WorldWideScience

Sample records for cadmium telluride solar

  1. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. (University of South Florida, Tampa, FL (United States))

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  2. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75 percent or higher at 0.44 microns and a photovoltaic efficiency of 11.5 percent or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65 percent and a photovoltaic conversion efficiency of 5 percent and 8 percent, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD(1-x)Zn(1-x)Te, and Hg(1-x)Zn(x)Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400 C using TEGa and AsH3 as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized.

  3. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    Science.gov (United States)

    Ferekides, Christos Savva

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C. The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. Their characteristics of the Cd(1-x)Zn(x)Te junctions degraded with increasing Zn concentration due to the crystalline quality and very small grain size (0.3 microns) in films with high ZnTe contents (greater than 25 percent). No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities

  4. High efficiency thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Britt, J.; Chen, G.; Ferekides, C.; Schultz, N.; Wang, C.; Wu, C. Q.

    1992-12-01

    Cadmium sulfide (CdS), grown from an aqueous solution, and zinc oxide (ZnO), cadmium zinc sulfide (Cd1-xZnxS), and zinc selenide (ZnSe), deposited by metalorganic chemical vapor deposition (MOCVD), have been used as the window for thin film cadmium telluride (CdTe) solar cells. Thin film solar cells were prepared by the successive deposition of the window and p-CdTe (by MOCVD and close-spaced sublimation, CSS) on SnO2:F/glass substrates. CdS/CdTe(CSS) solar cells show considerably better characteristics than CdS/CdTe(MOCVD) solar cells because of the better microstructure of CSS CdTe films. Total area conversion efficiency of 14.6%, verified by the National Renewable Energy Laboratory, has been achieved for solar cells of about 1 cm2 area. Solar cell prepared by using ZnO, ZnSe, or Cd1-xZnxS as window have significantly lower photovoltage than CdS/CdTe solar cells.

  5. Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact

    Science.gov (United States)

    Mount, Michael; Duarte, Fernanda; Paudel, Naba; Yan, Yanfa; Wang, Weining

    Cadmium Telluride (CdTe) solar cell is one of the most promising thin film solar cells and its highest efficiency has reached 21%. To keep improving the efficiency of CdTe solar cells, a few issues need to be addressed, one of which is the back contact. The back contact of CdTe solar cells are mostly Cu-base, and the problem with Cu-based back contact is that Cu diffuses into the grain boundary and into the CdS/CdTe junction, causing degradation problem at high temperature and under illumination. To continue improving the efficiency of CdTe/CdS solar cells, a good ohmic back contact with high work function and long term stability is needed. In this work, we report our studies on the potential of conducting polymer being used as the back contact of CdTe/CdS solar cells. Conducting polymers are good candidates because they have high work functions and high conductivities, are easy to process, and cost less, meeting all the requirements of a good ohmic back contact for CdTe. In our studies, we used poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with different conductivities and compared them with traditional Cu-based back contact. It was observed that the CdTe solar cell performance improves as the conductivity of the PEDOT:PSS increase, and the efficiency (9.1%) is approaching those with traditional Cu/Au back contact (12.5%). Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact.

  6. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  7. Thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  8. Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Zhaoyun [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Renqi; Xue, Zhaoguo; Wang, Hongyu; Xu, Jun; Yu, Yao; Su, Weining; Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2015-04-15

    Highlights: • We introduce an intermediate cadmium telluride quantum dots (CdTe QDs) layer between the organic with silicon nanowires of hybrid solar cells as a down-shifting layer. • The hybrid solar cell got the maximum short circuit current density of 33.5 mA/cm{sup 2}, getting an increase of 15.1% comparing to solar cell without CdTe QDs. • The PCE of the hybrid solar cells with CdTe QDs layer increases 28.8%. - Abstract: We fabricated silicon nanowire/cadmium telluride quantum dots (CdTe QDs)/organic hybrid solar cells and investigated their structure and electrical properties. Transmission electron microscope revealed that CdTe QDs were uniformly distributed on the surface of the silicon nanowires, which made PEDOT:PSS easily filled the space between SiNWs. The current density–voltage (J–V) characteristics of hybrid solar cells were investigated both in dark and under illumination. The result shows that the performance of the hybrid solar cells with CdTe QDs layer has an obvious improvement. The optimal short-circuit current density (J{sub sc}) of solar cells with CdTe QDs layer can reach 33.5 mA/cm{sup 2}. Compared with the solar cells without CdTe QDs, J{sub sc} has an increase of 15.1%. Power conversion efficiency of solar cells also increases by 28.8%. The enhanced performance of the hybrid solar cells with CdTe QDs layers are ascribed to down-shifting effect of CdTe QDs and the modification of the silicon nanowires surface with CdTe QDs. The result of our experiments suggests that hybrid solar cells with CdTe QDs modified are promising candidates for solar cell application.

  9. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications). Quarterly progress report No. 1, April 9-July 8, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Vedam, K.

    1979-08-01

    Preparation and properties of cadmium telluride thin films for use in solar cells are studied. CdTe sputter deposition, crystal doping, and carrier typing are discussed. Future experimental plans are described. (WHK)

  10. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. [University of South Florida, Tampa, FL (United States)

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  11. Photoluminescence Excitation Spectroscopy Characterization of Cadmium Telluride Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E.; Wang, Xufeng; Grubbs, Elizabeth K.; Drayton, Jennifer; Johnston, Steve; Levi, Dean; Lundstrom, Mark S.; Bermel, Peter

    2016-11-21

    The use of steady-state photoluminescence spectroscopy as a contactless characterization tool, suitable for inline optical characterization, has been previously demonstrated for high efficiency solar cells such as GaAs. In this paper, we demonstrate the use of PLE characterization on a thin film CdS/CdTe np heterojunction solar cell, and compare the results to measured EQE and I-V data. In contrast to previous work on high-quality GaAs, the PLE and EQE spectra do not match closely here. We still find, however, that reliable material parameters can be extracted from the PLE measurements. We also provide a physical explanation of the limits defining the cases when the PLE and EQE spectra may be expected to match.

  12. High-Rate Vapor Deposition of Cadmium Telluride Films for Solar Cells

    Science.gov (United States)

    Khan, Nasim Akhter

    1992-01-01

    High rate vapor deposition is presently used for large scale low cost deposition of thin films for packaging and other applications. The feasibility of using this technology for low cost deposition of solar cells was explored. After an exhaustive literature survey, the cadmium telluride (CdTe) solar cell was found to be most suitable candidate for high rate vapor deposition. The high rate vapor deposition was investigated by sublimation with a short distance between sublimation source and the substrate (Close-Spaced Sublimation, CSS). Cadmium telluride (CdTe) solar cells were fabricated by depositing CdTe films at different rates on cadmium sulphide (CdS) films deposited by CSS or by evaporation. The CdTe films deposited at higher deposition rates were observed to have open circuit voltages (V_{ rm oc}) comparable to those deposited at lower rates. The effect of CdS film which acts as window layer for the cells were also investigated on the V_ {rm oc} of the solar cells. The results achieved proved the fact that CdS window layer is necessary to achieve higher V_{ rm oc} from solar cells. The substrate temperature during deposition of films by close space sublimation plays a vital role in the performance of solar cell. The increase in the substrate temperature during deposition of CdTe films increased the V_{rm oc} of solar cells. The solar cells with indium tin oxide (ITO) as top conductor, i.e. ITO/CdS/CdTe configuration were fabricated at rates up to 34 mum/minute and with tin oxide (TO) i.e. TO/CdTe configuration fabricated at rates up to 79 mum/minute have shown similar V_{rm oc} compared to those produced at lower rates. Higher CdTe film deposition rates are possible with larger capacity experimental setup. The method of contacting CdTe, used in this study, results in higher series resistance. An improved method of contacting CdTe needs to be developed.

  13. High efficiency cadmium telluride and zinc telluride based thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S.A.; Chou, H.C. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1992-10-01

    This report describes work to improve the basic understanding of CdTe and ZnTe alloys by growing and characterizing these films along with cell fabrication. The major objective was to develop wide-band-gap (1.6--1.8 eV) material for the top cell, along with compatible window material and transparent ohmic contacts, so that a cascade cell design can be optimized. Front-wall solar cells were fabricated with a glass/SnO{sub 2}/CdS window, where the CdS film is thin to maximize transmission and current. Wide-band-gap absorber films (E{sub g} = 1.75 eV) were grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques, which provided excellent control for tailoring the film composition and properties. CdZnTe films were grown by both MBE and MOCVD. All the as-grown films were characterized by several techniques (surface photovoltage spectroscopy, Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS)) for composition, bulk uniformity, thickness, and film and interface quality. Front-wall-type solar cells were fabricated in collaboration with Ametek Materials Research Laboratory using CdTe and CdZnTe polycrystalline absorber films. The effects of processing on ternary film were studied by AES and XPS coupled with capacitance voltage and current voltage measurements as a function of temperature. Bias-dependent spectral response and electrical measurements were used to test some models in order to identify and quantify dominant loss mechanisms.

  14. Radio-frequency magnetron triode sputtering of cadmium telluride and zinc telluride films and solar cells

    Science.gov (United States)

    Sanford, Adam Lee

    The n-CdS/p-CdTe solar cell has been researched for many years now. Research groups use a variety of processes to fabricate thin-film CdS/CdTe cells, including physical vapor deposition, chemical vapor deposition, and RF diode sputtering. One of the central areas of investigation concerning CdS/CdTe cells is the problem of a Schottky barrier at the back contact. Even cells fabricated with ohmic back contacts degrade into Schottky barriers as the devices are used. This severely degrades power generation. One possible solution is to use p+-ZnTe as an interlayer between CdTe and the back contact. ZnTe is easily doped with Cu to be p-type. However, even contacts with this ZnTe interlayer degrade over time, because Cu is highly mobile and diffuses away from the contact towards the CdS/CdTe junction. Another possibility is to dope ZnTe with N. It has been demonstrated using molecular beam epitaxy and RF diode sputtering. In this study, CdTe films are fabricated using a variation of RF diode sputtering called triode sputtering. This technique allows for control of ion bombardment to the substrate during deposition. Also, a higher plasma density near the target is achieved allowing depositions at lower pressures. These films are characterized structurally to show the effects of the various deposition parameters. N-doped ZnTe films are also fabricated using this technique. These films are characterized electrically to show the effects of the various deposition parameters. Also, the effects of post-deposition annealing are observed. It is found that annealing at the right temperature can increase the conductivity of the films by a factor of 3 or more. However, annealing at higher temperatures decreases the conductivity to as low as 12% of the initial conductivity. Finally, RF triode sputtered N-doped ZnTe films are used as an interlayer at the back contact of a CdS/CdTe solar cell. The effects of annealing the device before and after contact deposition are observed

  15. From front contact to back contact in cadmium telluride/cadmium sulfide solar cells: Buffer layer and interfacial layer

    Science.gov (United States)

    Roussillon, Yann

    Cadmium telluride (CdTe) polycrystalline thin film solar cells, with their near optimum direct band-gap of 1.4 eV matching almost perfectly the sun radiation spectrum, are a strong contender as a less expensive alternative, among photovoltaic materials, than the more commonly used silicon-based cells. Polycrystalline solar cells are usually deposited over large areas. Such devices often exhibit strong fluctuations (nonuniformities) in electronic properties, which originate from deposition and post-deposition processes, and are detrimental to the device performance. Therefore their effects need to be constrained. A new approach in this work was, when a CdS/CdTe solar cell is exposed to light and immersed in a proper electrolyte, fluctuations in surface potential can drive electrochemical reactions which result in a nonuniform interfacial layer that could balance the original nonuniformity. This approach improved the device efficiency for CdS/CdTe photovoltaic devices from 1--3% to 11--12%. Cadmium sulfide (CdS), used as a window layer and heterojunction partner to CdTe, is electrically inactive and absorb light energies above its band-gap of 2.4 eV. Therefore, to maximize the device efficiency, a thin US layer needs to be used. However, more defects, such as pinholes, are likely to be present in the film, leading to shunts. A resistive transparent layer, called buffer layer, is therefore deposited before CdS. A key observation was that the open-circuit voltage (Voc) for cells made using a buffer layer was high, around 800 mV, similar to cells without buffer layer after Cu doping. The standard p-n junction theory cannot explain this phenomena, therefore an alternative junction mechanism, similar to metal-insulator-semiconductor devices, was developed. Furthermore, alternative Cu-free back-contacts were used in conjunction with a buffer layer. The Voc of the devices was found to be dependent of the back contact used. This change occurs as the back-contact junction

  16. Stability studies of cadmium telluride/cadmium sulfide thin film solar cells

    Science.gov (United States)

    Tetali, Bhaskar Reddy

    CdTe/CdS solar cells have shown great potential for terrestrial solar power applications. To be commercially viable they need to operate efficiently for about 30 years. CdS/CdTe solar cells fabricated at USF have shown record efficiencies upto 16.5% [46]. This research involves the study of thermal stress (TS) and light soaking (LS) on the stability of high efficiency (>10%) solar cells. The change in key electrical parameters Voc, FF, J sc, A and Jo are quantified for more than 2000 hours of stressing. The device degradation was found to increase with stress temperature for TS. Below 100°C, the changes were due to collection and recombination losses. Above 100°C, "shunting" mechanisms were found to start affecting the device performance. A fast drop in performance within the first 500 hours was observed. It is believed to be due to an increase in deep-level Cu-related defects that increase with stress temperature. Diffusion of Cu i+ ions from the back contact along CdTe grain boundaries had been previously reported [16]. An increase in light/dark J-V crossover and bulk Rs with stress time and temperature was observed. A slow degradation component attributed to Cu-related substitutional defect [23] formation/diffusion to the junction and CdS is proposed. This should compensate the CdS over time and increase its photoconductivity/resistivity. An improvement in the current collection and FF within 100 hours of LS was observed. This is possibly due to the enhancement of Cui + diffusion into the junction and CdS during LS as previously reported [16]. A reduction in light/dark J-V crossover was observed, possibly due to an increase in CdS doping and reduction in the CdS/SnO2 front contact barrier. However, a fast decrease in Voc and increase in recombination current was also observed in the first 1000 hours of LS. This is possibly due to the existence of higher concentration of Cu-related deep level defects at the junction. A larger decrease in Voc was found for LS

  17. Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matin, M.A. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical and Electronics Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong (Bangladesh); Mannir Aliyu, M.; Quadery, Abrar H. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, Nowshad [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    Cadmium telluride (CdTe) thin film solar cell has long been recognized as a leading photovoltaic candidate for its high efficiency and low cost. A numerical simulation has been performed using AMPS-1D simulator to explore the possibility of higher efficiency and stable CdS/CdTe cell among several cell structures with indium tin oxide (ITO) and cadmium stannate (Cd{sub 2}SnO{sub 4}) as front contact material, tin oxide (SnO{sub 2}), zinc oxide (ZnO) and zinc stannate (Zn{sub 2}SnO{sub 4}) as buffer layer, and silver (Ag) or antimony telluride (Sb{sub 2}Te{sub 3}) with molybdenum (Mo) or zinc telluride (ZnTe) with aluminium (Al) as back contact material. The cell structure ITO/i-ZnO/CdS/CdS{sub x}Te{sub 1-x}/CdTe/Ag has shown the best conversion efficiency of 16.9% (Voc=0.9 V, Jsc=26.35 mA/cm{sup 2}, FF=0.783). This analysis has shown that ITO as front contact material, ZnO as buffer layer and ZnTe or Sb{sub 2}Te{sub 3} back surface reflector (BSR) are suitable material system for high efficiency (>15%) and stable CdS/CdTe cells. The cell normalized efficiency linearly decreased at a temperature gradient of -0.25%/ C for ZnTe based cells, and at -0.40%/ C for other cells. (author)

  18. Controlled cadmium telluride thin films for solar-cell applications. Final technical report, June 1, 1980-May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.B.; Krishnaswamy, S.V.

    1981-06-01

    The objectives of this contract were to carry out a systematic study on the preparation and characterization of rf-sputtered CdTe thin films in order to establish reproducibility of the films with good electrical characteristics and to demonstrate the feasibility of fabricating various types of junctions and ohmic contacts with reproducible characteristics and finally to optimize the most promising solar cell structure in order to achieve an efficiency of 6% or higher. Efforts have been directed to the control of various sputtering parameters in order to obtain good quality films. The structure, crystallographic, compositional and electrical properties of cadmium telluride films sputtered over a wide range of conditions have been evaluated. A series of doping experiments have been carried out using primarily Cd, Te, In, as the n-type dopants and Cu as the p-type dopant. Of these dopants, indium doping provided films with which S.B. junctions can be obtained for further electrical characterization. Use of cadmium overpressure during CdTe:In sputtering has improved the film characteristics. Ion Beam Sputtering was attempted as an alternative technique for film preparation. For lack of time and due to a number of mechanical failures, no significant results could be obtained.

  19. Cadmium sulfide thin films deposited by close spaced sublimation and cadmium sulfide/cadmium telluride solar cells

    Science.gov (United States)

    Marinskiy, Dmitriy Nikolaevich

    1998-12-01

    One of the applications of CdS films is as a window layer in CdTe and Cu(In,Ga)Sesb2 solar cells. The study of the optical and structural properties of CdS films deposited by close spaced sublimation as well as their influence on CdS/CdTe solar cell performance is part of the CdTe solar cell program at the University of South Florida. CdS films have been deposited by the close-spaced sublimation technique. The influence of the main process parameters, the substrate and source temperatures, and the ambient in the deposition chamber has been investigated. As-deposited films have been subjected to heat treatments in Hsb2 ambient, in CdClsb2 atmosphere, and in atmosphere with small amounts of oxygen. A special annealing chamber was built to carry out the annealing experiments in the presence of CdClsb2 vapor and oxygen. Several CSS chambers were assembled to study the influence of various process parameters simultaneously and validate the results. Results of scanning electron microscopy and photoluminescence measurements have been used as the primary characterization techniques. X-ray diffraction, electron microprobe analysis, and transmission measurements have also been carried out. It was found that as deposited CdS films have a hexagonal structure independent of the process parameters used. The presence of a CdO phase was detected in the samples grown with the highest oxygen concentration in the ambient. The resistivity of CdS films is controlled by intergrain barriers. Photoluminescence measurements showed the presence of oxygen-acceptor transition and a wide variation in the intensity of deep emission bands. The variation in the intensities was correlated with the variation in the deposition and annealing conditions. However, no correlation was found between the PL intensities of defect bands and cell performance. CdS/CdTe junctions have been fabricated using standard deposition and postgrowth techniques developed in the USF solar cells laboratory. All cells have

  20. Photoluminescence study of copper-doped cadmium-telluride and related stability issues for cadmium-sulfide/cadmium-telluride solar-cell devices

    Science.gov (United States)

    Grecu, Dan S.

    Lifetime predictions for CdTe photovoltaic modules represent a complex problem, partly due to the fact that a fundamental understanding of the CdTe material properties and device operation is far from being complete. One of the stability issues actively investigated is the use of Cu for the formation of a back contact. Cu is one of the few good p-dopants for CdTe, which, by forming a p+ layer at the surface of the CdTe, relaxes the requirement for a high work function metal at the back contact. On the other hand, it is known that Cu is a fast diffuser in CdTe and it was suggested that Cu migration within the device could lead to some of the observed degradation effects. in this work, we explore Cu states and migration effects in CdTe and CdS/CdTe devices using photoluminescence (PL) as the main investigative method. We confirm the assignment of several Cu-related PL transitions observed in the CdTe spectrum, namely, a bound exciton transition (X, CUCd) at 1.59eV and a donor-acceptor pair (DAP) (D, CuCd) at 1.45eV. In addition, we observe and characterize new effects related to Cu diffusion in CdTe: (a) the quenching of a DAP, Cd-vacancy related band, at 1.55eV, and (b) the formation of a new strong lattice-coupled transition at 1.555eV. These effects, we suggest, are consistent with Cu atoms occupying substitutional positions on the Cd sublattice and/or forming Frenkel pairs of the type CUi-VCd- with Cd vacancies. Similar spectral characteristics are observed for the low-S-content CdS-CdTe alloy existent in the vicinity of the junction in solar-cell devices. Using Cu-induced changes in the PL spectrum, we propose that Cu diffuses rapidly through an interstitial mechanism, as a positively charged ion, throughout the CdTe and possibly the CdS layer during the back-contact fabrication procedure. Applied electrical fields can reverse the direction of Cu migration leading to device performance degradation. In addition, it was found that Cu-doped CdTe samples exhibit a

  1. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  2. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual subcontract report, 20 March 1993--19 March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J.U.; Furtak, T.E.; Williamson, D.L.; Kim, D. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    This report describes the principal results of work performed during the second year of a 3-year program at the Colorado School of Mines (CSM). The work on transparent conducting oxides was carried out primarily by CSM students at NREL and is described in three publications listed in Appendix C. The high-quality ZnO produced from the work was incorporated into a copper indium diselenide cell that exhibited a world-record efficiency of 16.4%. Much of the time was devoted to the improvement of cadmium sulfide films deposited by chemical bath deposition methods and annealed with or without a cadmium chloride treatment. Progress was also made in the electrochemical deposition of cadmium telluride. High-quality films yielding CdS/CdTe/Au cells of greater than 10% efficiency are now being produced on a regular basis. We explored the use of zinc telluride back contacts to form an n-i-p cell structure as previously used by Ametek. We began small-angle x-ray scattering (SAXS) studies to characterize crystal structures, residual stresses, and microstructures of both CdTe and CdS. Large SAXS signals were observed in CdS, most likely because of scattering from gain boundaries. The signals observed to date from CdTe are much weaker, indicating a more homogeneous microstructure. We began to use the ADEPT modeling program, developed at Purdue University, to guide our understanding of the CdS/CdTe cell physics and the improvements that will most likely lead to significantly enhanced efficiencies.

  3. Optical Constants of Cadmium Telluride Thin Film

    Science.gov (United States)

    Nithyakalyani, P.; Pandiaraman, M.; Pannir, P.; Sanjeeviraja, C.; Soundararajan, N.

    2008-04-01

    Cadmium Telluride (CdTe) is II-VI direct band gap semiconductor compound with potential application in Solar Energy conversion process. CdTe thin film of thickness 220 mn was prepared by thermal evaporation technique at a high vacuum better than 10-5 m.bar on well cleaned glass substrates of dimensions (l cm×3 cm). The transmittance spectrum and the reflectance spectrum of the prepared CdTc thin film was recorded using UV-Vis Spectrophotometer in the wavelength range between 300 nm and 900 nm. These spectral data were analyzed and the optical band and optical constants of CdTe Thin film have been determined by adopting suitable relations. The optical band gap of CdTe thin film is found to be 1.56 eV and this value is also agreeing with the published works of CdTe thin film prepared by various techniques. The absorption coefficient (α) has been higher than 106 cm-1. The Refractive index (n) and the Extinction Coefficient (k) are found to be varying from 3.0 to 4.0 and 0.1 Cm-1 to 0.5 Cm-1 respectively by varying the energy from l.0 eV to 4.0 eV. These results are also compared with the literature.

  4. Ellipsometric Analysis of Cadmium Telluride Films’ Structure

    Directory of Open Access Journals (Sweden)

    Anna Evmenova

    2015-01-01

    Full Text Available Ellipsometric analysis of CdTe films grown on Si and CdHgTe substrates at the “hot-wall” epitaxy vacuum setup has been performed. It has been found that ellipsometric data calculation carried out by using a simple one-layer film model leads to radical distortion of optical constants spectra: this fact authenticates the necessity to attract a more complicated model that should include heterogeneity of films. Ellipsometric data calculation within a two-layer film model permitted to conclude that cadmium telluride films have an outer layer that consists of the three-component mixture of CdTe, cavities, and basic matter oxide. Ratio of mixture components depends on the time of deposition, that is, on the film thickness. The inner layer consists of cadmium telluride.

  5. Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

    2011-07-01

    It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

  6. Study of copper-free back contacts to thin film cadmium telluride solar cells

    Science.gov (United States)

    Viswanathan, Vijay

    The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.

  7. Role of the copper-oxygen defect in cadmium telluride solar cells

    Science.gov (United States)

    Corwine, Caroline R.

    Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O

  8. High-efficiency cadmium and zinc-telluride-based thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1992-02-01

    This report describes research into polycrystalline CdTe solar cells grown by metal-organic chemical vapor deposition. Efficiencies of {approximately}10% were achieved using both p-i-n and p-n structures. A pre-heat treatment of CdS/SnO{sub 2}/glass substrates at 450{degrees}C in hydrogen atmosphere prior to the CdTe growth was found to be essential for high performance because this heat treatment reduces oxygen-related defects from the CdS surface. However, this treatment also resulted in a Cd-deficient CdS surface, which may in part limit the CdTe cell efficiency to 10% due to Cd vacancy-related interface defects. Preliminary model calculations suggest that removing these states can increase the cell efficiency from 10% to 13.5%. Photon absorption in the CdS film also limits the cell performance, and eliminating this loss mechanism can result in CdTe efficiencies in excess of 18%. Polycrystalline, 1.7-e, CdZnTe films were also grown for tandem-cell applications. CdZnTe/CdS cells processed using the standard CdTe cell fabrication procedure resulted in 4.4% efficiency, high series resistance, and a band-gap shift to 1.55 eV. The formation of Zn-O at and near the CdZnTe surface is the source of high contact resistance. A saturated dichromate each prior to contact deposition was found to solve the contact resistance problem. The CdCl{sub 2} treatment was identified as the cause of the observed band-gap shift due to the preferred formation of ZnCl{sub 2}. 59 refs.

  9. Impact of back-contact materials on performance and stability of cadmium sulfide/cadmium telluride solar cells

    Science.gov (United States)

    Demtsu, Samuel H.

    Thin-film CdTe based solar cells are one of the leading contenders for providing lowcost and pollution-free energy, The formation of a stable, low resistance, non-rectifying contact to p-CdTe thin-film is one of the major and critical challenges associated with this technology in the fabrication of efficient and stable solar cells. The premise of this thesis is a systematic study of the impact of back-contact materials on the initial performance and the degradation of CdS/CdTe solar cells. Two different back-contact structures that incorporate Cu as a key element are investigated in this study: (a) Cu1.4Te:HgTe-doped graphite and (b) evaporated-Cu back contacts. The effect of Cu inclusion is not limited to the back-contact layer where it is deposited. Cu is a known fast diffuser in p-CdTe, and therefore, a significant amount of Cu reaches both the CdTe and US layers. Hence, the effect of the presence of Cu on the individual layers: back-contact, the absorber (CdTe), and the window (CdS) layers is discussed respectively. The effect of different metals used to form the current-carrying electrode following the Cu layer is also evaluated. Devices are studied through current-voltage (JV) measurements at different temperatures and intensities, quantum efficiency (QE) measurements under light and voltage bias, capacitance-voltage (CV), drive-level-capacitance-profiling (DLCP), and time-resolved photoluminescence (TRPL) measurements. Numerical simulation is also used to reproduce and explain some of the experimental results. In devices made without Cu, a current-limiting effect, rollover (distortion) in the current-voltage characteristic, was observed. With the inclusion of a small amount of Cu (5-nm), however, the distortion disappeared, and higher FF was obtained. The performance of these devices was comparable to devices made with the standard Cu-doped graphite paste contacts when the same CdTe absorber is used. Small amount of Cu (5-20 nm) partially diffused into the

  10. Spectral analysis of the effects of 1.7 MeV electron irradiation on the current transfer characteristic of cadmium telluride solar cells.

    Science.gov (United States)

    Tian, Jin-Xiu; Zeng, Guang-Gen; He, Xu-Lin; Zhang, Jing-Quan; Wu, Li-Li; Li, Wei; Li, Bing; Wang, Wen-Wu; Feng, Liang-Huan

    2014-04-01

    The effects of device performance of 1.7 MeV electron irradiation on cadmium telluride polycrystalline thin film solar cells with the structure of anti-radiation glass/ITO/ZnO/CdS/CdTe/ZnTe/ZnTe : Cu/Ni have been studied. Light and dark I-V characteristics, dark C-V characteristics, quantum efficiency (QE), admittance spectrum (AS) and other testing methods were used to analyze cells performance such as the open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF) and conversion efficiency (eta). It was explored to find out the effects of irradiation on the current transfer characteristic of solar cells combined with the dark current density (Jo), diode ideal factor (A), quantum efficiency, carrier concentration and the depletion layer width. The decline in short-circuit current was very large and the efficiency of solar cells decreased obviously after irradiation. Reverse saturation current density increased, which indicates that p-n junction characteristics of solar cells were damaged, and diode ideal factor was almost the same, so current transport mechanism of solar cells has not changed. Quantum efficiency curves proved that the damage of solar cells' p-n junction influenced the collection of photo-generated carriers. Irradiation made carrier concentration reduce to 40.6%. The analyses have shown that. A new defect was induced by electron irradiation, whose position is close to 0.58 eV above the valence band in the forbidden band, and capture cross section is 1.78 x 10(-16) cm2. These results indicate that irradiation influences the generation of photo-generated carriers, increases the risk of the carrier recombination and the reverse dark current, and eventually makes the short-circuit current of solar cells decay.

  11. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  12. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  13. High efficiency cadmium telluride and zinc telluride based thin-film solar cells. Annual subcontract report, 1 March 1990--28 February 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S.A.; Chou, H.C. [Georgia Inst. of Tech., Atlanta, GA (United States)

    1992-10-01

    This report describes work to improve the basic understanding of CdTe and ZnTe alloys by growing and characterizing these films along with cell fabrication. The major objective was to develop wide-band-gap (1.6--1.8 eV) material for the top cell, along with compatible window material and transparent ohmic contacts, so that a cascade cell design can be optimized. Front-wall solar cells were fabricated with a glass/SnO{sub 2}/CdS window, where the CdS film is thin to maximize transmission and current. Wide-band-gap absorber films (E{sub g} = 1.75 eV) were grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques, which provided excellent control for tailoring the film composition and properties. CdZnTe films were grown by both MBE and MOCVD. All the as-grown films were characterized by several techniques (surface photovoltage spectroscopy, Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS)) for composition, bulk uniformity, thickness, and film and interface quality. Front-wall-type solar cells were fabricated in collaboration with Ametek Materials Research Laboratory using CdTe and CdZnTe polycrystalline absorber films. The effects of processing on ternary film were studied by AES and XPS coupled with capacitance voltage and current voltage measurements as a function of temperature. Bias-dependent spectral response and electrical measurements were used to test some models in order to identify and quantify dominant loss mechanisms.

  14. Using atomistic simulations to model cadmium telluride thin film growth

    Science.gov (United States)

    Yu, Miao; Kenny, Steven D.

    2016-03-01

    Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.

  15. Optical properties of zinc telluride with cadmium telluride submonolayers

    Science.gov (United States)

    Agekyan, V. F.; Serov, A. Yu.; Filosofov, N. G.; Shtrom, I. V.; Karczewski, G.

    2016-10-01

    Reflection, luminescence, and Raman spectra of epitaxial ZnTe layers nominally incorporating double CdTe submonolayers were studied. The band of an exciton localized at the potential produced by narrow-gap planar inclusions dominated the luminescence of these heterostructures. The emission parameters of localized excitons (specifically, the ratio of integral emission intensity to localization energy) were determined, and it was found that excitons interact with longitudinal optical phonons of the layer enriched with cadmium. Giant amplification of the Stokes component resonant with the localized exciton level was observed in Raman scattering.

  16. Effect of Nanosized Tin Oxide Layer on the Efficiency of Photovoltaic Processes in Film Solar Cells Based on Cadmium Telluride

    Directory of Open Access Journals (Sweden)

    G.S. Khrypunov

    2015-03-01

    Full Text Available The influence of the thickness of the nanosized layer on the efficiency of photoelectric processes in solar cells (SC ITO / SnO2 / CdS / CdTe / Cu / Au formed on different substrates was investigated. For device structures formed on the glass substrates, the maximum efficiency of 11.4 % is achieved when thickness of the tin oxide layer is 80 nm. For flexible solar cells formed on a polyimide film, the maximum efficiency of 10.8 % is observed when thickness of the tin oxide layer is 50 nm. This paper discusses the physical mechanisms of the observed differences in efficiency.

  17. Controlled cadmium telluride thin films for solar cell applications. Second quarterly report, September 1-December 1, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Das, M. B.; Krishnaswamy, S. V.

    1981-01-01

    A thermal annealing procedure to improve the photovoltaic and other electrical characteristics of CdTe sputtered films doped with In is described. For an understanding of the characteristics of these films, SEM, Auger electron spectroscopy and scanning ellipsometry analyses have been carried out. Dark and illuminated I/V characteristics and capacitance and conductance vs. frequency behavior of In doped CdTe Schottky barrier diodes based on Cr and Ni substrates indicate that thermal annealing is an effective means of reducing the trap concentrations on these films that can lead to a significant improvement of the quality of sputtered films for solar cell applications.

  18. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report, 20 March 1995--19 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J U; Mao, D [Colorado School of Mines, Golden, CO (United States)

    1997-04-01

    The objective of this project is to develop improved processes for fabricating CdTe/CdS polycrystalline thin-film solar cells. Researchers used electrodeposition to form CdTe; electrodeposition is a non-vacuum, low-cost technique that is attractive for economic, large-scale production. During the past year, research and development efforts focused on several steps that are most critical to the fabricating high-efficiency CdTe solar cells. These include the optimization of the CdTe electrodeposition process, the effect of pretreatment of CdS substrates, the post-deposition annealing of CdTe, and back-contact formation using Cu-doped ZnTe. Systematic investigations of these processing steps have led to a better understanding and improved performance of the CdTe-based cells. Researchers studied the structural properties of chemical-bath-deposited CdS thin films and their growth mechanisms by investigating CdS samples prepared at different deposition times; investigated the effect of CdCl{sub 2} treatment of CdS films on the photovoltaic performance of CdTe solar cells; studied Cu-doped ZnTe as a promising material for forming stable, low-resistance contacts to the p-type CdTe; and investigated the effect of CdTe and CdS thickness on the photovoltaic performance of the resulting cells. As a result of their systematic investigation and optimization of the processing conditions, researchers improved the efficiency of CdTe/CdS cells using ZnTe back-contact and electrodeposited CdTe. The best CdTe/CdS cell exhibited a V{sub oc} of 0.778 V, a J{sub sc} of 22.4 mA/cm{sup 2}, a FF of 74%, and an efficiency of 12.9% (verified at NREL). In terms of individual parameters, researchers obtained a V{sub oc} over 0.8 V and a FF of 76% on other cells.

  19. Brief review of cadmium telluride-based photovoltaic technologies

    Science.gov (United States)

    Başol, Bülent M.; McCandless, Brian

    2014-01-01

    Cadmium telluride (CdTe) is the most commercially successful thin-film photovoltaic technology. Development of CdTe as a solar cell material dates back to the early 1980s when ˜10% efficient devices were demonstrated. Implementation of better quality glass, more transparent conductive oxides, introduction of a high-resistivity transparent film under the CdS junction-partner, higher deposition temperatures, and improved Cl-treatment, doping, and contacting approaches yielded >16% efficient cells in the early 2000s. Around the same time period, use of a photoresist plug monolithic integration process facilitated the demonstration of the first 11% efficient module. The most dramatic advancements in CdTe device efficiencies were made during the 2013 to 2014 time frame when small-area cell conversion efficiency was raised to 20% range and a champion module efficiency of 17% was reported. CdTe technology is attractive in terms of its limited life-cycle greenhouse gas and heavy metal emissions, small carbon footprint, and short energy payback times. Limited Te availability is a challenge for the growth of this technology unless Te utilization rates are greatly enhanced along with device efficiencies.

  20. The Cadmium Zinc Telluride Imager on AstroSat

    CERN Document Server

    Bhalerao, V; Vibhute, A; Pawar, P; Rao, A R; Hingar, M K; Khanna, Rakesh; Kutty, A P K; Malkar, J P; Patil, M H; Arora, Y K; Sinha, S; Priya, P; Samuel, Essy; Sreekumar, S; Vinod, P; Mithun, N P S; Vadawale, S V; Vagshette, N; Navalgund, K H; Sarma, K S; Pandiyan, R; Seetha, S; Subbarao, K

    2016-01-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZT's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to > 200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17' over a 4.6 deg x 4.6 deg (FWHM) field of view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarisation above ~100 keV, with exciting possibilities for polarisation studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  1. Gamma-ray peak shapes from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  2. Structural properties of oxygenated amorphous cadmium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    El Azhari, M.Y. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Azizan, M. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Bennouna, A. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Outzourhit, A. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Ameziane, E.L. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Brunel, M. [Laboratoire de Cristallographie, CNRS, Grenoble (France)

    1997-02-28

    Cadmium telluride (CdTe) thin films were prepared by diode radio-frequency sputtering from polycrystalline CdTe targets in an atmosphere of argon, nitrogen and oxygen. The layers prepared in the presence of nitrogen gas were amorphous and their oxygen contents increased with the partial pressure of nitrogen. The evolution of the composition of the layers as a function of the nitrogen partial pressure during deposition was followed by X-ray photoelectron spectroscopy. It is found that the oxygen is bound to both tellurium and cadmium atoms. The surface of the CdTe thin films was also studied as a function of their exposure time to a plasma containing a mixture of nitrogen and oxygen. It is found that the oxygen contents of the surface increases with increased exposure time. Also, this exposure resulted in an increase of the oxide thickness and a net decrease in the surface roughness of the films. (orig.)

  3. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  4. Thin film cadmium telluride photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bohn, R. (Toledo Univ., OH (United States))

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  5. Device characterization of cadmium telluride photovoltaics

    Science.gov (United States)

    Geisthardt, Russell M.

    Thin-film photovoltaics have the potential to make a large impact on the world energy supply. They can provide clean, affordable energy for the world. Understanding the device physics and behavior will enable increases in efficiency which will increase their impact. This work presents novel approaches for evaluating efficiency, as well as a set of tools for in-depth whole-cell and uniformity characterization. The understanding of efficiency losses is essential for reducing or eliminating the losses. The efficiency can be characterized by a breakdown into three categories: solar spectrum, optical, and electronic efficiency. For several record devices, there is little difference in the solar spectrum efficiency, modest difference in the optical efficiency, and large difference in the electronic efficiency. The losses within each category can also be further characterized. The losses due to the broad solar spectrum and finite temperature are well understood from a thermodynamic physics perspective. Optical losses can be fully characterized using quantum efficiency and optical measurements. Losses in fill factor can be quantified from series and shunt resistance, as well as the expected fill factor from the measured V oc and A. Open-circuit voltage losses are the most significant, but are also be the hardest to understand, as well as the most technology-dependent. Characterization of the whole cell helps to understand the behavior, performance, and properties of the cell. Several different tools can be used for whole-cell characterization, including current-voltage, quantum efficiency, and capacitance measurements. Each of these tools give specific information about the behavior of the cell. When combined, they can lead to a more complete understanding of the cell performance than when taken individually. These tools were applied to several specific CdTe experiments. They have helped to characterize the baseline performance of both the deposition tool and the

  6. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  7. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  8. Photosensitive cadmium telluride thin-film field-effect transistors.

    Science.gov (United States)

    Yang, Gwangseok; Kim, Donghwan; Kim, Jihyun

    2016-02-22

    We report on the graphene-seeded growth and fabrication of photosensitive Cadmium telluride (CdTe)/graphene hybrid field-effect transistors (FETs) subjected to a post-growth activation process. CdTe thin films were selectively grown on pre-defined graphene, and their morphological, electrical and optoelectronic properties were systemically analyzed before and after the CdCl2 activation process. CdCl2-activated CdTe FETs showed p-type behavior with improved electrical features, including higher electrical conductivity (reduced sheet resistance from 1.09 × 10(9) to 5.55 × 10(7) Ω/sq.), higher mobility (from 0.025 to 0.20 cm2/(V·s)), and faster rise time (from 1.23 to 0.43 s). A post-growth activation process is essential to fabricate high-performance photosensitive CdTe/graphene hybrid devices.

  9. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  10. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications). Quarterly progress report No. 3, October 9, 1979-January 8, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Vedam, K; Das, M B; Krishnaswamy, S V

    1980-02-01

    The main emphasis during the third quarter of the program was on the improvement of the quality of sputtered films, their characterization and use in the fabrication of Schottky barrier type diodes and solar cell structures. Films prepared under different conditions and on different substrates were examined by SEM showing nodular growths under certain conditions. I-V, C-V and photovoltaic characteristics were measured on numerous samples based on n- and p-type films on Ni substrates having top metallization of either evaporated Au and Al. The n-type samples showed up to 200mV V/sub oc/ and small short-circuit currents. The characteristics observed are indicative of the presence of interfacial layer and surface states. Surface state's capacitance were measured on p-type samples metallized with Au.

  11. Directional Solidification of Mercury Cadmium Telluride in Microgravity

    Science.gov (United States)

    Lechoczhy, Sandor L.; Gillies, Donald C.; Szofran, Frank R.; Watring, Dale A.

    1998-01-01

    Mercury cadmium telluride (MCT) has been directionally solidified for ten days in the Advanced Automated Directional Solidification Furnace (AADSF) on the second United States Microgravity Payload Mission (USMP-2). A second growth experiment is planned for the USMP-4 mission in November 1997. Results from USMP-2 demonstrated significant changes between microgravity and ground-based experiments, particularly in the compositional homogeneity. Changes were also observed during the microgravity mission which were dependent on the attitude of the space shuttle and the relative magnitudes of axial and transverse residual accelerations with respect to the growth axis of the crystal. Issues of shuttle operation, especially those concerned with safety and navigation, and the science needs of other payloads dictated the need for changes in attitude. One consequence for solidification of MCT in the USMP4 mission is the desire for a shorter growth time to complete the experiment without subjecting the sample to shuttle maneuvers. By using a seeded technique and a pre-processed boule of MCT with an established diffusion layer quenched into the solid, equilibrium steady state growth can be established within 24 hours, rather than the three days needed in USMP-2. The growth of MCT in AADSF during the USMP-4 mission has been planned to take less than 72 hours with 48 hours of actual growth time. A review of the USMP-2 results will be presented, and the rationale for the USMP-4 explained. Pre-mission ground based tests for the USN4P-4 mission will be presented, as will any available preliminary flight results from the mission.

  12. Current transport mechanisms in mercury cadmium telluride diode

    Science.gov (United States)

    Gopal, Vishnu; Li, Qing; He, Jiale; He, Kai; Lin, Chun; Hu, Weida

    2016-08-01

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I-V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I-V characteristics have been modelled over a range of gate voltages from -9 V to -2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I-V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from -3 V to -5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  13. Thin-film cadmium telluride photovoltaic cells. Final subcontract report, 1 November 1992--1 January 1994

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.D.; Bohn, R.G. [Toledo Univ., OH (United States)

    1994-09-01

    This report describes work to develop and optimize radio-frequency (rf) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by rf sputtering was studied as a function of substrate temperature, gas pressure, and rf power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.

  14. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    Science.gov (United States)

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1 mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1 mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills.

  15. LEACHING OF CADMIUM, TELLURIUM AND COPPER FROM CADMIUM TELLURIDE PHOTOVOLTAIC MODULES.

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    2004-02-03

    Separating the metals from the glass is the first step in recycling end-of-life cadmium telluride photovoltaic modules and manufacturing scrap. We accomplished this by leaching the metals in solutions of various concentrations of acids and hydrogen peroxide. A relatively dilute solution of sulfuric acid and hydrogen peroxide was found to be most effective for leaching cadmium and tellurium from broken pieces of CdTe PV modules. A solution comprising 5 mL of hydrogen peroxide per kg of PV scrap in 1 M sulfuric acid, gave better results than the 12 mL H{sub 2}O{sub 2}/kg, 3.2 M H{sub 2}SO{sub 4} solution currently used in the industry. Our study also showed that this dilute solution is more effective than hydrochloric-acid solutions and it can be reused after adding a small amount of hydrogen peroxide. These findings, when implemented in large-scale operation, would result in significant savings due to reductions in volume of the concentrated leaching agents (H{sub 2}SO{sub 4} and H{sub 2}O{sub 2}) and of the alkaline reagents required to neutralize the residuals of leaching.

  16. High-efficiency cadmium and zinc-telluride-based thin-film solar cells. Annual subcontract report, 1 March 1990--28 February 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S. [Georgia Inst. of Tech., Atlanta, GA (United States)

    1992-02-01

    This report describes research into polycrystalline CdTe solar cells grown by metal-organic chemical vapor deposition. Efficiencies of {approximately}10% were achieved using both p-i-n and p-n structures. A pre-heat treatment of CdS/SnO{sub 2}/glass substrates at 450{degrees}C in hydrogen atmosphere prior to the CdTe growth was found to be essential for high performance because this heat treatment reduces oxygen-related defects from the CdS surface. However, this treatment also resulted in a Cd-deficient CdS surface, which may in part limit the CdTe cell efficiency to 10% due to Cd vacancy-related interface defects. Preliminary model calculations suggest that removing these states can increase the cell efficiency from 10% to 13.5%. Photon absorption in the CdS film also limits the cell performance, and eliminating this loss mechanism can result in CdTe efficiencies in excess of 18%. Polycrystalline, 1.7-e, CdZnTe films were also grown for tandem-cell applications. CdZnTe/CdS cells processed using the standard CdTe cell fabrication procedure resulted in 4.4% efficiency, high series resistance, and a band-gap shift to 1.55 eV. The formation of Zn-O at and near the CdZnTe surface is the source of high contact resistance. A saturated dichromate each prior to contact deposition was found to solve the contact resistance problem. The CdCl{sub 2} treatment was identified as the cause of the observed band-gap shift due to the preferred formation of ZnCl{sub 2}. 59 refs.

  17. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  18. Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The structural and optical properties of amorphous semiconductor mercury cadmium telluride (a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve ωε 2(ω)1/2 versus ω, it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV.

  19. Epitaxial growth of cadmium telluride films on silicon with a buffer silicon carbide layer

    Science.gov (United States)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.

    2017-02-01

    An epitaxial 1-3-μm-thick cadmium telluride film has been grown on silicon with a buffer silicon carbide layer using the method of open thermal evaporation and condensation in vacuum for the first time. The optimum substrate temperature was 500°C at an evaporator temperature of 580°C, and the growth time was 4 s. In order to provide more qualitative growth of cadmium telluride, a high-quality 100-nm-thick buffer silicon carbide layer was previously synthesized on the silicon surface using the method of topochemical substitution of atoms. The ellipsometric, Raman, X-ray diffraction, and electron-diffraction analyses showed a high structural perfection of the CdTe layer in the absence of a polycrystalline phase.

  20. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Anderson Fuzer [Departamento de Química, CCE, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075-910 Vitória, Espírito Santo (Brazil); Porto, Arilza de Oliveira, E-mail: arilzaporto@yahoo.com.br [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Magela de Lima, Geraldo [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Paniago, Roberto [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Ardisson, José Domingos [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, Minas Gerais (Brazil)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  1. Charge Carrier Processes in Photovoltaic Materials and Devices: Lead Sulfide Quantum Dots and Cadmium Telluride

    Science.gov (United States)

    Roland, Paul

    Charge separation, transport, and recombination represent fundamental processes for electrons and holes in semiconductor photovoltaic devices. Here, two distinct materials systems, based on lead sulfide quantum dots and on polycrystalline cadmium telluride, are investigated to advance the understanding of their fundamental nature for insights into the material science necessary to improve the technologies. Lead sulfide quantum dots QDs have been of growing interest in photovoltaics, having recently produced devices exceeding 10% conversion efficiency. Carrier transport via hopping through the quantum dot thin films is not only a function of inter-QD distance, but of the QD size and dielectric media of the surrounding materials. By conducting temperature dependent transmission, photoluminescence, and time resolved photoluminescence measurements, we gain insight into photoluminescence quenching and size-dependent carrier transport through QD ensembles. Turning to commercially relevant cadmium telluride (CdTe), we explore the high concentrations of self-compensating defects (donors and acceptors) in polycrystalline thin films via photoluminescence from recombination at defect sites. Low temperature (25 K) photoluminescence measurements of CdTe reveal numerous radiative transitions due to exciton, trap assisted, and donor-acceptor pair recombination events linked with various defect states. Here we explore the difference between films deposited via close space sublimation (CSS) and radio frequency magnetron sputtering, both as-grown and following a cadmium chloride treatment. The as-grown CSS films exhibited a strong donor-acceptor pair transition associated with deep defect states. Constructing photoluminescence spectra as a function of time from time-resolved photoluminescence data, we report on the temporal evolution of this donor-acceptor transition. Having gained insight into the cadmium telluride film quality from low temperature photoluminescence measurements

  2. Spatial mapping of cadmium zinc telluride materials properties and electrical response to improve device yield and performance

    CERN Document Server

    Van Scyoc, J M; Yoon, H; Gilbert, T S; Hilton, N R; Lund, J C; James, R B

    1999-01-01

    Cadmium zinc telluride has experienced tremendous growth in its application to various radiation sensing problems over the last five years. However, there are still issues with yield, particularly of the large volume devices needed for imaging and sensitivity-critical applications. Inhomogeneities of various types and on various length scales currently prevent the fabrication of large devices of high spectral performance. This paper discusses the development of a set of characterization tools for quantifying these inhomogeneities, in order to develop improvement strategies to achieve the desired cadmium zinc telluride crystals for detector fabrication.

  3. Structure and Surface Analysis of SHI Irradiated Thin Films of Cadmium Telluride

    OpenAIRE

    Neelam Pahwa; A.D. Yadav; S.K. Dubey; A.P. Patel; Arvind Singh; D.C. Kothari

    2012-01-01

    Cadmium Telluride (CdTe) thin films grown by thermal evaporation on quartz substrates were irradiated with swift (100 MeV) Ni + 4 ions at various fluences in the range 1011 – 1013 cm – 2. The modification in structure and surface morphology has been analyzed as a function of fluence using XRD and AFM techniques. The XRD showed a reduction in peak intensity and grain size with increasing fluence. The AFM micrographs of irradiated thin films show small spherical nanostructures. In addition to d...

  4. Operational Studies of Cadmium Zinc Telluride Microstrip Detectors using SVX ASIC Electronics

    Science.gov (United States)

    Krizmanic, John; Barbier, L. M.; Barthelmy, S.; Bartlett, L.; Birsa, F.; Gehrels, N.; Hanchak, C.; Kurczynski, P.; Odom, J.; Parsons, A.; Palmer, D.; Sheppard, D.; Snodgrass, S.; Stahle, C. M.; Teegarden, B.; Tueller, J.

    1997-04-01

    We have been investigating the operational properties of cadmium zinc telluride (CZT) microstrip detectors by using SVX ASIC readout electronics. This research is in conjunction with the development of a CZT-based, next generation gamma-ray telescope for use in the gamma-ray Burst ArcSecond Imaging and Spectroscopy (BASIS) experiment. CZT microstrip detectors with 128 channels and 100 micron strip pitch have been fabricated and were interfaced to SVX electronics at Goddard Space Flight Center. Experimental results involving position sensing, spectroscopy, and CZT operational properties will be presented.

  5. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    OpenAIRE

    Gu, Y.; Matteson, J. L.; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV thr...

  6. Te-doped cadmium telluride films fabricated by close spaced sublimation

    Science.gov (United States)

    Li, J.; Zheng, Y. F.; Xu, J. B.; Dai, K.

    2003-07-01

    Te-doped cadmium telluride (CdTe) films were deposited on ITO/glass substrates using the close spaced sublimation (CSS) method. The films were characterized by x-ray diffraction (XRD), the x-ray fixed-quantity (XRF) method, scanning electron microscopy (SEM) and the Hall effect. The XRD and SEM results show that appropriate Te doping would be favourable to the growth of CdTe crystallite. The Hall effect measurements indicate that the conductivity of CdTe films could be dramatically improved by Te doping. The work presented here suggests that p-type doping CdTe films can be produced using this deposition method.

  7. Seeded Physical Vapor Transport of Cadmium-Zinc Telluride Crystals: Growth and Characterization

    Science.gov (United States)

    Palosz, W.; George, M. A.; Collins, E. E.; Chen, K.-T.; Zhang, Y.; Burger, A.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te with x = 0.2 and 40 g in weight were grown on monocrystalline cadmium-zinc telluride seeds by closed-ampoule physical vapor transport with or without excess (Cd + Zn) in the vapor phase. Two post-growth cool-down rates were used. The crystals were characterized using low temperature photoluminescence, atomic force microscopy, chemical etching, X-ray diffraction and electrical measurements. No formation of a second, ZnTe-rich phase was observed.

  8. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  9. Structure and Surface Analysis of SHI Irradiated Thin Films of Cadmium Telluride

    Directory of Open Access Journals (Sweden)

    Neelam Pahwa

    2012-10-01

    Full Text Available Cadmium Telluride (CdTe thin films grown by thermal evaporation on quartz substrates were irradiated with swift (100 MeV Ni + 4 ions at various fluences in the range 1011 – 1013 cm – 2. The modification in structure and surface morphology has been analyzed as a function of fluence using XRD and AFM techniques. The XRD showed a reduction in peak intensity and grain size with increasing fluence. The AFM micrographs of irradiated thin films show small spherical nanostructures. In addition to direct imaging, AFM profile data enable to derive the Power Spectral Density (PSD of the surface roughness. In the present work PSD spectra computed from AFM data were used for studying the surface morphology of films. The PSD curves were fitted with an appropriate analytic function and characteristic parameters were deduced and discussed in order to compare film morphology with varying fluence levels.

  10. Experiments and Monte Carlo modeling of a higher resolution Cadmium Zinc Telluride detector for safeguards applications

    Science.gov (United States)

    Borella, Alessandro

    2016-09-01

    The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.

  11. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  12. The energetic impact of small Cd{sub x}Te{sub y} clusters on Cadmium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: M.Yu2@lboro.ac.uk; Kenny, Steven D., E-mail: S.D.Kenny@lboro.ac.uk

    2015-06-01

    Cadmium Telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to do research on how these defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. Single deposition tests have been performed, to study the behaviour of deposited clusters under different conditions. We deposit a Cd{sub x}Te{sub y} (x,y = 0,1) cluster onto the (100) and (111) Cd and Te terminated surfaces with energies ranging from 1 to 40 eV. More than 1000 simulations have been performed for each of these cases so as to sample the possible deposition positions and to collect sufficient statistics. The results show that Cd atoms are more readily sputtered from the surface than Te atoms and the sticking probability is higher on Te terminated surfaces than Cd terminated surfaces. They also show that increasing the deposition energy typically leads to an increase in the number of atoms sputtered from the system and tends to decrease the number of atoms that sit on or in the surface layer, whilst increasing the number of interstitials observed. - Highlights: • Deposition of Cd, Te and CdTe particles on (100) and (111) Cd and Te surfaces • Cd atoms are more readily sputtered from the surface than Te atoms. • The Te terminated surfaces have a higher sticking probability than the Cd ones. • Higher impact energies imply more sputtered atoms from the surface.

  13. Directional Solidification of Mercury Cadmium Telluride During the Second United States Microgravity Payload Mission (USMP-2)

    Science.gov (United States)

    Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Watring, D. A.; Alexander, H. A.; Jerman, G. A.

    1996-01-01

    As a solid solution semiconductor having, a large separation between liquidus and solidus, mercury cadmium telluride (MCT) presents a formidable challenge to crystal growers desiring an alloy of high compositional uniformity. To avoid constitutional supercooling during Bridgman crystal growth it is necessary to solidify slowly in a high temperature gradient region. The necessary translation rate of less than 1 mm/hr results in a situation where fluid flow induced by gravity on earth is a significant factor in material transport. The Advanced Automated Directional Solidification Furnace (AADSF) is equipped to provide the stable thermal environment with a high gradient, and the required slow translation rate needed. Ground based experiments in AADSF show clearly the dominance of flow driven transport. The first flight of AADSF in low gravity on USMP-2 provided an opportunity to test theories of fluid flow in MCT and showed several solidification regimes which are very different from those observed on earth. Residual acceleration vectors in the orbiter during the mission were measured by the Orbital Acceleration Research Experiment (OARE), and correlated well with observed compositional differences in the samples.

  14. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  15. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-09-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations.

  16. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fan, Junpeng; Shao, Ming; Lai, Lu; Liu, Yi; Xie, Zhixiong

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L) were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L) to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator), combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells.

  17. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z. [Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Dvoretskii, S. [Institute of Semiconductor Physics of SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  18. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Brunett; J. C. Lund; J. M. Van Scyoc; N. R. Hilton; E. Y. Lee; R. B. James

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors.

  19. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  20. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y; Levin, C S [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M, E-mail: cslevin@stanford.edu [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States)

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm x 40 mm x 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 {+-} 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 {+-} 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 {+-} 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  1. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  2. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  3. Spectroscopic ellipsometry as a process control tool for manufacturing cadmium telluride thin film photovoltaic devices

    Science.gov (United States)

    Smith, Westcott P.

    In recent decades, there has been concern regarding the sustainability of fossil fuels. One of the more promising alternatives is Cadmium Telluride (CdTe) thin-film photovoltaic (PV) devices. Improved quality measurement techniques may aid in improving this existing technology. Spectroscopic ellipsometry (SE) is a common, non-destructive technique for measuring thin films in the silicon wafer industry. SE results have also been tied to properties believed to play a role in CdTe PV device efficiency. A study assessing the potential of SE for use as a quality measurement tool had not been previously reported. Samples of CdTe devices produced by both laboratory and industrial scale processes were measured by SE and Scanning Electron Microscopy (SEM). Mathematical models of the optical characteristics of the devices were developed and fit to SE data from multiple angles and locations on each sample. Basic statistical analysis was performed on results from the automated fits to provide an initial evaluation of SE as a quantitative quality measurement process. In all cases studied, automated SE models produced average stack thickness values within 10% of the values produced by SEM, and standard deviations for the top bulk layer thickness were less than 1% of the average values.

  4. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    Science.gov (United States)

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology.

  5. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    Science.gov (United States)

    Campbell, D. L.; Peterson, T. E.

    2014-11-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  6. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    Science.gov (United States)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  7. Band gap engineering of zinc selenide thin films through alloying with cadmium telluride.

    Science.gov (United States)

    Al-Kuhaili, M F; Kayani, A; Durrani, S M A; Bakhtiari, I A; Haider, M B

    2013-06-12

    This work investigates band gap engineering of zinc selenide (ZnSe) thin films. This was achieved by mixing ZnSe with cadmium telluride (CdTe). The mass ratio (x) of CdTe in the starting material was varied in the range x = 0-0.333. The films were prepared using thermal evaporation. The chemical composition of the films was investigated through energy dispersive spectroscopy and Rutherford backscattering spectrometry. Structural analysis was carried out using X-ray diffraction and atomic force microscopy. Normal incidence transmittance and reflectance were measured over the wavelength range 300-1300 nm. The absorption coefficients and band gaps were determined from these spectrophotometric measurements. The band gap monotonically decreased from 2.58 eV (for x = 0) to 1.75 eV (for x = 0.333). Photocurrent measurements indicated that the maximum current density was obtained for films with x = 0.286. A figure of merit, based on crystallinity, band gap, and photocurrent, was defined. The optimum characteristics were obtained for the films with x = 0.231, for which the band gap was 2.14 eV.

  8. Properties of Te-rich cadmium telluride thin films fabricated by closed space sublimation technique

    Science.gov (United States)

    Abbas Shah, N.; Ali, A.; Ali, Z.; Maqsood, A.; Aqili, A. K. S.

    2005-11-01

    Cadmium telluride (CdTe) thin films were prepared by the closed space sublimation (CSS) technique, using CdTe powder as evaporant onto substrates of water-white glass. In the next step, the same procedure was adopted by using tellurium as evaporant and already deposited CdTe film as substrate. Such compositions were then annealed at 300 °C for 30 min to obtain Te-enriched films. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), spectrophotometry, DC electrical resistivity, dark conductivity and activation energy analysis as a function of temperature by two-probe method. The electron microprobe analyzer (EMPA) results showed an increase of Te content composition in the samples as the mass of the Te-deposition increased in CdTe. The Hall measurements indicated the increase in mobility and carrier concentrations of CdTe films by addition of tellurium. A significant change in the shape and size of the CdTe grains were observed.

  9. Investigations of Cadmium Manganese Telluride Crystals for Room-Temperature Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Hossain, A.; Kim, K.; Carcelen, V.; Gul, R.; James, R.

    2009-10-06

    Cadmium manganese telluride (CMT) has high potential as a material for room-temperature nuclear-radiation detectors. We investigated indium-doped CMT crystals taken from the stable growth region of the ingot, and compared its characteristics with that from the last-to-freeze region. We employed different techniques, including synchrotron white-beam X-ray topography (SWBXT), current-voltage (I-V) measurements, and low-temperature photoluminescence spectra, and we also assessed their responses as detectors to irradiation exposure. The crystal from the stable growth region proved superior to that from the last-to-freeze region; it is a single-grain crystal, free of twins, and displayed a resistivity higher by two orders-of-magnitude. The segregation of indium dopant in the ingot might be responsible for its better resistivity. Furthermore, we recorded a good response in the detector fabricated from the crystal taken from the stable growth region; its ({mu}{tau}){sub e} value was 2.6 x 10{sup -3} cm{sup 2}/V, which is acceptable for thin detectors, including for applications in medicine.

  10. Optical properties of cadmium telluride in zinc-blende and wurzite structure

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S.M. [Department of Physics, Materials and Electroceramics Laboratory, Ferdowsi University of Mashhad (Iran, Islamic Republic of)], E-mail: sma_hosseini@yahoo.com

    2008-05-01

    The optical properties of cadmium telluride including the linear optical dielectric function, the refractive index, the extinction coefficient, the reflectivity and the plasmon energy have been calculated by density functional theory (DFT). The full potential linearized augmented plane wave (FL-LAPW) method was used with the generalized gradient approximation (GGA) including the orbital dependence of the self-energy, i.e. the orbital-dependent potentials of Coulomb and exchange interactions (GGA+U). Using only LDA or GGA methods underestimates the electronic parameters (band gap and band dispersion). Applying orbital-dependent potentials splits the Te-5s state and shifts the binding energies of the Cd-4d levels towards the experimentally determined position. The calculated results indicated that although Te-5s and Cd-4d overlap, Cd-4d plays an important role in absorption and reflectivity constants. The optical constants of CdTe in hexagonal structure exhibit anisotropy (birefringence) in two directions (in basal-plan and c-axis) but the difference is very small in the static limit.

  11. Optical properties of cadmium telluride in zinc-blende and wurzite structure

    Science.gov (United States)

    Hosseini, S. M.

    2008-05-01

    The optical properties of cadmium telluride including the linear optical dielectric function, the refractive index, the extinction coefficient, the reflectivity and the plasmon energy have been calculated by density functional theory (DFT). The full potential linearized augmented plane wave (FL-LAPW) method was used with the generalized gradient approximation (GGA) including the orbital dependence of the self-energy, i.e. the orbital-dependent potentials of Coulomb and exchange interactions (GGA+ U). Using only LDA or GGA methods underestimates the electronic parameters (band gap and band dispersion). Applying orbital-dependent potentials splits the Te-5s state and shifts the binding energies of the Cd-4d levels towards the experimentally determined position. The calculated results indicated that although Te-5s and Cd-4d overlap, Cd-4d plays an important role in absorption and reflectivity constants. The optical constants of CdTe in hexagonal structure exhibit anisotropy (birefringence) in two directions (in basal-plan and c-axis) but the difference is very small in the static limit.

  12. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-01-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations. PMID:27669995

  13. 3D Particle Track Reconstrution in a Single Layer Cadmium-Telluride Hybrid Active Pixel Detector

    CERN Document Server

    Filipenko, Mykhaylo; Anton, Gisela; Michel, Thilo

    2014-01-01

    In the past 20 years the search for neutrinoless double beta decay has driven many developements in all kind of detector technology. A new branch in this field are highly-pixelated semiconductor detectors - such as the CdTe-Timepix detectors. It compromises a cadmium-telluride sensor of 14 mm x 14 mm x 1 mm size with an ASIC which has 256 x 256 pixel of 55 \\textmu m pixel pitch and can be used to obtain either spectroscopic or timing information in every pixel. In regular operation it can provide a 2D projection of particle trajectories; however, three dimensional trajectories are desirable for neutrinoless double beta decay and other applications. In this paper we present a method to obtain such trajectories. The method was developed and tested with simulations that assume some minor modifications to the Timepix ASIC. Also, we were able to test the method experimentally and in the best case achieved a position resolution of about 90 \\textmu m with electrons of 4.4 GeV.

  14. Spectral x-ray computed tomography scanner using a cadmium telluride detector

    Science.gov (United States)

    Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2016-10-01

    To obtain four tomograms with four different photon energy ranges simultaneously, we have developed a quad-energy Xray photon counter with a cadmium telluride (CdTe) detector and four sets of comparators and frequency-voltage converters (FVCs). X-ray photons are detected using the CdTe detector, and the event pulses from a shaping amplifier are sent to four comparators simultaneously to regulate four threshold energies of 20, 35, 50 and 65 keV. Using this counter, the energy ranges are 20-100, 35-100, 50-100 and 65-100 keV; the maximum energy corresponds to the tube voltage. Xray photons in the four ranges are counted using the comparators, and the logical pulses from the comparators are input to the FVCs. The outputs from the four FVCs are input to a personal computer through an analog-digital converter (ADC) to carry out quad-energy imaging. To observe contrast variations with changes in the threshold energy, we performed spectral computed tomography utilizing the quad-energy photon counter at a tube voltage of 100 kV and a current of 8.0 μA. In the spectral CT, four tomograms were obtained simultaneously with four energy ranges. The image contrast varied with changes in the threshold energy, and the exposure time for tomography was 9.8 min.

  15. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Manciu, Felicia S., E-mail: fsmanciu@utep.edu [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Salazar, Jessica G. [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Diaz, Aryzbe; Quinones, Stella A. [Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)

    2015-08-31

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  16. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    Science.gov (United States)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  17. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  18. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity.

  19. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fan J

    2016-07-01

    Full Text Available Junpeng Fan,1–4 Ming Shao,1–4 Lu Lai,3–5 Yi Liu,3–5 Zhixiong Xie1–4,6 1College of Life Sciences, Wuhan University, 2Hubei Provincial Cooperative Innovation Center of Industrial Fermentation,3State Key Laboratory of Virology, 4Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE, 5College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 6School of Life Science and Technology, Hubei Engineering University, Xiaogan, People’s Republic of China Abstract: Cadmium telluride quantum dots (CdTe QDs are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator, combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. Keywords: CdTe quantum dots, Saccharomyces cerevisiae, toxicity, autophagy

  20. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots.

    Science.gov (United States)

    Tashkhourian, Javad; Absalan, Ghodratollah; Jafari, Marzieh; Zare, Saber

    2016-01-05

    A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of <10s. The results revealed that doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9×10(-6)-6.1×10(-5)molL(-1) with a detection limit of 1.1×10(-7)molL(-1). The sensor was applied for determination of doxycycline in honey and human serum samples.

  1. The effect of substrate rotation rate on physical properties of cadmium telluride films prepared by a glancing angle deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Siyanaki, Fatemeh, E-mail: fatemeh.hosseini@gmail.com; Rezagholipour Dizaji, Hamid, E-mail: hrgholipour@semnan.ac.ir; Ehsani, Mohammad Hossein, E-mail: mhe_ehsani@yahoo.com; Khorramabadi, Shiva, E-mail: khorramabadi.sh@gmail.com

    2015-02-27

    Physical properties of cadmium telluride thin films, deposited on glass substrates by modified glancing angle deposition (GLAD) technique with various substrate rates of rotation, were investigated in this study. In contrast to obliquely columnar thin films fabricated by the conventional GLAD technique, in which higher columnar angle is coupled to higher degree of porosity, this study introduces obliquely deposited thin films which have packed columnar structures despite their highly tilted columns. Structural and optical properties and surface morphology of the CdTe thin films deposited by this technique were studied using X-ray diffraction, UV–visible spectroscopy and field emission scanning electron microscopy. - Highlights: • Glancing angle deposition technique was employed to prepare CdTe thin films. • The effect of substrate rate of rotation on optical properties was studied. • Highly tilted and packed columnar structure was fabricated. • A dramatic decline in refractive index in one of the specimens was observed.

  2. OPTIMUM STOICHIOMETRY OF CADMIUM ZINC TELLURIDE THIN FILMS IN THE LIGHT OF OPTICAL, STRUCTURAL AND PHOTON GENERATED GAIN STUDIES

    Directory of Open Access Journals (Sweden)

    Dr. MONISHA CHAKRABORTY

    2011-05-01

    Full Text Available Cadmium Zinc Telluride (Cd1-xZnxTe is a potential material for high energy imaging devices. Proper methods are adopted in this work to fabricate large area device grade Cd1-xZnxTe thin films for ‘x’ varying from 0.0567 to 0.2210. Large work function Nickel (Ni is the contact points on these films. The fabricated films are subjected to optical characterization, structural characterization and photon generated gain studies. Properties of fabricated films are found to vary with ‘x’. Photon generated gains of Ni-Cd1-xZnxTe structures are obtained. The present paper dealt with the estimation of optimum ‘x’ in Cd1-xZnxTe thin films in the light of optical, structural and photon generated gain studies.

  3. Structural and Optical Properties of Sputtered Cadmium Telluride Thin Films Deposited on Flexible Substrates for Photovoltaic Applications.

    Science.gov (United States)

    Song, Woochang; Lee, Kiwon; Kim, Donguk; Lee, Jaehyeong

    2016-05-01

    Cadmium telluride (CdTe) is a photovoltaic technology based on the use of thin films of CdTe to absorb and convert sunlight into electricity. In this paper, polycrystalline CdTe thin films were deposited using radio frequency magnetron sputtering onto flexible substrates including polyimide and molybdenum foil. The structural and optical properties of the films grown at various sputtering pressures were investigated using X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and UV/Nis/NIR spectrophotometry. The sputtering pressure was found to have significant effects on the structural properties, including crystallinity, preferential orientation, and microstructure. Deterioration of the optical properties of CdTe thin films were observed at high sputtering pressure.

  4. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    Science.gov (United States)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  5. Bulk growth and surface characterization of epitaxy ready cadmium zinc telluride substrates for use in IR imaging applications

    Science.gov (United States)

    Flint, J. P.; Martinez, B.; Betz, T. E. M.; MacKenzie, J.; Kumar, F. J.; Bindley, G.

    2016-05-01

    Cadmium Zinc Telluride (CZT) is an important compound semiconductor material upon which Mercury Cadmium Telluride (MCT) layers are deposited epitaxially to form structures that are used in high performance detectors covering a wide infrared (IR) spectral band. The epitaxial growth of high quality MCT layers presents many technical challenges and a critical determinant of material performance is the quality of the underlying bulk CZT substrate. CZT itself is a difficult material to manufacture where traditional methods of bulk growth are complex and low yielding, which constrains the supply of commercially available substrates. In this work we report on the epitaxy-ready finishing of Travelling Heather Method (THM) grown Cd0.96Zn0.04Te substrates. The THM method is well established for the growth of high quality CZT crystals used in nuclear, X-ray and spectroscopic imaging applications and in this work we demonstrate the application of this technique to the growth of IR specification CZT substrates with areas of up to 5 cm x 5 cm square. We will discuss the advantages of the THM method over alternative methods of bulk CZT growth where the high yield and material uniformity advantages of this technique will be demonstrated. Chemo-mechanical polishing (CMP) of 4 cm x 4 cm CZT substrates reveals that III-V (InSb/GaSb) like levels of epitaxy-ready surface finishing may be obtained with modified process chemistries. Surface quality assessments will be made by various surface analytical and microscopy techniques from which the suitability of the material for subsequent assessment of quality by epitaxial growth will be ascertained.

  6. INVESTIGATION OF THIN FILM CADMIUM SULFIDE SOLAR CELLS.

    Science.gov (United States)

    SOLAR CELLS , *CADMIUM COMPOUNDS, FILMS, SULFIDES, VAPOR PLATING, VACUUM APPARATUS, SINGLE CRYSTALS, TITANIUM, COPPER COMPOUNDS, CHLORIDES, INDIUM, MOLYBDENUM, SILICON COMPOUNDS, MONOXIDES, SURFACE PROPERTIES, ENERGY CONVERSION.

  7. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  8. Physical properties of Ag-doped cadmium telluride thin films fabricated by closed-space sublimation technique

    Science.gov (United States)

    Abbas Shah, N.; Ali, A.; Aqili, A. K. S.; Maqsood, A.

    2006-05-01

    Cadmium telluride (CdTe) thin films were prepared by the closed-space sublimation (CSS) technique, using CdTe powder as evaporant onto substrates of water-white glass. In the next step, the annealed films at 450 °C for 30 min were dipped in AgNO 3-H 2O solution at room temperature. These films were again annealed at 450 °C for 1 h to obtain silver-doped samples. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrically i.e. DC electrical resistivity as well as photo resistivity by van der Pauw method at room temperature, dark conductivity, activation energy analysis as a function of temperature by two-probe method under vacuum, and spectrophotometry. The electron microprobe analyzer (EMPA) results showed an increase of Ag content composition in the samples by increasing the immersion time of films in solution. The Hall measurements indicated the increase in mobility and carrier concentrations of CdTe films by doping of Ag. A significant change in the shape and size of the CdTe grains were observed.

  9. Transport phenomena in the close-spaced sublimation deposition process for manufacture of large-area cadmium telluride photovoltaic panels: Modeling and optimization

    Science.gov (United States)

    Malhotra, C. P.

    With increasing national and global demand for energy and concerns about the effect of fossil fuels on global climate change, there is an increasing emphasis on the development and use of renewable sources of energy. Solar cells or photovoltaics constitute an important renewable energy technology but the major impediment to their widespread adoption has been their high initial cost. Although thin-film photovoltaic semiconductors such as cadmium sulfide-cadmium telluride (CdS/CdTe) can potentially be inexpensively manufactured using large area deposition techniques such as close-spaced sublimation (CSS), their low stability has prevented them from becoming an alternative to traditional polycrystalline silicon solar cells. A key factor affecting the stability of CdS/CdTe cells is the uniformity of deposition of the thin films. Currently no models exist that can relate the processing parameters in a CSS setup with the film deposition uniformity. Central to the development of these models is a fundamental understanding of the complex transport phenomena which constitute the deposition process which include coupled conduction and radiation as well as transition regime rarefied gas flow. This thesis is aimed at filling these knowledge gaps and thereby leading to the development of the relevant models. The specific process under consideration is the CSS setup developed by the Materials Engineering Group at the Colorado State University (CSU). Initially, a 3-D radiation-conduction model of a single processing station was developed using the commercial finite-element software ABAQUS and validated against data from steady-state experiments carried out at CSU. A simplified model was then optimized for maximizing the steady-state thermal uniformity within the substrate. It was inferred that contrary to traditional top and bottom infrared lamp heating, a lamp configuration that directs heat from the periphery of the sources towards the center results in the minimum temperature

  10. Investigation of the electrochemical deposition of thick layers of cadmium telluride; Etude du depot electrochimique de couches epaisses de tellurure de cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J

    2007-04-15

    This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented.

  11. The 3-5 semiconductor solid solution single crystal growth. [low gravity float zone growth experiments using gallium indium antimonides and cadmium tellurides

    Science.gov (United States)

    Gertner, E. R.

    1980-01-01

    Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.

  12. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  13. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Wolfrum, Mathias; Kuest, Silke M.; Pazhenkottil, Aju P.; Nkoulou, Rene N.; Herzog, Bernhard A.; Gebhard, Catherine; Fuchs, Tobias A.; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2012-03-15

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as ''no match''. All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization. (orig.)

  14. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    Energy Technology Data Exchange (ETDEWEB)

    Verger, Antoine; Karcher, Gilles [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Djaballah, Wassila [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Fourquet, Nicolas [Clinique Pasteur, Toulouse (France); Rouzet, Francois; Le Guludec, Dominique [AP-HP, Hopital Bichat, Department of Nuclear Medicine, Paris (France); INSERM U 773 Inserm and Denis Diderot University, Paris (France); Koehl, Gregoire; Roch, Veronique [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Imbert, Laetitia [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Centre Alexis Vautrin, Department of Radiotherapy, Vandoeuvre (France); Poussier, Sylvain [INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Fay, Renaud [INSERM, Centre d' Investigation Clinique CIC-P 9501, Nancy (France); Marie, Pierre-Yves [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); INSERM U961, Nancy (France); Hopital de Brabois, CHU-Nancy, Medecine Nucleaire, Vandoeuvre-les-Nancy (France)

    2013-03-15

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving {sup 201}Tl (n = 120) or {sup 99m}Tc-sestamibi injected at low dose at stress ({sup 99m}Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ({sup 99m}Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, {sup 201}Tl 92 %, {sup 99m}Tc-Low 86 %, {sup 99m}Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the {sup 201}Tl or {sup 99m}Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 {+-} 101 kcounts) and dramatically enhanced with CZT SPECT (+279 {+-} 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  15. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  16. Size and temperature dependence of the photoluminescence properties of NIR emitting ternary alloyed mercury cadmium telluride quantum dots

    Science.gov (United States)

    Jagtap, Amardeep M.; Chatterjee, Abhijit; Banerjee, Arup; Babu Pendyala, Naresh; Koteswara Rao, K. S. R.

    2016-04-01

    Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8  ×  10-4 eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 μeV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

  17. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peng Hao; Levin, Craig S, E-mail: haopeng@stanford.ed, E-mail: cslevin@stanford.ed [Department of Radiology, Molecular Imaging Program, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2010-05-07

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm{sup 2} area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve {approx}32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be {approx}94.2 kcts s{sup -1} (breast volume: 720 cm{sup 3} and activity concentration: 3.7 kBq cm{sup -3}) for a {approx}10% energy window around 511 keV and {approx}8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity ({sigma}{sub rms}/mean) {<=} 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres

  18. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    Science.gov (United States)

    Peng, Hao; Levin, Craig S.

    2010-05-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 × 15 cm2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ~32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ~94.2 kcts s-1 (breast volume: 720 cm3 and activity concentration: 3.7 kBq cm-3) for a ~10% energy window around 511 keV and ~8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σrms/mean) <= 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within roughly 7 min

  19. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions.

    Science.gov (United States)

    Glick, Stephen J; Didier, Clay

    2013-10-14

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5-3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion

  20. Thin film cadmium telluride photovoltaic cells. Annual subcontract report, 23 July 1990--31 October 1991

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bohn, R. [Toledo Univ., OH (United States)

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  1. Photoluminescence and extended X-ray absorption fine structure studies on cadmium telluride material

    Science.gov (United States)

    Liu, Xiangxin

    The direct-band-gap semiconductor CdTe is an important material for fabricating high efficiency, polycrystalline thin-film solar cells in a heterojunction configuration. The outstanding physical properties of this material such as its good band-gap match to the solar spectrum, ease of fabrication of stoichiometric films, and easy grain boundary passivation make it an important candidate for large area, thin-film solar cells. However, there are several poorly understood processing steps that are commonly utilized in cell fabrication. One of these is a CdCl2 treatment near 400°C in the presence of oxygen, which can improve the cell efficiency a factor of two or more. Another factor is the role of copper in cell performance. In high performance CdS/CdTe thin-film solar cells, copper is usually included in the fabrication of low-resistance back contacts to obtain heavy p-type doping of the absorber CdTe at the contact. However, most of the copper is not electrically active. For example, secondary ion mass spectroscopy (SIMS) on typical CdTe cells has shown Cu concentrations of 1019 atoms/cm3 and even higher, although capacitance-voltage (C-V) measurements indicate typical ionized acceptor levels on the order of 1014/cm 3. Thus, there is great interest in the location and role of this inactive copper in CdTe photovoltaic (PV) devices. In this thesis, I will describe results obtained on magnetron-sputtered CdTe films that were diffused with copper following the procedure used for creating a cell back contact. Extended X-ray Absorption Fine Structure (EXAFS) measurements identified the chemical environment of the majority of the copper and show major differences depending on whether the CdTe film has been treated with chloride prior to the Cu diffusion. The EXAFS data indicate that the Cu chemistry is strongly affected by the chloride treatments---predominantly Cu2Te when Cu was diffused into the as-deposited CdTe film, but a Cu2O environment when Cu was diffused after

  2. Thin film cadmium telluride photovoltaic cells. Annual subcontract report, 1 November 1991--31 October 1992

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, C.D.; Bohn, R.G. [Toledo Univ., OH (United States)

    1993-10-01

    This report describes work to develop and optimize radio-frequency (RF) sputtering and laser-driven physical vapor deposition (LDPVD) for CdTe-based thin-film solar cells. Both of these techniques are vacuum-based and share several other common physical principles. However, they differ somewhat in the typical kinetic energies of Cd, Te, and S that impact on the growth surface. The values of several processing parameters-optimized with the LDPVD technique-were taken as starting values for the RF sputtering method. We completed an initial optimization of the sputtering parameters for the CdTe growth and also successfully sputtered CdS for the first time. In addition, we successfully fabricated what we believe are the first CdS/CdTe cells in which RF sputtering was used for both CdS and CdTe layers. We achieved an all-LDPVD ell with an air mass (AM) 1.5 efficiency of 10.5% and an all-RF-sputtered cell with AM 1.5 efficiency of 10.4%, as tested by NREL.

  3. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    Science.gov (United States)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  4. High-efficiency, thin-film cadmium telluride photovoltaic cells. Annual subcontract report, 20 January 1994--19 January 1995

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.D.; Bohn, R.G.; Rajakarunanayake, Y. [Toledo Univ., OH (United States)

    1995-08-01

    This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.

  5. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.; Ramesh, K. P.; Menon, R. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Anjaneyulu, P. [Department of Physics, Gitam University, Hyderabad 502329 (India)

    2015-06-07

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.

  6. CdTe Photovoltaic Devices for Solar Cell Applications

    Science.gov (United States)

    2011-12-01

    July 28, 2011 14. ABSTRACT Cadmium telluride ( CdTe ) has been recognized as a promising photovoltaic material for thin - film solar cells because of...mail.mil Phone: 301 394 0963 ABSTRACT Cadmium telluride ( CdTe ) has been recognized as a promising photovoltaic material for thin - film ...absorption coefficient allows films as thin as 2 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 17% have been

  7. The influence of reaction times on structural, optical and luminescence properties of cadmium telluride nanoparticles prepared by wet-chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kiprotich, Sharon, E-mail: KiprotichS@qwa.ufs.ac.za [Department of Physics, University of the Free State (QwaQwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Dejene, Francis B.; Ungula, Jatani [Department of Physics, University of the Free State (QwaQwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Onani, Martin O. [Departments of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2016-01-01

    This paper explains one pot synthesis of type II water soluble L-cysteine capped cadmium telluride (CdTe) core shell quantum dots using cadmium acetate, potassium tellurite and L-cysteine as the starting materials. The reaction was carried out in a single three necked flask without nitrogen under reflux at 100 °C. Results from PL show a sharp absorption excitonic band edge of the CdTe core with respect to the core shell which loses its shoulder during the growth of the shell on the core. The PL spectra indicate a drastic shift in emission window of the core which is simultaneously accompanied by an increase in emission intensity. X-ray diffraction pattern confirms the formation of hexagonal phase for all samples. Some difference in absorption edges were observed due to varying synthesis time of CdTe NPs. The position of the absorption band is observed to shift towards the lower wavelength side for shorter durations of synthesis.

  8. Thin film growths of zinc telluride and cadmium telluride on various substrates using a novel close space sublimation reactor CSS4

    Science.gov (United States)

    Marrufo, Damian

    Thin films of CdTe have been grown on CdS in a variety of methods for use in thin film photovoltaic systems. Limits to the efficiency of CdTe/CdS solar cells have been attributed to defects in the lattice that occur between the interface of CdS and CdTe due to a lattice mismatch. A close space sublimation (CSS) reactor known as the CSS4 was designed and fabricated in UTEP to deposit complex layers of CdTe and ZnTe on top of a CdS film that is grown via chemical bath deposition in order to obtain a CdTe photovoltaic. Unfortunately, the original design and fabrication of the CSS reactor (CSS3) proved to be unreliable and only a few depositions were made. This thesis summarizes the work done to improve the reactor to turn it into a reliable piece of lab equipment that can be used to conduct graduate level research while also listing known issues that should be addressed in future modifications. A standard procedure for growths is also presented. Some early results of films and devices made with the new CSS4 reactor are also included to demonstrate the potential experiments that could be conducted and the type of results that can be expected.

  9. Investigation of dual-energy X-ray photon counting using a cadmium telluride detector with dual-energy selection electronics

    Science.gov (United States)

    Sato, Eiichi; Kosuge, Yoshiyuki; Yamanome, Hayato; Mikata, Akiko; Miura, Tatsuya; Oda, Yasuyuki; Ishii, Tomotaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2017-01-01

    To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have developed a dual-energy X-ray photon counter with a cadmium telluride (CdTe) detector and two energy-selecting devices (ESDs). The ESD consists of two comparators and a microcomputer (MC). X-ray photons are detected using the CdTe detector, and the event pulses from a shaping amplifier are sent to two ESDs simultaneously to determine two energy ranges. X-ray photons in the two ranges are counted using the MCs, and the logical pulses from the MCs are input to frequency-to-voltage converters (FVCs). The outputs from the two FVCs are input to a personal computer through an analog-to-digital converter to carry out dual-energy computed tomography. The tube voltage and current were 80 kV and 8.5 μA, respectively. Two tomograms were obtained simultaneously with two energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-45 and 50-65 keV, respectively. The maximum count rate was 6.8 kilocounts per second with energies ranging from 10 to 80 keV, and the exposure time for tomography was 9.8 min.

  10. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Denis [CHU Caen and Normandy University, Department of Nuclear Medicine, Caen (France); Normandy University, Caen (France); Marie, Pierre-Yves [University of Lorraine, Faculty of Medicine, Nancyclotep Experimental Imaging Platform, Nancy (France); University of Lorraine, Faculty of Medicine, CHU Nancy, Department of Nuclear Medicine, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Ben-Haim, Simona [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Ramat Gan (Israel); Rouzet, Francois [University Hospital of Paris-Bichat, UMR 1148, Inserm et Paris Diderot-Paris 7 University Paris, Department of Nuclear Medicine, Paris (France); UMR 1148, Inserm and Paris Diderot-Paris 7 University Paris, Paris (France); Songy, Bernard [Centre Cardiologique du Nord, Saint-Denis (France); Giordano, Alessandro [Institute of Nuclear Medicine, Catholic University of Sacred Heart, Largo A. Gemelli, Department of Bioimages and Radiological Sciences, Rome (Italy); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hyafil, Fabien [Bichat University Hospital, Assistance Publique - Hopitaux de Paris, UMR 1148, Inserm and Paris Diderot-Paris 7 University, Department of Nuclear Medicine, Paris (France); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Bucerius, Jan [Maastricht University Medical Center, Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Verberne, Hein J. [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Faculty of Science and Technology, Department of Biomedical Photonic Imaging, Enschede (Netherlands); Lindner, Oliver [Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, Bad Oeynhausen (Germany); Collaboration: Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-12-15

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  11. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system

    Science.gov (United States)

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D.; Levin, Craig S.

    2016-09-01

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve 40~\\text{mm}× 40~\\text{mm}× 5 mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel’s comparators, were performed. 68Ge and 137Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be 7.35+/- 1.75 % FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  12. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Kuest, Silke M.; Pazhenkottil, Aju P.; Wolfrum, Mathias; Nkoulou, Rene N.; Goetti, Robert; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2011-11-15

    We evaluated the diagnostic accuracy of attenuation corrected nuclear myocardial perfusion imaging (MPI) with a novel hybrid single photon emission computed tomography (SPECT)/CT device consisting of an ultrafast dedicated cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors integrated onto a multislice CT scanner to detect coronary artery disease (CAD). Invasive coronary angiography served as the standard of reference. The study population included 66 patients (79% men; mean age 63 {+-} 11 years) who underwent 1-day {sup 99m}Tc-tetrofosmin pharmacological stress/rest examination and angiography within 3 months. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) as well as accuracy of the CT X-ray based attenuation corrected CZT MPI for detection of CAD ({>=}50% luminal narrowing) was calculated on a per-patient basis. The prevalence of angiographic CAD in the study population was 82%. Sensitivity, specificity, PPV, NPV and accuracy were 87, 67, 92, 53 and 83%, respectively. In this first report on CZT SPECT/CT MPI comparison versus angiography we confirm a high accuracy for detection of angiographically documented CAD. (orig.)

  13. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  14. First principles phase transition, elastic properties and electronic structure calculations for cadmium telluride under induced pressure: density functional theory, LDA, GGA and modified Becke-Johnson potential

    Science.gov (United States)

    Kabita, Kh; Maibam, Jameson; Indrajit Sharma, B.; Brojen Singh, R. K.; Thapa, R. K.

    2016-01-01

    We report first principles phase transition, elastic properties and electronic structure for cadmium telluride (CdTe) under induced pressure in the light of density functional theory using the local density approximation (LDA), generalised gradient approximation (GGA) and modified Becke-Johnson (mBJ) potential. The structural phase transition of CdTe from a zinc blende (ZB) to a rock salt (RS) structure within the LDA calculation is 2.2 GPa while that within GGA is found to be at 4 GPa pressure with a volume collapse of 20.9%. The elastic constants and parameters (Zener anisotropy factor, Shear modulus, Poisson’s ratio, Young’s modulus, Kleinmann parameter and Debye’s temperature) of CdTe at different pressures of both the phases have been calculated. The band diagram of the CdTe ZB structure shows a direct band gap of 1.46 eV as predicted by mBJ calculation which gives better results in close agreement with experimental results as compared to LDA and GGA. An increase in the band gap of the CdTe ZB phase is predicted under induced pressure while the metallic nature is retained in the CdTe RS phase.

  15. Spatial Mapping of the Mobility-Lifetime (microtau) Production in Cadmium Zinc Telluride Nuclear Radiation Detectors Using Transport Imaging

    Science.gov (United States)

    2013-06-01

    to the electron beam in the Zeiss Neon 40 EsB FIB/SEM beam as depicted in Figure 42, slices of the sample must initially be removed in a stair-step...tellurium, cadmium, zinc, or other elements. More precise, high-resolution imaging methods, such as transmission electron microscopy are needed to

  16. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  17. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays.

    Science.gov (United States)

    Kim, Hyunki; Furenlid, Lars R; Crawford, Michael J; Wilson, Donald W; Barber, H Bradford; Peterson, Todd E; Hunter, William C J; Liu, Zhonglin; Woolfenden, James M; Barrett, Harrison H

    2006-02-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm x 2.7 cm x -0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 x 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 x 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 x 10(-4) with the energy window of +/-10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT.

  18. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Buechel, Ronny R.; Pazhenkottil, Aju P.; Herzog, Bernhard A.; Husmann, Lars; Nkoulou, Rene N.; Burger, Irene A.; Valenta, Ines; Wyss, Christophe A.; Ghadri, Jelena R. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2010-10-15

    The aim of this study was to assess the ability of real-time breath-hold-triggered myocardial perfusion imaging (MPI) using a novel cadmium-zinc-telluride (CZT) gamma camera to discriminate artefacts from true perfusion defects. A group of 40 patients underwent a 1-day {sup 99m}Tc-tetrofosmin pharmacological stress/rest imaging protocol on a conventional dual detector SPECT gamma camera with and without attenuation correction (AC), immediately followed by scanning on an ultrafast CZT camera with and without real-time breath-hold triggering (instead of AC) by intermittent scanning confined to breath-hold at deep inspiration (using list mode acquisition). We studied the use of breath-hold triggering on the CZT camera and its ability to discriminate artefacts from true perfusion defects using AC SPECT MPI as the reference standard. Myocardial tracer uptake (percent of maximum) from CZT was compared to AC SPECT MPI by intraclass correlation and by calculating Bland-Altman limits of agreement. AC of SPECT MPI identified 19 apparent perfusion defects as artefacts. Of these, 13 were correctly identified and 4 were partially unmasked (decrease in extent and/or severity) by breath-hold triggering of the CZT scan. All perfusion defects verified by SPECT MPI with AC were appropriately documented by CZT with and without breath-hold triggering. This was supported by the quantitative analysis, as the correlation (r) of myocardial tracer uptake between CZT and AC SPECT improved significantly from 0.81 to 0.90 (p<0.001) when applying breath-hold triggering. Similarly, Bland-Altman limits of agreement were narrower for CZT scans with breath-hold triggering. This novel CZT camera allows real-time breath-hold triggering as a potential alternative to AC to assist in the discrimination of artefacts from true perfusion defects. (orig.)

  19. Studies on focal alveolar bone healing with technetium (Tc)-99m labeled methylene diphosphonate and gold-collimated cadmium telluride probe

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimochi, M.; Hosain, F.; Engelke, W.; Zeichner, S.J.; Ruttimann, U.E.; Webber, R.L. (National Institute of Dental Research, Bethesda, MD (USA))

    1991-01-01

    The benefit of using a collimator for a miniaturized cadmium telluride probe was evaluated by monitoring the bone-healing processes for 13 weeks after the induction of small iatrogenic alveolar bone lesions in one side of the mandible in beagles. Technetium (Tc)-99m labeled methylene diphosphonate (200 to 300 MBq, 5.1 to 8.1 mCi, in a solution of 0.5 to 1 ml, intravenously) was used as a bone-seeking radiopharmaceutical. The radioactivity over the bone lesion (L) and the contralateral normal site (C) in the mandible were measured between 1.5 and 2 hours after injection of the tracer, and the activity ratio L/C served as an index of relative bone uptake. A study of six dogs revealed that the healing response to a hemispheric bone defect of 2 mm diameter in the cortical bone could not be detected by an uncollimated probe, and in a repeated study in two dogs the use of a gold collimator (5 mm in diameter, 5 mm in length) did not increase the L/C ratio significantly. A second study in six dogs with 5 mm lesions showed that although systematic trends in the time courses of the L/C ratio obtained both with and without the collimator could be demonstrated, the L/C ratio of collimated versus uncollimated measurements was significantly (p less than 0.005) increased. In three of the latter six dogs, abscesses developed after 9 weeks, leading to a second increase (p less than 0.05) of the L/C ratio with collimation compared with the noninflammation group; without collimation no significant (p greater than 0.15) difference between the two groups could be demonstrated.

  20. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    OpenAIRE

    Zhouling Wang; Yu Hu; Wei Li; Guanggen Zeng; Lianghuan Feng; Jingquan Zhang; Lili Wu; Jingjing Gao

    2014-01-01

    Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was high...

  1. Effect of Annealing On Thin Film Fabrication of Cadmium Zinc Telluride by Single-R.F. Magnetron Sputtering Unit

    Directory of Open Access Journals (Sweden)

    Dr. Monisha Chakraborty A,

    2014-01-01

    Full Text Available In this work, formation of Cd1-xZnxTe thin films under various annealing-environments, created by layer by layer deposition of individual CdTe and ZnTe targets from a Single-R.F. Magnetron Sputtering unit is investigated. Structural and optical characterization results show that Vacuum Annealing is the best suitable for the formation of better Cd1-xZnxTe XRD peaks of higher intensities in comparison to Argon or Nitrogen-Annealing, for a bi-layered deposited CdTe and ZnTe film on glass substrate. The crystallography of the Cd1-xZnxTe films formed appeared to be either Cubic or Rhombohedral type. Also, it has been noticed, that the more inert the annealing-environment is, the lesser is the heat loss by the film-substrate and this results in better fusing of the deposited particles to move more from the poly-crystalline to the mono-crystalline structure. Also higher inert environment causes more Cadmium evaporation and this consequently drives the lattice-constant and the band-gap energy of the formed Cd1-xZnxTe thin film to move from the CdTe side to the ZnTe side. The method developed here with proper annealing ambiance for Cd1-xZnxTe fabrication can be implemented in laboratories lacking in Co-Sputtering machine.

  2. Characterization of nanocrystalline cadmium telluride thin films grown by successive ionic layer adsorption and reaction (SILAR) method

    Indian Academy of Sciences (India)

    A U Ubale; R J Dhokne; P S Chikhlikar; V S Sangawar; D K Kulkarni

    2006-04-01

    Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposition method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium acetate was used as cationic and sodium tellurite as anionic precursor in aqueous medium. In this process hydrazine hydrate is used as reducing agent and NH4OH as the catalytic for the decomposition of hydrazine. By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film deposition was done. In this paper the structural, optical and electrical properties of CdTe film are reported. The XRD pattern shows that films are nanocrystalline in nature. The resistivity is found to be of the order of 4.11 × 103 -cm at 523 K temperature with an activation energy of ∼ 0.2 eV. The optical absorption studies show that films have direct band gap (1.41 eV).

  3. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals

    Directory of Open Access Journals (Sweden)

    Wang M

    2016-05-01

    Full Text Available Mengmeng Wang,1,2,* Jilong Wang,1,2,* Hubo Sun,1,2 Sihai Han,3 Shuai Feng,1 Lu Shi,1 Peijun Meng,1,2 Jiayi Li,1,2 Peili Huang,1,2 Zhiwei Sun1,2 1Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, People’s Republic of China *These authors contributed equally to this work Abstract: A complete understanding of the toxicological behavior of quantum dots (QDs in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd2+ and hydroxyl radicals (·OH in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping ·OH with salicylic acid (SA as 2,3-dihydroxybenzoic acid (DHBA and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd2+ from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd2+ and ·OH, and could recover after a period of time. The Cd2+ and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of

  4. High-efficiency thin-film cadmium telluride photovoltaic cells. Annual subcontract report, January 20, 1995--January 19, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A D; Bohn, R G; Contreras-Puente, G [Toledo Univ., OH (United States). Dept. of Physics and Astronomy

    1996-05-01

    This annual report covers the second year of a 3-year NREL subcontract with the University of Toledo that is focused on improvements in efficiency for radio frequency (rf)-sputtered CdS/CdTe solar cells. In earlier work supported by NREL, the University of Toledo established the viability of two new deposition methods for CdS/CdTe solar cells by fabricating cells with efficiencies greater than 10% at air mass (AM) 1.5 on soda lime glass for all-sputtered cells and also for all-laser-deposited cells. Most of the effort has been placed on radio frequency sputtering (RFS) because it was judged to be more economical and more easily scaled to large-area deposition. However, laser physical vapor deposition (LPVD) has remained the method of choice for the deposition of CdCl{sub 2} layers and also for the exploration of new materials such as the ternary alloys including CdS{sub x} Te{sub 1{minus}x} and dopants such as Cu in ZnTe.

  5. High-efficiency thin-film cadmium telluride photovoltaic cells. Annual technical report, January 20, 1996--January 19, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A D; Bohn, R G; Contreras-Puente, G [Univ. of Toledo, OH (United States)

    1997-08-01

    The University of Toledo photovoltaics group has been instrumental in developing rf sputtering for CDs/CdTe thin-film solar cells. During the third phase of the present contract our work focussed on efforts to determine factors which limit the efficiency in our {open_quotes}all-sputtered{close_quotes} thin-film CdTe solar cells on soda-lime glass. We find that our all-sputtered cells, which are deposited at substantially lower temperature than those by sublimation or vapor deposition, require less aggressive CdCl{sub 2} treatments than do other deposition techniques and this is presumably related to CDs/CdTe interdiffusion. The CDs/CdTe interdiffusion process has been studied by several methods, including photoluminescence and capacitance-voltage measurements. Furthermore, we have deposited special thin bilayer films on quartz and borosilicate glass. Interdiffusion in these thin bilayers have been probed by Rutherford backscattering, with collaborators at Case Western Reserve University, and grazing incidence x-ray scattering (GIXS), with collaborators at the University at Buffalo and Brookhaven National Lab. Also, in order better to understand the properties of the ternary alloy material, we used laser physical vapor deposition to prepare a series of CdS{sub x}Te{sub 1-x} films on borosilicate glass. The composition of the alloy films was determined by wavelength dispersive x-ray spectroscopy at NREL. These films are currently being investigated by us and other groups at NREL and IEC.

  6. Nitrogen Doped Zinc Telluride Back Contact to CdS/CdTe Solar Cells

    Science.gov (United States)

    Drayton, J.; Makhratchev, K.; Price, K. J.; Ma, X.; Simmons, D. A.; Ludwig, K.; Gupta, A.; Bohn, R. G.; Compaan, A. D.

    2000-10-01

    We describe the development of the Nitrogen doped ZnTe for the back contacts of CdS/CdTe solar cell. Reproducible p-ZnTe films were obtained using RF magnetron sputtering technique with Ar/N2 gas mixture. Both, intrinsic and nitrogen doped, ZnTe films were investigated for electronic properties. The conductivity of the N:ZnTe films was about five orders of magnitude higher than that of intrinsic ones. A bilayer of intrinsic and doped ZnTe films were used in back contact structure of CdS/CdTe solar cells. The ZnTe/N:ZnTe/Ni structure showed slightly lower initial performance but better stability in comparison to evaporated Cu/Au back contacts.

  7. Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Stoeppler, M. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Angewandte Physikalische Chemie); Piscator, M. (Karolinska Inst., Stockholm (Sweden). Dept. of Environmental Hygiene) (eds.)

    1988-01-01

    The proceedings contain the 18 papers presented at the workshop. They are dealing with the following themes: Toxicity, carcinogenesis and metabolism of cadmium, epidemiology; environmental occurrence; quantitative analysis and quality assessment. (MG) With 57 figs., 79 tabs.

  8. Material and detector properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te) crystals grown by the modified floating-zone method

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A., E-mail: hossain@bnl.gov; Gu, G.D.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Roy, U.N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R.B.

    2015-06-01

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd{sub 1−x}Mn{sub x}Te crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  9. High Efficiency c-Silicon Solar Cells Based on Micro-Nanoscale Structure

    Science.gov (United States)

    2011-06-01

    film materials: (1) amorphous Si (a-Si) (4), cadmium telluride ( CdTe ) (5), and copper indium diselenide (CIS) (6), which are the most mature thin ...microblock design and fabrication. Current thin - film and c-Si solar cells have a limited conversion efficiency of 10–20% and cost $3–$5/W-peak and state...more efficient solar cells has been underway for several decades, from the development of thin - film solar cells with efficiencies greater than 10

  10. Advanced Processing of CdTe- and CuInxGa1-xSe2-Based Solar Cells: Final Report: 18 April 1995 - 31 May 1998

    Energy Technology Data Exchange (ETDEWEB)

    Morel, D. L.; Ferekides, C. S.; Bhatt, R.; Jayapalan, A.; Komin, V.; Lin, H.; Marinskiy, D.; Marinskaya, S.; Narayanaswamy, R.; Poosarla, U; Prabhakaran, R.; Sankaranarayanan, H.; Tetali, B.; Viswanathan, V.; Zafar, S. (Department of Electrical Engineering: The University of South Florida: Tampa, Florida)

    1999-01-13

    This report summarizes work performed by the University of South Florida Department of Electrical Engineering under this subcontract. The Cadmium telluride(CdTe) portion of this project deals with the development of high-efficiency thin-filmed CdTe solar cells using fabrication techniques that are suitable for manufacturing environments.

  11. Bis(3-methyl-2-pyridyl)ditelluride and pyridyl tellurolate complexes of zinc, cadmium, mercury: Synthesis, characterization and their conversion to metal telluride nanoparticles.

    Science.gov (United States)

    Kedarnath, G; Jain, Vimal K; Wadawale, Amey; Dey, Gautam K

    2009-10-21

    Treatment of an acetonitrile solution of metal chloride with bis(3-methyl-2-pyridyl)ditelluride, [Te(2)(pyMe)(2)], in the same solvent yielded complexes of composition [MCl(2){Te(2)(pyMe)(2)}] (M = Zn or Cd) whereas reactions of [MCl(2)(tmeda)] with NaTepyR (R = H or Me) gave tellurolate complexes of the general formula [M(TepyR)(2)] (M = Cd or Hg). When the cadmium complex [Cd(Tepy)(2)] was crystallized in the presence of excess tmeda, [Cd(Tepy)(2)(tmeda)] was formed exclusively. These complexes were characterized by elemental analyses, uv-vis, (1)H NMR data. The crystal structures of [ZnCl(2){Te(2)(pyMe)(2)}] and [Cd(Tepy)(2)(tmeda)] were established by single crystal X-ray diffraction. In the former zinc is coordinated to nitrogen atoms of the pyridyl group, while in the latter the coordination environment around tetrahedral cadmium is defined by the two neutral nitrogen atoms of tmeda, and two pyridyl tellurolate ligands. Thermal behavior of some of these complexes was studied by thermogravimetric analysis. Pyrolysis of [M(Tepy)(2)] in a furnace or in coordinating solvents such as hexadecylamine/tri-n-octylphosphine oxide (HDA/TOPO) at 350 and 160 degrees C, respectively gave MTe nanoparticles, which were characterized by uv-vis, photoluminiscence, XRD, EDAX and TEM.

  12. Demonstration of enhanced iodine K-edge imaging using an energy-dispersive X-ray computed tomography system with a 25 mm/s-scan linear cadmium telluride detector and a single comparator

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: dresato@iwate-med.ac.jp [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Oda, Yasuyuki [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Abudurexiti, Abulajiang [Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa, Iwate 020-0193 (Japan); Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)

    2012-05-15

    An energy-dispersive (ED) X-ray computed tomography (CT) system is useful for carrying out monochromatic imaging. To perform enhanced iodine K-edge CT, we developed an oscillation linear cadmium telluride (CdTe) detector with a scan velocity of 25 mm/s and an energy resolution of 1.2 keV. CT is performed by repeated linear scans and rotations of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. The lower photon energy is determined by a comparator device, and the maximum photon energy of 60 keV corresponds to the tube voltage. Rectangular-shaped comparator outputs are counted by a counter card. In the ED-CT, tube voltage and current were 60 kV and 0.30 mA, respectively, and X-ray intensity was 14.8 {mu}Gy/s at 1.0 m from the source at a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT for cancer diagnosis was carried out by selecting photons with energies ranging from 34 to 60 keV. - Highlights: Black-Right-Pointing-Pointer We developed an energy-dispersive X-ray CT system with a 25 mm/s-scan CdTe detector. Black-Right-Pointing-Pointer CT is performed by repeated linear scans and rotations of an object. Black-Right-Pointing-Pointer Lower photon energy is determined by a comparator device. Black-Right-Pointing-Pointer Spatial resolutions were 0.5 Multiplication-Sign 0.5 mm{sup 2}. Black-Right-Pointing-Pointer Iodine K-edge CT was carried out by selecting photons from 34 to 60 keV.

  13. A study of the stability of cadmium sulfide/copper sulfide and cadmium sulfide copper-indium-diselenide solar cells

    Science.gov (United States)

    Noel, G.; Richard, N.; Gaines, G.

    1984-08-01

    Groups of high efficiency cadmium sulfide/copper sulfide solar cells were exposed to combinations of stresses designed to isolate and accelerate intrinsic degradation mechanisms. Stresses included elevated temperature, illumination intensity, and cell loading conditions. All stress exposures and tests were conducted in a benign (high purity argon) atmosphere. Two primary intrinsic modes of degradation were identified: degradation of the open circuit voltage under continuous illumination and nonzero loading was found to be self recovering upon interruption of illumination or upon shorting or reverse biasing the cells. It was attributed to traps in the depletion region. Recovery from decay of light generated current was not spontaneous but could be partially accomplished by annealing in a reducing (hydrogen) environment. It was attributed to changes in the stoichiometry of the copper sulfide under the influence of electric fields and currents.

  14. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces

    Science.gov (United States)

    Peng, Haitao; Sun, Weihai; Li, Yunlong; Yan, Weibo; Yu, Pingrong; Zhou, Huanping; Bian, Zuqiang; Huang, Chunhui

    2016-04-01

    Planar heterojunction perovskite solar cell is one of the most competitive photovoltaic technologies, while charge transport materials play a crucial role. We successfully demonstrated an effective electron transport material, namely chemical bath deposited cadmium sulphide (CdS) film under low temperature, in perovskite-based solar cells. Power conversion efficiency of 16.1% has been achieved, which is comparable to that of devices based on TiO2 film prepared via low-temperature processes. Electronic impedance spectra reveal that the CdS-based device presents a higher recombination resistance than TiO2-based devices, which reduces carrier recombination and increases the open circuit voltage. The interface between CdS and perovskite was characterized with improved characteristics when compared to TiO2, e.g., efficient carrier extraction and reduced surface defect-associated degradation in the devices, which help to alleviate anomalous hysteresis and long-term instability. Furthermore, the entire device was fabricated via solution process with a processing temperature below 100°C, suggesting a promising method of further development of perovskite solar cells and commercial manufacturing.

  15. Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells

    Directory of Open Access Journals (Sweden)

    Prasad Babu R

    2012-01-01

    Full Text Available Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12 cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days.

  16. Effects of Long-term exposure of Gelatinated and Non-gelatinated Cadmium Telluride Quantum Dots on Differentiated PC12 cells

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2012-01-20

    Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days).

  17. Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings.

    Science.gov (United States)

    Chen, Huize; Gong, Yan; Han, Rong

    2014-01-01

    Nanoparticles (NPs) are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B) radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth's surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs), a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L) or UV-B radiation (10 KJ/m(2)/d) induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions.

  18. Cadmium telluride quantum dots (CdTe-QDs and enhanced ultraviolet-B (UV-B radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings.

    Directory of Open Access Journals (Sweden)

    Huize Chen

    Full Text Available Nanoparticles (NPs are becoming increasingly widespread in the environment. Free cadmium ions released from commonly used NPs under ultraviolet-B (UV-B radiation are potentially toxic to living organisms. With increasing levels of UV-B radiation at the Earth's surface due to the depletion of the ozone layer, the potential additive effect of NPs and UV-B radiation on plants is of concern. In this study, we investigated the synergistic effect of CdTe quantum dots (CdTe-QDs, a common form of NP, and UV-B radiation on wheat seedlings. Graded doses of CdTe-QDs and UV-B radiation were tested, either alone or in combination, based on physical characteristics of 5-day-old seedlings. Treatments of wheat seedlings with either CdTe-QDs (200 mg/L or UV-B radiation (10 KJ/m(2/d induced the activation of wheat antioxidant enzymes. CdTe-QDs accumulation in plant root cells resulted in programmed cell death as detected by DNA laddering. CdTe-QDs and UV-B radiation inhibited root and shoot growth, respectively. Additive inhibitory effects were observed in the combined treatment group. This research described the effects of UV-B and CdTe-QDs on plant growth. Furthermore, the finding that CdTe-QDs accumulate during the life cycle of plants highlights the need for sustained assessments of these interactions.

  19. Thin film solar cells. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning research and development of high-efficiency and low-cost thin film solar cells. References discuss the design and fabrication of silicon, gallium arsenide, copper selenide, indium selenide, cadmium telluride, and copper indium selenide solar cells. Applications in space and utilities are examined. Government projects and foreign technology are also reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Optimization of High-Efficiency CdS/CdTe Thin Film Solar Cell Using Step Doping Grading and Thickness of the Absorption Layer

    OpenAIRE

    Masoud Sabaghi; Abbas Majdabadi; Saeid Marjani; Saeed Khosroabadi

    2015-01-01

    In this paper, the influence of stepped doping of the absorber layer on performance of Cadmium Sulfide/Cadmium Telluride (CdS/CdTe) solar cell has been investigated. At first, the electrical characteristics of conventional CdS/CdTe solar cell is validated with fabricated CdS/CdTe solar cell. To improve the maximum efficiency of CdS/CdTe solar cell, the doping and thickness of the absorption layer are optimized. By step doping concentration within the absorber layer using buffer layer back con...

  1. Polymer Substrates For Lightweight, Thin-Film Solar Cells

    Science.gov (United States)

    Lewis, Carol R.

    1993-01-01

    Substrates survive high deposition temperatures. High-temperature-resistant polymers candidate materials for use as substrates of lightweight, flexible, radiation-resistant solar photovoltaic cells. According to proposal, thin films of copper indium diselenide or cadmium telluride deposited on substrates to serve as active semiconductor layers of cells, parts of photovoltaic power arrays having exceptionally high power-to-weight ratios. Flexibility of cells exploited to make arrays rolled up for storage.

  2. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung

    2011-12-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  3. Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe{sub 1-x}Te{sub x}: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, Ali Hussain, E-mail: maalidph@yahoo.co.uk [Institute of Physical Biology-South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Kityk, I.V. [Electrical Engineering Department, Technical University of Czestochowa, Al. Armii Krajowej 17/19, Czestochowa (Poland); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique de la Matiere (LPQ3 M), universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Auluck, S. [National Physical Laboratory Dr. K S Krishnan Marg, New Delhi 110012 (India)

    2011-06-16

    Highlights: > Theoretical study of effect of vary Te content on band structure, density of states, linear and nonlinear optical susceptibilities of CdSe{sub 1-x}Te{sub x}. > Increasing Te content leads to a decrease in the energy band gap. > Significant enhancement of the electronic properties as a function of tellurium concentration - Abstract: An all electron full potential linearized augmented plane wave method, within a framework of GGA (EV-GGA) approach, has been used for an ab initio theoretical study of the effect of increasing tellurium content on the band structure, density of states, and the spectral features of the linear and nonlinear optical susceptibilities of the cadmium-selenide-telluride ternary alloys CdSe{sub 1-x}Te{sub x} (x = 0.0, 0.25, 0.5, 0.75 and 1.0). Our calculations show that increasing Te content leads to a decrease in the energy band gap. We find that the band gaps are 0.95 (1.76), 0.89 (1.65), 0.83 (1.56), 0.79 (1.44) and 0.76 (1.31) eV for x = 0.0, 0.25, 0.5, 0.75 and 1.0 in the cubic structure. As these alloys are known to have a wurtzite structure for x less than 0.25, the energy gaps are 0.8 (1.6) eV and 0.7 (1.55) eV for the wurtzite structure (x = 0.0, 0.25) for the GGA (EV-GGA) exchange correlation potentials. This reduction in the energy gaps enhances the functionality of the CdSe{sub 1-x}Te{sub x} alloys, at least for these concentrations, leading to an increase in the effective second-order susceptibility coefficients from 16.75 pm/V (CdSe) to 18.85 pm/V (CdSe{sub 0.75}Te{sub 0.25}), 27.23 pm/V (CdSe{sub 0.5}Te{sub 0.5}), 32.25 pm/V (CdSe{sub 0.25}Te{sub 0.75}), and 37.70 pm/V (CdTe) for the cubic structure and from 12.65 pm/V (CdSe) to 21.11 pm/V (CdSe{sub 0.75}Te{sub 0.25}) in the wurtzite structure. We find a nonlinear relationship between the absorption/emission energies and composition, and a significant enhancement of the electronic properties as a function of tellurium concentration. This variation will help in

  4. Growth and Application of Cadmium Telluride.

    Science.gov (United States)

    1980-01-01

    photoconductive bodies or infra-red telescopes , image intensifiers, camera tubes, photoelectric cells, X-ray dosimeters and the like." So even by 1959 there...This consists of a stationary heater with a motorised pulley system which provides for movement of the CdTe charge relative to the heater. The furnace

  5. Ellipsometric Analysis of Cadmium Telluride Films’ Structure

    OpenAIRE

    Anna Evmenova; Volodymyr Odarych; Mykola Vuichyk; Fedir Sizov

    2015-01-01

    Ellipsometric analysis of CdTe films grown on Si and CdHgTe substrates at the “hot-wall” epitaxy vacuum setup has been performed. It has been found that ellipsometric data calculation carried out by using a simple one-layer film model leads to radical distortion of optical constants spectra: this fact authenticates the necessity to attract a more complicated model that should include heterogeneity of films. Ellipsometric data calculation within a two-layer film model permitted to conclude tha...

  6. Surface study of mercury-cadmium-telluride

    Energy Technology Data Exchange (ETDEWEB)

    Lops, V.C.

    1985-01-01

    Single crystals of Hg/sub 1-x/Cd/sub x/Te were studied to determine how changes in the surface conditions affected electrical properties. Infrared detector grade material from Honeywell Radiation Center (x = 0.2, bandgap near 10 ..mu..m) was used to examine the effects of changes in the surface charge density on electrical I/f noise. The surface charge density, which was controlled by the pH of the aqueous solution was measured in a zeta meter that operated much like a Millikan oil-drop experiment. The electrophoresis zeta potential measurements on (HgCd)Te identified the active surface oxide as TeO/sub 2/ and also revealed information on the surface chemistry. An experimental fit yielded the dissociation constant of tellurous acid, which was the result of TeO/sub 2/ combining with H/sub 2/O. The dissociation of tellurous acid was responsible for the measured surface charge densities and the surface chemistry from pH = 1 to pH = 8. At pH = 1, the surface was H/sub 3/TeO/sub 2//sup +/. At pH = 1.5, the surface was H/sub 2/TeO/sub 3/ which gave the neutral point, PZZP (Point of Zero Zeta Potential). With the pH between 2 and 6, the surface was HTeO/sub 3//sup -/. As the pH was changed to 7 and greater, the surface was TeO/sub 3//sup -/. Electrical I/f noise in (HgCd)Te was found to be dominated by bulk and not surface effects at room temperature.

  7. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso

    2014-01-01

    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  8. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  9. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe{sub 2} base layers

    Energy Technology Data Exchange (ETDEWEB)

    Khrypunov, G. S., E-mail: khrip@ukr.net; Sokol, E. I. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine); Yakimenko, Yu. I. [National Technical University “Kyiv Polytechnic Institute”, Research Institute of Applied Electronics (Ukraine); Meriuts, A. V. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine); Ivashuk, A. V. [National Technical University “Kyiv Polytechnic Institute”, Research Institute of Applied Electronics (Ukraine); Shelest, T. N. [National Technical University “Kharkiv Polytechnic Institute” (Ukraine)

    2014-12-15

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe{sub 2} base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 μm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe{sub 2}-based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected.

  10. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications). Final technical report, April 9, 1979-April 8, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Vedam, K; Das, M B; Krishnaswamy, S V

    1980-06-01

    After a brief review of the work done during the first three quarters, the work done during the last quarter is discussed in detail. In brief, CdTe sputtered self-doped and indium-doped n-type layers on Ni-film on glass have been investigated for film resistivity, contact resistance, Hall mobility and Schottky barrier diode characteristics. Ni has been found to provide satisfactory ohmic contacts and self-doped samples have indicated Hall mobility of approximately 8cm/sup 2//Vsec when the effective doping concentration is approximately 10/sup 18/cm/sup -3/. Use of indium doped sputtered films, when properly surface treated prior to metallization, appear to yield the best kind of Schottky barrier diode with approximate barrier height of 0.77 volt and Richardson constant A* approx. = 60 A/cm/sup 20/K/sup 2/. In spite of these attractive parameter values, these devices showed low V/sub oc/ and the capacitance showed unexpected frequency dependence that require further investigation. Finally suggestions for future work is presented.

  11. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  12. Polycrystalline Thin-Film Cadmium Telluride Solar Cells Fabricated by Electrodeposition; Final Technical Report, 20 March 1995-15 June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J. U.; Mao, D.; Kaydanov, V.; Ohno, T. R.; Williamson, D. L.; Collins, R.; Furtak, T. E.

    1999-01-27

    This report summarizes work performed by the Colorado School of Mines Department of Physics under this subcontract. Based on the studies conducted, researchers increased the efficiency of the cells with electrodeposited CdTe and CBD CdS by 3% on average ({approx}30 relative %). The improvement came from 1. Optimization of CdS initial thickness taking into account CdS consumption of CdTe during the CdTe/CdS post-deposition treatment; optimization of CdS post-deposition treatment with CdCl2 aimed at prevention of Te diffusion into CdS and improvement of the CdS film morphology and electronic properties. That led to a considerable increase in short circuit current, by 13% on average. 2. Optimization of CdTe thickness and post-deposition treatment which led to a significant increase in Voc, by {approx}70 mV. The highest Voc obtained exceeded 800 mV. 3. Development of a ZnTe:Cu/Metal back contact processing procedure that included selection of optimal Cu content, deposition regime and post-deposition treatment conditions. As a result, back contact resistance as low as 0.1W-cm2 was obtained. The cell stability was measured on exposure to accelerated stress conditions. Preliminary studies of some new approaches to improvement of CdS/CdTe structure were conducted.

  13. Fabrication of CdTe solar cells by laser-driven physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bhat, A.; Tabory, C.; Liu, S.; Nguyen, M.; Aydinli, A.; Tsien, L.H.; Bohn, R.G. (Toledo Univ., OH (USA). Dept. of Physics and Astronomy)

    1991-05-01

    Polycrystalline cadmium sulfide-cadmium telluride heterojunction solar cells were fabricated for the first time using a laser-driven physical vapor deposition method. An XeCl excimer laser was used to deposit both of the II-VI semiconductor layers in a single vacuum chamber from pressed powder targets. Results are presented from optical absorption. Raman scattering, X-ray diffraction, and electrical characterization of the films. Solar cells were fabricated by deposition onto SnO{sub 2}-coated glass with top contacts produced by gold evaporation. Device performance was evaluated from the spectral quantum efficiency and current-voltage measurements in the dark and with air mass 1.5 solar illumination. (orig.).

  14. The 100 kW space station. [regenerative fuel cells and nickel hydrogen and nickel cadmium batteries for solar arrays

    Science.gov (United States)

    Mckhann, G.

    1977-01-01

    Solar array power systems for the space construction base are discussed. Nickel cadmium and nickel hydrogen batteries are equally attractive relative to regenerative fuel cell systems at 5 years life. Further evaluation of energy storage system life (low orbit conditions) is required. Shuttle and solid polymer electrolyte fuel cell technology appears adequate; large units (approximately four times shuttle) are most appropriate and should be studied for a 100 KWe SCB system. A conservative NiH2 battery DOD (18.6%) was elected due to lack of test data and offers considerable improvement potential. Multiorbit load averaging and reserve capacity requirements limit nominal DOD to 30% to 50% maximum, independent of life considerations.

  15. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  16. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    CERN Document Server

    Bjørk, R

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  17. Technical evaluation of Solar Cells, Inc., CdTe module and array at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Strand, T.; Hansen, R. [National Renewable Energy Lab., Golden, CO (United States); Powell, R.; Sasala, R. [Solar Cells, Inc., Toledo, OH (United States)

    1996-05-01

    The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}, V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

  18. Recent developments in low cost silicon solar cells for terrestrial applications. [sheet production methods

    Science.gov (United States)

    Leipold, M. H.

    1978-01-01

    A variety of techniques may be used for photovoltaic energy systems. Concentrated or not concentrated sunlight may be employed, and a number of materials can be used, including silicon, gallium arsenide, cadmium sulfide, and cadmium telluride. Most of the experience, however, has been obtained with silicon cells employed without sunlight concentration. An industrial base exists at present for producing solar cells at a price in the range from $15 to $30 per peak watt. A major federal program has the objective to reduce the price of power provided by silicon solar systems to approximately $1 per peak watt in the early 1980's and $0.50 per watt by 1986. The approaches considered for achieving this objective are discussed.

  19. Evolution of oxygenated cadmium sulfide (CdS:O) during high-temperature CdTe solar cell fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Meysing, Daniel M.; Reese, Matthew O.; Warren, Charles W.; Abbas, Ali; Burst, James M.; Mahabaduge, Hasitha P.; Metzger, Wyatt K.; Walls, John M.; Lonergan, Mark C.; Barnes, Teresa M.; Wolden, Colin A.

    2016-12-01

    Oxygenated cadmium sulfide (CdS:O) produced by reactive sputtering has emerged as a promising alternative to conventional CdS for use as the n-type window layer in CdTe solar cells. Here, complementary techniques are used to expose the window layer (CdS or CdS:O) in completed superstrate devices and combined with a suite of materials characterization to elucidate its evolution during high temperature device processing. During device fabrication amorphous CdS:O undergoes significant interdiffusion with CdTe and recrystallization, forming CdS1-yTey nanocrystals whose Te fraction approaches solubility limits. Significant oxygen remains after processing, concentrated in sulfate clusters dispersed among the CdS1-yTey alloy phase, accounting for ~30% of the post-processed window layer based on cross-sectional microscopy. Interdiffusion and recrystallization are observed in devices with un-oxygenated CdS, but to a much lesser extent. Etching experiments suggest that the CdS thickness is minimally changed during processing, but the CdS:O window layer is reduced from 100 nm to 60-80 nm, which is confirmed by microscopy. Alloying reduces the band gap of the CdS:O window layer to 2.15 eV, but reductions in thickness and areal density improve its transmission spectrum, which is well matched to device quantum efficiency. The changes to the window layer in the reactive environments of device fabrication are profoundly different than what occurs by thermal annealing in an inert environment, which produced films with a band gap of 2.4 eV for both CdS and CdS:O. These results illustrate for the first time the significant changes that occur to the window layer during processing that are critical to the performance of CdTe solar cells.

  20. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  1. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  2. Dendritic tellurides acting as antioxidants

    Institute of Scientific and Technical Information of China (English)

    XU Huaping; WANG Yapei; WANG Zhiqiang; LIU Junqiu; Mario Smet; Wim Dehaen

    2006-01-01

    We have described the synthesis of a series of poly(aryl ether) dendrimers with telluride in the core and oligo(ethylene oxide) chains at the periphery which act as glutathione peroxidase (GPx) mimics. These series of compounds were well characterized by 1H-NMR, 13C-NMR and ESI-MS. Using different ROOH (H2O2, cumene hydroperoxide) for testing the antioxidizing properties of these compounds, we have found that from generation 0 to 2, the activity of the dendritic GPx mimics first decreased and then increased. This can be explained on the basis of a greater steric hindrance, going from generation 0 to 1, and stronger binding interactions going from generation 1 to 2. In other words, there exists a balance between binding interactions and steric hindrance that may optimize the GPx activity.

  3. Far Infrared Mercury-Cadmium-Telluride Photoconductive Detectors.

    Science.gov (United States)

    1980-09-01

    mobl come, v~r, donipŕ Sh totmid c clmtui Mistime Imduileg Uhwtksj-bmd ,wmblund.. and imeelty 5 value of 0.4 us. Below 30 K the lifetime increases...Laboratories), 2) D. L. Smith (California Institute of Technology ), 3) P. M. Raccah (University of Illinois at Chicago Circle), 4) R. E. Longshore (Night

  4. Theoretical Investigation of Point Defects of Mercury Cadmium Telluride.

    Science.gov (United States)

    1985-11-01

    J.C. Phillips and L. Kleinman , Phys. Rev. 116, 287(1959). 46. B.J. Austin, V. Heine, and L.J. Sham, "General theory of pseudopotentials," Phys, Rev. 127...R.A. Logan, and J.R. Arthur ,Jr., "The lower conduction band structure of (AI,Ga)As," Inst. Phys. Conf. Ser. No. 33a, 210(1977). 82.M.H. Weiler

  5. Laser induced damage studies in mercury cadmium telluride

    Science.gov (United States)

    Garg, Amit; Kapoor, Avinashi; Tripathi, K. N.; Bansal, S. K.

    2007-10-01

    We have investigated laser induced damage at 1.06 μm laser wavelength in diamond paste polished (mirror finish) and carborundum polished Hg0.8Cd0.2Te (MCT) samples with increasing fluence as well as number of pulses. Evolution of damage morphology in two types of samples is quite different. In case of diamond paste polished samples, evolution of damage morphological features is consistent with Hg evaporation with transport of Cd/Te globules towards the periphery of the molten region. Cd/Te globules get accumulated with successive laser pulses at the periphery indicating an accumulation effect. Real time reflectivity (RTR) measurement has been done to understand melt pool dynamics. RTR measurements along with the thermal profile of the melt pool are in good agreement with thermal melting model of laser irradiated MCT samples. In case of carborundum polished samples, laser damage threshold is significantly reduced. Damage morphological features are significantly influenced by surface microstructural condition. From comparison of the morphological features in the two cases, it can be inferred that laser processing of MCT for device applications depends significantly on surface preparation conditions.

  6. A surface study of mercury-cadmium-telluride

    Science.gov (United States)

    Lopes, V. C.

    1985-12-01

    Single crystals of Hg (sub 1-x) Cd (sub x) Te were studied to determine how changes in the surface conditions affected electrical properties, infrared detector grade material was used to examine the effects of changes in the surface charge density on electrical l/f noise. The surface charge density which was controlled by the pH of the aqueous solution was measured in a zeta meter which operated much like a Millikan oil drop experiment. The electrophoresis zeta potential measurements on (HgCd)Te have identified the active surface oxide as TeO2 and has also revealed information on the surface chemistry. Electrical l/f noise in-(HgCd)Te was found to be dominated by bulk and not surface effects at room temperature. Laser Raman and Auger spectroscopy were used to assess mechanical surface damage and anodic oxide composition.

  7. a Surface Study of Mercury-Cadmium Telluride.

    Science.gov (United States)

    Lopes, Vincent C.

    Single crystals of Hg(,1-x)Cd(,x)Te were studied to determine how changes in the surface conditions affected electrical properties. Infrared detector grade material from Honeywell Radiation Center (x = 0.2, bandgap near 10(mu)m) was used to examine the effects of changes in the surface charge density on electrical l/f noise. The surface charge density which was controlled by the pH of the aqueous solution was measured in a zeta meter which operated much like a Millikan oil drop experiment. The electrophoresis zeta potential measurements on (HgCd)Te have identified the active surface oxide as TeO(,2) and has also revealed information on the surface chemistry. An experimental fit yielded the dissociation constant of tellurous acid which was the result of TeO(,2) combining with H(,2)O. The dissociation of tellurous acid was responsible for the measured surface charge densities and the surface chemistry from pH = 1 to pH = 8. At pH = 1, the surface was H(,3)TeO(,3)('+). At pH = 1.5, the surface was H(,2)TeO(,3) which gave the neutral point, PZZP (Point of Zero Zeta Potential). With the pH between 2 and 6, the surface was HTeO(,3)('-). As the pH was changed to 7 and greater, the surface was TeO(,3)-. Electrical l/f noise in (HgCd)Te was found to be dominated by bulk and not surface effects at room temperature. l/f noise measure- ments were made in an air ambient and in various electrolytic solu- tions which produced different surface charge conditions. The l/f noise voltage did not change within experimental error as the surface charge density was changed (due to major changes in the surface chemistry) by pH; at pH = 7, ((sigma)(,s) = -3 x 10('12) e/cm('2) due to TeO(,3)-), with the pH between 2 and 6 (-1 x 10('12) e/cm('2) < (sigma)(,s) < -2 x 10('12) e/cm('2) due to HTeO(,3)('-)), and to pH = 1.5 ((sigma)(,s) = 0 due to H(,2)TeO(,3)). Laser Raman and Auger spectroscopy were used to assess mechanical surface damage and anodic oxide composition. Surface damage on (HgCd)Te produced dramatic changes in the Raman spectrum which was restored to its pre-damaged state by use of the bromine-methanol etch. Auger spectroscopy of anodically oxidized (HgCd)Te further confirmed that the tellurium surface oxide was TeO(,2). The ratio of the atomic concentrations of Te to O in the oxide was found to be approximately 1 to 2.

  8. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  9. The High Energy X-ray Imager Technology (HEXITEC) for Solar Hard X-ray Observations

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew

    2015-04-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For current high resolution X-ray mirrors, the HPD is about 25 arcsec. Over a 6-m focal length this converts to 750 µm, the optimum pixel size is around 250 µm. Annother requirement are that the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. The Rutherford Appleton Laboratory (RAL) in the UK has been developing the electronics for such a detector. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT), to create a fine (250 µm pitch) HXR detector. The NASA Marshall Space Flight CenterMSFC and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present on recent results and capabilities as applied to solar observations.

  10. HEXITEC: A next generation hard X-ray Detector for Solar Observations

    Science.gov (United States)

    Panessa, M.; Christe, S.; Shih, A.; Gaskin, J.; Wilson, M. D.; Seller, P.; Baumgartner, W.; Inglis, A. R.

    2015-12-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Recent developments at the Rutherford Appleton Laboratory (RAL) have resulted in a new hard X-ray (HXR) detector system with the smallest independent pixels currently available, 250 microns. This matches perfectly with the best angular resolution currently achievable by HXR focusing optics which is about 5 arcsec (FWHM). For a SMEX mission with a 15 meter focal length each pixel would cover an angular size of about 3 arcsec thereby subsampling the PSF. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) which provide high efficiency in the HXR region, good energy resolution, low background, low power, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. This ASIC can read each pixel 10,000 times per second. The NASA Marshall Space Flight Center (MSFC) and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present recent progress on this development effort and its capabilities as applied to solar observations.

  11. A bifacial quantum dot-sensitized solar cell with all-cadmium sulfide photoanode

    Science.gov (United States)

    Ma, Chunqing; Tang, Qunwei; Liu, Danyang; Zhao, Zhiyuan; He, Benlin; Chen, Haiyan; Yu, Liangmin

    2015-02-01

    Pursuit of a high power conversion efficiency and reduction of electricity-generation cost has been a persistent objective for quantum dot-sensitized solar cells (QDSSCs). We present here the fabrication of a QDSSC comprising a nanoflower-structured CdS anode, a liquid electrolyte having S2-/Sn2- redox couples, and a transparent CoSe counter electrode. Nanoflower-structured CdS anodes are prepared by a successive ionic layer adsorption and reaction (SILAR) method and subsequently hydrothermal strategy free of any surfactant or template. The CdS nanoparticles synthesized by a SILAR method act as "seed crystal" for growth of CdS nanoflowers. The average electron lifetime is markedly elevated in nanoflower-structured CdS anode in comparison with CdS nanoparticle or nanoporous CdS microsphere anode. Herein, we study the effect of synthesis method on CdS morphology and solar cell's photovoltaic performance, showing a power conversion efficiency of 1.67% and 1.17% for nanoflower-structured CdS QDSSC under front and rear irradiations, respectively.

  12. Chemical spray pyrolysis of copper indium diselenide/cadmium sulfide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.J.

    1989-01-01

    This dissertation concentrates on Chemical Spray Pyrolysis (CSP) of CuInSe{sub 2} and CdS thin films and solar cells. The primary goal is to gain an understanding of the chemistry and physics of CSP, and apply this knowledge to the fabrication of CuInSe{sub 2}/CdS solar cells. It provide an extensive review of the literature on the properties of CuInSe{sub 2} an CdS produced by CSP and other techniques. The films are characterized by x-ray diffractometry, scanning electron microscopy, electron microprobe, van der Pauw-Hall measurements, and optical absorption spectroscopy, and the devices are characterized electrically in the dark and under illumination. A model for the chemical mechanisms involved in CSP of CdS an CuInSe{sub 2} thin films is developed which is used to point out similarities between the two systems and explain the correlation between spray solution pH and second phases in CuInSe{sub 2} thin films. Structural investigations show that the CuInSe{sub 2} films can be produced in either the ordered or disordered crystal structure, while different substrates radically change the morphology of the films. By taking into account the effect of second phases, the electrical and optical properties of the sprayed films agree with published results for CuInSe{sub 2} produced by other techniques. The properties of the sprayed CdS films in this work are shown to agree with those sprayed by others. The device properties of cells fabricated in both the backwall and reverse backwall configuration are compared with each other and related to the materials properties of the semiconductor layers. The highest efficiency cell employing sprayed CuInSe{sub 2} is reported; however, the efficiency of the cells still need improvement before becoming practical. The dissertation concludes with recommendations for increasing the efficiency of completely sprayed CuInSe{sub 2}/CdS solar cells.

  13. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-12-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid.

  14. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.

    Science.gov (United States)

    Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan

    2015-11-25

    Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.

  15. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  16. High efficiency CSS CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.; Marinskiy, D.; Viswanathan, V.; Tetali, B.; Palekis, V.; Selvaraj, P.; Morel, D.L. [University of South Florida, Tampa, FL (United States). Dept. of Electrical Engineering

    2000-02-21

    Cadmium telluride (CdTe) has long been recognized as a strong candidate for thin film solar cell applications. It has a bandgap of 1.45 eV, which is nearly ideal for photovoltaic energy conversion. Due to its high optical absorption coefficient essentially all incident radiation with energy above its band-gap is absorbed within 1-2 {mu}m from the surface. Thin film CdTe solar cells are typically heterojunctions, with cadmium sulfide (CdS) being the n-type junction partner. Small area efficiencies have reached the 16.0% level and considerable efforts are underway to commercialize this technology. This paper will present work carried out at the University South Florida sponsored by the National Renewable Energy Laboratory of the United States Department of Energy, on CdTe/CdS solar cells fabricated using the close spaced sublimation (CSS) process. The CSS technology has attractive features for large area applications such as high deposition rates and efficient material utilization. The structural and optical properties of CSS CdTe and CdS films and junctions will be presented and the influence of some important CSS process parameters will be discussed. (orig.)

  17. Solar Cells Based on Low-dimensional Nanocomposite Structures

    Directory of Open Access Journals (Sweden)

    S.L. Khrypko

    2016-12-01

    Full Text Available Converting solar energy into electric energy with using of solar batteries is a major task for developers and research teams. In this article we will look at the development of different generations of solar batteries for to create a nanocomposite structure. Production of solar batteries has gone through some steps, taking into account technological and economic aspects that have been associated with improved of their parameters. Thus the first generations of solar batteries have been based on the single-crystal silicon substrates (с-Si. The use of polycrystalline silicon and multi- crystalline allowed lower costs of modules, but due to the efficiency of solar energy conversion. The solar batteries of the second generation were based on thin-film technology, in which use different materials: silicon films based on amorphous silicon (a-Si, a film based on cadmium telluride (CdTe and film selenide copper-indium-gallium (CuInGaSe2, or CIGS. The use of such technology has allowed increasing the coefficient of performance (COP solar cell with a significant reduction in costs. The solar batteries of third-generation based on nanotechnology, nanocrystals and nano-sized clusters of semiconductors. The creation of such solar cells requires availability of a low-dimensional composite structure. Low-dimensional nanocomposite structures that are constructed on quantum dots and nano-porous materials have new modified optoelectronic properties. They can be used in solar elements, where absorption bands can be optimally adapted to the wavelength of radiation light. These structures could theoretically can lead to increased efficiency of solar energy conversion more than 65%, which can double practically current efficiency of solar batteries.

  18. Electronic-structure calculations of large cadmium chalcogenide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Johannes [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum (Germany); Joswig, Jan-Ole [Physikalische Chemie, Technische Universitaet Dresden (Germany)

    2012-02-15

    In this paper, we will review our studies of large cadmium chalcogenide nanoparticles and present some new results on cadmium telluride systems. All calculations have been performed using density-functional based methods. The studies deal with the structural properties of saturated and unsaturated nanoparticles where the surfactants generally are hydrogen atoms or thiol groups. We have focused on the investigation of the density of states, the Mulliken charges, the eigenvalue spectra, and the spatial distributions of the frontier orbitals. Optical excitation spectra of pure CdS and CdSe/CdS core-shell systems have been calculated using a linear-response formalism. The reviewed studies are compared to the state of the art of modeling large cadmium chalcogenide particles. Optical excitations in large saturated cadmium chalcogenide nanoparticles with several thousand atoms. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Temperature dependent electroreflectance study of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Raadik, T., E-mail: taavi.raadik@ttu.ee [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krustok, J.; Josepson, R.; Hiie, J. [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Potlog, T.; Spalatu, N. [Moldova State University, A. Mateevici str. 60, MD-2009 Chisinau (Moldova, Republic of)

    2013-05-01

    Cadmium telluride is a promising material for large scale photovoltaic applications. In this paper we study CdS/CdTe heterojunction solar cells with electroreflectance spectroscopy. Both CdS and CdTe layers in solar cells were grown sequentially without intermediate processing by the close-space sublimation method. Electroreflectance measurements were performed in the temperature range of T = 100–300 K. Two solar cells were investigated with conversion efficiencies of 4.1% and 9.6%. The main focus in this work was to study the temperature dependent behavior of the broadening parameter and the bandgap energy of CdTe thin film in solar cells. Room temperature bandgap values of CdTe were E{sub g} = 1.499 eV and E{sub g} = 1.481 eV for higher and lower efficiency solar cells, respectively. Measured bandgap energies are lower than for single crystal CdTe. The formation of CdTe{sub 1−x}S{sub x} solid solution layer on the surface of CdTe is proposed as a possible cause of lower bandgap energies. - Highlights: ► Temperature dependent electroreflectance measurements of CdS/CdTe solar cells ► Investigation of junction properties between CdS and CdTe ► Formation of CdTe{sub 1−} {sub x}S{sub x} solid solution layer in the junction area.

  20. Molecular modelling of some para-substituted aryl methyl telluride and diaryl telluride antioxidants

    Science.gov (United States)

    Frisell, H.; Engman, L.

    2000-08-01

    Quantum mechanical calculations using the 3-21G(d) basis-set were performed on some p-substituted diaryl tellurides and aryl methyl tellurides, and the corresponding cationic radicals of these compounds. Calculated relative radical stabilization energies (RSE:s) were shown to correlate with experimentally determined peak oxidation potentials ( R=0.93) and 125Te-NMR chemical shifts ( R=0.91). A good correlation was also observed between the RSE:s and the Mulliken charge at the tellurium atoms ( R=0.97). The results showed that Hartree-Fock calculations using the 3-21G(d) basis set was sufficiently accurate for estimating the impact of p-substituents in aryl tellurides on experimentally determined properties such as peak oxidation potentials and 125Te-NMR chemical shifts.

  1. Electro-Plating and Characterisation of CdTe Thin Films Using CdCl2 as the Cadmium Source

    OpenAIRE

    Nor A. Abdul-Manaf; Hussein I. Salim; Mohammad L. Madugu; Olajide I. Olusola; Imyhamy M. Dharmadasa

    2015-01-01

    Cadmium telluride (CdTe) thin films have been successfully prepared from an aqueous electrolyte bath containing cadmium chloride (CdCl2)·H2O and tellurium dioxide (TeO2) using an electrodeposition technique. The structural, electrical, morphological and optical properties of these thin films have been characterised using X-ray diffraction (XRD), Raman spectroscopy, optical profilometry, DC current-voltage (I-V) measurements, photoelectrochemical (PEC) cell measurement, scanning electron micr...

  2. Physics-Based Compact Model for CIGS and CdTe Solar Cells: From Voltage-Dependent Carrier Collection to Light-Enhanced Reverse Breakdown: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xingshu; Alam, Muhammad Ashraful; Raguse, John; Garris, Rebekah; Deline, Chris; Silverman, Timothy

    2015-10-15

    In this paper, we develop a physics-based compact model for copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) heterojunction solar cells that attributes the failure of superposition to voltage-dependent carrier collection in the absorber layer, and interprets light-enhanced reverse breakdown as a consequence of tunneling-assisted Poole-Frenkel conduction. The temperature dependence of the model is validated against both simulation and experimental data for the entire range of bias conditions. The model can be used to characterize device parameters, optimize new designs, and most importantly, predict performance and reliability of solar panels including the effects of self-heating and reverse breakdown due to partial-shading degradation.

  3. Optimization of High-Efficiency CdS/CdTe Thin Film Solar Cell Using Step Doping Grading and Thickness of the Absorption Layer

    Directory of Open Access Journals (Sweden)

    Masoud Sabaghi

    2015-06-01

    Full Text Available In this paper, the influence of stepped doping of the absorber layer on performance of Cadmium Sulfide/Cadmium Telluride (CdS/CdTe solar cell has been investigated. At first, the electrical characteristics of conventional CdS/CdTe solar cell is validated with fabricated CdS/CdTe solar cell. To improve the maximum efficiency of CdS/CdTe solar cell, the doping and thickness of the absorption layer are optimized. By step doping concentration within the absorber layer using buffer layer back contact and the increase in stepping gradient of the doping of CdTe layer, improved the conversion efficiency about 2.4% were obtained. The open-circuit voltage, short-circuit current density, fill factor and total area conversion efficiency of optimized solar cell structure are 952 mV, 25.97 mA/cm2, 78.5% and 18.7% under global AM 1.5 conditions, respectively.

  4. Identification of critical stacking faults in thin-film CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Su-Hyun; Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Soon, Aloysius [Global E3 Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Abbas, Ali; Walls, John M., E-mail: j.m.wall@loughborough.ac.uk [Centre for Renewable Energy Systems Technology, School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2014-08-11

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl{sub 2} is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies.

  5. The single molecular precursor approach to metal telluride thin films: imino-bis(diisopropylphosphine tellurides) as examples.

    Science.gov (United States)

    Ritch, Jamie S; Chivers, Tristram; Afzaal, Mohammad; O'Brien, Paul

    2007-10-01

    Interest in metal telluride thin films as components in electronic devices has grown recently. This tutorial review describes the use of single-source precursors for the preparation of metal telluride materials by aerosol-assisted chemical vapour deposition (AACVD) and acquaints the reader with the basic techniques of materials characterization. The challenges in the design and synthesis of suitable precursors are discussed, focusing on metal complexes of the recently-developed imino-bis(diisopropylphosphine telluride) ligand. The generation of thin films and nanoplates of CdTe, Sb(2)Te(3) and In(2)Te(3) from these precursors are used as illustrative examples.

  6. Growth mechanism and strain relaxation in zinc selenide and cadmium telluride/zinc telluride semiconductor thin films

    Science.gov (United States)

    Wei, Hsiang-Yi

    The application of II--VI semiconductor devices such as blue-green light emitters (ZnSe-based materials) and HgCdTe infrared detectors are limited by the high density of defects and lack of large size substrates that are lattice matched and chemically compatible with the films. By growing a single thick buffer layer or a composite buffer structure of dissimilar materials can lead to a final top layer that is structurally and chemically compatible with the active layer of the device. Low defect density and flat surface morphology are the basic requirements for an applicable buffer layer. In this work, transmission electron microscopy is used to investigate the crystalline structure and defect generation mechanism in buffer layers for the growth of ZnSe-based and HgCdTe films. We investigate the interface chemistry, defect density, and growth mechanism of ZnSe films grown on GaAs substrates with different surface processing techniques. Undesirable high density of funnel defects (˜1010 cm-2) are always observed when the growth is performed on the epi-ready GaAs. We also observe that Sb can act as a surfactant and promote a truly layer-by-layer growth mode when the ZnSe film is grown on Sb-stabilized GaAs substrates. The defect density can be reduced to values as low as in the low 103 cm-2 range, which is the lowest defect density ever reported for ZnSe films. Moreover, the ZnSe surface exhibits a characteristic brick-like pattern for all of the substrate preparation methods used (except for Sb-stabilized GaAs) and the thickness of the ZnSe epilayers for films grown at ˜280--330°C. At a much higher growth temperature (410°C), a corrugated surface forms with high periodicity along the [110] direction. We propose a kinetics-limited surface roughness mechanism for the ZnSe films based on a competition of nucleation of 2D islands followed by step evolution. In the CdTe/ZnTe/Si epitaxial system, we investigated the influence of different surface precursors on the growth mechanism and defect density in the films. For As---precursor on the Si surface, Te adsorption on the terraces is inhibited and its migration to the step edges is enhanced. Therefore, the growth is expected to proceed in a step-flow growth mode. A strain relaxation mechanism including misfit dislocation generation, twin formation, and crystal tilt is proposed to account for the large lattice mismatch (f = 12.3%) in this system.

  7. Helios: Understanding Solar Evolution Through Text Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Randazzese, Lucien [SRI International, Menlo Park, CA (United States)

    2016-12-02

    This proof-of-concept project focused on developing, testing, and validating a range of bibliometric, text analytic, and machine-learning based methods to explore the evolution of three photovoltaic (PV) technologies: Cadmium Telluride (CdTe), Dye-Sensitized solar cells (DSSC), and Multi-junction solar cells. The analytical approach to the work was inspired by previous work by the same team to measure and predict the scientific prominence of terms and entities within specific research domains. The goal was to create tools that could assist domain-knowledgeable analysts in investigating the history and path of technological developments in general, with a focus on analyzing step-function changes in performance, or “breakthroughs,” in particular. The text-analytics platform developed during this project was dubbed Helios. The project relied on computational methods for analyzing large corpora of technical documents. For this project we ingested technical documents from the following sources into Helios: Thomson Scientific Web of Science (papers), the U.S. Patent & Trademark Office (patents), the U.S. Department of Energy (technical documents), the U.S. National Science Foundation (project funding summaries), and a hand curated set of full-text documents from Thomson Scientific and other sources.

  8. Le Tellurure de Cadmium amorphe oxygéné a - CdTe:O Synthèse et étude de quelques propriétés physico-chimiques

    OpenAIRE

    El Azhari, Youssef

    2003-01-01

    The work presented in this thesis is part of the study of the properties of thin layers of semiconductor materials based on cadmium telluride CdTe. The study of the influence of various deposition parameters on the properties of CdTe thin films has enabled us to develop a method of preparing a new material based on CdTe. It is the oxygenated amorphous cadmium telluride aCddTe: O. The thin film deposition of CdTe a-O from a target polycrystalline CdTe requires the use of a plasma high oxidizin...

  9. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    Science.gov (United States)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  10. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  11. Development of high-efficiency solar cells on copper indium selenide single crystals (cadmium sulfide, zinc oxide)

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Lap Sum

    1996-12-31

    Photovoltaic cells with a ZnO/CdS/CuInSe{sub 2} structure were fabricated on bulk CuInSe{sub 2} substrates. Conversion efficiencies of more than or near 10 per cent were obtained on cells with an active area and without the use of antireflection coating. Copper indium selenide single crystals can be used as absorbers in thin film solar cells. In this study, the single crystals were grown by a horizontal Bridgman method. An annealing of the CuInSe{sub 2} substrate before the CdS deposition was found to be essential in obtaining high photovoltaic performance.

  12. Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells.

    Science.gov (United States)

    Liu, Piao; Singh, Vijay P; Jarro, Carlos A; Rajaputra, Suresh

    2011-04-08

    Thin film CdS/CdTe heterojunction device is a leading technology for the solar cells of the next generation. We report on two novel device configurations for these cells where the traditional CdS window layer is replaced by nanowires (NW) of CdS, embedded in an aluminum oxide matrix or free-standing. An estimated 26.8% improvement in power conversion efficiency over the traditional device structure is expected, primarily because of the enhanced spectral transmission of sunlight through the NW-CdS layer and a reduction in the junction area/optical area ratio. In initial experiments, nanostructured devices of the two designs were fabricated and a power conversion efficiency value of 6.5% was achieved.

  13. Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Catrangiu, Adriana-Simona; Sin, Ion [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Prioteasa, Paula [INCDIE ICPE-Advanced Research, Splaiul Unirii 313, Bucharest (Romania); Cotarta, Adina [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Cojocaru, Anca, E-mail: a_cojocaru@chim.upb.ro [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Anicai, Liana [Center of Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest (Romania); Visan, Teodor [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania)

    2016-07-29

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the deposition of antimony telluride or copper telluride from ionic liquid consisting in mixture of choline chloride with oxalic acid. In addition, the cathodic process during copper telluride formation was studied in the mixture of choline chloride with ethylene glycol. The results indicate that the Pt electrode is first covered with a Te layer, and then the more negative polarisation leads to the deposition of Sb{sub x}Te{sub y} or Cu{sub x}Te{sub y} semiconductor compounds. Thin films were deposited on copper and carbon steel at 60–70 °C and were characterised by scanning electron microscopy, energy X-ray dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Their stoichiometry depends on the bath composition and applied potential. EDS and XRD patterns indicate the possible synthesis of stoichiometric Sb{sub 2}Te{sub 3} phase and Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, and Cu{sub 2.8}Te{sub 2} phases, respectively, by controlling the ratio of ion concentrations in ionic liquid electrolytes and deposition potential. - Highlights: • Sb{sub x}Te{sub y} and Cu{sub x}Te{sub y} films electrodeposited from choline-chloride-based ionic liquids. • The stoichiometry of film depends on the bath composition and deposition potential. • Sb{sub 2}Te{sub 3}, Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, Cu{sub 2.8}Te{sub 2} phases were identified in X-ray diffraction patterns.

  14. Cobalt-doped cadmium sulfide nanoparticles as efficient strategy to enhance performance of quantum dot sensitized solar cells

    Science.gov (United States)

    Firoozi, Najmeh; Dehghani, Hossein; Afrooz, Malihe

    2015-03-01

    In this study, we investigate the effect of Co2+ ion incorporation into CdS layer on the photovoltaic performance of quantum dot sensitized solar cell (QDSSC). Quantum dots are deposited by the successive ionic layer adsorption and reaction (SILAR) method on the mesoporous TiO2 film. The doped system modifies the structure of photoanode that leads to an increase in short circuit current density (Jsc) from 13.16 mA cm-2 to 16.6 mA cm-2 in the un-doped system. Electrochemical impedance analysis (EIS) reveals a decrease in charge transfer resistance at the TiO2/QDs/electrolyte interface that arises from the presence of an internal recombination pathway. The highest energy conversion efficiency (η) of 3.16% is obtained under standard air mass 1.5 global (AM 1.5G) simulated sun light by doping the optimized amount of Co2+ ion in CdS nanoparticles, corresponding to efficiency increment (35%) compared to the un-doped system. The origin of the increase in the efficiency is attributed to the dominance of charge collection to recombination. To further investigation of the electron transport time in the photoanode, the intensity modulated photocurrent spectroscopy (IMPS) is performed under standard conditions. Our obtained results can help to develop a simple and effective method to enhance the efficiency in the QDSSCs.

  15. Telluride buried channel waveguides operating from 6 to 20 μm for photonic applications

    Science.gov (United States)

    Vigreux, C.; Escalier, R.; Pradel, A.; Bastard, L.; Broquin, J.-E.; Zhang, X.; Billeton, T.; Parent, G.; Barillot, M.; Kirschner, V.

    2015-11-01

    One of the technological challenges of direct observation of extra-solar planets by nulling interferometry is the development of a modal filter operating from 6 to 20 μm. In the present paper a candidate technology for the fabrication of such modal filters is presented: Integrated Optics. A solution based on all-telluride buried channel waveguides is considered. In the proposed waveguides, vertical guiding of light is achieved by a 15 μm-thick Te83Ge17 core film deposited onto a lower-index Te75Ge15Ga10 substrate, and covered by a 15 μm-thick Te76Ge24 superstrate. Horizontal guiding of light is obtained by modifying the geometry of the core layer by ion beam etching. As this stage, all-telluride buried channel waveguide prototypes demonstrate light guiding and transmission from 2 to 20 μm. The validity of the technology and the good quality of the fabrication process, in particular the input and output facets surface finish are thus confirmed. These results consolidate the potential of Te-based integrated optics components for nulling interferometry.

  16. Improved Performance of CdS/CdTe Quantum Dot-Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Kyeong; Park, Tae Hee; Lee, Jun Young; Yang, Jong Hee; Han, Jin Wook; Yi, Whi Kun [Hanyang University, Seoul (Korea, Republic of)

    2014-09-15

    We fabricated quantum dot-sensitized solar cells (QDSSCs) using cadmium sulfide (CdS) and cadmium telluride (CdTe) quantum dots (QDs) as sensitizers. A spin coated TiO{sub 2} nanoparticle (NP) film on tin-doped indium oxide glass and sputtered Au on fluorine-doped tin oxide glass were used as photo-anode and counter electrode, respectively. CdS QDs were deposited onto the mesoporous TiO{sub 2} layer by a successive ionic layer adsorption and reaction method. Pre-synthesized CdTe QDs were deposited onto a layer of CdS QDs using a direct adsorption technique. CdS/CdTe QDSSCs had high light harvesting ability compared with CdS or CdTe QDSSCs. QDSSCs incorporating single-walled carbon nanotubes (SWNTs), sprayed onto the substrate before deposition of the next layer or mixed with TiO{sub 2} NPs, mostly exhibited enhanced photo cell efficiency compared with the pristine cell. In particular, a maximum rate increase of 24% was obtained with the solar cell containing a TiO{sub 2} layer mixed with SWNTs.

  17. Characterization of CdS Thin-Film in High Efficient CdS/CdTe Solar Cells

    Science.gov (United States)

    Tsuji, Miwa; Aramoto, Tetsuya; Ohyama, Hideaki; Hibino, Takeshi; Omura, Kuniyoshi

    2000-07-01

    Cadmium sulfide (CdS) thin films are the most commonly used window materials for high efficient cadmium telluride (CdTe) and chalcopyrite polycrystalline thin-film photovoltaic devices. High efficient CdS/CdTe solar cells with thin CdS films have been developed using ultrathin CdS films with a thickness of less than 0.1 μm. CdS films were deposited on transparent conductive oxide (TCO)/glass substrates by the metal organic chemical vapor deposition (MOCVD) technique. CdTe films were subsequently deposited by the close-spaced sublimation (CSS) technique. The screen printing and sintering method fabricated carbon and silver electrodes. Cell performance depends primarily on the electrical and optical properties of CdS films. Therefore we started to develop higher-quality CdS films and found clear differences between high- and low-quality CdS films from the analyses of scanning electron microscope (SEM), atomic force microscope (AFM), secondary ion mass spectroscopy (SIMS), thermal desorption spectrometry (TDS) and Fourier transforms-infrared spectrometry (FT-IR) measurements. As a result of controlling the quality of CdS films, a photovoltaic conversion efficiency of 10.5% has been achieved for size of 1376 cm2 of the solar cells under the Air Mass (AM) 1.5 conditions of the Japan Quality Assurance Organization.

  18. Characterization of CdS thin film in high efficient CdS/CdTe solar cells

    Science.gov (United States)

    Tsuji, Miwa; Aramoto, Tetsuya; Ohyama, Hideaki; Hibino, Takeshi; Omura, Kuniyoshi

    2000-06-01

    Cadmium sulfide (CdS) thin film is the most commonly used window material for high-efficient cadmium telluride (CdTe) thin-film photovoltaic devices. High-efficient CdS/CdTe solar cells have been developed using ultra-thin CdS films having a thickness of below 0.1 μm. CdS film is deposited on transparent conductive oxide (TCO) film coated glass substrates by the metal organic chemical vapor deposition (MOCVD) technique, CdTe film is subsequently deposited by the close-spaced sublimation (CSS) technique. Finally, carbon and Ag-In electrodes are fabricated by the screen printing and sintering method. Cell performance depends primarily on the electrical and optical properties of CdS film, and hence we started to develop higher quality CdS film and found out clear differences between high- and low-quality CdS films from various analyses: SEM, AFM, SIMS, TDS and FT-IR. As a result of controlling qualities of CdS films, photovoltaic conversion efficiency of 10.5% has been achieved for a size of 1376 cm 2 of the solar module under air mass (AM) 1.5 conditions by the Japan Quality Assurance Organization (JQA).

  19. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    M P Singh; C M Bhandari

    2004-06-01

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the degrading effect of minority carrier conduction. Lead telluride is among the best-known materials for use in the temperature range 400—900 K. This paper presents a detailed theoretical investigation of the role of minority carriers in degrading the thermoelectric properties of lead telluride and outlines the temperature range for optimal performance.

  20. Electro-Plating and Characterisation of CdTe Thin Films Using CdCl2 as the Cadmium Source

    Directory of Open Access Journals (Sweden)

    Nor A. Abdul-Manaf

    2015-09-01

    Full Text Available Cadmium telluride (CdTe thin films have been successfully prepared from an aqueous electrolyte bath containing cadmium chloride (CdCl2·H2O and tellurium dioxide (TeO2 using an electrodeposition technique. The structural, electrical, morphological and optical properties of these thin films have been characterised using X-ray diffraction (XRD, Raman spectroscopy, optical profilometry, DC current-voltage (I-V measurements, photoelectrochemical (PEC cell measurement, scanning electron microscopy (SEM, atomic force microscopy (AFM and UV-Vis spectrophotometry. It is observed that the best cathodic potential is 698 mV with respect to standard calomel electrode (SCE in a three electrode system. Structural analysis using XRD shows polycrystalline crystal structure in the as-deposited CdTe thin films and the peaks intensity increase after CdCl2 treatment. PEC cell measurements show the possibility of growing p-, i- and n-type CdTe layers by varying the growth potential during electrodeposition. The electrical resistivity of the as-deposited layers are in the order of 104 Ω·cm. SEM and AFM show that the CdCl2 treated samples are more roughness and have larger grain size when compared to CdTe grown by CdSO4 precursor. Results obtained from the optical absorption reveal that the bandgap of as-deposited CdTe (1.48–1.52 eV reduce to (1.45–1.49 eV after CdCl2 treatment. Full characterisation of this material is providing new information on crucial CdCl2 treatment of CdTe thin films due to its built-in CdCl2 treatment during the material growth. The work is progressing to fabricate solar cells with this material and compare with CdTe thin films grown by conventional sulphate precursors.

  1. Unconventional temperature enhanced magnetism in iron telluride

    Energy Technology Data Exchange (ETDEWEB)

    Zalinznyak, I. [Brookhaven National Laboratory (BNL); Xu, Zhijun [ORNL; Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Tsvelik, A. [Brookhaven National Laboratory (BNL); Stone, Matthew B [ORNL

    2011-01-01

    Discoveries of copper and iron-based high-temperature superconductors (HTSC)1-2 have challenged our views of superconductivity and magnetism. Contrary to the pre-existing view that magnetism, which typically involves localized electrons, and superconductivity, which requires freely-propagating itinerant electrons, are mutually exclusive, antiferromagnetic phases were found in all HTSC parent materials3,4. Moreover, highly energetic magnetic fluctuations, discovered in HTSC by inelastic neutron scattering (INS) 5,6, are now widely believed to be vital for the superconductivity 7-10. In two competing scenarios, they either originate from local atomic spins11, or are a property of cooperative spin-density-wave (SDW) behavior of conduction electrons 12,13. Both assume clear partition into localized electrons, giving rise to local spins, and itinerant ones, occupying well-defined, rigid conduction bands. Here, by performing an INS study of spin dynamics in iron telluride, a parent material of one of the iron-based HTSC families, we have discovered that this very assumption fails, and that conduction and localized electrons are fundamentally entangled. In the temperature range relevant for the superconductivity we observe a remarkable redistribution of magnetism between the two groups of electrons. The effective spin per Fe at T 10 K, in the2 antiferromagnetic phase, corresponds to S 1, consistent with the recent analyses that emphasize importance of Hund s intra-atomic exchange15-16. However, it grows to S 3/2 in the disordered phase, a result that profoundly challenges the picture of rigid bands, broadly accepted for HTSC.

  2. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  3. Historic Developments, Current Technologies and Potential of Nanotechnology to Develop Next Generation Solar Cells with Improved Efficiency

    Directory of Open Access Journals (Sweden)

    Nisith Raval

    2015-07-01

    Full Text Available Sun is the continuous source of renewable energy, from where we can get abundant of solar energy. Concept of conversionof solar energy into heat was used back in 200 B.C. since then, the solar cells have been developed which can convert solar energy into theelectrical energy and these systems have been produced commercially. The technologies to enhance the power conversion efficiency (PCEhave been continuously improved. Different technologies used for developing solar cells can be categorized either on the basis of materialused or techniques of technology development which is further termed as ‘first generation’ (e.g. crystalline silicon, ‘second generation’(thin films of Amorphous silicon, Copper indium gallium selenide, Cadmium telluride, ‘Third generation’ (Concentrated, Organic and Dyesensitize solar cell. These technologies give PCE up to 25% depending on the technology and the materials used. Nanotechnology enablesthe use of nanomaterial whose size is below 100 nm with extraordinary properties which has the capability to enhance the PCE to greaterextent. Various nanomaterials like Quantum Dots, Quantum well, carbon nanotubes, Nanowire and graphene have been used to makeefficient and economical solar cells, which not only provide high conversion efficiency economically but also are easy to produce. Today,by using nanotechnology, conversion efficiency up to 44.7 % has been achieved by Fraunhofer Institute at Germany. In this review article,we have reviewed the literature including various patents and publications, summarized the history of solar cell development, developmentof different technologies and rationale of their development highlighting the advantages and challenges involved in their development forcommercial purpose. We have also included the recent developments in solar cell research where different nanomaterials have beendesigned and used successfully to prove their superiority over conventional systems.

  4. 13.4% efficient thin-film CdS/CdTe solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, S. S.; Ferekides, C.; Wu, C. Q.; Britt, J.; Wang, C.

    1991-12-01

    Cadmium telluride is a promising thin-film photovoltaic material as shown by the more than 10% efficient CdS/CdTe heterojunction solar cells. In this work, thin-film CdS/CdTe solar cells have been prepared using CdS films grown from an aqueous solution and p-CdTe films deposited by close-spaced sublimation (CSS). The properties of CdS films deposited from an ammonical solution of a Cd-salt, an ammonium salt, and thiourea have been controlled by optimizing the temperature and composition of the solution. The solution-grown CdS films have a high photoconductivity ratio, and its optical transmission is superior to that of vacuum evaporated CdS films. The properties of p-CdTe films deposited by CSS have been optimized by controlling the temperature and composition of the source material, and the substrate temperature. The properties of CdS/CdTe heterojunctions have been studied; junction photovoltage spectroscopy is used for the qualitative comparison of junction characteristics. Solar cells of 1-cm2 area with an AM 1.5 efficiency of 13.4% are reported.

  5. Cadmium and zinc relationships.

    Science.gov (United States)

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  6. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  7. Polycrystalline CuInSe{sub 2} and CdTe solar cells. Annual subcontract report, April 15, 1992--April 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N.G. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1994-08-01

    The principal objective of the research project is to develop processes for the fabrication of cadmium-telluride, CdTe, and copper-indium-gallium-diselenide, Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2}, polycrystalline-thin-film solar cells using techniques that can be scaled-up for economic manufacture on a large scale. The aims are to fabricate CdTe solar cells using Cd and Te layers sputtered from elemental targets; to promote the interdiffusion between Cd/Te layers, CdTe phase formation, and grain growth; to utilize non-toxic selenization so as to avoid the use of extremely toxic H{sub 2}Se in the fabrication of Cu(In{sub l{minus}x}Ga{sub x})Se{sub 2} thin-film solar cells; to optimize selenization parameters; to improve adhesion; to minimize residual stresses; to improve the uniformity, stoichiometry, and morphology of CdTe and Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2} thin films, and the efficiency of CdTe and Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2} solar cells.

  8. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    CERN Document Server

    Wisniewski, Eric; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  9. Studies of the grain boundary effect in electrodeposited cadmium telluride films from optical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, J.; Bhattacharyva, D.; Maiti, A.B.; Chaudhuri, S.; Pal, A.K. (Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Materials Science)

    1995-01-01

    Polycrystalline CdTe films were deposited onto SnO[sub 2] coated glass substrates using electrodeposition with different deposition potentials, ranging from -670 to -725 mV, with respect to a saturated calomel electrode (SCE). The grain boundary potential (E[sub b]), the density of trap states at the intercrystalline boundary (Q[sub t]) and the carrier concentration (p) in the films were obtained. The surface roughness ([sigma][sub o]) of the films was determined by utilising reflectance measurements while the band gap ([approx] 1.49 eV) was determined from transmittance vs wavelength traces. The barrier height was found to increase from 0.23 eV to 0.25 eV with the variation of the deposition potential from -675 to -725 mV; while the corresponding variation in the density of trap states at the grain boundary region was 1.0 x 10[sup 12]-2.1x10[sup 12]. The carrier concentration was obtained from experimental values of the Debye length, determined from the optical transmittance measurements. (Author)

  10. An ultrasensitive method for the determination of melamine using cadmium telluride quantum dots as fluorescence probes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiafei; Li, Jin; Kuang, Huiyan; Feng, Lei; Yi, Shoujun; Xia, Xiaodong; Huang, Haowen [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); Chen, Yong; Tang, Chunran [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Zeng, Yunlong, E-mail: yunlongzeng1955@126.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-11-13

    Graphical abstract: Melamine takes place of the TGA on the surface of TGA-CdTe QDs with negative charge to form melamine coated QDs changing the surface charge of the QDs, resulting the fluorescence quenched as the QDs aggregation occurred by electrostatic attraction of the two opposite charged nanocrystals. -- Highlights: •An ultrasensitive and selective method for the determination of melamine was developed at pH 11.0. •The selectivity of the method was improved. •The sensitivity of the method enhanced obviously as the CdTe QDs have higher QYs at pH 11. •The sensitivity and linear range for the analysis are size dependent using QDs PL probes. •Melamine takes the place of TGA resulting fluorescence quenched of QDs. -- Abstract: An ultrasensitive and simple method for the determination of melamine was developed based on the fluorescence quenching of thioglycolic acid (TGA) capped CdTe quantum dots (QDs) at pH 11.0. In strong alkaline aqueous solution, the selectivity of the method has been greatly improved due to most heavy metal ions show no interference as they are in the precipitation form or in their anion form. Furthermore, CdTe quantum dots have higher quantum yields at higher pH. The method has a wider concentration range and lower detection limit. The influence factors on the determination of melamine were investigated and the optimum conditions were determined. Under optimum conditions, the fluorescence intensity change of TGA coated CdTe quantum dots was linearly proportional to melamine over a concentration range from 1.0 × 10{sup −11} to 1.0 × 10{sup −5} mol L{sup −1} with a correlation coefficient of 0.9943 and a detection limit of 5 × 10{sup −12} mol L{sup −1}. The mechanism of fluorescence quenching of the QDs has been proposed based on the infrared spectroscopy information and electrophoresis experiments in presence of melamine under alkaline condition. The proposed method was employed to detect trace melamine in milk powder and pet feeds with satisfactory results.

  11. Temperature-dependent adsorption of tellurium and mercury species on cadmium telluride studied by spectroscopic ellipsometry

    Science.gov (United States)

    Badano, Giacomo

    In this study, a subsonic molecular beam of Hg was directed on CdTe surfaces and the absorption spectra were measured for the first time by ellipsometry. We analyze the optical spectra of Hg adsorbed on CdTe surfaces, over the range 1.6--4.5 eV, for a variety of temperatures and Hg fluxes. When a CdTe(211)B surface is subjected to a Hg flux, various effects can occur. Hg will be present on and just beneath the surface in a variety of forms: chemisorbed on the Te sites or on excess Te (forming a 2D surface, 1D chains or isolated atoms or clusters), physisorbed as a 2D liquid, or diffused into the CdTe bulk. In our analysis of the change in the pseudo dielectric function, we made several approximations. We treated the different constituents as separate layers, which is strictly speaking not true, because the various Hg forms are probably mixed. Second, we used the 3D form of the Hg1- xCdxTe e(□; x) dielectric function to mimic chemisorbed Hg on the surface. Also, we used a Drude function to model the presence of physisorbed Hg, although that is probably a good approximation. Third, we fit only the imaginary part of the dielectric function, , because it has a more direct physical meaning, and unlike the real part does not depend on the presence of out-of-range critical points. In addition, the limited resolution of the M88 ellipsometer prevented us from using a critical point analysis to interpret the data. These limitations notwithstanding, our analysis gives surprisingly good results, in that it reproduces the expected dependence of the thickness of the chemisorbed and physisorbed components correctly as a function of temperature and pressure and gives reasonable values for the composition of the Hg1-xCd xTe. Although we do not at present believe the absolute numbers that the analysis provides, we believe that this approach confirms our general ideas regarding the nature of the CdTe(211) surface under Hg, and is valuable at least technologically, to obtain a reliable run-to-run characterization of the surface before growth.

  12. Characterization of metal contacts on and surfaces of cadmium zinc telluride

    CERN Document Server

    Bürger, A; Chattopadhyay, K; Shi, D; Morgan, S H; Collins, W E; James, R B

    1999-01-01

    In the past several years significant progress has been made in building a database of physical properties for detector quality Cd sub x Zn sub 1 sub - sub x Te (CZT) (x=0.1-0.2) crystal material. CZT's high efficiency combined with its room temperature operation make the material an excellent choice for imaging and spectroscopy in the 10-200 keV energy range. For detector grade material, superior crystallinity and high bulk resistivity are required. The surface preparation during the detector fabrication plays a vital role in determining the contact characteristics and the surface leakage current, which are often the dominant factors influencing its performance. This paper presents a surface and contact characterization study aimed at establishing the effects of the surface preparation steps prior to contacting (polishing and chemical etching), the choice of the metal and contact deposition technique, and the surface oxidation process. A photoconductivity mapping technique is used for studying the effects of...

  13. Modeling effects of solute concentration in Bridgman growth of cadmium zinc telluride

    Science.gov (United States)

    Stelian, Carmen; Duffar, Thierry

    2016-07-01

    Numerical modeling is used to investigate the effect of solute concentration on the melt convection and interface shape in Bridgman growth of Cd1-x Znx Te (CZT). The numerical analysis is compared to experimental growth in cylindrical ampoules having a conical tip performed by Komar et al. (2001) [15]. In these experiments, the solidification process occurs at slow growth rate (V = 2 ṡ10-7 m / s) in a thermal field characterized by a vertical gradient GT = 20 K / cm at the growth interface. The computations performed by accounting the solutal effect show a progressive damping of the melt convection due to the depleted Zn at the growth interface. The computed shape of the crystallization front is in agreement with the experimental measurement showing a convex-concave shape for the growth through the conical part of the ampoule and a concave shape of the interface in the cylindrical region. The distribution of Zn is nearly uniform over the crystal length except for the end part of the ingots. The anomalous zinc segregation observed in some experiments is explained by introducing the hypothesis of incomplete charge mixing during the homogenization time which precedes the growth process. When the crystallization is started in ampoules having a very sharp conical tip, the heavy CdTe is accumulated at the bottom part of the melt, giving rise to anomalous segregation patterns, featuring very low zinc concentration in the ingots during the first stage of the solidification.

  14. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Kutcher, Susan W [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Palsoz, Witold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Berding, Martha [SRI International, Menlo Park, CA (United States); Burger, Arnold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States)

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  15. Space processing of electronic materials. [determining ther themal conductivity of mercury cadmium tellurides and furnace design

    Science.gov (United States)

    Workman, G. L.; Holland, L. R.

    1981-01-01

    The relative values of thermal conductivity of solid and liquid HgCdTe are critically important in the design configuration of the furnaces used for Bridgman crystal growth. The thermal diffusivity of the material is closely linked to the conductivity by the defining relation D = k/rho c, where D is the diffusivity, K is the thermal conductivity, rho is the density, and c is the specific heat. The use of transient and periodic heating approaches to measure the diffusivity are explored. A system for securing and extracting heat from silica or glass tubes under high C vacuum conditions is described.

  16. Nature of AX centers in antimony-doped cadmium telluride nanobelts.

    Science.gov (United States)

    Huang, Liubing; Lin, Chien-Chih; Riediger, Max; Röder, Robert; Tse, Pok Lam; Ronning, Carsten; Lu, Jia Grace

    2015-02-11

    Single crystalline p-type CdTe:Sb nanobelts were fabricated using an Au-catalyzed chemical vapor deposition method. Low carrier concentration and low mobility even at high Sb incorporation manifest compensation in the system. From cross examination of temperature-dependent charge transport and photoluminescence measurements, two major acceptor levels induced by Sb doping are determined: a shallow level attributed to substitutional Sb dopants without lattice relaxation and an associated deeper level resulted from large lattice relaxation-AX centers. Persistent photoconductivity and hysteresis photoconductance under the thermal cycle elucidate the nature of AX centers. This comprehensive investigation of the impurity levels in the material system is essential for the design and development of nanoelectronic devices based on the CdTe nanostructures.

  17. Prognostic evaluation in obese patients using a dedicated multipinhole cadmium-zinc telluride SPECT camera.

    Science.gov (United States)

    De Lorenzo, Andrea; Peclat, Thais; Amaral, Ana Carolina; Lima, Ronaldo S L

    2016-02-01

    The purpose of this study is to evaluate the prognostic value of myocardial perfusion SPECT obtained in CZT cameras (CZT-SPECT) with multipinhole collimation in obese patients. CZT-SPECT may be technically challenging in the obese, and its prognostic value remains largely unknown. Patients underwent single-day, rest/stress (supine and prone) imaging. Images were visually inspected and graded as poor, fair or good/excellent. Summed stress and difference scores (SSS and SDS, respectively) were converted into percentages of total perfusion defect and of ischemic defect by division by the maximum possible score. Obesity was defined as a body mass index (BMI) ≥ 30 kg/m(2) and classified as class I (BMI 30-34.9 kg/m(2)), II (BMI 35-39.9 kg/m(2)), or III (BMI ≥ 40 kg/m(2)). Patients were followed-up by telephone interview for the occurrence of all-cause death, myocardial infarction or revascularization. A Cox proportional hazards analysis was used to assess the independent predictors of death. Among 1396 patients, 365 (26.1 %) were obese (mean BMI 33.9 ± 3.6; 17.5 % class I, 3.4 % class II, and 3.4 % class III). Image quality was good/excellent in 94.5 % of the obese patients. The annualized mortality rates were not significantly different among obese and non-obese patients, being obese and non-obese patients. Age, the use of pharmacologic stress and an abnormal CZT-SPECT, but not obesity, were independent predictors of death. In obese patients, single-day rest/stress CZT-SPECT with a multipinhole camera provides prognostic discrimination with high image quality.

  18. Intense pulsed light treatment of cadmium telluride nanoparticle-based thin films.

    Science.gov (United States)

    Dharmadasa, Ruvini; Lavery, Brandon; Dharmadasa, I M; Druffel, Thad

    2014-04-09

    The search for low-cost growth techniques and processing methods for semiconductor thin films continues to be a growing area of research; particularly in photovoltaics. In this study, electrochemical deposition was used to grow CdTe nanoparticulate based thin films on conducting glass substrates. After material characterization, the films were thermally sintered using a rapid thermal annealing technique called intense pulsed light (IPL). IPL is an ultrafast technique which can reduce thermal processing times down to a few minutes, thereby cutting production times and increasing throughput. The pulses of light create localized heating lasting less than 1 ms, allowing films to be processed under atmospheric conditions, avoiding the need for inert or vacuum environments. For the first time, we report the use of IPL treatment on CdTe thin films. X-ray diffraction (XRD), optical absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and room temperature photoluminescence (PL) were used to study the effects of the IPL processing parameters on the CdTe films. The results found that optimum recrystallization and a decrease in defects occurred when pulses of light with an energy density of 21.6 J cm(-2) were applied. SEM images also show a unique feature of IPL treatment: the formation of a continuous melted layer of CdTe, removing holes and voids from a nanoparticle-based thin film.

  19. Laser Damage in 8- to 14-Micron Mercury-Cadmium-Telluride Photovoltaic Detector Material

    Science.gov (United States)

    1976-01-20

    CSS ? C4AM Ez!CMCM7I PROJECT. =ASK(~ ~~o O~m. OARIAO.£AE & WORK Un’r MIMBZXS \\a-.al Research Laboratory I NRL Problem N01-36.501 Washington. D.C. 20375...therefore de- errained empirically in fitting tle data. The thermal conductivity K of R; CdTe varies con- iderably over the temperature range of interesL

  20. Research of oxidation processes of a cadmium telluride film surface by ellipsometric method

    Science.gov (United States)

    Zabashta, Lubov A.; Opanasyuk, A. S.; Kharchenko, V. I.

    1997-04-01

    Kinetics of formation of an oxide on the CdTe surface was investigated during a sample exposition in air at temperatures Th equals 20 degrees C, 260 degrees C, 340 degrees C, 420 degrees C, for 200 hours. For nonoxide CdTe surface the following values of optical constants ns equals 2.6 and ks equals 0.6 are received. At a exposition of samples at room temperature a refractive index of an oxide film changed from nf equals 1.7 at initial stages of growth up to nf equals 2.37 after 200 hours oxidation. At all stages of oxidation process the monotone reduction of a refractive index of oxide layers at an increase of heating temperature is found out. During natural oxidation oxide layer thickness reaches 1.8 nm in the course of 20 hours. Hereafter oxide formation speed decreases that results in stabilization of its thickness. It is shown that the growth of the oxide phase is descried with the parabolic law and is checked with diffusion processes. To determine the energy of oxidation process activation the charts of dependence of logarithm of oxide film thickness upon inverse temperature at constant oxidation time were built. The presence of two areas of heating temperatures with different energy of oxidation process activation is established. The parameters of kinetic equation are determined which describe oxide film growth in low temperature and high temperature fields.

  1. Analysis of the traveling heater method for the growth of cadmium telluride

    Science.gov (United States)

    Peterson, Jeffrey H.; Fiederle, Michael; Derby, Jeffrey J.

    2016-11-01

    We discuss the development and implementation of a comprehensive mathematical model for the traveling heater method (THM) that is formulated to realistically represent the interactions of heat and species transport, fluid flow, and interfacial dissolution and growth under conditions of local thermodynamic equilibrium and steady-state growth. We examine the complicated interactions among zone geometry, continuum transport, phase change, and fluid flow driven by buoyancy. Of particular interest and importance is the formation of flow structures in the liquid zone of the THM that arise from the same physical mechanism as lee waves in atmospheric flows and demonstrate the same characteristic Brunt-Väisälä scaling. We show that flow stagnation and reversal associated with lee-wave formation are responsible for the accumulation of tellurium and supercooled liquid near the growth interface, even when the lee-wave vortex is not readily apparent in the overall flow structure. The supercooled fluid is posited to result in morphological instability at growth rates far below the limit predicted by the classical criterion by Tiller et al. for constitutional supercooling.

  2. Imaging properties of small-pixel spectroscopic x-ray detectors based on cadmium telluride sensors.

    Science.gov (United States)

    Koenig, Thomas; Schulze, Julia; Zuber, Marcus; Rink, Kristian; Butzer, Jochen; Hamann, Elias; Cecilia, Angelica; Zwerger, Andreas; Fauler, Alex; Fiederle, Michael; Oelfke, Uwe

    2012-11-07

    Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors. Two systems were investigated with pixel pitches of 110 and 165 μm, which are in the order of the mean free path lengths of the characteristic x-rays produced in their sensors. Peak widths were found to be almost constant across the energy range of 10 to 60 keV, with values of 2.3 and 2.2 keV (FWHM) for the two pixel pitches. The average number of pixels responding to a single incoming photon are about 1.85 and 1.45 at 60 keV, amounting to detective quantum efficiencies of 0.77 and 0.84 at a spatial frequency of zero. Energy selective CT acquisitions are presented, and the two pixel pitches' abilities to discriminate between iodine and gadolinium contrast agents are examined. It is shown that the choice of the pixel pitch translates into a minimum contrast agent concentration for which material discrimination is still possible. We finally investigate saturation effects at high x-ray fluxes and conclude with the finding that higher maximum count rates come at the cost of a reduced energy resolution.

  3. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B., E-mail: gnade@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, G. R.; Allee, D. R. [Flexible Display Center, Arizona State University, Phoenix, Arizona 85284 (United States); Sastré-Hernández, J.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City 07738 (Mexico); Mendoza-Pérez, R. [Universidad Autónoma de la Ciudad de México, Mexico City 09790 (Mexico)

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  4. Femtosecond optical characterization and applications in cadmium(manganese) telluride diluted magnetic semiconductors

    Science.gov (United States)

    Wang, Daozhi

    This thesis is devoted to the optical characterization of Cd(Mn)Te single crystals. I present the studies of free-carrier dynamics and generation and detection of coherent acoustic phonons (CAPS) using time-resolved femtosecond pump-probe spectroscopy. The giant Faraday effect and ultrafast responsivity of Cd(Mn)Te to sub-picosecond electromagnetic transients are also demonstrated and discussed in detail. The first, few-picosecond-long electronic process after the initial optical excitation exhibits very distinct characteristic dependence on the excitation condition, and in case of Cd(Mn)Te, it has been attributed to the collective effects of band filling, band renormalization, and two-photon absorption. A closed-form, analytic expression for the differential reflectivity induced by the CAPs is derived based on the propagating-strain-pulse model and it accounts very well for our experimental observations. The accurate values of the Mn concentration and longitudinal sound velocity nu s in Cd(Mn)Te were obtained by fitting the data of the refractive index dependence on the probe wavelength to the Schubert model. In Cd 0.91Mn0.09Te, nus was found to be 3.6x103 m/s. Our comparison studies from the one-color and two-color experiments reveal that the intrinsic phonon lifetime in Cd(Mn)Te was at least on the order of nanoseconds, and the observed exponential damping of the CAP oscillations was due to the finite absorption depth of the probe light. Optically-induced electronic stress has been demonstrated to be the main generation mechanism of CAPs. We also present the giant Faraday effect in the Cd(Mn)Te and the spectra of the Verdet constant, which is mainly due to the exchange interaction between the Mn ions and band electrons. The spectral characteristics of the Verdet constant in Cd(Mn)Te exhibit very unique features compared to that in pure semiconductors. In our time-resolved sampling experiments at the room temperature, the response of the Cd(Mn)Te, particularly with low Mn concentrations, to the sub-picosecond electromagnetic pulses has been demonstrated for the first time and studied in detail. The physical origin of the ultrafast responsivity is shown to be the electro-optic (Pockels) effect, simultaneously excluding the magneto-optical (Faraday) effect due to the Mn-ion spin dynamics. The discrepancy between the absence of the low-frequency Pockels effect and the ultrafast sampling results, suggests that in Cd(Mn)Te crystals at low frequencies, the electric field component of the external electromagnetic transients is screened by the free carriers (holes). At very high (THz) frequencies, tested by our sampling experiment, Mn spins are too slow to respond and we observe the very large Pockels effect in Cd(Mn)Te crystals.

  5. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India); Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India)

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  6. Design of a Pneumatic Robotic Arm for Solar Cell Tester System By using PLC controller

    Directory of Open Access Journals (Sweden)

    Yousif I. Al Mashhadany

    2013-01-01

    Full Text Available Solar cell testers sort photovoltaic cells according to their electrical performance, tested under simulated sunlight. A variety of testers exist, but they all face a common challenge of handling cells that are very small and thin, which makes it difficult to transport the cells from the conveyer to the storage box. This paper presents a new design for a handling robot with vacuum end-effectors, which uses a PLC controller to govern the movement of the cells and the testing process. The design applies to solar cell testers for monocrystalline, polycrystalline, cadmium telluride (CdTe, and copper indium diselenide (CIS cells. Each cell is tested for efficiency and categorized accordingly into four groups (A to D. A Virtual Reality (VR model was built to simulate the system, keeping in mind real world constraints. Two photoelectric sensors were used to make detections for both the testing process and the robot movement. The PLC controller guides the trajectory of the robot according to the results of the efficiency testing. It was seen that the system worked very well, with the testing process and the robot movement interacting smoothly. The robot trajectory was seen to be highly accurate, and the pick and place operations were done with great precision.

  7. MOCVD of thin film photovoltaic solar cells—Next-generation production technology?

    Science.gov (United States)

    Irvine, S. J. C.; Barrioz, V.; Lamb, D.; Jones, E. W.; Rowlands-Jones, R. L.

    2008-11-01

    This paper will review the chalcogenide thin film photovoltaic (PV) solar cells, based on cadmium telluride (CdTe) and copper indium diselenide (CIS) and discuss the potential for metalorganic chemical vapour deposition (MOCVD) to enable more advanced devices in the second generation of CdTe module production. The current generation of production methods is based on physical vapour deposition (PVD) or close-spaced sublimation (CSS). This paper concentrates on the less well-known topic of MOCVD of thin film chalcogenide cells, and in particular that of CdTe. Efficient CdTe PV solar cells (>10% AM1.5) have been demonstrated from deposition of the CdS, CdTe and CdCl 2 films in a single MOCVD chamber. The CdTe layer was doped with As and an additional high As concentration CdTe layer provides effective low resistance contacting without the need for wet etching the surface. The high level of flexibility in using MOCVD has been demonstrated where the CdS window layer has been alloyed with Zn to improve the blue response of the PV device and improve AM1.5 efficiency to 13.3%.

  8. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  9. Cadmium and zinc relationships

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.; Piscator, M.

    1978-08-01

    Higher mammals, such as homo sapiens, accumulate zinc in kidney cortex almost equimolarly with cadmium. A different pattern seems to be present in liverthere is a limited increase of zinc in two species of large farm animals compared with a marked increase in the laboratory. In large farm animals, an equimolar increase of zinc with cadmium in renal cortex seems to indicate that the form of metallothionein that binds equal amounts of cadmium and zinc in present. Differences in cadmium and zinc relationships in large animals and humans compared with laboratory animals must be carefully considered. (4 graphs, 26 references)

  10. HEXITEC: A Next Generation Hard X-ray Detector for Solar Observations

    Science.gov (United States)

    Ryan, Daniel; Christe, Steven; Shih, Albert; Inglis, Andrew R.; Gregory, Kyle; Baumgartner, Wayne H.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew; Veale, Matthew C.; Panessa, Marco

    2016-05-01

    There is an increasing demand in solar physics for high resolution X-ray spectroscopic imaging. Such observations would present ground-breaking opportunities to study the poorly understood high energy processes in the solar corona such as solar flares, coronal heating, etc. However, such observations require a new breed of solid-state detectors sensititve to high energy X-rays with fine independent pixels to subsample the point spread function (PSF) of the X-ray optics. They must also be capable of handling very high count rates as photon fluxes from solar flares often cause pileup in current detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new Cadmium Telluride (CdTe) detector system, dubbed HEXITEC (High Energy X-ray Imaging Technology). It is an 80x80 array of 250 micron independent pixels sensitive in the 4--80 keV band and capable of a high full frame readout rate of 10 kHz. HEXITEC provides the smallest independently read out pixels currently available, and are well matched to the few arcsecond PSF produced by the current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space-borne hard X-ray focusing telescopes. In this poster we show the latest results on HEXITEC's imaging capability, high read out rate, and energy sensitivity and reveal it to be ideal for such future instruments. The potential observations obtained by combining HEXITEC with the next generation of X-ray focusing optics could to revolutionize our understanding of high energy processes in the solar corona.

  11. Origin of anomalous anharmonic lattice dynamics of lead telluride

    CERN Document Server

    Shiga, Takuma; Hori, Takuma; Delaire, Olivier; Shiomi, Junichiro

    2015-01-01

    The origin of the anomalous anharmonic lattice dynamics of lead telluride is investigated using molecular dynamics simulations with interatomic force constants (IFCs) up to quartic terms obtained from first principles. The calculations reproduce the peak asymmetry of the radial distribution functions and the double peaks of transverse optical phonon previously observed with neutron diffraction and scattering experiments. They are identified to be due to the extremely large nearest-neighbor cubic IFCs in the [100] direction. The outstanding strength of the nearest-neighbor cubic IFCs relative to the longer-range ones explains the reason why the distortion in the radial distribution function is local.

  12. NREL preprints for the 23rd IEEE Photovoltaic Specialists Conference

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, M. [ed.

    1993-05-01

    Topics covered include various aspects of solar cell fabrication and performance. Aluminium-gallium arsenides, cadmium telluride, amorphous silicon, and copper-indium-gallium selenides are all characterized in their applicability in solar cells.

  13. Zinc and cadmium monosalicylates

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1984-06-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  14. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  15. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Science.gov (United States)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    polygon, total absorption remains approximately the same. However, the total absorption suffers significantly if the holes are triangle. The transmission spectra of incident light into the bottom subcell, and hence the absorption, change significantly for square and circle holes if the active materials change to cadmium selenide (CdSe) and cadmium telluride (CdTe) in the top and bottom subcells, respectively. Although the intermediate metal layer may induce electron-hole pair recombination due to surface defects, the short-circuit current density of an ultra-thin plasmonic solar cell with an intermediate metal layer with two-dimensional hole array is >9% of that of a structure without the intermediate metal layer.

  16. Semiconductor solar cells: Recent progress in terrestrial applications

    Science.gov (United States)

    Avrutin, V.; Izyumskaya, N.; Morkoç, H.

    2011-04-01

    In the last decade, the photovoltaic industry grew at a rate exceeding 30% per year. Currently, solar-cell modules based on single-crystal and large-grain polycrystalline silicon wafers comprise more than 80% of the market. Bulk Si photovoltaics, which benefit from the highly advanced growth and fabrication processes developed for microelectronics industry, is a mature technology. The light-to-electric power conversion efficiency of the best modules offered on the market is over 20%. While there is still room for improvement, the device performance is approaching the thermodynamic limit of ˜28% for single-junction Si solar cells. The major challenge that the bulk Si solar cells face is, however, the cost reduction. The potential for price reduction of electrical power generated by wafer-based Si modules is limited by the cost of bulk Si wafers, making the electrical power cost substantially higher than that generated by combustion of fossil fuels. One major strategy to bring down the cost of electricity generated by photovoltaic modules is thin-film solar cells, whose production does not require expensive semiconductor substrates and very high temperatures and thus allows decreasing the cost per unit area while retaining a reasonable efficiency. Thin-film solar cells based on amorphous, microcrystalline, and polycrystalline Si as well as cadmium telluride and copper indium diselenide compound semiconductors have already proved their commercial viability and their market share is increasing rapidly. Another avenue to reduce the cost of photovoltaic electricity is to increase the cell efficiency beyond the Shockley-Queisser limit. A variety of concepts proposed along this avenue forms the basis of the so-called third generation photovoltaics technologies. Among these approaches, high-efficiency multi-junction solar cells based on III-V compound semiconductors, which initially found uses in space applications, are now being developed for terrestrial applications. In

  17. In situ synthesis of binary cobalt-ruthenium nanofiber alloy counter electrode for electrolyte-free cadmium sulfide quantum dot solar cells

    Science.gov (United States)

    Du, Nan; Ren, Lei; Sun, Weifu; Jin, Xiao; Zhao, Qing; Cheng, Yuanyuan; Wei, Taihuei; Li, Qinghua

    2015-06-01

    A facile, low-cost and low-temperature fabrication approach of counter electrode is essential for pursuing robust photovoltaic devices. Herein, we develop a hydrothermal in situ growth of Cobalt-Ruthenium (Co-Ru) alloy nanofiber electrode for quantum dot solar cell (QDSC) applications. Colloidal CdS QDs with tunable absorption band edge are synthesized and used as light absorber. After optimizing the QDs with the highest photoluminescence quantum yield accompanied by considerable solar light absorption ability, QDSC based on Co-Ru alloy electrode delivers a much higher power conversion efficiency than its counterparts, i.e., either pure Co or Ru metal electrodes. In detail, Co-Ru alloy electrode exhibits high specific area, excellent electrical behavior, intimate interface contact, and good stability, thus leading to notable improved device performances. The impressive robust function of Co-Ru alloy with simple manufacturing procedure highlights its potential applications in robust QDSCs.

  18. Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique

    Directory of Open Access Journals (Sweden)

    I. M. Dharmadasa

    2014-06-01

    Full Text Available Thin film solar cells based on cadmium telluride (CdTe are complex devices which have great potential for achieving high conversion efficiencies. Lack of understanding in materials issues and device physics slows down the rapid progress of these devices. This paper combines relevant results from the literature with new results from a research programme based on electro-plated CdS and CdTe. A wide range of analytical techniques was used to investigate the materials and device structures. It has been experimentally found that n-, i- and p-type CdTe can be grown easily by electroplating. These material layers consist of nano- and micro-rod type or columnar type grains, growing normal to the substrate. Stoichiometric materials exhibit the highest crystallinity and resistivity, and layers grown closer to these conditions show n → p or p → n conversion upon heat treatment. The general trend of CdCl2 treatment is to gradually change the CdTe material’s n-type electrical property towards i-type or p-type conduction. This work also identifies a rapid structural transition of CdTe layer at 385 ± 5 °C and a slow structural transition at higher temperatures when annealed or grown at high temperature. The second transition occurs after 430 °C and requires more work to understand this gradual transition. This work also identifies the existence of two different solar cell configurations for CdS/CdTe which creates a complex situation. Finally, the paper presents the way forward with next generation CdTe-based solar cells utilising low-cost materials in their columnar nature in graded bandgap structures. These devices could absorb UV, visible and IR radiation from the solar spectrum and combine impact ionisation and impurity photovoltaic (PV effect as well as making use of IR photons from the surroundings when fully optimised.

  19. Effect of metallic coatings on thermoelectric properties of lead telluride films

    Energy Technology Data Exchange (ETDEWEB)

    Ukhlinov, G.A.; Lakhno, I.G. (Moskovskij Inst. Ehlektronnoj Tekhniki (USSR))

    1984-05-01

    Effect of sprayed coatings of different metals on thermoelectric properties of lead telluride films was investigated. The basic films were prepared by the method of vacuum thermal evaporation of sample of stoichiometric lead telluride at 5x10/sup -4/ Pa residual pressure on mica (muscovite) sublayer at 330-350 deg C and approximately 10 nm/s deposition rate. It was established that fine coatings of copper, silver and gold modify sufficiently electric properties of lead telluride films. The effect is conditioned mainly by decoration and electric shunting of grain boundaries by metal island, which removes the contribution of grain boundaries to film electric conductivity.

  20. Synthesis of 1,3-diynes via detelluration of bis(ethynyl)tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, Helio A.; PenaI, Jesus M. [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Fac. de Ciencias Farmaceuticas; Zukerman-Schpector, Julio [Universidade Federal de Sao Carlos (DQ/UFSCar), SP (Brazil). Dept. de Quimica; Tiekink, Edward R.T. [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Chemistry

    2011-07-01

    The synthesis of symmetric conjugated diyne systems with electron-withdrawing or electron-donating substituents via a palladium-catalyzed detelluration of bis(arylethynyl)tellurides and bis(alkylethynyl)tellurides is described. This procedure is effected under atmospheric conditions in DMF using Pd(OAc)2 as a catalyst and AgOAc as an additive in the presence of triethylamine. This route offers efficient access to conjugated diyne systems in short reaction time. X-ray crystallographic structure and solid-state conformation of bis(p-tolylethynyl)telluride show a supramolecular chain aligned along the b axis, sustained by C-H...p interactions. (author)

  1. Cadmium status in Egypt

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is inferred from these studies that releases of Cd are still increasing and it is recommended that measures must be taken to reduce emissions of cadmium. Any cadmium discharged into the Egyptian environment may move from one compartment to another at varying rates,resulting in an accumulation in compartments such as soils and biota. Such accumulation can be expected to increase with continued emissions,and attention should be given to all sources of cadmium, natural as well as anthropogenic especially in the industrial cities in Egypt. Cadmium present in sewage, as well as industrial effluent (also, other liquid and solid wastes) and sewage sludge will increase levels in soils and is xpected to contribute to dietary levels and body burdens. The current information indicates that such effects may have to be evaluated over long periods of time, possibly as long as 50 - 100 years.

  2. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    Science.gov (United States)

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy.

  3. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    Science.gov (United States)

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10(5) cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines.

  4. Pbsub(1-x)Snsub(x)Te (x=0,00 and 0,20) alloying with gallium and cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Novoselova, A.V.; Zlomanov, V.P.; Gas' kov, A.M.; Ryabova, L.I.; Lazarenko, M.A.; Lisina, N.G.

    Investigation results of doping conditions of PbTe and Pbsub(O.8)Snsub(0.2)Te crystals with gallium and cadmium both in the process of growing and diffusional annealing in component vapours are presented. The concentration of the introduced addition in alloyed samples is determined by chemical analysis; homogeneity of its distribution in crystal volume is studied using the Auger-electron microanalysis. Kinetics of gallium solid solution decomposition in lead telluride is investigated. Galvanomagentic and photoelectric properties of the doped crystals are studied in the temperature range of 4-300 K.

  5. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  6. Growth of lead-tin telluride crystals under high gravity

    Science.gov (United States)

    Regel, L. L.; Turchaninov, A. M.; Shumaev, O. V.; Bandeira, I. N.; An, C. Y.; Rappl, P. H. O.

    1992-04-01

    The influence of high gravity environment on several growth habits of lead-tin telluride crystals began to be investigated. Preliminary experiments with Pb 0.8Sn 0.2te grown by the Bridgman technique had been made at the centrifuge facilities of the Y.A. Gagarin Cosmonauts Center in the USSR, using accelerations of 5 g, 5.2 g and 8 g. The Sn distribution for these crystals was compared with that obtained for growth at normal gravity and the results show the existence of significant compositional inhomogeneities along the axial direction. Convection currents at high gravity seem to help multiple nucleation and subsequent random orientation of growth. Analyses of carrier concentrations as well as morphological characteristics were also made.

  7. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Science.gov (United States)

    Kulsi, Chiranjit; Kargupta, Kajari; Banerjee, Dipali

    2016-04-01

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S1) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S2). But due to a substantial increase in the electrical conductivity (σ) of the film (S2) over the pellet (S1), the power factor and the figure of merit is higher for sample S2 than the sample S1 at room temperature.

  8. Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders

    Science.gov (United States)

    Beck, Jan; Alvarado, Manuel; Nemir, David; Nowell, Mathew; Murr, Lawrence; Prasad, Narasimha

    2012-06-01

    Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results.

  9. NCPV preprints for the 2. world conference on photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The proceedings contain 26 papers arranged under the following topical sections: Silicon (3 papers); Thin-film PV technologies (11 papers): amorphous silicon, cadmium telluride, copper indium diselenide, and high efficiency devices; Module and BOS manufacturing (2 papers); Cell, module, and system testing (7 papers); and Market development (3 papers). Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Plausible Mechanisms of Cadmium Carcinogenesis

    Science.gov (United States)

    Cadmium is a transition metal and an ubiquitous environmental and industrial pollutant. Laboratory animal studies and epidemiological studies have shown that exposure to cadmium is associated with various organ toxicities and carcinogenic effects. Several national and internation...

  11. Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance

    Science.gov (United States)

    Skhouni, Othmane; El Manouni, Ahmed; Mari, Bernabe; Ullah, Hanif

    2016-05-01

    At present most of II-VI semiconductor based solar cells use the CdTe material as an absorber film. The simulation of its performance is realized by means of various numerical modelling programs. We have modelled a solar cell based on zinc telluride (ZnTe) thin film as absorber in substitution to the CdTe material, which contains the cadmium element known by its toxicity. The performance of such photovoltaic device has been numerically simulated and the thickness of the absorber layer has been optimized to give the optimal conversion efficiency. A photovoltaic device consisting of a ZnTe layer as absorber, CdS as the buffer layer and ZnO as a window layer was modelled through Solar Cell Capacitance Simulator Software. Dark and illuminated I-V characteristics and the results for different output parameters of ZnO/CdS/ZnTe solar cell were analyzed. The effect of ZnTe absorber thickness on different main working parameters such as: open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, photovoltaic conversion efficiency η was intensely studied in order to optimize ZnTe film thickness. This study reveals that increasing the thickness of ZnTe absorber layer results in higher efficiency until a maximum value and then decreases slightly. This maximum was found to be 10% at ZnTe optimum thickness close to 2 µm. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  12. Frustrated square lattice Heisenberg model and magnetism in Iron Telluride

    Science.gov (United States)

    Zaliznyak, Igor; Xu, Zhijun; Gu, Genda; Tranquada, John; Stone, Matthew

    2011-03-01

    We have measured spin excitations in iron telluride Fe1.1Te, the parent material of (1,1) family of iron-based superconductors. It has been recognized that J1-J2-J3 frustrated Heisenberg model on a square lattice might be relevant for the unusual magnetism and, perhaps, the superconductivity in cuprates [1,2]. Recent neutron scattering measurements show that similar frustrated model might also provide reasonable account for magnetic excitations in iron pnictide materials. We find that it also describes general features of spin excitations in FeTe parent compound observed in our recent neutron measurements, as well as in those by other groups. Results imply proximity of magnetic system to the limit of extreme frustration. Selection of spin ground state under such conditions could be driven by weak extrinsic interactions, such as lattice distortion, or strain. Consequently, different nonuniversal types of magnetic order could arise, both commensurate and incommensurate. These are not necessarily intrinsic to an ideal J1-J2-J3 model, but might result from lifting of its near degeneracy by weak extrinsic perturbations.

  13. Thickness-induced structural phase transformation of layered gallium telluride.

    Science.gov (United States)

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  14. Thin tungsten telluride layer preparation by thermal annealing

    Science.gov (United States)

    Lu, Wei; Zhang, Yudao; Zhu, Zusong; Lai, Jiawei; Zhao, Chuan; Liu, Xuefeng; Liu, Jing; Sun, Dong

    2016-10-01

    We report a simple method to prepare a thin Tungsten Telluride (WTe2) flake with accurate thickness control, which allows preparing and studying this two dimensional material conveniently. First, the WTe2 flake, which is relatively thick due to its strong interlayer van der Waals forces, is obtained by a conventional mechanical exfoliation method. Then, the exfoliated flake is annealed at 600 °C under a constant Ar protecting flow. Raman and atomic force spectroscopy characterizations demonstrate that thermal annealing can effectively thin down the WTe2 flake and retain its original lattice structure, though its surface smoothness is slightly deteriorated. Additionally, systematical study indicates that the thinning process strongly depends on the initial thickness of the WTe2 flake before annealing: the thinning rate increases from 0.12 nm min-1 to 0.36 nm min-1 as the initial thickness increases from 10 nm to 45 nm, while the roughness of the final product also increases with the increase of its initial thickness. However, the method fails when it is applied to WTe2 flakes thicker than 100 nm, resulting in uneven or burnt surface, which is possibly caused by big cavities formed by a large amount of defects gathered at the top surface.

  15. 29 CFR 1910.1027 - Cadmium.

    Science.gov (United States)

    2010-07-01

    ... battery Plate making, plate preparation 50 All other processes 15 Zinc/Cadmium refining* Cadmium refining... as an airborne concentration of cadmium of 2.5 micrograms per cubic meter of air (2.5 µg/m3... air cadmium level to which an employee is exposed means the exposure to airborne cadmium that...

  16. First flight of SMASH, the SwRI Miniature Assembly for Solar Hard X-rays

    Science.gov (United States)

    Caspi, Amir; Laurent, Glenn Thomas; Shoffner, Michael; Higuera Caubilla, David; Meurisse, Jeremie; Smith, Kelly; Shih, Albert Y.; Saint-Hilaire, Pascal; DeForest, Craig; Mansour, Nagi N.; Hathaway, David H.

    2016-05-01

    The SwRI Miniature Assembly for Solar Hard X-rays (SMASH) was successfully flown from Antarctica in January (19-30) 2016, as a piggy-back instrument on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) high altitude balloon payload. SMASH is a technological demonstration of a new miniaturized hard X-ray (HXR) detector for use on CubeSats and other small spacecraft, including the proposed CubeSat Imaging X-ray Solar Spectrometer (CubIXSS).HXRs are the observational signatures of energetic processes on the Sun, including plasma heating and particle acceleration. One of the goals of CubIXSS will be to address the question of how plasma is heated during solar flares, including the relationship between thermal plasma and non-thermal particles. SMASH demonstrated the space-borne application of the commercial off-the-shelf Amptek X123-CdTe, a miniature cadmium telluride photon-counting HXR spectrometer. The CdTe detector has a physical area of 25 mm^2 and 1 mm fully-depleted thickness, with a ~100 micron Be window; with on-board thermoelectric cooling and pulse pile-up rejection, it is sensitive to solar photons from ~5 to ~100 keV with ~0.5-1.0 keV FWHM resolution. Photons are accumulated into histogram spectra with customizable energy binning and integration time. With modest resource requirements (~1/8 U, ~200 g, ~2.5 W) and low cost (~$10K), the X123-CdTe is an attractive solution for HXR measurements from budget- and resource-limited platforms such as CubeSats. SMASH flew two identical X123-CdTe detectors for redundancy and increased collecting area; the supporting electronics (power, CPU) were largely build-to-print using the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat design.We review the SMASH mission, design, and detector performance during the 12-day Antarctic flight. We present current progress on our data analysis of observed solar flares, and discuss future applications of the space-qualified X123-CdTe detector, including the CubIXSS mission

  17. Cadmium - is it hazardous

    Energy Technology Data Exchange (ETDEWEB)

    Zartner-Nyilas, G.; Valentin, H.; Schaller, K.H.; Schiele, R.

    1983-01-01

    The report summarizes the state of knowledge and experience on cadmium. Biological, toxicological and epidemiological data have been evaluated. Cd pollution of the environment is reviewed under the aspect of human health. Uptake in food, threshod values of Cd exposure of the population, types and extent of health hazards, possible carcinogenic effects and future fields of research are discussed.

  18. Cadmium and cancer.

    Science.gov (United States)

    Hartwig, Andrea

    2013-01-01

    Cadmium is an established human and animal carcinogen. Most evidence is available for elevated risk for lung cancer after occupational exposure; however, associations between cadmium exposure and tumors at other locations including kidney, breast, and prostate may be relevant as well. Furthermore, enhanced cancer risk may not be restricted to comparatively high occupational exposure, but may also occur via environmental exposure, for example in areas in close proximity to zinc smelters. The underlying mechanisms are still a matter of manifold research activities. While direct interactions with DNA appear to be of minor importance, elevated levels of reactive oxygen species (ROS) have been detected in diverse experimental systems, presumably due to an inactivation of detoxifying enzymes. Also, the interference with proteins involved in the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis appears to be involved in cadmium-induced carcinogenicity. Within this context, cadmium has been shown to disturb nucleotide excision repair, base excision repair, and mismatch repair. Particularly sensitive targets appear to be proteins with zinc-binding structures, present in DNA repair proteins such as XPA, PARP-1 as well as in the tumor suppressor protein p53. Whether or not these interactions are due to displacement of zinc or due to reactions with thiol groups involved in zinc complexation or in other critical positions under realistic exposure conditions remains to be elucidated. Further potential mechanisms relate to the interference with cellular redox regulation, either by enhanced generation of ROS or by reaction with thiol groups involved in the regulation of signaling pathways. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability evident in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development.

  19. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  20. Effect of Indium on the Superconducting Transition Temperature of Tin Telluride

    Science.gov (United States)

    Zhong, Ruidan; Schneeloch, John; Shi, Xiaoya; Li, Qiang; Tranquada, John; Gu, Genda

    2013-03-01

    Indium-doped tin telluride is one of the most appealing topological superconductors. We have grown a series of Sn1-xInxTe crystals with different indium concentrations (0.1 <=x <=1.0). The results show indium doping improves the superconducting transition temperature significantly and is highly related to the indium concentration. The maximum Tc of indium-doped tin telluride polycrystalline is 4.5K for x =0.4. Single crystals of Sn1-xInxTe were also grown by the floating zone method, and their magnetic properties were characterized.

  1. A low-cost non-toxic post-growth activation step for CdTe solar cells.

    Science.gov (United States)

    Major, J D; Treharne, R E; Phillips, L J; Durose, K

    2014-07-17

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  2. Performances of Dye-sensitized Solar Cell Based on ZnO Photoanode Sensitized with Cadmium Complexes Cd (phen) 2 (NO3) (NO2)%金属配合物Cd(phen)2(NO3)(NO2)对ZnO光阳极的敏化特性

    Institute of Scientific and Technical Information of China (English)

    张凌云; 杨玉林; 范瑞清; 张艳娇; 王平; 李亮

    2013-01-01

    采用具有紫外光区吸收的金属配合物Cd(phen)2(NO3)(NO2)和N719对ZnO光阳极进行共敏化.结果表明,配合物能够对ZnO光阳极进行共敏化,同时被电解液还原再生,共敏化增加电池对光的吸收,电池光电流密度增加63%,共敏化降低了电池各个界面电阻,有利于电子在界面的传输,电池的光电转换效率提高了37%.%The ZnO photoanode was co-sensitized with cadmium complexe Cd (phen) 2 (NO3) (NO2) absorbed in the ultraviolet light region and dye N719.The performances of co-sensitized dye-sensitized solar cell (DSSC) and the properties of cadmium complexe were investigated by the cyclic voltammetry measurement,UV-Visible absorption spectroscopy,fluorescence spectrum,electrochemical impedance spectroscopy and photocurrent-photovoltage curve.The results show that cadmium complexe is suitable for sensitization of ZnO photoanode,and the complexe can be reduced by the electrolyte.The light absorption of DSSC is enhanced and the current density is improved 63% by co-sensitization.The decreased resistance of interface of DSSC is in favor of the electron transport.The conversion efficiency of DSSC based on ZnO photoanode is improved 37% by co-sensitization.

  3. Telluride films and waveguides for IR integrated optics

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, Eleonore; Vigreux, Caroline; Pradel, Annie [Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universite Montpellier II, CC1503, 34095 Montpellier Cedex 5 (France); Parent, Gilles [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, Universite de Nancy-Lorraine, BP239, 54506 Vandoeuvre Les Nancy Cedex (France); Barillot, Marc [Thales Alenia Space, 100 Bld. du midi, BP99, 06156 Cannes La Bocca Cedex (France)

    2011-09-15

    The fabrication of micro-components for far infrared applications such as spatial interferometry requires the realization of single-mode channel waveguides being able to work in the infrared region. One of the key issues in case of channel waveguides is the selection of materials for the core layer. Amorphous telluride films are particularly attractive for their transparency in a large spectral domain in the infrared region. A second key issue is the selection of an appropriate method for film deposition. Indeed, waveguides for far infrared applications are characterized by a thick core layer (10-15 {mu}m, typically). The challenge is thus to select a deposition method which ensures the deposition of thick films of optical quality. In this paper, it is shown that thermal co-evaporation meets this challenge. In particular, it allows varying the composition of the films very easily and thus adjusting their optical properties (refractive index, optical band gap). The example of thermally co-evaporated Te-Ge films is given. Films with typical thickness of 7-15 {mu}m were elaborated. Their morphological, structural, thermal and optical properties were measured. A particular attention was paid to the checking of the film homogeneity. The realized waveguiding structures and their optical testing are then described. In particular, the first transmission measurements at 10.6 {mu}m are presented. In conclusion, the feasibility of micro-components based on the stacking and etching of chalcogenide films is demonstrated, opening the door to applications related to detection in the mid- and thermal infrared spectral domains (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. The front-end electronics of the Spectrometer Telescope for Imaging X-Rays (STIX) on the ESA Solar Orbiter satellite

    Science.gov (United States)

    Grimm, O.; Bednarzik, M.; Commichau, V.; Graczyk, R.; Gröbelbauer, H. P.; Hurford, G.; Krucker, S.; Limousin, O.; Meuris, A.; Orleański, P.; Przepiórka, A.; Seweryn, K.; Skup, K.; Viertel, G.

    2012-12-01

    Solar Orbiter is an ESA mission to study the heliosphere in proximity to the Sun, scheduled for launch in January 2017. It carries a suite of ten instruments for comprehensive remote-sensing and in-situ measurements. The Spectrometer Telescope for Imaging X-Rays (STIX), one of the remote sensing instruments, images X-rays between 4 and 150keV using an Fourier technique. The angular resolution is 7 arcsec and the spectral resolution 1keV full-width-half-maximum at 6keV. X-ray detection uses pixelized Cadmium Telluride crystals provided by the Paul Scherrer Institute. The crystals are bonded to read-out hybrids developed by CEA Saclay, called Caliste-SO, incorporating a low-noise, low-power analog front-end ASIC IDeF-X HD. The crystals are cooled to -20°C to obtain very low leakage currents of less than 60pA per pixel, the prerequisite for obtaining the required spectral resolution. This article briefly describes the mission goals and then details the front-end electronics design and main challenges, resulting in part from the allocation limit in mass of 7kg and in power of 4W. Emphasis is placed on the design influence of the cooling requirement within the warm environment of a mission approaching the Sun to within the orbit of Mercury. The design for the long-term in-flight energy calibration is also explained.

  5. Cadmium in Sweden - environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H.; Iverfeldt, Aa. [Swedish Environmental Research Inst. (Sweden); Borg, H.; Lithner, G. [Stockholm Univ. (Sweden). Inst. for Applied Environmental Research

    1998-03-01

    This report aims at assessing possible effects of cadmium in the Swedish environment. Swedish soils and soft freshwater systems are, due to a generally poor buffering capacity, severely affected by acidification. In addition, the low salinity in the Baltic Sea imply a naturally poor organism structure, with some important organisms living close to their limit of physiological tolerance. Cadmium in soils is mobilized at low pH, and the availability and toxicity of cadmium in marine systems are enhanced at low salinity. The Swedish environment is therefore extra vulnerable to cadmium pollution. The average concentrations of cadmium in the forest mor layers, agricultural soils, and fresh-waters in Sweden are enhanced compared to `back-ground concentrations`, with a general increasing trend from the north to the south-west, indicating strong impact of atmospheric deposition of cadmium originating from the central parts of Europe. In Swedish sea water, total cadmium concentrations, and the fraction of bio-available `free` cadmium, generally increases with decreasing salinity. Decreased emissions of cadmium to the environment have led to decreasing atmospheric deposition during the last decade. The net accumulation of cadmium in the forest mor layer has stopped, and even started to decrease. In northern Sweden, this is due to the decreased deposition, but in southern Sweden the main reason is increased leakage of cadmium from the topsoil as a consequence of acidification. As a result, cadmium in the Swedish environments is undergoing an extended redistribution between different soil compartments, and from the soils to the aquatic systems. 90 refs, 23 figs, 2 tabs. With 3 page summary in Swedish

  6. Renal cadmium overload without nephrotoxicity.

    OpenAIRE

    1981-01-01

    A redundant nickel/cadmium battery worker was investigated for non-specific fatigue after completing five years in the industry. Sensitive techniques for in-vivo organ cadmium measurement showed a moderate accumulation in the liver but a very large concentration in the kidneys. Despite this, overall glomerular and tubular function were not impaired. It was concluded that the mechanism of proteinuria observed in some cadmium workers is obscure and not clearly related to the degree of kidney sa...

  7. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  8. CADMIUM – ENVIRONMENTAL HAZARD

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2010-06-01

    Full Text Available The paper presents some information about current status of cadmium as an environmental health problem. Agricultural uses of phosphate fertilizers, sewage sludge and industrial uses of Cd are the major source of widespread of this metal at trace levels into the general environment and human foodstuffs. It is well known that high cadmium (Cd exposure causes renal damage, anemia, enteropathy, osteoporosis, osteomalacia, whereas the dose-response relationship at low levels exposure is less established. During the last decade an increasing number of studies have found an adverse health effects due to low environmental exposure to Cd. Many authors try to determine the relationship between Cd intake and Cd toxicity indicators, especially dealing renal tubular damage. The level of b2-microglobulin in urine is regarded as the most sensitive biomarker of renal disfunction due to low environmental Cd concentrations.

  9. Speciation of Dissolved Cadmium

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Andersen, Sjur; Christensen, Thomas Højlund

    1995-01-01

    Equilibrium dialysis and ion exchange methods, as well as computer calculations (GEOCHEM), were applied for speciation of dissolved cadmium (Cd) in test solutions and leachate samples. The leachate samples originated from soil, compost, landfill waste and industrial waste. The ion exchange (IE...... leachates showed different Cd speciation patterns as expected. Some leachates were dominated by free divalent Cd (1-70%), some by inorganic complexes (1-87%), and some by organic complexes (7-98%)....

  10. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  11. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Science.gov (United States)

    Termentzidis, K.; Pokropivny, A.; Xiong, S.-Y.; Chumakov, Y.; Cortona, P.; Volz, S.

    2012-10-01

    Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  12. Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Purkayastha, A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Lupo, F. [Max Planck Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Kim, S.; Borca-Tasciuc, T. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Ramanath, G. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2006-02-17

    Synthesis of single-crystal bismuth telluride nanorods is reported by using a low-temperature, template-free approach. Films of thioglycolic acid functionalized nanorods doped with sulfur exhibit n-type behavior with a high Seebeck coefficient, holding promise for thermoelectric device applications. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  13. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  14. Is cadmium hazardous to health. Cadmium - ein Gesundheitsrisiko

    Energy Technology Data Exchange (ETDEWEB)

    Zartner-Nyilas, G.; Valentin, H.; Schaller, K.H.; Schiele, R.

    1983-01-01

    This study entitled ''Is cadmium hazardous to health'' summarizes the current state of knowledge on and experience with cadmium. The authors have made efforts to take into account the more recent literature relating to cadmium. The data evaluated were, especially, biological, toxicological, and epidemiological ones. A principal object was to try to assess the importance of the presence of cadmium in the environment to man. The interest was focused on the uptake of heavy metals with food, danger thresholds for the cadmium exposure of the population, nature and extent of eventual damage to health including possible carcinogenous effects, and suggestions for further points of main emphasis in research. 3 figs., 12 tabs.

  15. Mercury cadmium telluride (HgCdTe) passivation by advanced thin conformal Al2O3 films

    Science.gov (United States)

    Fu, Richard; Pattison, James; Chen, Andrew; Nayfeh, Osama

    2012-06-01

    HgCdTe passivation process must be performed at low temperature in order to reduce Hg depletion. Low temperature plasma enhanced atomic layer deposition (PE-ALD) is an emerging deposition technology for thin highly conformal films to meet the demand. Room temperature PE-ALD Al2O3 film's passivation on HgCdTe has been studied. Conformal film was investigated through SEM images of the Al2O3 film deposited onto high aspect ratio features dry etched into HgCdTe. Minority carrier lifetime was measured and compared by photoconductive decay transients of HgCdTe before and after deposition. Room temperature ALD Al2O3 film increased the minority carrier lifetime of HgCdTe.

  16. Special characteristics of fluorescence and resonance Rayleigh scattering for cadmium telluride nanocrystal aqueous solution and its interactions with aminoglycoside antibiotics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    CdTe nanocrystals(CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate.The product was detected by transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),fluorescence spectra,ultraviolet-visible spectra and X-ray diffraction(XRD).The CdTe NCs are of cubic structure and the average size is about 5 nm.The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light.The maximum λem of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm.CdTe NCs aqueous solution can be steady for at least 10 months at 4℃ in a refrigerator.The resonance Rayleigh scattering(RRS) of CdTe NCs in the aqueous solution was investigated.The maximum scattering peak was located at about 554 nm.The interactions of CdTe NCs with amikacin sulfate(AS) and micronomicin sulfate(MS) were investigated respectively.The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed.It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs.Under optimum conditions,there are linear relationships between quenching intensity(F0-F),intensity of RRS(I-I0) and concentration of AS and MS.The detection limits(3б) of AS and MS are respectively 3.4 ng·mL-1 and 2.6 ng·mL-1 by the fluorescence quenching method,and 15.2 ng·mL-1 and 14.0 ng·mL-1 by the RRS method.The methods have high sensitivity,thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics.

  17. a Cdlts Study of the Deep Levels in n- and P - Cadmium Telluride Thin Films Deposited by Hot Wall Evaporation

    Science.gov (United States)

    Ginting, Masno

    CdTe thin films, both undoped and with different dopants, have been deposited unto graphite and Corning 7059 glass substrates using a Three-Stage Hot Wall Vacuum Evaporator (TSHWVE) system. The dopants were incorporated into the CdTe thin films using a "delta doping" technique. The conductivity type of the doped CdTe thin films was determined using the hot probe method, and the film stoichiometry was determined using X-ray and Auger electron spectroscopy measurements. Schottky diodes fabricated on the CdTe thin films that were deposited on graphite substrates have been studied using Current-Voltage (I-V), Capacitance-Voltage (C-V), and Capacitance Deep Level Transient Spectroscopy (CDLTS). The conductivity type of CdTe films that were undoped and doped with Antimony (Sb), Phosphorus (P), Gold (Au), Silver (Ag), and Copper (Cu) were found to be p-type, while Indium (In) doped CdTe thin films were found to be n-type. The highest carrier concentration of the CdTe films are 1 times 10^ {16} cm^{-3} , 1 times 10^ {17} cm^{-3} , and 7.5 times 10 ^{15} cm^{ -3} for In-, Sb-, and P-doped CdTe, respectively. For the In-doped CdTe films three majority carrier trap are found with activation energies measured from the conduction band of 0.23 +/- 0.05 eV, 0.46 +/- 0.06 eV, and 0.78 +/- 0.05 eV. For the Sb-doped CdTe films three majority carrier traps are found with activation energies measured from the valence band of 0.27 +/- 0.06 eV, 0.50 +/- 0.06 eV, and 0.80 +/- 0.06 eV. For the P-doped CdTe films three majority carrier traps are found with activation energies measured from the valence band of 0.28 +/- 0.05 eV, 0.50 +/- 0.06 eV and 0.75 +/- 0.05 eV. Our capture measurements on In-, Sb-, and P-doped CdTe showed non-exponential transients, however they could be fitted very well by Pons theory, and allowed us to determine values for the trap concentration (N_{ rm T}), the trap capture rate (c _{rm n,p}) and the trap capture cross-section (sigma_{rm n,p}). However, the capture cross-sections so derived are approximately two orders of magnitude smaller than estimates given in the literature earlier. (Abstract shortened by UMI.).

  18. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras

    DEFF Research Database (Denmark)

    Jensen, Maria Maj; Schmidt, Ulla; Huang, Chenxi

    2014-01-01

    PURPOSE: Estimation of left ventricular ejection fraction (LVEF) with equilibrium 99MTc-HSA equilibrium radionuclide angiography (MUGA) is frequently used for assessing cardiac function. The purpose of this study was to compare intra- and interobserver variation between three different gamma...... of agreement between each sequence of analyses for each of the three cameras. RESULTS: The lowest intraobserver variations in LVEF for the two NaI-detector cameras were 3.1% (-4.0% to 3.5%) for the planar and 3.4% (-4.2% to 4.5%) for SPECT (P ≤ 0.001-0.019), the highest result for the CZT SPECT camera was 2.......6% (-2.9% to 3.1%). Similarly, interobserver variation was 4.8% (-4.8% to 6.4%) and 4.9% (-5.4% to 7.5%), respectively, for each of the NaI-detector cameras and 3.3% (-3.4% to 4.3%) for the CZT SPECT camera (P ≤ 0.001-0.008). DISCUSSION: The CZT detector camera was superior to both NaI detector cameras...

  19. Micro-Raman and UV-VIS Studies of 100 MeV Ni4+ Irradiated Cadmium Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    Neelam Pahwa

    2011-01-01

    Full Text Available CdTe thin films grown by thermal evaporation on quartz substrates were irradiated with Swift (100 MeV Ni 4 + ions for fluences in the range 1.0 × 1011 - 1.0 × 1013 cm – 2. The modification in the structure and optical properties has been studied as a function of ion fluence using Micro-Raman spectroscopy and UV-VIS spectroscopy. In Micro Raman spectrum, weak LO and TO modes of CdTe and A1 & E modes of Te were observed with blue shift which was found to increase with increase in fluence. Intensity of these modes decreased with increase in ion fluence. UV-transmission showed pronounced interference fringes, indicating a good quality of the films. The bandgap was found to increase in the range 1.4-1.75 eV with increase in fluence.

  20. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Michael David [Iowa State Univ., Ames, IA (United States)

    2001-05-01

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn,Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  1. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Michael David [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn, Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  2. The ^{55}Fe X-ray Energy Response of Mercury Cadmium Telluride Near-Infrared Detector Arrays

    CERN Document Server

    Fox, Ori D; Wen, Yiting; Foltz, Roger D; Hill, Robert J; Kimble, Randy A; Malumuth, Eliot; Rauscher, Bernard J

    2009-01-01

    A technique involving ^{55}Fe X-rays provides a straightforward method to measure the response of a detector. The detector's response can lead directly to a calculation of the conversion gain (e^- ADU^{-1}), as well as aid detector design and performance studies. We calibrate the ^{55}Fe X-ray energy response and pair production energy of HgCdTe using 8 HST WFC3 1.7 \\micron flight grade detectors. The results show that each K$\\alpha$ X-ray generates 2273 \\pm 137 electrons, which corresponds to a pair-production energy of 2.61 \\pm 0.16 eV. The uncertainties are dominated by our knowledge of the conversion gain. In future studies, we plan to eliminate this uncertainty by directly measuring conversion gain at very low light levels.

  3. Special characteristics of fluorescence and resonance Rayleigh scattering for cadmium telluride nanocrystal aqueous solution and its interactions with aminoglycoside antibiotics

    Institute of Scientific and Technical Information of China (English)

    LI TaiShan; LIU ShaoPu; LIU ZhongFang; HU XiaoLi; ZHANG LiPing

    2009-01-01

    CdTe nanocrystals (CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate. The product was detected by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), fluorescence spectra, ultraviolet-visible spectra and X-ray diffraction (XRD). The CdTe NCs are of cubic structure and the average size is about 5 nm. The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light. The maximum λem of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm. CdTe NCs aqueous solution can be steady for at least 10 months at 4℃ in a refrigerator. The resonance Rayleigh scattering (RRS) of CdTe NCs in the aqueous solution was investigated. The maximum scattering peak was located at about 554 nm. The interactions of CdTe NCs with amikacin sulfate (AS) and micronomicin sulfate (MS) were in-vestigated respectively. The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed. It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs. Under optimum conditions, there are linear relationships between quenching intensity (F0-F), intensity of RRS (1-10) and concentration of AS and MS. The detection limits (3σ) of AS and MS are re-spectively 3.4 ng.mL-1 and 2.6 ng.mL-1 by the fluorescence quenching method, and 15.2 ng.mL-1 and 14.0 ng.mL-1 by the RRS method. The methods have high sensitivity, thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics.

  4. Cadmium exposure in the Swedish environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report gives a thorough description of cadmium in the Swedish environment. It comprises three parts: Cadmium in Sweden - environmental risks;, Cadmium in goods - contribution to environmental exposure;, and Cadmium in fertilizers, soil, crops and foods - the Swedish situation. Separate abstracts have been prepared for all three parts

  5. Cadmium carcinogenesis – some key points

    OpenAIRE

    2011-01-01

    The article presents briefly the main mechanisms of cadmium carcinogenesis and the most important sites of cancer (lung, breast, prostate, testes, kidney) induced by cadmium. In spite of some evidence showing carcinogenic potential of cadmium, further research is still required to elucidate the relative contributions of various molecular mechanisms involved in cadmium carcinogenesis

  6. Cadmium carcinogenesis – some key points

    Directory of Open Access Journals (Sweden)

    Loreta Strumylaite

    2011-09-01

    Full Text Available The article presents briefly the main mechanisms of cadmium carcinogenesis and the most important sites of cancer (lung, breast, prostate, testes, kidney induced by cadmium. In spite of some evidence showing carcinogenic potential of cadmium, further research is still required to elucidate the relative contributions of various molecular mechanisms involved in cadmium carcinogenesis

  7. Evidence of Decay of Flux Ratio of Fe to Fe–Ni Line Features with Electron Temperature in Solar Flares

    Indian Academy of Sciences (India)

    Rajmal Jain; Malini Aggarwal; Raghunandan Sharma

    2010-09-01

    We report observational evidence of the decay of the flux ratio of Fe to Fe–Ni line features as a function of plasma electron temperature in solar flares in comparison to that theoretically predicted by Phillips (2004). We present the study of spectral analysis of 14 flares observed by the Solar X-ray Spectrometer (SOXS) – Low Energy Detector (SLD) payload. The SLD payload employs the state-of-the-art solid state detectors, viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices. The sub-keV energy resolution of Si PIN detector allows us to study the Fe-line and Fe–Ni line features appearing at 6.7 and 8 keV, respectively, in greater detail. In order to best-fit the whole spectrum at one time in the desired energy range between 4 and 25 keV we considered Gaussian-line, the multi-thermal power-law and broken power-law functions. We found that the flux ratio of Fe to Fe–Ni line features decays with flare electron temperature by the asymptotic form of polynomial of inverse third order. The relative flux ratio is ∼ 30 at temperature 12 MK which drops to half, ∼ 15 at 20 MK, and at further higher temperatures it decreases smoothly reaching to ∼ 8 at ∼ 50 MK. The flux ratio, however, at a given flare plasma temperature, and its decrease with temperature is significantly lower than that predicted theoretically. We propose that the difference may be due to the consideration of higher densities of Fe and Fe–Ni lines in the theoretical model of Phillips (2004). We suggest revising the Fe and Fe–Ni line densities in the corona. The decay of flux ratio explains the variation of equivalent width and peak energy of these line features with temperature.

  8. Dual-channel optical sensing platform for detection of diminazene aceturate based on thioglycolic acid-wrapped cadmium telluride/cadmium sulfide quantum dots.

    Science.gov (United States)

    Hao, Chenxia; Zhou, Tao; Liu, Shaopu; Wang, Linlin; Huang, Bowen; Kuang, Nianxi; He, Youqiu

    2016-06-15

    A dual-channel optical sensing platform which combines the advantages of dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) and fluorescence has been designed for the detection of diminazene aceturate (DA). It is based on the use of thioglycolic acid-wrapped CdTe/CdS quantum dots (Q-dots). In the absence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots exhibit the high fluorescence spectrum and low RRS spectrum, so are selected to develop an easy-to-get system. In the presence of DA, the thioglycolic acid-wrapped CdTe/CdS Q-dots and DA form a complex through electrostatic interaction, which result in the RRS intensity getting enhanced significantly with new RRS peaks appearing at 317 and 397 nm; the fluorescence is powerfully quenched. Under optimum conditions, the scattering intensities of the two peaks are proportional to the concentration of DA in the range of 0.0061-3.0 μg mL(-1). The detection limits for the two single peaks are 4.1 ng mL(-1) and 3.3 ng mL(-1), while that of the DWO-RRS method is 1.8 ng mL(-1), indicating that the DWO-RRS method has high sensitivity. Besides, the fluorescence also exhibits good linear range from 0.0354 to 10.0 μg mL(-1) with a detection limit of 10.6 ng mL(-1). In addition, the system has been applied to the detection of DA in milk samples with satisfactory results.

  9. Cadmium immobilization by hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Smičiklas Ivana D.

    2003-01-01

    Full Text Available The contamination of air, soil and water by cadmium is a great environmental problem. If cadmium occurs in nature in ionic form, soluble in water, it easily enters into the food chain. Hydroxyapatite (HAP, Ca-o(POAe(OH2 is a sparingly soluble salt and an excellent matrix for the removal of heavy metals from solutions. Considerable research attention has been paid to the bond between Cc/2+ ions and synthetic hydroxyapatite of known composition. The sorption mechanism is complex. The dominant process is ion exchange, but surface adsorption, surface complexation and coprecipitation can also contribute to the overall mechanism. The sorption capacity depends on the characteristics of hydroxyapatite itself and on the experimental conditions. Under optimum conditions a maximum capacity of 0.8 mol Cd2+/mol HAP can be achieved. HAP is a potential sorbent for the remediation of contaminated water and soil, for industrial waste treatment, and it is also referenced as a material that can be used as a barrier around waste depositories.

  10. Cadmium effects on the thyroid gland.

    Science.gov (United States)

    Jancic, Snezana A; Stosic, Bojan Z

    2014-01-01

    Cadmium has been listed as one of the 126 priority pollutants and a category I carcinogen. Carcinogenic effects of cadmium on the lungs, testicles, and prostate are widely recognized, but there has been insufficient research on the effect of cadmium on the thyroid gland. Cadmium has the affinity to accumulate not only in the liver, kidneys, and pancreas but also in the thyroid gland. It has been established that cadmium blood concentration correlates positively with its accumulation in the thyroid gland. Women of fertile age have higher cadmium blood and urine concentrations than men. In spite of its redox inertia, cadmium brings about oxidative stress and damage to the tissue by indirect mechanisms. Mitochondria are considered to be the main intracellular targets for cadmium. Colloid cystic goiter, adenomatoid follicular hyperplasia with low-grade dysplasia and thyroglobulin hypo- and asecretion, and parafollicular cell diffuse and nodular hyperplasia and hypertrophy are often found in chronic cadmium toxicity.

  11. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor

    Indian Academy of Sciences (India)

    Sandeep Arya; Saleem Khan; Suresh Kumar; Rajnikant Verma; Parveen Lehana

    2013-08-01

    Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4.5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was controlled by adjusting deposition time. Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, 24.55, 42.5 and 80.1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability.

  12. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  13. Synthesis of lead telluride particles by thermal decomposition method for thermoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Leontyev, V.G.; Ivanova, L.D. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskii prospect, 49, 119991 Moscow (Russian Federation); Bente, K.; Lazenka, V.V. [Institut fuer Mineralogie, Kristallographie und Materialwissenschaft, Leipzig University, Scharnhorst str. 20, 04275 Leipzig (Germany); Gremenok, V.F. [Scientific-Practical Materials Research Centre of the NAS of Belarus, P. Brovka str. 19, 220072 Minsk (Belarus)

    2012-06-15

    The lead telluride fine crystalline particles were synthesized using thermal decomposition and chemical interaction of lead acetate and tellurium powder mixture in reducing atmosphere (H{sub 2}). For the process control, thermal gravimetry (TG), the different-scanning calorimetry (DSC), X-ray diffraction (XRD), electronic microscopy (SEM) and measurements of the specific surface of particles were used. Additionally the influence of gas phases on the decomposition kinetics, crystal structure, size, specific surface of the particles and the physical properties were analyzed. Seebeck coefficient values increased with decreasing synthesis temperature and increasing specific surfaces of the powder. The presented method of preparing lead telluride polydisperse particles is developed to create nano-structured thermoelectric materials with high figure of merit. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    Science.gov (United States)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  15. Enrichment of cadmium in biomasses

    Energy Technology Data Exchange (ETDEWEB)

    Gwenner, C.; Wittig, H.; Glombitza, F.

    1986-01-01

    The uptake of cadmium ions from an aqueous solution by living, resting, and dead biomasses was investigated. The dependence of the uptaked amounts on pH-value of the medium, temperature and concentration of cadmium ions is demonstrated as well as the rate of uptake. Maximum realisable concentrations were 12 mg/g biomass in living cells and about 20 mg/g biomass in resting or dead cells, respectively.

  16. Aqueous-solution route to zinc telluride films for application to CO₂ reduction.

    Science.gov (United States)

    Jang, Ji-Wook; Cho, Seungho; Magesh, Ganesan; Jang, Youn Jeong; Kim, Jae Young; Kim, Won Yong; Seo, Jeong Kon; Kim, Sungjee; Lee, Kun-Hong; Lee, Jae Sung

    2014-06-01

    As a photocathode for CO2 reduction, zinc-blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution-recrystallization mechanism without any surfactant. With the most negative conduction-band edge among p-type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at -0.2--0.7 V versus RHE without a sacrificial reagent.

  17. The heat capacity of solid antimony telluride Sb2Te3

    Science.gov (United States)

    Pashinkin, A. S.; Malkova, A. S.; Mikhailova, M. S.

    2008-05-01

    The literature data on the heat capacity of solid antimony telluride over the range 53 895 K were analyzed. The heat capacity of Sb2Te3 was measured over the range 350 700 K on a DSM-2M calorimeter. The equation for the temperature dependence was suggested. The thermodynamic functions of Sb2Te3 were calculated over the range 298.15 700 K.

  18. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Zweibel, K. (eds.)

    1992-01-01

    Since the development of the first silicon based photovoltaic cell in the 1950's, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  19. Recycling of cadmium and selenium from photovoltaic modules and manufacturing wastes. A workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Zweibel, K. [eds.

    1992-10-01

    Since the development of the first silicon based photovoltaic cell in the 1950`s, large advances have been made in photovoltaic material and processing options. At present there is growing interest in the commercial potential of cadmium telluride (CdTe) and copper indium diselenide (CIS) photovoltaic modules. As the commercial potential of these technologies becomes more apparent, interest in the environmental, health and safety issues associated with their production, use and disposal has also increased because of the continuing regulatory focus on cadmium and selenium. In future, recycling of spent or broken CdTe and CIS modules and manufacturing wastes may be needed for environmental, economic or political reasons. To assist industry to identify recycling options early in the commercialization process, a Workshop was convened. At this Workshop, representatives from the photovoltaic, electric utility, and nonferrous metals industries met to explore technical and institutional options for the recycling of spent CdTe and CIS modules and manufacturing wastes. This report summarizes the results of the Workshop. This report includes: (1) A discussion of the Resource Conservation and Recovery Act regulations and their potential implications to the photovoltaic industry; (2) an assessment of the needs of the photovoltaic industry from the perspective of module manufacturers and consumers; (3) an overview of recycling technologies now employed by other industries for similar types of materials; and, (4) a list of recommendation.

  20. The activation of thin film CdTe solar cells using alternative chlorine containing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, B., E-mail: B.Maniscalco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); Abbas, A.; Bowers, J.W.; Kaminski, P.M.; Bass, K. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom); West, G. [Department of Materials, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering (United Kingdom)

    2015-05-01

    The re-crystallisation of thin film cadmium telluride (CdTe) using cadmium chloride (CdCl{sub 2}) is a vital process for obtaining high efficiency photovoltaic devices. However, the precise micro-structural mechanisms involved are not well understood. In this study, we have used alternative chlorine-containing compounds to determine if these can also assist the re-crystallisation of the CdTe layer and to understand the separate roles of cadmium and chlorine during the activation. The compounds used were: tellurium tetrachloride (TeCl{sub 4}), cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}), hydrochloric acid (HCl) and zinc chloride (ZnCl{sub 2}). TeCl{sub 4} was used to assess the role of Cl and the formation of a Te-rich outer layer which may assist the formation of the back contact. (Cd(CH{sub 3}CO{sub 2}){sub 2}) and HCl were used to distinguish between the roles of cadmium and chlorine in the process. Finally, ZnCl{sub 2} was employed as an alternative to CdCl{sub 2}. We report on the efficacy of using these alternative Cl-containing compounds to remove the high density of planar defects present in untreated CdTe. - Highlights: • Cadmium chloride (CdCl{sub 2}) activation treatment • Alternative chlorine containing compounds • Microstructure analysis and electrical performances.

  1. Solar Spectral and Module Temperature Influence on the Outdoor Performance of Thin Film PV Modules Deployed on a Sunny Inland Site

    Directory of Open Access Journals (Sweden)

    G. Nofuentes

    2013-01-01

    Full Text Available This work aims at analysing the influence of both module temperature and solar spectrum distribution on the outdoor performance of the following thin film technologies: hydrogenated amorphous silicon (a-Si:H, cadmium telluride (CdTe, copper indium gallium selenide sulfide (CIGS, and hydrogenated amorphous silicon/hydrogenated microcrystalline silicon hetero-junction (a-Si:H/μc-Si:H. A 12-month experimental campaign carried out in a sunny inland site in which a module of each one of these technologies was tested and measured outdoors has provided the necessary empirical data. Results show that module temperature exerts a limited influence on the performance of the tested a-Si:H, CdTe, and a-Si:H/μc-Si:H modules. In contrast, the outdoor behaviour of the CIGS module is the most affected by its temperature. Blue-rich spectra enhance the outdoor behaviour of the a-Si:H and a-Si:H/μc-Si:H modules while it is the other way round for the CIGS module. However, the CdTe specimen shows little sensitivity to the solar spectrum distribution. Anyway, spectral effects are scarcely relevant on an annual basis, ranging from gains for the CIGS module (1.5% to losses for the a-Si:H module (1.0%. However, the seasonal impact of the spectrum shape is more noticeable in these two materials; indeed, spectral issues may cause performance gains or losses of up to some 4% when winter and summer periods are considered.

  2. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  3. Metallothionein and bioaccumulation of cadmium in juvenile bluegills exposed to aqueous and sediment-associated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cope, W.G.

    1991-01-01

    The author evaluated metallothionein (MT), free (unbound) hepatic cadmium and whole body cadmium as indicators of cadmium exposure in juvenile bluegills Lepomis macrochirus in laboratory tests. Two types of cadmium exposure were tested; aqueous and sediment-associated. In the aqueous tests, fish were exposed to cadmium (0.0 to 32.3 [mu]g/L) in an intermittent-flow diluter. In the sediment-associated cadmium test, fish were exposed to resuspended river sidment containing 1.3 to 21.4 [mu]g Cd/g (dry weight) at a nominal total suspended solids concentration of 1,000 mg/L in revolving, circular glass exposure chambers. Total cadmium concentrations were measured in various bluegill liver fractions, whole bluegill, water, and resuspended sediment to assess the partitioning and bioaccumulation of cadmium after the tests. Mean concentrations of MT and free cadmium in bluegill livers and concentrations of cadmium in whole bluegills were positively correlated with aqueous cadmium concentration and were equally suitable as indicators of aqueous cadmium exposure. Sediment-associated cadmium was biologically available, but to a lesser extent than aqueous cadmium. Cadmium concentrations in whole bluegills exposed to resuspended river sediment were 1.5- to 3.5-fold the concentrations in bluegills in sediment-free controls. Free cadmium and MT concentrations in bluegill liver and whole-body cadmium concentrations in bluegills were positively correlated with the cadmium concentrations in filtered water, resuspended sediment, and bulk river sediment; however, whole-body cadmim concentrations were a more sensitive indicator of exposure to sediment-associated cadmium than either free cadmium or MT concentratons in liver.

  4. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Sloth, Jens Jørgen; Rasmussen, Rie Romme

    In Denmark and EU the exposure of cadmium from food is at a level that is relatively close to the Tolerable Daily Intake (TDI). This report describes an investigation of the bioavailability of cadmium in selected food items known to contain high levels of cadmium. The purpose was to provide data ...... or crushed linseed nor the intake of cocoa and chocolate....

  5. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance and having low toxicity. Developing methods for the combination of the elements to produce binary, ternary and quaternary compounds has dominated research in the field. This chapter will provide the most recent developments (from year 2012 onwards) for the synthesis and use of colloidal nanocrystal inks for solar cell applications. © The Royal Society of Chemistry 2014.

  6. Oral cadmium chloride intoxication in mice

    DEFF Research Database (Denmark)

    Andersen, O; Nielsen, J B; Svendsen, P

    1988-01-01

    Diethyldithiocarbamate (DDC) is known to alleviate acute toxicity due to injection of cadmium salts. However, when cadmium chloride was administered by the oral route, DDC enhanced rather than alleviated the acute toxicity; both oral and intraperitoneal (i.p.) administration of DDC had this effect....... Thus, orally administered DDC enhanced cadmium-induced duodenal and ileal tissue damage and inhibition of peristalsis, as indicated by an increased intestinal transit time. At low cadmium doses, the whole-body retention of cadmium was increased by oral DDC administration. Intraperitoneally administered...

  7. Arsenic-cadmium interaction in rats.

    Science.gov (United States)

    Díaz-Barriga, F; Llamas, E; Mejía, J J; Carrizales, L; Santoyo, M E; Vega-Vega, L; Yáñez, L

    1990-11-01

    Simultaneous exposure to cadmium and arsenic is highly probable in the urban area of San Luis Potosi, Mexico due to common localization of copper and zinc smelters. Therefore, in this work, rats were intraperitoneally exposed either to cadmium or arsenic alone, or simultaneously to both metals. The effects of these treatments on three different toxicological parameters were studied. Cadmium modified the LD50 of arsenic and conversely arsenic modified the LD50 for cadmium. At the histopathological level, arsenic appeared to protect against the cadmium effects, especially on testes. This protective effect seemed to be related to the glutathione levels found in this tissue: rats exposed to both arsenic and cadmium, presented glutathione values intermediate to those observed after exposure to either metal alone; arsenic had the highest value and cadmium the lowest. In liver, rats exposed to arsenic, cadmium or arsenic and cadmium, presented glutathione values below those in the saline group, with the lowest value corresponding to the arsenic and cadmium treatment. The results appear to support the proposed interaction between arsenic and cadmium and coexposure to both metals seems to alter certain effects produced by either metal alone.

  8. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  9. Insulin Expression in Rats Exposed to Cadmium

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objectives To investigate the effects of cadmium exposure on insulin expression in rats. Methods Eighteen adult SD assessed. The levels of cadmium and zinc in pancreas, blood and urine glucose, serum insulin and urine NAG (N-acyetyl-β-glucosaminidase) were determined. The gene expressions of metallothionein (MT) and insulin were also measured,and the oral glucose tolerance tests (OGTT) were carried out. Results The contents of cadmium in pancreas in cadmium-treated rats were higher than that in the control group, which was associated with slight increase of zinc in pancreas.not change significantly after cadmium administration, and the UNAG had no change in Cd-treated group. The gene expression the change of the expression of insulin, MT-Ⅰ and MT-Ⅱ genes. Cadmium can influence the biosynthesis of insulin, but does not induce the release of insulin. The dysfunction of pancreas occurs earlier than that of kidney after administration of cadmium.

  10. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  11. High resolution X-ray diffraction imaging of lead tin telluride

    Science.gov (United States)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald

    1991-01-01

    High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.

  12. Terahertz-field-induced second harmonic generation through Pockels effect in zinc telluride crystal.

    Science.gov (United States)

    Cornet, Marion; Degert, Jérôme; Abraham, Emmanuel; Freysz, Eric

    2014-10-15

    We report on the second harmonic generation (SHG) of a near-infrared pulse in a zinc telluride crystal through the Pockels effect induced by an intense terahertz pulse. The temporal and angular behaviors of the SHG have been measured and agree well with theoretical predictions. This phenomenon, so far overlooked, makes it possible to generate second harmonic through cascading of two second-order nonlinear phenomena in the near-infrared and terahertz ranges. We also show how this cascading process can be used to sample terahertz pulses.

  13. Iron telluride nanorods-based system for the detection of total mercury in blood

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prathik; Lin, Zong-Hong [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China); Liang, Chi-Te [Department of Physics, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China); Chang, Huan-Tsung, E-mail: changht@ntu.edu.tw [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China)

    2012-12-15

    Graphical abstract: Elucidation of the detection of mercury using iron telluride nanorods (FeTe NRs), and dose-response curve for varying concentrations of Hg{sup 2+}. Highlights: Black-Right-Pointing-Pointer Iron telluride nanorods (FeTe NRs) are prepared from tellurium nanowires (Te NWs). Black-Right-Pointing-Pointer Mercury telluride nanorods (HgTe NRs) form by cation exchange reaction of FeTe NRs. Black-Right-Pointing-Pointer Fe{sup 2+} ions released catalyze the oxidation of ABTS by H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Mercury is effectively determined in blood with an LOD of 1.31 nM at S/N ratio 3. - Abstract: We have developed a simple, colorimetric iron telluride (FeTe) nanorods (NRs) based system for the detection of mercury, mainly based on the cation exchange reaction between FeTe NRs and Hg{sup 2+}. FeTe NRs (length, 105 {+-} 21 nm) react with Hg{sup 2+} to form HgTe NRs (length, 112 {+-} 26 nm) and consequently release Fe{sup 2+} ions that catalyzes the oxidation between a peroxidase substrate 2,2 Prime -azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) and H{sub 2}O{sub 2}. The concentration of Fe{sup 2+} and thereby Hg{sup 2+} can be determined by measuring the absorbance of the ABTS oxidized product at 418 nm. This approach allows the detection of Hg{sup 2+}, with a limit of detection of 1.31 nM at a signal-to-noise ratio 3 and a linear range 5-100 nM (R{sup 2} = 0.99). The low-cost, simple, sensitive, and reproducible assay has been validated for the detection of Hg{sup 2+} in a blood sample (SRM 955c), with the result being in good agreement with that provided by National Institute of Standards and Technology.

  14. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.

    Science.gov (United States)

    Ma, Ning; Li, Chunsheng; Zhang, Dandan; Yu, Jinzhi; Xu, Ying

    2016-07-01

    Application of growing microorganisms for cadmium removal is limited by the sensitivity of living cells to cadmium. The effects of sodium chloride (NaCl) preincubation on the cadmium bioaccumulation and tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae were investigated in this study. NaCl preincubation significantly reduced the intracellular and cell-surface cadmium bioaccumulation of P. kudriavzevii at both 6 and 20 mg L(-1) cadmium, while no obvious effect was observed in S. cerevisiae except that the intracellular cadmium bioaccumulation at 20 mg L(-1) cadmium was reduced obviously by 20-60 g L(-1)  NaCl. For both yeasts, the improved contents of protein and proline after NaCl preincubation contributed to the cadmium tolerance. The thiol contents in P. kudriavzevii under cadmium stress were alleviated by NaCl preincubation, which might be due to the decrease of intracellular cadmium bioaccumulation. NaCl preincubation enhanced the contents of glycerol and trehalose in P. kudriavzevii under cadmium stress, while no acceleration was observed in S. cerevisiae. The results suggested that NaCl preincubation could be applied in cadmium removal by growing P. kudriavzevii to increase the cadmium tolerance of the yeast.

  15. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD.

  16. Electrowetting on dielectric-actuation of microdroplets of aqueous bismuth telluride nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Raj K [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Borca-Tasciuc, T [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Purkayastha, A [Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Ramanath, G [Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States)

    2007-11-28

    This work reports the actuation of droplets of nanofluid by the electrowetting on dielectric (EWOD) effect. The nanofluid is comprised of an aqueous (deionized water) suspension of 3 nm diameter bismuth telluride nanoparticles capped with thioglycolic acid (TGA). Microdroplets of nanofluid are cast on Si(001) wafers coated with 100 nm thick layers of silicon dioxide and AF Teflon. Applying an electric field between the substrate and an electrode immersed in the nanofluid droplet results in a strong change in the contact angle from 110{sup 0} to 84{sup 0} for a 0-60 V voltage range. The droplets of nanofluid exhibit enhanced stability and absence of contact angle saturation in the tested voltage range when compared with droplets of aqueous solutions of 0.01 M Na{sub 2}SO{sub 4} or thioglycolic acid in deionized water. We propose that ion generation due to capping-agent desorption is a key factor determining the EWOD effect in the bismuth telluride nanofluid along with the nanoparticle contribution to charge transport. Our results open up new vistas for using nanofluids for microscale actuator device applications.

  17. A density-functional study on the electronic and vibrational properties of layered antimony telluride

    Science.gov (United States)

    Stoffel, Ralf P.; Deringer, Volker L.; Simon, Ronnie E.; Hermann, Raphaël P.; Dronskowski, Richard

    2015-03-01

    We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated—including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.

  18. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future.

  19. 76 FR 46288 - Adequacy Determination for Colorado Springs, Cañon City, Greeley, Pagosa Springs, and Telluride...

    Science.gov (United States)

    2011-08-02

    ... AGENCY Adequacy Determination for Colorado Springs, Ca on City, Greeley, Pagosa Springs, and Telluride... Carbon Monoxide Attainment/Maintenance Plan Colorado Springs Attainment/ Maintenance Area'' and ``Revised...,'' ``Final Revised PM10 Maintenance Plan for the Pagosa Springs Attainment/Maintenance Area,'' and...

  20. Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries

    Science.gov (United States)

    Yu, Hong; Yang, Jun; Geng, Hongbo; Chao Li, Cheng

    2017-04-01

    Uniform carbon wrapped copper telluride nanowires were successfully prepared by using an in situ conversion reaction. The length of these nanowires is up to several micrometers and the width is around 30–40 nm. The unique one dimensional structure and the presence of conformal carbon coating of copper telluride greatly accommodate the large volumetric changes during cycling, significantly increase the electrical conductivity and reduce charge transfer resistance. The copper telluride nanowires show promising performance in a lithium ion battery with a discharge capacity of 130.2 mA h g‑1 at a high current density of 6.0 A g‑1 (26.74 C) and a stable cycling performance of 673.3 mA h g‑1 during the 60th cycle at 100 mA g‑1. When evaluated as anode material for a sodium ion battery, the copper telluride nanowires deliver a reversible capacity of 68.1 mA h g‑1 at 1.0 A g‑1 (∼4.46 C) and have a high capacity retention of 177.5 mA h g‑1 during the 500th cycle at 100 mA g‑1.

  1. Cadmium content of plants as affected by soil cadmium concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lehoczky, E. [Pannon Univ. of Agricultural Sciences, Keszthely (Hungary); Szabados, I.; Marth, P. [Plant Health and Soil Conservation Station, Higany (Hungary)

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  2. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure

    Science.gov (United States)

    Luo, Run; Liu, Bo; Yang, Xiaoyan; Bao, Zheng; Li, Bing; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-01-01

    The Cadmium telluride (CdTe) thin film has been prepared by physical vapor deposition (PVD), the Ar + O2 pressure is about 0.9 kPa. This method is a newer technique to deposit CdTe thin film in large area, and the size of the film is 30 × 40 cm2. This method is much different from the close-spaced sublimation (CSS), as the relevance between the source temperature and the substrate temperature is weak, and the gas phase of CdTe is transferred to the substrate by Ar + O2 flow. Through this method, the compact and uniform CdTe film (30 × 40 cm2) has been achieved, and the performances of the CdTe thin film have been determined by transmission spectrum, SEM and XRD. The film is observed to be compact with a good crystallinity, the CdTe is polycrystalline with a cubic structure and a strongly preferred (1 1 1) orientation. Using the CdTe thin film (3 × 5 cm2) which is taken from the deposited large-area film, the 14.6% efficiency CdS/CdTe thin film solar cell has been prepared successfully. The structure of the cell is glass/FTO/CdS/CdTe/graphite slurry/Au, short circuit current density (Jsc) of the cell is 26.9 mA/cm2, open circuit voltage (Voc) is 823 mV, and filling factor (FF) is 66.05%. This technique can be a quite promising method to apply in the industrial production, as it has great prospects in the fabricating of large-area CdTe film.

  3. Solar X-ray Spectrometer (SOXS) Mission – Low Energy Payload – First Results

    Indian Academy of Sciences (India)

    Rajmal Jain; Vishal Joshi; S. L. Kayasth; Hemant Dave; M. R. Deshpande

    2006-06-01

    We present the first results from the ‘Low Energy Detector’ payload of ‘Solar X-ray Spectrometer (SOXS)’ mission, which was launched onboard GSAT-2 Indian spacecraft on 08 May 2003 by GSLV-D2 rocket to study the solar flares. The SOXS Low Energy Detector (SLD) payload was designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of the Indian Space Research Organization (ISRO). The SLD payload employs the state-of-the-art solid state detectors viz., Si PIN and Cadmium-Zinc-Telluride (CZT) devices that operate at near room temperature (-20° C). The dynamic energy range of Si PIN and CZT detectors are 4–25 keV and 4–56 keV respectively. The Si PIN provides sub-keV energy resolution while CZT reveals ∼ 1.7 keV energy resolution throughout the dynamic range. The high sensitivity and sub-keV energy resolution of Si PIN detector allows the measuring of the intensity, peak energy and equivalent width of the Fe-line complex at approximately 6.7 keV as a function of time in all 8 M-class flares studied in this investigation. The peak energy () of Fe-line feature varies between 6.4 and 6.8 keV with increase in temperature from 9 to 34 MK. We found that the equivalent width () of Fe-line feature increases exponentially with temperature up to 20 MK but later it increases very slowly up to 28 MK and then it remains uniform around 1.55 keV up to 34 MK. We compare our measurements of with calculations made earlier by various investigators and propose that these measurements may improve theoretical models. We interpret the variation of both and with temperature as the changes in the ionization and recombination conditions in the plasma during the flare interval and as a consequence the contribution from different ionic emission lines also varies.

  4. Tolerance to cadmium and cadmium-binding ligands in Great Salt Lake brine shrimp (Artemia salina)

    Energy Technology Data Exchange (ETDEWEB)

    Jayasekara, S.; Drown, D.B.; Sharma, R.P.

    1986-02-01

    Information on the accumulation of cadmium in cytosolic proteins of Great Lake brine shrimp (Artemia salina) was obtained from animals collected directly from the lake and also from animal hatched and maintained in three sublethal concentrations of cadmium (0.5, 2.0, 5.0 ppm) in saltwater aquaria. Brine shrimp growth under these conditions was monitored by measuring body lengths during a 7-day exposure period. Heat-stable, cadmium-binding ligands were isolated and identified by Sephadex G-75 chromatography and atomic absorption spectrophotometry. Cadmium was found to be equally distributed between high and low molecular weight proteins in animals collected from the lake and the 0.5 ppm cadmium group. There was also a slight growth stimulation noted in the 0.5-pm group. Higher cadmium incorporation was noted in low molecular weight fractions with increasing cadmium concentration in the exposure media. Low molecular weight fractions were also found to have high uv absorption characteristics at 250 nm and low absorption at 280 nm. Molecular weight of the cadmium-binding ligands was found to be 11,000 as estimated by the gel filtration method. De novo synthesis of this protein was increased as a function of cadmium concentration in the media. However, slow accumulation of cadmium in other protein fractions was also noticed in higher cadmium exposure groups, suggesting the existence of possible tolerance mechanisms in brine shrimp exposed to suspected acute cadmium concentrations.

  5. Zone refining of cadmium and related characterization

    Indian Academy of Sciences (India)

    N R Munirathnam; D S Prasad; Ch Sudheer; J V Rao; T L Prakash

    2005-06-01

    We present the zone refining results of cadmium using horizontal resistive zone refiner under constant flow of moisture free hydrogen gas. The boron impurity in cadmium can be avoided using quartz (GE 214 grade) boat in lieu of high pure graphite boat. The analytical results using inductively coupled plasma optical emission spectrometry (ICPOES) show that majority of the impurities are less than the detection limits. Comparatively, zinc is the most difficult impurity element to remove in cadmium matrix by zone refining.

  6. The Epigenetic Effects of Prenatal Cadmium Exposure.

    Science.gov (United States)

    Vilahur, Nadia; Vahter, Marie; Broberg, Karin

    2015-06-01

    Prenatal exposure to the highly toxic and common pollutant cadmium has been associated with adverse effects on child health and development. However, the underlying biological mechanisms of cadmium toxicity remain partially unsolved. Epigenetic disruption due to early cadmium exposure has gained attention as a plausible mode of action, since epigenetic signatures respond to environmental stimuli and the fetus undergoes drastic epigenomic rearrangements during embryogenesis. In the current review, we provide a critical examination of the literature addressing prenatal cadmium exposure and epigenetic effects in human, animal, and in vitro studies. We conducted a PubMed search and obtained eight recent studies addressing this topic, focusing almost exclusively on DNA methylation. These studies provide evidence that cadmium alters epigenetic signatures in the DNA of the placenta and of the newborns, and some studies indicated marked sexual differences for cadmium-related DNA methylation changes. Associations between early cadmium exposure and DNA methylation might reflect interference with de novo DNA methyltransferases. More studies, especially those including environmentally relevant doses, are needed to confirm the toxicoepigenomic effects of prenatal cadmium exposure and how that relates to the observed health effects of cadmium in childhood and later life.

  7. Study of deep level defects of n+-CdS/p-CdTe solar cells

    Science.gov (United States)

    Kharangarh, Poonam Rani

    Among various photovoltaic materials, polycrystalline cadmium telluride thin film is now the most promising material, due to its low production cost excellent stability and reliability. Current-voltage and capacitance-voltage measurements of CdTe photovoltaic devices at different temperatures can provide valuable information about non-idealities in the n-p semiconductor junction. There are certain limitations which limit the efficiency of CdTe solar cells. There is no real distinction between defects and impurities in CdTe solar cells as both act as beneficial dopants or detrimental traps unlike Si where intentional shallow dopants and traps are distinctly different. Therefore, the role of defect states on CdTe solar cell performance, the effect of processing on defect states, and simple and effective characterization techniques must be investigated and identified. In this research the thin film n+-CdS/p-CdTe solar cells made with evaporated Cu as a primary back contact, are characterized by using the temperature dependence of the reverse bias diode current (J-V-T) to determine the energy levels of deep defects. The results of the J-V-T measurements on solar cells made at NJIT show that while modest amounts of Cu enhance cell performance, an excessive high temperature annealing step degrades device quality and reduces efficiency. This work addresses the error that can be introduced during defect energy level estimation if the temperature dependence of the carrier capture cross-section is neglected. Therefore, the location of traps is derived using a Shockley-Read-Hall recombination model with modified assumptions. A Cu-related deep level defect with activation energy of 0.57eV is observed for Cu evaporated back contact cells and an intrinsic defect with activation energy 0.89eV is found. Frequency dispersion in Capacitance-Voltage measurements confirms the presence of Cu-related deep level traps for cells with a Cu evaporated back contact, whereas no such defects

  8. Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp.

    Science.gov (United States)

    Sangthong, Chirawee; Setkit, Kunchaya; Prapagdee, Benjaphorn

    2016-01-01

    Cadmium-resistant Micrococcus sp. TISTR2221, a plant growth-promoting bacterium, has stimulatory effects on the root lengths of Zea mays L. seedlings under toxic cadmium conditions compared to uninoculated seedlings. The performance of Micrococcus sp. TISTR2221 on promoting growth and cadmium accumulation in Z. mays L. was investigated in a pot experiment. The results indicated that Micrococcus sp. TISTR2221significantly promoted the root length, shoot length, and dry biomass of Z. mays L. transplanted in both uncontaminated and cadmium-contaminated soils. Micrococcus sp. TISTR2221 significantly increased cadmium accumulation in the roots and shoots of Z. mays L. compared to uninoculated plants. At the beginning of the planting period, cadmium accumulated mainly in the shoots. With a prolonged duration of cultivation, cadmium content increased in the roots. As expected, little cadmium was found in maize grains. Soil cadmium was significantly reduced with time, and the highest percentage of cadmium removal was found in the bacterial-inoculated Z. mays L. after transplantation for 6 weeks. We conclude that Micrococcus sp. TISTR2221 is a potent bioaugmenting agent, facilitating cadmium phytoextraction in Z. mays L.

  9. Size distribution effects of cadmium tellurium quantum dots (CdS/CdTe) immunotoxicity on aquatic organisms.

    Science.gov (United States)

    Bruneau, A; Fortier, M; Gagne, F; Gagnon, C; Turcotte, P; Tayabali, A; Davis, T L; Auffret, M; Fournier, M

    2013-03-01

    The increasing use of products derived from nanotechnology has raised concern about their potential toxicity to aquatic life. This study sought to examine the comparative immunotoxicity of capped cadmium sulphide/cadmium telluride (CdS/CdTe) quantum dots (QDs) and possible impact of particle/aggregate size on two bivalves (Mytilus edulis and Elliptio complanata) and a fish (Oncorhynchus mykiss). The QDs were dispersed in sterile water and fractionated using a series of micro/ultrafiltration membranes of decreasing pore size: 450 nm, 100 nm, 50 nm, 25 nm, 100 kDa (6.8 nm), 30 kDa (4.6 nm), 10 kDa (3.2 nm) and 1 kDa (1.5 nm). The total concentrations of cadmium and tellurium were determined for the filtered material and for that retained on the filters (retentate). The immunotoxicity was determined by measuring cell viability and phagocytosis. Results revealed that nanoparticles retained on the ultrafilters had a higher Cd/Te ratio compared to the permeate fraction (ratio of 5 and 2 respectively) which could indicate that the CdS core was not associated with the permeable fraction of Cd. Our results demonstrate that the toxicity of CdS/CdTe QDs was concentration and size dependent. Large CdS/CdTe QD aggregates (25 nm < size < 100 nm) reduced phagocytosis more than did smaller nanoparticles (<25 nm). Moreover, our results revealed that the different species responded differently to these fractions. Mytilus edulis hemocytes were less sensitive to CdS/CdTe QDs than the Oncorhynchus mykiss macrophage and Elliptio complanata hemocytes.

  10. Preparation of bismuth telluride thin film by electrochemical atomic layer epitaxy(ECALE)

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Junyou; GAO Xianhui; HOU Jie; BAO Siqian; FAN Xian

    2007-01-01

    Thin-layer electrochemical studies of the underpotential deposition(UPD)of Bi and Te on cold rolled silver substrate have been performed.The voltammetric analysis of underpotential shift demonstrates that the initial Te UPD on Bi-covered Ag and Bi UPD on Te-covered Ag fitted UPD dynamics mechanism.A thin film of bismuth telluride was formed by alternately depositing Te and Bi via an automated flow deposition system.X-ray diffraction indicated the deposits of Bi2Te3.Energy Dispersive X-ray Detector quantitative analysis gave a 2:3 stoichiornetric ratio of Bi to Te,which was consistent with X-ray Diffraction results.Electron probe microanalysis of the deposits showed a network structure that results from the surface defects of the cold rolled Ag substrate and the lattice mismatch between substrate and deposit.

  11. Role of Van der Waals interactions in determining the structure of liquid tellurides

    Science.gov (United States)

    Micoulaut, Matthieu; Flores-Ruiz, Hugo; Coulet, Vanessa; Piarristeguy, Andrea; Johnson, Mark; Cuello, Gabriel; Pradel, Annie

    The simulation of tellurides using standard density functional (DFT) theory based molecular dynamics usually leads to an overestimation of the bond distances and a noticeable mismatch between theory and experiments when e.g. structure functions are being directly compared. Here, the structural properties of several compositions of Ge-Te and Ge-Sb-Te liquids are studied from a combination of neutron diffraction and DFT-based molecular dynamics. Importantly, we find an excellent agreement in the reproduction of the structure in real and reciprocal spaces, resulting from the incorporation of dispersion forces in the simulation. We then investigate structural properties including structure factors, pair distribution functions, angular distributions, coordination numbers, neighbor distributions, and compare our results with experimental findings. References:Physical Review B 92, 134205 (2015)Physical Review B 89, 174205 (2014)Physical Review B 90, 094207 (2014) Support from Agence Nationale de la Recherche (ANR) (Grant No. ANR-11-BS08-0012) is gratefully acknowledged.

  12. New Insights into High-Performance Thermoelectric Tellurides from ^125Te NMR Spectroscopy

    Science.gov (United States)

    Levin, E. M.; Hu, Y.-Y.; Cook, B. A.; Harringa, J. L.; Schmidt-Rohr, K.; Kanatzidis, M. G.

    2009-11-01

    Thermoelectric materials are widely used for direct transformation of heat to electricity (Seebeck effect) and for solid state refrigeration (Peltier effect). Efforts to increase the efficiency of high-performance thermoelectrics, which include narrow-gap, doped tellurium-based semiconductors, require detailed knowledge of their local structure and bonding. We have used ^125Te nuclear magnetic resonance (NMR) as a local probe for obtaining better understanding of these high-performance thermoelectric tellurides, specifically PbTe doped with Ag and Sb (LAST materials) and GeTe doped with Ag and Sb (TAGS materials). The resonance frequencies and line shapes of the NMR spectra, as well as spin-lattice relaxation times and chemical shift anisotropies are highly sensitive to the composition and synthesis conditions of LAST and TAGS materials, enabling studies of the local composition, distortion, bonding, and carrier concentration. Several intriguing phenomena including electronic inhomogeneity and local distortions of the crystal lattice have been observed by NMR.

  13. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    Science.gov (United States)

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  14. Chemical pressure and hidden one-dimensional behavior in rare earth tri-telluride

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Giamarchi, T.; /Geneva U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2009-12-14

    We report on the first optical measurements of the rare-earth tri-telluride charge-density-wave systems. Our data, collected over an extremely broad spectral range, allow us to observe both the Drude component and the single-particle peak, ascribed to the contributions due to the free charge carriers and to the charge-density-wave gap excitation, respectively. The data analysis displays a diminishing impact of the charge-density-wave condensate on the electronic properties with decreasing lattice constant across the rare-earth series. We propose a possible mechanism describing this behavior and we suggest the presence of a one-dimensional character in these two-dimensional compounds. We also envisage that interactions and umklapp processes might play a relevant role in the formation of the charge-density-wave state in these compounds.

  15. Immunocytotoxicity, cytogenotoxicity and genotoxicity of cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Rocha, Thiago Lopes; Gomes, Tânia; Cardoso, Cátia; Letendre, Julie; Pinheiro, José Paulo; Sousa, Vânia Serrão; Teixeira, Margarida Ribau; Bebianno, Maria João

    2014-10-01

    There is an increased use of Quantum Dot (QDs) in biological and biomedical applications, but little is known about their marine ecotoxicology. So, the aim of this study was to investigate the possible immunocytotoxic, cytogenotoxic and genotoxic effects of cadmium telluride QDs (CdTe QDs) on the marine mussel Mytilus galloprovincialis. Mussels were exposed to 10 μg L(-1) of CdTe QDs or to soluble Cd [Cd(NO3)2] for 14 days and Cd accumulation, immunocytotoxicity [hemocyte density, cell viability, lysosomal membrane stability (LMS), differential cell counts (DCC)], cytogenotoxicity (micronucleus test and nuclear abnormalities assay) and genotoxicity (comet assay) were analyzed. Results show that in vivo exposure to QDs, Cd is accumulated in mussel soft tissues and hemolymph and induce immunotoxic effects mediated by a decrease in LMS, changes in DCC, as well as genotoxicity (DNA damage). However, QDs do not induce significant changes in hemocytes density, cell viability and cytogenetic parameters in opposition to Cd(2+). Soluble Cd is the most cytotoxic and cytogenotoxic form on Mytilus hemocytes due to a higher accumulation of Cd in tissues. Results indicate that immunotoxicity and genotoxicity of CdTe QDs and Cd(2+) are mediated by different modes of action and show that Mytilus hemocytes are important targets for in vivo QDs toxicity.

  16. Electrodialytic Removal of Cadmium from Straw Ash

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne;

    1999-01-01

    A problem with flyash from straw and wood combustion is the high level of heavy metals, especially cadmium. Two electrodialytic remediation experiments were carried out on cadmium polluted flyash from straw combustion. The flyash could be cleaned to 1/3 of its initial level after 24 days...

  17. Cadmium and children : Exposure and health effects

    NARCIS (Netherlands)

    Schoeters, G.; Hond, E. Den; Zuurbier, M.; Naginiene, R.; Hazel, P.J. van den; Stilianakis, N.; Ronchetti, R.; Koppe, J.G.

    2006-01-01

    Cadmium exposure and accumulation in the body start at young age. Exposure routes in children are mainly via food, environmental tobacco smoke and house dust. Excretion from the body is limited. Cadmium accumulation in the kidney is responsible for effects such as nephrotoxicity and osteoporosis whi

  18. Cadmium and children: exposure and health effects.

    Science.gov (United States)

    Schoeters, Greet; Den Hond, Elly; Zuurbier, Moniek; Naginiene, Rima; van den Hazel, Peter; Stilianakis, Nikolaos; Ronchetti, Roberto; Koppe, Janna G

    2006-10-01

    Cadmium exposure and accumulation in the body start at young age. Exposure routes in children are mainly via food, environmental tobacco smoke and house dust. Excretion from the body is limited. Cadmium accumulation in the kidney is responsible for effects such as nephrotoxicity and osteoporosis which are observed at adult age. Cadmium exposure through inhalation is also associated with lung cancer in adulthood. Although transfer to the neonate through the placenta and through breast milk is limited, teratogenic and developmental effects were observed in experimental animals. The database on human studies involving children is limited, yet effects on motoric and perceptual behaviour in children have been associated with elevated in utero cadmium exposure. In school age children urinary cadmium levels were associated with immune suppressive effects. More studies are needed to confirm these results. Experimental data in vitro and in animals refer to effects of cadmium on the hypothalamus-pituitary axis at different levels. This may lead to disorders of the endocrine and/or immune system. Cadmium exposure at early age should be limited as much as possible to prevent direct effects on children and to prevent accumulation of cadmium which may have serious health effects only becoming manifest at older age.

  19. Immunoassay for Cadmium Detection and Quantification

    Institute of Scientific and Technical Information of China (English)

    GONG-LIANG LIU; JU-FANG WANG; ZHI-YONG LI; SHI-ZHONG LIANG; XIAO-NING WANG

    2009-01-01

    Objective To detect cadmium in environmental and food samples by graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma atomic emission spectroscopy (ICPAES). Methods An indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) was developed based on a cadmium-specific monoclonal antibody.IC-ELISA for cadmium in environmental and food samples was evaluated. Results IC-ELISA showed an IC50 of 45.6 μg/L with a detection limit of 1.95 μg/L for cadmium,and showed a mean recovery ranging 97.67%-107.08%.The coefficient of variations for intra- and iuterassay was 3.41%-6.61% and 4.70%-9.21%,respectively.The correlation coefficient between IC-ELISA and GFAAS was 0.998. Conclusion IC-ELISA can detect and quantify cadmium residue in environmental or food samples.

  20. Cadmium a metalloestrogen: are we convinced?

    Science.gov (United States)

    Silva, Nalinda; Peiris-John, Roshini; Wickremasinghe, Rajitha; Senanayake, Hemantha; Sathiakumar, Nalini

    2012-05-01

    Metalloestrogens are inorganic metal ions that bind to and activate oestrogen receptors. They are implicated in the aetiology of oestrogen-dependent diseases such as cancers of the breast and endometrium as well as endometriosis. Cadmium is one of the most studied metalloestrogens. In this review, scientific evidence for the oestrogenic effects of cadmium is critically evaluated to determine if there is sufficient evidence to support cadmium as an aetiological factor of oestrogen-dependent disease in humans. Results of the review indicated that, although the in vitro and in vivo evidence of the oestrogenic properties of cadmium was persuasive, evidence from population-based human studies remains conflicting. Considerable knowledge gaps exist on the potential oestrogenic effect of cadmium in humans. Research that focuses on bridging these knowledge gaps would be useful in preventing and managing oestrogen-dependent disease in humans.

  1. Solar Tyrol project: using climate data for energy production estimation. The good practice of Tyrol in conceptualizing climate services.

    Science.gov (United States)

    Petitta, Marcello; Wagner, Jochen; Costa, Armin; Monsorno, Roberto; Innerebner, Markus; Moser, David; Zebisch, Marc

    2014-05-01

    ) Clouds effect: clear-sky irradiance is modified using cloud index provided by Meteoswiss with very high temporal resolution (15 min within 2004 and 2012). These three steps produce daily (eventually hourly) dataset of incoming solar radiation at 25 m of horizontal resolution for the entire Tyrol region reaching 2 m horizontal resolution for the inhabited areas . The final steps provide the potential electric energy production assuming the presence of two PV technologies: cadmium telluride and polycrystalline silicon. In this case the air temperature data have been used to include the temperture-efficency factor in the PV modules. Results shows an improved accuracy in estimated incoming solar radiation compared to the standard methods used due to clouds and atmospheric turbidity calculation used in our method. Moreover we set a specific method to estimate shadows effects of close and far objects: the problem is in adopting an appropriate horizontal resolution and maintain the calculation time for the entire geographical domain relatively low. Our methods allow estimating the correct horizontal resolution for the area given the digital elevation model of the region. Finally a web-based-GIS interface has been set up to display the data to public and a spatial database has been developed to handle the large amount of data. The current results of our project demonstrate how is possible to use scientific know-how and climate products to provide relevant and simple-to-use information to stake holder and political bodies. Moreover our approach show how is possible to have a relevant impact in current political and economical fields associated to local energy production and planning.

  2. Cadmium mobility and accumulation in soils of the European Communities

    NARCIS (Netherlands)

    Fraters B; van Beurden AUCJ

    1993-01-01

    In this overview of the effects of cadmium pollution on agricultural soils in the European Community, both the cadmium loads on agricultural land and the soil sensitivity to cadmium accumulation have been estimated. Cadmium loads have been estimated separately for arable land and grassland. The ef

  3. Enhanced diode performance in cadmium telluride–silicon nanowire heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Akgul, Funda Aksoy, E-mail: fundaaksoy01@gmail.com [Department of Physics, Nigde University, 51240 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Akgul, Guvenc, E-mail: guvencakgul@gmail.com [Bor Vocational School, Nigde University, 51700 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Gullu, Hasan Huseyin [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Unalan, Husnu Emrah [Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Turan, Rasit [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey)

    2015-09-25

    Highlights: • Vertically well oriented Si nanowire arrays on Si wafer were synthesized. • Semiconductor CdTe thin film/Si nanowire devices were successfully fabricated. • Optoelectronic properties of the fabricated devices were investigated. • Enhanced electrical and diode properties for the devices were observed. • The devices exhibited strong photosensitivity in near infrared region. - Abstract: We report on the structural and optoelectronic characteristics and photodetection properties of cadmium telluride (CdTe) thin film/silicon (Si) nanowire heterojunction diodes. A simple and cost-effective metal-assisted etching (MAE) method is applied to fabricate vertically oriented Si nanowires on n-type single crystalline Si wafer. Following the nanowire synthesis, CdTe thin films are directly deposited onto the Si nanowire arrays through RF magnetron sputtering. A comparative study of X-ray diffraction (XRD) and Raman spectroscopy shows the improved crystallinity of the CdTe thin films deposited onto the Si nanowires. The fabricated nanowire based heterojunction devices exhibit remarkable diode characteristics, enhanced optoelectronic properties and photosensitivity in comparison to the planar reference device. The electrical measurements revealed that the diodes have a well-defined rectifying behavior with a superior rectification ratio of 10{sup 5} at ±5 V and a relatively small ideality factor of n = 1.9 with lower reverse leakage current and series resistance at room temperature in dark condition. Moreover, an open circuit voltage of 120 mV is also observed under illumination. Based on spectral photoresponsivity measurements, the nanowire based device exhibits a distinct responsivity (0.35–0.5 A W{sup −1}) and high detectivity (6 × 10{sup 12}−9 × 10{sup 12} cm Hz{sup 1/2} W{sup −1}) in near-infrared wavelength region. The enhanced device performance and photosensitivity is believed to be due to three-dimensional nature of the interface between

  4. Sealed nickel-cadmium battery

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-15

    Overcharge protection, and especially the chargeability of a sealed Ni/Cd battery with high currents is improved by rolling a carbon-containing powdered material into the surface of the negative electrode, which material catalyzes the reduction of oxygen. Wetting of the electrode with a Tylose dispersion prior to application of the powder (by powdering, vibration or in an agitator) improves the adhesion of the powder. The cadmium electrode thus prepared combines in itself the functions of a negative principal electrode and of an auxiliary oxygen electrode.

  5. Geology of the florencia gold – telluride deposit (camagüey, cuba) and some metallurgical considerations

    OpenAIRE

    López K Jesús M.; Moreira Jesús; Gandarillas José

    2011-01-01

    This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after b...

  6. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  7. Response of Pleurotus ostreatus to cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Favero, N.; Bressa, G.; Costa, P. (Univ. of Padua (Italy))

    1990-08-01

    The possibility of utilizing agroindustrial wastes in the production of edible, high-quality products (e.g., mushrooms) implies the risk of bringing toxic substances, such as heavy metals, into the human food chain. Thus, growth in the presence of cadmium and cadmium accumulation limits have been studied in the industrially cultivated fungus P. ostreatus. Fruit body production is substantially unaffected in the presence of 25, 139, and 285 mg Cd/kg of dried substrate. Cadmium concentration in fruit bodies is related to cadmium substrate level, the metal being present at higher levels in caps (22-56 mg/kg dry wt) than in stems (13-36 mg/kg dry wt). Concentration factor (CF), very low in the controls (about 2), further decreases in treated specimens. The presence of a cadmium control mechanism in this fungi species is suggested. Fruit body cadmium levels could, however, represent a risk for P. ostreatus consumers, according to FAO/WHO limits related to weekly cadmium intake.

  8. Interactions of cadmium and zinc during pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Sorell, T.L.

    1988-01-01

    The interactions of cadmium exposure and zinc during pregnancy were investigated by studying rats exposed to 0, 5, 50, or 100 ppm cadmium (as CdCl{sub 2}) in the drinking water from day 6 to day 20 of pregnancy. On day 20 of pregnancy, fetuses of rats exposed to 50 and 100 ppm of cadmium were slightly but significantly smaller than those of control animals. Fetal weight was negatively correlated with fetal cadmium concentration and positively correlated with fetal cadmium concentration. Significant fetal cadmium accumulation occurred in both the 50 and 100 ppm cadmium exposure groups; fetal zinc concentrations were decreased. Maternal liver and kidney zinc concentrations were slightly elevated, and the possible role of maternal organ sequestration of available zinc is discussed. The activity of two zinc metalloenzymes, alkaline phosphatase and {delta}-aminolevulinic acid dehydratase, was decreased in maternal and fetal tissues, providing evidence of an alteration in zinc metabolism. In addition, the placental transport of {sup 65}Zn was characterized in control animals and compared to exposed groups; placental zinc transport was significantly decreased in the 50 and 100 ppm exposure groups.

  9. Cadmium inhalation and male reproductive toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, H.A.; Mast, T.J. (Battelle Pacific Northwest Laboratories, Richland, WA (USA))

    1990-01-01

    Cadmium is a highly toxic element that is cumulative and has a long biological half-life in mammals. The severe toxicity of cadmium in man has been known for more than 100 years. Despite the knowledge that cadmium is toxic, only 20 human cases of poisoning via ingestion were recorded prior to 1941, whereas in the ensuing five-year period more than 680 cases of cadmium poisonings from accidental oral ingestion of this metal were documented. Some of the recorded effects of exposure to cadmium in laboratory animals include renal tubular damage, placental and testicular necrosis, structural and functional liver damage, osteomalacia, testicular tumors, teratogenic malformations, anemia, hypertension, pulmonary edema, chronic pulmonary emphysema, and induced deficiencies of iron, copper, and zinc. Some of these effects have also been observed in human after accidental exposures to cadmium oxide fumes and are characteristic of the syndrome described in Japan as Itai Itai disease in which ingestion of cadmium is the inciting chemical.134 references.

  10. [Association between cadmium and breast cancer].

    Science.gov (United States)

    Strumylaite, Loreta; Bogusevicius, Algirdas; Ryselis, Stanislovas; Pranys, Darius; Poskiene, Lina; Kregzdyte, Rima; Abdrachmanovas, Olegas; Asadauskaite, Rūta

    2008-01-01

    Cadmium is a known human lung carcinogen, although some studies indicate a link between cadmium exposure and human breast cancer. The objective of this study was to assess cadmium concentration in breast tissue samples of patients with breast cancer and benign breast tumor. MATERIAL AND METHODS. The concentration of cadmium was determined in breast tissue samples of 21 breast cancer and 19 benign tumor patients. Two samples of breast tissue from each patient, i.e. tumor and normal tissue close to tumor, were taken for the analysis. Cadmium was determined by atomic absorption spectrometry (Perkin-Elmer, Zeeman 3030). RESULTS. In patients with breast cancer, the mean cadmium concentration was 33.1 ng/g (95% CI, 21.9-44.4) in malignant breast tissue and 10.4 ng/g (95% CI, 5.6-15.2) in normal breast tissue (P=0.002). In patients with benign tumor, the corresponding values were 17.5 ng/g (95% CI, 8.4-26.5) and 11.8 ng/g (95% CI, 5.1-18.5) (P=0.3144). There was a statistically significant difference in cadmium concentration between malignant and benign breast tissues (P=0.009). CONCLUSION. The data obtained show that cadmium concentration is significantly higher in malignant breast tissue as compared with normal breast tissue of the same women or benign breast tissue. Further studies are necessary to determine the association between cadmium concentration in malignant breast tissue and estrogen receptor level, and smoking.

  11. Biochemical Effects of Cadmium Exposure and the Potential Pharmacologic Significance of Cadmium Mediated Hydrolase Inhibition

    Science.gov (United States)

    1997-04-18

    increase Cd absorption from the intestines (Larson and Piscator 1971; Itokawa, Abe et al. 197 4; Pond and Walker 1975). Pyridoxine, vitamin B 6 , is...considerations on uptake and retention of cadmium in human kidney cortex. Cadmium in the Environment. L. Friberg, M. Piscator and G. F. Nordberg. Cleveland...Columbia, Missouri, University of Missouri. Larson, S.-E. and M. Piscator (1971). "Effect of cadmium on skeletal tissue in normal and calcium

  12. Cadmium Toxicity to Ringed Seals (Phoca hispida)

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, R.; Riget, F. F.;

    as laboratory mammals. We have studied possible cadmium induced histopathological changes in the kidneys as well as a demineralisation of the skeletal system (DXA-scanning of lumbal vertebraes). No obvious cadmium induced toxic changes were found. Food composition and physiological adaptations may explain......Cadmium concentrations in kidneys from ringed seals (Phoca hispida) from North West Greenland (Qaanaaq) are high. Concentrations range at level known to induce renal toxic effects (mainly tubulopathy) and demineralisation (osteopenia) of the skeletal system (Fanconi's Syndrome) in humans as well...

  13. Effect of In Situ Thermal Annealing Process on Structural, Optical and Electrical Properties of CdSCdTe Thin-Film Solar Cells Fabricated by Pulsed Laser Deposition

    Science.gov (United States)

    Al-mebir, Alaa Ayad Khedhair

    Cadmium Telluride has long been recognized as the second lowest- cost material after Si in the world photovoltaic market, specifically for thin-film solar cells. The two attractive properties of the CdTe are its nearly ideal band gap of ˜1.5 eV for single p-n junction photovoltaic and its high optical absorption coefficient up to 105 cm-1. Therefore, a thickness of ˜1 mum of CdTe can absorb up to 90% of the incident light. The key to high-performance thin film CdTe-based solar cells is controlling microstructure of the CdS/CdTe through obtaining high-quality crystalline CdTe thin films that have low density pinholes and other defects and form high-quality p-n heterojunction interfaces on the CdS or other window layers. Considering these, the relative high temperatures used for CdTe thick film growth may not be suitable in the thin film case due to lack of control in CdTe microstructure evolution. Therefore, development of low-temperature processes for CdTe thin film solar cells is important to achieving a precise control of the CdS/CdTe microstructure and optoelectronic properties. In addition, low temperatures provide benefits in wider selection of substrates especially those for low-cost, flexible solar cells applications. However, the CdS/CdTe solar cells based on thin CdTe films fabricated at low temperature have generally poor performance as a result of increased density of grain boundaries and defects. In order to address this issue, we have developed an in situ thermal annealing process (iTAP) immediately after the CdS/CdTe deposition using Pulsed laser deposition (PLD) at 200 °C and before the common ex situ CdCl2 annealing typically employed for optimization of the CdTe-based solar cells. A systematic study on the microstructure, optical and optoelectronic properties of CdS/CdTe solar cells processed under different iTAP conditions has been carried out. It has been found that these physical properties depend sensitively on the iTAP processing conditions

  14. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  15. Electroplating of CdTe Thin Films from Cadmium Sulphate Precursor and Comparison of Layers Grown by 3-Electrode and 2-Electrode Systems

    Directory of Open Access Journals (Sweden)

    Imyhamy M. Dharmadasa

    2017-01-01

    Full Text Available Electrodeposition of CdTe thin films was carried out from the late 1970s using the cadmium sulphate precursor. The solar energy group at Sheffield Hallam University has carried out a comprehensive study of CdTe thin films electroplated using cadmium sulfate, cadmium nitrate and cadmium chloride precursors, in order to select the best electrolyte. Some of these results have been published elsewhere, and this manuscript presents the summary of the results obtained on CdTe layers grown from cadmium sulphate precursor. In addition, this research program has been exploring the ways of eliminating the reference electrode, since this is a possible source of detrimental impurities, such as K+ and Ag+ for CdS/CdTe solar cells. This paper compares the results obtained from CdTe layers grown by three-electrode (3E and two-electrode (2E systems for their material properties and performance in CdS/CdTe devices. Thin films were characterized using a wide range of analytical techniques for their structural, morphological, optical and electrical properties. These layers have also been used in device structures; glass/FTO/CdS/CdTe/Au and CdTe from both methods have produced solar cells to date with efficiencies in the region of 5%–13%. Comprehensive work carried out to date produced comparable and superior devices fabricated from materials grown using 2E system.

  16. RISK ASSESSMENT AND MANAGEMENT OF ENVIRONMENTAL CADMIUM

    Science.gov (United States)

    Cadmium consumed in foods grown on soils contaminated by industrial Cd+Zn discharge has caused renal tubular dysfunction in exposed humans in discrete situations. However, lack of understanding about environmental Cd has caused wide concern that generalpopulations may...

  17. Multi-stage uplift of the Rocky Mountains: new age constraints on the Telluride Conglomerate and regional compilation of apatite fission track ages

    Science.gov (United States)

    Donahue, M. S.; Karlstrom, K. E.; Gonzales, D. A.; Pecha, M.; McKeon, R. E.

    2011-12-01

    The Telluride Conglomerate, exposed on the western flanks of Oligocene caldera complexes of the San Juan Mountains of Colorado, has historically been considered an Eocene alluvial deposit overlying the "Rocky Mountain erosion surface" and pre-dating Oligocene volcanism. Measured sections show that the Telluride preserves an unroofing sequence with basal units dominated by Paleozoic sedimentary clasts transitioning into upper units dominated by locally derived Proterozoic basement mixed with previously unrecognized andesitic Oligocene volcanics. Paleoflow directions and thicknesses of the preserved unit indicate the Telluride Conglomerate was deposited by a large, high-energy WNW- flowing braided river system. Detrital zircon analysis indicates minimum ages for individual grains within the Telluride Conglomerate of 28.0 to 31.5 Ma. This, plus the entrained volcanic clasts, redefines the unit as being of Oligocene age and indicates that conglomeratic deposition overlapped with regional San Juan volcanism and just predated major caldera eruptions at 28.4 Ma (San Juan and Uncompahgre) and 27.6 Ma (Silverton). We interpret the deposition of the Telluride Conglomerate to be the depositional response to regional uplift and erosion related to early stages of San Juan magmatism. These units have undergone significant post-depositional tectonism: the Telluride Conglomerate is found at ~9,000ft elevation near Telluride, CO, but is at ~13,000' at its westernmost exposure at Mt. Wilson. We attribute this differential uplift to be associated with faulting, pluton emplacement, and additional mantle driven uplift associated with the emplacement and cooling of the Wilson Stock in the last 20-22 Ma as documented by Miocene cooling seen in apatite helium (AHe) ages. This cooling fits into our regional compilation of published apatite fission track (AFT) and AHe data showing temporally and spatially partitioned Cenozoic cooling indicative of multistage uplift of the Rocky Mountain

  18. Some Aspects of Sealed Nickel Cadmium Cells

    Directory of Open Access Journals (Sweden)

    P. K. Saha

    1967-11-01

    Full Text Available Sealed Nickel Cadmium Cell system is termed till today as the most reliable power pack for electronic apparatus specially in low temperature use. This paper brings out the development and production of sealed nickel cadmium cells of pocket plate construction. The author who has gained experience in production of Ni-Cd cells in East Germany discusses also the major problems faced by the battery manufactures of to-day.

  19. Screening micro-organisms for cadmium absorption from aqueous solution and cadmium absorption properties of Arthrobacter nicotianae.

    Science.gov (United States)

    Tsuruta, Takehiko; Umenai, Daishi; Hatano, Tomonobu; Hirajima, Tsuyoshi; Sasaki, Keiko

    2014-01-01

    To obtain basic information on how microbial cells absorb cadmium from aqueous solution, we examined cadmium absorption in various micro-organisms. Of 51 micro-organism strains tested, we found that some Gram-positive bacteria, such as, Arthrobacter nicotianae and Bacillus subtilis, and some actinomycetes, such as, Streptomyces flavoviridis and S. levoris were highly capable of absorbing cadmium from an aqueous solution. A. nicotianae absorbed the largest amount of cadmium, over 800 μmol cadmium per gram of dry wt. cells. However, cadmium absorption by A. nicotianae was affected by the solution pH, cadmium concentration, and cell density. The absorption of cadmium was very rapid. Some factors that affected cadmium absorption by A. nicotianae cells were also discussed.

  20. Resonant Enhancement of Charge Density Wave Diffraction in the Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Sorini, A.P.; Yi, M.; Chuang, Y.D.; Moritz, B.; Yang, W.L.; Chu, J.-H.; Kuo, H.H.; Gonzalez, A.G.Cruz; Fisher, I.R.; Hussain, Z.; Devereau, T.P.; Shen, Z.X.

    2012-05-15

    We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the M{sub 5} (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to that of CDW state hosted on Te{sub 2} planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states, we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.

  1. Atomic ordering in cubic bismuth telluride alloy phases at high pressure

    Science.gov (United States)

    Loa, I.; Bos, J.-W. G.; Downie, R. A.; Syassen, K.

    2016-06-01

    Pressure-induced transitions from ordered intermetallic phases to substitutional alloys to semi-ordered phases were studied in a series of bismuth tellurides. By using angle-dispersive x-ray diffraction, the compounds Bi4Te5 , BiTe, and Bi2Te were observed to form alloys with the disordered body-centered cubic (bcc) crystal structure upon compression to above 14-19 GPa at room temperature. The BiTe and Bi2Te alloys and the previously discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show atomic ordering after gentle annealing at very moderate temperatures of ˜100 ∘C . Upon annealing, BiTe transforms from bcc to the B2 (CsCl) crystal-structure type, and the other phases adopt semi-disordered variants thereof, featuring substitutional disorder on one of the two crystallographic sites. The transition pressures and atomic volumes of the alloy phases show systematic variations across the BimTen series including the end members Bi and Te. First-principles calculations were performed to characterize the electronic structure and chemical bonding properties of B2-type BiTe and to identify the driving forces of the ordering transition. The calculated Fermi surface of B2-type BiTe has an intricate structure and is predicted to undergo three topological changes between 20 and 60 GPa.

  2. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  3. The behaviour of Gd in lead and tin tellurides and its effect on their physical properties

    Science.gov (United States)

    Zayachuk, D. M.; Matulenis, E. L.; Mikityuk, V. I.

    1992-06-01

    The behaviour of gadolinium in Pb 1- xSn xTe (0 ⩽ x ⩽ 0.3) introduced during Bridgman growth and its effect on the composition profiles and free carrier concentration is investigated. The Gd, Pb, Sn and Te contents in crystals were determined by electron microprobe analysis, and the free carrier concentration was obtained by Hall measurements. The results indicate that Gd behaves like an impurity with a segregation coefficient larger than unity, which strongly depends on the Gd concentration N( L) Gd in the melt and is given by KS = 1 + Aexp( - BN( L) Gd), where A takes values of 8 or 9 and B a value of about 10 -20 cm 3. The effect of such a strong KS( N( L) Gd) dependence is that all the Gd impurity concentrates in the first-to-freeze section, leaving the rest of the ingot free from the impurity. Thus, by introducing Gd during melt growth of lead-tin telluride crystals, one can obtain high quality crystals of the solid solutions studied.

  4. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    Science.gov (United States)

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.

  5. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  6. Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, Scott A.; Jana, Saumyadeep; Catalini, David; Overman, Nicole R.; Sharp, Jeffrey

    2016-04-13

    This work focused on the development of a new mechanical processing route, called Friction Consolidation Processing (FCP), for densifying bismuth-telluride (Bi2Te3) powders into bulk form. FCP is a solid-state process wherein a rotating tool was used to generate severe plastic deformation within the Bi2Te3 powder, resulting in a recrystallizing flow of material. Upon cooling, the non-equilibrium microstructure within the flow was locked into the material. FCP was demonstrated on -325 mesh (~44 micron) n-type Bi2Te3 feedstock powder to form pucks with 92% theoretical density having a diameter of 25.4mm and thickness of 4.2mm. FCP was shown to achieve highly textured bulk materials, with sub-micron grain size, directly from coarse particle feedstock powders in a single process. An average grain size of 0.8 microns was determined for one sample and a multiple of uniform distribution (MUD) value of 15.49 was calculated for the (0001) pole figure from another sample. These results indicate that FCP can yield highly refined grains and textural alignment of the (0001) basal planes in Bi2Te3. ZT=0.37 at 336K was achieved for undoped stoichiometric Bi2Te3, which is near the “text book” value of ZT=0.5.

  7. Nanostructure Characterization of Bismuth Telluride-Based Powders and Extruded Alloys by Various Experimental Methods

    Science.gov (United States)

    Vasilevskiy, D.; Bourbia, O.; Gosselin, S.; Turenne, S.; Masut, R. A.

    2011-05-01

    High-resolution transmission electron microscopy (HRTEM) observations of mechanically alloyed powders and bulk extruded alloys give experimental evidence of nanosized grains in bismuth telluride-based materials. In this study we combine HRTEM observations and x-ray diffraction (XRD) measurements, of both mechanically alloyed powders and extruded samples, with mechanical spectroscopy (MS) of extruded rods. Both HRTEM and XRD show that nanostructures with an average grain size near 25 nm can be achieved within 2 h of mechanical alloying from pure elements in an attritor-type milling machine. Residual strain orthogonal to the c-axis of powder nanoparticles has been evaluated at about 1.2% by XRD peak broadening. In contrast, XRD has been found unreliable for evaluation of grain size in highly textured extruded materials for which diffraction conditions are similar to those of single crystals, while MS appears promising for study of bulk extruded samples. Nanostructured extruded alloys at room temperature exhibit an internal friction (IF) background that is one order of magnitude higher than that of conventional zone-melted material with a grain size of several millimeters. IF as a function of sample temperature gives activation energies that are also different between bulk materials having nano- and millimeter-size grains, a result that is attributed to different creep mechanisms. Nanograin size, as well as orientation and volumetric proportion, provide valuable information for optimization of technological parameters of thermoelectric alloys and should be carefully cross-examined by various independent methods.

  8. Cadmium exposure and breast cancer risk.

    Science.gov (United States)

    McElroy, Jane A; Shafer, Martin M; Trentham-Dietz, Amy; Hampton, John M; Newcomb, Polly A

    2006-06-21

    Cadmium, a highly persistent heavy metal, has been categorized as a probable human carcinogen by the U.S. Environmental Protection Agency. Primary exposure sources include food and tobacco smoke. We carried out a population-based case-control study of 246 women, aged 20-69 years, with breast cancer and 254 age-matched control subjects. We measured cadmium levels in urine samples by inductively coupled plasma mass spectrometry and conducted interviews by telephone to obtain information on known breast cancer risk factors. Odds ratios (ORs) and 95% confidence intervals (CIs) for breast cancer by creatinine-adjusted cadmium levels were calculated by multivariable analysis. Statistical tests were two-sided. Women in the highest quartile of creatinine-adjusted cadmium level (> or = 0.58 microg/g) had twice the breast cancer risk of those in the lowest quartile (cadmium level (P(trend) = .01). Based on this study, the absolute risk difference is 45 (95% CI = 0 to 77) per 100,000 given an overall breast cancer rate of 124 per 100,000. Whether increased cadmium is a causal factor for breast cancer or reflects the effects of treatment or disease remains to be determined.

  9. Influence of post-deposition heat treatment on optical properties derived from UV–vis of cadmium telluride (CdTe) thin films deposited on amorphous substrate

    Energy Technology Data Exchange (ETDEWEB)

    Punitha, K. [Department of Physics, Alagappa University, Karaikudi 630004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630004 (India); Ganesan, V. [UGC-DAE Consortium for Scientific Research, Indore 452001 (India)

    2015-07-30

    Graphical abstract: - Highlights: • Annealing-induced change in optical parameters of CdTe film was derived from UV–vis study. • Optical constants of the films were evaluated using Swanepoel method. • Dispersion energy data obeyed the single oscillator of the Wemple−Didomenico model. • Cd deficiency of the film confirmed the p-type conductive nature. - Abstract: In this work, we report on post-deposition heat treatment (annealing)-induced change in optical properties derived from UV–vis study of CdTe thin films prepared on amorphous glass substrate by electron beam evaporation technique. Annealing effect gives rise to the enhancement in crystalline nature (zinc blende structure) of CdTe films with (1 1 1) preferred orientation. The average transmittance was increased with the annealing temperature and the slight shift in transmission threshold towards higher wavelength region revealed the systematic reduction in optical energy band gap. The existence of shallow level just below the conduction band, within the band gap was identified in the range of 0.23 and 0.14 eV for the films annealed at 200 and 450 °C, respectively. The optical quality of deposited films was confirmed by the photoluminescence study. In addition, the scanning electron microscopic measurement supports the result of X-ray diffraction study. The Swanepoel, Hervé-Vandamme, and Wemple−DiDomenico models have been employed to evaluate the various optical parameters of CdTe films. These results are correlated well with other physical properties and discussed with the possible concepts underlying the phenomena.

  10. Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production

    Energy Technology Data Exchange (ETDEWEB)

    Albright, S.P.; Ackerman, B.; Chamberlin, R.R.; Jordan, J.F. (Photon Energy, Inc., El Paso, TX (United States))

    1992-04-01

    This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.

  11. Proceedings of U. S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and Other IR Materials, Held in Danvers, Massachusetts on October 13 - 15, 1992

    Science.gov (United States)

    1992-10-15

    either 200-C (254-1, -4) or 240-250"C, and CdTe thickness ranged between 1400-3000A. Growth and Characterization of Hot-Wall Epitaxial CdTe on (111...AR. was used Theore~tical Profile iWith interdiflusion as a measure of CdTe thickness . Qualitative monitor- Theoreicl Piofile (without nterdit.us.on...HgCdTe active Fig. 8 Measures of CdTe thickness (ARR) and HgTe growth rate (\\t) layer is equally valid here. The only difference be- during one IMP period

  12. Pre-chemotherapy values for left and right ventricular volumes and ejection fraction by gated tomographic radionuclide angiography using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Haarmark, Christian; Haase, Christine; Jensen, Maria Maj

    2016-01-01

    BACKGROUND: Estimation of left ventricular ejection fraction (LVEF) using equilibrium radionuclide angiography is an established method for assessment of left ventricular function. The purpose of this study was to establish normative data on left and right ventricular volumes and ejection fractio...

  13. Interstudy repeatability of left and right ventricular volume estimations by serial-gated tomographic radionuclide angiographies using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Jensen, Maria Maj; Haase, Christine; Zerahn, Bo

    2015-01-01

    ·3% (-6·90 to 5·20) and 7·0% (-13·9 to 11·1), respectively. For the right ventricle, the corresponding values were 11·9% (-9·40 to 10·8), 9·8% (-14·9 to 10·8) and 8·1% (-20·7 to 16·3). DISCUSSION: The CZT detector camera has excellent reproducibility with regard to interstudy variation when assessing LV...

  14. Ligand exchange on the surface of cadmium telluride quantum dots with fluorosurfactant-capped gold nanoparticles: synthesis, characterization and toxicity evaluation.

    Science.gov (United States)

    Wang, Lingyun; Zhang, Hongxia; Lu, Chao; Zhao, Lixia

    2014-01-01

    CdTe quantum dots (QDs) can provide high-intensity and photostable luminescent signals when they are used as labeling materials for sensing trace amounts of bioanalytes. However, a major concern is whether the capping ligands of CdTe QDs cause toxic effects in living systems. In the current study, we address this problem through the complete ligand transformation of CdTe QDs from toxic thiolglycolic acid (TGA) to green citrate, which is attributed to the Cd-S bond breaking and the Au-S bond formation. The highly efficient depletion of S atom from the surface of the CdTe QDs occurs after the addition of fluorosurfactant (FSN)-capped gold nanoparticles into TGA-capped CdTe QDs, accompanying with the rapid aggregation of FSN-capped gold nanoparticles via noncrosslinking mechanism in the presence of high salt. After the ligand transformation, negligible differences are observed on both photoluminescence spectra and luminescent quantum yield. In addition, the cytotoxicity of the original and new-born CdTe QDs is detected by measuring cell viability after the nanoparticle treatment. In comparison with the original TGA-capped QDs, the new-born CdTe QDs can induce minimal cytotoxicity against human hepatocellular liver carcinoma (HepG2) cells even at high dosages. Our study indicates that the extremely simple method herein opens up novel pathways for the synthesis of green CdTe QDs, and the as-prepared citrate-capped CdTe QDs might have great potential for biological labeling and imaging applications.

  15. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  16. Studies of arsenic incorporation and P-type doping in epitaxial mercury cadmium telluride thin films grown by molecular beam epitaxy

    Science.gov (United States)

    Zandian, Majid

    Doped layer semiconductor structures provide possibilities for novel electronic devices. Growth of Hg1-xCdxTe by molecular beam epitaxy (MBE) allows precise control over the doping profile and position of heterojunctions as well as structural properties of this ternary alloy. Even though n-type doping using indium is well established, little is known about p-type doping in this material system by MBE. Several elements such as Ag, Au, Sb, Bi and P have been previously used, however high diffusion coefficient and amphoteric behavior of these atoms in HgCdTe has restricted their use in heterojunction devices where control over doping profiles and concentrations is needed. We investigated arsenic incorporation efficiency as a function of As 4 flux and growth temperature. The sticking coefficient of As is substantially higher at lower growth temperature compared to growth at 190°C. For samples grown at 170°C, the etch pit density (EPD) is higher compared to p-type As doped samples grown at 190°C. Higher EPD is associated with columnar twin defects observed in transmission electron microscopy (TEM) studies of low growth temperature samples. Growth at low temperature of 170°C causes Hg rich condition promoting twin formation. Therefore, growth of p-type layers doped with As at low temperatures require optimization of II/VI flux ratio to eliminate columnar twin defects. It is possible to incorporate As at normal MBE growth temperature of 190°C but very high flux of As has to used to overcome low sticking coefficient of As at these temperatures. We proposed a mechanism for the activation of As involving Hg vacancies (VHg··) where Te is moved to a Hg vacancy, leaving behind a Te vacancy, which is then filled by an As atom. The Te that is now on a Hg site (i.e., Te antisite) migrates to the surface and leaves the crystal.

  17. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  18. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  20. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Reviews of the environmental effects of pollutants: IV. Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, A.S.; Huff, J.E.; Braunstein, H.M.; Drury, J.S.; Shriner, C.R.; Lewis, E.B.; Whitfield, B.L.; Towill, L.E.

    1978-06-01

    This report is a comprehensive, multidisciplinary review of the health and environmental effects of cadmium and specific cadmium derivatives. More than 500 references are cited. The cadmium body burden in animals and humans results mainly from the diet. In the United States, the normal intake of cadmium for adult humans is estimated at about 50 ..mu..g per day. Tobacco smoke is a significant additional source of cadmium exposure. The kidneys and liver together contain about 50% of the total cadmium body burden. Acute cadmium poisoning is primarily an occupational problem, generally from inhalation of cadmium fumes or dusts. In the general population, incidents of acute poisoning by inhaled or ingested cadmium or its compounds are relatively rare. The kidney is the primary target organ for toxicity from prolonged low-level exposure to cadmium. No causal relationship has been established between cadmium exposure and human cancer, although a possible link between cadmium and prostate cancer has been indicated. Cadmium has been shown to be teratogenic in rats, hamsters, and mice, but no such effects have been proven in humans. Cadmium has been reported to increase the frequency of chromosomal aberrations in cultured Chinese hamster ovary cells and in human peripheral leukocytes. The major concern about environmental cadmium is the potential effects on the general population. There is no substantial evidence of hazard from current levels of cadmium in air, water, or food. However, because cadmium is a cumulative poison and because present intake provides a relatively small safety margin, there are adequate reasons for concern over possible future increases in background levels.

  2. Influence of solar spectrum and climate on the performance of c-SI, a-Si and CdTe modules

    Science.gov (United States)

    Weihs, Philipp; Jochen, Wagner; Marcus, Rennhofer; Zamini, Shokufeh; Fallent, Gerhard; Brence, Florian

    2010-05-01

    Within the scope of the project PV-SPEC we investigate the performance of different types of photovoltaic (PV) modules as a function of the regional climate of Austria. Three types of modules were chosen for the present study: monocrystalline silicon cells (c-SI), amorphous silicon cells (a-Si) and cadmium telluride cells (CdTe). The criteria for the selection of the cells is on the one hand their different spectral sensitivity and on the other hand the need of research in the domain of thin film technology. The aim of the project is the exact estimation of the potential energy yield of these three module types in the different climatic regions of Austria. Thereby the effects of the very inhomogeneous and structured topography in Austria need to be fully taken into account. As a first step the characteristics of the PV modules as well as their spectral sensitivity were determined in the laboratory. In a second step routine measurements of the module performance were performed at Observatory Kanzelhoehe (1600 m altitude), and in Vienna (170 m altitude). In order to investigate the influence of temperature, wind, cloudiness and solar spectrum some additional measurements of these quantities were performed. In order to investigate the influence of the orientation of the modules, we performed for each module type the measurement of the performance of three modules with different orientations: one module oriented towards south, one towards east and one towards west. In a third step we then analyse the performance as a function of time of the day, as a function of the season, as a function of the meteorological parameters (temperature, wind and cloudiness) and as a function of the spectral distribution of the solar radiation. The meteorological influence on the PV module performance is quantified using one array type function for each module type. Using this function and a radiative transfer model we may in a last step calculate the energy yield potential of the three PV

  3. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2Reduction

    KAUST Repository

    Saliba, Daniel

    2016-03-30

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cadmium-Aluminum Layered Double Hydroxide Microspheres for Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Saliba, Daniel; Ezzeddine, Alaa; Sougrat, Rachid; Khashab, Niveen M; Hmadeh, Mohamad; Al-Ghoul, Mazen

    2016-04-21

    We report the synthesis of cadmium-aluminum layered double hydroxide (CdAl LDH) using the reaction-diffusion framework. As the hydroxide anions diffuse into an agar gel matrix containing the mixture of aluminum and cadmium salts at a given ratio, they react to give the LDH. The LDH self-assembles inside the pores of the gel matrix into a unique spherical-porous shaped microstructure. The internal and external morphologies of the particles are studied by electron microscopy and tomography revealing interconnected channels and a high surface area. This material is shown to exhibit a promising performance in the photoreduction of carbon dioxide using solar light. Moreover, the palladium-decorated version shows a significant improvement in its reduction potential at room temperature.

  5. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce.

    Science.gov (United States)

    Zorrig, Walid; Rouached, Aïda; Shahzad, Zaigham; Abdelly, Chedly; Davidian, Jean-Claude; Berthomieu, Pierre

    2010-10-15

    Lettuce (Lactuca sativa) is a plant species that shows high accumulation of cadmium, a toxic heavy metal. Lettuce is therefore a good model both for identifying determinants controlling cadmium accumulation in plant tissues and for developing breeding strategies aimed at limiting cadmium accumulation in edible tissues. In this work, 14-day-old plants from three lettuce varieties were grown for 8 days on media supplemented with cadmium concentrations ranging from 0 to 50 microM. Growth, as well as Cd(2+), Zn(2+), K(+), Ca(2+), NO(3)(-), SO(4)(2-), Cl(-), phosphate, malate and citrate root an shoot contents were analyzed. The three lettuce varieties Paris Island Cos, Red Salad Bowl and Kordaat displayed differential abilities to accumulate cadmium in roots and shoots, Paris Island Cos displaying the lowest cadmium content and Kordaat the highest. From the global analysis of the three varieties, three main trends were identified. First, a common negative correlation linked cadmium tissue content and relative dry weight reduction in response to cadmium treatments in the three varieties. Second, increasing cadmium concentration in the culture medium resulted in a parallel increase in zinc tissue content in all lettuce varieties. A common strong positive correlation between cadmium and zinc contents was observed for all varieties. This suggested that systems enabling zinc and cadmium transport were induced by cadmium. Finally, the cadmium treatments had a contrasting effect on anion contents in tissues. Interestingly, citrate content in shoots was correlated with cadmium translocation from roots to shoots, suggesting that citrate might play a role in cadmium transport in the xylem vessels. Altogether, these results shed light on three main strategies developed by lettuce to cope with cadmium, which could help to develop breeding strategies aimed at limiting cadmium accumulation in lettuce.

  6. Cadmium exposure induces hematuria in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Seok [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Kim, Myounghee, E-mail: dkkim73@gmail.com [Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do 461-713 (Korea, Republic of); Lee, Su Mi [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jung Pyo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Sejoong [Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 463-707 (Korea, Republic of); Joo, Kwon Wook [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lim, Chun Soo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Yon Su; Kim, Dong Ki [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  7. Hazards to wildlife from soil-borne cadmium reconsidered

    Science.gov (United States)

    Beyer, W.N.

    2000-01-01

    Cadmium is a toxic element that should be included in environmental risk assessments of contaminated soils. This paper argues, however, that hazards to wildlife from cadmium have often been overstated. The literature contains only meager evidence that wild animals have been seriously harmed by cadmium, even at severely contaminated sites. Although some researchers have reported that wildlife have accumulated concentrations of cadmium in their kidneys that were above suggested injury thresholds, the thresholds may be disputed, since they were well below the World Health Organization criterion of 200 mg/kg (wet weight) of cadmium in the renal cortex for protecting human health. Recent risk assessments have concluded that soil cadmium concentrations less than 1 mg/kg are toxic to soil organisms and wildlife, which implies that background concentrations of cadmium naturally found in soils are hazardous. An examination of the databases used to support these assessments suggested that the toxicity of cadmium has been exaggerated.

  8. Spectroscopic properties of 2.7 μm emission in Er{sup 3+} doped telluride glasses and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaokang [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Kefeng, E-mail: kfli@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Xia; Kuan, Peiwen; Wang, Xin [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-12-05

    Highlights: • Telluride glasses with high Er{sup 3+} doping concentration and good thermal property are prepared. • Energy transfer processes for 1.5 μm, 2.7 μm and visible emission are fully discussed. • Enhanced 2.7 μm emission is achieved from the bulk glasses. • An Er{sup 3+} doped fiber is successfully drawn and strong upconversion emission is observed in the fiber. - Abstract: Emissions at 2.7 μm from telluride glasses with various Er{sub 2}O{sub 3} doping concentrations are investigated. The prepared glasses have excellent thermostability and high rare-earth solubility. Judd–Ofelt parameters are calculated based on the absorption spectra. A large emission cross section (1.12 × 10{sup −20} cm{sup 2}) and a high spontaneous radiative coefficient (57.8 s{sup −1}) are obtained at 2.7 μm. The fluorescence properties of glasses with different concentrations are analyzed and presented. An Er{sup 3+}-doped fiber is fabricated via a rod-in-tube technique, and the loss at 1310 nm is ∼2.1 dB/m measured by using the cut-back method. Strong upconversion emission caused by intense pump absorption is observed from the Er{sup 3+}doped fiber under excitation by a 980 nm laser diode (LD). Telluride glasses with high Er{sup 3+} doping concentration and good thermal property are prepared. Energy transfer processes for 1.5 μm, and 2.7 μm, as well as visible emission are fully discussed. Enhanced 2.7 μm emission is achieved from the bulk glass. An Er{sup 3+} doped fiber is successfully drawn, and strong upconversion emission is observed in the fiber.

  9. Field and photo-emission in a short-pulse, high-charge Cesium telluride RF photoinjector

    Science.gov (United States)

    Wisniewski, Eric E.

    A new high-charge RF gun is now operating at the Argonne Wakefield Accelerator (AWA) facility at Argonne National Laboratory (ANL). The 1.5 cell 1.3 GHz gun uses a Cesium telluride photocathode driven with a 248 nm laser to provide short-pulse, high charge electron beams for the new 75 MeV drive beamline. The high-gradient RF gun (peak field on the cathode > 80MV/m) is a key piece of the facility upgrade. The large Cs2Te photocathode (diameter > 30 mm) was fabricated in-house. The photo-injector will be used to generate high-charge, short pulse, single bunches (Q > 100 nC) and bunch-trains (Q > 1000 nC) for wakefield experiments, typically involving dielectric-loaded accelerating structures. Details of the photocathode fabrication process and the results of associated diagnostic measurements are presented, including QE measurements and work function measurements performed with a Kelvin probe. Fieldemitted dark current from the Cs2Te cathode was measured during RF conditioning and characterized. Fowler-Nordheim plots of the data are presented and compared to similar measurements made using a copper cathode in the initial phase of conditioning. The results for cesium telluride exhibited non-linear regions within the Fowler-Nordheim plots similar to previous experimental results for other p-type semiconductors. Results of quantum efficiency (QE) studies are presented with the cathode operating in both single and bunch-train modes. QE uniformity and lifetime studies are presented. During commissioning, the cesium telluride photocathode produced bunch-charge of 100 nC, breaking the previous record. No evidence of bunch-train position-dependence of QE was found when generating four-bunch trains with total charge up to 200 nC.

  10. Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang; Mehta, Rutvik J.; Belley, Matthew; Han, Liang; Ramanath, Ganpati; Borca-Tasciuc, Theodorian

    2012-01-01

    We report ultralow lattice thermal conductivity in the 0.3 ≤ κL ≤ 0.6 W m⁻¹ K⁻¹ range in nanoporous bulk bismuth telluride pellets obtained by sintering chemically synthesized nanostructures, together with single-crystal-like electron mobilities and Seebeck coefficients at comparable charge carrier concentrations. The observed κL is up to 35% lower than classical effective medium predictions, and can be quantitatively explained by increased phonon scattering at nanopores and nanograins. Our findings are germane to tailoring nanoporous thermoelectric materials for efficient solid-state refrigeration, thermal energy harvesting, and thermal management applications.

  11. NaBH{sub 4}/[bmim]BF{sub 4}: a new reducing system to access vinyl selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Goncalves, Loren C.C.; Mendes, Samuel R.; Saraiva, Maiara T.; Alves, Diego; Jacob, Raquel G.; Perin, Gelson, E-mail: lenardao@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)

    2010-07-01

    A general and simple method for the synthesis of vinyl selenides and tellurides starting from terminal alkynes and diorganyl chalcogenides using NaBH{sub 4} and [bmim]BF{sub 4} as a recyclable solvent was developed. This efficient and improved method furnishes the corresponding vinyl chalcogenides preferentially with Z configuration. We also observed that when the same protocol was applied to phenyl acetylene, (E)-bis-phenylchalcogeno styrenes were obtained in good yields and high selectivity. The ionic liquid was reused up three times without lost of efficiency. (author)

  12. Iron isotope constraints on the mineralization processes of the Sandaowanzi telluride gold deposit, NE China

    Science.gov (United States)

    Li, Xingxing; Liu, Junlai; Lu, Di; Ren, Shunli; Liu, Zhengyang

    2016-04-01

    Iron isotopes have been widely applied to interpret the fluid evolution, supergene alteration and the metallogenic material sources of the hydrothermal deposit. It may also have significant potentials on the research of the deposit. The Sandaowanzi telluride gold deposit, located in the Great Hinggan Range metallogenic Belt in NE China, is a large epithermal gold deposit of low-sulphidation type. It has a total reserve of ≥25t of Au and an average of 15 g/t. Gold-bearing quartz veins or gold lodes strike to the NW and dip 50-80°northeastward. Ore bodies, including low-grade ores along margins and high-grade ores in the central parts, principally occur in quartz veins. More than the 95 percent Au budgets are hosted in gold-silver tellurides. A six-stage paragenetic sequence of mineralization is revealed according to the compositions and microstructures of the mineral assemblages. Although sulfide minerals in the bonanza quartz veins are rare, pyrite are widespread in quartz veins and altered host rocks. Meanwhile there are always chalcopyrite veins within bonanza quartz veins. Pyrite Fe isotope compositions from different levels (from +50m to +210m) of the main ore body of the Sandaowanzi gold ore deposit are investigated. There is an overall variation in δ57Fe values from -0.09 to +0.99 (av. 0.33). Among them, twenty three samples from different mining levels give positiveδ57Fe values, with the maximum positive value at the economic bonanza ores (level +130m). Four samples, however, possess negative values, one at level 170m, one at level 130m, and two at level 50m, respectively. The two negative values from the levels 170m and 130m are near the cores of the high grade ore body. The two negative values from the level 50m occur at one end of the lode ore body. The above data set shows that the δ57Fe values are not homogeneous at different levels of the ore body. On the other hand, a general trend for the positive values is that the highest δ57Fe value is

  13. A Fumonisins Immunosensor Based on Polyanilino-Carbon Nanotubes Doped with Palladium Telluride Quantum Dots

    Directory of Open Access Journals (Sweden)

    Milua Masikini

    2014-12-01

    Full Text Available An impedimetric immunosensor for fumonisins was developed based on poly(2,5-dimethoxyaniline-multi-wall carbon nanotubes doped with palladium telluride quantum dots onto a glassy carbon surface. The composite was assembled by a layer-by-layer method to form a multilayer film of quantum dots (QDs and poly(2,5-dimethoxyaniline-multi-wall carbon nanotubes (PDMA-MWCNT. Preparation of the electrochemical immunosensor for fumonisins involved drop-coating of fumonisins antibody onto the composite modified glassy carbon electrode. The electrochemical impedance spectroscopy response of the FB1 immunosensor (GCE/PT-PDMA-MWCNT/anti-Fms-BSA gave a linear range of 7 to 49 ng L−1 and the corresponding sensitivity and detection limits were 0.0162 kΩ L ng−1 and 0.46 pg L−1, respectively, hence the limit of detection of the GCE/PT-PDMA-MWCNT immunosensor for fumonisins in corn certified material was calculated to be 0.014 and 0.011 ppm for FB1, and FB2 and FB3, respectively. These results are lower than those obtained by ELISA, a provisional maximum tolerable daily intake (PMTDI for fumonisins (the sum of FB1, FB2, and FB3 established by the Joint FAO/WHO expert committee on food additives and contaminants of 2 μg kg−1 and the maximum level recommended by the U.S. Food and Drug Administration (FDA for protection of human consumption (2–4 mg L−1.

  14. Novel doxorubicin loaded PEGylated cuprous telluride nanocrystals for combined photothermal-chemo cancer treatment.

    Science.gov (United States)

    Wang, Xianwen; Ma, Yan; Chen, Huajian; Wu, Xiaoyi; Qian, Haisheng; Yang, Xianzhu; Zha, Zhengbao

    2017-02-06

    Recently, combined photothermal-chemo therapy has attracted great attention due to its enhanced anti-tumor efficiency via synergistic effects. Herein, PEGylated cuprous telluride nanocrystals (PEGylated Cu2Te NCs) were developed as novel drug nanocarriers for combined photothermal-chemo treatment of cancer cells. PEGylated Cu2Te NCs were fabricated through a simple two-step process, comprised of hot injection and thin-film hydration. The as-prepared PEGylated Cu2Te NCs (average diameter of 5.21±1.05nm) showed a noticeable photothermal conversion efficiency of 33.1% and good capacity to load hydrophobic anti-cancer drug. Due to the protonated amine group at low pH, the doxorubicin (DOX)-loaded PEGylated Cu2Te NCs (PEGylated Cu2Te-DOX NCs) exhibited an acidic pH promoted drug release profile. Moreover, a three-parameter model, which considers the effects of drug-carrier interactions on the initial burst release and the sustained release of drug from micro- and nano-sized carriers, was used to gain insight into how pH and laser irradiation affect drug release from PEGylated Cu2Te-DOX NCs. Based on the results from in vitro cell study, PEGylated Cu2Te-DOX NCs revealed remarkably photothermal-chemo synergistic effect to HeLa cells, attributed to both the PEGylated Cu2Te NCs mediated photothermal ablation and enhanced cellular uptake of the drug. Thus, our results encourage the usage of Cu2Te-DOX drug nanocarriers for enhanced treatment of cancer cells by combined photothermal-chemo therapy.

  15. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  16. Simultaneous Analysis of the 2nu2, nu1, and nu3 Bands of Hydrogen Telluride

    Science.gov (United States)

    Flaud; Betrencourt; Arcas; Burger; Polanz; Lafferty

    1997-04-01

    Spectra of a natural sample of hydrogen telluride as well as a spectrum of monoisotopic H2 130Te have been recorded by means of Fourier transform spectrometry with a resolution of 0.003 cm-1 in the spectral domain 7.5-4.3 μm where it is easy to observe the main absorbing bands nu1 and nu3. We have located and assigned for the first time the 2nu2 band which appears in the lower wavenumber range of the recorded spectral domain near 1700 cm-1. It proved necessary to treat simultaneously the three states (020), (100), and (001). nu1 and nu3 are indeed Coriolis-coupled vibration-rotation bands and it was observed that a few rotational levels of (001) could not be fitted to within their experimental accuracy without considering the second-order Coriolis interaction between the rotational levels of (020) and (001). In this way all the experimental levels were calculated to within the experimental uncertainty, and precise sets of vibrational energies and rotational and coupling constants were obtained for the seven most abundant H2Te isotopic species, namely H2 130Te, H2 128Te, H2 126Te, H2 125Te, H2 124Te, H2 123Te, and H2 122Te. For the most abundant isotopic species H2 130Te the bands centers arenu0 (2nu2) = 1715.9568, nu0 (nu1) = 2065.2709, nu0 (nu3) = 2072.1101 cm-1. Copyright 1997Academic Press

  17. The crystal structures and powder diffraction patterns of the uranium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.L. (State Univ. of New York, Alfred, NY (USA). Inst. of Ceramic Superconductivity); Nichols, M.C.; Boehme, D.R. (Sandia National Labs., Livermore, CA (USA))

    1990-10-03

    A critical review of all of the reported structures and powder diffraction patterns in the uranium telluride system has been undertaken. Structures that are correct: Cubic -- UTe: no experimental pattern exists. Retain calculated 15--865. Cubic --U{sub 3}Te{sub 4}: retain the poor quality 12--610 but adopt the pattern calculated here. Cubic U{sub 2}Te{sub 3}: no experimental pattern exists. Adopt pattern calculated here. Orthorhombic UTe{sub 2}: Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Orthorhombic {beta}UTe{sub 3}: Adopt pattern calculated here. Orthorhombic UTe{sub 5}: Adopt the new pattern of Boehme et al. Structures in need of refinement: Orthorhombic U{sub 2}Te{sub 3}:Adopt pattern calculated here over 34--807. Hexagonal U{sub 7}Te{sub 12}: Adopt pattern calculated here but retain 24--1368. Orthorhombic UTe{sub 1.78}: Adopt pattern calculated here and retain our modified 21--1404 reported for U{sub 4}Te{sub 7}. Orthorhombic UTe{sub 2.5}: Adopt pattern calculated here. Orthorhombic UTe{sub 3.4}: Accept recent pattern of Boehme et al. Phases for which no structures or reliable patterns exist: Orthorhombic U{sub 3}Te{sub 4}: no published pattern. Tetragonal U{sub 3}Te{sub 5}: three patterns 21--1407, 34--766 and 34--896 exit but all are of very poor quality. Phases which probably do not exist: Tetragonal UTe{sub 1.78}, Tetragonal UTe{sub 2}, Cubic UTe{sub 2} U{sub 3}Te{sub 7}(21--1402), U{sub 3}Te{sub 8}(21--1406).

  18. Modeling cadmium in the feed chain and cattle organs

    NARCIS (Netherlands)

    Fels-Klerx, van der H.J.; Romkens, P.F.A.M.; Franz, E.; Raamsdonk, van L.W.D.

    2011-01-01

    The objectives of this study were to estimate cadmium contamination levels in different scenarios related to soil characteristics and assumptions regarding cadmium accumulation in the animal tissues, using quantitative supply chain modeling. The model takes into account soil cadmium levels, soil pH,

  19. Epidemiological aspects of cadmium in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Piscator, M.

    1973-01-01

    Cadmium is highly toxic to man and it has an extremely long biological half-time. Under long-term low level exposure about one third of the total body burden is in the kidneys. In some European countries and USA mean renal cortical concentrations of cadmium 24-50 ppM wet weight at age 50 have been reported. In three areas in Japan the corresponding concentrations were 60 to 125 ppM wet weight. These normal concentrations have been thought to cause hypertension but so far epidemiological data are not available to support such a hypothesis. Renal tubular dysfunction may begin at a renal cortical concentration of about 200 ppM wet weight. In Japan extensive investigations have been carried out in several areas polluted by cadmium. Available data indicate that the prevalence of proteinuria is higher in the cadmium polluted areas and that the proteinuria is of the tubular type. Studies on dose-response relationships must include accurate and sensitive methods for the detection of low molecular weight proteinuria, which is an early sign in cadmium intoxication. 6 references, 1 table.

  20. Recycling of Spent Nickel-Cadmium Batteries

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A technique for recycling spent nickel-cadmium batteries, which makes separation of cadmium and nickel possible, is developed by laboratory-scale experiments. NH3-H2CO3 aqueous solution was used in this leaching technique. Since neutralization and/or solvent extraction were not required in the separation procedure of nickel and cadmium, the closed systemization of the process becomes possible. Experimental results show that, (1) if the NH3 concentration of leaching solution is sufficiently high and the ratio of H2CO3 to NH3 is properly adjusted, both Ni(OH)2 and Cd(OH)2 react with NH3 and quickly dissolve into leaching solution, and (2) Ni(OH)2 can be converted into insoluble NiO by calcination at 500€癈, and CdO from Cd(OH)2 by calcination maintains good solubility in NH3-H2CO3 aqueous solution. As a conclusion, the recycling technique characterized by two step leaching can be developed based on such changes in dissolution behavior by calcination. Meanwhile, the yields of 99.8% for nickel and 97.6% for cadmium are obtained, and the purities of recovered nickel and cadmium are 99.9% and 98.6%, respectively.

  1. Effect of anions on Toxicity of Cadmium Applied to MIcrobial Biomass in Red Soil

    Institute of Scientific and Technical Information of China (English)

    K.S.KHAN; XIEZHENGMIAO; 等

    1997-01-01

    A laboratory incubation experiment was conducted to elucidat the effects of associated anions on toxicity of cadmium applied to microbial biomass in the red soil. Cadmium was applied at six different levels,i.e.,O(background),5,15,30,60 and 100μg g-1 soil in the form of either cadmium acetate or cadmium chloride. Application of cadmium as cadmium acetate markedly reduced the soil microbial biomass carbon compared to cadmium applied as cadmium chlorde at all the tested levels.Similarly,organic carbon to biomass carbon ration in the soil was markedly increased by increasing the level of the cadmium in the soil as cadmium acetate,while the change wa much smaller in the case of cadmium chloride at the same cadmium levels.The results suggested that due consideration should be given to the source of cadmium while deciding the cadmium levles in experiments.

  2. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  3. Final Environmental Assessment: Solar Panel Systems at Joint Base McGuire-Dix-Lakehurst New Jersey

    Science.gov (United States)

    2012-03-01

    NJSA New Jersey Statutes Annotated NOA Notice of Availability NOx Nitrogen oxides NRHP National Register of Historic Places PAH Petroleum Aromatic...on the solar panels must be non-toxic, phosphate-free, pH neutral, and biodegradable . The cleaning products and method of cleaning must be pre...metals (arsenic, antimony, and cadmium).  Surface Soil: Metals (antimony and cadmium) and petroleum aromatic hydrocarbons ( PAHs ) detected above Agency

  4. Reduction of Cadmium Uptake of Rice Plants Using Soil Amendments in High Cadmium Contaminated Soil: A Pot Experiment

    Directory of Open Access Journals (Sweden)

    Dian Siswanto

    2013-05-01

    Full Text Available The aims of this study were to investigate the effect of agricultural residues on reducing cadmium uptake in rice plants. The rice plants growing on no cadmium/free cadmium soils (N, Cd soils (Cds, and Cd soils each amended with 1% w/w of coir pith (CP, coir pith modified with sodium hydroxide (CPm and corncob (CC under high cadmium contaminated soil with an average 145 mg Cd kg-1 soil were investigated. The results showed that the cumulative transpiration of rice grown in various treatments under high cadmium contaminated soil followed the order: Cds > CPm ≥ CP ≥ CC. These transpirations directly influenced cadmium accumulation in shoots and husks of rice plants. The CC and CP seemed to work to reduce the cadmium uptake by rice plants indicated by accumulated cadmium in the husk that were 2.47 and 7.38 mg Cd kg-1 dry weight, respectively. Overall, transpiration tended to drive cadmium accumulation in plants for rice grown in high cadmium contaminated soil. The more that plants uptake cadmium, the lower cadmium that remains in the soil.

  5. Cadmium accumulation by Axonopus compressus (Sw. P. Beauv and Cyperus rotundas Linn growing in cadmium solution and cadmium-zinc contaminated soil

    Directory of Open Access Journals (Sweden)

    Paitip Thiravetyan

    2007-05-01

    Full Text Available This research investigated the phyto-remediation potentials of Cyperus rotundas Linn (Nutgrass and Axonopus compressus (Sw. P. Beauv (Carpetgrass for cadmium removal from cadmium solution andcadmium-zinc contaminated soil. Plants growth in the solution showed that cadmium decreased the relative growth rate of both grasses. However, the amount of cadmium accumulated in shoot and root was increasedwith the increase in cadmium concentration and exposure time. Growth in fertile soil mixed with Cd-contaminated zinc silicate residue (65% Si, 19% Ca, 2% Zn, 1% Mg and 0.03% Cd at the ratio of 50:50 (w/wfor 30 days showed that C. rotundas Linn accumulated cadmium in root and shoot to 2,178 and 1,144 mg kg-1 dry weight, respectively. A. compressus (Sw. P. Beauv accumulated cadmium in root and shoot to 1,965and 669 mg kg-1 dry weight, respectively. Scanning electron microscope connected to energy-dispersive X-ray spectroscopy suggested that the mechanism of cadmium accumulation by both grasses involved thecadmium precipitation in the stable form of cadmium silicate, which indicated that C. rotundas Linn and A. compressus (Sw. P. Beauv could be grown to prevent soil erosion and to remediate cadmium-contaminatedsoil.

  6. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    P. Bala Ramudu

    2007-09-01

    Full Text Available This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself was used as the purging solution. Results showed that 49% reduction of cadmium concentration was achieved in the case of soil saturated (washed with ammonium citrate as well as purging solution also was ammonium citrate. The soil pH and washing solutions were the most important factors in controlling the removal of cadmium in electrokinetic remediation process.

  7. Cadmium toxicity in the free-living nematode, Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Popham, J.D.; Webster, J.M.

    1979-10-01

    The effect of cadmium on the fecundity, growth, and fine structure of the free-living nematode Caenorhabditis elegans was studied. High concentrations of cadmium significantly decreased the fecundity and growth of these organisms. Electron microscopy showed that cadmium modifies the structure of the mitochondria in the esophagus and intestine, causes the formation of inclusion bodies in the nucleus of esophageal cells, and alters the morphology of cytosomes in the intestinal cells. The results suggest that the decreased fecundity and growth of cadmium-exposed C. elegans may be due to cadmium interfering with nutrient uptake or assimilation or both.

  8. Treatment of cadmium dust with two-stage leaching process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The treatment of cadmium dust with a two-stage leaching process was investigated to replace the existing sulphation roast-leaching processes. The process parameters in the first stage leaching were basically similar to the neutralleaching in zinc hydrometallurgy. The effects of process parameters in the second stage leaching on the extraction of zincand cadmium were mainly studied. The experimental results indicated that zinc and cadmium could be efficiently recoveredfrom the cadmium dust by two-stage leaching process. The extraction percentages of zinc and cadmium in two stage leach-ing reached 95% and 88% respectively under the optimum conditions. The total extraction percentage of Zn and Cdreached 94%.

  9. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-01

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm-1 K-2), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  10. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  11. Environmental cadmium and breast cancer risk

    OpenAIRE

    2010-01-01

    Breast cancer is the most prevalent women's cancer, with an age-adjusted incidence of 122.9 per 100,000 US women. Cadmium, a ubiquitous carcinogenic pollutant with multiple biological effects, has been reported to be associated with breast cancer in one US regional case-control study. We examined the association of breast cancer with urinary cadmium (UCd), in a case-control sample of women living on Long Island (LI), NY (100 with breast cancer and 98 without), a region with an especially high...

  12. Cadmium Exposure and Pancreatic Cancer in South Louisiana

    Directory of Open Access Journals (Sweden)

    Brian G. Luckett

    2012-01-01

    Full Text Available Cadmium has been hypothesized to be a pancreatic carcinogen. We test the hypothesis that cadmium exposure is a risk factor for pancreatic cancer with a population-based case-control study sampled from a population with persistently high rates of pancreatic cancer (south Louisiana. We tested potential dietary and nondietary sources of cadmium for their association with urinary cadmium concentrations which reflect long-term exposure to cadmium due to the accumulation of cadmium in the kidney cortex. Increasing urinary cadmium concentrations were significantly associated with an increasing risk of pancreatic cancer (2nd quartile OR = 3.34, 3rd = 5.58, 4th = 7.70; test for trend P≤0.0001. Potential sources of cadmium exposure, as documented in the scientific literature, found to be statistically significantly associated with increased risk of pancreatic cancer included working as a plumber, pipefitter or welder (OR = 5.88 and high consumption levels of red meat (4th quartile OR = 6.18 and grains (4th quartile OR = 3.38. Current cigarette smoking, at least 80 pack years of smoking, occupational exposure to cadmium and paints, working in a shipyard, and high consumption of grains were found to be statistically significantly associated with increased concentrations of urinary cadmium. This study provides epidemiologic evidence that cadmium is a potential human pancreatic carcinogen.

  13. Cadmium-induced cancers in animals and in humans.

    Science.gov (United States)

    Huff, James; Lunn, Ruth M; Waalkes, Michael P; Tomatis, Lorenzo; Infante, Peter F

    2007-01-01

    Discovered in the early 1800s, the use of cadmium and various cadmium salts started to become industrially important near the close of the 19th century, rapidly thereafter began to flourish, yet has diminished more recently. Most cadmium used in the United States is a byproduct from the smelting of zinc, lead, or copper ores, and is used to manufacture batteries. Carcinogenic activity of cadmium was discovered first in animals and only subsequently in humans. Cadmium and cadmium compounds have been classified as known human carcinogens by the International Agency for Research on Cancer and the National Toxicology Program based on epidemiologic studies showing a causal association with lung cancer, and possibly prostate cancer, and studies in experimental animals, demonstrating that cadmium causes tumors at multiple tissue sites, by various routes of exposure, and in several species and strains. Epidemiologic studies published since these evaluations suggest that cadmium is also associated with cancers of the breast, kidney, pancreas, and urinary bladder. The basic metal cationic portion of cadmium is responsible for both toxic and carcinogenic activity, and the mechanism of carcinogenicity appears to be multifactorial. Available information about the carcinogenicity of cadmium and cadmium compounds is reviewed, evaluated, and discussed.

  14. Study of cadmium electrochemical deposition in sulfate medium

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, T.; Solorza, O.; Sanchez, H.

    2000-03-01

    The cadmium electrochemical deposition process from sulfate medium was studied by means of different electrochemical techniques in both stationary and nonstationary diffusion regimes. The kinetics of the electrochemical reduction of cadmium on solid cadmium electrodes was examined and the kinetic parameters are presented, as well as the diffusion coefficient derived from the different techniques. Temperature has an important effect on the cadmium reduction kinetics, and the activation energy of the process was evaluated. The electrochemical deposition of cadmium is a complex process due to the coexistence of adsorption and nucleation processes; the adsorbed electroactive species appears to be Cd{sup +2}, and a mechanism for cadmium electrodeposition on solid cadmium electrodes is proposed.

  15. Murine strain differences and the effects of zinc on cadmium concentrations in tissues after acute cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    King, L.M. [ARS USDA, Germplasm and Gamete Physiology Lab., Beltsville, MD (United States); Anderson, M.B. [Dept. of Anatomy, Tulane Univ. School of Medicine, New Orleans, LA (United States); Sikka, S.C. [Dept. of Urology, Tulane Univ. School of Medicine, New Orleans, LA (United States); George, W.J. [Dept. of Pharmacology, Tulane Univ. School of Medicine, New Orleans, LA (United States)

    1998-10-01

    The role of strain differences in cadmium tissue distribution was studied using sensitive (129/J) and resistant (A/J) mice. These murine strains have previously been shown to differ in their susceptibility to cadmium-induced testicular toxicity. Cadmium concentration was measured in testis, epididymis, seminal vesicle, liver, and kidney at 24 h after cadmium chloride exposure (4, 10, and 20 {mu}mol/kg CdCl{sub 2}). The 129/J mice exhibited a significant increase in cadmium concentration in testis, epididymis, and seminal vesicle at all cadmium doses used, compared to A/J mice. However, cadmium concentrations in liver and kidney were not different between the strains, at any dose, indicating that cadmium uptake is similar in these organs at 24 h. These murine strains demonstrate similar hepatic and renal cadmium uptake but significantly different cadmium accumulation in the reproductive organs at 24 h. The mechanism of the protective effect of zinc on cadmium toxicity was studied by assessing the impact of zinc acetate (ZnAc) treatment on cadmium concentrations in 129/J mice after 24 h. Zinc pretreatment (250 {mu}mol/kg ZnAc), given 24 h prior to 20 {mu}mol/kg CdCl{sub 2} administration, significantly decreased the amount of cadmium in the testis, epididymis, and seminal vesicle of 129/J mice, and significantly increased the cadmium content of the liver after 24 h. Cadmium levels in the kidney were unaffected at this time. Zinc pretreatment also prevented the cadmium-induced decrease in testicular sperm concentration and epididymal sperm motility seen in 129/J mice. These findings suggest that the differences in the two murine strains may be attributed partly to the differential accumulation of cadmium in murine gonads. This may be caused by strain differences in the specificity of cadmium transport mechanisms. The protective role of zinc in cadmium-induced testicular toxicity in the sensitive strain may be due to an interference in the cadmium uptake by susceptible

  16. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  17. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

  18. Role of stirring assist during solvothermal synthesis for preparing single-crystal bismuth telluride hexagonal nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Kai, Shintaro; Wada, Kodai [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Takasugi, Soichi [Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Tomita, Koji [Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-04-15

    We investigated the role of stirring assist during solvothermal synthesis for preparing high quality bismuth telluride (Bi{sub 2}Te{sub 3}) hexagonal nanoplates. We performed a series of experiments that comprised solvothermal synthesis with stirring assist at 500 rpm and without stirring assist. As a result, high purity Bi{sub 2}Te{sub 3} hexagonal nanoplates with uniform morphology and edge length of 400–800 nm were obtained by solvothermal synthesis using stirring assist, whereas intermediate products such as tellurium and tellurium oxide compounds were also produced besides the Bi{sub 2}Te{sub 3} hexagonal nanoplates by solvothermal synthesis without stirring assist. To further study the nanostructure of the nanoplates with stirring assist, we performed high-resolution transmission electron microscopy and selected-area electron diffraction analysis. It was found that the Bi{sub 2}Te{sub 3} hexagonal nanoplates were composed of rhombohedral phases and highly single-crystalline structures. Based on the experimental and analytical results, we propose a possible reaction process and growth mechanism of the Bi{sub 2}Te{sub 3} hexagonal nanoplates. The reaction rate is the key factor to control the shapes of nanostructures. When the reaction rate was sufficient, it proceeded to the final stage, and then Bi{sub 2}Te{sub 3} nanoplates were produced. However, when the reaction rate was insufficient, the entire morphology evolution process was terminated at the intermediate stage, and intermediate products besides Bi{sub 2}Te{sub 3} nanoplates were also produced. - Highlights: • High quality Bi{sub 2}Te{sub 3} hexagonal nanoplates were prepared by solvothermal synthesis. • Role of stirring assist during the solvothermal synthesis were investigated. • Bi{sub 2}Te{sub 3} hexagonal nanoplates with edge length of 400–800 nm were obtained. • Bi{sub 2}Te{sub 3} hexagonal nanoplates were composed of single-crystalline structures. • The reaction rate is the key

  19. Urinary cadmium and estimated dietary cadmium in the Women's Health Initiative.

    Science.gov (United States)

    Quraishi, Sabah M; Adams, Scott V; Shafer, Martin; Meliker, Jaymie R; Li, Wenjun; Luo, Juhua; Neuhouser, Marian L; Newcomb, Polly A

    2016-01-01

    Cadmium, a heavy metal dispersed in the environment as a result of industrial and agricultural applications, has been implicated in several human diseases including renal disease, cancers, and compromised bone health. In the general population, the predominant sources of cadmium exposure are tobacco and diet. Urinary cadmium (uCd) reflects long-term exposure and has been frequently used to assess cadmium exposure in epidemiological studies; estimated dietary intake of cadmium (dCd) has also been used in several studies. The validity of dCd in comparison with uCd is unclear. This study aimed to compare dCd, estimated from food frequency questionnaires, to uCd measured in spot urine samples from 1,002 participants of the Women's Health Initiative. Using linear regression, we found that dCd was not statistically significantly associated with uCd (β=0.006, P-value=0.14). When stratified by smoking status, dCd was not significantly associated with uCd both in never smokers (β=0.006, P-value=0.09) and in ever smokers (β=0.003, P-value=0.67). Our results suggest that because of the lack of association between estimated dCd and measured uCd, dietary estimation of cadmium exposure should be used with caution in epidemiologic studies.

  20. RISK ASSESSMENT FOR CADMIUM IN PHOSPHATE FERTILIZERS

    Science.gov (United States)

    Cadmium induced renal tubular dysfunction occurred where subsistence rice farmers produced their lifetime dietary rice on Zn-mine waste contaminated soils in Japan and other Asian countries. Research has shown that polished rice Cd is greatly increased while grain Zn is not incre...

  1. Field scale behaviour of cadmium in soil.

    NARCIS (Netherlands)

    Boekhold, A.E.

    1992-01-01

    Although total heavy metal contents of soil are often used to express the degree of contamination, they are of little value to judge environmental effects. The main objective of this thesis was to develop and test methodologies with which environmental risks of cadmium pollution of field soils can b

  2. Koper, zink en cadmium in voeding

    NARCIS (Netherlands)

    Smolders, E.A.A.

    2003-01-01

    In een tabel is aangegeven hoeveel koper, zink en cadmium een rantsoen gemiddeld moet bevatten om de behoefte van melkvee te dekken. Daarbij is uitgegaan van een gemiddelde benutting. De vraag is of er bij een tekort aangevuld moet worden en of er bij een teveel weggelaten moet worden.

  3. Mobiliteit van cadmium in de bodem

    NARCIS (Netherlands)

    Chardon, W.J.

    1984-01-01

    The adsorption of cadmium by twelve Dutch soils was investigated under widely varying circumstances. The adsorption can be described with the Freundlich equation; the parameters of this equation can be predicted using the properties of the soil (pH, organic carbon and clay content).The adsorption ap

  4. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 1: Working group and panel reports

    Science.gov (United States)

    1973-01-01

    Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.

  5. Experimental and theoretical investigations of cadmium diffusion in vacancy-rich Cu(In, Ga)Se2 material

    Science.gov (United States)

    Biderman, Norbert J.

    Copper indium gallium selenide (Cu(In,Ga)Se2 or CIGS) has become a significant topic of research and development for photovoltaic application. CIGS photovoltaic devices have demonstrated record conversion efficiencies however are still below the maximum solar conversion efficiency. Losses in performance have been attributed structural defects including vacancies, doping, grain boundaries, and compositional non-uniformity that are poorly understood and controlled. The cadmium sulfide (CdS) buffer layer plays a critical role in high-performance CIGS photovoltaic devices, serving as the n-type component of the p-n junction formed with the p-type CIGS absorber layer. Cadmium diffusion into the CIGS surface during CdS deposition creates a buried p-n homojunction in addition to the CIGS/CdS p-n heterojunction. CdS is believed to assist in reducing carrier recombination at the CIGS/CdS interface, an important attribute of high-efficiency solar cells. In the present work, cadmium diffusion mechanisms in CIGS are experimentally investigated via secondary ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES). Two cadmium diffusion profiles with distinct Arrhenius diffusion kinetics within a single depth profile of the CIGS thin film are observed with SIMS and AES: an intense first-stage diffusion profile directly below the CIGS/CdS interface and a long-range, second-stage diffusion profile that extends deep into the thin film. Cadmium grain boundary diffusion is also detected in fine-grain CIGS samples. These multiple diffusion processes are quantified in the present work, and the two-stage cadmium diffusion profiles suggest distinctive lattice diffusion mechanisms. Calculations and modeling of general impurity diffusion via interstitial sites in CIGS are also conducted via numerical including cadmium, iron, and zinc. In the numerical simulations, the standard diffusion-reaction kinetics theory is extended to vacancy-rich materials like CIGS that contain 1 at

  6. Lead and cadmium in breast milk

    Energy Technology Data Exchange (ETDEWEB)

    Sternowsky, H.J.; Wessolowski, R.

    1985-04-01

    Breast milk from 10 women each from the city of Hamburg and from a rural area was analyzed by atomic absorption spectrometry for contamination with lead and cadmium. Samples were examined at regular intervals for 3 months after birth. On day 5 a diurnal profile was analyzed; on the other days milk was taken before and after the morning feed. For breast milk as the main source of nutrition in infants, this study shows values of 9.1 +- 2.5 (SD) ..mu..g/l for lead in the rural population, with a tendency to decrease towards the end of lactation. Urban mothers had 13.3 +- 5.5 (SD) ..mu..g/l, with a tendency to increase. Mean cadmium content in rural mothers was 17.3 +- 4.9 ..mu..g/l, with much higher values in the colostrum and a decrease after 15 days. Urban mothers had 24.6 +- 7.3 ..mu..g/l, again with high colostrum values and a subsequent decrease. Calculated daily intake according to these values is presented, based on 840 ml breast milk for a 5.5 kg infant per day. Rural infants ingested 0.9-1.3 ..mu..g/kg/day of lead, and in the city 1.5-2.3 ..mu..g/kg/day. Cadmium intake in rural infants amounted from 1.2-1.8 ..mu..g/kg/day; in Hamburg it was 1.6-2.2 ..mu..g/kg/day. Thus the daily ingestion of lead was just below the DPI, cadmium ingestion was higher than the DPI for adults. The rural population had lower values in breast milk for both heavy metals than the urban population, although not statistically significant. Compared to earlier reports there was a slight increase in lead concentration and a more significant increase for cadmium.

  7. Cadmium and Chrome Concentrations in Human Milk

    Directory of Open Access Journals (Sweden)

    Sima Nazarpour

    2014-04-01

    Full Text Available Introduction: Nutrition of children has the highest priority in any program aimed at children's health care. Milk contaminated with various toxic elements can have adverse effects on children's health. This study aimed to determine the concentration of heavy metals including cadmium(Cd and chromium (Cr of breast feeding women’s milk in Varamin. Methods: This is a cross sectional study. In the present study, chromium and cadmium levels in milk of 100 mothers attending clinics in the city of Varamin were measured in four to eight weeks after delivery, using atomic absorption spectrometry. Results: The mean values (±SD of Cd and Cr in human milk were 5±6.9 μg/ml and 3±2.7 μg/ml respectively. Result of Linear regression showed that cadmium levels were higher in breast milk of people living close to the factory or industrial center. Also, the chromium levels were higher in the breast milk of women in cases of: Smoking by spouses, consumption of imported rice, consumption of mineral water, and living close to the factory or an industrial center. Conclusion: This study showed that the relationship of some factors such as living near a factory or an industrial center, smoking by spouse, the type of consumed rice and water, with the level of cadmium and chromium. Cadmium and chromium levels of breast milk in this study were higher than the levels of these elements mentioned in the reviewed articles and international standard. Because some variables, such as living near a factory or an industrial center, smoking by spouse, the type of consumed rice and water can affect the amount of entering elements in breast milk. Actions can be taken to reduce or eliminate these variables in order to decrease the mentioned elements in human milk.

  8. Cadmium phytoextraction potential of different Alyssum species

    Energy Technology Data Exchange (ETDEWEB)

    Barzanti, R., E-mail: rbarzanti@supereva.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Colzi, I., E-mail: ilariacolzi@hotmail.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Arnetoli, M., E-mail: miluscia@gmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gallo, A., E-mail: galloalessia@hotmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Pignattelli, S., E-mail: sara.pignattelli@gmail.com [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gabbrielli, R., E-mail: gabbrielli@unifi.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy); Gonnelli, C., E-mail: cristina.gonnelli@unifi.it [Department of Evolutionary Biology, Universita di Firenze, via Micheli 1, 50121 Firenze (Italy)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer The possibility of using serpentine plants for phytoextraction of Cd was investigated. Black-Right-Pointing-Pointer Variation in Cd tolerance, accumulation and translocation in three Alyssum plants with different phenotypes were found. Black-Right-Pointing-Pointer Alyssum montanum showed higher Cd tolerance and accumulation than the Ni hyperaccumulator Alyssum bertolonii. Black-Right-Pointing-Pointer As for the kinetic parameters of the Cd uptake system, A. montanum presented a low apparent K{sub m} value. Black-Right-Pointing-Pointer The V{sub max} values were not significantly different among the plants. - Abstract: This work was planned for providing useful information about the possibility of using serpentine adapted plants for phytoextraction of cadmium, element scarcely represented in such metalliferous environment. To this aim, we investigated variation in cadmium tolerance, accumulation and translocation in three Alyssum plants with different phenotypes: Alyssum bertolonii, that is a serpentine endemic nickel hyperaccumulator, and two populations of Alyssum montanum, one adapted and one not adapted to serpentine soils. Plants were hydroponically cultivated in presence of increasing concentrations of CdSO{sub 4} for two weeks. For the metal concentration used in the experiments, the three different Alyssum populations showed variation in cadmium tolerance, accumulation and content. The serpentine adapted population of A. montanum showed statistically higher cadmium tolerance and accumulation than A. bertolonii and the population of A. montanum not adapted to serpentine soil thus deserving to be investigated for phytoextraction purposes. Furthermore, as for the kinetic parameters of the cadmium uptake system, A. montanum serpentine population presented a low apparent K{sub m} value, suggesting a high affinity for this metal of its uptake system, whereas the V{sub max} values were not significantly different among the

  9. Modelling of Cadmium Transport in Soil-Crop System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A model for simulating cadmium transport in a soil-plant system was built using a commercial simu lating program named Powersim on the basis of input-output processes happening in the soil-plant system.Convective and dispersive transport processes of cadmium in soil profile are embedded. Simulations on a daily base have been done up to a total simulating time of 250 years. Results show that applications of sewage sludge and fertilizer at the simulated rates would only cause slight cadmium accumulations in each layer of the soil, and cadmium accumulation would be levelling off, reaching an equilibrium concentrations layer by layer downward after certain time. The time scale to reach an equilibrium concentration varies from 10 years for the top three layers to over 250 years for the bottom layers. Plant cadmium uptake would increase from 52 ug m-2 under initial soil cadmium concentrations to 65 μg m-2 under equilibrium soil cadmium concentrations, which would not exceed the maximum allowable cadmium concentration in wheat grains. Main parameters which influence cadmium accumulation and transport in soil are total cadmium input, rainfall, evaporation, plant uptake and soil properties.

  10. Accumulation of cadmium in livers and kidneys in Greenlanders

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Poul [National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)]. E-mail: poj@dmu.dk; Mulvad, Gert [Primary Health Care Center, DK-3900 Nuuk, Greenland (Denmark); Centre for Arctic Environmental Medicine, University of Aarhus, Universitetsparken, DK-8000 Aarhus C (Denmark); Pedersen, Henning Sloth [Primary Health Care Center, DK-3900 Nuuk, Greenland (Denmark); Centre for Arctic Environmental Medicine, University of Aarhus, Universitetsparken, DK-8000 Aarhus C (Denmark); Hansen, Jens C. [Centre for Arctic Environmental Medicine, University of Aarhus, Universitetsparken, DK-8000 Aarhus C (Denmark); Riget, Frank [National Environmental Research Institute, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2006-12-15

    In the Arctic, the traditional diet exposes its people to a very high intake of cadmium because it is highly concentrated in the liver and kidneys of commonly eaten marine mammals. In one study in Greenland, the cadmium intake was estimated to 182 {mu}g/day/person in the fall and 346 in the spring. To determine whether the cadmium is accumulated in humans, we analyzed autopsy samples of liver and kidneys from 95 ethnic Greenlanders (aged 19-89) who died from a wide range of causes. The cadmium concentration in liver (overall mean 1.97 {mu}g/g wet wt) appeared to be unrelated to any particular age group, whereas the concentrations in the kidneys peaked in Greenlanders between 40 and 50 years of age (peak concentration 22.3 {mu}g/g wet wt). Despite the high cadmium levels in the typical Greenlander diet, we found that the cadmium concentrations in livers and kidneys were comparable to those reported from Denmark, Sweden, Australia and Great Britain. Furthermore, even though the mean cadmium intake from the diet was estimated to be 13-25 times higher in Greenlanders than in Danes, we found similar cadmium levels in the kidneys of both. Seal livers and kidneys are the main source of cadmium in the diet of Greenlanders, but these tissues are not eaten in Denmark. Thus, our results suggest that the accumulation of cadmium from Greenlander's marine diet is very low.

  11. Hepatoprotective activity of Moringa oleifera against cadmium toxicity in rats

    Directory of Open Access Journals (Sweden)

    Reetu Toppo

    2015-04-01

    Full Text Available Aim: The present investigation has been conducted to evaluate the hepatoprotective activity of Moringa oleifera against cadmium-induced toxicity in rats. Materials and Methods: For this study, 18 Wistar albino rats were taken. Control group, Group I rats were given cadmium chloride @ 200 ppm per kg and Group II rats were treated with M. oleifera extract @ 500 mg/kg along with cadmium chloride @ 200 ppm per kg (daily oral for 28 days. On 29th day, animals were slaughtered and various parameters were determined. Serum biomarkers, oxidative stress parameters, histomorphological examination were carried out with estimation of cadmium concentration in liver tissues. Results: Oral administration of cadmium chloride @ 200 ppm/kg for 28 days resulted in a significant increase in aspartate aminotransferase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP, significant (p≤0.01 increase of lipid peroxidation (LPO and decrease in superoxide dismutase (SOD, and increase in cadmium accumulation in liver. Treatment with M. oleifera @ 500 mg/kg significantly (p<0.01 decreased the elevated ALP, AST, ALT, LPO levels and increase in SOD levels, and as compared to cadmium chloride treated group. However, there was no significant difference in cadmium concentration in liver when compared with cadmium chloride treated group. Conclusion: The study conclude that supplementation of M. oleifera (500 mg/kg, daily oral for 28 days has shown protection against cadmium-induced hepatotoxicity.

  12. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  13. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  14. Optimization of the front contact to minimize short-circuit current losses in CdTe thin-film solar cells

    Science.gov (United States)

    Kephart, Jason Michael

    With a growing population and rising standard of living, the world is in need of clean sources of energy at low cost in order to meet both economic and environmental needs. Solar energy is an abundant resource which is fundamentally adequate to meet all human energy needs. Photovoltaics are an attractive way to safely convert this energy to electricity with little to no noise, moving parts, water, or arable land. Currently, thin-film photovoltaic modules based on cadmium telluride are a low-cost solution with multiple GW/year commercial production, but have lower conversion efficiency than the dominant technology, crystalline silicon. Increasing the conversion efficiency of these panels through optimization of the electronic and optical structure of the cell can further lower the cost of these modules. The front contact of the CdTe thin-film solar cell is critical to device efficiency for three important reasons: it must transmit light to the CdTe absorber to be collected, it must form a reasonably passive interface and serve as a growth template for the CdTe, and it must allow electrons to be extracted from the CdTe. The current standard window layer material, cadmium sulfide, has a low bandgap of 2.4 eV which can block over 20% of available light from being converted to mobile charge carriers. Reducing the thickness of this layer or replacing it with a higher-bandgap material can provide a commensurate increase in device efficiency. When the CdS window is made thinner, a degradation in electronic quality of the device is observed with a reduction in open-circuit voltage and fill factor. One commonly used method to enable a thinner optimum CdS thickness is a high-resistance transparent (HRT) layer between the transparent conducting oxide electrode and window layer. The function of this layer has not been fully explained in the literature, and existing hypotheses center on the existence of pinholes in the window layer which are not consistent with observed results

  15. Cuprous Iodide Catalyzed Synthesis of Diaryl Selenide and Telluride from Organoboronic Acids with Diphenyl Diselenide and Ditelluride

    Institute of Scientific and Technical Information of China (English)

    WANG,Lei; WANG,Min; YAN,Jin-Can; LI,Pin-Hua

    2004-01-01

    @@ Organoselenium and tellurium compounds have received much attention not only as synthetic reagents or intermediates in organic synthesis but also as promising donor molecules for conductive materials.[1] A number of synthetic methods have been reported to prepare organoselenium and tellurium derivatives. A convenient and general method to introduce a selenium or tellurium moiety into organic molecules is the reaction of a metal selenolate or tellurolate with appropriate electrophiles such as organic halides, acyl chlorides, epoxides, and α, β-enones.[2] However, it is difficult to synthesize the unsymmetrical diarylselenides and tellurides through the reaction of selenide anion with organic halides because of the less reactivity of aryl halides. To accomplish this purpose, the reaction (iodobenzene with phenylselenol)was generally carried out in the presence of catalysts, ligands and strong bases. But, the reaction needs longer time to accomplish and form the products in moderate yields.

  16. A Rapid and Cost-Effective Laser Based Synthesis of High Purity Cadmium Selenide Quantum Dots.

    Science.gov (United States)

    Gondall, M A; Qahtan, Talal F; Dastageer, M A; Yamani, Z H; Anjum, D H

    2016-01-01

    A rapid and cost effective method is developed to synthesize high purity cadmium Selenide (CdSe) quantum dots in acetone medium using second harmonic of Nd:YAG nanosecond pulsed laser of 532 nm wavelength. The thermal agglomeration due the nanosecond pulse duration of the laser was successfully eliminated by using unfocussed laser beam and thereby providing a favorable conditions for the synthesis of quantum dots having the grain size of 3 nm. The morphological and optical characterizations like XRD, HRTEM, optical absorption of the synthesized CdSe quantum dots, reveal that the material possesses the similar characteristics of the one synthesized through cumbersome wet chemical methods. Relative to the CdSe bulk material, the synthesized CdSe quantum dots showed a blue shift in the measured band gap energy from near infrared spectral region to visible region, making this material very attractive for many solar energy harvesting applications like photo-catalysis and solar cells.

  17. Development of Novel Cadmium-Free AgInS2 Semiconductor Nanoparticles.

    Science.gov (United States)

    Yang, Wentao; Gong, Xiaoqun; Chang, Jin

    2016-03-01

    AgInS2 (AIS) semiconductor nanoparticles as the novel alternatives to cadmium- or lead-containing semiconductors have attracted much attention both on the theory and application research, based on their tunable fluorescence emission wavelengths, high photostability and low toxicity of chemical composition. The bandgap of AIS nanoparticles can be adjusted from 1.54 to 2.03 eV, which makes AIS nanocrystalline suitable for applications in solar energy conversion. Moreover, the fluorescence emission wavelengths can be tuned in the near-infrared regions, and thus make it the next-generation low-toxicity materials for the applications in bioimaging. In this review, the research progress of the AIS nanoparticles is summarized, including synthetic methods, properties and the possibilities to influence their shape and crystallographic structure. Furthermore, we discuss the potential applications of this novel material in photocatalysis, solar energy conversion and biological area.

  18. Histopathological changes in relation to cadmium concentration in horse kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.G.; Jonsson, L.; Piscator, M.; Rahnster, B.

    1981-10-01

    Histopathological changes in kidney cortex, as observed by light microscopy, are related to cadmium concentration in kidney cortex from 69 normal Swedish horses. Cadmium concentrations in kidney ranged from 11 to 186 ..mu..g Cd/g wet wt with an average of 60 ..mu..g Cd/g, which is considerably higher than those normally found in humans. The microscopical changes were rated and related to cadmium concentrations in kidneys by dose-response curves. A relationship existed between frequency of morphological changes and cadmium concentration in the renal cortex. There was no obvious relationship between age and frequency of histopathological changes. This indicates that in horse kidneys morphological changes occur at cadmium concentrations which are lower than the tentative critical level for humans of 200 ..mu..g Cd/g. It is concluded that horses constitute a population at risk for environmental cadmium contamination.

  19. Study on electrokinetic remediation of cadmium contaminated soils

    Institute of Scientific and Technical Information of China (English)

    SHI Wen-xin; CUI Chong-wei; YU Shui-li; FENG Wei-ming

    2007-01-01

    Kaolinite from a lead-zinc mining district, which was spiked with cadmium, has been treated by electrokinetics to investigate effects of treatment time and applied voltage gradient. The results showed that the increased test duration had induced a higher removal rate of cadmium. Being treated for 7 days, cadmium was removed from kaolinite dramatically. It was also found that higher removal rate happened when a higher voltage gradient was applied and cadmium accumulated near the cathode because pH increased. Increase of pH near the cathode caused accumulation of cadmium. Moreover, it was observed that cation exchange membrane which was placed between kaolinite and cathode could make pH lower than the initial value and avoid the higher pH near the cathode. As a result, the high concentration accumulation of cadmium near the cathode was avoided.

  20. Assessment and management of risk to wildlife from cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Joanna [Division of Life Sciences, Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, New Jersey, 08854-8082 (United States)], E-mail: burger@biology.rutgers.edu

    2008-01-15

    Cadmium, a nonessential heavy metal that comes from natural and anthropogenic sources, is a teratogen, carcinogen, and a possible mutagen. Assessment of potential risk from cadmium requires understanding environmental exposure, mainly from ingestion, although there is some local exposure through inhalation. Chronic exposure is more problematic than acute exposure for wildlife. There is evidence for bioaccumulation, particularly in freshwater organisms, but evidence for biomagnification up the food chain is inconsistent; in some bird studies, cadmium levels were higher in species that are higher on the food chain than those that are lower. Some freshwater and marine invertebrates are more adversely affected by cadmium exposure than are birds and mammals. There is very little experimental laboratory research on the effects of cadmium in amphibians, birds and reptiles, and almost no data from studies of wildlife in nature. Managing the risk from cadmium to wildlife involves assessment (including ecological risk assessment), biomonitoring, setting benchmarks of effects, regulations and enforcement, and source reduction.

  1. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides

    Science.gov (United States)

    Levin, E. M.

    2016-06-01

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S , depends on the free (mobile) carrier concentration, n , and effective mass, m*, as S ˜m*/n2 /3 . The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1 /T1 , depends on both n and m* as 1 /T1˜(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1 /T1˜(m*)2n2 /3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study A gxS bxG e50-2xT e50 , well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  2. Urinary cadmium and mammographic density in premenopausal women.

    Science.gov (United States)

    Adams, Scott V; Newcomb, Polly A; Shafer, Martin M; Atkinson, Charlotte; Bowles, Erin J Aiello; Newton, Katherine M; Lampe, Johanna W

    2011-08-01

    Mammographic density (MD), a strong marker of breast cancer risk, is influenced by genetic, environmental, and hormonal factors. Cadmium, a persistent and widespread environmental pollutant, has been associated with risk of breast cancer, and laboratory evidence suggests cadmium is a carcinogen in the breast. We investigated the hypothesis that cadmium exposure is associated with higher MD. In a cross-sectional study of MD and urinary cadmium concentration, percentage MD (MD%) and Breast Imaging-Reporting and Data Systems (BI-RADS®) density category were determined from screening mammograms of 190 premenopausal women ages 40-45 years. Women completed a health questionnaire, and the cadmium content of spot urine samples was measured with inductively coupled plasma mass spectrometry and corrected for urine creatinine. Urinary cadmium concentrations are thought to reflect exposure to cadmium during a period of 20-30 years. Multivariable linear regression and logistic regression were used to estimate the strength of association between urinary cadmium and mammographic breast density. Adjusted mean MD% among women in the upper tertile of creatinine-corrected urinary cadmium was 4.6% higher (95% CI: -2.3 to 11.6%) than in women in the lowest cadmium tertile. Each twofold increase in urinary cadmium was associated with higher odds of MD% in the upper tertile (OR: 1.29, 95% CI: 0.82-2.02) or a BI-RADS category rating of "extremely dense" (OR: 1.75, 95% CI: 1.14-2.70). Stronger associations were observed among nulliparous women, and current or former smokers. Exposure to cadmium may be associated with increased breast density in premenopausal women.

  3. β—Correction Spectrophotometric Determination of Cadmium with Cadion

    Institute of Scientific and Technical Information of China (English)

    郜洪文

    1995-01-01

    Cadmium has been determined by β-correction spectrophotometry with cadion,p-nitrobenzenediazoaminoaz-obenzone,and a non-ionic surfactant,tuiton X-100.The real absorbance of a Cd-cadion chelate in the colored solution can be accurately determined and the complex-ratio of cadion with Cd(II) has been worked out to be 2.Beer's law is obeyed over the concentration range of 0-0.20mg/1 cadmium and the detec-tion limit for cadmium is only 0.003mg/1.Satisfactory experimental results are presented with respect to the determination of trace cadmium in wastewaters.

  4. Phytosynthesis of Cadmium Oxide Nanoparticles from Achillea wilhelmsii Flowers

    Directory of Open Access Journals (Sweden)

    Javad Karimi Andeani

    2013-01-01

    Full Text Available The study here deals with the plant synthesis of cadmium oxide nanoparticles using flowers extract of Achillea wilhelmsii as the reducing agent. The photosynthesis is carried out at room temperature in the laboratory ambience. The aqueous cadmium ions when exposed to flower extract were reduced and resulted in their nanoparticles. The synthesized nanoparticles were characterized using techniques such as scanning electron microscope (SEM, Fourier transform infrared spectroscopy (FTIR, and UV-visible absorption spectroscopy. Stable cadmium oxide nanoparticles were formed by treating aqueous solution of cadmium chloride (CdCl2 with the plant flower extracts as reducing agent.

  5. Lead, mercury, and cadmium in breast milk

    OpenAIRE

    Kadriye Yurdakök

    2015-01-01

    Toxic heavy metals are the major source of environmental pollution in this new millennium. Lead, mercury, and cadmium are the most common toxic heavy metals in the environment. There is no known function of these toxic heavy metals in the human body. In females, toxic heavy metals can be accumulated in maternal body before pregnancy and may be transferred to fetus through placenta and later, via breast milk. Lead previously accumulated in maternal bones can be mobilized along with calcium in ...

  6. Mercury Cadmium Selenide for Infrared Detection

    Science.gov (United States)

    2013-06-01

    were grown using elemental mercury (Hg), cadmium (Cd), and selenium (Se) sources. The beam equiva- lent pressure ( BEP ) emanating from all sources was...flux), the BEP measured for the cracker source was found to vary with the cracking zone temperature, tracking with the data found in Ref. 7. This sug...The Se BEP measured for the typical cracking zone temperature of 800 C was found to be close to a factor of two lower than at the typical effusion cell

  7. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.

    Science.gov (United States)

    Prapagdee, Benjaphorn; Chanprasert, Maesinee; Mongkolsuk, Skorn

    2013-07-01

    Micrococcus sp. MU1 and Klebsiella sp. BAM1, the cadmium-resistant plant growth-promoting rhizobacteria (PGPR), produce high levels of indole-3-acetic acid (IAA) during the late stationary phase of their growth. The ability of PGPR to promote root elongation, plant growth and cadmium uptake in sunflowers (Helianthus annuus) was evaluated. Both species of bacteria were able to remove cadmium ions from an aqueous solution and enhanced cadmium mobilization in contaminated soil. Micrococcus sp. and Klebsiella sp. use aminocyclopropane carboxylic acid as a nitrogen source to support their growth, and the minimum inhibitory concentrations of cadmium for Micrococcus sp. and Klebsiella sp. were 1000 and 800mM, respectively. These bacteria promoted root elongation in H. annuus seedlings in both the absence and presence of cadmium compared to uninoculated seedlings. Inoculation with these bacteria was found to increase the root lengths of H. annuus that had been planted in cadmium-contaminated soil. An increase in dry weight was observed for H. annuus inoculated with Micrococcus sp. Moreover, Micrococcus sp. enhanced the accumulation of cadmium in the root and leaf of H. annuus compared to untreated plants. The highest cadmium accumulation in the whole plant was observed when the plants were treated with EDTA following the treatment with Micrococcus sp. In addition, the highest translocation of cadmium from root to the above-ground tissues of H. annuus was found after treatment with Klebsiella sp. in the fourth week after planting. Our results show that plant growth and cadmium accumulation in H. annuus was significantly enhanced by cadmium-resistant PGPRs, and these bacterial inoculants are excellent promoters of phytoextraction for the rehabilitation of heavy metal-polluted environments.

  8. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Rasmussen, Rie Romme; Sloth, Jens Jørgen

    2014-01-01

    for the food authorities in order to give correct advises to the population. The aim of this study was to investigate the bioavailability of cadmium from whole linseed, crushed linseed, cocoa and cadmium chloride in rats. An experiment where 40 rats were divided into 4 groups and a control group and dosed...... with whole linseed, crushed linseed, cocoa and CdCl2 for 3 weeks was performed. Linseed or cocoa made up 10% of the feed (by weight) and was added as a replacement for carbohydrate source. The rats were dosed for 3 weeks and the cadmium content in the rats' kidneys was measured by ICPMS as a biomarker...... be measured in the kidney compared to the calculated total intake was as follows: Control 2.0 %, Crushed linseed 0.9 %, whole linseed, 1.5 %, cocoa 0.7 % and CdCl2 4.6 %. Based on this study it could not be concluded that the bioavailability in rats form whole linseed is lower that for crushed linseed...

  9. Occupation, cadmium exposure, and prostate cancer.

    Science.gov (United States)

    Elghany, N A; Schumacher, M C; Slattery, M L; West, D W; Lee, J S

    1990-03-01

    A population-based case-control study was used to investigate associations between prostate cancer and cadmium exposure, longest industry held, and longest occupation held. The study included 358 men with newly diagnosed prostate cancer and 679 control men identified from the Utah population. Occupational exposures to cadmium were ascertained from self-reported data, through several a priori suspect industries and occupations, through an occupation-exposure linkage system, and through dietary food frequency questionnaires. Overall, cadmium exposure appeared to result in a small increased relative risk for prostate cancer, most apparent for aggressive tumors (OR = 1.7, CI = 1.0-3.1 for any occupational exposure, high dietary intake, or smoking cigarettes). Cases were more likely to have worked in the following industries: mining, paper and wood, medicine and science, and entertainment and recreation. Among men younger than 67, cases were also more likely to have worked in the food and tobacco industries (OR = 3.6, CI = 1.0-12.8). Cases were less likely to have worked in industries involved with glass, clay and stone, or rubber, plastics, and synthetics. Men employed as janitors and in other building service occupations showed increased relative risk for aggressive tumors (OR = 7.0, CI = 2.5-19.6). Agricultural occupations did not appear to be related to prostate cancer, although an increased relative risk for aggressive tumors was detected among younger men (OR = 2.6, CI = 0.6-12.1).

  10. Soil ecotoxicity assessment using cadmium sensitive plants

    Energy Technology Data Exchange (ETDEWEB)

    An, Youn-Joo

    2004-01-01

    The crop plants, sorghum and cucumber, can be used as indicator species to assess ecotoxicity of soils contaminated by cadmium. - Four crop plant species (sweet corn, Zea may; wheat, Triticum aestivum; cucumber, Cucumis sativus; and sorghum, Sorghum bicolor) were tested to assess an ecotoxicity in cadmium-amended soils. The measurement endpoints used were seed germination and seedling growth (shoot and root). The presence of cadmium decreased the seedling growth. The medium effective concentration values (EC50) for shoot or root growth were calculated by the Trimmed Spearman-Karber method. Due to the greater accumulation of Cd to the roots, root growth was a more sensitive endpoint than shoot growth. Bioavailability and transport of Cd within plant were related to concentration and species. The ratio of bioaccumulation factor (BAF) in the shoots to the roots indicated high immobilization of Cd in the roots. Seed germination was insensitive to Cd toxicity, and is not recommended for a suitable assay. Among the test plants and test endpoints, root growth of sorghum and cucumber appears to be a good protocol to assess ecotoxicity of soils contaminated by Cd.

  11. Environmental cadmium and breast cancer risk.

    Science.gov (United States)

    Gallagher, Carolyn M; Chen, John J; Kovach, John S

    2010-11-01

    Breast cancer is the most prevalent women's cancer, with an age-adjusted incidence of 122.9 per 100,000 US women. Cadmium, a ubiquitous carcinogenic pollutant with multiple biological effects, has been reported to be associated with breast cancer in one US regional case-control study. We examined the association of breast cancer with urinary cadmium (UCd), in a case-control sample of women living on Long Island (LI), NY (100 with breast cancer and 98 without), a region with an especially high rate of breast cancer (142.7 per 100,000 in Suffolk County) and in a representative sample of US women (NHANES 1999-2008, 92 with breast cancer and 2,884 without). In a multivariable logistic model, both samples showed a significant trend for increased odds of breast cancer across increasing UCd quartiles (NHANES, p=0.039 and LI, p=0.023). Compared to those in the lowest quartile, LI women in the highest quartile had increased risk for breast cancer (OR=2.69; 95% CI=1.07, 6.78) and US women in the two highest quartiles had increased risk (OR=2.50; 95% CI=1.11, 5.63 and OR=2.22; 95% CI=.89, 5.52, respectively). Further research is warranted on the impact of environmental cadmium on breast cancer risk in specific populations and on identifying the underlying molecular mechanisms.

  12. Cadmium and zinc in pregnancy and lactation

    Energy Technology Data Exchange (ETDEWEB)

    Lucis, O.J.; Lucis, R.; Shaikh, Z.A.

    1972-07-01

    Radioactive cadmium (/sup 109/Cd) and zinc (/sup 65/Zn) were injected subcutaneously into pregnant rats. More cadmium than zinc was found in the placentae. After birth, newborns showed detectable /sup 109/Cd only in liver, gastrointestinal tract, and in the brain tissue. Zinc 65 was present in all newborns' tissues. During lactation, highest output of /sup 65/Zn was in colostrum and, on subsequent days, /sup 65/Zn in milk declined rapidly. Cadmium 109 in milk was present in low concentration throughout the lactation period. Rats injected with /sup 109/Cd and /sup 65/Zn after parturition excreted these isotopes in milk in a similiar pattern. Newborns nursed on radioactive milk showed rapid absorption of /sup 65/Zn, whereas /sup 109/Cd accumulated primarily in the intestinal tract; a lesser quantity of /sup 109/Cd was deposited in the liver. In other organs, only /sup 65/Zn was found. The lactating mammary gland contained more /sup 109/Cd than /sup 65/Zn; after lactation, /sup 65/Zn was depleted, whereas /sup 109/Cd remained in mammary tissue.

  13. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  14. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  15. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  16. Influence of a high level of dietary cadmium on cadmium content in milk, excretion, and cow performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.J.; Lampp, B.; Powell, G.W.; Salotti, C.A.; Blackmon, D.M.

    1967-01-01

    Three Holstein cows were each given 3.0 g of cadmium daily (two equal doses) for two weeks by gelatin capsules. There was a sharp drop in concentrate consumption for the first few days of cadmium administration but, by the second week, consumption returned to normal. Milk production declined sharply for several days and then increased appreciably, but to a level still substantially lower than that of controls during the last five days cadmium was given. When cadmium treatments ceased, milk production increased by 50%. Fat content of milk was elevated considerably during the week when production was most reduced. Cows given cadmium lost considerable weight. There were no other clinical manifestations of toxicity. As determined by the chromic oxide indicator method and twice-daily grab samples, fecal excretion of cadmium for the second week averaged 82% of that given. The cadmium level in the urine was below the limits of detectability of the method (0.5 ppm of urine). The cadmium content of the milk was less than 0.1 ppm of the milk, which was the lower reliability limit of the procedure used. On this basis less than 0.22% of the amount administered appeared in the milk. In vitro studies demonstrated that cadmium combines with the casein and whey protein fractions of the milk readily, with the amount combined being linear when levels from 1.0 to 25.0 ppm are added to milk. Smaller amounts were present in the lactose and mineral fractions.

  17. Correlative characteristic of cadmium in soils of steppe Dnieper region

    Directory of Open Access Journals (Sweden)

    N. M. Tsvetkova

    2015-09-01

    Full Text Available Much attention is paid to searching for methods of establishing environmental standards for objective assessment of admissibility of anthropogenic load on the biosphere. The main pollutants of the environment are xenobiotics; heavy metals such as cadmium occupy hold a special place among them. Cadmium is one of the most dangerous environmental toxic agents, belonging to the 1stclass of hazard. Due to insufficient and fragmented information available on the distribution of cadmium in the city edaphotopes, it’s necessary to conduct additional research, taking into account the properties of soils and the biological characteristics of every element. The paper shows the ratio of cadmium in soils and soil-forming rocks of steppe Dnieper region. Environmental assessment of cadmium content in Dniprodzerzhinsk city soilsis made, and the problem of topsoil contamination of the city as a territory of high anthropogenic load is considered. It is found that the content of cadmium down the profile in natural soil increases. Enrichment of the topsoil with cadmium occurs due to contamination. The value of movable forms content, expressed as a percentage of the total content, varies from 12% to 70%, providing the evidence of the technogenic origin of cadmium in Dniprodzerzhinsk city topsoil. General and proximate correlation analyses of interrelation of soil cadmium and specifically selected characteristics of soil (pH, humus, sulfate ions, dry solid, chloride ions, total alkalinity, hygroscopic moisture were made. It is established that cadmium concentration in the movable forms of natural soils of the steppe Dnieper region depends primarily on pH value. With the increase in pH value, concentration of movable cadmium in soil increases.

  18. Cadmium induces transcription independently of intracellular calcium mobilization.

    Directory of Open Access Journals (Sweden)

    Brooke E Tvermoes

    Full Text Available BACKGROUND: Exposure to cadmium is associated with human pathologies and altered gene expression. The molecular mechanisms by which cadmium affects transcription remain unclear. It has been proposed that cadmium activates transcription by altering intracellular calcium concentration ([Ca(2+](i and disrupting calcium-mediated intracellular signaling processes. This hypothesis is based on several studies that may be technically problematic; including the use of BAPTA chelators, BAPTA-based fluorescent sensors, and cytotoxic concentrations of metal. METHODOLOGY/PRINCIPAL FINDING: In the present report, the effects of cadmium on [Ca(2+](i under non-cytotoxic and cytotoxic conditions was monitored using the protein-based calcium sensor yellow cameleon (YC3.60, which was stably expressed in HEK293 cells. In HEK293 constitutively expressing YC3.60, this calcium sensor was found to be insensitive to cadmium. Exposing HEK293::YC3.60 cells to non-cytotoxic cadmium concentrations was sufficient to induce transcription of cadmium-responsive genes but did not affect [Ca(2+](i mobilization or increase steady-state mRNA levels of calcium-responsive genes. In contrast, exposure to cytotoxic concentrations of cadmium significantly reduced intracellular calcium stores and altered calcium-responsive gene expression. CONCLUSIONS/SIGNIFICANCE: These data indicate that at low levels, cadmium induces transcription independently of intracellular calcium mobilization. The results also support a model whereby cytotoxic levels of cadmium activate calcium-responsive transcription as a general response to metal-induced intracellular damage and not via a specific mechanism. Thus, the modulation of intracellular calcium may not be a primary mechanism by which cadmium regulates transcription.

  19. Cadmium in the environment: a toxicological and epidemiological appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Friberg, L.; Piscator, M.; Nordberg, G.

    1971-01-01

    This book is a review of the toxicity of cadmium, and has focused on information considered important for understanding the toxic action of cadmium on animals and man. Dose-response relationships are discussed as are effects on specific organ systems and modes of uptake.

  20. Cadmium Removal from Aqueous Solutions by Ground Pine Cone

    Directory of Open Access Journals (Sweden)

    H Izanloo, S Nasseri

    2005-01-01

    Full Text Available A study on the removal of cadmium ions from aqueous solutions by pine cone was conducted in batch conditions. Kinetic data and equilibrium removal isotherms were obtained. The influence of different experimental parameters such as contact time, initial concentration of cadmium, pine cone mass and particle size, and temperature on the kinetics of cadmium removal was studied. Results showed that the main parameters that played an important role in removal phenomenon were initial cadmium concentration, particle size and pine cone mass. The necessary time to reach equilibrium was between 4 and 7 hours based on the initial concentration of cadmium. The capacity of cadmium adsorption at equilibrium increased with the decrease of pine cone particle size. The capacity of cadmium adsorption at equilibrium by pine cone increased with the quantity of pine cone introduced (1–4 g/L. Temperature in the range of 20-30°C showed a restricted effect on the removal kinetics (13.56 mg/g at 20°C and a low capacity of adsorption about 11.48 mg/g at 30°C. The process followed pseudo second-order kinetics. The cadmium uptake of pine cone was quantitatively evaluated using adsorption isotherms. Results indicated that the Langmuir model gave a better fit to the experimental data in comparison with the Freundlich equation.

  1. Drikkevands optagelse af cadmium og bly fra armaturer

    DEFF Research Database (Denmark)

    Nielsen, K.

    Notatet omfatter rapporter fra to forsøgsrækker vedr. brugsvands optagelse af bly og cadmium. Den første omhandler brugsvandsarmaturers afgivelse af bly og cadmium til syntetisk brugsvand med en sammensætning svarende til en sur, blød vandtype. Forsøgene omfatter 10 armaturer og armaturdele...

  2. Removing cadmium from electroplating wastewater by waste saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    DAI Shu-juan; WEI De-zhou; ZHOU Dong-qin; JIA Chun-yun; WANG Yu-juan; LIU Wen-gang

    2008-01-01

    The appropriate condition and scheme of removing cadmium from electroplating wastewater were investigated by adsorption-precipitation method using waste saccharomyces cerevisiae(WSC) as sorbent. Effect factors on biosorption of cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae and precipitation process of waste saccharomyces cerevisiae after adsorbing cadmium were studied. The results show that removal rate of cadmium is over 88% after 30 min adsorbing under the condition of cadmium concentration 26 mg/L, the dosage of waste saccharomyces cerevisiae 16.25 g/L, temperature 18 ℃, pH 6.0 and precipitation time 4 h. Biosorption-precipitation method is effective to remove cadmium in cadmium-containing electroplating wastewater by waste saccharomyces cerevisiae. The SEM, infrared spectroscopy and Zeta-potential of the cells show that chemical chelating is the main adsorption form; electrostatic attraction, hydrogen bonding and van der Waals force all function in adsorption process; and ―NH2―,―C=O―,―C=O―NH―,―CH3, ―OH are the main adsorption groups.

  3. Cadmium and zinc reversibly arrest development of Artemia larvae

    Energy Technology Data Exchange (ETDEWEB)

    Bagshaw, J.C.; Rafiee, P.; Matthews, C.O.; MacRae, T.H.

    1986-08-01

    Despite the widespread distribution of heavy metals such as cadmium and zinc in the environment and their well-known cytotoxicity and embryotoxicity in mammals, comparatively little is known about their effect on aquatic organisms, particularly invertebrates. Post-gastrula and early larval development of the brine shrimp, Artemia, present some useful advantages for studies of developmental aspects of environmental toxicology. Dormant encysted gastrulae, erroneously called brine shrimp eggs, can be obtained commercially and raised in the laboratory under completely defined conditions. Following a period of post-gastrula development within the cyst, pre-nauplius larvae emerge through a crack in the cyst shell. A few hours later, free-swimming nauplius larvae hatch. Cadmium is acutely toxic to both adults and nauplius larvae of Artemia, but the reported LC50s are as high as 10 mM, depending on larval age. In this paper the authors show that pre-nauplius larvae prior to hatching are much more sensitive to cadmium than are hatched nauplius larvae. At 0.1 ..mu..m, cadmium retards development and hatching of larvae; higher concentrations block hatching almost completely and thus are lethal. However, the larvae arrested at the emergence stage survive for 24 hours or more before succumbing to the effects of cadmium, and during this period the potentially lethal effect is reversible if the larvae are placed in cadmium-free medium. The effects of zinc parallel those of cadmium, although zinc is somewhat less toxic than cadmium at equal concentrations.

  4. Epigenetic Effects of Cadmium [Abstract and Poster 2014

    Science.gov (United States)

    We have reviewed the literature on in vitro and in vivo experiments as well as human studies on cadmium to understand the epigenetic mechanisms involved in cadmium- induced toxicity and carcinogenicity. This presentation will identify gaps in our current understanding and suggest...

  5. Cadmium inhibits neurogenesis in zebrafish embryonic brain development

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Elly Suk Hen [Division of Biology, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125 (United States); Hui, Michelle Nga Yu; Lin Chunchi [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Cheng Shukhan [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bhcheng@cityu.edu.hk

    2008-05-01

    Cadmium is a non-essential heavy metal found abundantly in the environment. Children of women exposed to cadmium during pregnancy display lower motor and perceptual abilities. High cadmium body burden in children is also related to impaired intelligence and lowered school achievement. However, little is known about the molecular and cellular basis of developmental neurotoxicity in the sensitive early life stages of animals. In this study, we explore neurological deficits caused by cadmium during early embryonic stages in zebrafish by examining regionalization of the neural tube, pattern formation and cell fate determination, commitment of proneural genes and induction of neurogenesis. We show that cadmium-treated embryos developed a smaller head with unclear boundaries between the brain subdivisions, particularly in the mid-hindbrain region. Embryos display normal anterior to posterior regionalization; however, the commitment of neural progenitor cells was affected by cadmium. We observe prominent reductions in the expression of several proneuronal genes including ngn1 in cell clusters, zash1a in the developing optic tectum, and zash1b in the telencephalon and tectum. Cadmium-treated embryos also have fewer differentiated neurons and glia in the facial sensory ganglia as indicated by decreased zn-12 expression. Also, a lower transcription level of neurogenic genes, ngn1 and neuroD, is observed in neurons. Our data suggest that cadmium-induced neurotoxicity can be caused by impaired neurogenesis, resulting in markedly reduced neuronal differentiation and axonogenesis.

  6. Cadmium-induced ectopic apoptosis in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Po Kwok; Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2003-02-01

    In this study, we tested the hypothesis that cadmium-induced developmental toxicity was mediated via ectopic occurrence of apoptosis during embryonic development. We employed confocal microscopy to acquire images of whole-mount staining of apoptotic cells in zebrafish embryo exposed to 100 {mu}M cadmium from 5 hours post fertilisation (hpf) to 28 hpf. Three-dimensional reconstruction of the images was performed and the spatial and temporal distributions of apoptotic cells in the embryos were compared. In cadmium-treated embryos with varying degrees of gross developmental malformations, significantly higher numbers of apoptotic cells were detected with this method. In order to detect the precise locations of apoptotic cells, we performed terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay in sectioned embryos. In the degenerating neural tube of cadmium-treated embryos apoptotic cells were detected, while in the healthy neural tube of the untreated controls no apoptotic cells were found. We then employed flow cytometry to investigate whether cadmium exposure would affect the dynamics of apoptosis or induce any abnormalities in cell-cycle progression. It appeared that cadmium did not induce cell-cycle arrest. The percentages of apoptotic cells did not differ in the two groups at 13, 16 or 19 hpf. At 28 hpf, however, a significantly higher percentage of apoptotic cells were found in the cadmium-treated group. Exposure to cadmium, therefore, induced ectopic apoptosis at 28 hpf without affecting the dynamics of apoptosis at earlier developmental stages. (orig.)

  7. Risk of overestimation of urinary cadmium concentrations: interference from molybdenum

    Directory of Open Access Journals (Sweden)

    Cañas A.I.

    2013-04-01

    Full Text Available We show here that the selection of analytical method is critical when measuring low levels of cadmium in human urine. Cadmium is today usually analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS, which has a higher sensitivity than Atomic Absorption Spectroscopy (AAS. ICP-MS cadmium measurements show interference from tin (114Sn and molybdenum oxides, which can result in an overestimation of cadmium levels. The 114Sn interference is stable and can be mathematically corrected. Molybdenum concentrations in urine are variable and different from individual to individual. We have estimated the degree of error which molybdenum interference introduces in the measurement of cadmium in urine by conventional ICP-MS. 268 urine samples from mothers and their children were measured. Removal of the molybdenum oxide interference (DRC-ICP-MS method reduced urinary cadmium concentrations significantly (47.8%. The urinary molybdenum concentration in children was higher than in their mothers, resulting in greater overestimation. Our results clearly show that the DRC method is essential for reliable measurements of urinary cadmium concentrations, particularly in children. Furthermore, care should be taken when comparing Human Biomonitoring data for cadmium in urine and attention should be paid to which analytical method has been used (e.g. AAS and ICP-Ms, and especially if the measurements have been corrected for molybdenum interference.

  8. Cadmium chronic administration to lactating ewes. Reproductive performance, cadmium tissue accumulation and placental transfer

    Energy Technology Data Exchange (ETDEWEB)

    Floris, B.; Bomboi, G.; Sechi, P.; Marongiu, M. L. [Sassari Univ., Sassari (Italy). Dipt. di Biologia Animale; Pirino, S. [Sassari Univ., Sassari (Italy). Ist. di Patologia Generale, Anatomia Patologica e Clinica Ostetrico-chirurgica Veterinaria

    2000-12-01

    20 lactating ewes were allotted to two groups: 10 subjects received orally 100 mg/day of CdCl{sub 2} for 108 consecutive days, and the remaining 10 acted as control. Reproductive performance in ewes and cadmium tissue accumulation, both in ewes and their lambs, were investigated. The results showed that in ewes: 1) the regular cadmium intestinal intake negatively influences all reproductive parameters; 2) cadmium is particularly accumulated in kidney and liver, bur also in mammary gland, although at distinctly lower level; 3) chronic administration does not increase cadmium placental transfer in lactating pregnant subjects. [Italian] 20 pecore in lattazione sono state suddivise in 2 gruppi: 10 soggetti ricevettero per os 100 mg/giorno di CdCl{sub 2} per 108 giorni consecutivi, e i restanti 10 funsero da controllo. Sono stati studiati i parametri riproduttivi delle pecore e l'accumulo di cadmio nei tessuti, sia delle pecore che dei loro agnelli. I risultati hanno mostrato che negli ovini: 1) il regolare assorbimento intestinale di cadmio influenza negativamente tutti i parametri riproduttivi; 2) il cadmio viene accumulato principalmente nei reni e nel fegato, ma anche dalla ghiandola mammaria, sebbene in misura nettamente inferiore; 3) la somministrazione cronica di cadmio nei soggetti gravidi non incrementa il suo passaggio transplacentare.

  9. The effect of phosphate fertilizer cadmium on cadmium in soils and crops

    NARCIS (Netherlands)

    Smilde, K.W.; Luit, van B.

    1983-01-01

    Een van de oorzaken, waardoor bodemvervuiling met cadmium optreedt en dus een bevordering van cadmiumopname door het gewas, is toepassing van fosfaatkunstmest, waarin zich verschillende gehaltes van dit zware metaal bevinden. Dit rapport behandelt het onderzoek naar de stijging van het cadmiumgehalt

  10. SORPTION OF CADMIUM ONTO DIFFERENT FRACTIONS OF BIOSOLIDS AND CADMIUM SALT AMENDED SOILS

    Science.gov (United States)

    Biosolids and Cd salt-amended soils were collected from a long-term field experiment established in 1976. Cadmium sorption experiments were conducted on different fractions of soils amended with biosolids, Cd salt, and unamended soils (control). The organic carbon (OC) of soils ...

  11. Comparison of toxicity and disposition of cadmium chloride and cadmium metallothionein in rats.

    NARCIS (Netherlands)

    Groten, J.P.

    1992-01-01

    In Chapter 1 of this thesis a general introduction is presented with a survey of the literature. It gives a brief overview of the factors involved in the absorption, metabolism and toxicity of Cd after oral intake.In short, the main source of environmental exposure to cadmium for no

  12. Serum beta2-microglobulin in cadmium exposed workers.

    Science.gov (United States)

    Piscator, M

    1978-09-01

    In cadmium exposed workers with renal tubular dysfunction the determination of beta2m in urine is an important diagnostic test. Cadmium exposure's influence on serum beta2m levels and its relationship to urinary excretion of beta2m were studied in 24 cadmium exposed workers with normal serum creatinine levels (less than 10 mg/l)) and no obvious tubular dysfunction. With increasing blood levels of cadmium beta2m was found to increase in serum. There was no concomitant increase in the urinary excretion of beta2m. Serum beta2m was not dependent on serum creatinine within the range studied. The results suggest that for evaluating renal glomerular function in cadmium exposed workers, it might be better to use the serum creatinine level, creatinine clearance or inulin clearance since beta2m might give some false positive results.

  13. Determination of the cadmium and copper content inherent to metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Raspor, B.; Kozar, S.; Pavicic, J.; Juric, D. [Ruder Boskovic Institute, Center for Marine Research Zagreb, P.O.B. 1016, HR-10 001 Zagreb (Croatia)

    1998-05-01

    The reliability of the voltammetric determination of the cadmium and copper content (at pH 1.0), inherent to metallothionein (MT) isolated from the digestive gland of Mytilus galloprovincialis, was investigated. An artifact signal enhancement of copper, caused by the cupric-thionein complex adsorption at the mercury electrode, was established. This artifact was removed by UV-digestion of the sample for 15-20 h prior to analysis. A similar artifact was not detected for cadmium, because at this pH the cadmium-thionein complex has dissociated, and cadmium exists in the ionic form. Therefore, the voltammetric analysis of the cadmium content can be performed directly at pH 1.0, without prior UV-digestion of the sample. (orig.) With 3 figs., 1 tab., 12 refs.

  14. Effect of pregnancy on cadmium-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Takizama, Y. (Akita Univ. School of Medicine, Japan); Nakamura, I.; Kurayama, R.; Hirasawa, F.; Kawai, K.

    1982-01-01

    It is well known that itai-itai disease with the osteopathy is broken out among multiparas, 40 years of age and up Japanese residents. In this paper we described an experimental study of effect of pregnancy on cadmium treated rats. Female mature rats were administered drinking water containing 50 and 200 ppm cadmium as CdCl/sub 2/. During 180 days of the experiment, three times of pregnancy were succesful, though slight depression of body weight gain was noticed in the 200 ppm group. The cadmium was accumulated in the kidneys, liver and bone proportionally to the amount of cadmium administered. No significant change was recognized in serum calcium, phosphorus and alkaline phosphatase levels after 180 days. Though cadmium 200 ppm treated rats showed slight histological lesions in the proximal convoluted tubules of the kidney, there appeared to be no osteomalacia including excess formation of osteoid tissue.

  15. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun

    2012-10-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  16. Chronic cadmium poisoning in a pigment manufacturing plant

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, P.E.; Donnan, M.B.

    1981-02-01

    When the working environment in a small cadmium-pigment manufacturing plant was investigated, cadmium concentrations in respirable dust were found to be considerably above the hygiene standard recommended by the British Occupational Hygiene Society. Cadmium concentrations in blood and urine of exposed workers, both present and past employees, were determined. The six men who had worked in the production plant for seven years or more all showed signs of renal tubular damage. On the basis of the results of the investigations on individuals in this study, it is suggested that urinary cadmium concentrations should be kept below 15 microgram/day to avoid the possibility of renal damage, and that the insoluble respirable fraction of cadmium dust should not be regarded as merely nuisance dust.

  17. Adsorption of cadmium from aqueous solutions by perlite.

    Science.gov (United States)

    Mathialagan, T; Viraraghavan, T

    2002-10-14

    The present study examined the use of perlite for the removal of cadmium from aqueous solutions. The effects of pH and contact time on the adsorption process were examined. The optimum pH for adsorption was found to be 6.0. Residual cadmium concentration reached equilibrium in 6h and the rate of cadmium adsorption by perlite was rapid in the first hour of the reaction time. Ho's pseudo-second-order model best described the kinetics of the reaction. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 55%. Thomas model was used to describe the adsorption data from column studies. The results generally showed that perlite could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

  18. Cadmium adsorption in montmorillonite as affected by glyphosate

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-jun; ZHOU Dong-mei; LUO Xiao-san; SUN Rui-juan; CHEN Huai-man

    2004-01-01

    Behaviors of soil heavy metals are often affected by coexisting herbicides due to their physical and chemical interaction. Effect of glyphosate, an herbicide containing -PO32- and -COOH groups, on cadmium adsorption in montmorillonite was studied in detail. The results showed that cadmium adsorption quantity in montmorillonite increased with increasing soil solution pH and cadmium concentration as usual, but decreased with glyphosate, which is due to the formation of a low affinity complex of Cd and glyphosate and decreasing solution pH induced by glyphosate addition. When the equilibrium solution pH was below 6.7, glyphosate has little effect on cadmium adsorption, but when the equilibrium solution pH was above 6.7, glyphosate significantly decreased cadmium adsorption quantity in montmorillonite. In addition, the adding order of Cd and glyphosate also influenced Cd adsorption quantity in montmorillonite.

  19. Solar Collectors

    Science.gov (United States)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  20. Pulmonary and gastrointestinal exposure to cadmium oxide dust in a battery factory

    Energy Technology Data Exchange (ETDEWEB)

    Adamsson, E.; Piscator, M.; Nogawa, K.

    1979-02-01

    The elimination of cadmium in feces was studied in a group of 15 male workers exposed to cadmium oxide dust in a nickel-cadmium battery factory. The elimination of cadmium in feces was on the average 619 and 268 microgram/day in seven smokers and eight nonsmokers, respectively. The cadmium concentrations in blood were significantly higher in smokers than in nonsmokers, both before and after one month of vacation. Among the smokers there was a significant decrease in the cadmium concentrations during the vacation period, but not among the nonsmokers. It was estimated that cadmium naturally occurring in food and cigarettes, cadmium excreted from the gastrointestinal tract, and cadmium transported from the lungs by mucocillary clearance to the gastrointestinal tract only could explain up to 100 microgram of the cadmium in the feces.