect of grape juice concentrate (GJC) (G8000(®) ) consumption on testicular morphology in rats exposed to cadmium. Thus, four groups of male Wistar rats (n = 6 per group), 50 days old, ingested either water or G8000(®) (2 g/kg/day) until they had completed one spermatogenic cycle in adult life (136 days old). Cadmium (1.2 mg / kg) was injected intraperitoneally when the animals were 80 days old into one of the water and one of the G8000 groups; intraperitoneal saline was used as a control in the other two groups. Animals anaesthetised and exsanguinated at 136 days and then perfused with Karnovsky's fixative and then the testes were collected for morphological analysis. We describe evident disruption of testicular morphology by cadmium, with alteration in tissue component proportions, reduced Leydig cells volume and initial signs of an inflammatory process. Ultrastructural analysis showed greater damage, suggesting spermatogenesis disruption. G8000(®) ingestion allowed tissue architecture to be re-established, as was corroborated by our stereological and morphometric findings. Animals from the group where G8000(®) had been administered together with cadmium revealed a significant reduction in macrophages and blood vessel volume, suggesting diminished inflammation, when compared to animals that received only cadmium. Moreover, smaller number of ultrastructural alterations was noted, revealing fewer areas of degeneration and disorganized interstitium. In conclusion, our results demonstrate that GJC consumption prevented the

  13. Toxic compounds in honey.

    Science.gov (United States)

    Islam, Md Nazmul; Khalil, Md Ibrahim; Islam, Md Asiful; Gan, Siew Hua

    2014-07-01

    There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5-hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food.

  14. Cadmium-mediated disruption of cortisol biosynthesis involves suppression of corticosteroidogenic genes in rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Navdeep [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Vijayan, Mathilakath M., E-mail: mvijayan@uwaterloo.ca [Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2011-05-15

    Cadmium is widely distributed in the aquatic environment and is toxic to fish even at sublethal concentrations. This metal is an endocrine disruptor, and one well established role in teleosts is the suppression of adrenocorticotrophic hormone (ACTH)-stimulated cortisol biosynthesis by the interrenal tissue. However the mechanism(s) leading to this steroid suppression is poorly understood. We tested the hypothesis that cadmium targets genes encoding proteins critical for corticosteroid biosynthesis, including melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage enzyme (P450scc), in rainbow trout (Oncorhynchus mykiss). To test this, head kidney slices (containing the interrenal tissues) were incubated in vitro with cadmium chloride (0, 10, 100 and 1000 nM) for 4 h either in the presence or absence of ACTH (0.5 IU/mL). In the unstimulated head kidney slices, cadmium exposure did not affect basal cortisol secretion and the mRNA levels of MC2R and P450scc, while StAR gene expression was significantly reduced. Cadmium exposure significantly suppressed ACTH-stimulated cortisol production in a dose-related fashion. This cadmium-mediated suppression in corticosteroidogenesis corresponded with a significant reduction in MC2R, StAR and P450scc mRNA levels in trout head kidney slices. The inhibition of ACTH-stimulated cortisol production and suppression of genes involved in corticosteroidogenesis by cadmium were completely abolished in the presence of 8-Bromo-cAMP (a cAMP analog). Overall, cadmium disrupts the expression of genes critical for corticosteroid biosynthesis in rainbow trout head kidney slices. However, the rescue of cortisol production as well as StAR and P450scc gene expressions by cAMP analog suggests that cadmium impact occurs upstream of cAMP production. We propose that MC2R signaling, the primary step in ACTH-induced cortocosteroidogenesis, is a key target for cadmium-mediated disruption of

  15. Tolerance to cadmium and cadmium-binding ligands in Great Salt Lake brine shrimp (Artemia salina)

    Energy Technology Data Exchange (ETDEWEB)

    Jayasekara, S.; Drown, D.B.; Sharma, R.P.

    1986-02-01

    Information on the accumulation of cadmium in cytosolic proteins of Great Lake brine shrimp (Artemia salina) was obtained from animals collected directly from the lake and also from animal hatched and maintained in three sublethal concentrations of cadmium (0.5, 2.0, 5.0 ppm) in saltwater aquaria. Brine shrimp growth under these conditions was monitored by measuring body lengths during a 7-day exposure period. Heat-stable, cadmium-binding ligands were isolated and identified by Sephadex G-75 chromatography and atomic absorption spectrophotometry. Cadmium was found to be equally distributed between high and low molecular weight proteins in animals collected from the lake and the 0.5 ppm cadmium group. There was also a slight growth stimulation noted in the 0.5-pm group. Higher cadmium incorporation was noted in low molecular weight fractions with increasing cadmium concentration in the exposure media. Low molecular weight fractions were also found to have high uv absorption characteristics at 250 nm and low absorption at 280 nm. Molecular weight of the cadmium-binding ligands was found to be 11,000 as estimated by the gel filtration method. De novo synthesis of this protein was increased as a function of cadmium concentration in the media. However, slow accumulation of cadmium in other protein fractions was also noticed in higher cadmium exposure groups, suggesting the existence of possible tolerance mechanisms in brine shrimp exposed to suspected acute cadmium concentrations.

  16. How Plants Cope with Cadmium: Staking All on Metabolism and Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Giovanni DalCorso; Silvla Fadnati; Silvia Maistd; Antonella Furini

    2008-01-01

    Environmental pollullon is one of the major problems for human health. Toxic heavy metals are normally present as soil constituents or can also be spread out in the environment by human activity and agricultural techniques. Soil contamination by heavy metals as cadmium, highlights two main aspects: on one side they interfere with the life cycle of plants and therefore reduce crop yields, and on the other hand, once adsorbed and accumulated into the plant tissues, they enter the food chain poisoning animals and humans. Considering this point of view, understanding the mechanism by which plants handle heavy metal exposure, In particular cadmium stress, is a primary goal of plant-blotechnology research or plant breeders whose aim is to create plants that are able to recover high amounts of heavy metals, which can be used for phytoremediation, or identify crop varieties that do not accumulate toxic metal in grains or fruits. In this review we focus on the main symptoms of cadmium toxicity both on root apparatus and shoots. We elucidate the mechanisms that plants activate to prevent absorption or to detoxify toxic metal ions, such as synthesis of phytochelatins, metallothioneins and enzymes involved in stress response. Finally we consider new plant-biotechnology applications that can be applied for phytoremediation.

  17. Survey of toxicity and carcinogenity of mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    Furst, A.; Harding-Barlow, I.

    1981-11-03

    The toxicities and biogeochemical cycles of arsenic, cadmium, chromium, lead and nickel are reviewed in some detail, and other trace elements briefly mentioned. These heavy metals are used as a framework within which the problem of low-level radioactive waste disposal can be compared. (ACR)

  18. Comparative Genotoxicity of Cadmium and Lead in Earthworm Coelomocytes

    Directory of Open Access Journals (Sweden)

    Ptumporn Muangphra

    2011-01-01

    Full Text Available To determine genotoxicity to coelomocytes, Pheretima peguana earthworms were exposed in filter paper studies to cadmium (Cd and lead (Pb for 48 h, at concentrations less than the LC10—Cd: 0.09, 0.19, 0.38, 0.75, and 1.50 μg cm−2; Pb: 1.65, 3.29, 6.58, 13.16, and 26.32 μg cm−2. For Cd at 0.75 μg cm−2, in the micronucleus test (detects chromosomal aberrations, significant increases (<.05 in micronuclei and binucleate cells were observed, and in the comet assay (detects DNA single-strand breaks, tail DNA% was significantly increased. Lead was less toxic with minimal effects on DNA, but the binucleates were significantly increased by Pb at 3.29 μg cm−2. This study shows that Cd is more acutely toxic and sublethally genotoxic than Pb to P. peguana. Cadmium caused chromosomal aberrations and DNA single-strand breaks at 45% of the LC10 concentration. Lead, in contrast, did not induce DNA damage but caused cytokinesis defects.

  19. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.

    Science.gov (United States)

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Lee, David; Chen, Alice; Schroeder, Julian I; Balish, Rebecca S; Meagher, Richard B

    2004-12-01

    Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 microM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC2, PC3, PC4), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, gamma-glutamyl cysteine (gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.

  20. Uptake and elimination of cadmium by Japanese Eel, Anguilla japonica, at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.N.; Chen, H.C. [National Taiwan Univ. (China)

    1996-04-01

    There is no evidence that cadmium is biologically essential, but its toxicity to organisms is well known. The so-called Itai-Itai disease in Japan, characterized by osteomalacia and renal tubular malfunction, has been attributed to cadmium poisoning in irrigation water. The degree of contamination in aquatic environments is frequently assessed by comparing contaminant concentrations in associated biota. Bioaccumulation, however, is influenced by environmental factors other than the degree of contamination, environmental factors such as salinity, temperature and pH. The use of cadmium in the electroplating industry in Taiwan is intensive, but the wastewater used in this industry is seldom treated and has been a serious problem. The Japanese eel (Anguilla japonica) is an important freshwater aquacultural fish in Taiwan; thus, it is important to know the accumulation and elimination of cadmium in the Japanese eel due to cadmium-polluted water at various temperatures in order to protect eel resources as well as human health. 18 refs., 3 figs., 1 tab.

  1. Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications.

    Science.gov (United States)

    Melgar, M Julia; Alonso, Julián; García, M Angeles

    2016-02-01

    Mushrooms do not constitute a significant portion of the human diet, but the consumption of wild and cultivated mushrooms has become increasingly in recent years. Some species accumulate high levels of toxic metals, both in unpolluted and polluted areas. In this study, we examined the accumulation capacity of cadmium in edible mushrooms in relation to certain factors and their possible toxicological implications. Cadmium concentrations were determined by an ICP-MS spectrometer in 238 samples of the fruiting bodies of 28 wild and cultivated growing edible mushrooms species and the underlying soil. The hymenophore (H) and the rest of the fruiting body (RFB) were analysed separately. The highest mean cadmium concentration (mg/kg dry weight) was found in Agaricus macrosporus (52.9 in H and 28.3 in RFB). All mushroom species accumulated cadmium in relation to the underlying soils. There were statistically significant differences between the hymenophore and the rest of the fruiting body (p mushrooms is not a toxicological risk as far as cadmium content is concerned, although the species A. macrosporus should not be consumed.

  2. Zone refining of cadmium and related characterization

    Indian Academy of Sciences (India)

    N R Munirathnam; D S Prasad; Ch Sudheer; J V Rao; T L Prakash

    2005-06-01

    We present the zone refining results of cadmium using horizontal resistive zone refiner under constant flow of moisture free hydrogen gas. The boron impurity in cadmium can be avoided using quartz (GE 214 grade) boat in lieu of high pure graphite boat. The analytical results using inductively coupled plasma optical emission spectrometry (ICPOES) show that majority of the impurities are less than the detection limits. Comparatively, zinc is the most difficult impurity element to remove in cadmium matrix by zone refining.

  3. Presenilin 1/gamma-secretase is associated with cadmium-induced E-cadherin cleavage and COX-2 gene expression in T47D breast cancer cells.

    Science.gov (United States)

    Park, Chang Seok; Kim, Ohn Soon; Yun, Sang-Moon; Jo, Sangmee A; Jo, Inho; Koh, Young Ho

    2008-12-01

    Cadmium is a heavy metal that has multiple toxic effects on human health and has been classified as a human carcinogen. E-cadherin is a major target of cadmium; however, the roles of E-cadherin and cadmium and the mechanisms of tumor progression remain to be defined. Here, we demonstrate that cadmium increases E-cadherin processing via a gamma-secretase in the T47D breast cancer cell lines. This presenilin 1 (PS1)/gamma-secretase-dependent cleavage of E-cadherin was accompanied by changes in reactive oxygen species or calcium. E-cadherin cleavage was blocked by a PS1 dominant-negative mutant, gamma-secretase inhibitors [N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) and L-685,486], antioxidants (N-acetylcysteine and Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride), or a calcium chelating drug 1,2-bis(o-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester. Immunofluorescence analysis confirmed the disappearance of E-cadherin staining at the cell surface. Those inhibitors attenuated cadmium-induced cytotoxicity. Additionally, cadmium treatment increased cell motility and invasion ability, which was abated by DAPT. Interestingly, cyclooxygenase-2 (COX-2) expression induced by cadmium was also inhibited by DAPT. The cadmium-induced cell motility and invasion ability were inhibited by a COX-2 inhibitor, NS398. Our data indicate a novel molecular mechanism that links cytotoxicity of cadmium and disrupted E-cadherin processing to adherens junctions; cadmium induces COX-2 expression via gamma-secretase, which increases cell motility and invasion ability. Understanding the downstream signaling cascades of cadmium that promote tumor progression might be a key to the development of novel therapeutic strategies.

  4. Isobolographic analysis of the interaction between cadmium (II) and sodium sulphate: toxicological consequences.

    Science.gov (United States)

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2016-02-01

    Sulphate is an essential nutrient for autotrophic organisms and has been shown to have important implications in certain processes of tolerance to cadmium toxicity. Sodium sulphate is the main salt of sulphate in the natural environments. The concentration of this salt is increasing in the aquatic environments due to environmental pollution. The aim of this study was to investigate, using an analysis of isobolograms, the type and the degree of the interaction between Cd(II) and sodium sulphate in the freshwater microalga Chlamydomonas moewusii. Two blocks of experiments were performed, one at sub-optimal sodium sulphate concentrations (14.2 mg/L). Three fixed ratios (2:1, 1:1, and 1:2) of the individual EC50 for cadmium and sodium sulphate were used within each block. The isobolographic analysis of interaction at sub-optimal concentrations showed a stronger antagonistic effect with values of interaction index (γ) between 1.46 and 3.4. However, the isobologram with sodium sulphate at supra-optimal concentrations revealed a slight but significant synergistic effect between both chemicals with an interaction index between 0.54 and 0.64. This synergic effect resulted in the potentiation of the toxic effects of cadmium, synergy that was related to the increase of the ionic strength and of two species of cadmium, CdSO4 (aq), and Cd(SO4)2(2-) , in the medium. Results of the current study suggest that sodium sulphate is able to perform a dual antagonist/synergist effect on cadmium toxicity. This role was concentration dependent.

  5. Cadmium and lead contents in drinking milk from selected regions of Poland

    Directory of Open Access Journals (Sweden)

    Renata Pietrzak-Fiećko

    2013-09-01

    Full Text Available Background. Cadmium and lead are classified as toxic metals. Toxicity is attributed to the adverse effect on the human body, and therefore the content of these elements is analyzed in the environment and in food products. Studies conducted by many researchers indicate that more of cadmium and lead accumulate in products of plant origin, however, food products of animal origin are also not free from these compounds. The aim of this study was to determine the content of cadmium and lead in drinking milk originating from four selected milk producers from two different regions. Methods. A total of 28 milk samples were tested. The tested material was mineralized dry. To determine the content of the analyzed elements the Flame Atomic Absorption Spectrometry method was used. There were no significant differences in the content of heavy metals in the analyzed samples of milk. Results. None of the samples revealed the exceedance of the highest permissible level of these elements. Conclusions. Cadmium and lead content in tested drinking milk does not pose a threat to human health

  6. Is oxidative stress related to cadmium accumulation in the Mollusc Crassostrea angulata?

    Energy Technology Data Exchange (ETDEWEB)

    Macías-Mayorga, Dayanara, E-mail: dayanara.macias@uleam.edu.ec [Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain); Departamento Central De Investigación (DCI), Universidad Laica Eloy Alfaro de Manabí, Vía San Mateo, Manta (Ecuador); Laiz, Irene [Departamento de Física Aplicada, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain); Moreno-Garrido, Ignacio; Blasco, Julián [Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, S/N, 11510 Puerto Real, Cádiz (Spain)

    2015-04-15

    Highlights: • The cadmium accumulation in C. angulata tended toward a stationary state. • Metallothionein-like protein (MTLP) is clearly induced by Cd accumulation. • The MTLP detoxification mechanism is affected at high Cd concentrations. • Cadmium toxicity causes GSH levels to decrease and inhibits antioxidant enzymes. - Abstract: The kinetics of cadmium (Cd) accumulation in the gills and digestive gland of Crassotrea angulata at three concentrations of cadmium (0.088 μM, 0.44 μM and 2.22 μM) was monitored for 28 days. The relationship between accumulation and toxicity was studied using metallothionein-like protein (MTLP) concentration and reduced glutathione levels (GSH) as biochemical endpoints. The activity of enzymes which form part of the antioxidant defense system, in particular glutathione reductase (GR), total glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), as enzymatic endpoints, was also assessed. A first order kinetic model demonstrated that the accumulation process does not take place linearly, as the Cd concentration in gills and digestive gland tended toward a stationary state. Metallothionein-like protein is clearly induced by Cd accumulation; however, at high Cd concentrations the detoxification mechanism of this protein is affected. High Cd concentrations (2.22 μM) lead to a decrease in GSH levels, and also inhibit antioxidant enzyme activities, demonstrating the adverse effect of this metal on the antioxidant balance system.

  7. Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast cancer cells.

    Science.gov (United States)

    Mandal, Gopa; Darragh, Molly; Wang, Y Andrew; Heyes, Colin D

    2013-01-21

    We report cadmium-free, biocompatible (Zn)CuInS(2) quantum dots with long fluorescence lifetimes as superior bioimaging probes using time-gated detection to suppress cell autofluorescence and improve the signal : background ratio by an order of magnitude. These results will be important for developing non-toxic fluorescence imaging probes for ultrasensitive biomedical diagnostics.

  8. Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients

    OpenAIRE

    H. I. Afridi; Kazi, T G; Kazi, N G; Jamali, M K; Arain, M B; Sirajuddin,; Baig, J. A.; Kandhro, G A; Wadhwa, S K; Shah, A Q

    2009-01-01

    The objective of this study was to evaluate the association between trace and toxic elements zinc (Zn), cadmium (Cd), nickel (Ni) and lead (Pb) in biological samples (scalp hair, blood and urine) of smoker and nonsmoker hypertensive patients (n=457), residents of Hyderabad, Pakistan. For the purpose of comparison, the biological samples of age-matched healthy controls were selected as referents. The concentrations of trace and toxic elements were measured by atomic absorption spectrophotomete...

  9. Remote sensing applications in evaluation of cadmium pollution effects

    Science.gov (United States)

    Kozma-Bognar, Veronika; Martin, Gizella; Berke, Jozsef

    2013-04-01

    According to the 21st century developments in information technology the remote sensing applications open new perspectives to the data collection of our environment. Using the images in different spectral bands we get more reliable and accurate information about the condition, process and phenomena of the earth surface compared to the traditional aircraft image technologies (RGB images). The effects of particulate pollution originated from road traffic were analysed by the research team of Department of Meteorology and Water Management (University of Pannonia, Georgikon Faculty) with the application of visible, near infrared and thermal infrared remote sensing aircraft images. In the scope of our research was to detect and monitor the effects of heavy metal contamination in plant-atmosphere system under field experiments. The testing area was situated at Agro-meteorological Research Station in Keszthely (Hungary), where maize crops were polluted once a week (0,5 M concentration) by cadmium. In our study we simulated the effects of cadmium pollution because this element is one of the most common toxic heavy metals in our environment. During two growing seasons (2011, 2012) time-series analyses were carried out based on the remote sensing data and parallel collected variables of field measurement. In each phenological phases of plant we took aerial images, in order to follow the changes of the structure and intensity values of plots images. The spatial resolution of these images were under 10x10 cm, which allowed to use a plot-level evaluation. The structural and intensity based measurement evaluation methods were applied to examine cadmium polluted and control maize canopy after data pre-processing. Research activities also focused on the examination of the influence of the irrigation and the comparison of aerial and terrain parameters. As conclusion, it could be determined the quantification of cadmium pollution effects is possible on maize plants by using remote

  10. Cross-reactivity of Sydney funnel-web spider antivenom: neutralization of the in vitro toxicity of other Australian funnel-web (Atrax and Hadronyche) spider venoms.

    Science.gov (United States)

    Graudins, A; Wilson, D; Alewood, P F; Broady, K W; Nicholson, G M

    2002-03-01

    Australian funnel-web spiders are recognized as one of the most venomous spiders to humans world-wide. Funnel-web spider antivenom (FWS AV) reverses clinical effects of envenomation from the bite of Atrax robustus and a small number of related Hadronyche species. This study assessed the in vitro efficacy of FWS AV in neutralization of the effects of funnel-web spider venoms, collected from various locations along the eastern seaboard of Australia, in an isolated chick biventer cervicis nerve-muscle preparation. Venoms were separated by SDS-PAGE electrophoresis to compare protein composition and transblotted for Western blotting and incubation with FWS AV.SDS-PAGE of venoms revealed similar low and high molecular weight protein bands. Western blotting with FWS AV showed similar antivenom binding with protein bands in all the venoms tested. Male funnel-web spider venoms (7/7) and female venoms (5/10) produced muscle contracture and fasciculation when applied to the nerve-muscle preparation. Venom effects were reversed by subsequent application of FWS AV or prevented by pretreatment of the preparation with antivenom.FWS AV appears to reverse the in vitro toxicity of a number of funnel-web spider venoms from the eastern seaboard of Australia. FWS AV should be effective in the treatment of envenomation from most, if not all, species of Australian funnel-web spiders.

  11. Distribution of blood lead, blood cadmium, urinary cadmium, and urinary arsenic levels in employees of a copper smelter

    Energy Technology Data Exchange (ETDEWEB)

    Lilis, R.; Valciukas, J.A.; Weber, J.P.; Fischbein, A.; Nicholson, W.J.; Campbell, C.; Malkin, J.; Selikoff, I.J.

    1984-02-01

    A cross-sectional medical examination of a copper smelter work force included determination of blood lead (Pb-B), zinc protoporphyrin (ZPP), blood cadmium (Cd-B), urinary cadmium (Cd-U), and urinary arsenic (As-U), since it was known that such metal impurities were present in the copper concentrate. A total of 776 copper smelter employees (680 active and 96 retirees and ex-employees) were examined. Another 144 men, never employed in the smelter, but who had worked in copper mines (and sometimes in gold mines) were also examined. Mean Pb-B, ZPP, Cd-B, and As-U were significantly higher in active copper smelter employees than in retirees or miners, indicating exposure and absorption in the copper smelter. Significant correlations between Pb-B and Cd-B, and Cd-U and As-U were present, confirming the common source of absorption. Although there was evidence for an increased lead absorption, this was very moderate, with practically no Pb-B levels in excess of 60 ..mu..g/dl. A marked effect of smoking on blood cadmium levels was present; nevertheless, for all smoking categories Cd-B levels were significantly higher in active employees, indicating the independent contribution of exposure to cadmium in the smelter. Cd-U did not exceed 10 ..mu..g/g creatinine, the generally accepted critical level for the kidney, but was higher than 2 ..mu..g/g cretinine, a level very rarely exceeded in the general population, in a sizable proportion of those examined. The highest Cd-U levels were found in retired copper smelter employees; age might have been a contributing factor, besides a longer duration of exposure in the smelter.

  12. Cadmium-regulated gene fusions in Pseudomonas fluorescens.

    Science.gov (United States)

    Rossbach, S; Kukuk, M L; Wilson, T L; Feng, S F; Pearson, M M; Fisher, M A

    2000-08-01

    To study the mechanisms soil bacteria use to cope with elevated concentrations of heavy metals in the environment, a mutagenesis with the lacZ-based reporter gene transposon Tn5B20 was performed. Random gene fusions in the genome of the common soil bacterium Pseudomonas fluorescens strain ATCC 13525 were used to create a bank of 5,000 P. fluorescens mutants. This mutant bank was screened for differential gene expression in the presence of the toxic metal cadmium. Fourteen mutants were identified that responded with increased or reduced gene expression to the presence of cadmium. The mutants were characterized with respect to their metal-dependent gene expression and their metal tolerance. Half the identified mutants reacted with differential gene expression specifically to the metal cadmium, whereas some of the other mutants also responded to elevated concentrations of copper and zinc ions. One of the mutants, strain C8, also showed increased gene expression in the presence of the solvent ethanol, but otherwise no overlap between cadmium-induced gene expression and general stress response was detected. Molecular analysis of the corresponding genetic loci was performed using arbitrary polymerase chain reaction (PCR), DNA sequencing and comparison of the deduced protein products with sequences deposited in genetic databases. Some of the genetic loci targeted by the transposon did not show any similarities to any known genes; thus, they may represent 'novel' loci. The hypothesis that genes that are differentially expressed in the presence of heavy metals play a role in metal tolerance was verified for one of the mutants. This mutant, strain C11, was hypersensitive to cadmium and zinc ions. In mutant C11, the transposon had inserted into a genetic region displaying similarity to genes encoding the sensor/regulator protein pairs of two-component systems that regulate gene expression in metal-resistant bacteria, including czcRS of Ralstonia eutropha, czrRS of Pseudomonas

  13. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots.

    Science.gov (United States)

    Li, Le; Wang, Yanqin; Shen, Wenbiao

    2012-06-01

    Despite hydrogen sulfide (H(2)S) and nitric oxide (NO) are important endogenous signals or bioregulators involved in many vital aspects of plant growth and responses against abiotic stresses, little information was known about their interaction. In the present study, we evaluated the effects of H(2)S and NO on alfalfa (Medicago sativa L.) plants exposed to cadmium (Cd) stress. Pretreatment with an H(2)S donor sodium hydrosulfide (NaHS) and well-known NO donor sodium nitroprusside (SNP) decreased the Cd toxicity. This conclusion was supported by the decreases of lipid peroxidation as well as the amelioration of seedling growth inhibition and Cd accumulation, in comparison with the Cd-stressed alone plants. Total activities and corresponding transcripts of antioxidant enzymes, including superoxide dismutase, peroxidase and ascorbate peroxidase were modulated differentially, thus leading to the alleviation of oxidative damage. Effects of H(2)S above were reversed by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the specific scavenger of NO. By using laser confocal scanning microscope combined with Greiss reagent method, further results showed that NO production increased significantly after the NaHS pretreatment regardless of whether Cd was applied or not, all of which were obviously inhibited by cPTIO. These decreases of NO production were consistent with the exaggerated syndromes associated with Cd toxicity. Together, above results suggested that NO was involved in the NaHS-induced alleviation of Cd toxicity in alfalfa seedlings, and also indicated that there exists a cross-talk between H(2)S and NO responsible for the increased abiotic stress tolerance.

  14. Cadmium exposure and cardiovascular disease in the 2005 Korea National Health and Nutrition Examination Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mi-Sun [Department of Environmental Health, Harvard School of Public Health, Boston, MA (United States); Park, Sung Kyun; Hu, Howard [Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI (United States); Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI (United States); Lee, Sundong, E-mail: sdlee@sangji.ac.kr [Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI (United States); Department of Preventive Medicine, School of Oriental Medicine, Sangji University, Wonju, Kangwon (Korea, Republic of)

    2011-01-15

    Background: Limited epidemiologic data are available concerning the cardiovascular effects of cadmium exposure, although recent studies suggest associations with myocardial infarction and peripheral arterial disease. We examined the associations of cadmium exposure with cardiovascular disease in nationally representative general Korean adults. Methods: We used cross-sectional data on blood cadmium and self-reported diagnoses of ischemic heart disease (IHD), stroke, and hypertension in a sub-sample of 1908 adults, aged 20 years and older, who participated in the 2005 Korea National Health and Nutrition Examination Survey (KNHANES). We used survey logistic regression models accounting for the complex sampling design to estimate the odds ratios (OR), adjusting for age, education, income, alcohol, smoking, body mass index, waist circumference, family history of hypertension, blood pressure, and blood lead. Results: The geometric mean of blood cadmium was 1.53 {mu}g/L. After adjusting for potential confounders, an interquartile range (IQR) increase in blood cadmium (0.91 {mu}g/L) was found to be associated with an increased risk for IHD (OR 2.1, 95% confidence interval (CI) 1.3-3.4). An IQR increase in blood cadmium was found to be associated with an elevated risk for hypertension only among men (OR 1.4, 95% CI 1.1-1.8) but not among women. No association was observed with stroke in both genders. Conclusions: These findings suggest that cadmium in blood may be associated with an increased risk for IHD and hypertension in the general Korean adult population.

  15. Tissue-specific accumulation of cadmium in subcellular compartments of eastern oysters Crassostrea virginica Gmelin (Bivalvia: Ostreidae)

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, I.M. [Biology Department, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)]. E-mail: insokolo@uncc.edu; Ringwood, A.H. [Biology Department, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Johnson, C. [Johnson C. Smith University, 100 Beatties Ford Road, Charlotte, NC 28216 (United States)

    2005-09-10

    Cadmium distribution was studied in different subcellular fractions of gill and hepatopancreas tissues of eastern oysters Crassostrea virginica. Oysters were exposed for up to 21 days to low sublethal Cd concentrations (25 {mu}g L{sup -1}). Gill and hepatopancreas tissues were sampled and divided into organelle fractions and cytosol by differential centrifugation. Organelle content of different fractions was verified by activities of marker enzymes, citrate synthase and acid phosphatase for mitochondria and lysosomes, respectively. In both tissue types, there was a significant accumulation of cadmium in cytosol reaching 230-350 ng mg{sup -1} protein. Among organelles, mitochondria were the main target for Cd bioaccumulation in gills (250-300 ng mg{sup -1} protein), whereas in hepatopancreas tissues, the highest cadmium accumulation occurred in lysosomes (90-94 ng mg{sup -1} protein). Although 75-83% of total cadmium burden was associated with the cytosol reflecting high volume fraction of this compartment, Cd concentrations in organelle fractions reached levels that could cause dysfunction of mitochondria and lysosomes. Organ- and organelle-specific patterns of cadmium bioaccumulation support our previous in vivo studies, which showed adverse effects of cadmium exposures on mitochondrial oxidation in gills and on the lysosomal system of hepatopancreas. This may have important implications for the development of biomarkers of effect for heavy metals and for understanding the mechanisms of toxic effects of metals.

  16. Determination of airborne cadmium in environmental tobacco smoke by instrumental neutron activation analysis with a compton suppression system.

    Science.gov (United States)

    Landsberger, S; Larson, S; Wu, D

    1993-06-01

    Concentrations of cadmium, a toxic trace element, were measured in the indoor air of several public places where environmental tobacco smoke was present. Particulate-phase cadmium concentrations were determined by analyzing air filter samples using epithermal instrumental neutron activation analysis in conjunction with a Compton suppression gamma-ray detection system, in which the detection limit for cadmium was reduced to a few nanograms per filter. A cascade impactor and a personal filter sampler were used to collect the indoor suspended particulate matter for size-fractionated mass as well as total mass, respectively. Results show that where environmental tobacco smoke is present, cadmium concentrations are significantly higher than background and that about 80% of the cadmium found in indoor airborne particulate matter is associated with particles with aerodynamic diameters less than 1.8 microns. In one instance, airborne cadmium concentrations in a music club were found to be 38 ng/m, which is at least 30 times higher than background.

  17. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    Science.gov (United States)

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid acid appears to offer a greater potential as a washing agent in remediating the sludge samples.

  18. Multiple effects of cadmium on the photosynthetic apparatus of Avicennia germinans L. as probed by OJIP chlorophyll fluorescence measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Mendoza, D.; Zapata-Perez, O. [Cinvestav Unidad Merida, Yucatan (Mexico). Dept. de Recursos del Mar; Espadas y Gil, F.; Santamaria, J.M. [Unidad de Biotecnologia, CICY, Yucatan (Mexico)

    2007-03-15

    The toxic effects of cadmium on the photosynthetic apparatus of Avicennia germinans were evaluated by means of the chlorophyll fluorescence transient O-J-I-P. The chlorophyll fluorescence transients were recorded in vivo with high time resolution and analyzed according to the OJIP-test that can quantify the performance of photosystem II. Cadmium-treated plants showed a decrease in yield for primary photochemistry, TR{sup 0}/ABS. The performance index of photosystem II (PSII), PI{sub ABS}, decreased due to cadmium treatment. This performance index is the combination of the indexes of three independent parameters: (1) total number of active reaction centers per absorption (RC/ABS), (2) yield of primary photochemistry (TR{sup 0}/ABS), and (3) efficiency with which a trapped exciton can move an electron into the electron transport chain (ET{sup 0}/TR{sup 0}). Additionally, the F{sub 0}/F{sub v} registered the highest sensitivity to the metal, thus indicating that the water-splitting apparatus of the oxidizing side of PSII is the primary site of action of cadmium. In summary, cadmium affects several targets of photosystem II. More specifically the main targets of cadmium, according to the OJIP-test, can be listed as a decrease in the number of active reaction centers and damage to the activity of the water-splitting complex. (orig.)

  19. Electrodialytic Removal of Cadmium from Straw Ash

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne;

    1999-01-01

    A problem with flyash from straw and wood combustion is the high level of heavy metals, especially cadmium. Two electrodialytic remediation experiments were carried out on cadmium polluted flyash from straw combustion. The flyash could be cleaned to 1/3 of its initial level after 24 days...

  20. Cadmium and children : Exposure and health effects

    NARCIS (Netherlands)

    Schoeters, G.; Hond, E. Den; Zuurbier, M.; Naginiene, R.; Hazel, P.J. van den; Stilianakis, N.; Ronchetti, R.; Koppe, J.G.

    2006-01-01

    Cadmium exposure and accumulation in the body start at young age. Exposure routes in children are mainly via food, environmental tobacco smoke and house dust. Excretion from the body is limited. Cadmium accumulation in the kidney is responsible for effects such as nephrotoxicity and osteoporosis whi

  1. Cadmium and children: exposure and health effects.

    Science.gov (United States)

    Schoeters, Greet; Den Hond, Elly; Zuurbier, Moniek; Naginiene, Rima; van den Hazel, Peter; Stilianakis, Nikolaos; Ronchetti, Roberto; Koppe, Janna G

    2006-10-01

    Cadmium exposure and accumulation in the body start at young age. Exposure routes in children are mainly via food, environmental tobacco smoke and house dust. Excretion from the body is limited. Cadmium accumulation in the kidney is responsible for effects such as nephrotoxicity and osteoporosis which are observed at adult age. Cadmium exposure through inhalation is also associated with lung cancer in adulthood. Although transfer to the neonate through the placenta and through breast milk is limited, teratogenic and developmental effects were observed in experimental animals. The database on human studies involving children is limited, yet effects on motoric and perceptual behaviour in children have been associated with elevated in utero cadmium exposure. In school age children urinary cadmium levels were associated with immune suppressive effects. More studies are needed to confirm these results. Experimental data in vitro and in animals refer to effects of cadmium on the hypothalamus-pituitary axis at different levels. This may lead to disorders of the endocrine and/or immune system. Cadmium exposure at early age should be limited as much as possible to prevent direct effects on children and to prevent accumulation of cadmium which may have serious health effects only becoming manifest at older age.

  2. Cadmium-induced Functional and Ultrastructural Alterations in Roots of Two Transgenic Cotton Cultivars

    Institute of Scientific and Technical Information of China (English)

    DAUD M K; SUN Yu-qiang; ZHU Shui-jin

    2008-01-01

    @@ The toxic effect of cadmium (Cd) at increasing concentrations has been studied with special attention being given to root morphological and ultrastructural changes in two transgenic cotton cultivars viz.BR001 and GK30 and their wild relative cotton genotype viz.Coker 312.In comparison to their respective controls,low concentration (10 and 100 M) of Cd greatly stimulated seed germination,while it was inhibited by highest concentration of Cd (1000 M) in case of two transgenic cultivars.

  3. Decrease of Cadmium Accumulation in Crops by Zero-valent Iron

    OpenAIRE

    Watanabe, Toshihiro; Nakamura, Takashi; Murata, Yasutoshi; Sakai, Yuki; Osaki, Mitsuru

    2009-01-01

    Cadmium (Cd) contamination in soils is a serious problem for crop production in the world. Zero-valent iron (Fe(0)) is a reactive material with reducing power capable of stabilizing toxic elements, including heavy metals and metalloids, in a solution. In the present study, we examined the effect of Fe(0) application on Cd accumulation in rice (Oryza sativa L. cv. Kirara 397) and spinach (Pinacia oleracea L.) plants growing in Cd-contaminated soils under paddy and upland conditions, respective...

  4. Tungsten toxicity.

    Science.gov (United States)

    Witten, Mark L; Sheppard, Paul R; Witten, Brandon L

    2012-04-05

    There is emerging evidence that tungsten has toxic health effects. We summarize the recent tungsten toxicity research in this short review. Tungsten is widely used in many commercial and military applications because it has the second highest melting temperature of any element. Consequently, it is important to elucidate the potential health effects of tungsten.

  5. Immunoassay for Cadmium Detection and Quantification

    Institute of Scientific and Technical Information of China (English)

    GONG-LIANG LIU; JU-FANG WANG; ZHI-YONG LI; SHI-ZHONG LIANG; XIAO-NING WANG

    2009-01-01

    Objective To detect cadmium in environmental and food samples by graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma atomic emission spectroscopy (ICPAES). Methods An indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) was developed based on a cadmium-specific monoclonal antibody.IC-ELISA for cadmium in environmental and food samples was evaluated. Results IC-ELISA showed an IC50 of 45.6 μg/L with a detection limit of 1.95 μg/L for cadmium,and showed a mean recovery ranging 97.67%-107.08%.The coefficient of variations for intra- and iuterassay was 3.41%-6.61% and 4.70%-9.21%,respectively.The correlation coefficient between IC-ELISA and GFAAS was 0.998. Conclusion IC-ELISA can detect and quantify cadmium residue in environmental or food samples.

  6. Cadmium a metalloestrogen: are we convinced?

    Science.gov (United States)

    Silva, Nalinda; Peiris-John, Roshini; Wickremasinghe, Rajitha; Senanayake, Hemantha; Sathiakumar, Nalini

    2012-05-01

    Metalloestrogens are inorganic metal ions that bind to and activate oestrogen receptors. They are implicated in the aetiology of oestrogen-dependent diseases such as cancers of the breast and endometrium as well as endometriosis. Cadmium is one of the most studied metalloestrogens. In this review, scientific evidence for the oestrogenic effects of cadmium is critically evaluated to determine if there is sufficient evidence to support cadmium as an aetiological factor of oestrogen-dependent disease in humans. Results of the review indicated that, although the in vitro and in vivo evidence of the oestrogenic properties of cadmium was persuasive, evidence from population-based human studies remains conflicting. Considerable knowledge gaps exist on the potential oestrogenic effect of cadmium in humans. Research that focuses on bridging these knowledge gaps would be useful in preventing and managing oestrogen-dependent disease in humans.

  7. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Besser, J.M.; Ingersoll, C.G. [Geological Survey, Columbia, MO (United States); Leonard, E.N.; Mount, D.R. [Environmental Protection Agency, Duluth, MN (United States). Mid-Continent Ecology Div.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  8. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  9. Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin.

    Science.gov (United States)

    Lomonte, Bruno; Sasa, Mahmood; Rey-Suárez, Paola; Bryan, Wendy; Gutiérrez, José María

    2016-05-05

    Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on its venom could be found in the literature. Using a 'venomics' approach, proteins of at least nine families were identified, with a moderate predominance of three-finger toxins (3FTx; 48.2%) over phospholipase A₂ (PLA₂; 36.5%). Comparison of this venom profile with those of other Micrurus species suggests that it may represent a more balanced, 'intermediate' type within the dichotomy between 3FTx- and PLA₂-predominant venoms. M. clarki venom was strongly cross-recognized and, accordingly, efficiently neutralized by an equine therapeutic antivenom against M. nigrocinctus, revealing their high antigenic similarity. Lethal activity for mice could be reproduced by a PLA₂ venom fraction, but, unexpectedly, not by fractions corresponding to 3FTxs. The most abundant venom component, hereby named clarkitoxin-I, was identified as a short-chain (type I) 3FTx, devoid of lethal effect in mice, whose target remains to be defined. Its amino acid sequence of 66 residues shows high similarity with predicted sequences of venom gland transcripts described for M. fulvius, M. browni, and M. diastema.

  10. Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin

    Directory of Open Access Journals (Sweden)

    Bruno Lomonte

    2016-05-01

    Full Text Available Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on its venom could be found in the literature. Using a ‘venomics’ approach, proteins of at least nine families were identified, with a moderate predominance of three-finger toxins (3FTx; 48.2% over phospholipase A2 (PLA2; 36.5%. Comparison of this venom profile with those of other Micrurus species suggests that it may represent a more balanced, ‘intermediate’ type within the dichotomy between 3FTx- and PLA2-predominant venoms. M. clarki venom was strongly cross-recognized and, accordingly, efficiently neutralized by an equine therapeutic antivenom against M. nigrocinctus, revealing their high antigenic similarity. Lethal activity for mice could be reproduced by a PLA2 venom fraction, but, unexpectedly, not by fractions corresponding to 3FTxs. The most abundant venom component, hereby named clarkitoxin-I, was identified as a short-chain (type I 3FTx, devoid of lethal effect in mice, whose target remains to be defined. Its amino acid sequence of 66 residues shows high similarity with predicted sequences of venom gland transcripts described for M. fulvius, M. browni, and M. diastema.

  11. Toxicity and uptake of heavy metals by human spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Battersby, S.; Chandler, J.A.; Morton, M.S.

    1982-02-01

    The effects of metallic copper on human spermatozoa are described. Incubation with the metal caused a fall on the percentage of motile sperm, which was directly related to the surface area of copper employed and to the copper content of whole semen. These changes were accompanied by a decrease in semen zinc levels and an uptake of copper by individual sperm cells, as determined by X-ray microanalysis. Low concentrations of ionic copper caused a less marked fall in sperm motility, although the metal was generally more toxic than zinc or cadmium ions. All three metals were accumulated by spermatozoa on incubation, with cadmium causing a decrease in sperm nuclear zinc concentrations.

  12. Cadmium mobility and accumulation in soils of the European Communities

    NARCIS (Netherlands)

    Fraters B; van Beurden AUCJ

    1993-01-01

    In this overview of the effects of cadmium pollution on agricultural soils in the European Community, both the cadmium loads on agricultural land and the soil sensitivity to cadmium accumulation have been estimated. Cadmium loads have been estimated separately for arable land and grassland. The ef

  13. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.

    Science.gov (United States)

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Diab, Marwa M S; Othman, Mohamed S; Aref, Ahmed M; Abdel Moneim, Ahmed E

    2014-12-01

    This study aimed to investigate the potential protective role of Physalis peruviana L. (family Solanaceae) against cadmium-induced hepatorenal toxicity in Wistar rats. Herein, cadmium chloride (CdCl2) (6.5 mg/kg bwt/day) was intraperitoneally injected for 5 days, and methanolic extract of physalis (MEPh) was pre-administered to a group of Cd-treated rats by an oral administration at a daily dose of 200 mg/kg bwt for 5 days. The findings revealed that CdCl2 injection induced significant decreases in kidney weight and kidney index. Cadmium intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of uric acid, urea and creatinine were increased in the serum. The pre-administration of MEPh alleviated hepatorenal toxicity in Cd-treated rats. Physalis was noted to play a good hepatorenal protective role, reducing lipid peroxidation, nitric oxide, and enhancing enzymatic activities and non-enzymatic antioxidant molecule, glutathione, in hepatic and renal tissues of Cd-treated rats. Moreover, physalis treatment was able to reverse the histopathological changes in liver and kidney tissues and also increased the expression of Bcl-2 protein in liver and kidney of rats. Overall, the results showed that MEPh can induce antioxidant and anti-apoptotic effects and also exerts beneficial effects for the treatment of Cd-induced hepatorenal toxicity.

  14. Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: A five-year follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Swaddiwudhipong, Witaya, E-mail: swaddi@hotmail.com [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Limpatanachote, Pisit [Department of Internal Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Mahasakpan, Pranee [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Krintratun, Somyot [Department of Internal Medicine, Mae Sot General Hospital, Tak 63110 (Thailand); Punta, Boonyarat; Funkhiew, Thippawan [Department of Community and Social Medicine, Mae Sot General Hospital, Tak 63110 (Thailand)

    2012-01-15

    Food-borne cadmium was the principal source of exposure for persons living in the 12 cadmium-contaminated villages in Mae Sot District, Tak Province, northwestern Thailand. This report presents progress in cadmium-related health effects among persons with high cadmium exposure. The study included 436 persons who had urinary cadmium levels {>=}5 {mu}g/g creatinine and were screened for urinary cadmium, renal function, hypertension, diabetes and urinary stones in 2005 (baseline) and 2010 (5-year follow-up). Study renal biomarkers included urinary excretion of {beta}{sub 2}-microglobulin ({beta}{sub 2}-MG), total protein and calcium, serum creatinine and glomerular filtration rate (GFR). The geometric mean level of urinary cadmium statistically significantly reduced from 9.5{+-}1.6 {mu}g/g creatinine in 2005 to 8.8{+-}1.6 {mu}g/g creatinine in 2010. Compared to baseline, the follow-up examination revealed significant increases in urinary {beta}{sub 2}-MG (tubular effect), urinary total protein and serum creatinine, and a decrease in GFR (glomerular effects). Progressive renal dysfunctions were similarly observed in persons both with and without reduction in cadmium intake. Significant increases in prevalence of hypertension, diabetes and urinary stones were also detected at follow-up. These three disorders were found to markedly impair renal functions in the study persons. Our study indicates that in persons with prolonged excessive cadmium exposure, toxic health effects may progress even after exposure reduction. Renal damage from cadmium can be due to its direct nephrotoxic effect and also through the related disorders causing nephropathy.

  15. Sealed nickel-cadmium battery

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-15

    Overcharge protection, and especially the chargeability of a sealed Ni/Cd battery with high currents is improved by rolling a carbon-containing powdered material into the surface of the negative electrode, which material catalyzes the reduction of oxygen. Wetting of the electrode with a Tylose dispersion prior to application of the powder (by powdering, vibration or in an agitator) improves the adhesion of the powder. The cadmium electrode thus prepared combines in itself the functions of a negative principal electrode and of an auxiliary oxygen electrode.

  16. Vanadium and cadmium in vivo effects in teleost cardiac muscle: metal accumulation and oxidative stress markers.

    Science.gov (United States)

    Soares, S S; Martins, H; Gutiérrez-Merino, C; Aureliano, M

    2008-03-01

    Several biological studies associate vanadium and cadmium with the production of reactive oxygen species (ROS), leading to lipid peroxidation and antioxidant enzymes alterations. The present study aims to analyse and compare the oxidative stress responses induced by an acute intravenous exposure (1 and 7 days) to a sub-lethal concentration (5 mM) of two vanadium solutions, containing different vanadate n-oligomers (n=1-5 or n=10), and a cadmium solution on the cardiac muscle of the marine teleost Halobatrachus didactylus (Lusitanian toadfish). It was observed that vanadium is mainly accumulated in mitochondria (1.33+/-0.26 microM), primarily when this element was administrated as decameric vanadate, than when administrated as metavanadate (432+/-294 nM), while the highest content of cadmium was found in cytosol (365+/-231 nM). Indeed, decavanadate solution promotes stronger increases in mitochondrial antioxidant enzymes activities (catalase: +120%; superoxide dismutase: +140%) than metavanadate solution. On contrary, cadmium increases cytosolic catalase (+111%) and glutathione peroxidases (+50%) activities. It is also observed that vanadate oligomers induce in vitro prooxidant effects in toadfish heart, with stronger effects induced by metavanadate solution. In summary, vanadate and cadmium are differently accumulated in blood and cardiac subcellular fractions and induced different responses in enzymatic antioxidant defence mechanisms. In the present study, it is described for the first time the effects of equal doses of two different metals intravenously injected in the same fish species and upon the same exposure period allowing to understand the mechanisms of vanadate and cadmium toxicity in fish cardiac muscle.

  17. Uptake of Cadmium, Lead and Arsenic by Tenebrio molitor and Hermetia illucens from Contaminated Substrates

    Science.gov (United States)

    van der Fels-Klerx, H. J.; Camenzuli, L.; van der Lee, M. K.; Oonincx, D. G. A. B.

    2016-01-01

    Insects have potential as a novel source of protein in feed and food production in Europe, provided they can be used safely. To date, limited information is available on the safety of insects, and toxic elements are one of the potential hazards of concern. Therefore, we aimed to investigate the potential accumulation of cadmium, lead and arsenic in larvae of two insect species, Tenebrio molitor (yellow mealworm) and Hermetia illucens (black soldier fly), which seem to hold potential as a source of food or feed. An experiment was designed with 14 treatments, each in triplicate, per insect species. Twelve treatments used feed that was spiked with cadmium, lead or arsenic at 0.5, 1 and 2 times the respective maximum allowable levels (ML) in complete feed, as established by the European Commission (EC). Two of the 14 treatments consisted of controls, using non-spiked feed. All insects per container (replicate) were harvested when the first larva in that container had completed its larval stage. Development time, survival rates and fresh weights were similar over all treatments, except for development time and total live weight of the half of the maximum limit treatment for cadmium of the black soldier fly. Bioaccumulation (bioaccumulation factor > 1) was seen in all treatments (including two controls) for lead and cadmium in black soldier fly larvae, and for the three arsenic treatments in the yellow mealworm larvae. In the three cadmium treatments, concentrations of cadmium in black soldier fly larvae are higher than the current EC maximum limit for feed materials. The same was seen for the 1.0 and 2.0 ML treatments of arsenic in the yellow mealworm larvae. From this study, it can be concluded that if insects are used as feed materials, the maximum limits of these elements in complete feed should be revised per insect species. PMID:27846238

  18. Effects of cadmium on hypoxia-induced expression of hemoglobin and erythropoietin in larval sheepshead minnow, Cyprinodon variegatus

    Energy Technology Data Exchange (ETDEWEB)

    Dangre, A.J.; Manning, S. [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States); Brouwer, M., E-mail: marius.brouwer@usm.edu [Department of Coastal Sciences, University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564 (United States)

    2010-08-15

    Hypoxia and toxic metals are two common stressors found in the estuarine environment. To date little information is available on the combined effects of these stressors on early larval development in fish. We investigated the effect of cadmium and hypoxia exposure alone as well in combination on larval Cyprinodon variegatus. The LC{sub 10} for cadmium was determined to be 0.3 ppm in a 96 h acute exposure. This concentration was used in all studies. Cadmium in larvae increased significantly with exposure time (1, 3, 5 and 7 days post-hatch). The increase was proportional to body weight and not affected by hypoxia. Cadmium responsive genes were identified by suppression subtractive hybridization (SSH) in Cyprinodonvariegatus larvae after exposure to cadmium for 1, 3, 5 and 7 days. We obtained over 700 sequences from the cadmium cDNA library. Blast search of ESTs suggested that cadmium modulates multiple physiological processes. Pertinent to this study, cadmium was found to down-regulate both embryonic {alpha} and {beta} globin, which are expressed in erythrocytes generated during the first, or primitive, wave of erythropoiesis in teleosts. Hemoglobin (Hb) and erythropoietin (Epo) (the hormone that promotes red blood cell production) are known hypoxia-inducible genes. To explore the possibility that cadmium might offset the hypoxia-induced expression of Hb and Epo, we investigated the expression of both genes following hypoxia, cadmium and combined exposures for 1, 3, 5 and 7 days post-hatch. Since Epo had not yet been identified in C. variegatus we first successfully cloned a partial coding sequence of the C. variegatus hormone. Subsequent studies revealed that expression levels of Hb and Epo remained unchanged in the normoxic controls during the time course of the study. Hypoxia increased Epo expression relative to normoxic controls, on days 3, 5 and 7, while cadmium in hypoxia inhibited the increase. Only the changes on days 5 and 7 were statistically significant

  19. Interactions of cadmium and zinc during pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Sorell, T.L.

    1988-01-01

    The interactions of cadmium exposure and zinc during pregnancy were investigated by studying r