WorldWideScience

Sample records for cadmium sulphide nanoparticles

  1. Water-driven stabilization of cadmium sulphide nanoparticles

    Science.gov (United States)

    Goswami, Navendu; Sen, P.

    2017-12-01

    Water driven stabilization of cadmium sulphide (CdS) nanoparticles, synthesized through a novel and facile electro-explosion of wire (EEW) technique, is reported by us. The transformation of prepared material was visually evident; as greenish black colour of the colloidal as well as the powder particles, obtained just after the synthesis, changed to orange colour after one month. Cubic Hawleyite phase CdS nanoparticles with 2.3-13.4 nm average crystallite size were ascertained by XRD analysis. HRTEM and AFM analysis collectively confirmed the formation of stable CdS nanoparticles. The crucial S-H vibrational mode, a signature interaction of CdS nanoparticles with surrounding water molecules, was revealed by FTIR analysis. The composition of prepared nanoparticles was accessed through XPS analysis. Not only structural but optical properties of nanoparticles also altered due to aging of nanoparticles. Enhanced band gap of CdS nanoparticles and gradual prominence of absorption energy with aging were demonstrated through UV-vis analysis. Complementary to this, PL spectroscopic analysis revealed the photophysics of CdS nanoparticles by providing details of radiative recombination channels. Thus, intricacies of CdS nanoparticles stabilization in aqueous environment were unravelled on the basis of variations in crystallinity, local chemical environment, alterations in electronic structure and optical processes occurring therein.

  2. Algae mediated synthesis of cadmium sulphide nanoparticles and their application in bioremediation

    Science.gov (United States)

    Prasad Mandal, Ranju; Sekh, Sanoyaz; Sarkar, Neera Sen; Chattopadhyay, Dipankar; De, Swati

    2016-05-01

    The present work is a study on the biological synthesis of cadmium sulphide (CdS) nanoparticles using blue-green algae that is popularly used as a food supplement. This synthesis is unique in the sense that no external sulphur precursor is required, the CdS nanoparticles are synthesized in situ in the algal medium. The CdS nanoparticles thus synthesized are photoluminescent and can act as highly efficient photocatalysts for degradation of the dye pollutant malachite green. Thus the CdS nanoparticles synthesized in situ in the algae conform to the desired criteria of waste water treatment i.e. biosorption of the pollutant and its subsequent degradation. The novelty of this work also lies in its potential for use in bioremediation by conversion of the toxic Cd(II) ion to less toxic CdS nanoparticles within the algal framework.

  3. Sizing, stoichiometry and optical absorbance variations of colloidal cadmium sulphide nanoparticles.

    Science.gov (United States)

    Stebbing, S R; Hughes, R W; Reynolds, P A

    2009-01-01

    Simple preparative methods were used to synthesise cadmium sulphide particles in the size ranges larger than those associated with quantum confinement. UV/visible absorption spectra were measured. Rayleigh and Mie theories were used to analyse normalised absorption spectra to allow estimates of particle size and number to be obtained simultaneously. Each model was utilised in an appropriate size and wavelength range. Surprisingly, Mie calculations were found to over-estimate the absorbance of particles below 50 nm radius. Powder X-ray diffraction results showed the crystallites to be independent of particle size and suggested that the particles grew through aggregation of smaller bodies. The Mie results could therefore be interpreted in terms of changes in the particles' optical indicatrix with radius. Large poly-crystalline particles (>50 nm radius) should possess a near spherical indicatrix, fulfilling the assumptions of the Mie theory. The indicatrix of particles smaller than 50 nm should become increasingly anisotropic with decreasing size, leading to discrepancies between the Mie model and measured data. Although the results could also be explained through changes in the magnitude of the particle refractive index, compositional (Auger electron spectroscopy, energy dispersive X-ray analysis) and structural (powder X-ray diffraction) analyses of the particles complicate the hypothesis. Energy dispersive X-ray results showed that small cadmium sulphide particles possessed a large excess of sulphur suggesting a change in effective cadmium sulphide stoichiometry.

  4. Detection of cadmium sulphide nanoparticles by using screen-printed electrodes and a handheld device

    Energy Technology Data Exchange (ETDEWEB)

    Merkoci, Arben [Institut Catala de Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia (Spain); Marcolino-Junior, Luiz Humberto [Laboratorio de BioanalItica, Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luiz, km 235, CP 676, 13560-970-Sao Carlos/SP (Brazil); MarIn, Sergio [Institut Catala de Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona, Catalonia (Spain); Fatibello-Filho, Orlando [Laboratorio de BioanalItica, Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luiz, km 235, CP 676, 13560-970-Sao Carlos/SP (Brazil); Alegret, Salvador [Grup de Sensors and Biosensors, Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Catalonia (Spain)

    2007-01-24

    A simple method based on screen-printed electrodes and a handheld potentiostatic device is reported for the detection of water soluble CdS quantum dots modified with glutathione. The detection method is based on the stripping of electrochemically reduced cadmium at pH 7.0 by using square wave voltammetry. Various parameters that affect the sensitivity of the method are optimized. QD suspension volumes of 20 {mu}l and a number of around 2 x 10{sup 11} CdS quantum dots have been able to be detected. The proposed method should be of special interest for bioanalytical assays, where CdS quantum dots can be used as electrochemical tracers.

  5. Combustion synthesis of cadmium sulphide nanomaterials for ...

    Indian Academy of Sciences (India)

    Anion-doped cadmium sulphide nanomaterials have been synthesized by using combustionmethod at normal atmospheric conditions. Oxidant/fuel ratios have been optimized in order to obtain CdS with best characteristics. Formation of CdS and size of crystallite were identified by X-ray diffraction and confirmed by ...

  6. Combustion synthesis of cadmium sulphide nanomaterials for ...

    Indian Academy of Sciences (India)

    The observed enhanced photocatalytic activity of the CdS nanomaterials for the hydrogen production from water (2120 μmol/h) can be attributed to high crystallinity, low band gap and less exciton recombination due to the C and N doping. Keywords. Cadmium sulphide; combustion synthesis; anion doping; water splitting; ...

  7. Studies on cadmium sulphide nanoparticles formed by the Langmuir- Blodgett technique

    CERN Document Server

    Iwantono, M

    2003-01-01

    In this project, the formation and characterisation of CdS nanoparticles embedded within Langmuir-Blodgett (LB) films have been studied systematically. CdS nanoparticles were formed within calix[8]arene (CA) and stearic acid (SA) Cd-salt LB films by exposure to H sub 2 S gas at room temperature. The AFM images of the treated SA and CA bilayers show CdS clusters with lateral dimensions in the range of 20-30 nm and 10-15 nm, respectively. These particles are pseudo two-dimensional and have a shape of hexagonal platelets which is most likely consequence of their wurtzite structure. Calculations of the cluster thickness L sub z yield the value of 2 nm (Photoluminescence excitation-PLE) and 1.9 nm (UV-visible) for CdS clusters in SA matrix and two values of 1.2 nm and 1.6 nm (PLE) and 1.08 nm and 1.42 nm (UV-visible) for CA LB films. The PL spectra demonstrate a large Stokes shift, indicating the formation of 'dark excitons' in the platelet CdS clusters. The transformations of the absorption spectra caused by agei...

  8. Dynamic of cadmium accumulation in the internal organs of rats after exposure to cadmium chloride and cadmium sulphide nanoparticules of various sizes

    Directory of Open Access Journals (Sweden)

    Apykhtina O.L.

    2017-06-01

    Full Text Available The article presents the results of study of cadmium accumulation in the internal organs of Wistar rats after prolonged intraperitoneal administration of cadmium chloride and cadmium sulphide nanoparticles of 4-6 nm and 9-11 nm in size in a dose of 0.08 mg /kg/day calculated as cadmium. Toxic effects were evaluated after 30 injections (1.5 months, 60 injections (3 months, and 1.5 months after the exposure has been ceased. The results of the study showed that the most intensive accumulation of cadmium was observed in the kidneys and liver of experimental animals, which is due to the peculiarities of the toxicokinetics and the route of administration of cadmium compounds. In the kidneys, spleen and thymus of animals exposed to cadmium sulphide nanoparticles, a greater concentration of cadmium than in the organs of animals exposed to cadmium chloride was found. Cadmium accumulated more intensively in the spleen after exposure to larger nanoparticles, than in the kidneys and thymus. In the liver, heart, aorta and brain significant accumulation was observed after cadmium chloride exposure.

  9. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  10. Biosynthesis of cadmium sulphide quantum semiconductor crystallites

    Science.gov (United States)

    Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R.

    1989-04-01

    NANOMETRE-SCALE semiconductor quantum crystallites exhibit size-dependent and discrete excited electronic states which occur at energies higher than the band gap of the corresponding bulk solid1-4. These crystallites are too small to have continuous energy bands, even though a bulk crystal structure is present. The onset of such quantum properties sets a fundamental limit to device miniaturization in microelectronics5. Structures with either one, two or all three dimensions on the nanometer scale are of particular interest in solid state physics6. We report here our discovery of the biosynthesis of quantum crystallites in yeasts Candida glabrata and Schizosaccharomyces pombe, cultured in the presence of cad-mium salts. Short chelating peptides of general structure (γ-Glu-Cys)n-Gly control the nucleation and growth of CdS crystallites to peptide-capped intracellular particles of diameter 20 Å. These quantum CdS crystallites are more monodisperse than CdS par-ticles synthesized chemically. X-ray data indicate that, at this small size, the CdS structure differs from that of bulk CdS and tends towards a six-coordinate rock-salt structure.

  11. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  12. Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.

    Science.gov (United States)

    Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad

    2015-12-01

    This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.

  13. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles.

    Science.gov (United States)

    El-Baz, Ashraf Farag; Sorour, Noha Mohamed; Shetaia, Youssria Mohamed

    2016-05-01

    Cadmium sulphide is one of the most promising materials for solar cells and of great interest due to its useful applications in photonics and electronics, thus the development of bio-mediated synthesis of cadmium sulphide nanoparticles (CdS NPs) is one of the essential areas in nanoparticles. The present study demonstrates for the first time the eco-friendly biosynthesis of CdS NPs using the yeast Trichosporon jirovecii. The biosynthesis of CdS NPs were confirmed by UV-Vis spectrum and characterized by X-ray diffraction assay and electron microscopy. Scanning and transmission electron microscope analyses shows the formation of spherical CdS NPs with a size range of about 6-15 nm with a mean Cd:S molar ratio of 1.0:0.98. T. jirovecii produced hydrogen sulfide on cysteine containing medium confirmed by positive cysteine-desulfhydrase activity and the colony color turned yellow on 0.1 mM cadmium containing medium. T. jirovecii tolerance to cadmium was increased by the UV treatment and three 0.6 mM cadmium tolerant mutants were generated upon the UV radiation treatment. The overall results indicated that T. jirovecii could tolerate cadmium toxicity by its conversion into CdS NPs on cysteine containing medium using cysteine-desulfhydrase as a defense response mechanism. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Swati, E-mail: sharma.swati1507@gmail.com; Kashyap, Jyoti; Kapoor, A. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Gupta, Shubhra [Sri Venkateswara College, University of Delhi, New Delhi-110021 (India); Natasha [Maharaja Agrasen College, University of Delhi-110053 (India)

    2016-05-06

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Y doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.

  15. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    Science.gov (United States)

    Sharma, Swati; Kashyap, Jyoti; Gupta, Shubhra; Natasha, Kapoor, A.

    2016-05-01

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Y doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.

  16. Electron Microscopy and Optical Characterization of Cadmium Sulphide Nanocrystals Deposited on the Patterned Surface of Diatom Biosilica

    Directory of Open Access Journals (Sweden)

    Timothy Gutu

    2009-01-01

    Full Text Available Intricately patterned biosilica obtained from the shell of unicellular algae called diatoms serve as novel templates for fabrication of optoelectronic nanostructures. In this study, the surface of diatom frustules that possessed hierarchical architecture ordered at the micro and nanoscale was coated with a nanostructured polycrystalline cadmium sulphide (CdS thin film using a chemical bath deposition technique. The CdS thin film was composed of spherical nanoparticles with a diameter of about 75 nm. The CdS nanoparticle thin film imparted new photoluminescent properties to the intricately patterned diatom nanostructure. The imparted photoluminescent properties were dependent on the CdS coverage onto the frustules surface. The intrinsic photoluminescent properties of the frustules were strongly quenched by the deposited CdS. The origin of PL spectra was discussed on the basis of the band theory and native defects.

  17. Laser-induced photodynamic effects at silica nanocomposite based on cadmium sulphide quantum dots.

    Science.gov (United States)

    Voznesenskiy, S S; Sergeev, A A; Galkina, A N; Kulchin, Yu N; Shchipunov, Yu A; Postnova, I V

    2014-01-27

    In this paper we study the laser-induced modification of optical properties of nanocomposite based on cadmium sulphide quantum dots encapsulated into thiomalic acid shell which were embedded into a porous silica matrix. We found red shift of luminescence of the nanocomposite when exposed to laser radiation at λ = 405 nm. Using pump-probe method and Small-Angle X-ray Scattering technique it was found that laser radiation at λ = 405 nm also increases the absorption coefficient of the nanocomposite in 15 times due to agglomeration of quantum dots. The modification of absorption properties is fully reversible.

  18. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions.

    Science.gov (United States)

    Ibrahim, I; Lim, H N; Huang, N M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  19. Photocatalytically active colloidal platinum-decorated cadmium sulphide nanorods for hydrogen production; Photokatalytisch Aktive Kolloidale Platindekorierte Cadmiumsulfidnanostaebchen zur Wasserstoffproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Berr, Maximilian Josef

    2012-12-07

    This is the first study to have been successful in producing hydrogen by means of photocatalytically active colloidal semiconductor particles. Specifically, colloidal platinum-decorated cadmium sulphide nanorods were used to reduce water to hydrogen. Oxidation of water to oxygen was substituted by addition of a reducing agent (hole collector), e.g. sulphite, which itself is oxidised to sulphate by the photohole. During photochemical platinum decoration it was discovered that in addition to the expected platinum nanoparticles there had also formed platinum clusters in the subnanometer range. In spite of the small quantity of platinum deposited on the nanorods these clusters showed the same quantum efficiency as the intended product. [German] In dieser Arbeit wurde erstmals mit kolloidalen Halbleiternanopartikeln photokatalytische Wasserstoffproduktion erzielt. Im Detail wurde Wasser mit kolloidalen, platindekorierten Cadmiumsulfidnanostaebchen zu Wasserstoff reduziert. Die Oxidation des Wasser zu Sauerstoff wurde durch Zugabe eines Reduktionsmittels (Lochfaenger) substituiert, z.B. Sulfit, das durch das Photoloch zu Sulfat reduziert wird. Bei der photochemischen Platindekoration wurden neben den erwarteten Platinnanopartikeln mit 4 - 5 nm Durchmesser auch Subnanometer grosse Platincluster entdeckt, die trotz der geringeren Menge an deponierten Platin auf den Nanostaebchen die gleiche Quanteneffizienz demonstrieren.

  20. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  1. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II) Ions

    Science.gov (United States)

    Ibrahim, I; Lim, H. N; Huang, N. M; Pandikumar, A

    2016-01-01

    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5–120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection. PMID:27176635

  2. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro

    Science.gov (United States)

    Miclăuş, Teodora; Beer, Christiane; Chevallier, Jacques; Scavenius, Carsten; Bochenkov, Vladimir E.; Enghild, Jan J.; Sutherland, Duncan S.

    2016-06-01

    Proteins adsorbing at nanoparticles have been proposed as critical toxicity mediators and are included in ongoing efforts to develop predictive tools for safety assessment. Strongly attached proteins can be isolated, identified and correlated to changes in nanoparticle state, cellular association or toxicity. Weakly attached, rapidly exchanging proteins are also present at nanoparticles, but are difficult to isolate and have hardly been examined. Here we study rapidly exchanging proteins and show for the first time that they have a strong modulatory effect on the biotransformation of silver nanoparticles. Released silver ions, known for their role in particle toxicity, are found to be trapped as silver sulphide nanocrystals within the protein corona at silver nanoparticles in serum-containing cell culture media. The strongly attached corona acts as a site for sulphidation, while the weakly attached proteins reduce nanocrystal formation in a serum-concentration-dependent manner. Sulphidation results in decreased toxicity of Ag NPs.

  3. Data on HepG2 cells changes following exposure to cadmium sulphide quantum dots (CdS QDs

    Directory of Open Access Journals (Sweden)

    Laura Paesano

    2017-04-01

    Full Text Available The data included in this paper are associated with the research article entitled "Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria" (Paesano et al. [1]. The article concerns the cytotoxic and genotoxic effects of CdS QDs in HepG2 cells and the mechanisms involved. In this dataset, changes in expression levels of candidate genes are reported, together with details concerning synthesis and properties of CdS QDs, additional information obtained through literature survey, measures of the mitochondrial membrane potential and the glutathione redox state.

  4. Preparation of cu/fes nanoparticles by mechanochemical reduction of copper sulphide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    mechanochemical reduction of copper sulphide by elemental iron. Platelets of Cu/FeS nanoparticles are formed as aggregates, tenths of micrometers in diameter. However, the average grain size of the freshly formed copper is between 10 and 25 nanometers depending on the milling conditions.......The mechanochemical reduction of copper sulphide with elemental iron was studied. The methods of XPS, SEM, EDX, and low temperature nitrogen sorption were used to analyse the surface composition and the composite particles formed from elemental copper and hexagonal 2C-troilite. The study...... of the mechanism and kinetics of the mechanochemical reaction by magnetic measurements, XRD and Mossbauer spectroscopy has revealed the details of the process.The transformations of copper sulphide, the synthesis of cubic FeS and its transformation to the hexagonal form are associated with the primary...

  5. Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens

    Science.gov (United States)

    Malarkodi, C.; Rajeshkumar, S.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G.

    2014-01-01

    Dental care is an essential phenomenon in human health. Oral pathogens can cause severe break which may show the way to serious issues in human disease like blood circulation and coronary disease. In the current study, we demonstrated the synthesis and antimicrobial activity of cadmium sulphide and zinc sulphide nanoparticles against oral pathogens. The process for the synthesis of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles is fast, novel, and ecofriendly. Formation of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles was confirmed by surface plasmon spectra using UV-Vis spectrophotometer. The morphology of crystalline phase of nanoparticles was determined from transmission electron microscopy (TEM) and X-ray diffraction (XRD) spectra. The average size of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles was in the range of 10 nm to 25 nm and 65 nm, respectively, and the observed morphology was spherical. The results indicated that the proteins, which contain amine groups, played a reducing and controlling responsibility during the formation of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles in the colloidal solution. The antimicrobial activity was assessed against oral pathogens such as Streptococcus sp. Staphylococcus sp. Lactobacillus sp., and Candida albicans and these results confirmed that the sulphide nanoparticles are exhibiting good bactericidal activity. PMID:24860280

  6. Structural characterisation of alkyl amine-capped zinc sulphide nanoparticles.

    Science.gov (United States)

    Kremser, Gabriele; Rath, Thomas; Kunert, Birgit; Edler, Michael; Fritz-Popovski, Gerhard; Resel, Roland; Letofsky-Papst, Ilse; Grogger, Werner; Trimmel, Gregor

    2012-03-01

    Nanoparticles capped with amine ligands with different steric properties, dodecylamine and oleylamine, respectively, are investigated in the solid state as well as in solution. A combined X-ray diffraction, small angle X-ray scattering and electron microscopy investigation showed that the nanoparticles exhibit the sphalerite modification of ZnS as crystal phase with a diameter of 3-5 nm. A close packing of the monocrystalline nanoparticles in the solid state is observed. However, in the dodecylamine sample, besides spherical particles, a fraction of the nanoparticles is elongated. The nanoparticles are readily resoluble in apolar solvents like hexane. Dynamic light scattering (DLS) and SAXS investigations of the solutions reveal that the nanoparticles are dissolved as singular particles. In the case of oleylamine-capped ZnS, a defined core-shell structure with a ZnS core with a diameter of 4 nm and an organic shell with a thickness of approximately 2 nm have been found. Dodecylamine-capped nanoparticles slightly tend to form agglomerates with a diameter of approximately 40 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. In-situ fabrication of cobalt oxide / sulphide mixed phase nanoparticles in Polyphenylenesulphide matrix

    Directory of Open Access Journals (Sweden)

    Narendra Rumale

    2013-03-01

    Full Text Available A novel approach for the in-situ fabrication of combined cobalt oxide / sulphide nanoparticles in sulphur containing polymer polyphenylenesulphide (PPS by polymer inorganic solid-solid reaction technique is reported here. At present, there is considerable interest in polymer-metal chalcogenides / oxides based nano-composites on account of their optical, magnetic, electronic and catalytic properties. We have demonstrated the suitability of solid-solid reaction methodology by reacting commonly available cobalt precursors with engineering thermoplastic PPS. The cobalt precursor was reacted with PPS in 1:1, 1:5, 1:10, and 1:15 molar ratios, respectively, by heating the mixture at the melting temperature of the polymer (285 ºC for six hours. The resultant products were characterized by X-ray diffractometry (XRD, Field-emission scanning electron microscopy (FESEM, Thermogravimetric analysis (TGA, Differential scanning calorimetry (DSC, Diffuse reflectance spectroscopy (DRS techniques and High resolution transmission electron microscope (HRTEM. The shift in melting temperature of PPS was observed. Increase in absorption peak is observed in the range of 320 to 370 nm with the increase in PPS concentration. Resultant nanoparticles of cobalt sulphide and cobalt oxide embedded in the PPS matrix showed spherical and distorted rod like morphology.

  8. Biosynthesis and characterization of mercury sulphide nanoparticles produced by Bacillus cereus MRS-1.

    Science.gov (United States)

    Sathyavathi, Sundararaju; Manjula, Arumugam; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2013-11-01

    Mercury is a highly toxic heavy metal accumulated in the environment, which can be detoxified by reducing Hg2+ to non toxic form. Bacteria resistant to toxic metals and capable of converting them into non toxic forms have a direct application in the bioremediation of contaminated sites. In this study, mercury resistant strain Bacillus cereus MRS-1 was isolated from electroplating industrial effluent. This strain exhibited the ability to convert mercury into extracellular sulphide nanoparticles of mercury. The recovered HgS nanoparticles have been characterized by UV-VIS spectrophotometer, FT-IR, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray analysis, powder X-ray diffraction pattern and thermogravimetric analysis. The synthesized nanoparticles were spherical with a size range of 10-100 nm. This strain can be potentially exploited for the production of HgS nanoparticles as well as for detoxification of mercury in the environment without producing secondary pollution of mercury methylation or Hg (0) volatilization.

  9. Interface and properties of inorganic fullerene tungsten sulphide nanoparticle reinforced poly (ether ether ketone) nanocomposites

    Science.gov (United States)

    Wang, Nannan; Yang, Zhuxian; Wang, Yuan; Thummavichai, Kunyapat; Xia, Yongde; Ghita, Oana; Zhu, Yanqiu

    We report a simple and effective method to fabricate PEEK (poly ether ether ketone)/IF-WS2 (Inorganic Fullerene Tungsten Sulphide) nanocomposites with IF-WS2 content up to 8 wt%. We have used electron microscopies to characterise the morphology and structural features of the nancomposites, and FTIR and XPS to show that some chemical interface bondings were formed between the PEEK and IF-WS2. We demonstrate that the resulting PEEK/IF-WS2 nanocomposites showed an extraordinary 190% increase in thermal conductivity, 50 °C higher in degradation temperature, and mild improvements in strength and hardness. The increased degradation activation energy from 64 to 76 kJ/mol for neat PEEK and PEEK/IF-WS2 nanocomposites, respectively, is attributed to the synergistic interface between the PEEK matrix and IF-WS2 nanoparticles. The enhancements in both the mechanical and thermal properties will significantly expand the capacities of PEEK-based nanocomposites towards applications where thermal conductivity and stability are important.

  10. Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide/ Carbon Fiber Laminates: Thermomechanical Behaviour

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2013-07-01

    Full Text Available Carbon fiber (CF-reinforced high-temperature thermoplastics such as poly(phenylene sulphide (PPS are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2 lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg. IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

  11. Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide)/Carbon Fiber Laminates: Thermomechanical Behaviour

    Science.gov (United States)

    Díez-Pascual, Ana M.; Naffakh, Mohammed

    2013-01-01

    Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites. PMID:28811429

  12. Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using ...

    African Journals Online (AJOL)

    Cell-associated biosynthesis of cadmium sulfide (CdS) nanoparticles has been reported to be rather slow and costly. In this study, we report on a rapid and low cost biosynthesis of CdS using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T.

  13. Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles

    Science.gov (United States)

    Ahmad, Rameez; Distaso, Monica; Azimi, Hamed; Brabec, Christoph J.; Peukert, Wolfgang

    2013-09-01

    Cu2ZnSnS4 (CZTS) nanoparticles have shown promising properties to be used as an energy harvesting material. They are usually synthesised under inert atmosphere or vacuum, whereas the subsequent step of film formation is carried out under an atmosphere of sulphur and/or Sn in order to avoid the decomposition of CZTS nanoparticles into binary and ternary species as well as the formation of the corresponding oxides. In the present paper we show that both the synthesis of CZTS nanoparticles and the film formation from the corresponding suspension can be considerably simplified. Namely, the synthesis can be carried out without controlling the atmosphere, whereas during the film annealing a nitrogen atmosphere is sufficient to avoid the depletion of the CZTS kesterite phase. Furthermore, an integrated approach including in-depth Raman analysis is developed in order to deal with the challenges associated with the characterization of CZTS nanoparticles in comparison to bulk systems. The formation of competitive compounds during the synthesis such as binary and ternary sulphides as well as metal oxides nanoparticles is discussed in detail. Finally, the as-produced films have ten times higher conductivity than the state of the art.

  14. Interactions between TiO2 nanoparticles and cadmium: consequences for uptake and ecotoxicity

    DEFF Research Database (Denmark)

    Hartmann, B.; Baun, Anders

    2011-01-01

    sedimentation, the sediments are expected to be a sink for nanoparticles. Both in the water phase and in sediments they will mix and interact with other environmental pollutants, including heavy metals. In this study the toxicity of cadmium to three relevant freshwater species, green algae Pseudokirchneriella...... in the absence and presence of 2mg/L TiO2 nanoparticles (P25 Evonic, d: 30 nm). Mass balances for cadmium in the test systems were determined. A high degree of sorption of cadmium onto TiO2 particles was found, which makes TiO2 nanoparticles potential carriers for cadmium. The observed toxicity was higher than...

  15. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract.

    Science.gov (United States)

    Ehrampoush, Mohammad Hassan; Miria, Mohammad; Salmani, Mohammad Hossien; Mahvi, Amir Hossein

    2015-01-01

    The adsorption process by metal oxide nanoparticles has been investigated an effective agent for removing organic and inorganic contaminants from water and wastewater. In this study, iron oxide nanoparticles were synthesized in the presence of tangerine peel extract as adsorbent for cadmium ions removal from contaminated solution. Iron oxide nanoparticles prepared by co-precipitation method and tangerine peel extract was used to prevent accumulation and reduce the diameter of the particles. Effect of various parameters such as contact time, pH, metal concentration and adsorbent dosage was determined on the removal efficiency. The different concentrations of tangerine peel had an impact on the size of nanoparticles. As, increasing the concentration of tangerine peel extract from 2 to 6 % the average size of synthesized iron oxide nanoparticles decreased 200 nm to 50 nm. The maximum removal of cadmium ions (90 %) occurred at pH of 4 and adsorbent dose of 0.4 g/100 ml. Adsorption of cadmium ions by synthesized iron oxide nanoparticles followed Freundlich adsorption model and pseudo-second-order equation. The cadmium ions are usually soluble in acidic pH and the maximum removal of cadmium by green synthesis iron oxide nanoparticles was obtained in the pH of 4, so these nanoparticles can be a good adsorbent for the removal of cadmium from wastewater.

  16. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries

    Science.gov (United States)

    Yu, Denis Y. W.; Prikhodchenko, Petr V.; Mason, Chad W.; Batabyal, Sudip K.; Gun, Jenny; Sladkevich, Sergey; Medvedev, Alexander G.; Lev, Ovadia

    2013-12-01

    Sodium-ion batteries are an alternative to lithium-ion batteries for large-scale applications. However, low capacity and poor rate capability of existing anodes are the main bottlenecks to future developments. Here we report a uniform coating of antimony sulphide (stibnite) on graphene, fabricated by a solution-based synthesis technique, as the anode material for sodium-ion batteries. It gives a high capacity of 730 mAh g-1 at 50 mA g-1, an excellent rate capability up to 6C and a good cycle performance. The promising performance is attributed to fast sodium ion diffusion from the small nanoparticles, and good electrical transport from the intimate contact between the active material and graphene, which also provides a template for anchoring the nanoparticles. We also demonstrate a battery with the stibnite-graphene composite that is free from sodium metal, having energy density up to 80 Wh kg-1. The energy density could exceed that of some lithium-ion batteries with further optimization.

  17. A Density Functional Theory Study of Raman Modes of Hydrogenated Cadmium Sulphide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Abdul Majid

    2012-07-01

    results generated are found to be in close agreement with the literature. The observed red shift in different modes is assigned to stimulated Raman stretching and blue shift is ascribed to the coherent anti‐stokes Raman scattering.

  18. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

    Science.gov (United States)

    Rubilar, Olga; Rai, Mahendra; Tortella, Gonzalo; Diez, Maria Cristina; Seabra, Amedea B; Durán, Nelson

    2013-09-01

    Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

  19. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Faezeh Sajadi

    2016-05-01

    Full Text Available Background and Aim: Cadmium (Cd is one of the most toxic heavy metals in water that mostly enters the water cycle through industrial waste water. Silver nanoparticles have the capacity to remove heavy metals from the water resources through the mechanism of adsorption. The present study aimed at producing  silver bio-nanoparticles and optimizing . Cd removal from aquatic solutions. Materials and Methods: Silver bio-nanoparticles were extracted via a micro-algae Chlorella vulgaris extract and silver nitrate synthesis. Then, the characteristics of the particles were  determined using FT-IR, XRD, SEM devices. In order to optimize Cadmium adsorption by means of silver nanoparticles, parameters including pH, reaction time, initial concentration of Cd and concentrations of nanoparticles were studied under different conditions. Results: The resulting nanoparticles were spherical, single and crystalline, whose sizes were 10-45 nm.  Under the condition of PH = 8, the initial concentration of cadmium 0.5 mg/L, adsorbent dosage of 0.5 mg, reaction time of 10 min, temperature of 300C and mixing speed of 200 rpm, 99% of cadmium was removed. Isotherm of Cadmium-ion adsorption followed Langmuir (R2> 0/96 (and Freundlich (R2> 0/94 models. Conclusion: Under optimal conditions, silver bio-nanoparticles had the capacity of quick and effective adsorption of cadmium. Thus, with a cheap, non-toxic and environmentally friendly method  can remove heavy metals in a short time.

  20. Investigation of electronic quality of electrodeposited cadmium sulphide layers from thiourea precursor for use in large area electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, A.A., E-mail: chartell2006@yahoo.com; Dharmadasa, I.M.

    2016-09-01

    CdS layers used in thin film solar cells and other electronic devices are usually grown by wet chemical methods using CdCl{sub 2} as the Cadmium source and either Na{sub 2}S{sub 2}O{sub 3}, NH{sub 4}S{sub 2}O{sub 3} or NH{sub 2}CSNH{sub 2} as Sulphur sources. Obviously, one of the sulphur precursors should produce more suitable CdS layers required to give the highest performing devices. This can only be achieved by comprehensive experimental work on growth and characterisation of CdS layers from the above mentioned sulphur sources. This paper presents the results observed on CdS layers grown by electrodepositing using two electrode configuration and thiourea as the sulphur precursor. X-ray diffraction (XRD), Raman spectroscopy, optical absorption, scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX) and photoelectrochemical (PEC) cell methods have been used to characterise the material properties. In order to test and study the electronic device quality of the layers, ohmic and rectifying contacts were fabricated on the electroplated layers. Schottky barriers, formed on the layers were also compared with previously reported work on Chemical Bath Deposited CBD-CdS layers and bulk single crystals of CdS. Comparatively, Schottky diodes fabricated on electroplated CdS layers using two-electrode system and thiourea precursor exhibit excellent electronic properties suitable for electronic devices such as thin film solar panels and large area display devices. - Highlights: • Precipitate-free electrodeposition of CdS is achievable using Thiourea precursor. • Electrodeposition of CdS using 2-electrode configuration. • The electrodeposited CdS shows excellent electronic properties. • Exploration of the effect of heat treatment temperature and heat treatment duration.

  1. Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using ImmobilizedRhodobacter sphaeroides

    Directory of Open Access Journals (Sweden)

    Zhang Zhaoming

    2009-01-01

    Full Text Available Abstract Size-controlled cadmium sulfide nanoparticles were successfully synthesized by immobilizedRhodobacter sphaeroidesin the study. The dynamic process that Cd2+was transported from solution into cell by livingR. sphaeroideswas characterized by transmission electron microscopy (TEM. Culture time, as an important physiological parameter forR. sphaeroidesgrowth, could significantly control the size of cadmium sulfide nanoparticles. TEM demonstrated that the average sizes of spherical cadmium sulfide nanoparticles were 2.3 ± 0.15, 6.8 ± 0.22, and 36.8 ± 0.25 nm at culture times of 36, 42, and 48 h, respectively. Also, the UV–vis and photoluminescence spectral analysis of cadmium sulfide nanoparticles were performed.

  2. Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu

    Science.gov (United States)

    Senapati, U. S.; Sarkar, D.

    2014-06-01

    We report here green synthesis of ZnS nanoparticles using the extract of an edible mushroom ( Pleurotuss ostreatu). The obtained ZnS nanoparticles are characterized by X-ray diffraction, energy dispersive analysis of X-rays, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, UV-Vis optical absorption, photoluminescence and Fourier Transform Infrared Spectroscopy. XRD analysis confirms ZnS nanoparticles have cubic structure and also there is decrease of particle size and increase of dislocation density and strain with increase of amount of mushroom extract. The variation of crystallite size is in conformity with the results obtained from SEM and TEM. UV-Vis and photoluminescence spectra give the characteristic peak for ZnS nano where as Fourier transform infrared spectra confirm the presence of microbial proteins.

  3. The characterization of the adsorption of cadmium from aqueous solution using natural fibers treated with nanoparticles

    Science.gov (United States)

    Rediske, Nicole M.

    The objective of this research was to characterize natural carbon fibers from coconut husks, both bare and impregnated with metallic nanoparticles, in removing cadmium from aqueous media. The adsorbent load, kinetics, isotherm parameters, removal efficiencies, desorption capacity and possible contaminant removal mechanisms were evaluated. It was found that the fibers treated with metallic nanoparticles performed better than the bare fibers in removing cadmium from water. The ideal conditions were found to be neutral pH with low initial cadmium concentrations. Through the kinetic analyses, the adsorption process was first thought to be pseudo first order with two separate adsorption mechanisms apparent. Upon further analysis, it was seen that the first mechanism does not follow the pseudo first order kinetics model. An increase in calcium and magnesium concentrations was observed as the cadmium concentrations decreases. This increase corresponds with first mechanism. This suggests the cadmium removal in the first mechanism is due to ion exchange. The second mechanism's rate constant was consistently lower than the first mechanisms rate constant by an order of magnitude. This led to the hypothesis that the second mechanism is controlled by van de Waals forces, specifically ion-induced dipole interactions, and physical adsorption. It was also found that the cadmium does not effectively desorb from the wasted fibers in DI water. Keywords: Adsorption; kinetics; pseudo first order; cadmium; metallic nanoparticles; natural fibers; removal efficiencies; ion exchange.

  4. Synthesis of Tunable Band Gap Semiconductor Nickel Sulphide Nanoparticles: Rapid and Round the Clock Degradation of Organic Dyes

    National Research Council Canada - National Science Library

    Molla, Aniruddha; Sahu, Meenakshi; Hussain, Sahid

    2016-01-01

    Controlled shape and size with tuneable band gap (1.92-2.41 eV), nickel sulphide NPs was achieved in presence of thiourea or thioacetamide as sulphur sources with the variations of temperature and capping agents...

  5. Chemical Precipitation Synthesis of Ferric Chloride Doped Zinc Sulphide Nanoparticles and Their Characterization Studies

    CERN Document Server

    Theivasanthi, T; Alagar, M; 10.7598/cst2013.207

    2013-01-01

    Nanoparticles of Ferric Chloride doped ZnS has been synthesized by simple chemical precipitation method and characterized by XRD, SEM, UV-Vis analysis, Differential Thermal Analysis, Thermo Gravimetric Analysis and Differential Scanning Calorimetry. XRD patterns of the samples reveal particle size, specific surface area and the formation of cubic structure. The SEM images show that the cauliflower likes structure. Optical band gap values have been obtained from UV-Vis absorption spectra. It has also been found that energy band gap (Eg) increases with the increase in molar concentration of reactant solution. Thermal analysis measurement of the prepared sample shows that the thermal stability of pure ZnS is decreased due to increase in Ferric Chloride concentration. Undoped ZnS is more thermal stable when compared to FeCl3 doped ZnS.

  6. Synthesis and characterization of Sn-doped CdZnS nanoparticles

    Indian Academy of Sciences (India)

    Tin (Sn)-doped cadmium zinc sulphide nanoparticles (CdZnS : Sn) were synthesized by the chemical bath deposition method with two different concentrations of Sn (2 and 4 mol%). X-ray diffraction (XRD) pattern reveals the formation of CdZnS nanoparticles with cubic and hexagonal structure. It was observed that the ...

  7. Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jayalakshmi, M.; Rao, M. Mohan [Inorganic Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007 (India)

    2006-06-19

    A simple method is applied to prepare nanocrystalline ZnS using zinc nitrate and thiourea in aqueous solutions. Cubic sphalerite ZnS is obtained in phase pure form when S/Zn mole ratio is 1 and 2. A mixed phase of hexagonal wurtzite and cubic sphalerite ZnS is obtained when S/Zn mole ratio is 4. Transmission electron microscope and X-ray diffraction confirm the formation of ZnS nanoparticles. These nanoparticles are immobilized on the surface of paraffin impregnated graphite electrode (PIGE) and electrochemical characterization in neutral solutions by cyclic voltammetry revealed that the material is ideal to be used as electrode in electrochemical double layer capacitors. The most singularly interesting result is the voltages observed in 0.1M LiCl, NaCl, NaI and KI solutions. They are 3.0, 2.7, 2.0 and 1.8V versus Ag/AgCl and significantly higher than the expected value of 1.23 V (pH{approx}7) in aqueous medium. Such a large voltages are usually obtained for non-aqueous electrolytes and the present study showed a surprising and significant interesting result that can be owed to the over potentials of H{sub 2}/O{sub 2}/Cl{sub 2} gas evolutions. An attempt to understand these highly significant results in terms of band edge bendings (conduction band and valence band) associated with the positive and negative ion adsorption at the interface of semiconductor ZnS/solution is made. (author)

  8. Cadmium

    NARCIS (Netherlands)

    Meulenbelt, Jan

    2017-01-01

    Together with zinc and mercury, cadmium belongs to group IIb of the periodic table. It can be found in rocks, soil, water, coal, zinc ore, lead ore, and copper ore. In the environment, cadmium is present predominantly as the oxide or as the chloride, sulfide, or sulfate salt. It has no recognizable

  9. Evaluations of Effective Factors on Efficiency Zinc Oxides Nanoparticles in Cadmium Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    MH Ehrampoush

    2014-09-01

    Results: The results indicated that the adsorption process is affected by different parameters such as initial pollutant concentrations, adsorbent dose, pH, and contact time and Cadmiumremoval efficiency increases with increasing adsorbent dose and reaction time and decreases with increasing initial concentration of Cadmium. Therefore, it is observed that by raising the initial Cadmium concentration, the adsorption rate increases. The maximum efficiency of adsorptionin pH=7amounted to 89.6%. Conclusion: It is concluded that Zinc Oxide nanoparticles have proper efficiency in removal of Cadmium from aqueous solutions and can be used in the treatment of wastewater that contains ion Cadmium. However, its efficiency is deeply dependent on ion strength and the interaction of other metals in wastewater.

  10. Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs

    Directory of Open Access Journals (Sweden)

    Jana Dumkova

    2016-06-01

    Full Text Available The increasing amount of heavy metals used in manufacturing equivalently increases hazards of environmental pollution by industrial products such as cadmium oxide (CdO nanoparticles. Here, we aimed to unravel the CdO nanoparticle destiny upon their entry into lungs by inhalations, with the main focus on the ultrastructural changes that the nanoparticles may cause to tissues of the primary and secondary target organs. We indeed found the CdO nanoparticles to be transported from the lungs into secondary target organs by blood. In lungs, inhaled CdO nanoparticles caused significant alterations in parenchyma tissue including hyperemia, enlarged pulmonary septa, congested capillaries, alveolar emphysema and small areas of atelectasis. Nanoparticles were observed in the cytoplasm of cells lining bronchioles, in the alveolar spaces as well as inside the membranous pneumocytes and in phagosomes of lung macrophages. Nanoparticles even penetrated through the membrane into some organelles including mitochondria and they also accumulated in the cytoplasmic vesicles. In livers, inhalation caused periportal inflammation and local hepatic necrosis. Only minor changes such as diffusely thickened filtration membrane with intramembranous electron dense deposits were observed in kidney. Taken together, inhaled CdO nanoparticles not only accumulated in lungs but they were also transported to other organs causing serious damage at tissue as well as cellular level.

  11. Sensing of low concentration of ammonia at room temperature by cadmium sulphide nanoparticle decorated multiwalled carbon nanotube: fabrication and characterisation

    Science.gov (United States)

    Hasnahena, S. T.; Roy, M.

    2017-12-01

    A chemical approach to fabricate a CdS-attached multiwall carbon nanotube (CdS/MWCNT) based on NH3 gas sensor is presented. During chemical assemblage the formation of the chemical composition and chemical state of CdS/MWCNT, evaluated through XPS, is also enumerated in this work. Results on NH3 gas sensitivity at room temperature with theoretical interpretation make this work noticeable. The overall finding is that the CdS/MWCNT sensor senses NH3 at room temperature as low as 10 ppb concentration. The sensor shows good reproducibility and stability, construed on the performance of the sensor over a period of six months.

  12. Surfactant free fabrication of copper sulphide (CuS–Cu2S nanoparticles from single source precursor for photocatalytic applications

    Directory of Open Access Journals (Sweden)

    Umair Shamraiz

    2017-05-01

    Full Text Available A simple, ethylene glycol chemical reduction method was employed to synthesize CuS–Cu2S nanoparticles from single source copper thiourea complex for removal of persistent organic dyes. Fabricated CuS–Cu2S nanoparticles were characterized by powder XRD (PXRD, energy dispersive X-ray spectroscopy (EDX, selected area electron diffraction (SAED, transmission electron microscopy (TEM and high resolution transmission electron microscopy (HRTEM. Photocatalytic behaviour of CuS–Cu2S nanoparticles was evaluated under direct sunlight for degradation of methylene blue, malachite green, methyl orange, methyl violet and rhodamine B with the help of UV–vis spectroscopy.

  13. A novel one-pot route for the synthesis of water-soluble cadmium selenide nanoparticles

    Science.gov (United States)

    Oluwafemi, S. O.; Revaprasadu, N.; Ramirez, A. J.

    2008-06-01

    A novel, facile one-pot synthetic route to highly water dispersible and potentially biocompatible CdSe nanoparticles is reported. The monodispersed CdSe particles are passivated by cysteine, with water being the solvent. This route involves the reaction of selenium powder with sodium borohydride to produce selenide ions, followed by the addition of a cadmium salt and L-cysteine ethyl ester hydrochloride. The nanoparticles formed show quantum confinement fluorescing in the blue region. Fourier transform infrared spectroscopy study shows that CdSe nanoparticles are capped through mercapto group of the amino acid cysteine whilst its free amino and carboxylate groups make it amenable to bioconjugation establishing the possibility of using these as fluorescent biomarkers. High-resolution transmission electron spectroscopy images of these materials show well-defined, crystalline nanosized particles. Energy dispersive spectroscopy spectra confirm the presence of the corresponding elements.

  14. The Potential Application of Raw Cadmium Sulfide Nanoparticles as CT Photographic Developer.

    Science.gov (United States)

    Wu, Qiang; Huang, Lingxin; Li, Zhan; An, Wenzhen; Liu, Dan; Lin, Jin; Tian, Longlong; Wang, Xinling; Liu, Bo; Qi, Wei; Wu, Wangsuo

    2016-12-01

    With the development of science and technology, new applications about nanoparticles should be explored to achieve full-scale knowledge. Therefore, in this work, the toxicity and potential application of raw cadmium sulfide nanoparticles (CdS) in vivo were further studied through ICP-OES and CTs. Surprisingly, CdS exhibited an excellent photographic property, except for finding the accumulation of CdS in the lungs, liver, spleen, and kidney with a strong dependence on time; it is also found that there were a significant uptake in the pancreas for an obvious CT imaging. And the following investigations showed that the raw CdS could damage the tissues accumulating nanoparticles. Through this work, it can be seen that the raw CdS being modified might be an excellent photographic developer for detecting cancers or other diseases.

  15. Synthesis of Tunable Band Gap Semiconductor Nickel Sulphide Nanoparticles: Rapid and Round the Clock Degradation of Organic Dyes.

    Science.gov (United States)

    Molla, Aniruddha; Sahu, Meenakshi; Hussain, Sahid

    2016-05-17

    Controlled shape and size with tuneable band gap (1.92-2.41 eV), nickel sulphide NPs was achieved in presence of thiourea or thioacetamide as sulphur sources with the variations of temperature and capping agents. Synthesized NPs were fully characterized by powder XRD, IR, UV-vis, DRS, FE-SEM, TEM, EDX, XPS, TGA and BET. Capping agent, temperature and sulphur sources have significant role in controlling the band gaps, morphology and surface area of NPs. The catalytic activities of NPs were tested for round the clock (light and dark) decomposition of crystal violet (CV), rhodamine B (RhB), methylene blue (MB), nile blue (NB) and eriochrome black T (EBT). Agitation speed, temperature, pH and ionic strength have significant role on its catalytic activities. The catalyst was found to generate reactive oxygen species (ROS) both in presence and absence of light which is responsible for the decomposition of dyes into small fractions, identified with ESI-mass spectra.

  16. Determination of Lead and Cadmium in cow’s Milk and Elimination by Using Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Haniyeh Moallem Bandani

    2016-10-01

    Full Text Available Background and Objectives: Heavy metals such as cadmium and lead are the most important toxins spreading through various ways like water, soil, and air in nature and easily enter human food chain. It is essential to determine the cumulative and harmful effects of these metals in nutrients, especially in cow milk because it is a unique source of food for all ages and it contains both essential and nonessential trace elements. Materials and Methods: A total of 100 milk samples were directly collected from healthy cows in Zabol located on east of Iran. The samples were tested to determine lead and cadmium residues. The rates of the heavy metals were determined using a Rayleigh atomic absorption spectrum equipped with hollow cathode lamps (HCL at 283.3 nm for lead (Pb and at 228.8 nm for cadmium (Cd. By using the photo-catalytic titanium dioxide nanoparticles, these toxic metals were removed. Results: The mean ± SD of the concentration of lead and cadmium in raw milk were 9.175± 2.5 and 4.557 ± 1.081 ppb, respectively. Also, the P-values of Kalmogorov– Smiranov test for lead and cadmium were respectively 0.057 ppb (P>0.05 and 0.435 ppb (P>0.05. TiO2 nanoparticles were used to eliminate and remove lead and cadmium in milk samples. The results showed that there was a significant difference between lead and cadmium contents before and after adding TiO2 nanoparticles (P<0.05. Conclusions: According to results of this study, there was a very low amount of toxic metals. So, it seems that it is not necessary to use TiO2 in milk samples but these days it used frequently as an additive to some samples like milk to remove these pollutants. Keywords: lead, cadmium, milk, atomic absorption spectroscopy, TiO2 nanoparticles

  17. The effect of structural and optical properties on the photocatalytic efficiency of Zinc Sulphide nanoparticles obtained by hydro/solvothermal decomposition of Zinc N,N-diethyldithiocarbamate

    Science.gov (United States)

    Siqueira, G. O.; de Morais, E. C. R.; da Silva, H. V.; Abelenda, A.; González, J. C.; Porto, A. O.

    2017-06-01

    Cubic and hexagonal zinc sulphide nanoparticles were prepared by hydro/solvothermal decomposition of Zinc N,N-diethyldithiocarbamate by using different experimental conditions such as pH values, solvents and the presence of a particle stabilizer, sodium polyacrylate. The effect of these different experimental conditions on the microstructure and photocatalytical efficiency of ZnS was investigated in this work. Microstructural parameters, such as, apparent mean crystal size, microstrain and crystal size distribution were determined by analysis of experimental X-ray diffraction. Apparent mean crystal sizes were in the range of 6.5-44 nm and the lattice microstrain varied from 0.24% to 0%. Dimethylformamide showed to be more suitable than water to form small particles with a very narrow size distribution. The obtained optical band gaps and Urbach energies were in range of 3.32-3.60 eV and 0.09-0.15 eV, respectively. Photoluminescence spectra showed strong visible light emissions (green, blue and white) associated to the electronic levels introduced by the presence of superficial defects. The photocatalytic efficiency of these samples was investigated towards methylene blue degradation and a correlation between this efficiency and the PL intensity was observed. This correlation was associated to the formation of surface active centres at catalyst surfaces and the local potential fluctuations of valence and conduction bands.

  18. Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower.

    Science.gov (United States)

    Hajra, Amita; Dutta, Snehali; Mondal, Naba Kumar

    2016-12-01

    Mosquitoes are blood-thirsty insects and serve as the most important vectors for spreading most notorious diseases such as malaria, yellow fever, dengue fever, and filariasis. The extensive use of synthetic mosquito repellent has resulted in resistance in mosquitoes. Therefore, the development of a reliable, eco-friendly processes for the synthesis of nano dimensional materials is an utmost important aspect of nanotechnology. In the present study, authors report absolute green synthesis of cadmium nanoparticles using marigold and rose flower petal extract. The characterization of nanomaterials was done by using UV-Vis, SEM, FTIR and fluorescent spectrophotometer analysis. Finally cadmium nanoparticles were also evaluated for their larvicidal activity of mosquito. Marigold flower petal extract shows 100 % mortality after 72 h of incubation with 10 ppm of Cd-nanoparticles. No mortality was observed in the control. Therefore, out of two flower petal mediated nanoparticles, only marigold showed better performance towards mosquito larvicidal activity than rose petal extracts. This is the first report on mosquito larvicidal activity of flower-petal mediated cadmium nanoparticles. Thus, the use of marigold petal extract to synthesize cadmium nanoparticles is a rapid, ecofriendly, and a single-step approach and the CdNps formed can be potential mosquito larvicidal agents.

  19. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract

    Directory of Open Access Journals (Sweden)

    Khairia M. Al-Qahtani

    2017-12-01

    Full Text Available Cadmium (II is an important element used in various industries, however, it is a poisonous element that affects the health of plants, animals and humans alike. It’s very important to remove this element from contaminated waters. This study aims at synthesizing zero valent silver nanoparticles by environmentally ecofriendly method without using hazardous compounds (via green approach. In this work, silver nanoparticles were prepared using hot water for the Ficus tree (Ficus Benjamina leaf extract (FBLE. The size of crystalline for AgNPs was measured by UV–vis spectroscopy and flourier transform infrared (FTIR. The properties of nano-silver particles (AgNPs have been studied using scanning electron microscope (SEM. The capability of nanoparticles to remove Cd2+ from contaminated solution was then studied. Parameter like adsorbent dose, heavy metal concentration, pH, agitation speed and contact time were studied. Cadmium removal increased when the dosage of biosorbent increases, pH increased from 1 to 6, contact time from 5 to 40 and initial concentration of Cd decrease. Isotherm adsorption was also described by the Freundleich model with a constant correlation (R2 higher than 0.973.

  20. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.

    Science.gov (United States)

    Van Koetsem, Frederik; Van Havere, Lynn; Du Laing, Gijs

    2016-03-01

    The stability and transport behaviour of carboxymethyl cellulose (CMC) stabilized iron sulphide (FeS) engineered nanoparticles (ENPs) as well as their concurrent scavenging and mobilization of trace metal contaminants from field-contaminated soils and sediment was studied through a series of batch and column experiments. The synthesized CMC-FeS ENPs were shown to have a hydrodynamic diameter of 154.5 ± 5.8 nm and remained stable in suspension for a prolonged period of time (several weeks) when kept under anaerobic conditions. In the absence of CMC, much larger FeS particles were formed, which quickly aggregated and precipitated within minutes. Batch experiments indicated that the CMC-FeS ENPs have a high affinity for metal contaminants (e.g., Cd, Cr, Cu, Hg, Ni, Pb, and Zn), as high amounts of these trace metals could be retrieved in the aqueous phase after treatment of the soils with the nanoparticles (i.e., up to 29 times more compared to the water-leachable metal contents). Furthermore, batch retention of the nanoparticles by the solid soil phase was low (Nanoparticle treatment of the soils also affected the CaCl2-, TCLP-, and SPLP-leachability of trace metals, although no clear trend could be observed and metal leaching appeared to depend on the specific element under consideration, the type of extraction liquid, as well as on soil properties. Column breakthrough tests demonstrated that the CMC-FeS ENPs were highly mobile in the tested soil, even without the use of an external pressure (i.e., just via gravitational percolation). Maximal breakthrough of the nanoparticles was observed after approximately 10 or 16 pore volumes (PVs) for 83.3 or 500 mg L(-1) CMC-FeS ENPs, respectively, and only about 7% of the nanoparticles were retained by the soil after 22.7 PVs. Simultaneous elution of trace elements showed that up to 19, 8.7, or 11% of the respective Cd, Pb, or Zn content originally present in the soil was extracted after 22.7 PVs, with initial peaking

  1. Influence of cadmium sulfide nanoparticles on structural and electrical properties of polyvinyl alcohol films

    Directory of Open Access Journals (Sweden)

    J. Koteswararao

    2016-11-01

    Full Text Available Cadmium sulfide (CdS nanoparticles have been synthesized by hydrothermal method and dispersed in poly vinyl alcohol (PVA matrix in varying amounts by weight. Subsequently, PVA/CdS nanocomposites have been synthesized with the objective of investigating the effect of CdS nanoparticles on structural and electrical properties of PVA films. Structural properties were analyzed by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and scanning electron microscopy (SEM techniques. Differential scanning calorimetry (DSC was used to investigate thermal properties of PVA/CdS nanocomposites. Electrical properties were measured by using high frequency LCR meter and were found to be strongly dependent on frequency and nano CdS content. Dielectric constant decreased with increase in frequency and with increase in nanofiller concentration. AC conductivity and dielectric loss increased with frequency and decreased with increase in nano CdS content.

  2. Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles.

    Science.gov (United States)

    Guo, Yongming; Zhang, Yi; Shao, Huawu; Wang, Zhuo; Wang, Xuefei; Jiang, Xingyu

    2014-09-02

    A simple and label-free colorimetric method for cadmium ions (Cd(2+)) detection using unmodified gold nanoparticles (AuNPs) is reported. The unmodified AuNPs easily aggregate in a high concentration of NaCl solution, but the presence of glutathione (GSH) can prevent the salt-induced aggregation of AuNPs. When Cd(2+) is added to the stable mixture of AuNPs, GSH, and NaCl, Cd(2+) can coordinate with 4× GSH as a spherical shaped complex, which decreases the amount of free GSH on the surface of gold nanoparticles to weaken the stability of AuNPs, and AuNPs will easily aggregate in high-salt conditions. On the basis of the mechanism, we design a simple, label-free colorimetric method using AuNPs accompanied by GSH in a high-salt environment to detect Cd(2+) in water and digested rice samples.

  3. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior

    Energy Technology Data Exchange (ETDEWEB)

    López-Luna, J., E-mail: jlol_24@hotmail.com [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Silva-Silva, M.J. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Martinez-Vargas, S. [Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche (Mexico); Mijangos-Ricardez, O.F. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); González-Chávez, M.C. [Colegio de Postgraduados en Ciencias Agrícolas, Carr. México–Texcoco km 36.5, Montecillo 56230, Estado de México (Mexico); Solís-Domínguez, F.A. [Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Baja California Norte (Mexico); Cuevas-Díaz, M.C. [Facultad de Ciencias Químicas, Universidad Veracruzana, Coatzacoalcos 96535, Veracruz (Mexico)

    2016-09-15

    The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd{sup 2+} and Cr{sup 6+} levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67 mg Cd{sup 2+} kg{sup −1} and 5.53 mg Cr{sup 6+} kg{sup −1}. However, when magnetite NPs (1000 mg kg{sup −1}) were added, the root length of the plants increased by 25 and 50%. Cd{sup 2+} and Cr{sup 6+} showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated. - Highlights: • We assessed the effect of nanomagnetite on heavy metal toxicity in wheat plants. • Citrate-coated magnetite nanoparticles (NPs) exerted very low toxicity to plants. • Cadmium was more toxic than chromium and toxicity was mitigated by magnetite NPs. • Cadmium and chromium had a similar and noninteractive joint action on plants. • Metals showed an interactive infra-additive joint effect by adding magnetite NPs.

  4. Cadmium Immobilization in Soil using Sodium Dodecyl Sulfate Stabilized Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-06-01

    Full Text Available Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil organism activity and compositions. Cadmium is a soil pollutant of no known essential biological functions, and may pose threats to soil-dwelling organisms and human health. Soil contamination with Cd usually originates from mining and smelting activities, atmospheric deposition from metallurgical industries, incineration of plastics and batteries, land application of sewage sludge, and burning of fossil fuels. Heavy metal immobilization using amendments is a simple and rapid method for the reduction of heavy metal pollution. One way of the assessment of contaminated soils is sequential extraction procedure. Sequential extraction of heavy metals in soils is an appropriate way to determine soil metal forms including soluble, exchangeable, carbonate, oxides of iron and manganese, and the residual. Its results are valuable in prediction of bioavailability, leaching rate and elements transformation in contaminated agricultural soils. Materials and Methods The objective of this study was to synthesize magnetite nanoparticles (Fe3O4 stabilized with sodium dodecyl sulfate (SDS and to investigate the effect of its different percentages (0, 1, 2.5, 5, and 10% on the different fractions of cadmium in soil by sequential extraction method. The nanoparticles were synthesized following the protocol described by Si et al. (19. The investigations were carried out with a loamy sand topsoil. Before use, the soil was air-dried, homogenized and sieved (

  5. Photon correlation spectroscopic and spectrophotometric studies of the formation of cadmium sulfide nanoparticles in ammonia-thiourea solutions

    Science.gov (United States)

    Bulavchenko, A. I.; Kolodin, A. N.; Podlipskaya, T. Yu.; Demidova, M. G.; Maksimovskii, E. A.; Beizel', N. F.; Larionov, S. V.; Okotrub, A. V.

    2016-05-01

    Nucleation of CdS in an aqueous ammonia solution of thiourea and cadmium chloride was studied by photon correlation spectroscopy (PCS), static light scattering, and spectrophotometry. The hydrodynamic diameter of nanoparticles, light scattering intensity, and optical density of the solutions increased with temperature and synthesis time. The processes of formation, growth, and coagulation of nanoparticles can be transferred from solution to the filter surface by continuously filtering the reaction mixture through a 200-nm filter.

  6. Morphology and size control of lead sulphide nanoparticles produced using methanolic lead acetate trihydrate-thiourea complex via different precipitation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jayesh D. [Center for Applied Research on Polymers and Composites, CREPEC (Canada); Chemical Engineering Department, Laval University, Quebec, QC, G1K 7P4 (Canada); Mighri, Frej, E-mail: Frej.Mighri@gch.ulaval.ca [Center for Applied Research on Polymers and Composites, CREPEC (Canada); Chemical Engineering Department, Laval University, Quebec, QC, G1K 7P4 (Canada); Ajji, Abdellah [Center for Applied Research on Polymers and Composites, CREPEC (Canada); Chemical Engineering Department, Ecole Polytechnique, C.P. 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7 (Canada); Chaudhuri, Tapas K. [Dr. K.C. Patel Research and Development Centre, Charotar University of Science and Technology (CHARUSAT), Changa, Tal.-Petlad, Anand District, Gujarat 388421 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Different precipitation techniques for the fabrication of PbS particles were studied using methanolic PbAc-TU complex. Black-Right-Pointing-Pointer Effect of precipitation techniques is based on the decomposition of PbAc-TU complex. Black-Right-Pointing-Pointer Effects on the morphology, size and physical properties of PbS particles were studied in detail. Black-Right-Pointing-Pointer CBD, SCBD and MACBD techniques produced nanostructured, flakes and cubic PbS particles, respectively. Black-Right-Pointing-Pointer CACBD technique with two different capping agents produced stable and monodispersed PbS NPs. - Abstract: In this study, lead sulphide (PbS) particles were synthesized from methanolic lead acetate-thiourea (PbAc-TU) complex via various precipitation techniques based on the decomposition of methanolic PbAc-TU complex. The influence of these techniques on the morphology, size and physical properties of PbS particles was studied in details. In general, scanning electron microscopy of the PbS particles produced by conventional chemical bath deposition, sonochemical bath deposition and microwave-assisted chemical bath deposition revealed that they were nanostructured with different size and shape. X-ray diffraction confirmed their high purity, while X-ray photoelectron spectroscopy (XPS) showed that they were partially oxidized due to their high surface energy. Optical absorption, transmission electron microscopy, selective area electron diffraction and XPS of capped nanoparticles (NPs) produced via capping assisted chemical bath deposition using poly(vinyl-pyrrolidone) (PVP) and oleic acid (OA) indicated that narrow size distributed PbS NPs absorbed strongly in the visible region with cubic crystalline phase without any evidence of surface oxidation. Fourier transform infrared spectroscopy of PVP-capped PbS NPs showed strong interaction between PbS NPs and polymer matrix, while for OA-capped PbS NPs, OA was chemically

  7. Exposure of sticklebacks (Gasterosteus aculeatus) to cadmium sulfide nanoparticles: biological effects and the importance of experimental design

    OpenAIRE

    Sanders, Matthew B.; Sebire, Marion; Sturve, Joachim; Christian, Paul; Katsiadaki, Ioanna; Lyons, Brett P.; Sheahan, Dave; Weeks, Jason M.; Feist, Stephen W.

    2008-01-01

    Exposure of sticklebacks (Gasterosteus aculeatus) to cadmium sulfide nanoparticles: biological effects and the importance of experimental design correspondance: Corresponding author. (Feist, Stephen W.) (Feist, Stephen W.) Cefas Weymouth Laboratory--> , Barrack Road--> , The Nothe--> , Weymouth--> , Dorset--> , DT4 8UB--> - UNITED KINGDOM (Sanders, Matthew B.) ...

  8. Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories.

    Science.gov (United States)

    Plaza, D O; Gallardo, C; Straub, Y D; Bravo, D; Pérez-Donoso, J M

    2016-05-06

    Fluorescent nanoparticles or quantum dots (QDs) have been intensely studied for basic and applied research due to their unique size-dependent properties. There is an increasing interest in developing ecofriendly methods to synthesize these nanoparticles since they improve biocompatibility and avoid the generation of toxic byproducts. The use of biological systems, particularly prokaryotes, has emerged as a promising alternative. Recent studies indicate that QDs biosynthesis is related to factors such as cellular redox status and antioxidant defenses. Based on this, the mixture of extreme conditions of Antarctica would allow the development of natural QDs producing bacteria. In this study we isolated and characterized cadmium and tellurite resistant Antarctic bacteria capable of synthesizing CdS and CdTe QDs when exposed to these oxidizing heavy metals. A time dependent change in fluorescence emission color, moving from green to red, was determined on bacterial cells exposed to metals. Biosynthesis was observed in cells grown at different temperatures and high metal concentrations. Electron microscopy analysis of treated cells revealed nanometric electron-dense elements and structures resembling membrane vesicles mostly associated to periplasmic space. Purified biosynthesized QDs displayed broad absorption and emission spectra characteristic of biogenic Cd nanoparticles. Our work presents a novel and simple biological approach to produce QDs at room temperature by using heavy metal resistant Antarctic bacteria, highlighting the unique properties of these microorganisms as potent natural producers of nano-scale materials and promising candidates for bioremediation purposes.

  9. Algal testing of titanium dioxide nanoparticles - Testing considerations, inhibitory effects and modification of cadmium bioavailability

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; von der Kammer, F.; Hofmann, T.

    2010-01-01

    The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300 nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types, but the physio......The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300 nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types...... surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2 mg/LTiO(2). The presence of TiO(2) in algal tests...... reduced the observed toxicity due to decreased bioavailability of cadmium resulting from sorption/complexation of Cd(2+) ions to the TiO(2) surface. However, for the 30 nm TiO(2) nanoparticles, the observed growth inhibition was greater than what could be explained by the concentration of dissolved Cd...

  10. Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: An experimental and first-principles study

    KAUST Repository

    Bououdina, Mohamed

    2015-03-26

    We obtain a single cadmium oxide phase from powder synthesized by a thermal decomposition method of cadmium acetate dehydrate. The yielded powder is annealed in air, vacuum, and H2 gas in order to create point defects. Magnetization-field curves reveal the appearance of diamagnetic behavior with a ferromagnetic component for all the powders. Powder annealing under vacuum and H2 atmosphere leads to a saturation magnetization 1.15 memu g-1 and 1.2 memu g-1 respectively with an increase by 45% and 16% compared to the one annealed in air. We show that annealing in vacuum produces mainly oxygen vacancies while annealing in H2 gas creates mainly Cd vacancy leading to room temperature ferromagnetic (RTFM) component together with known diamagnetic properties. Ab initio calculations performed on the CdO nanoparticles show that the magnetism is governed by polarized hybrid states of the Cd d and O p orbitals together with the vacancy. © The Royal Society of Chemistry 2015.

  11. Kinetics and Isotherm of Sunset Yellow Dye Adsorption on Cadmium Sulfide Nanoparticle Loaded on Activated Carbon

    Directory of Open Access Journals (Sweden)

    N. Mosallanejad, A. Arami

    2012-03-01

    Full Text Available The objective of this study was to assess the potential of cadmium sulfide nanoparticles loaded onto activated carbon (CdSN-AC for the removal of sunset yellow (SY dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdSN-AC dose. In order to investigate the efficiency of SY adsorption on CdSN-AC, pseudo-first-order, pseudo-second-order kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. It was found that the sorption of SY onto CdSN-AC is followed by these results. 

  12. Loading of atorvastatin and linezolid in β-cyclodextrin–conjugated cadmium selenide/silica nanoparticles: A spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Eva Janet; Shibu, Abhishek [Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu (India); Ramasamy, Sivaraj; Paulraj, Mosae Selvakumar [Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu (India); Enoch, Israel V.M.V., E-mail: drisraelenoch@gmail.com [Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu (India); Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu (India)

    2016-08-01

    The preparation of β–cyclodextrin–conjugated cadmium selenide–silica nanoparticles, the loading of two drugs viz., Atorvastatin and linezolid in the cyclodextrin cavity, and the fluorescence energy transfer between CdSe/SiO{sub 2} nanoparticles and the drugs encapsulated in the cyclodextrin cavity are reported in this paper. IR spectroscopy, X-ray diffractometry, transmission electron microscopy, and particle size analysis by light–scattering experiment were used as the tools of characterizing the size and the crystal system of the nanoparticles. The nanoparticles fall under hexagonal system. The silica–shell containing CdSe nanoparticles were functionalized by reaction with aminoethylamino–β–cyclodextrin. Fluorescence spectra of the nanoparticles in their free and drug–encapsulated forms were studied. The FÖrster distances between the encapsulated drugs and the CdSe nanoparticles are below 3 nm. The change in the FÖrster resonance energy parameters under physiological conditions may aid in tracking the release of drugs from the cavity of the cyclodextrin. - Highlights: • CdSe/SiO{sub 2} nanoparticles of crystallite size 15 nm are prepared. • β-Cyclodextrin is attached to the surface of the nanoparticles. • Atorvastatin and linezolid get encapsulated in the cyclodextrin cavity. • FRET efficiency between the nanoparticles and the loaded drugs are determined.

  13. Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna

    Science.gov (United States)

    Li, Ling; Sillanpää, Markus; Schultz, Eija

    2017-06-01

    Titanium dioxide nanoparticles (TiO2 NPs) have attracted considerable concerns due to the increasing production and widespread applications, while their influences on other co-existing pollutants in real environment are not well studied. In this paper, the colloidal stability of TiO2 NPs in the exposure medium was first evaluated, and then, the medium was modified so that TiO2 NP suspension remained stable over the exposure period. Finally, using the optimized exposure medium, the effects of cadmium (Cd) and lead (Pb) on Daphnia magna both in the absence and presence of TiO2 NPs were investigated. Results showed that 2 mg L-1 of TiO2 NPs was well dispersed in 1:20 diluted Elendt M7 medium without EDTA, and no immobility was observed. The presence of the nanoparticles increased the bioaccumulation and toxicity of Cd to the daphnias. On the contrary, while Pb bioaccumulation was enhanced by three to four times, toxicity of Pb was reduced in the presence of TiO2 NPs. The decreased toxicity of Pb was more likely attributed to the decreased bioavailability of free Pb ion due to adsorption and speciation change of Pb in the presence of TiO2 NPs. Additionally, surface-attached TiO2 NPs combined with adsorbed heavy metals caused adverse effects on daphnia swimming and molting behavior, which is supposed to lead to chronic toxicity.

  14. Cadmium Sulfide Nanoparticles Synthesized by Microwave Heating for Hybrid Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Claudia Martínez-Alonso

    2014-01-01

    Full Text Available Cadmium sulfide nanoparticles (CdS-n are excellent electron acceptor for hybrid solar cell applications. However, the particle size and properties of the CdS-n products depend largely on the synthesis methodologies. In this work, CdS-n were synthetized by microwave heating using thioacetamide (TA or thiourea (TU as sulfur sources. The obtained CdS-n(TA showed a random distribution of hexagonal particles and contained TA residues. The latter could originate the charge carrier recombination process and cause a low photovoltage (Voc, 0.3 V in the hybrid solar cells formed by the inorganic particles and poly(3-hexylthiophene (P3HT. Under similar synthesis conditions, in contrast, CdS-n synthesized with TU consisted of spherical particles with similar size and contained carbonyl groups at their surface. CdS-n(TU could be well dispersed in the nonpolar P3HT solution, leading to a Voc of about 0.6–0.8 V in the resulting CdS-n(TU : P3HT solar cells. The results of this work suggest that the reactant sources in microwave methods can affect the physicochemical properties of the obtained inorganic semiconductor nanoparticles, which finally influenced the photovoltaic performance of related hybrid solar cells.

  15. Biotechnological sulphide removal with oxygen

    NARCIS (Netherlands)

    Buisman, C.

    1989-01-01

    This thesis deals with the development of a new process for biotechnological sulphide removal from wastewater, in which it is attempted to convert sulphide into elemental sulphur by colourless sulphur bacteria. The toxicity, corrosive properties, unpleasant odor and high oxygen demand of sulphide

  16. Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos

    Directory of Open Access Journals (Sweden)

    Rodríguez-Fragoso Patricia

    2012-12-01

    Full Text Available Abstract Background Semiconductor Quantum dots (QDs have become quite popular thanks to their properties and wide use in biological and biomedical studies. However, these same properties entail new challenges in understanding, predicting, and managing potential adverse health effects following exposure. Cadmium and selenium, which are the major components of the majority of quantum dots, are known to be acutely and chronically toxic to cells and organisms. Protecting the core of nanoparticles can, to some degree, control the toxicity related to cadmium and selenium leakage. Results This study successfully synthesized and characterized maltodextrin coated cadmium sulfide semiconductor nanoparticles. The results show that CdS-MD nanoparticles are cytotoxic and embryotoxic. CdS-MD nanoparticles in low concentrations (4.92 and 6.56 nM lightly increased the number of HepG2 cell. A reduction in MDA-MB-231 cells was observed with concentrations higher than 4.92 nM in a dose response manner, while Caco-2 cells showed an important increase starting at 1.64 nM. CdS-MD nanoparticles induced cell death by apoptosis and necrosis in MDA-MD-231 cells starting at 8.20 nM concentrations in a dose response manner. The exposure of these cells to 11.48-14.76 nM of CdS-MD nanoparticles induced ROS production. The analysis of cell proliferation in MDA-MB-231 showed different effects. Low concentrations (1.64 nM increased cell proliferation (6% at 7 days (p 4.92 nM increased cell proliferation in a dose response manner (15-30% at 7 days. Exposures of chicken embryos to CdS-MD nanoparticles resulted in a dose-dependent increase in anomalies that, starting at 9.84 nM, centered on the heart, central nervous system, placodes, neural tube and somites. No toxic alterations were observed with concentrations of  Conclusions Our results indicate that CdS-MD nanoparticles induce cell death and alter cell proliferation in human cell lines at concentrations higher than 4.92 n

  17. Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe

    Science.gov (United States)

    Li, Dan; Yan, Zheng-Yu; Cheng, Wei-Qing

    2008-12-01

    A novel assay of ciprofloxacin with a sensitivity at the microgram level is proposed based on the measurement of enhanced fluorescence intensity signals resulting from the interaction of functionalized nano-CdS with ciprofloxacin. The CdS nanoparticles was synthesized by thioacetamide (TAA) and cadmium nitrate (Cd(NO 3) 2) in the alkaline solution. At pH 7.4, the fluorescence signals of functionalized nano-CdS were greatly enhanced by ciprofloxacin with the increase concentration of ciprofloxacin. Linear relationship can be established between the enhanced fluorescence intensity and ciprofloxacin concentration in the range of (1.25-8.75) × 10 -4 mg mL -1 ((3.77-26.4) × 10 -4 mmol L -1) or (8.75-1200) × 10 -4 mg mL -1 ((26.4-3625) × 10 -4 mmol L -1). The limit of detection is 7.64 × 10 -6 mg mL -1 (2.31 × 10 -5 mmol L -1). Based on this, a new direct quantitative determination method for ciprofloxacin in human serum samples without separation of foreign substances was established. The contents of ciprofloxacin in human serum samples were determined with recovery of 95-105% and relative standard deviation (R.S.D.) of 1.5-2.5%. This method was proved to be very sensitive, rapid, simple and tolerance of most interfering substances.

  18. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    Science.gov (United States)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  19. Different behavior of Staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles.

    Science.gov (United States)

    Rezvani Amin, Zohreh; Khashyarmanesh, Zahra; Fazly Bazzaz, Bibi Sedigheh

    2016-09-01

    Chemical reagents that are used for synthesis of nanoparticles are often toxic, while biological reagents are safer and cost-effective. Here, the behavior of Staphylococcus epidermidis (ATCC 12228) was evaluated for biosynthesis of silver nanoparticles (Ag-NPs) and cadmium sulfide nanoparticles (CdS-NPs) using TEM images intra- and extracellularly. The bacteria only biosynthesized the nanoparticles intracellularly and distributed Ag-NPs throughout the cytoplasm and on outside surface of cell walls, while CdS-NPs only formed in cytoplasm near the cell wall. A new method for purification of the nanoparticles was used. TEM images of pure CdS-NPs confirmed biosynthesis of agglomerated nanoparticles. Biosynthetic Ag-NPs were more stable against bright light and aggregation reaction than synthetic Ag-NPs (prepared chemically) also biosynthetic Ag-NPs displayed lower toxicity in in vitro assays. CdS-NPs indicated no toxicity in in vitro assays. Biosynthetic nanoparticles as product of the detoxification pathway may be safer and more stable for biosensors.

  20. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rabia [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan); Hussain Gul, Iftikhar, E-mail: iftikhar.gul@scme.nust.edu.pk [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Zarrar, Muhammad [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Anwar, Humaira [Islamabad Model College for Girls G-10/2, Islamabad (Pakistan); Khan Niazi, Muhammad Bilal [Department of Chemicals Engineering, SCME, NUST, H-12 Campus, Islamabad (Pakistan); Khan, Azim [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan)

    2016-05-01

    Cadmium substituted cobalt ferrites with formula Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd{sup 2+}concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd{sup 2+} substituted Co-ferrites increases.

  1. Preparation of copper sulphide clusters in organic–inorganic ...

    Indian Academy of Sciences (India)

    Unknown

    Copper sulphide clusters; Langmuir–Blodgett films; organic–inorganic composites; amphiphilic Schiff ... have reported that gold nanoparticles modified with single stranded DNA oligonucleotides can be ... been known to form stable monolayers at the air/water interface and can complex with a variety of metal ions 20,21.

  2. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Della Torre, Camilla [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Balbi, Teresa [Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa (Italy); Grassi, Giacomo [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Frenzilli, Giada; Bernardeschi, Margherita [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Smerilli, Arianna [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta (Italy); Guidi, Patrizia [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Canesi, Laura [Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa (Italy); Nigro, Marco [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Monaci, Fabrizio [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Scarcelli, Vittoria [Department of Clinical and Experimental Medicine, University of Pisa (Italy); Rocco, Lucia [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Seconda Università di Napoli, Caserta (Italy); Focardi, Silvano [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy); Monopoli, Marco [Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin (Ireland); Corsi, Ilaria, E-mail: ilaria.corsi@unisi.it [Department of Physical, Earth and Environmental Sciences, University of Siena (Italy)

    2015-10-30

    Highlights: • Nano-TiO{sub 2} modulate CdCl{sub 2} cellular responses in gills of marine mussel. • Nano-TiO{sub 2} reduced CdCl{sub 2}-induced effects by lowering abcb1 m-RNA and GST activity. • Nano-TiO{sub 2} reduced Cd accumulation in mussel’s gills but not in whole soft tissue. • Higher accumulation of Ti in the presence of CdCl{sub 2} was observed in gills. - Abstract: We investigated the influence of titanium dioxide nanoparticles (nano-TiO{sub 2}) on the response to cadmium in the gills of the marine mussel Mytilus galloprovincialis in terms of accumulation and toxicity. Mussels were in vivo exposed to nano-TiO{sub 2}, CdCl{sub 2}, alone and in combination. Several cellular biomarkers were investigated in gills: ABC transport proteins and metallothioneins at gene/protein (abcb1, abcc-like and mt-20) and functional level, GST activity, NO production and DNA damage (Comet assay). Accumulation of total Cd and titanium in gills as in whole soft tissue was also investigated. Significant responses to Cd exposure were observed in mussel gills as up-regulation of abcb1 and mt-20 gene transcription, increases in total MT content, P-gp efflux and GST activity, DNA damage and NO production. Nano-TiO{sub 2} alone increased P-gp efflux activity and NO production. When combined with Cd, nano-TiO{sub 2} reduced the metal-induced effects by significantly lowering abcb1 gene transcription, GST activity, and DNA damage, whereas, additive effects were observed on NO production. A lower concentration of Cd was observed in the gills upon co-exposure, whereas, Ti levels were unaffected. A competitive effect in uptake/accumulation of nano-TiO{sub 2} and Cd seems to occur in gills. A confirmation is given by the observed absence of adsorption of Cd onto nano-TiO{sub 2} in sea water media.

  3. Oxidative injury induced by cadmium sulfide nanoparticles in A549 cells and rat lungs.

    Science.gov (United States)

    Wang, Junfeng; Jiang, Chunyang; Alattar, Mohamed; Hu, Xiaoli; Ma, Dong; Liu, Huibin; Meng, Chunyan; Cao, Fuyuan; Li, Weihong; Li, Qingzhao

    2015-01-01

    Rod-shaped cadmium sulfide nanoparticles (CdS NPs) are becoming increasingly important in many industrial fields, but their potential hazards remain unknown. This study aimed to explore the patterns and mechanisms of lung injury induced by CdS NPs. A549 cells and rats were exposed to two types of CdS NPs with a same diameter of 20-30 nm but different lengths, CdS1 (80-100 nm) and CdS2 (110-130 nm). The using doses were included 10 μg/ml and 20 μg/ml two types of CdS NPs for cellular experiments and five times dose of 20 mg/kg body weight for rats' exposure. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue staining were used to detect the A549 cell mortality percentage. The levels of reactive oxygen species (ROS) were determined in A549 cell. The vigor of superoxide dismutase (SOD) and the contents of catalase (CAT) and malondialdehyde (MDA) were detected both in A549 cells and in rats' serum and lung tissues. The cellular morphological changes were observed under transmission electron microscopy (TEM) and the pathological changes were observed in rats' lung tissue. CdS NPs significantly increased A549 cell mortality percentage. The CdS NPs also increased the levels of ROS and MDA content, whereas they decreased SOD and CAT activities. In parallel, similar changes of the contents of MDA, SOD and CAT were also observed in the sera and lung tissues of CdS NP-treated rats. The cellular TEM detection revealed that two types of CdS nanorods appeared as orderly arranged rounded fat droplets separately and leading to nucleus condensation (CdS1). These cellular and rats' tissues changes in the group treated with CdS1 were more significant than the CdS2 groups. Furthermore, CdS NPs induced many pathological changes, including emphysematous changes in rat lung tissue. Especially visible lung consolidation can be observed in the CdS1 group. CdS NPs induce oxidative injury in the respiratory system, and their toxic effects may be related to grain length.

  4. Starch mediated CdS nanoparticles and their photocatalytic performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Firdaus, Farha, E-mail: Farha-firdaus@yahoo.co.in [Chemistry Section, Women’s College, Aligarh Muslim University, Aligarh 202002 UP (India); Faraz, Mohd [Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002 (India)

    2016-05-06

    Green synthesis of Cadmium Sulphide (CdS-S) nanoparticles is of considerable interest due to its biocompatible and nontoxicity. Here, we present a biomolecule stimulated chemical method was adopted for the successful synthesis of CdS-S nanoparticles using starch as a capping agent. The CdS-S nanoparticles were characterized by various analytical techniques. The CdS-S nanoparicles exhibit photocatalytic activity against methyl orange (MO) at pH 9 in Visible light and the reaction follows pseudo first-order kinetics. The comparative photocatalytic activity revealed that CdS-S nanoparticles remarkably enhanced activities as compared to the commercial TiO{sub 2} nanoparticles. The outcome of these studies offers valuable for planning CdS-S nanoparticles having photocatalytic activities helpful for the formulation of waste water remediation.

  5. Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis(thiourea)cadmium chloride in various solvents

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Rama; Jeevanandam, P., E-mail: jeevafcy@iitr.ernet.in, E-mail: jeevafcy@iitr.ac.in [Indian Institute of Technology Roorkee, Department of Chemistry (India)

    2015-03-15

    CdS nanoparticles with different morphologies have been synthesized by thermal decomposition of bis(thiourea)cadmium chloride in different solvents without the use of any ligand/surfactant. CdS nanoparticles with pyramid, sponge-like and hexagonal disc-like morphologies were obtained in diphenyl ether (DPE), 1-octadecene (ODE) and ethylene glycol (EG), respectively. In addition, CdS nanoparticles with unique morphologies were obtained when the decomposition of the complex was carried out in mixed solvents (DPE–EG and ODE–EG). Extensive characterization of the CdS nanoparticles was carried out using powder X-ray diffraction, FT-IR spectroscopy, thermal analysis, field-emission scanning electron microscopy, diffuse reflectance spectroscopy and photoluminescence spectroscopy, and detailed mechanism of the formation of CdS nanoparticles with different morphologies in various solvents has been proposed.

  6. Evolution of different morphologies of CdS nanoparticles by thermal decomposition of bis(thiourea)cadmium chloride in various solvents

    Science.gov (United States)

    Gaur, Rama; Jeevanandam, P.

    2015-03-01

    CdS nanoparticles with different morphologies have been synthesized by thermal decomposition of bis(thiourea)cadmium chloride in different solvents without the use of any ligand/surfactant. CdS nanoparticles with pyramid, sponge-like and hexagonal disc-like morphologies were obtained in diphenyl ether (DPE), 1-octadecene (ODE) and ethylene glycol (EG), respectively. In addition, CdS nanoparticles with unique morphologies were obtained when the decomposition of the complex was carried out in mixed solvents (DPE-EG and ODE-EG). Extensive characterization of the CdS nanoparticles was carried out using powder X-ray diffraction, FT-IR spectroscopy, thermal analysis, field-emission scanning electron microscopy, diffuse reflectance spectroscopy and photoluminescence spectroscopy, and detailed mechanism of the formation of CdS nanoparticles with different morphologies in various solvents has been proposed.

  7. Synthesis, Characterization and in Vitro Antibacterial Activities of CdO Nanoparticle and Nano-sheet Mixed-ligand of Cadmium(ІІ Complex

    Directory of Open Access Journals (Sweden)

    Zohreh Rashidi Ranjbar

    2016-07-01

    Full Text Available Here, we report the synthesis of a Schiff-base mixed-ligand complex of cadmium(ІІ in bulk and nano-scales via the precipitation and sonochemical methods, respectively. The complex formula is [Cd(3-bpdh(3-bpdbCl2]n (1, where the ligands are 3-bpdh = 2,5-bis(3-pyridyl-3,4-diaza-2,4-hexadiene and 3-bpdb = 1,4-bis(3-pyridyl-2,3-diaza-1,3-butadiene. The structure of mixed-ligand complex (1 was characterized by IR, 1H NMR and elemental analyses. Cadmium(ІІ oxide nanoparticles were prepared by direct thermolysis from nanosheet of complex (1. The cadmium(ІІ oxide structure was characterized by X-ray Diffraction (XRD and Energy Dispersive X-ray  analyses (EDAX. Size, morphology and structural dispersion of all obtained nanostructures were characterized by Scanning Electron Microscopy (SEM. The Schiff-base ligands, bulk and nano-scales of complex (1 and cadmium(ІІ oxide nanoparticles were analyzed for antibacterial activities against Bacillus alvei (bacteria causing the honey bee European foulbrood disease. The Minimum Inhibitory Concentrations (MIC has been shown moderate antibacterial activities compared with some other standard drugs. Known antibiotics like penicillin and SXT (Trimethoprim/sulfamethoxazole were used as positive control.

  8. Preparation of modified magnetic nanoparticles as a sorbent for the preconcentration and determination of cadmium ions in food and environmental water samples prior to flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mirabi, Ali; Dalirandeh, Zeinab [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of); Rad, Ali Shokuhi, E-mail: a.shokuhi@qaemshahriau.ac.ir [Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2015-05-01

    A new method has been developed for the separation/preconcentration of trace level cadmium ions using diphenyl carbazone/sodium dodecyl sulfate immobilized on magnetic nanoparticle Fe{sub 3}O{sub 4} as a new sorbent SPE and their determination by flame atomic absorption spectrometry (FAAS). Synthesized nanoparticle was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). Various influencing parameters on the separation and preconcentration of trace level cadmium ions such as, pH value, amount of nanoparticles, amount of diphenyl carbazone, condition of eluting solution, the effects of matrix ions were examined. The cadmium ions can be eluted from the modified magnetic nanoparticle using 1 mol L{sup −1} HCl as a desorption reagent. The detection limit of this method for cadmium was 3.71 ng ml{sup −1} and the R.S.D. was 0.503% (n=6). The advantages of this new method include rapidity, easy preparation of sorbents and a high concentration factor. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, green tea, rice, tobacco, carrot, lettuce, ginseng, spice, tap water, river water, sea water with satisfactory results. - Highlights: • MNPs method is economical, simple, rapid and sensitive for trace analysis of Cd. • High preconcentration factor was obtained easily through this method. • A detection limit at ng mL{sup −1} level was achieved with 100.0 mL of sample. • This method provides good repeatability and extraction efficiency in a short time.

  9. Slurry analysis of cadmium and copper collected on 11-mercaptoundecanoic acid modified TiO{sub 2} core-Au shell nanoparticles by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, S. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey); Akman, S., E-mail: akmans@itu.edu.tr [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak-Istanbul (Turkey); Kahraman, M. [Yeditepe University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, 34755 Kayisdagi-Istanbul (Turkey)

    2011-02-15

    Separation/preconcentration of copper and cadmium using TiO{sub 2} core-Au shell nanoparticles modified with 11-mercaptoundecanoic acid and their slurry analysis by flame atomic absorption spectrometry were described. For this purpose, at first, titanium dioxide nanoparticles were coated with gold shell by reducing the chloroauric acid with sodium borohydride and then modified with 11-mercaptoundecanoic acid. The characterization of modified nanoparticles was performed using ultra-violet spectroscopy and dynamic light scattering. Copper and cadmium were then collected on the prepared sorbent by batch method. The solid phase loaded with the analytes was separated by centrifugation and the supernatant was removed. Finally, the precipitate was slurried and directly aspirated into the flame for the determination of analytes. Thus, elution step and its all drawbacks were eliminated. The effects of pH, amount of sorbent, slurry volume, sample volume and diverse ions on the recovery were investigated. After optimization of experimental parameters, the analytes in different certified reference materials and spiked water samples were quantitatively recovered with 5% RSD. The analytes were enriched up to 20-fold. Limits of detection (N = 10, 3{sigma}) for copper and cadmium were 0.28 and 0.15 ng mL{sup -1}, respectively.

  10. Cadmium-free sugar-chain-immobilized fluorescent nanoparticles containing low-toxicity ZnS-AgInS2 cores for probing lectin and cells.

    Science.gov (United States)

    Shinchi, Hiroyuki; Wakao, Masahiro; Nagata, Nonoka; Sakamoto, Masaya; Mochizuki, Eiko; Uematsu, Taro; Kuwabata, Susumu; Suda, Yasuo

    2014-02-19

    Sugar chains play a significant role in various biological processes through sugar chain-protein and sugar chain-sugar chain interactions. To date, various tools for analyzing sugar chains biofunctions have been developed. Fluorescent nanoparticles (FNPs) functionalized with carbohydrate, such as quantum dots (QDs), are an attractive imaging tool for analyzing carbohydrate biofunctions in vitro and in vivo. Most FNPs, however, consist of highly toxic elements such as cadmium, tellurium, selenium, and so on, causing problems in long-term bioimaging because of their cytotoxicity. In this study, we developed cadmium-free sugar-chain-immobilized fluorescent nanoparticles (SFNPs) using ZnS-AgInS2 (ZAIS) solid solution nanoparticles (NPs) of low or negligible toxicity as core components, and investigated their bioavailability and cytotoxicity. SFNPs were prepared by mixing our originally developed sugar-chain-ligand conjugates with ZAIS/ZnS core/shell NPs. In binding experiments with lectin, the obtained ZAIS/ZnS SFNPs interacted with an appropriate lectin to give specific aggregates, and their binding interaction was visually and/or spectroscopically detected. In addition, these SFNPs were successfully utilized for cytometry analysis and cellular imaging in which the cell was found to possess different sugar-binding properties. The results of the cytotoxicity assay indicated that SFNPs containing ZAIS/ZnS have much lower toxicity than those containing cadmium. These data strongly suggest that our designed SFNPs can be widely utilized in various biosensing applications involved in carbohydrates.

  11. Biosynthesis and characterization of cadmium sulfide nanoparticles – An emphasis of zeta potential behavior due to capping

    Energy Technology Data Exchange (ETDEWEB)

    Sankhla, Aryan, E-mail: aaryansankhla@gmail.com [Centre for Converging Technologies, University of Rajasthan, Jaipur, 302015 (India); Sharma, Rajeshwar; Yadav, Raghvendra Singh [Centre for Converging Technologies, University of Rajasthan, Jaipur, 302015 (India); Kashyap, Diwakar [Department of Biological Chemistry, Ariel University, Ariel, 40700 (Israel); Kothari, S.L. [Institute of Biotechnology, Amity University, Jaipur, 303002 (India); Kachhwaha, S. [Department of Botany, University of Rajasthan, Jaipur, 302004 (India)

    2016-02-15

    Biological approaches have been amongst the most promising protocols for synthesis of nanomaterials. In this study, Cadmium sulfide nanoparticles (CdS NPs) were synthesized by incubating their precursor salts with Escherichia coli and zeta potential (ζ-potential) measurement with varying pH was carried out to evaluate stability of the colloidal dispersion. Formation of CdS NPs was studied in synchrony with microbial growth. TEM analysis confirmed the uniform distribution of NPs. Average size (5 ± 0.4 nm) and electron diffraction pattern revealed polycrystalline cubic crystal phase of these nanoparticles. X-ray diffractogram ascertained the formation of CdS nanoparticles with phase formation and particle size distribution in accordance with the particle size obtained from TEM. Absorption edge of biosynthesized CdS NPs showed a blue shift at ∼400 nm in comparison to their bulk counterpart. A hump at 279 nm indicated presence of biomolecules in the solution in addition to the particles. FT-IR spectrum of capped CdS NPs showed peaks of protein. This confirms adsorption of protein molecules on nanoparticle surface. They act as a capping agent hence responsible for the stability of NPs. The enhanced stability of the particles was confirmed by Zeta potential analysis. The presence of charge on the surface of capped CdS NPs gave a detail understanding of dispersion mechanism and colloidal stability at the NP interface. This stability study of biosynthesized semiconductor nanoparticles utilizing microbial cells had not been done in the past by any research group providing an impetus for the same. Surface area of capped CdS NPs and bare CdS NPs were found to be 298 ± 2.65 m{sup 2}/g and 117 ± 2.41 m{sup 2}/g respectively. A possible mechanism is also proposed for the biosynthesis of CdS NPs. - Highlights: • Synthesis of CdS NPs utilizing reproducible molecular machinery viz. Escherichia coli biomass. • Uniform and Polydispersed NPs with high surface area

  12. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    Energy Technology Data Exchange (ETDEWEB)

    Osuntokun, Jejenija; Ajibade, Peter A., E-mail: pajibade@ufh.ac.za

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato–κS,S’–bis (N,N-dimethylthiourea–κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33–7.21 nm for ZnS and 4.95–7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  13. Diffusion mediated agglomeration of CdS nanoparticles via Langmuir–Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nayan Mani, E-mail: nayanmanidas3@gmail.com; Roy, Dhrubojyoti; Gupta, P.S.

    2013-10-15

    Graphical abstract: - Highlights: • Diffusion mediated agglomeration of CdS nanoparticles are discussed. • Formation of CdS nanoparticles are confirmed by the change of chain length in XRD. • AFM shows the agglomeration of particles with a film swelling of about 5 Å. • UV–vis absorbance suggests that the grown particles show quantum confinement. • Hexagonal form of particle was confirmed by UV–vis reflectivity. - Abstract: We have reported a diffusion mediated agglomeration of cadmium sulphide (CdS) nanoparticles within cadmium arachidate (CdA{sub 2}) film matrix. The structural morphology and formation of CdS nanoparticles are characterized by X-ray diffraction (XRD), X-ray reflectivity (XRR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy techniques. X-ray diffraction (XRD) results show a change in bilayer difference from 53.04 Å to 43 Å after the sulphidation. An epitaxial growth of the films by ∼5 Å after sulphidation is confirmed from atomic force microscopy studies. The particle size calculated form UV–vis absorption edges are found to be varying from 2.6 nm to 3.3 nm for the different layers. A lateral dimension of 72–80 nm from AFM measurements and a size of 2.6–3.3 nm have confirmed one side flat pseudo two-dimensional disk-like nanoparticles. UV–vis reflectivity peak at E{sub 1} (A) confirms the formation of hexagonal CdS nanoparticles along the c-axis.

  14. Probing metabolic stability of CdSe nanoparticles: Alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Zikri, E-mail: zikri.arslan@jsums.edu [Jackson State University, Department of Chemistry and Biochemistry, PO Box 17910, Jackson, MS 39217 (United States); Ates, Mehmet; McDuffy, Wanaki; Agachan, M. Sabri [Jackson State University, Department of Chemistry and Biochemistry, PO Box 17910, Jackson, MS 39217 (United States); Farah, Ibrahim O. [Jackson State University, Department of Biology, PO Box 18540, Jackson, MS 39217 (United States); Yu, W. William [BioScience Research Collaborative, Rice University, MS 602, 6500 Main Street, Houston, TX 77030 (United States); Bednar, Anthony J. [US Army Engineer Research and Development Center (ERDC), Waterways Experiment Station, Vicksburg, MS 39180 (United States)

    2011-08-15

    Highlights: {yields} Separation of Cd is examined from tissues containing CdSe nanoparticles (NPs). {yields} TMAH affords extraction of free Cd in tissues without deteriorating intact NPs. {yields} Thiol-capped CdSe NPs degrade in the body to release free Cd. {yields} UV light accelerates NP degradation resulting in elevated Cd levels in the body. -- Abstract: Cadmium selenide nanoparticles (CdSe NPs) exhibit novel optoelectronic properties for potential biomedical applications. However, their metabolic stability is not fully understood because of the difficulties in measurement of free Cd from biological tissues of exposed individuals. In this study, alkaline dissolution with tetramethylammonium hydroxide (TMAH) is demonstrated for selective determination of free Cd and intact NPs from liver and kidney samples of animals that were exposed to thiol-capped CdSe NPs. Aqueous suspensions of CdSe NPs (3.2 nm) were used to optimize the conditions for extracting free Cd without affecting NPs. Nanoparticles were found to aggregate when heated in TMAH without releasing any significant Cd to solution. Performance of the method in discriminating free Cd and intact NPs were verified by Dogfish Liver (DOLT-4) certified reference material. The samples from the animals were digested in 4 mL TMAH at 70 {sup o}C to extract free Cd followed by analysis of aqueous phase by ICP-MS. Both liver and kidney contained significant levels of free Cd. Total Cd was higher in the liver, while kidney accumulated mostly free Cd such that up to 47.9% of total Cd in the kidney was free Cd when NPs were exposed to UV-light before injection.

  15. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application.

    Science.gov (United States)

    Reyes-Esparza, Jorge; Martínez-Mena, Alberto; Gutiérrez-Sancha, Ivonne; Rodríguez-Fragoso, Patricia; de la Cruz, Gerardo Gonzalez; Mondragón, R; Rodríguez-Fragoso, Lourdes

    2015-11-17

    The safe use in biomedicine of semiconductor nanoparticles, also known as quantum dots (QDs), requires a detailed understanding of the biocompatibility and toxicity of QDs in human beings. The biological characteristics and physicochemical properties of QDs entail new challenges regarding the management of potential adverse health effects following exposure. At certain concentrations, the synthesis of semiconductor nanoparticles of CdS using dextrin as capping agent, at certain concentration, to reduce their toxicity and improves their biocompatibility. This study successfully synthesized and characterized biocompatible dextrin-coated cadmium sulfide nanoparticles (CdS-Dx/QDs). The results show that CdS-Dx/QDs are cytotoxic at high concentrations (>2 μg/mL) in HepG2 and HEK293 cells. At low concentrations (nanoparticles only induced cell death by apoptosis in HEK293 cells at 1 μg/mL concentrations. The in vitro results showed that the cells efficiently took up the CdS-Dx/QDs and this resulted in strong fluorescence. The subcellular localization of CdS-Dx/QDs were usually small and apparently unique in the cytoplasm in HeLa cells but, in the case of HEK293 cells it were more abundant and found in cytoplasm and the nucleus. Animals treated with 100 μg/kg of CdS-Dx/QDs and sacrificed at 3, 7 and 18 h showed a differential distribution in their organs. Intense fluorescence was detected in lung and kidney, with moderate fluorescence detected in liver, spleen and brain. The biocompatibility and toxicity of CdS-Dx/QDs in animals treated daily with 100 μg/kg for 1 week showed the highest level of fluorescence in kidney, liver and brain. Less fluorescence was detected in lung and spleen. There was also evident presence of fluorescence in testis. The histopathological and biochemical analyses showed that CdS-Dx/QDs were non-toxic for rodents. The in vitro and in vivo studies confirmed the effective cellular uptake and even distribution pattern of CdS-Dx/QDs in tissues

  16. Pyridine-2,6-diamine-functionalized Fe₃O₄ nanoparticles as a novel sorbent for determination of lead and cadmium ions in cosmetic samples.

    Science.gov (United States)

    Ebrahimzadeh, Homeira; Moazzen, Elahe; Amini, Mostafa M; Sadeghi, Omid

    2013-04-01

    A novel sorbent based on pyridine-2,6-diamine-functionalized Fe(3)O(4) nanoparticles was developed and characterized by X-ray powder diffraction (XRD), elemental analysis, IR spectroscopy and scanning electron microscopy (SEM). The application of the sorbent was investigated for pre-concentration and determination of lead and cadmium ions in aqueous samples. Effects of various factors such as the sample pH, eluent parameters (type, concentration and volume) and time (adsorption and desorption) were appraised. The effects of several interfering ions on method recovery were also investigated. The limit of detection (LOD) was found to be 1.3 and 0.089 μg L(-1) for lead and cadmium ions, respectively. Recovery and precision (RSD%) of the method were above 97.9% and below 0.6%, respectively. Validation of the outlined method was performed by analysing several certified reference materials. This method was successfully used for determination of lead and cadmium ions in several cosmetic samples, which are usually contaminated by lead and cadmium ions. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Cadmium colours: composition and properties

    Science.gov (United States)

    Paulus, J.; Knuutinen, U.

    The composition and the properties of cadmium aquarelle colours are discussed. The examined colours were 24 different aquarelle cadmium colours from six different manufacturers. The colours ranged from light, bright yellows to dark, deep-red tones. The aim of this research was to find out if the pigments contain cadmium salts: sulphides and/or selenides. This information will help in choosing watercolours in conservation processes. Today, aquarelle colours not containing cadmium pigments are being sold as cadmium colours; thus their properties might be different from actual cadmium colours. The aim of the research was to verify that the colour samples contained cadmium pigments and to estimate their compositions and ageing properties. Element analyses were performed from colour samples using micro-chemical tests and X-ray fluorescence measurements. Thin-layer chromatography was used for analysing gum Arabic as a possible binding medium in the chosen colour samples. Through ageing tests, the resistance of the colour samples to the exposure to light, heat and humidity was studied. Visible-light spectroscopy was used in determining the hues and hue changes of the aquarelle colour samples. The spectrophotometer used the CIE L*a*b* tone colour measuring system. From the colour measurements the changes in the lightness/darkness, the redness, the yellowness and the saturation of the samples were examined.

  18. Competitive Adsorption of Cadmium (II from Aqueous Solutions onto Nanoparticles of Water Treatment Residual

    Directory of Open Access Journals (Sweden)

    Elsayed Elkhatib

    2016-01-01

    Full Text Available There is increasing interest in using water treatment residuals (WTRs for heavy metals removal from wastewater due to their low cost, availability, and high efficiency in removing various pollutants. In this study, novel water treatment residuals nanoparticles (nWTRs were prepared using high energy ball milling and used for efficient removal of Cd(II in single- and multi-ion systems. The WTR nanoparticles demonstrated high removal efficiency for Cd from aqueous solution as the adsorption capacities of nWTR were 17 and 10 times higher than those of bulk WTR in single- and multielement systems, respectively. Noticeably, Cd(II adsorption was clearly suppressed in the multi-ion system as Cu and Pb form the most stable monohydroxo complexes. Fourier transmission infrared (FTIR analyses suggested the participation of OH−, O-Al-O, FeOH, and FeOOH entities in the adsorption process. The stability of Cd-nWTR surface complexes is evident as less than 0. 2% of adsorbed Cd(ll was released at the highest Cd(II concentration load after 4 consecutive desorption cycles. Moreover, the real efficiency of nWTR for Cd(II removal from wastewater samples studied was calculated to be 98.35%. These results highlight the potential of nWTR for heavy metals removal from wastewater.

  19. Analysis of Zinc Sulphide (ZnS) and Cadmium Sulphide (CdS) thin ...

    African Journals Online (AJOL)

    Average optical and solid state properties of ZnS thin films include absorbance ranging from 0.049 to 0.110, transmittance 0.776 to 0.893, refractive index 1.63 to 2.02, film thickness 0.035 to 0.056μm and band gap 2.30 to 2.62 +0.05eV. For CdS thin films, the absorbance ranges from 0.067 to 0.080, transmittance 0.832 to ...

  20. Improved sulphate removal rates at increased sulphide ...

    African Journals Online (AJOL)

    Improved sulphate removal rates at increased sulphide concentration in the sulphidogenic bioreactor. ... The results of three investigations operating a continuous reactor, a column reactor and batch-test reactors have shown that increased sulphide concentrations have resulted in improved biological sulphate reduction.

  1. Synthesis of cadmium sulphide in pure and mixed Langmuir ...

    Indian Academy of Sciences (India)

    In this work, an investigation into the controlled growth of CdS in LB films of ODSU and mixed films of ODSU with .... quantum wells. The motion of electrons, holes or excitons in such a well being limited, leads to quantization of kinetic energy. Hence, in principle, the nanosized CdS obtained from such LB films should give ...

  2. Co-exposure to titanium dioxide nanoparticles does not affect cadmium toxicity in radish seeds (Raphanus sativus).

    Science.gov (United States)

    Manesh, R Roshan; Grassi, G; Bergami, E; Marques-Santos, L F; Faleri, C; Liberatori, G; Corsi, I

    2018-02-01

    Recent developments on environmental fate models indicate that as nano waste, engineered nanomaterials (ENMs) could reach terrestrial ecosystems thus potentially affecting environmental and human health. Plants can be therefore exposed to ENMs but controversial data in terms of fate and toxicity are currently available. Furthermore, there is a current lack of information on complex interactions/transformations to which ENMs undergo in the natural environment as for instance interacting with existing toxic compounds. The aim of the present study was to assess the behavior and biological effects of titanium dioxide nanoparticles (n-TiO 2 ) (Aeroxide P25, Degussa Evonik) and its interaction with cadmium (CdCl 2 ) in plants using radish seeds (Raphanus sativus L. Parvus) as model species. Radish seeds were exposed to n-TiO 2 (1-1000mg/L) and CdCl 2 (1-250mg/L) alone and in combination using a seed germination and seedling growth toxicity test OECD 208. Percentage of seed germination, germination index (GI) and root elongation were calculated. Cell morphology and oxidative stress parameters as glutathione-S-transferase (GST) and catalase activities (CAT) were measured in radish seeds after 5 days of exposure. Z-Average, PdI and Z-potential of n-TiO 2 in Milli-Q water as exposure medium were also determined. DLS analysis showed small aggregates of n-TiO 2 , negative Z-potential and stable PdI in seed's exposure media. Germination percentage, GI and root length resulted affected by n-TiO 2 exposure compared to controls. In particular, n-TiO 2 at 1mg/L and 100mg/L did not affect radish seeds germination (100%) while at concentration of 10mg/L, 200mg/L, 500mg/L, and 1000mg/L a slight but not significant decrease of germination % was observed. Similarly root length and GI resulted significantly higher in seeds exposed to 10mg/L and 200mg/L compared to 1mg/L, 100mg/L, 500mg/L, 1000mg/L and control (p radish seeds. Morphological alterations in nuclei, vacuoles and shape of

  3. Graphene ultrathin film electrodes modified with bismuth nanoparticles and polyaniline porous layers for detection of lead and cadmium ions in acetate buffer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaomeng; Li, Lin; Liu, Erjia, E-mail: mejliu@ntu.edu.sg

    2013-10-01

    Graphene ultrathin films were synthesized by means of solid-state carbon diffusion from amorphous carbon (a-C) thin layers deposited on silicon substrates, which was catalyzed by nickel layers coated on the top of the a-C layers. The graphene films were used as working electrodes that were modified by a polyaniline (PANI) porous layer together with in-situ deposited bismuth (Bi) nanoparticles for the detection of trace heavy metal ions (Pb{sup 2+} and Cd{sup 2+}) in acetate buffer solutions (pH 5.3) with square wave anodic stripping voltammetry. The graphene electrodes modified with PANI porous layers and Bi nanoparticles had excellent repeatability, ultrahigh sensitivity (as low as 0.33 nM) and good resistance to passivation caused by the surface active species adsorbed on the electrode surfaces. - Highlights: • Graphene fabricated by nickel-catalyzed carbon diffusion in solid state • Graphene electrodes modified by bismuth nanoparticles and polyaniline layers • High resistance of modified graphene electrodes to passivation in acetate solutions • Ultra-low detection limits of lead and cadmium ions by modified graphene electrodes.

  4. Bis(3-methyl-2-pyridyl)ditelluride and pyridyl tellurolate complexes of zinc, cadmium, mercury: Synthesis, characterization and their conversion to metal telluride nanoparticles.

    Science.gov (United States)

    Kedarnath, G; Jain, Vimal K; Wadawale, Amey; Dey, Gautam K

    2009-10-21

    Treatment of an acetonitrile solution of metal chloride with bis(3-methyl-2-pyridyl)ditelluride, [Te(2)(pyMe)(2)], in the same solvent yielded complexes of composition [MCl(2){Te(2)(pyMe)(2)}] (M = Zn or Cd) whereas reactions of [MCl(2)(tmeda)] with NaTepyR (R = H or Me) gave tellurolate complexes of the general formula [M(TepyR)(2)] (M = Cd or Hg). When the cadmium complex [Cd(Tepy)(2)] was crystallized in the presence of excess tmeda, [Cd(Tepy)(2)(tmeda)] was formed exclusively. These complexes were characterized by elemental analyses, uv-vis, (1)H NMR data. The crystal structures of [ZnCl(2){Te(2)(pyMe)(2)}] and [Cd(Tepy)(2)(tmeda)] were established by single crystal X-ray diffraction. In the former zinc is coordinated to nitrogen atoms of the pyridyl group, while in the latter the coordination environment around tetrahedral cadmium is defined by the two neutral nitrogen atoms of tmeda, and two pyridyl tellurolate ligands. Thermal behavior of some of these complexes was studied by thermogravimetric analysis. Pyrolysis of [M(Tepy)(2)] in a furnace or in coordinating solvents such as hexadecylamine/tri-n-octylphosphine oxide (HDA/TOPO) at 350 and 160 degrees C, respectively gave MTe nanoparticles, which were characterized by uv-vis, photoluminiscence, XRD, EDAX and TEM.

  5. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitesh [Chemistry and Physics of Materials Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560 064 (India); Raman, N. [Department of Chemistry, VHNSN College, Virudhunagar-626 001 (India); Sundaresan, A., E-mail: sundaresan@jncasr.ac.in [Chemistry and Physics of Materials Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560 064 (India)

    2013-12-15

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel–thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS{sub 2} nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni{sub 3}S{sub 2} (800 °C) are formed. NiS{sub 2} nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni{sub 3}S{sub 2} nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS{sub 2} and NiS are semiconductors whereas Ni{sub 3}S{sub 2} is a metal. - Graphical abstract: Pure phases of NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} have been obtained by thermal decomposition of nickel–thiourea complex wherein, NiS{sub 2} nanoparticles exhibit remarkable exchange bias effect at 2 K. - Highlights: • NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} nanoparticles are obtained by thermal decomposition of nickel–thiourea complex at different temperatures. • As the temperature is increased, nickel sulphide phase with lesser sulphur content is obtained. • NiS{sub 2} nanoparticles show good exchange bias property which can be explained by antiferromagnetic core and ferromagnetic shell model. • NiS{sub 2} and NiS are semiconducting while Ni{sub 3}S{sub 2} shows metallic behavior.

  6. Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide.

    Science.gov (United States)

    Toombs, Christopher F; Insko, Michael A; Wintner, Edward A; Deckwerth, Thomas L; Usansky, Helen; Jamil, Khurram; Goldstein, Brahm; Cooreman, Michael; Szabo, Csaba

    2010-06-01

    Hydrogen sulphide (H(2)S) is an endogenous gaseous signaling molecule and potential therapeutic agent. Emerging studies indicate its therapeutic potential in a variety of cardiovascular diseases and in critical illness. Augmentation of endogenous sulphide concentrations by intravenous administration of sodium sulphide can be used for the delivery of H(2)S to the tissues. In the current study, we have measured H(2)S concentrations in the exhaled breath of healthy human volunteers subjected to increasing doses sodium sulphide in a human phase I safety and tolerability study. We have measured reactive sulphide in the blood via ex vivo derivatization of sulphide with monobromobimane to form sulphide-dibimane and blood concentrations of thiosulfate (major oxidative metabolite of sulphide) via ion chromatography. We have measured exhaled H(2)S concentrations using a custom-made device based on a sulphide gas detector (Interscan). Administration of IK-1001, a parenteral formulation of Na(2)S (0.005-0.20 mg kg(-1), i.v., infused over 1 min) induced an elevation of blood sulphide and thiosulfate concentrations over baseline, which was observed within the first 1-5 min following administration of IK-1001 at 0.10 mg kg(-1) dose and higher. In all subjects, basal exhaled H(2)S was observed to be higher than the ambient concentration of H(2)S gas in room air, indicative of on-going endogenous H(2)S production in human subjects. Upon intravenous administration of Na(2)S, a rapid elevation of exhaled H(2)S concentrations was observed. The amount of exhaled H(2)S rapidly decreased after discontinuation of the infusion of Na(2)S. Exhaled H(2)S represents a detectable route of elimination after parenteral administration of Na(2)S.

  7. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    Science.gov (United States)

    Khataee, Alireza; Movafeghi, Ali; Nazari, Fatemeh; Vafaei, Fatemeh; Dadpour, Mohammad Reza; Hanifehpour, Younes; Joo, Sang Woo

    2014-12-01

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15-20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes' activity.

  8. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Khataee, Alireza, E-mail: ar_khataee@yahoo.com [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Movafeghi, Ali [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Nazari, Fatemeh [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Vafaei, Fatemeh [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Dadpour, Mohammad Reza [University of Tabriz, Department of Horticultural Science, Faculty of Agriculture (Iran, Islamic Republic of); Hanifehpour, Younes; Joo, Sang Woo, E-mail: swjoo@yu.ac.kr [Yeungnam University, School of Mechanical Engineering (Korea, Republic of)

    2014-12-15

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract.

  9. One-pot synthesis of CdS nanoparticles exhibiting quantum size effect prepared within a sol-gel derived ureasilicate matrix

    Science.gov (United States)

    Gonçalves, Luis F. F. F.; Kanodarwala, Fehmida K.; Stride, John A.; Silva, Carlos J. R.; Gomes, Maria J. M.

    2013-12-01

    This paper describes a novel single-pot synthesis process based on sol-gel for the production of a highly transparent hybrid matrix containing CdS nanoparticles (NPs). The reaction between cadmium and sulphide ions in the presence of 3-mercaptopropyltrimethoxysilane (MPTMS) that originates the formation of quantum confined CdS NPs occurs simultaneously with the condensation and polymerization of the gel precursors that evolves to a macromolecular hybrid organic-inorganic network. The obtained xerogel matrix is based on the reaction of organically modified alkoxysilane (3-isocyanatepropyltriethoxysilane) and a di-amine functionalized oligopolyoxyethylene (Jeffamine ED-600). The final material is characterized as highly transparent, homogeneous and flexible xerogel incorporating stabilized and high crystalline CdS NPs that exhibit size-dependent optical properties due to quantum confinement of photogenerated e-h pairs as observed from UV-visible and photoluminescence spectroscopy and HRTEM microscopy measurements. The developed approach has obvious advantages comparatively to the alternative and more complex routes of production of composite materials with embedded semiconductor NPs because of the simplified one-pot preparative procedure used. The developed sol-gel process allows the control of the optical characteristics of the obtained CdS NPs embedded within the network by adjusting the molar ratio between cadmium ion and MPTMS and between cadmium and sulphide ions.

  10. Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel

    CSIR Research Space (South Africa)

    Kumar, N

    2016-02-01

    Full Text Available This research paper reports the synthesis and usage of the polyacrylamide (PAAm) grafted gum karaya (Gk) and nickel sulphide nanoparticle based hydrogel to effectively remove rhodamine 6G dye (R6G) from aqueous solution. Initially, the hydrogel...

  11. Synthesis of TOPO-capped Nanocrystals of Copper Sulphide from a ...

    African Journals Online (AJOL)

    Nearly mono-dispersed TOPO-capped copper sulphide nanocrystals of ca. 4.5 nm (diameter) have been synthesized from [Cu(S2CNMe(nHex))2]. The absorption spectrum of the (Cu2S) nanoparticles shows a large blue shift (2.09 eV) in relation to bulk Cu2S (1022 nm, 1.21 eV). The PL gives a broad spectrum with an ...

  12. Cadmium Alternatives

    Science.gov (United States)

    2012-08-01

    using for commercial applications Other zinc alloys Zinc cobalt , tin zinc, zinc iron Passivation Cadmium, ZnNi, SnZn, ZnCo, ZnFe, and...for Change Cadmium passivated with hexavalent chromium has been in use for many decades Cadmium is toxic, and is classified as a priority...Executive Orders 13514 & 13423 DoD initiatives – Young memo (April 2009) DFAR restricting use of hexavalent chromium Allows the use of hexavalent

  13. Determination of sulphides in cements by using potentiometry with a selective electrode of sulphides

    Directory of Open Access Journals (Sweden)

    Bernal, José Luis

    1988-03-01

    Full Text Available A procedure for the determination of sulphides attackable by HCI (1 :3 in cements by means of a potentiometric determination with a selective electrodo of sulphides, is proposed.

    Se propone un método para la determinación de sulfuros, basado en el ataque con HCI (1:3, destilación y posterior medida potenciométrica con un electrodo selectivo de sulfuros.

  14. Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions

    Science.gov (United States)

    Gil Posada, Jorge Omar; Hall, Peter J.

    2014-12-01

    Iron electrodes were prepared by hot-pressing iron-polyethylene based formulations on nickel foam stripes. NiFe cells were tested by using commercial nickel electrodes and our iron electrodes. Post-hoc comparisons were used to identify meaningful differences between iron electrode formulations (based upon bismuth, bismuth sulphate, potassium sulphide and iron sulphide as additives). Our results confirm that both bismuth sulphide and iron sulphide favour the process of charge/discharge of a NiFe cell. In addition, we have found that the use of metallic bismuth only marginally influences coulombic efficiency; likewise, the presence of the soluble bisulfide anion is not sufficient to increase coulombic efficiency. Finally, NiFe cells prepared with bismuth sulphide outperformed their iron sulphide counterparts.

  15. Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation.

    Science.gov (United States)

    Kumar, Sumeet; Ojha, Animesh K; Walkenfort, Bernd

    2016-06-01

    Cadmium oxide (CdO) nanoparticles (NPs), reduced graphene oxide (rGO) and rGO-CdO nanocomposites have been synthesized using one step hydrothermal method. The structural and optical properties of CdO NPs, rGO, and rGO-CdO nanocomposites were investigated by X-ray diffraction (XRD), energy dispersive X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (RS), ultraviolet-visible spectroscopy (UV-Vis.) and photoluminescence (PL) spectroscopy techniques. The rGO has a sharp 2D peak compared to GO. The sharp nature of 2D band may be due to the larger contribution from single layer sheet. The photocatalytic activity of the synthesized samples has been investigated under UV irradiation. The results of photocatalytic measurements revealed that ~80% of MB dye is degraded by adding the rGO-CdO nanocomposites as photocatalysts into the dye solution. The decrease in the intensity of emission peaks indicates that the photogenerated charge carriers have been transferred from CdO NPs to rGO sheets, which causes to increase the density of O2(-) and OH radicals in the dye solution. The CdO nanoparticles gown on the rGO sheets showed enhanced ferromagnetism (FM) at room temperature, which may be attributed to the short range magnetic interaction of magnetic moments of CdO NPs and spin units present on the rGO sheets. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Prakash M. Gopalakrishnan [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of); Choi, Jinhee, E-mail: jinhchoi@uos.ac.kr [School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743 (Korea, Republic of)

    2011-02-15

    In this study, we report the identification and characterization of 13 cytosolic GST genes in Chironomus riparius from Expressed Sequence Tags (ESTs) database generated using pyrosequencing. Comparative and phylogenetic analyses were undertaken with Drosophila melanogaster and Anopheles gambiae GSTs and 3 Delta, 4 Sigma, 1 each in Omega, Epsilon, Theta, Zeta and 2 unclassified classes of GSTs were identified and characterized. The relative mRNA expression levels of all of the C. riparius GSTs (CrGSTs) genes under different developmental stages were varied with low expression in the larval stage. The antioxidant role of CrGSTs was studied by exposing fourth instar larvae to a known oxidative stress inducer Paraquat and the relative mRNA expression to different concentrations of cadmium (Cd) and silver nanoparticles (AgNPs) for various time intervals were also studied. All the CrGSTs showed up- or down regulation to varying levels based upon the concentration, and duration of exposure. The highest mRNA expression was noticed in Delta3, Sigma4 and Epsilon1 GST class in all treatments. These results show the role of CrGST genes in defense against oxidative stress and its potential as a biomarker to Cd and AgNPs exposure.

  17. Detection of exhaled hydrogen sulphide gas in rats exposed to intravenous sodium sulphide.

    Science.gov (United States)

    Insko, Michael A; Deckwerth, Thomas L; Hill, Paul; Toombs, Christopher F; Szabo, Csaba

    2009-07-01

    Sodium sulphide (Na(2)S) disassociates to sodium (Na(+)) hydrosulphide, anion (HS(-)) and hydrogen sulphide (H(2)S) in aqueous solutions. Here we have established and characterized a method to detect H(2)S gas in the exhaled breath of rats. Male rats were anaesthetized with ketamine and xylazine, instrumented with intravenous (i.v.) jugular vein catheters, and a tube inserted into the trachea was connected to a pneumotach connected to a H(2)S gas detector. Sodium sulphide, cysteine or the natural polysulphide compound diallyl disulphide were infused intravenously while the airway was monitored for exhaled H(2)S real time. Exhaled sulphide concentration was calculated to be in the range of 0.4-11 ppm in response to i.v. infusion rates ranging between 0.3 and 1.1 mg x kg(-1) x min(-1). When nitric oxide synthesis was inhibited with N(omega)-nitro-L-arginine methyl ester the amount of H(2)S exhaled during i.v. infusions of sodium sulphide was significantly increased compared with that obtained with the vehicle control. An increase in circulating nitric oxide using DETA NONOate [3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene] did not alter the levels of exhaled H(2)S during an i.v. infusion of sodium sulphide. An i.v. bolus of L-cysteine, 1 g.kg(-1), and an i.v. infusion of the garlic derived natural compound diallyl disulphide, 1.8 mg x kg(-1) x min(-1), also caused exhalation of H(2)S gas. This method has shown that significant amounts of H(2)S are exhaled in rats during sodium sulphide infusions, and the amount exhaled can be modulated by various pharmacological interventions.

  18. Synthesis and characterization of copper sulphide (CuS) nano particles

    Science.gov (United States)

    Tank, Nirali. S.; Parikh, K. D.; Joshi, M. J.

    2017-05-01

    Copper sulphide nano materials possess different applications, such as p-type semiconductors in solar cells, optical filters, super ionic material, photo-voltaic applications, microwave shielding coatings and in combined photo acoustic imaging. In present study, copper sulphide (CuS) nano particles were synthesized by wet chemical co-precipitation method using CuCl2 and Na2S as precursors. The synthesized CuS nano particles were characterized by powder XRD, FT-IR and thermo-gravimetriy. From the powder XRD, the hexagonal crystal structure was found and the average particle size was estimated to be 10.5 nm by using Scherrer's formula. The FTIR spectral study confirmed the presence of S-O stretching, O-H bending, and S-S disulphide stretching vibrations. The Thermal Analysis was carried out from room temperature to 700°C. The nano-particles remained stable up to 160°

  19. The effect of ascorbic acid-stabilized zero valent iron nanoparticles on the distribution of different forms of cadmium in three spiked soils

    Directory of Open Access Journals (Sweden)

    Mohaddese Savasari

    2017-01-01

    Full Text Available Introduction: Increases in pollution of water resources due to the contaminants have made researchers to develop the various methods in the remediation and the reuses of polluted resources contamination of soils with heavy metals is one of great environmental concerns for the human beings. Cadmium (Cd as a toxic heavy metal is of significant environmental and occupational concern. Contamination of soils with heavy metals is one of great environmental concerns for the human beings. The numbers of sorbents that have been used for Cd (II reductive removal are biopolymers, fly ash, activated carbon, metal oxides, clays, zeolites, dried plant parts, microorganisms, and sewage sludge. However, most of the mentioned sorbents had limitations of cost and durability that call a needed approach by cost effective remediation technique with high efficiency. Application of zero valent iron nanoparticles (ZVINs as a promising technique for remediation of heavy metals are being increasingly considered by researchers. This study was conducted to synthesis and characterize the ZVINs stabilized with ascorbic acid (AAS - ZVIN in aerobic conditions and to assess their ability for removal efficiency of cadmium (Cd from the soils and changes in different fraction of Cd in three spiked soils including sandy, acidity and calcareous soils were also studied. Materials and Methods: The stabilized ZVINs were prepared in cold distilled water by reducing Fe (III to Fe0 using sodium borohydride in the presence of ascorbic acid as stabilizer and reducing agent. The freshly synthesized AAS-ZVIN washed three times and then used for the subsequent analysis. Characterization of the synthesized AAS-ZVIN was carried out by scanning electron microscope (SEM. X-ray diffraction (XRD was performed using a Philips D500 diffract meter with Ni-filtered Cu ka radiation. To determine the availability of Cd, the DTPA-extractable amounts of Cd in the spiked soils so sandy, acid and calcareous

  20. Patterns of Macroinvertebrate and Fish Diversity in Freshwater Sulphide Springs

    Directory of Open Access Journals (Sweden)

    Ryan Greenway

    2014-09-01

    Full Text Available Extreme environments are characterised by the presence of physicochemical stressors and provide unique study systems to address problems in evolutionary ecology research. Sulphide springs provide an example of extreme freshwater environments; because hydrogen sulphide’s adverse physiological effects induce mortality in metazoans even at micromolar concentrations. Sulphide springs occur worldwide, but while microbial communities in sulphide springs have received broad attention, little is known about macroinvertebrates and fish inhabiting these toxic environments. We reviewed qualitative occurrence records of sulphide spring faunas on a global scale and present a quantitative case study comparing diversity patterns in sulphidic and adjacent non-sulphidic habitats across replicated river drainages in Southern Mexico. While detailed studies in most regions of the world remain scarce, available data suggests that sulphide spring faunas are characterised by low species richness. Dipterans (among macroinvertebrates and cyprinodontiforms (among fishes appear to dominate the communities in these habitats. At least in fish, there is evidence for the presence of highly endemic species and populations exclusively inhabiting sulphide springs. We provide a detailed discussion of traits that might predispose certain taxonomic groups to colonize sulphide springs, how colonizers subsequently adapt to cope with sulphide toxicity, and how adaptation may be linked to speciation processes.

  1. Photoconductivity of copper sulphide polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, L.; Leon, M.; Arjona, F.; Garcia Camarero, E.

    1985-06-01

    The spectral response of the photoconductivity of copper sulphide polycrystalline films obtained by thermal evaporation has been studied. The phase content of the samples was determined by electron diffraction and the stoichiometry by potentiostatic methods. The electrical properties, resistivity and Hall effect, were determined by the Van der Pauw method. The photoconductivity quantum efficiency spectra show structures clearly characteristic of the phases chalcocite and djurleite. Chalcocite shows peaks at 900, 720 and 500 nm and Djurleite at 620 and 500 nm. Samples with less copper always show the 500 nm peak. This work shows that a peak at 500 nm appears in the photoconductivity spectral response of all copper sulphides studied: Cu(x)S (with x at least 1.89 and no more than 2). 22 references.

  2. Thermodynamic study of metal sulphides conversion to oxides in hydrometallurgy

    Directory of Open Access Journals (Sweden)

    J. Bocan

    2017-01-01

    Full Text Available This paper presents thermodynamic study of the conversion of metal sulphides to oxides of the CuAg sulphide concentrate as a final product after mechano-chemical leaching of tetrahedrite. The conversion of sulphides to oxides is carried out by oxidation leaching in NaOH solution. The thermodynamic calculation was performed for the sulphide concentrate containing the following sulphides: CuS, CuFeS2, FeS, Sb2S3, As2S3, Bi2S3 and HgS. Based on the change of Gibbs free energy (ΔG° and the equilibrium constant (K, conversion of metal sulphides to oxides from the qualitative assessment of the chemical reaction can occur as the result of the thermodynamic reaction abilities.

  3. Effect of Chemical Charging/Discharging on Plasmonic Behavior of Silver Metal Nanoparticles Prepared using Citrate-Stabilized Cadmium Selenide Quantum Dots.

    Science.gov (United States)

    Ingole, Pravin P; Bhat, Mohsin A

    2016-10-18

    The thermodynamics and kinetics of the chemical and electrochemical charging of a catalyst surface are very important to understand its applicability as a catalyst material, particularly in redox catalysis. Through the present study, we hereby communicate the results obtained from our detailed investigations related to the effect of chemical charging on the plasmonic behavior of silver metal nanoparticles (Ag MNPs) as redox catalysts. Two different batches of Ag MNPs were prepared through thermally assisted chemical reduction of silver ions. The difference in these batches was the use or not of citrate-capped cadmium selenide quantum dots (Q-CdSe) for the reduction of solution-phase silver ions to their colloidal plasmonic phase. The charge on the surfaces of the Ag MNPs was varied by the chemical electron injection method by using BH4(-) ions from a NaBH4 solution. The processes of charging and discharging were monitored by using UV/Vis absorption spectroscopy. The impact of the concentration of the reductant on the charging and discharging processes was also investigated. The Ag MNPs were also tested for their voltammetric response, wherein it was observed that it was more difficult to oxidize the Ag MNPs prepared with Q-CdSe seeds than to oxidize Ag MNPs prepared without Q-CdSe particles. Our results demonstrate that Q-CdSe seeds not only enhance the redox catalytic activity of Ag MNPs but also provide stability towards polarization of their plasmonic behavior. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Combination of maghemite and titanium oxide nanoparticles in polyvinyl alcohol-alginate encapsulated beads for cadmium ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Majidnia, Zohreh; Idris, Ani [Universiti Teknologi Malaysia, johor bahru (Malaysia)

    2015-06-15

    Both maghemite (γ-Fe{sub 2}O{sub 3}) and titanium oxide (TiO{sub 2}) nanoparticles were mixed at various ratios and embedded in polyvinyl alcohol (PVA)-alginate beads. These beads were tested for photocatalytic behavior in eliminating toxic Cd(Ⅱ) from the aqueous solution. The photocatalytic experiments were performed under sunlight irradiation at various pH, initial feed concentrations and γ-Fe{sub 2}O{sub 3}: TiO{sub 2} ratios. The recycling attribute of these beads was also investigated. The results revealed that 100% of the Cd(Ⅱ) was eliminated in 150 minutes at pH 7 under sunlight. It shows that maghemite and titania PVA-alginate beads can be readily isolated from the aqueous solution after the photocatalyst process and reused for at least six times without losing their initial properties.

  5. Sulphide Microchemistry and Hydrothermal Fluid Evolution in Quartz ...

    African Journals Online (AJOL)

    2008-06-14

    Jun 14, 2008 ... was calculated from the final ice melting temperatures while the Th CO2 was used to calculate CO2 densities. (Roedder 1984). OBSERVATIONS AND. INTERPRETATIONS. Sulphide microchemistry. The results of the microprobe analyses of the main sulphide minerals in the Batouri gold district are.

  6. Effect of sulphide on corrosion of copper in seawater

    OpenAIRE

    Gopalakrishna Pillai, A.G.

    1985-01-01

    The corrosion of ETP copper in natural seawater and putrid seawater has been studied. The corrosion rates and the sulphide content were monitored at regular intervals. In the absence of oxygen in the putrid media, the presence of sulphide favoured a reduction in the corrosion rate.

  7. Indicator minerals as guides to base metal sulphide mineralisation ...

    Indian Academy of Sciences (India)

    Zn-bearing minerals that act as indicator minerals for base metal sulphide mineralization from the Proterozoic Betul Belt,central India with special emphasis on their genetic significance have been discussed.Sulphide mineralisation is hosted by the felsic volcanic rocks and has similarities with volcanic-hosted massive ...

  8. Prediction of sulphide build-up in filled sewer pipes.

    Science.gov (United States)

    Alani, Amir M; Faramarzi, Asaad; Mahmoodian, Mojtaba; Tee, Kong Fah

    2014-08-01

    Millions of dollars are being spent worldwide on the repair and maintenance of sewer networks and wastewater treatment plants. The production and emission of hydrogen sulphide has been identified as a major cause of corrosion and odour problems in sewer networks. Accurate prediction of sulphide build-up in a sewer system helps engineers and asset managers to appropriately formulate strategies for optimal sewer management and reliability analysis. This paper presents a novel methodology to model and predict the sulphide build-up for steady state condition in filled sewer pipes. The proposed model is developed using a novel data-driven technique called evolutionary polynomial regression (EPR) and it involves the most effective parameters in the sulphide build-up problem. EPR is a hybrid technique, combining genetic algorithm and least square. It is shown that the proposed model can provide a better prediction for the sulphide build-up as compared with conventional models.

  9. Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea--the role of TiO₂ nanoparticles.

    Science.gov (United States)

    Vale, Gonçalo; Franco, Cristiana; Diniz, Mário S; dos Santos, Margarida M C; Domingos, Rute F

    2014-11-01

    The increasing and widespread applications of TiO2 engineered nanoparticles (nTiO2) led to the release of these materials into aquatic environments and consequently a change on the assessment of the environmental risk of trace metals. In this work, the role of two commercial nTiO2 with distinct crystalline phases and sizes (nTiO2-P25: 80% anatase+20% rutile, d=20nm; nTiO2-NA: 100% anatase, d=5 nm; 0.1 and 1.0 mg L(-1)) on Cd (112 μg L(-1)) speciation, biouptake and toxicity for the freshwater bivalve Corbicula fluminea was evaluated. The electroanalytical technique 'absence of gradients and Nernstian equilibrium stripping (AGNES)' was used to quantify the free Cd concentrations in the exposure medium in presence of both particles. Despite ca. 30-40% decrease of free Cd in the medium in presence of nTiO2, Cd uptake by C. fluminea was similar in the absence and presence of either of the particles. Superoxide dismutase and glutathione-S-transferase activities remained unchanged for Cd in absence and presence of nTiO2, whereas a significant increase of the catalase activity was obtained at the third day for Cd in presence of both nTiO2. Despite lipid peroxidation data shows that the presence of both nTiO2 seems to exert cells damage, a more quantitative description is not possible with the obtained data. The lack of clear-cut responses by the studied biomarkers, even when only in presence of Cd, do not allow insights into the effect of the presence of nTiO2 on the Cd toxicity to the bivalves. Notwithstanding, morphological changes in the digestive gland were clearly obtained in the presence of Cd, nTiO2 and Cd+nTiO2 indicating an inflammatory response. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A robotic magnetic nanoparticle solid phase extraction system coupled to flow-batch analyzer and GFAAS for determination of trace cadmium in edible oils without external pretreatment.

    Science.gov (United States)

    Barreto, Inakã S; Andrade, Stefani I E; Cunha, Francisco A S; Lima, Marcelo B; Araujo, Mario Cesar U; Almeida, Luciano F

    2018-02-01

    A lab-made magnetic-mechanical robotic (MMR) system coupled to a flow-batch analyzer (FBA) for magnetic nanoparticles solid phase extraction (MSPE) is presented. As an illustrative application, an NMR-FBA couple was connected to a graphite furnace atomic absorption spectrometer (GFAAS) for quantification of trace cadmium in edible oils. Factors affecting MSPE, such as the amount of adsorbent, the type, concentration and volume of the eluent and elution time were studied. Under the optimized experimental conditions, the interferents studied did not reveal a significant change in the analytical response, indicating that proposed method is selective. The sampling rate, characteristic mass, working linear range, limits of detection (LOD), and sensitivity were 10h-1, 0.18pg, 0.05-1.0μgkg-1, 0.006μgL-1, and 0.4197, respectively. An enrichment factor of 9 was achieved using a 2.5mL oil sample. In order to evaluate the accuracy, a certified reference material was analyzed by the proposed and a reference method. The values obtained were compared with the one provided from the manufacturer and no statistically significant differences were observed among three values at a confidence level of 95% using paired t-test. In addition, the precision intra-day and inter day of the proposed method and the robustness were assessed and again no statistically significant differences were observed at a confidence level of 95%. The use of a microcolumn to immobilize the MNPs is not needed with the proposed MMR-FBA-GFAAS system, thus avoiding the well-known problem of non-uniform packing of the MNPs presented in previous flow-based automatic methods. Despite a high organic load of edible oils, the method developed is simple, robust and presents satisfactory analytical features when compared with others that have been reported in the literature, suggesting that it is a potentially useful alternative to determine trace analytes in viscous matrices without external pretreatment. Copyright

  11. Production of volatile Sulphides in Allium Porrum cell cultures

    OpenAIRE

    Asghari Gh.R; Lockwood GB; Houshfar Gh.A "

    2002-01-01

    Production of volatile sulphides in cell cultures of Allium porrum is described. Allium porrum calluses were initiated from whole seedlings. The high growth rate of Allium porrum callus was achived in Murashige and Skoog media containing only 1 ppm 2, 4-Dichlorophenoxy acetic acid. The routine method of solvent extraction of volatile sulphides was used for Allium porrum and the concentrated extract was subjected to capillary GC and GC-MS. Dipropyl disulphide and 4-methyl thiazolethanol were i...

  12. Palladium sulphide (PdS) films as a new thermoelectric sulphide compound

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Diaz-Chao, P.; Clamagirand, J.; Macia, M.D.; Ferrer, I.J.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Palladium sulphide (PdS) films have been prepared by direct sulphuration of 20 nm thick palladium films at different temperatures (200 C < T < 450 C). Sulphurated films exhibit an unique crystalline phase: PdS. Seebeck coefficient and electrical resistivity of these films are between -110 and -150 {mu}V/K and {proportional_to} 0.08 to 0.8 {omega}cm depending on the sulphuration temperature. Negative sign of Seebeck coefficient indicates an n type conduction in all films. Discussion is focused on the influence of atomic ratio between sulphur and palladium as well as impurities arising from the substrate on transport properties. (orig.)

  13. Dielectric properties of CdS nanoparticles synthesized by soft ...

    Indian Academy of Sciences (India)

    The frequency-dependent electrical data are analysed in the framework of conductivity and modulus formalisms. The frequency-dependent conductivity spectra obey the power law. Keywords. Cadmium sulphide; chemical synthesis; impedance spectroscopy; dielectric properties. PACS Nos 61.46.Df; 61.46.Hk; 81.07.Wx. 1.

  14. SR-Site - sulphide content in the groundwater at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Tullborg, E-L (Terralogica (Sweden)); Smellie, J (Conterra (Sweden)); Nilsson, A-Ch (Geosigma (Sweden)); Gimeno, M J; Auque, LF (Univ. of Zaragoza (Spain)); Bruchert, V (Stockholms Universitet (Sweden)); Molinero, J (Amphos21 (Spain))

    2010-12-15

    Sulphide concentrations in groundwater play a key role in the long-term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater.Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H{sub 2} and CH{sub 4}), and also flow and mixing of different groundwater types. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and will also limit the Fe2+ and S2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Forsmark and also to evaluate possible changes during different climatic conditions covering the repository operation period (some tens to hundreds of years), post closure conditions (some thousand of years) and the proceeding temperate period (some tens of thousands of years) which may be extended due to enhanced greenhouse effects etc. It is expected that this period will be followed by the onset of the next glaciation during which periglacial (permafrost), glacial and postglacial conditions may succeed each other. To achieve these aims, an evaluation is performed of all the sulphide-related data reported from the Forsmark site investigations /Laaksoharju et al. 2008/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) sampling are usually lower than those measured

  15. Late Jurassic ocean anoxic event: evidence from voluminous sulphide deposition and preservation in the Panthalassa

    National Research Council Canada - National Science Library

    Nozaki, Tatsuo; Kato, Yasuhiro; Suzuki, Katsuhiko

    2013-01-01

    The historically productive copper-bearing Besshi-type sulphide deposits in the Japanese accretionary complex were formed as volcanogenic massive sulphide deposits on the deep-sea floor of the Panthalassa Ocean...

  16. Cadmium sulfide membranes

    Science.gov (United States)

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  17. Recovery of Cu and Zn from Complex Sulphide Ore

    Science.gov (United States)

    Talapaneni, Trinath; Sarkar, S.; Yedla, N.; Reddy, P. L. N., Dr

    2015-02-01

    Complex Sulphide Ores are often found to be a close mutual association with each other and with the nonmetallic gangue. The beneficiation experiments showed that it would be very difficult to recover Cu and Zn from the lean complex Sulphide ores using traditional ore beneficiation methods. In the present work, leaching of complex sulfide ores in sulfuric acid was investigated by the Electro hydrometallurgy process. The lab-scale experiments were conducted to investigate the influences of pulp-density, electrolyte concentration, particle size, current density and time on recovery of Cu and Zn. The leach liquor obtained after electrolysis was subjected to Atomic Absorption Spectroscopy analysis for the recovery of minerals.

  18. Production of volatile Sulphides in Allium Porrum cell cultures

    Directory of Open Access Journals (Sweden)

    "Asghari Gh.R

    2002-09-01

    Full Text Available Production of volatile sulphides in cell cultures of Allium porrum is described. Allium porrum calluses were initiated from whole seedlings. The high growth rate of Allium porrum callus was achived in Murashige and Skoog media containing only 1 ppm 2, 4-Dichlorophenoxy acetic acid. The routine method of solvent extraction of volatile sulphides was used for Allium porrum and the concentrated extract was subjected to capillary GC and GC-MS. Dipropyl disulphide and 4-methyl thiazolethanol were identified in A. porrum aggregated suspension cells.

  19. Corrosion of copper alloys in sulphide containing district heting systems

    DEFF Research Database (Denmark)

    Thorarinsdottir, R.I.; Maahn, Ernst Emanuel

    1999-01-01

    Copper and some copper alloys are prone to corrosion in sulphide containing geothermal water analogous to corrosion observed in district heating systems containing sulphide due to sulphate reducing bacteria. In order to study the corrosion of copper alloys under practical conditions a test...... was carried out at four sites in the Reykjavik District Heating System. The geothermal water chemistry is different at each site. The corrosion rate and the amount and chemical composition of deposits on weight loss coupons of six different copper alloys are described after exposure of 12 and 18 months......, respectively. Some major differences in scaling composition and the degree of corrosion attack are observed between alloys and water types....

  20. Synthesis of TOPO-capped Nanocrystals of Copper Sulphide from a ...

    African Journals Online (AJOL)

    Nanocrystals, copper(I) sulphide, TOPO, photoluminescence, TEM, SAED. 1. Introduction. Copper sulphide is a potentially cheap and less hazardous material than CdS, CdSe and PbS but has received scant atten- tion. The synthesis of copper sulphide has been achieved from aqueous sols,1 monolayers,2 bilayer lipid ...

  1. SR-Site - sulphide content in the groundwater at Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Tullborg, E-L (Terralogica, Graabo (Sweden)); Smellie, J. (Conterra, Uppsala (Sweden)); Nilsson, A-Ch (Geosigma, Uppsala (Sweden)); Gimeno, M.J.; Auque, L.F. (Univ. of Zaragoza (Spain)); Wallin, B. (Geokema, Lidingoe (Sweden)); Bruechert, V. (Stockholm Univ. (Sweden)); Molinero, J. (Amphos21, Barcelona (Spain))

    2010-12-15

    Sulphide concentrations in groundwater play a key role in the long term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater. Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H{sub 2} and CH{sub 4}), and also flow. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and thus limit the Fe2+ and S2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Laxemar to be considered for use in (future) safety assessments. To achieve this, an evaluation is performed of all the sulphide related data reported from the Laxemar site investigations /Laaksoharju et al. 2009/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) (i.e. in situ sampling from one or more borehole sections using mobile equipment) are usually lower than those measured during the monitoring phase (i.e. in situ sampling from one borehole section using permanently installed equipment). An exception is borehole KLX01, where values generally lie within the same range as the monitoring samples. For most of the CCC and monitoring sections the last sample in the time series is suggested as representing the 'best possible' sulphide value. When both initial values from CCC (or samples taken with

  2. A general method to incorporate metal nanoparticles in zeolites and zeotypes

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure.......Disclosed herein is a method for producing a zeolite, zeolite-like or zeotype structure with selective formation of metal, metal oxide or metal sulphide nanoparticles and/or clusters inside the zeolite, zeolite-like or zeotype structure....

  3. Tolerance of benthic foraminifera (Protista : Sarcodina) to hydrogen sulphide

    NARCIS (Netherlands)

    Moodley, L.; Schaub, B.; Van der Zwaan, G.J.; Herman, P.M.J.

    1998-01-01

    Benthic foraminifera are dominant members of tb meiofauna, commonly occurring below the anoxic-oxic interface in marine sediments. The absence of oxygen in marine coastal sediments is often correlated with the formation of hydrogen sulphide. In this study the tolerance of benthic foraminifera (from

  4. Optical Properties of Lead Silver Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Lead Silver Sulphide (PbAgS) thin films on glass substrate have been deposited by chemical bath deposition technique with EDTA and TEA as complexing agents, while ammonium solution served as pH adjuster. The films were deposited at room temperature of 300K. The deposited films were characterized using UV ...

  5. Application of induced polarization method to delineate sulphide ore ...

    African Journals Online (AJOL)

    The occurrence of sulphide ore bodies in Osina area of Benue state has been reported earlier in the geology of Nigeria map, but the extent and abundance of the mineral was not known. In this work, we investigated the thickness and depth of the mineral deposit. Ground Induced Polarization (GIP) survey employing the ...

  6. Fungal-Transformation of Surrogate Sulphides and Carbonaceous ...

    African Journals Online (AJOL)

    Michael

    2017-12-02

    Dec 2, 2017 ... In the recovery of gold from refractory gold ores, pretreatment is required to decompose sulphides and liberate occluded gold before cyanidation, and to deactivate carbonaceous matter and prevent it from adsorbing dissolved gold. Until the past three decades, most commercial pretreatment processes had ...

  7. Fungal-Transformation of Surrogate Sulphides and Carbonaceous ...

    African Journals Online (AJOL)

    In the recovery of gold from refractory gold ores, pretreatment is required to decompose sulphides and liberate occluded gold before cyanidation, and to deactivate carbonaceous matter and prevent it from adsorbing dissolved gold. Until the past three decades, most commercial pretreatment processes had been by abiotic ...

  8. High-temperature biotrickling filtration of hydrogen sulphide.

    Science.gov (United States)

    Datta, Indrani; Fulthorpe, Roberta R; Sharma, Shobha; Allen, D Grant

    2007-03-01

    Biofiltration of malodorous reduced sulphur compounds such as hydrogen sulphide has been confined to emissions that are at temperatures below 40 degrees C despite the fact that there are many industrial emissions (e.g. in the pulp and paper industry) at temperatures well above 40 degrees C. This paper describes our study on the successful treatment of hydrogen sulphide gas at temperatures of 40, 50, 60 and 70 degrees C using a microbial community obtained from a hot spring. Three biotrickling filter (BTF) systems were set up in parallel for a continuous run of 9 months to operate at three different temperatures, one of which was always at 40 degrees C as a mesophilic control and the other two were for exploring high-temperature operation up to 70 degrees C. The continuous experiment and a series of batch experiments in glass bottles (250 ml) showed that addition of glucose and monosodium glutamate enhanced thermophilic biofiltration of hydrogen sulphide gas and a removal rate of 40 g m(-3) h(-1) was achieved at 70 degrees C. We suggest that the glucose is acting as a carbon source for the existing microbial community in the BTFs, whereas glutamate is acting as a compatible solute. The use of such organic compounds to enhance biodegradation of hydrogen sulphide, particularly at high temperatures, has not been demonstrated to our knowledge and, hence, has opened up a range of possibilities for applying biofiltration to hot gas effluent.

  9. Pengaruh Penggunaan Konsentrasi Amonium Sulphide pada Pewarnaan Kerajinan Logam Perak

    Directory of Open Access Journals (Sweden)

    Dwi Suheryanto

    2016-04-01

    Full Text Available Proses pewarnaan kerajinan logam perak dengan amonium sulphide dapat memberikan hasil yang memberi kesan dekoratif dan menarik, karena proses tersebut merupakan hasil reaksi antara zat tersebut dengan logam perak sebagai benda kerja.Proses pewarnaan logam perak menggunakan variasi konsentrasi ammonium sulphide 100 cc, 125 cc, dan 125 cc per 850 cc air dengan variasi waktu 5 menit; 7,5 menit; dan 10 menit. Logam perak yang digunakan perak 925 ukuran 2 x 3 cm berat 25 gram, dan teknik yang digunakan dengan cara merendam benda kerja pada larutan ammonium sulphide pada suhu 50o C.Hasil pengujian terhadap ketahanan atau perubahan warna dan ketuaan warna menunjukkan bahwa proses pewarnaan logam perak 925 pada temperatur 50o C, dengan konsentrasi 125 cc dengan waktu 7,5 menit memberikan hasil ketuaan dan ketahanan warna yang baik dengan nilai rata – rata 1 dan menimbulkan warna hitam keabu – abuan dengan nilai rata – rata 1 – 2. Kata kunci : ammonium sulphide, perak, pewarnaan

  10. Page 1 THE OXIDATION OF HYDRO GEN SULPHIDE BY ...

    Indian Academy of Sciences (India)

    to prevent the hydrolysis of iodine monochloride, the sulphur was quanti- tatively oxidised to Sulphate. Our preliminary experiments showed that as in the case of chloramine-T the products formed by the oxidation of hydrogen sulphide by potassium iodate Were Sulphur and sulphate, depending upon the pH of the system.

  11. SPECTRAL-LUMINESCENT CHARACTERISTICS OF FLUOROPHOSPHATE GLASSES ACTIVATED WITH MANGANESE AND CADMIUM SULPHIDE QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    Zhanna O. Lipatova

    2014-11-01

    Full Text Available Research and development of phosphors based on quantum dots (QD is a perspective problem of photonics. The main advantages of fluorophosphate glass with quantum dots are: high absorption coefficient, solid matrix and a broad band luminescence with high quantum efficiency of QD. Manganese ions have an intense band luminescence in the red region of the spectrum. Thus, the addition of manganese ions in the glass with quantum dots leads to a broadening of the spectrum in the long wavelength region. Such emission is closer to natural sunlight and has a high color rendering index. The work objective is the study of the spectral and luminescent properties of fluorophosphate glasses doped with manganese and CdS quantum dots. Fluorophosphate glasses (47NaPO3-30H3PO4-10Ga2O3-5ZnO-xMnS-7,5NaALF6-4,2CdS, where x = 3, 6, 8 mol. % were synthesized. The secondary heat treatment at the temperature of 430 ° C for 90 minutes has led to the growth of quantum dots in glass volume. Absorption spectra have been measured in the visible range (from 300 to 600 nm. Heat treatment has led to a shift of the fundamental absorption edge in the visible region of the spectrum. This change is due to the growth of quantum dots. Maximum intensity of luminescence is shifted to the red region of the spectrum from 620 nm to 660 nm under laser excitation at 410 nm. The maximum shift was observed in the glass with a concentration of 3 mol. % of manganese, the minimum one - in the glass with a concentration of 8 mol. %. Values of manganese ions lifetime from18 ms for a sample with a concentration of MnS 3 mol. % to15 ms for MnS 8 mol % were obtained. The decrease in the lifetime with concentration increasing of manganese ions is due to the concentration quenching of the luminescence. The growth of CdS quantum dots in the heat treatment leads to a decrease of the lifetimes to the values below 9-3 ms (3 and 8 - mol. % MnS, respectively. Obtained findings prove that fluorophosphate glasses doped with manganese and CdS quantum dots are perspective materials for phosphors in white LEDs.

  12. Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology.

    Science.gov (United States)

    Jana, T K; Maji, S K; Pal, A; Maiti, R P; Dolai, T K; Chatterjee, K

    2016-10-15

    Nanocomposites with multifunctional application prospects have already dragged accelerating interests of materials scientists. Here we present CdS/ZnO nanocomposites with different morphology engineering the precursor molar ratio in a facile wet chemical synthesis route. The materials were structurally and morphologically characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX) and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the composite structure with varying molar ratio is delineated with oriented attachment self assemble techniques. Photocatalytic activity of CdS/ZnO nanocomposites with varying morphology were explored for the degradation of rhodamine B (RhB) dye in presence of visible light irradiation and the results reveal that the best catalytic performance arises in CdS/ZnO composite with 1: 1 ratio. The antibacterial efficiency of all nanocomposites were investigated on Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia without light irradiation. Antibacterial activity of CdS/ZnO nanocomposites were studied using the bacteriological test-well diffusion agar method and results showed significant antibacterial activity in CdS/ZnO composite with 1:3 ratio. Overall, CdS/ZnO nanocomposites excel in different potential applications, such as visible light photocatalysis and antimicrobial activity with their tuneable structure. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS2 nanoparticles

    Science.gov (United States)

    Ogihara, Yusuke; Yukawa, Hiroshi; Kameyama, Tatsuya; Nishi, Hiroyasu; Onoshima, Daisuke; Ishikawa, Tetsuya; Torimoto, Tsukasa; Baba, Yoshinobu

    2017-01-01

    The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver. PMID:28059135

  14. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS2 nanoparticles

    Science.gov (United States)

    Ogihara, Yusuke; Yukawa, Hiroshi; Kameyama, Tatsuya; Nishi, Hiroyasu; Onoshima, Daisuke; Ishikawa, Tetsuya; Torimoto, Tsukasa; Baba, Yoshinobu

    2017-01-01

    The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver.

  15. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Legros, Samuel; Von der Kammer, Frank

    2012-01-01

    tests were associated to suspended TiO2 particles, respectively. μXRF (micro X-ray fluorescence) analysis confirmed the uptake of TiO2 in the gut of D. magna. For L. variegatus μXRF analysis indicated attachment of TiO2 nanoparticles to the organism surface as well as a discrete distribution within...

  16. Hydrogen sulphide and phosphine interactions with human skin in vitro.

    Science.gov (United States)

    Gaskin, Sharyn; Heath, Linda; Pisaniello, Dino; Evans, Richard; Edwards, John W; Logan, Michael; Baxter, Christina

    2017-04-01

    Accidental or intentional releases of toxic gases can have significant public health consequences and emergency resource demands. Management of exposed individuals during hazardous material incidents should be risk and evidence based, but there are knowledge gaps in relation to dermal absorption of gases and management advice for potentially exposed individuals. Using a modified Organization for Economic Co-operation and Development (OECD) in vitro toxicology protocol with human donor skin, this article reports on two common and odorous chemicals, hydrogen sulphide and phosphine. Results show that undamaged human skin provides a good barrier to hydrogen sulphide (up to 800 ppm) and phosphine (up to 1000 ppm) penetration for up to 30 min exposures, with little variability in the presence of clothing or in elevated temperature and humidity conditions. A practical guideline template for skin decontamination has been developed, and implications of the research for first responders are outlined.

  17. Optical Properties of Silver Aluminium Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Ternary thin films of Silver Aluminium Sulphide (AgAlS2) have been prepared by chemical bath deposition techniques. Aqueous solution of 41.5 mls containing AgNO3, Al2(SO4)3, thiourea and EDTA was used, where AgNO3, Al2(SO4)3, thiourea were the source of Ag+, Al+ and S- respectively and EDTA was used as a ...

  18. Sulphidation of the oceanic lithosphere: an experimental approach

    Science.gov (United States)

    Los, Catharina; Hansen, Christian; Bach, Wolfgang

    2017-04-01

    Newly formed oceanic lithosphere close to spreading centers can be influenced by fluids that feed hydrothermal vents. These fluids often carry high amounts of dissolved gases such as H2S, which can trigger precipitation of sulphide minerals in the interacting rock during percolation. This process occurs equally in exposed mantle rock, serpentinised mantle rock, troctolite or gabbro and basalt, the lithology depending on the spreading rate at the ridge where hydrothermal activity is present. These later-stage fluid-rock interactions can develop different types of sulphide mineralization in the lithosphere. In order to better understand these sulphidation reactions, we have conducted several batch experiments that placed different oceanic lithologies in contact with an H2S saturated, iron-free solution. The mixture was heated to 250°C at 400 bars and kept under these conditions for 2-8 weeks. In situ fluid and gas sampling was used to monitor reaction progress. REM-analysis of the solid products has shown the growth of euhedral pyrite and magnetite crystals as well as dissolution textures in feldspar and olivine. The presence of pyrite (gabbro experiment) and magnetite (troctolite and serpentinite) is in agreement with the measured H2- and H2S-content in the analysed fluids. These Fe-bearing minerals grew although no iron was added to the fluid, showing the replacive nature of the reaction. Geochemical modeling can be used to extend the application of these observations to different PT-conditions. Using this technique, we can start tackling the problem of replacive sulphide formation within hydrothermal discharge zones in oceanic basement of variable composition.

  19. Adsorption of hydrogen sulphide on Metal-Organic Frameworks

    NARCIS (Netherlands)

    Gutiérrez-Sevillano, J.J.; Martin-Calvo, A.; Dubbeldam, D.; Calero, S.; Hamad, S.

    2013-01-01

    Three new sets of interatomic potentials to model hydrogen sulphide (H2S) have been fitted. One of them is a 3-sites potential (which we named 3S) and the other two are 5-sites potentials (which we named 5S and 5Sd). The molecular dipole of the 3S and 5S potentials is 1.43 D, which is the value

  20. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    Science.gov (United States)

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Knowledge on possibilities of applying mineral biotechnology to treatment of Slovak sulphide ores

    Directory of Open Access Journals (Sweden)

    Štyriaková Iveta

    1997-09-01

    Full Text Available The summary of results from research aimed at possibilities to use biotechnological procedures for treatment of Slovak sulphide ores is presented in this study. The object of the research is an extraction of valuable metals, undesirable admixtures and degradation of crystallic lattice of sulphides for subsequent chemical leaching processing of precious metals. Further, the results of experiments on existence of biogenic processes in situ on waste dumps from exploitation containing residual sulphides are presented.

  2. Influence of iron valency on the magnetic susceptibility of a microbially produced iron sulphide

    Energy Technology Data Exchange (ETDEWEB)

    Marius, M S; James, P A B; Bahaj, A S; Smallman, D J [University of Southampton, School of Civil Engineering and the Environment, Southampton, SO17 1BJ (United Kingdom)

    2005-01-01

    Microbial iron sulphide is well known as an adsorbent for the treatment of metallic ion polluted wastewater. Under certain culture conditions a highly magnetic iron sulphide can be produced which would enable a low cost biomagnetic separation process to be developed. This paper illustrates that by raising the ferrous content of a ferrous - ferric sulphate rich medium the magnetic susceptibility of the iron sulphide produced is increased.

  3. Influence of iron valency on the magnetic susceptibility of a microbially produced iron sulphide.

    Science.gov (United States)

    Marius, M. S.; James, P. A. B.; Bahaj, A. S.; Smallman, D. J.

    2005-01-01

    Microbial iron sulphide is well known as an adsorbent for the treatment of metallic ion polluted wastewater. Under certain culture conditions a highly magnetic iron sulphide can be produced which would enable a low cost biomagnetic separation process to be developed. This paper illustrates that by raising the ferrous content of a ferrous - ferric sulphate rich medium the magnetic susceptibility of the iron sulphide produced is increased.

  4. Anodic stripping voltammetry of synthesized CdS nanoparticles at boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Mohammad; Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Saepudin, Endang [Department of Chemistry, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Einaga, Yasuaki [Department of Chemistry, Keio University (Japan)

    2016-04-19

    Cadmium sulphide (CdS) nanoparticles were chemically synthesized using reverse micelles microreactor methods. By using different washing treatments, UV-Vis spectroscopy showed that the absorption peaks appeared at 465 nm, 462 nm, 460 nm, and 459 nm respectively for CdS nanoparticles without and with 1, 2, and 3 times washing treatments using pure water. In comparison with the absorbance peak of bulk CdS at 512 nm, the shifted absorption peaks, indicates that the different sizes of CdS can be prepared. Anodic stripping voltammetry of the CdS nanoparticles was then studied at a boron-doped diamond electrode using 0.1 M KClO{sub 4} and 0.1 M HClO{sub 4} as the electrolytes. A scan rate of 100 mV/s with a deposition potential of -1000 mV (vs. Ag/AgCl) for 60 s at a potential scan from -1600 mV to +800 mV (vs. Ag/AgCl) was applied as the optimum condition of the measurements. Highly-accurate linear calibration curves (R{sup 2} = 0.99) in 0.1 M HClO{sub 4} with the sensitivity of 0.075 mA/mM and the limit of detection of 81 µM in 0.1 M HClO{sub 4} can be achieved, which is promising for an application of CdS nanoparticles as a label for biosensors.

  5. Recovery of zinc and cadmium from spent batteries using Cyphos IL 102 via solvent extraction route and synthesis of Zn and Cd oxide nanoparticles.

    Science.gov (United States)

    Singh, Rashmi; Mahandra, Harshit; Gupta, Bina

    2017-09-01

    The overall aim of this study is to separate and recover zinc and cadmium from spent batteries. For this purpose Cyphos IL 102 diluted in toluene was employed for the extraction and recovery of Zn and Cd from Zn-C and Ni-Cd batteries leach liquor. The influence of extractant concentration for the leach liquors of Zn-C (0.01-0.05mol/L) and Ni-Cd (0.04-0.20mol/L) batteries has been investigated. Composition of the leach liquor obtained from Zn-C/Ni-Cd spent batteries is Zn - 2.18g/L, Mn - 4.59g/L, Fe - 4.0×10-3g/L, Ni - 0.2×10-3g/L/Cd - 4.28g/L, Ni - 0.896×10-1g/L, Fe - 0.148g/L, Co - 3.77×10-3g/L, respectively. Two stage counter current extraction at A/O 1:1 and 3:2 with 0.04mol/L and 0.2mol/L Cyphos IL 102 for Zn and Cd, respectively provide more than 99.0% extraction of both the metal ions with almost negligible extraction of associated metal ions. A stripping efficiency of around 99.0% for Zn and Cd was obtained at O/A 1:1 using 1.0mol/L HNO3 in two and three counter current stages, respectively. ZnO and CdO were also synthesized using the loaded organic phase and characterized using XRD, FE-SEM and EDX techniques. XRD peaks of ZnO and CdO correspond to zincite and monteponite, respectively. The average particle size was ∼27.0nm and ∼37.0nm for ZnO and CdO, respectively. The EDX analysis of ZnO and CdO shows almost 1:1 atomic percentage. Copyright © 2017. Published by Elsevier Ltd.

  6. Calcium enhances cadmium tolerance and decreases cadmium ...

    African Journals Online (AJOL)

    These results suggest that cadmium uptake in lettuce plants is negatively associated with the presence of calcium in the culture medium, maybe due to a competition between these two cations for binding and absorption sites in roots. In conclusion, the results suggest that fertilization with Ca2+ appears to be a promising ...

  7. Prediction and optimisation of Pb/Zn/Fe sulphide scales in gas production fields

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Sarah; Orski, Karine; Menezes, Carlos; Heath, Steve; MacPherson, Calum; Simpson, Caroline; Graham, Gordon

    2006-03-15

    Lead, zinc and iron sulphide scales are known to be a particular issue with gas production fields, particularly those producing from HP/HT reservoirs. However the prediction of sulphide scale and the methodologies available for their laboratory assessment are not as well developed as those for the more conventional sulphate and carbonate scales. This work examines a particular sulphide scaling regime from a North Sea high temperature gas condensate production field containing only 0.8ppm of sulphide ions. Sulphide scales were identified in the production system which was shown to be a mixture of lead and zinc sulphide, primarily lead sulphide. This formed as a result of cooling during production resulting in the over saturation of these minerals. This paper describes scale prediction and modified laboratory test protocols used to re-create the scales formed in the field prior to chemical performance testing. From the brine composition, scale prediction identified that the major scales that could be formed were calcium carbonate, iron carbonate, iron sulphide, lead sulphide and zinc sulphide. In addition, modification of the brine compositions led to prediction of primarily one scale or the other. Given the predicted over saturation of various minerals, preliminary laboratory tests were therefore conducted in order to ensure that the scale formed under laboratory conditions was representative of the field scale. Laboratory protocols were therefore developed to ensure that the scales formed in fully anaerobic dynamic performance tests and static performance tests were similar to those encountered in the field. The paper compares results from field analysis, scale predictions and laboratory scale formation tests using newly developed test protocols and shows differences between prediction and laboratory data. The paper therefore demonstrates the importance of ensuring that the correct scale is formed under laboratory test conditions and also indicates some potential

  8. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3',5,5'-tetramethylbenzidine.

    Science.gov (United States)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri

    2015-06-30

    It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd(2+) and S(2-) ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of Molar Concentration on Optical Absorption Spectra of ZnS:Mn Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravi Sharma

    2010-01-01

    Full Text Available The present paper reports the synthesis and characterization of luminescent nanocrystals of manganese doped zinc sulphide. Nanocrystals of zinc sulphide were prepared by chemical precipitation method using the solution of zinc chloride, sodium sulphide, manganese chloride and mercaptoethanol was used as the capping agent. It was found that change in the molar concentration changes the particle size. The particle size of such nanocrystals was measured using XRD pattern and it is found to be in between 3 nm – 5 nm. The blue-shift in absorption spectra was found with reducing size of the nanoparticles

  10. Bifunctional polydopamine@Fe{sub 3}O{sub 4} core–shell nanoparticles for electrochemical determination of lead(II) and cadmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qian; Li, Maoguo, E-mail: limaoguo@mail.ahnu.edu.cn; Huang, Li; Wu, Qikang; Zhou, Yunyou, E-mail: zy161299@mail.ahnu.edu.cn; Wang, Yinling

    2013-07-17

    Highlights: •The bifunctional nanocomposites were synthesized. •A modified magnetic glassy carbon electrode was fabricated. •The electrode was used for the selective detection of Pb{sup 2+} and Cd{sup 2+} ions. •The proposed sensor features a wider linear range and higher sensitivity. -- Abstract: The present paper has focused on the potential application of the bifunctional polydopamine@Fe{sub 3}O{sub 4} core–shell nanoparticles for development of a simple, stable and highly selective electrochemical method for metal ions monitoring in real samples. The electrochemical method is based on electrochemical preconcentration/reduction of metal ions onto a polydopamine@Fe{sub 3}O{sub 4} modified magnetic glassy carbon electrode at −1.1 V (versus SCE) in 0.1 M pH 5.0 acetate solution containing Pb{sup 2+} and Cd{sup 2+} during 160 s, followed by subsequent anodic stripping. The proposed method has been demonstrated highly selective and sensitive detection of Pb{sup 2+} and Cd{sup 2+}, with the calculated detection limits of 1.4 × 10{sup −11} M and 9.2 × 10{sup −11} M. Under the optimized conditions, the square wave anodic stripping voltammetry response of the modified electrode to Pb{sup 2+} (or Cd{sup 2+}) shows a linear concentration range of 5.0–600 nM (or 20–590 nM) with a correlation coefficient of 0.997 (or 0.994). Further, the proposed method has been performed to successfully detect Pb{sup 2+} and Cd{sup 2+} in aqueous effluent.

  11. Efficient Enhancement of Electrochemiluminescence from Cadmium Sulfide Quantum Dots by Glucose Oxidase Mimicking Gold Nanoparticles for Highly Sensitive Assay of Methyltransferase Activity.

    Science.gov (United States)

    Zhou, Hong; Han, Tongqian; Wei, Qin; Zhang, Shusheng

    2016-03-01

    Herein, an original electrochemiluminescence (ECL) method for the detection of DNA methyltransferase (MTase) activity is presented based on the efficient enhanced ECL of CdS quantum dots (QDs) through catalytic generation of coreactant and energy transfer by glucose oxidase mimicking gold nanoparticles (Au NPs). Briefly, a double-stranded DNA (ds-DNA) containing the symmetric sequence of 5'-CCGG-3' was bonded to the CdS QDs modified glassy carbon electrode (GCE). After that, the electrode was incubated with M.SssI CpG MTase which catalyzed the methylation of the specific CpG dinucleotides. Subsequently, the electrode was treated with a restriction endonuclease HpaII which could recognize and cut off the 5'-CCGG-3' sequence. Once the CpG site in the 5'-CCGG-3' was methylated, the recognition function of HpaII was blocked, and it could not cut off the ds-DNA. Later, Au NPs were combined with the end of the ds-DNA section which was not cut off and has -SH groups. Therefore, the higher M.SssI MTase activity could lead to more Au NPs immobilized on ds-DNA. Au NPs could not only catalyze the oxidation of glucose with cosubstrate oxygen, producing gluconate and hydrogen peroxide (H2O2) which served as the ECL coreactant of CdS QDs, but also enhanced CdS QDs ECL via energy transfer (ET). Thus, the methylation event corresponding to the MTase activity could be monitored and amplified by this method. Finally, a logarithmic linear correlation between the ECL intensity of CdS QDs and the activity of M.SssI MTase that ranged from 1.0 to 120 U mL(-1) with the detection limit of 0.05 U mL(-1) was obtained.

  12. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    Science.gov (United States)

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions.

  13. Improved sulphate removal rates at increased sulphide concentration in the sulphidogenic bioreactor

    CSIR Research Space (South Africa)

    Greben, HA

    2005-07-01

    Full Text Available The product of the biological sulphate reduction is sulphide. High concentrations of molecular H2S(g) can be inhibitory for microbial activity, especially at a reactor pH of 6 to 7. This paper focuses on the effect of high sulphide concentrations...

  14. Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean).

    Science.gov (United States)

    García, Rosa; Holmer, Marianne; Duarte, Carlos M; Marbà, Núria

    2013-12-01

    The build-up of sulphide concentrations in sediments, resulting from high inputs of organic matter and the mineralization through sulphate reduction, can be lethal to the benthos. Sulphate reduction is temperature dependent, thus global warming may contribute to even higher sulphide concentrations and benthos mortality. The seagrass Posidonia oceanica is very sensitive to sulphide stress. Hence, if concentrations build up with global warming, this key Mediterranean species could be seriously endangered. An 8-year monitoring of daily seawater temperature, the sulphur isotopic signatures of water (δ(34)S(water)), sediment (δ(34)SCRS ) and P. oceanica leaf tissue (δ(34)S(leaves)), along with total sulphur in leaves (TS(leaves)) and annual net population growth along the coast of the Balearic archipelago (Western Mediterranean) allowed us to determine if warming triggers P. oceanica sulphide stress and constrains seagrass survival. From the isotopic S signatures, we estimated sulphide intrusion into the leaves (F(sulphide)) and sulphur incorporation into the leaves from sedimentary sulphides (SS(leaves)). We observed lower δ(34)S(leaves), higher F(sulphide) and SS(leaves) coinciding with a 6-year period when two heat waves were recorded. Warming triggered sulphide stress as evidenced by the negative temperature dependence of δ(34)S(leaves) and the positive one of F(sulphide), TS(leaves) and SS(leaves). Lower P. oceanica net population growth rates were directly related to higher contents of TS(leaves). At equivalent annual maximum sea surface water temperature (SST(max)), deep meadows were less affected by sulphide intrusion than shallow ones. Thus, water depth acts as a protecting mechanism against sulphide intrusion. However, water depth would be insufficient to buffer seagrass sulphide stress triggered by Mediterranean seawater summer temperatures projected for the end of the 21st century even under scenarios of moderate greenhouse gas emissions, A1B

  15. Porous silicon-based direct hydrogen sulphide fuel cells.

    Science.gov (United States)

    Dzhafarov, T D; Yuksel, S Aydin

    2011-10-01

    In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.

  16. Acid volatile sulphide as an indicator for sediment toxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Goyvaerts, M.P.; Brucker, N. De; Geuzens, P. [VITO, Mol (Belgium)

    1995-12-31

    The ratio SEM (Simultaneously Extracted Metals) to AVS (Acid Volatile Sulfide) is considered to be a measure for heavy metal bioavailability for benthic species. When the SEM/AVS ratio exceeds 1 heavy metal toxicity for the benthic organisms is expected. The correlation between the SEM/AVS and the toxicity for the bioluminescent bacterium Photobacterium phosphoreum is investigated. Freshwater sediments originating from different locations with high and low heavy metal contamination are tested. The toxicity test is performed according to the Solid Phase Microtox test (SPT). Unexpectedly, negative correlation between SEM/AVS and SPT toxicity was found (r = {minus}0.82, n = 44). However, sediments with a high sulphide content show a correlation between AVS and toxicity determined by SPT (r = 0.90, n = 18). Comparison with literature data and possible hypothesis for the discrepancies with the data will be presented. Additionally, a validation study concerning the AVS determination has been performed. Some of the aspects involved are: the sampling technique preserving the anoxic conditions of the sediment, the influence of the storage time and storage conditions on the AVS content of the standard conditions and the recovery of the metal sulphides used for the SEM calculation.

  17. nanoparticles

    Science.gov (United States)

    Olive-Méndez, Sion F.; Santillán-Rodríguez, Carlos R.; González-Valenzuela, Ricardo A.; Espinosa-Magaña, Francisco; Matutes-Aquino, José A.

    2014-04-01

    In this work, we present the role of vanadium ions (V+5 and V+3), oxygen vacancies (VO), and interstitial zinc (Zni) to the contribution of specific magnetization for a mixture of ZnO-V2O5 nanoparticles (NPs). Samples were obtained by mechanical milling of dry powders and ethanol-assisted milling for 1 h with a fixed atomic ratio V/Zn?=?5% at. For comparison, pure ZnO samples were also prepared. All samples exhibit a room temperature magnetization ranging from 1.18?×?10-3 to 3.5?×?10-3 emu/gr. Pure ZnO powders (1.34?×?10-3 emu/gr) milled with ethanol exhibit slight increase in magnetization attributed to formation of Zni, while dry milled ZnO powders exhibit a decrease of magnetization due to a reduction of VO concentration. For the ZnO-V2O5 system, dry milled and thermally treated samples under reducing atmosphere exhibit a large paramagnetic component associated to the formation of V2O3 and secondary phases containing V+3 ions; at the same time, an increase of VO is observed with an abrupt fall of magnetization to σ?~?0.7?×?10-3 emu/gr due to segregation of V oxides and formation of secondary phases. As mechanical milling is an aggressive synthesis method, high disorder is induced at the surface of the ZnO NPs, including VO and Zni depending on the chemical environment. Thermal treatment restores partially structural order at the surface of the NPs, thus reducing the amount of Zni at the same time that V2O5 NPs segregate reducing the direct contact with the surface of ZnO NPs. Additional samples were milled for longer time up to 24 h to study the effect of milling on the magnetization; 1-h milled samples have the highest magnetizations. Structural characterization was carried out using X-ray diffraction and transmission electron microscopy. Identification of VO and Zni was carried out with Raman spectra, and energy-dispersive X-ray spectroscopy was used to verify that V did not diffuse into ZnO NPs as well to quantify O/Zn ratios.

  18. Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system

    Energy Technology Data Exchange (ETDEWEB)

    Onwudiwe, Damian C. [Chemical Resource Beneficiation (CRB) Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Krüger, Tjaart P.J. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Oluwatobi, Oluwafemi S. [Department of Chemistry, Cape Peninsula University of Technology, Cape Town (South Africa); Strydom, Christien A., E-mail: christien.strydom@nwu.ac.za [Chemical Resource Beneficiation (CRB) Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2014-01-30

    We herein report a modified, in situ photolytic process for the nucleation and growth of cadmium sulphide nanoparticles in the presence of an optically transparent and semicrystalline polyvinyl alcohol (PVA) polymer matrix. The laser causes a localized decomposition of the precursor species in the immediate vicinity of the polymer leading to highly confined nanocrystals. The as-synthesized PVA-CdS nanocomposite were characterized using UV–vis absorption and photoluminescence spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM) and powdered X-ray diffraction (XRD). Strong blue shift in the band gap was observed in UV visible absorption spectrum indicating the size confinement. The influence of deposition temperature (25–200 °C) on the optical properties, microstructure, and thermal stability was also investigated. Thermal decomposition behaviors of these composites exhibit decreased thermal stability as indicated by the shift in the decomposition temperature of the pure PVA. XRD patterns revealed a reduction in the crystallinity of the polymer due to the entrapped particles. The nanocomposites showed the existence of both cubic and hexagonal phases.

  19. Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition

    Directory of Open Access Journals (Sweden)

    Helen R. Watling

    2015-07-01

    Full Text Available In heap bioleaching, acidophilic extremophiles contribute to enhanced metal extraction from mineral sulphides through the oxidation of Fe(II and/or reduced inorganic sulphur compounds (RISC, such as elemental sulphur or mineral sulphides, or the degradation of organic compounds derived from the ore, biota or reagents used during mineral processing. The impacts of variable solution acidity and composition, as well as temperature on the three microbiological functions have been examined for up to four bacterial species found in mineral sulphide heaps. The results indicate that bacteria adapt to sufficiently high metal concentrations (Cu, Ni, Co, Zn, As to allow them to function in mineral sulphide heaps and, by engaging alternative metabolic pathways, to extend the solution pH range over which growth is sustained. Fluctuating temperatures during start up in sulphide heaps pose the greatest threat to efficient bacterial colonisation. The large masses of ores in bioleaching heaps mean that high temperatures arising from sulphide oxidation are hard to control initially, when the sulphide content of the ore is greatest. During that period, mesophilic and moderately thermophilic bacteria are markedly reduced in both numbers and activity.

  20. What's that smell? Hydrogen sulphide transport from Bardarbunga to Scandinavia

    Science.gov (United States)

    Grahn, Håkan; von Schoenberg, Pontus; Brännström, Niklas

    2015-09-01

    On Sep 9 2014 several incidences of foul smell (rotten eggs) were reported on the coast of Norway (in particular in the vicinity of Molde) and then on Sep 10 in the interior parts of county Västerbotten, Sweden. One of the theories that were put forward was that the foul smell was due to degassing of the Bardarbunga volcano on Iceland. Using satellite images (GOME-1,-2) of the sulphur dioxide, SO2, contents in the atmosphere surrounding Iceland to estimate flux of SO2 from the volcano and an atmospheric transport model, PELLO, we vindicate this theory: we argue that the cause for the foul smell was hydrogen sulphide originating from Bardarbunga. The model concentrations are also compared to SO2 concentration measurements from Muonio, Finland.

  1. Who farted? Hydrogen sulphide transport from Bardarbunga to Scandinavia

    CERN Document Server

    Grahn, Håkan; Brännström, Niklas

    2015-01-01

    On September 9 2014 several incidences of foul smell (rotten eggs) were reported on the coast of Norway (in particular in the vicinity of Molde) and then on September 10 in the interior parts of county V\\"asterbotten, Sweden. One of the theories that were put forward was that the foul smell was due to degassing of the Bardarbunga volcano on Iceland. Using satellite images (GOME-1,-2) of the sulphur dioxide, SO_2, contents in the atmosphere surrounding Iceland to estimate flux of SO_2 from the volcano and an atmospheric transport model, PELLO, we vindicate this theory: we argue that the cause for the foul smell was hydrogen sulphide originating from Bardarbunga. The model concentrations are also compared to SO_2 concentration measurements from Muonio, Finland.

  2. Bioleaching of pollymetallic sulphide concentrate using thermophilic bacteria

    Directory of Open Access Journals (Sweden)

    Vuković Milovan

    2014-01-01

    Full Text Available An extreme thermophilic, iron-sulphur oxidising bacterial culture was isolated and adapted to tolerate high metal and solids concentrations at 70°C. Following isolation and adaptation, the culture was used in a batch bioleach test employing a 5-l glass standard magnetic agitated and aerated reactor, for the bioleaching of a copper-lead-zinc collective concentrate. The culture exhibited stable leach performance over the period of leach operation and overall copper and zinc extractions higher than 97%. Lead sulphide is transformed into lead sulphate remaining in the bioleach residue due to the low solubility in sulphate media. Brine leaching of bioleach residue yields 95% lead extraction. [Projekat Ministarstva nauke Republike Srbije, br. 34023

  3. Magmatic Controls on the Genesis of Ni-Cu-PGE Sulphide Mineralisation on Mars

    Science.gov (United States)

    Baumgartner, R. J.; Fiorentini, M.; Baratoux, D.; Micklethwaite, S.; Sener, K.; McCuaig, C.

    2014-12-01

    Widespread igneous activity, which shows striking mineralogical, petrographical and chemical similarities with terrestrial komatiites and ferropicrites, intensely affected, reshaped and buried the primordial Martian crust. This study evaluates for the first time whether the broad igneous activity on Mars may have led to the formation of orthomagmatic Ni-Cu-PGE sulphide mineralisation similar to that associated with terrestrial komatiites and ferropicrites. Particular focus is laid on two different components of the Martian Ni-Cu-PGE sulphide mineral system: 1) the potential metal and sulphur fertility of source regions, and 2) the physical/chemical processes that enable sulphide supersaturation and metal concentration into an immiscible sulphide liquid. We show that potentially metal-rich Martian mantle melts likely reach sulphide saturation within 20-35 wt% of simple silicate fractionation; a value that is comparable to that of the terrestrial equivalents (i.e. ferropicrites and komatiites). However, the majority of terrestrial world-class Ni-Cu-PGE sulphide deposits originated by the assimilation of crustal sulphur-rich country rocks, allowing the attainment of sulphide supersaturation and liquid segregation during early stages of magma evolution. The high sulphur content in Martian crustal lithologies, ranging from sulphide bearing magmatic rocks to sulphate-rich regoliths and sedimentary deposits, imply that mantle melts potentially assimilated significant amounts of crustal sulphur during their ascent and emplacement. As a main outcome we show that channelled and fluid lava flows, which potentially emplaced and incised into these sulphur-rich crustal lithologies, are the most promising systems that may have led to the formation of Ni-Cu-PGE sulphide mineralisation on Mars.

  4. Sulphide oxidation in ornamental slates: protective treatment with siloxanes

    Directory of Open Access Journals (Sweden)

    Rivas, T.

    2011-03-01

    Full Text Available In this work, we present the results of the measurement of the effectiveness of two silanes-siloxanes based products applied on roofing slates with the aim of slowing down the oxidation of the iron sulphide inclusions. The products were applied by immersion and spraying and also at different dilutions. The effectiveness of the treatments were evaluated by means of static contact angle measurements and water absorption coefficient variations; also, the durability under thermal cycles and the colour variations before treatment and before UVA exposition were tested. In all the cases, a very low product consumptions were obtained, due to the particular porous system of these rocks; also, any of the treatments increased the static angle. Nevertheless, the products tested remarkably increased the resistance of sulphides to the oxidation during thermal cycles without producing important changes in rock colour and also they have shown a good durability under UVA exposition

    En este trabajo se presentan los resultados de la medida de la eficacia de dos silanos-siloxanos aplicados en pizarras de techar con el objetivo de reducir la oxidación de las inclusiones de sulfuros de hierro. Los productos fueron aplicados por inmersión y spray a diferentes concentraciones. La efectividad de los tratamientos fue evaluada mediante la medida del ángulo de contacto estático y las variaciones del coeficiente de absorción de agua y su durabilidad mediante ciclos térmicos y de exposición a luz ultravioleta. A pesar del bajo consumo de ambos productos, debido al particular sistema poroso de estas rocas, y del bajo incremento del ángulo de contacto, ambos silanos-siloxanos incrementan notablemente la resistencia de los sulfuros a la oxidación durante los ciclos térmicos sin producir cambios relevantes en el color de la roca y muestran una aceptable durabilidad bajo la luz ultravioleta.

  5. Toxicity of cadmium to grapevine

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, D.; Ruehl, E.; Alleweldt, G.

    1985-01-01

    Cuttings of the cv. Riesling were cultivated in nutrient solutions with different amounts of cadmium. Cadmium inhibited the growth of shoot and of leaf area and produced chlorosis, necroses and leaf deformations. Old leaves showed no symptoms at all, but with high cadmium levels leaf fall occurred. The threshold of cadmium damage was beneath a level of 0.1 ppm Cd of the nutrient solution. The dry matter production of the plants was reduced by cadmium: 0.66 mg Cd/l of nutrient solution caused an inhibition of 50%. Cadmium reduced the chlorophyll content of the leaves. The transport of iron from roots to leaves was inhibited nearly completely by medium to high levels of cadmium (1.0, 3.0, 10.0 ppm). Iron was accumulated in the roots. Thus cadmium may have caused an iron deficiency chlorosis in grapevines. The uptake of cadmium showed a clear dependence on the amount of cadmium in the nutrient solution. Within the plants, decreasing amounts of cadmium were found following the pattern roots - stem - leaves.

  6. Rhizopus stolonifer mediated biosynthesis of biocompatible cadmium chalcogenide quantum dots.

    Science.gov (United States)

    Mareeswari, P; Brijitta, J; Harikrishna Etti, S; Meganathan, C; Kaliaraj, Gobi Saravanan

    2016-12-01

    We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3×10(5) cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Sulphide quinone reductase contributes to hydrogen sulphide metabolism in murine peripheral tissues but not in the CNS

    Science.gov (United States)

    Linden, DR; Furne, J; Stoltz, GJ; Abdel-Rehim, MS; Levitt, MD; Szurszewski, JH

    2012-01-01

    BACKGROUND AND PURPOSE Hydrogen sulphide (H2S) is gaining acceptance as a gaseous signal molecule. However, mechanisms regarding signal termination are not understood. We used stigmatellin and antimycin A, inhibitors of sulphide quinone reductase (SQR), to test the hypothesis that the catabolism of H2S involves SQR. EXPERIMENTAL APPROACH H2S production and consumption were determined in living and intact mouse brain, liver and colonic muscularis externa using gas chromatography and HPLC. Expressions of SQR, ethylmalonic encephalopathy 1 (Ethe1) and thiosulphate transferase (TST; rhodanese) were determined by RT-PCR and immunohistochemistry. KEY RESULTS In the colonic muscularis externa, H235S was catabolized to [35S]-thiosulphate and [35S]-sulphate, and stigmatellin reduced both the consumption of H235S and formation of [35S]-thiosulphate. Stigmatellin also enhanced H2S release by the colonic muscularis externa. In the brain, catabolism of H235S to [35S]-thiosulphate and [35S]-sulphate, which was stigmatellin-insensitive, partially accounted for H235S consumption, while the remainder was captured as unidentified 35S that was probably bound to proteins. Levels of mRNA encoding SQR were higher in the colonic muscularis externa and the liver than in the brain. CONCLUSIONS AND IMPLICATIONS These data support the concept that termination of endogenous H2S signalling in the colonic muscularis externa occurs via catabolism to thiosulphate and sulphate partially via a mechanism involving SQR. In the brain, it appears that H2S signal termination occurs partially through protein sequestration and partially through catabolism not involving SQR. As H2S has beneficial effects in animal models of human disease, we suggest that selective inhibition of SQR is an attractive target for pharmaceutical development. PMID:21950400

  8. 29 CFR 1910.1027 - Cadmium.

    Science.gov (United States)

    2010-07-01

    ... battery Plate making, plate preparation 50 All other processes 15 Zinc/Cadmium refining* Cadmium refining... as an airborne concentration of cadmium of 2.5 micrograms per cubic meter of air (2.5 µg/m3... air cadmium level to which an employee is exposed means the exposure to airborne cadmium that would...

  9. The Ioko-Dovyren layered massif (Southern Siberia, Russia): 2. Melt vs sulphide percolation process and modeling sulphide saturation in the parental magmas and original cumulates

    Science.gov (United States)

    Ariskin, Alexey; Danyushevsky, Leonid

    2013-04-01

    An important feature of the Dovyren intrusive complex [1] is its fertility due to the presence of massive sulphide ores near the bottom of the Ioko-Dovyren massif (YDM, SW and NE margins), as well as PGE-reefs in anorthosites from the Ol-gabbronorite zone in the centre [2]. These observations argue for the importance of downward percolation of sulphides through the porous space of cumulates and probable link of this process with upward migration of intercumulus melts at a post-cumulus stage. Indirectly, this is supported by the basic conclusion on the open-system behavior of the magma chamber [1]. A key aspect of these speculations is the onset of sulphide immiscibility in YDM parental magmas and the original cumulates. To reconstruct the sulphide saturation history, we applied a newly developed sulphide version of COMAGMAT (ver. 5.2 [3]) to the rocks from the chilled zone of YDM and underlying ultramafic sills, by simulating the course of their crystallization coupled with the SCSS calculations. Modeled crystallization trajectories evidence for under-saturated nature of the most primitive parental magmas (1310oC, Fo88) from which the chilled rocks were crystallized, whereas more evolved rocks from the sills demonstrate sulphide saturation starting from their initial temperature (1190oC, Fo85), see [1]. This correlates with the absence of sulphide ores in the central parts of the pluton and their occurrence in underlying ultramafics and YDM border series containing olivine Fo~85. Another set of calculations was carried out to demonstrate the effect of bulk Ni contents in Ol cumulate piles on the evolution of SCSS during their post-cumulus crystallization [3]. To achieve the goal, two calculations by the COMAGMAT-5.2 model were carried out. The first one involved modelling equilibrium crystallization for an initial mixture of Ol (Fo88) and intercumulus melt (~1320oC), with the starting composition corresponding to that of a bottom Pl-dunite (2315 ppm NiO, 0.030 wt

  10. Use of discriminant analysis to evaluate compositional controls of stratiform massive sulphide deposits in Canada

    National Research Council Canada - National Science Library

    Divi, S. R; Thorpe, R. I; Franklin, J. M

    1980-01-01

    Multiple discriminant analysis of Cu, Pb, Zn, Ag, and Au grades in Canadian stratiform massive sulphide deposits revealed that the relative grade values show a systematic variation with the geological...

  11. Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain.

    Science.gov (United States)

    Bañares-España, Elena; del Mar Fernández-Arjona, María; García-Sánchez, María Jesús; Hernández-López, Miguel; Reul, Andreas; Mariné, Mariona Hernández; Flores-Moya, Antonio

    2016-05-01

    The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S(s)) strain. An increase in size and a disrupted morphology was observed in S(r) cells in comparison to the S(s) counterpart. Phycoerythrin and phycocyanin levels were higher in the S(r) than in the S(s) cells, whereas a higher carotenoid content, per unit volume, was found in the S(s) strain. The irradiance-saturated photosynthetic oxygen-production rate (GPR max) and the photosynthetic efficiency (measured both by oxygen production and fluorescence, α(GPR) and α(ETR)) were lower in the S(r) strain than in the wild-type. These results appear to be the result of package effect. On the other hand, the S(r) strain showed higher quantum yield of non-photochemical quenching, especially those regulated mechanisms (estimated throughout qN and Y(NPQ)) and a significantly lower slope in the maximum quantum yield of light-adapted samples (Fv'/Fm') compared to the S(s) strain. These findings point to a change in the regulation of the quenching of the transition states (qT) in the S(r) strain which may be generated by a change in the distribution of thylakoidal membranes, which somehow could protect metalloenzymes of the electron transport chain from the lethal effect of sulphide.

  12. Hydrogen sulphide in cardiovascular system: A cascade from interaction between sulphur atoms and signalling molecules.

    Science.gov (United States)

    Wang, Ming-Jie; Cai, Wen-Jie; Zhu, Yi-Chun

    2016-05-15

    As a gasotransmitter, hydrogen sulphide exerts its extensive physiological and pathophysiological effects in mammals. The interaction between sulphur atoms and signalling molecules forms a cascade that modulates cellular functions and homeostasis. In this review, we focus on the signalling mechanism underlying the effect of hydrogen sulphide in the cardiovascular system and metabolism as well as the biological relevance to human diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Cadmium hazard in silver brazing.

    Science.gov (United States)

    Gan, S L; Tan, S H; Pinnagoda, J; Tan, K T

    1995-03-01

    This study evaluates the usage of cadmium-containing silver brazing alloys in Singapore and the potential cadmium hazard from its use. Of the 137 factories which responded to the survey questionnaire, only 28 (20.4%) carried out brazing. Of these, only 7 factories used cadmium-containing filler alloys. One hundred and six out of 123 workers from one of these factories had cadmium-in-blood concentrations exceeding 10 mcg/l. Thirty-one (29.2%) of the workers with excessive cadmium absorption had urinary beta-2 microglobulin levels exceeding 28 mcg/g creat. Workers in the other factories who were intermittently exposed had cadmium-in-blood concentrations of 10 mcg/l and below.

  14. Cadmium in Sweden - environmental risks

    Energy Technology Data Exchange (ETDEWEB)

    Parkman, H.; Iverfeldt, Aa. [Swedish Environmental Research Inst. (Sweden); Borg, H.; Lithner, G. [Stockholm Univ. (Sweden). Inst. for Applied Environmental Research

    1998-03-01

    This report aims at assessing possible effects of cadmium in the Swedish environment. Swedish soils and soft freshwater systems are, due to a generally poor buffering capacity, severely affected by acidification. In addition, the low salinity in the Baltic Sea imply a naturally poor organism structure, with some important organisms living close to their limit of physiological tolerance. Cadmium in soils is mobilized at low pH, and the availability and toxicity of cadmium in marine systems are enhanced at low salinity. The Swedish environment is therefore extra vulnerable to cadmium pollution. The average concentrations of cadmium in the forest mor layers, agricultural soils, and fresh-waters in Sweden are enhanced compared to `back-ground concentrations`, with a general increasing trend from the north to the south-west, indicating strong impact of atmospheric deposition of cadmium originating from the central parts of Europe. In Swedish sea water, total cadmium concentrations, and the fraction of bio-available `free` cadmium, generally increases with decreasing salinity. Decreased emissions of cadmium to the environment have led to decreasing atmospheric deposition during the last decade. The net accumulation of cadmium in the forest mor layer has stopped, and even started to decrease. In northern Sweden, this is due to the decreased deposition, but in southern Sweden the main reason is increased leakage of cadmium from the topsoil as a consequence of acidification. As a result, cadmium in the Swedish environments is undergoing an extended redistribution between different soil compartments, and from the soils to the aquatic systems. 90 refs, 23 figs, 2 tabs. With 3 page summary in Swedish

  15. Dolomite limits acidification of a biofilter degrading dimethyl sulphide

    Science.gov (United States)

    Smet; Van Langenhove H; Philips

    1999-01-01

    The applicability of dolomite particles to control acidification in a Hyphomicrobium MS3 inoculated biofilter removing dimethyl sulphide (Me2S) was studied. While direct inoculation of the dolomite particles with the liquid microbial culture was not successful, start-up of Me2S-degradation in the biofilter was observed when the dolomite particles were mixed with 33% (wt/wt) of Hyphomicrobium MS3-inoculated compost or wood bark material. Under optimal conditions, an elimination capacity (EC) of 1680 g Me2S m(-3) d(-1) was obtained for the compost/dolomite biofilter. Contrary to a wood bark or compost biofilter, no reduction in activity due to acidification was observed in these biofilters over a 235 day period because of the micro environment neutralisation of the microbial metabolite H2SO4 with the carbonate in the dolomite material. However, performance of the biofilter decreased when the moisture content of the mixed compost/dolomite material dropped below 15%. Next to this, nutrient limitation resulted in a gradual decrease of the EC and supplementation of a nitrogen source was a prerequisite to obtain a long-term high EC (> 250 g Me2S m(-3) d(-1)) for Me2S. In relation to this nitrogen supplementation, it was observed that stable ECs for Me2S were obtained when this nutrient was dosed to the biofilter at a Me2S-C/NH4Cl-N ratio of about 10.

  16. Penguins are attracted to dimethyl sulphide at sea.

    Science.gov (United States)

    Wright, Kyran L B; Pichegru, Lorien; Ryan, Peter G

    2011-08-01

    Breeding Spheniscus penguins are central place foragers that feed primarily on schooling pelagic fish. They are visual hunters, but it is unclear how they locate prey patches on a coarse scale. Many petrels and storm petrels (Procellariiformes), the penguins' closest relatives, use olfactory cues to locate prey concentrations at sea, but this has not been demonstrated for penguins. Procellariiforms are attracted to a variety of olfactory cues, including dimethyl sulphide (DMS), an organosulphur compound released when phytoplankton is grazed, as well as fish odorants such as cod liver oil. A recent study found that African penguins Spheniscus demersus react to DMS on land. We confirm this result and show that African penguins are also attracted by DMS at sea. DMS-scented oil slicks attracted 2-3 times more penguins than control slicks, whereas penguins showed no response to slicks containing cod liver oil. The number of penguins attracted to DMS increased for at least 30 min, suggesting penguins could travel up to 2 km to reach scent cues. Repeats of land-based trials confirmed previous results showing DMS sensitivity of penguins on land. Our results also support the hypothesis that African penguins use DMS as an olfactory cue to locate prey patches at sea from a distance, which is particularly important given their slow commuting speed relative to that of flying seabirds.

  17. Speciation of Dissolved Cadmium

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Andersen, Sjur; Christensen, Thomas Højlund

    1995-01-01

    Equilibrium dialysis and ion exchange methods, as well as computer calculations (GEOCHEM), were applied for speciation of dissolved cadmium (Cd) in test solutions and leachate samples. The leachate samples originated from soil, compost, landfill waste and industrial waste. The ion exchange (IE...... leachates showed different Cd speciation patterns as expected. Some leachates were dominated by free divalent Cd (1-70%), some by inorganic complexes (1-87%), and some by organic complexes (7-98%)....

  18. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    Science.gov (United States)

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  19. Cadmium in blood and hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Ki-Do; Lee, Mi-Sun [Department of Environmental Health, Graduate School of Public Health and Institute of Health and Environment, Seoul National University, Seoul (Korea, Republic of); Paek, Domyung [Department of Environmental Health, Graduate School of Public Health and Institute of Health and Environment, Seoul National University, Seoul (Korea, Republic of)], E-mail: paekdm@snu.ac.kr

    2008-12-15

    Objectives:: This study is to examine the effect of cadmium exposure on blood pressure in Korean general population. Methods:: The study population consisted of 958 men and 944 women who participated in the 2005 Korean National Health and Nutrition Examination Survey (KNHANES), in which blood pressure and blood cadmium were measured from each participant. Results:: The mean blood cadmium level was 1.67 {mu}g/L (median level 1.55). The prevalence of hypertension was 26.2%. The blood cadmium level was significantly higher among those subjects with hypertension than those without (mean level 1.77 versus 1.64 {mu}g/dL). After adjusting for covariates, the odds ratio of hypertension comparing the highest to the lowest tertile of cadmium in blood was 1.51 (95% confidence interval 1.13 to 2.05), and a dose-response relationship was observed. Systolic, diastolic, and mean arterial blood pressure were all positively associated with blood cadmium level, and this effect of cadmium on blood pressure was markedly stronger when the kidney function was reduced. Conclusions:: Cadmium exposures at the current level may have increased the blood pressure of Korean general population.

  20. Evaluation of the dimethyl sulphide distribution in the ECHAM model

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, P.; Kjellstroem, E. [Stockholm Univ. (Sweden). Dept. of Meteorology, Arrhenius Lab.; Feichter, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1997-02-01

    The three-dimensional model ECHAM has been used to simulate dimethyl sulphide (DMS) concentrations in the global troposphere. Emission of DMS from natural sources and a simple scheme for the oxidation of DMS have been introduced in the ECHAM sulphur model developed at the Max-Planck-Institute for meteorology in Hamburg. In this study we focus on the contribution to the atmospheric sulphur burden of DMS emissions from the oceans. Calculation with the ECHAM model, based on prescribed ocean water concentrations, gives a global annual oceanic emission of 13 Tg DMS-S. This figure has been adjusted to 16 Tg in order to bring it in better agreement with other estimates. The calculated turn-over time for DMS is 2.2 days globally, which is in the range of previous estimates. For DMS in the atmospheric surface layer, the agreement between simulated and observed concentrations is within a factor of {+-} 2 at low latitudes. However, in the southern hemisphere a significant overestimate of the simulated DMS occurs at high latitudes in summer and at mid and high latitudes in winter. Comparing with long-term measurements at Cape Grim and Amsterdam Island in the Southern Ocean during winter gives a difference of one order of magnitude and a factor of 3, respectively. At Drake Passage in the Antarctic Ocean during November the model predicts a factor of 5 higher concentrations than measurements performed over this area. The limited number of observations of DMS concentrations in sea-water indicates that the concentrations prescribed in the model might be nearly a factor of 2 too high in the southern hemisphere during fall, winter and spring. The results indicate the need for future model refinements with respect both to the biogenic emission and possibly also oxidants. 48 refs, 6 figs, 3 tabs

  1. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    Energy Technology Data Exchange (ETDEWEB)

    Soltanahmadi, Siavash, E-mail: s.soltanahmadi@leeds.ac.uk [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Morina, Ardian [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Eijk, Marcel C.P. van; Nedelcu, Ileana [SKF Engineering and Research Centre, 3430 DT Nieuwegein (Netherlands); Neville, Anne [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom)

    2017-08-31

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  2. Cadmium exposure in the Swedish environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report gives a thorough description of cadmium in the Swedish environment. It comprises three parts: Cadmium in Sweden - environmental risks;, Cadmium in goods - contribution to environmental exposure;, and Cadmium in fertilizers, soil, crops and foods - the Swedish situation. Separate abstracts have been prepared for all three parts

  3. Oral cadmium chloride intoxication in mice

    DEFF Research Database (Denmark)

    Andersen, O; Nielsen, J B; Svendsen, P

    1988-01-01

    Diethyldithiocarbamate (DDC) is known to alleviate acute toxicity due to injection of cadmium salts. However, when cadmium chloride was administered by the oral route, DDC enhanced rather than alleviated the acute toxicity; both oral and intraperitoneal (i.p.) administration of DDC had this effect....... Thus, orally administered DDC enhanced cadmium-induced duodenal and ileal tissue damage and inhibition of peristalsis, as indicated by an increased intestinal transit time. At low cadmium doses, the whole-body retention of cadmium was increased by oral DDC administration. Intraperitoneally administered...... DDC increased cadmium-induced acute mortality and testicular necrosis, and it enhanced cadmium-induced reduction of intestinal motility and increased the whole-body retention of cadmium, indicating increased intestinal cadmium absorption. Also, DDC changed the organ distribution of absorbed cadmium...

  4. 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse

    Energy Technology Data Exchange (ETDEWEB)

    Pouyet, E. [European Synchrotron Radiation Facility, Grenoble (France); ARC-Nucleart - CEA/Grenoble, Grenoble Cedex 9 (France); Cotte, M. [European Synchrotron Radiation Facility, Grenoble (France); LAMS (Laboratoire d' Archeologie Moleculaire et Structurale) UMR-8220, Ivry-sur-Seine (France); Fayard, B.; Salome, M.; Kieffer, J.; Burghammer, M.; Sette, F. [European Synchrotron Radiation Facility, Grenoble (France); Meirer, F. [Utrecht University, Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht (Netherlands); Mehta, A. [SLAC National Accelerator Laboratory, Stanford Synchrotron radiation Lightsource, Menlo Park, CA (United States); Uffelman, E.S. [Washington and Lee University, Department of Chemistry and Biochemistry, Lexington, VA (United States); Hull, A. [University of Delaware, Department of Chemistry and Biochemistry, Newark, DE (United States); Vanmeert, F.; Janssens, K. [University of Antwerp, AXES Research Group, Department of Chemistry, Antwerp (Belgium); Mass, J. [Winterthur Museum, Scientific Research and Analysis Laboratory, Conservation Department, Winterthur, DE (United States)

    2015-11-15

    The chemical and physical alterations of cadmium yellow (CdS) paints in Henri Matisse's The Joy of Life (1905-1906, The Barnes Foundation) have been recognized since 2006, when a survey by portable X-ray fluorescence identified this pigment in all altered regions of the monumental painting. This alteration is visible as fading, discoloration, chalking, flaking, and spalling of several regions of light to medium yellow paint. Since that time, synchrotron radiation-based techniques including elemental and spectroscopic imaging, as well as X-ray scattering have been employed to locate and identify the alteration products observed in this and related works by Henri Matisse. This information is necessary to formulate one or multiple mechanisms for degradation of Matisse's paints from this period, and thus ensure proper environmental conditions for the storage and the display of his works. This paper focuses on 2D full-field X-ray Near Edge Structure imaging, 2D micro-X-ray Diffraction, X-ray Fluorescence, and Fourier Transform Infra-red imaging of the altered paint layers to address one of the long-standing questions about cadmium yellow alteration - the roles of cadmium carbonates and cadmium sulphates found in the altered paint layers. These compounds have often been assumed to be photo-oxidation products, but could also be residual starting reagents from an indirect wet process synthesis of CdS. The data presented here allow identifying and mapping the location of cadmium carbonates, cadmium chlorides, cadmium oxalates, cadmium sulphates, and cadmium sulphides in thin sections of altered cadmium yellow paints from The Joy of Life and Matisse's Flower Piece (1906, The Barnes Foundation). Distribution of various cadmium compounds confirms that cadmium carbonates and sulphates are photo-degradation products in The Joy of Life, whereas in Flower Piece, cadmium carbonates appear to have been a [(partially) unreacted] starting reagent for the yellow paint, a

  5. Comparative study of ketoconazole versus selenium sulphide shampoo in pityriasis versicolor

    Directory of Open Access Journals (Sweden)

    Aggarwal K

    2003-03-01

    Full Text Available Forty patients suffering from pityriasis versicolor were treated with either 2% ketoconazole shampoo (20 patients or 2.5% selenium sulphide shampoo (20 patients, once a week for three weeks. On global assessment after one month of start of therapy, 19 (95% out of 20 patients treated with ketoconazole shampoo were cured while one case had mild residual disease. In selenium sulphide shampoo group, 17 (85% out of 20 patients were cured, one had mild residual disease and two had considerable residual disease. No significant difference was observed in the response rates in the two groups. Relapse occurred in one patient of ketoconazole group and two patients of selenium sulphide group during the follow - up period of three months.

  6. Microemulsion Synthesis of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gotić, M.

    2013-11-01

    Full Text Available Nanoparticles and nanomaterials have wide applications in electronics, physics, material design, being also utilized as sensors, catalysts, and more and more in biomedicine. Microemulsions are an exceptionally suitable medium for the synthesis of nanoparticles due to their thermodynamical stability, great solubility of both polar and nonpolar components, as well as their ability to control the size, dispersity and shape of the particles. This review presents microemulsion techniques for the synthesis of inorganic nanoparticles. It takes place in water-in-oil microemulsions by mixing one microemulsion with a cationic precursor, and the other with a precipitating or reducing agent, or by direct addition of reducing agents or gas (O2, NH3 ili CO2 into microemul sion (Fig. 1. Metal nanoparticles are used as catalysts, sensors, ferrofluids etc. They are produced by reducing the metal cation with a suitable reducing agent. In a similar way, one can prepare nanoparticles of alloys from the metal salts, provided that the metals are mutually soluble. The microemulsion technique is also suitable for depositing nanoparticles onto various surfaces. Highly active catalysts made from nanoparticles of Pt, Pd, Rh and other noble metals may be obtained in this way. Metal oxides and hydroxides may be prepared by hydrolysis or precipitation in the water core of microemulsion. Precipitation can be initiated by adding the base or precipitating agent into the microemulsion with water solution of metal ions. Similarly, nanoparticles may be prepared of sulphides, halogenides, cyanides, carbonates, sulphates and other insoluble metal salts. To prevent oxidation of nanoparticles, especially Fe, the particles are coated with inert metals, oxides, various polymers etc. Coating may provide additional functionality; e.g. coating with gold allows subsequent functionalization with organic compounds containing sulphur, due to the strong Au–S bond. Polymer coatings decrease

  7. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    Science.gov (United States)

    Soltanahmadi, Siavash; Morina, Ardian; van Eijk, Marcel C. P.; Nedelcu, Ileana; Neville, Anne

    2017-08-01

    Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5-10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the sulphur is enhanced. Also, ZDDP elements were clearly detected inside the crack with a varied relative concentration from the crack-mouth to the crack-tip. Sulphur is present inside the crack to a higher extent than in the bulk of the tribofilm.

  8. Treating landfill gas hydrogen sulphide with mineral wool waste (MWW) and rod mill waste (RMW).

    Science.gov (United States)

    Bergersen, Ove; Haarstad, Ketil

    2014-01-01

    Hydrogen sulphide (H2S) gas is a major odorant at municipal landfills. The gas can be generated from different waste fractions, for example demolition waste containing gypsum based plaster board. The removal of H2S from landfill gas was investigated by filtering it through mineral wool waste products. The flow of gas varied from 0.3 l/min to 3.0 l/min. The gas was typical for landfill gas with a mean H2S concentration of ca. 4500 ppm. The results show that the sulphide gas can effectively be removed by mineral wool waste products. The ratios of the estimated potential for sulphide precipitation were 19:1 for rod mill waste (RMW) and mineral wool waste (MWW). A filter consisting of a mixture of MWW and RMW, with a vertical perforated gas tube through the center of filter material and with a downward gas flow, removed 98% of the sulfide gas over a period of 80 days. A downward gas flow was more efficient in contacting the filter materials. Mineral wool waste products are effective in removing hydrogen sulphide from landfill gas given an adequate contact time and water content in the filter material. Based on the estimated sulphide removal potential of mineral wool and rod mill waste of 14 g/kg and 261 g/kg, and assuming an average sulphide gas concentration of 4500 ppm, the removal capacity in the filter materials has been estimated to last between 11 and 308 days. At the studied location the experimental gas flow was 100 times less than the actual gas flow. We believe that the system described here can be upscaled in order to treat this gas flow. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cadmium immobilization by hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Smičiklas Ivana D.

    2003-01-01

    Full Text Available The contamination of air, soil and water by cadmium is a great environmental problem. If cadmium occurs in nature in ionic form, soluble in water, it easily enters into the food chain. Hydroxyapatite (HAP, Ca-o(POAe(OH2 is a sparingly soluble salt and an excellent matrix for the removal of heavy metals from solutions. Considerable research attention has been paid to the bond between Cc/2+ ions and synthetic hydroxyapatite of known composition. The sorption mechanism is complex. The dominant process is ion exchange, but surface adsorption, surface complexation and coprecipitation can also contribute to the overall mechanism. The sorption capacity depends on the characteristics of hydroxyapatite itself and on the experimental conditions. Under optimum conditions a maximum capacity of 0.8 mol Cd2+/mol HAP can be achieved. HAP is a potential sorbent for the remediation of contaminated water and soil, for industrial waste treatment, and it is also referenced as a material that can be used as a barrier around waste depositories.

  10. Long-term effects of sulphide on the enhanced biological removal of phosphorus : The symbiotic role of Thiothrix caldifontis

    NARCIS (Netherlands)

    Rubio Rincon, F.J.; Welles, L.; Lopez Vazquez, Carlos; Nierychlo, M.; Abbas, B.A.; Geleijnse, M.A.A.; Nielsen, PH; van Loosdrecht, Mark C.M.; Brdanovic, Damir

    Thiothrix caldifontis was the dominant microorganism (with an estimated bio-volume of 65 ± 3%) in a lab-scale enhanced biological phosphorus removal (EBPR) system containing 100 mg of sulphide per litre in the influent. After a gradual exposure to the presence of sulphide, the EBPR system initially

  11. Extraction of antimony and arsenic from sulphidic concentrates

    Directory of Open Access Journals (Sweden)

    BalហPeter

    2000-09-01

    Full Text Available The efficiency of both mineral processing and extractive metallurgy of minerals depends on the separation of individual mineral components and on the exposure of their surface. The production of flotation concentrates, with particle sizes of tens of microns, is not sufficient for many hydrometallurgical processes to operate at their optimum. As a consequence, metallurgical plants require for the effective processing high temperatures and pressures and some sort of concentrate pretreatment. Mechanical activation is an innovative procedure where an improvement in hydrometallurgical processes can be attained via a combination of new surface area and formation of crystalline defects in minerals. The lowering of reaction temperatures, the increase of rate and amount of solubility, preparation of water soluble compounds, the necessity for simpler and less expensive reactors and shorter reaction times are some of the advantages of mechanical activation. The environmental aspects of these processes are particularly attractive.This paper is devoted to the examples of application of mechanochemical treatment in the processing of sulfidic concentrates. The sulphide concentrates of various origin (Peru, Chile, Slovakia were succesfully tested for antimony and arsenic extraction. The mechanochemical treatment improve the degree of recovery and the rate of leaching of both metals. Two modes of mechanochemical treatment were tested: the mechanical activation before leaching and the mechanochemical leaching which integrates mechanical activation and leaching into a common step. The flowsheet consisted of mechanochemical leaching in an attritor and further operations as filtration, cementation, antimony precipitation, crystallization and arsenic precipitation. The pilot plant unit was designed for 500 kg per day feed of tetrahedrite concentrate. For the antimony extraction, electrowinning has also been considered. The residue which is a CuAgAu concentrate was

  12. A Magnetized Nanoparticle Based Solid-Phase Extraction Procedure Followed by Inductively Coupled Plasma Atomic Emission Spectrometry to Determine Arsenic, Lead and Cadmium in Water, Milk, Indian Rice and Red Tea.

    Science.gov (United States)

    Azimi, Salameh; Es'haghi, Zarrin

    2017-06-01

    A sensitive and simple method using magnetic multi-walled carbon nanotube (MWCNTs-Fe 3 O 4 MNP), as the adsorbent, has been successfully developed for extraction and pre-concentration of arsenic, lead and cadmium with detection by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The nanosorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM). The key factors affecting the signal intensity such as pH, adsorbent amount, etc. were investigated. Under optimal conditions, the limits of detection (three-time of signal to noise ratio, S/N 3) were 0.3, 0.6, 0.3 ng/mL for arsenic, lead and cadmium, respectively. Application of the adsorbent was investigated by the analysis of water, milk, Indian rice and red tea. The experimental data was analyzed and obeyed Langmuir and Freundlich adsorption models. The kinetic data was fitted to the pseudo-second-order model. Thermodynamic studies revealed the feasibility and exothermic nature of the system.

  13. Highly Sensitive Cadmium Concentration Sensor Using Long Period Grating

    Directory of Open Access Journals (Sweden)

    A. S. Lalasangi

    2011-08-01

    Full Text Available In this paper we have proposed a simple and effective Long Period Grating chemical sensor for detecting the traces of Cadmium (Cd++ in drinking water at ppm level. Long Period gratings (LPG were fabricated by point-by-point technique with CO2 laser. We have characterized the LPG concentration sensor sensitivity for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm by injecting white Light source and observed transmitted spectra using Optical Spectrum Analyzer (OSA. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm when surrounding medium gradually changed from water to 0.04 ppm of cadmium concentrations. A comparative study has been done using sophisticated spectroscopic atomic absorption spectrometer (AAS and Inductively Coupled Plasma (ICP instruments. The spectral sensitivity enhancement was done by modifying grating surface with gold nanoparticles.

  14. Sulphide mineralization and wall-rock alteration in ophiolites and modern oceanic spreading centres

    Science.gov (United States)

    Koski, R.A.

    1983-01-01

    Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept. Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (sheeted-dike complex. Several deposits in Cyprus are confined to grabens or the hanging wall of premineralization normal faults. Polymetallic massive sulphide deposits and active hydrothermal vents at

  15. Hybrid organic/inorganic silicon-based sol-gel materials: A modification for scale-up conversion in anti-corrosion applications, and, A modification for in-situ synthesis of cadmium sulfide nanoparticles in optical applications

    Science.gov (United States)

    Tran, Tuan Thanh

    Sol-gel chemistry has been used for many years in many applications. In this thesis, an application for anti-corrosion product and a method of using sol-gel chemistry in synthesis of CdS nanoparticles are introduced. Strategies for industrial synthesis of this anti-corrosion material are also discussed. In addition, fillers and corrosion inhibitors are successfully introduced into these anti-corrosion materials to decrease producing costs while still maintaining its anti-corrosion properties. For the CdS nanopartic1es, we were able to synthesize nanoparticles with a narrow size distribution. These CdS nanopartic1es are bound tightly to the host network and have an average diameter of 1.79 nanometers. Keywords: Sol-gel, Anti-corrosion, Fillers, Inhibitors, Paint, Nanoparticles.

  16. Kinetics and mechanism of the oxidation of organic sulphides by 2,2 ...

    Indian Academy of Sciences (India)

    Unknown

    o-compounds, the contribution of delocalized effect is slightly more than that of the field effect. The oxidation of alkyl phenyl sulphides is subject to both polar and steric effects of the alkyl groups. Polar reaction constants are negative, indicating an electron-deficient sulphur centre in the rate-determining step. A mechanism ...

  17. Organosulphide profile and hydrogen sulphide-releasing activity of garlic fermented by Lactobacillus plantarum

    NARCIS (Netherlands)

    Tocmo, Restituto; Lai, Abigail Nianci; Wu, Yuchen; Liang, Dong; Fogliano, Vincenzo; Huang, Dejian

    2017-01-01

    Blanched and unblanched garlic were fermented using L. plantarum for investigation of organosulphide profiles, hydrogen sulphide-releasing activity, pH, titratable activity and microbial growth. Both raw and blanched garlic preparations allowed growth of L. plantarum with corresponding lowering of

  18. Statistical optimization of gold recovery from difficult leachable sulphide minerals using bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Hussin A.M. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Mining Engineering Dept.; El-Midany, Ayman A. [King Saud Univ., Riyadh (Saudi Arabia)

    2012-07-01

    Some of refractory gold ores represent one of the difficult processable ores due to fine dissemination and interlocking of the gold grains with the associated sulphide minerals. This makes it impossible to recover precious metals from sulphide matrices by direct cyanide leaching even at high consumption of cyanide solution. Research to solve this problem is numerous. Application of bacteria shows that, some types of bacteria have great affect on sulphides bio-oxidation and consequently facilitate the leaching process. In this paper, leaching of Saudi gold ore, from Alhura area, containing sulphides before cyanidation is studied to recover gold from such ores applying bacteria. The process is investigated using stirred reactor bio-leaching rather than heap bio-leaching. Using statistical analysis the main affecting variables under studied conditions were identified. The design results indicated that the dose of bacteria, retention time and nutrition K{sub 2}SO{sub 4} are the most significant parameters. The higher the bacterial dose and the bacterial nutrition, the better is the concentrate grade. Results show that the method is technically effective in gold recovery. A gold concentrate containing > 100 g/t gold was obtained at optimum conditions, from an ore containing < 2 g/t gold i.e., 10 ml bacterial dose, 6 days retention time, and 6.5 kg/t K{sub 2}SO{sub 4}as bacteria nutrition. (orig.)

  19. Focus on CSIR research in pollution and waste: High sulphide Concentrations tolerated by sulphate reducing bacteria

    CSIR Research Space (South Africa)

    Greben, H

    2007-08-01

    Full Text Available Acid mine drainage (AMD) is a common result of mining activities caused by bacterial oxidation of sulphide minerals (pyrite) that results in sulphate rich waste water. AMD can be treated biologically in the presence of sulphate reducing bacteria...

  20. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  1. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions.

    Science.gov (United States)

    Kim, Ha Na; Ren, Wen Xiu; Kim, Jong Seung; Yoon, Juyoung

    2012-04-21

    Exposure to even very low levels of lead, cadmium, and mercury ions is known to cause neurological, reproductive, cardiovascular, and developmental disorders, which are more serious problems for children particularly. Accordingly, great efforts have been devoted to the development of fluorescent and colorimetric sensors, which can selectively detect lead, cadmium, and mercury ions. In this critical review, the fluorescent and colorimetric sensors are classified according to their receptors into several categories, including small molecule based sensors, calixarene based chemosensors, BODIPY based chemosensors, polymer based chemosensors, DNA functionalized sensing systems, protein based sensing systems and nanoparticle based sensing systems (197 references). This journal is © The Royal Society of Chemistry 2012

  2. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  3. Nanostructure assembly of indium sulphide quantum dots and their characterization.

    Science.gov (United States)

    Vigneashwari, B; Ravichandran, V; Parameswaran, P; Dash, S; Tyagi, A K

    2008-02-01

    Nanocrystals (approximately 5 nm) of the semiconducting wide band gap material beta-In2S3 obtained by chemical synthesis through a hydrothermal route were characterized for phase and compositional purity. These nanoparticles exhibited quantum confinement characteristics as revealed by a blue-shifted optical absorption. These quantum dots of beta-In2S3 were electrically driven from a monodisperse colloidal suspension on to conducting glass substrates by Electophoretic Deposition (EPD) technique and nanostructural thin films were obtained. The crystalline and morphological structures of these deposits were investigated by X-ray diffraction and nanoscopic techniques. We report here that certain interesting nanostructural morphologies were observed in the two-dimensional quantum dot assemblies of beta-In2S3. The effect of the controlling parameters on the cluster growth and deposit integrity was also systematically studied through a series of experiments and the results are reported here.

  4. Cadmium uptake by plants

    Energy Technology Data Exchange (ETDEWEB)

    Haghiri, F.

    1973-01-01

    Absorption of /sup 115m/Cd by soybean (Gylcine max l.) plants via foliar and root systems and translocation into the seed was determined. The uptake of /sup 115m/Cd by soybeans via the root system was more efficient than that of the foliar placement. Growth and Cd concentrations of soybean and wheat (Triticum aestivum l.) tops were influenced by soil-applied Cd. In both crops, the Cd concentration of plant tops increased while yield decreased with increasing levels of applied Cd. Cadmium toxicitiy began to occur in both crops at the lowest level of soil applied Cd (2.5 ppM). With soybean plants, Cd toxicity symptoms resembled fe chlorosis. For wheat plants there were no visual symptoms other than the studied growth. The relative concentration of Cd found in several vegetable crops varied depending on the plant species. The relative Cd concentration in descending order for various vegetables was lettuce (Lactuca sativa l.) > radish top (Raphanus sativus l.) > celery stalk (Apium graveolens l.) > celery leaves greater than or equal to green pepper (Capsicum frutescens l.) > radish roots.

  5. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Sloth, Jens Jørgen; Rasmussen, Rie Romme

    In Denmark and EU the exposure of cadmium from food is at a level that is relatively close to the Tolerable Daily Intake (TDI). This report describes an investigation of the bioavailability of cadmium in selected food items known to contain high levels of cadmium. The purpose was to provide data ...... or crushed linseed nor the intake of cocoa and chocolate....

  6. DFT study of CdS-PVA film

    Science.gov (United States)

    Bala, Vaneeta; Tripathi, S. K.; Kumar, Ranjan

    2015-02-01

    Density functional theory has been applied to study cadmium sulphide-polyvinyl alcohol nanocomposite film. Structural models of two isotactic-polyvinyl alcohol (I-PVA) chains around one cadmium sulphide nanoparticle is considered in which each chain consists three monomer units of [-(CH2CH(OH))-]. All of the hydroxyl groups in I-PVA chains are directed to cadmium sulphide nanoparticle. Electronic and structural properties are investigated using ab-intio density functional code, SIESTA. Structural optimizations are done using local density approximations (LDA). The exchange correlation functional of LDA is parameterized by the Ceperley-Alder (CA) approach. The core electrons are represented by improved Troulier-Martins pseudopotentials. Densities of states clearly show the semiconducting nature of cadmium sulphide polyvinyl alcohol nanocomposite.

  7. Removal of cadmium from acidic phosphatic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Frankenfeld, K.; Brodt, P.; Eich, G.; Ruschke, P.

    1985-01-08

    The invention is concerned with a process of removing cadmium from acid, especially P/sub 2/O/sub 5/-containing solutions by liquid/liquid extraction with the aid of alkyl amine salts that are dissolved in an inert, organic solvent. The cadmium ions are removed from the acid, aqueous phase and are enriched in the organic phase. The cadmium-containing organic phase, subsequently, is re-extracted with an aqueous salt solution, with the cadmium ions migrating from the organic phase into the aqueous phase. The process is particularly suitable for extracting cadmium from concentrated, highly acid aqueous solutions.

  8. Formation and composition of cemented layers in low-sulphide mine tailings, Laver, northern Sweden

    Science.gov (United States)

    Alakangas, Lena; Öhlander, Björn

    2006-08-01

    Cemented layers (hardpans) are common in carbonate or sulphide-rich mine tailings and where pyrrhotite is the predominating Fe-sulphide. Laver, northern Sweden, is an abandoned Cu-mine where the tailings have low pyrrhotite content, almost no pyrite and no carbonates. Two cemented layers at different locations in the Laver tailings impoundment were investigated, with the aim to determine their effects on metal mobility. The cementing agents were mainly jarosite and Fe-oxyhydroxides in the layer formed where the tailings have a barren surface, whereas only Fe-oxyhydroxides were identified below grass-covered tailings surface. Arsenic was enriched in both layers which also exhibit high concentrations of Mo, V, Hg and Pb compared to unoxidised tailings. Sequential extraction indicates that these metals and As were mainly retained with crystalline Fe-oxides, and therefore potentially will be remobilised if the oxic conditions become more reducing, for instance as a result of remediation of the tailings impoundment.

  9. Selective Hydrogen Sulphide Removal from Acid Gas by Alkali Chemisorption in a Jet Reactor

    Directory of Open Access Journals (Sweden)

    Bobek Janka

    2016-10-01

    Full Text Available Natural gas is a primary energy source that contains a number of light paraffins. It also contains several undesirable components, such as water, ammonia, hydrogen sulphide, etc. In our study, a selective hydrogen sulphide removal process was achieved by alkali chemisorption in a custom-designed jet reactor. Several model gas compositions (CO2-H2S-N2 were evaluated to find parameters that enable H2S absorption instead of CO2. The negative effect of the presence of CO2 in the raw gas on the efficiency of H2S removal was observed. The beneficial effect of the low residence time (less than 1 s on the efficiency of H2S removal was recognized. Optimal operational parameters were defined to reach at least a 50% efficiency of H2S removal and minimal alkali consumption.

  10. Inkjet-printed disposable metal complexing indicator-displacement assay for sulphide determination in water.

    Science.gov (United States)

    Ariza-Avidad, M; Agudo-Acemel, M; Salinas-Castillo, A; Capitán-Vallvey, L F

    2015-05-04

    A sulphide selective colorimetric metal complexing indicator-displacement assay has been developed using an immobilized copper(II) complex of the azo dye 1-(2-pyridylazo)-2-naphthol printed by inkjetting on a nylon support. The change in colour measured from the image of the disposable membrane acquired by a digital camera using the H coordinate of the HSV colour space as the analytical parameter is able to sense sulphide in aqueous solution at pH 7.4 with a dynamic range up to 145 μM, a detection limit of 0.10 μM and a precision between 2 and 11%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Magnesium supplements affect selected cadmium toxic actions and uptake of repeated doses of cadmium

    Directory of Open Access Journals (Sweden)

    Grosicki Andrzej

    2015-12-01

    Full Text Available The importance of magnesium supplements on organ retention of cadmium and allometric parameters after repeated exposure to cadmium chloride were studied in male Wistar rats. Magnesium chloride was given via drinking water (500 mg Mg/L to rats exposed intragastrically to cadmium chloride (labelled with cadmium 109 at a daily dose corresponding to 25 mg/kg diet for 7, 14, 21, and 28 d. Supplements of magnesium temporarily decreased cadmium retention in the duodenum and liver. No significant differences in cadmium retention were evidenced in the kidneys and testicles. The supplements of magnesium also retain more of the body weight gains and restore the relative liver and testicle weight in rats intoxicated with cadmium. Comparison of the present results with earlier reports suggests a relationship between doses of magnesium and cadmium; higher doses of cadmium need more magnesium to overcome toxic action of the heavy metal.

  12. Isolation, identification and cadmium adsorption of a high cadmium ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... P. chrysosporium was used to biosorp cadmium (II), lead (II), copper (II) and the adsorption capacities reached 23.04, 69.77 and 20.33mg/g dry biomass, respectively (Say et al. 2001). The maximum experimental biosorption capacities for entrapped live and dead fungal mycelia of L. sajur-caju were found ...

  13. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Thomas, E-mail: thomas.dorin@deakin.edu.au [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia); Wood, Kathleen [Australian Nuclear Science and Technology Organisation, Bragg Institute, New South Wales, 2234, Menai (Australia); Taylor, Adam; Hodgson, Peter; Stanford, Nicole [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia)

    2016-02-15

    A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANS in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.

  14. MATHEMATICAL OPTIMIZATION METHODS TO ESTABLISH ACTIVE PHASES ON HETEROGENEOUS CATALYSIS: CASE OF BULK TRANSITION METAL SULPHIDES

    Directory of Open Access Journals (Sweden)

    Iván Machín

    2015-03-01

    Full Text Available This paper presents a set of procedures based on mathematical optimization methods to establish optimal active sulphide phases with higher HDS activity. This paper proposes a list of active phases as a guide for orienting the experimental work in the search of new catalysts that permit optimize the HDS process. Studies in this paper establish Co-S, Cr-S, Nb-S and Ni-S systems have the greatest potential to improve HDS activity.

  15. Characterization of nanocrystalline products prepared by mechanochemical reduction of copper sulphide

    DEFF Research Database (Denmark)

    Balaz, P.; Godocikova, E.; Boldizarova, E.

    2002-01-01

    The mechanochemical processing of the copper sulphide with iron in a high-energy mill was studied. The nanosized copper of 10 nm crystallite size and the hexagonal pyrrhotite 1C were identified among products of the reaction by methods of XRD and Mossbauer spectroscopy. In the surface layer...... of products after the mechanochemical processing copper in its mono- and bivalent forms was identified by XPS method....

  16. Emerging Photovoltaics: Organic, Copper Zinc Tin Sulphide, and Perovskite-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Shraavya Rao

    2016-01-01

    Full Text Available As the photovoltaics industry continues to grow rapidly, materials other than silicon are being explored. The aim is to develop technologies that use environmentally friendly, abundant materials, low-cost manufacturing processes without compromising on efficiencies and lifetimes. This paper discusses three of the emerging technologies, organic, copper zinc tin sulphide (CZTS, and perovskite-based solar cells, their advantages, and the possible challenges in making these technologies commercially available.

  17. Photocatalytic degradation of rose Bengal by semiconducting zinc sulphide used as a photocatalyst

    Directory of Open Access Journals (Sweden)

    Sharma Shweta

    2013-01-01

    Full Text Available Various semiconductors have been used as photocatalysts for removal of different dyes from their aqueous solutions. Zinc sulphide semiconductor is used in the present investigation as a photocatalyst for the removal of rose Bengal dye. Effect of different parameters, which affect the rate of reaction; like pH, concentration of dye, amount of semiconductor and light intensity have been studied. A mechanism has also been proposed in which hydroxyl radicals are shown as an active oxidizing species.

  18. Mechanochemical pretreatment and thiosulphate leaching of silver from complex sulphide concentrate

    Directory of Open Access Journals (Sweden)

    Boldižárová Eva

    2003-09-01

    Full Text Available The refractory character of complex ores and concentrates is at present one of the main problems of their metallurgical processing. The research activity in this sphere is aimed at the methods of improving the process of metal extraction from the sulphidic minerals representing the major components of these ores and concentrates.One of the sulphidics components of complex ores is tetrahedrite. It represents a compound of complicated structure containing several metals among which copper, antimony and arsenic prevail. Some deposits are aspecially rich in silver. The Peruvian complex sulphidic concentrate of provenience Casapalca is each from these rich deposits.In this study the physico-chemical transformations and leachability of silver from Peruvian sulphide concentrate mechanochemically activated by ultrafine alkaline milling in the attritor were investigated. The experiments with alkaline leaching of using samples have shown that this hydrometallurgical process represents an effective method to prepare of treated concentrate with physico-chemical means for further leaching process. Ammonium thiosulphate were used as agent for obtain of silver to leaching solution.The leaching of as-received concentrate with the alkaline thiosulphate solution afforded only 6 % Ag into leach. The use of milling in attritor as an innovation method of pretreatment brought about 57% of structure degradation of tetrahedrite as silver-bearing mineral in concentrate as well as to the increase in specific surface area from the original value 0.26 m2g-1 to the maximum value of 16 m2g-1. This pretreatment has been performed in an attritor using the method of experiment design. The physico-chemical changes had influence on the two step process of thiosulphate leaching of silver.The optimum results obtained by mechanochemical pretreatment and subsequent leaching of the concentrate with ammonium thiosulphate were achieved by using milling time 30 min and weight of sample

  19. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  20. Dimethylsulphidemia: the significance of dimethyl sulphide in extra-oral, blood borne halitosis.

    Science.gov (United States)

    Harvey-Woodworth, C N

    2013-04-01

    Halitosis is a symptom and not a diagnosis. Rather, the topic represents a spectrum of disorders, including intra-oral, otorhinolaryngological, metabolic, systemic, pulmonary, psychological and neurological conditions. Halitosis may be the third most common trigger for patients to seek dental care and can cause significant impact on patient quality of life. About 10% of all genuine halitosis cases are attributed to extra-oral processes. Some authorities have reported that the nasal cavity and the oropharynx are the most common sites of origin of extra-oral halitosis. However, recent evidence appears to suggest that blood borne halitosis may be the most common subtype of extra-oral halitosis. Tangerman and Winkel report that dimethyl sulphide was the main volatile implicated in extra-oral blood borne halitosis. They proposed a hitherto unknown metabolic condition by way of explanation for this finding, resulting in systemic presence of dimethyl sulphide in blood and alveolar breath. This paper reviews the knowledge base regarding the behaviour of dimethyl sulphide in physiological systems and those disorders in which blood borne halitosis secondary to dimethylsulphidemia is thought to have an aetiopathological role.

  1. In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems

    Science.gov (United States)

    De Wit, Rutger; Jonkers, Henk M.; Van Den Ende, Frank P.; Van Gemerden, Hans

    Laminated microbial ecosystems (microbial mats) on the island of Schiermonnikoog (The Netherlands) were studied with respect to variation in oxygen and sulphide profiles, depth distributions of photopigments and viable number and cell volume of purple sulphur bacteria. Cyanobacteria occurred in the top 2 mm, the dominant species being Microcoleus chthonoplastes. The blooming of purple sulphur bacteria below the cyanobacterial layer was observed in autumn, the dominant species being the immotile Thiocapsa roseopersicina. Cell volume of this species is indicative of its growth rate. In situ measurements showed strong diel fluctuations in oxygen and sulphide profiles. Frequently, cyanobacteria and purple sulphur bacteria were exposed to oxygen during the day, and to anoxic conditions at night. Sulphide sometimes reached the layer of the cyanobacteria. The cyanobacteria and the purple sulphur bacteria both are very well adapted to these diel fluctuations. In addition, strong seasonal variations were observed, whereas short-term fluctuations of oxygen occurred due to changing light-climate and rainfall. Attention was paid to the unusual occurrence of microbial mats on the North Sea beach during the autumn of 1987.

  2. Case studies of hydrogen sulphide occupational exposure incidents in the UK.

    Science.gov (United States)

    Jones, Kate

    2014-12-15

    The UK Health and Safety Executive has investigated several incidents of workplace accidents involving hydrogen sulphide exposure in recent years. Biological monitoring has been used in some incidents to determine the cause of unconsciousness resulting from these incidents and as a supporting evidence in regulatory enforcement. This paper reports on three case incidents and discusses the use of biological monitoring in such cases. Biological monitoring has a role in identifying hydrogen sulphide exposure in incidents, whether these are occupational or in the wider environment. Sample type, time of collection and sample storage are important factors in the applicability of this technique. For non-fatal incidents, multiple urine samples are recommended at two or more time points between the incident and 15 h post-exposure. For routine occupational monitoring, post-shift samples should be adequate. Due to endogenous levels of urinary thiosulphate, it is likely that exposures in excess of 12 ppm for 30 min (or 360 ppm/min equivalent) would be detectable using biological monitoring. This is within the Acute Exposure Guideline Level 2 (the level of the chemical in air at or above which there may be irreversible or other serious long-lasting effects or impaired ability to escape) for hydrogen sulphide. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Optimisation of light output from zinc sulphide scintillators for fast neutron radiography

    Science.gov (United States)

    Rahmanian, H.; Watterson, J. I. W.

    1998-04-01

    Fast neutron radiography (FNA) is a promising new application for small accelerators. The potential effectiveness of this technique depends on the development of suitable imaging detectors for fast neutrons. Zinc sulphide based scintillators have the largest light output per event in the family of imaging scintillators used so far in fast neutron radiography. but zinc sulphide is not transparent to its own light. This paper investigates different aspects of this scintillator in order to establish the factors affecting the light output. Zinc sulphide screens were prepared by suspending ZnS(Ag) particles at different concentration in a hydrogen rich matrix. The light output of these scintillators have been tested in fast neutron fields generated by the 7Li(p,n) 7Be and D(d,n) 3He reactions. The light output was detected using a CCD camera coupled to the scintillator screen by an optical fiber through an image intensifier. The results are presented in the form of graphs for different sets of particle sizes and concentrations. A comparison has been made with a simple theoretical model.

  4. Sulphide mineral evolution and metal mobility during alteration of the oceanic crust: Insights from ODP Hole 1256D

    Science.gov (United States)

    Patten, C. G. C.; Pitcairn, I. K.; Teagle, D. A. H.; Harris, M.

    2016-11-01

    Fluxes of metals during the hydrothermal alteration of the oceanic crust have far reaching effects including buffering of the compositions of the ocean and lithosphere, supporting microbial life and the formation of sulphide ore deposits. The mechanisms responsible for metal mobilisation during the evolution of the oceanic crust are complex and are neither fully constrained nor quantified. Investigations into the mineral reactions that release metals, such as sulphide leaching, would generate better understanding of the controls on metal mobility in the oceanic crust. We investigate the sulphide and oxide mineral paragenesis and the extent to which these minerals control the metal budget in samples from Ocean Drilling Program (ODP) Hole 1256D. The ODP Hole 1256D drill core provides a unique sample suite representative of a complete section of a fast-spreading oceanic crust from the volcanic section down to the plutonic complex. The sulphide population at Hole 1256D is divided into five groups based on mineralogical assemblage, lithological location and texture: the magmatic, metasomatised, high temperature hydrothermal, low temperature and patchy sulphides. The initiation of hydrothermal alteration by downward flow of moderate temperature (250-350 °C) hydrothermal fluids under oxidising conditions leads to metasomatism of the magmatic sulphides in the sheeted dyke and plutonic complexes. Subsequent increase in the degree of hydrothermal alteration at temperatures >350 °C under reducing conditions then leads to the leaching of the metasomatised sulphides by rising hydrothermal fluids. Mass balance calculations show that the mobility of Cu, Se and Au occurs through sulphide leaching during high temperature hydrothermal alteration and that the mobility of Zn, As, Sb and Pb is controlled by silicate rather than sulphide alteration. Sulphide leaching is not complete at Hole 1256D and more advanced alteration would mobilise greater masses of metals. Alteration of oxide

  5. Effect of periodontal therapy on sulcular sulphide level a longitudinal study.

    Science.gov (United States)

    Gleissner, Christiane; Springborn, I; Willershausen, B

    2003-01-28

    The identification of active disease sites is a leading goal in basic periodontal research. Of toxic bacterial metabolites detectable in gingival crevicular fluid, volatile sulphur compounds (VSC) have been implicated in periodontal tissue destruction. Several bacteria associated with active destructive disease are capable of producing VSC, this fact supporting the idea of sulcular VSC being a possible marker of disease activity. A new portable sulphide monitor providing chairside information on sulcular sulphide level (SU) has been developed. The aim of this study was 1) to monitor the effect of mechanical therapy on SU and clinical parameters and 2) to clarify whether SU-measurements might have the potential to detect disease activity. 34 patients (22 M, 12 F) with generalized or localized chronic periodontitis received periodontal treatment in a private practice consisting of an oral hygiene phase (HP) lasting several weeks, scaling and root planing (SRP), and flap surgery at sites >5 mm or with furcation involvement. Subjects were examined three times (1 week after the diagnosis was made, at the end of HP and at the 1st maintenance session 3 months after SRP) recording clinical parameters (clinical attachment loss CAL, probing depth PD, bleeding on probing intensity BI, plaque index PI) and sulcular sulphide level (SU) measured by the portable monitor as as digital score ranging from 0.0 (Periodontal therapy resulted in a significant reduction of mean BI by 0.69 +/- 0.45, of mean PD by 1.39 +/- 0.33 mm and in a mean gain of attachment of 1.07 +/- 0.38 mm (p = 0.0001). The clinical improvement was accompanied by a reduction of mean SU by 0.20 +/- 0.13 and of the mean percentage of SU-positive sites per patient (SUp) by 20.09 +/- 13. SU-positive sites were located at all types of teeth. 67.9 % of SU-positive sites and 83.8 % of sites with a SU > 1 were found at the molars. 16.1 % of initially 579 SU-positive sites remained SU-positive. For these sites, BI

  6. Liquid-liquid interfacial nanoparticle assemblies

    Science.gov (United States)

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  7. Experimental study of Ni solubility in sulphidic groundwater and cement water under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, T.; Vuorinen, U.; Kekki, T.; Aalto, H. [VTT Chemical Technology, Espoo (Finland)

    2001-06-01

    The nickel solubility was studied during a 177-day period under anoxic conditions in three types of waters: a synthetic reference groundwater (OL-SR), a natural Olkiluoto groundwater (PVA2), and a cement-conditioned groundwater (C-PVA2). To each water, nickel, ferrous iron and sulphide were added yielding eight combinations of, approximately, the following initial concentrations: nickel: 1.0x10{sup -6} and 1.0x10{sup -3} mol/L, ferrous iron: 1.8 10{sup -6} and 1.8x10{sup -5} mol/L, and sulphide: 3.1x10{sup -6} and 9.4x10{sup -5} mol/L. The concentrations of these elements in the natural groundwater PVA2 as well as in the cement-conditioned water C-PVA2 was insignificant. In the synthetic water, the nickel concentration was unchanged in all samples having a high initial nickel concentration of 1.0x10{sup -3} mol/L. In the samples with an initial low nickel concentration of 1.0x10{sup -6} mol/L, the sulphide content determined the final nickel concentration. Where the initial sulphide concentration was low, the nickel concentration remained at the level of 1.0x10{sup -6} mol/L, but the higher sulphide concentration caused the nickel concentration to drop to below 10{sup -8} mol/L. In the natural groundwater PVA2, the nickel concentration dropped to below 10{sup -4} mol/L in all samples with an initially high nickel concentration, and to values of roughly 10{sup -7} mol/L in samples with an initially low nickel content. In the cement-conditioned water, the nickel concentration reached a value of 3x10{sup -6} mol/L in samples with initial high nickel concentrations, and to a value of 1x10{sup -7} mol/L in samples with a low initial nickel content. The added amounts of iron and sulphide did not have any significant effect on the observed nickel solubility. The solid phases formed in the natural and synthetic groundwater were analyzed by XRD but could not be identified. In the case of cement-conditioned water the XRD analyses showed the presence of Ni(OH){sub 2} as well

  8. Mechanisms of cadmium induced genomic instability

    Energy Technology Data Exchange (ETDEWEB)

    Filipic, Metka, E-mail: metka.filipic@nib.si [National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana (Slovenia)

    2012-05-01

    Cadmium is an ubiquitous environmental contaminant that represents hazard to humans and wildlife. It is found in the air, soil and water and, due to its extremely long half-life, accumulates in plants and animals. The main source of cadmium exposure for non-smoking human population is food. Cadmium is primarily toxic to the kidney, but has been also classified as carcinogenic to humans by several regulatory agencies. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Cadmium dose not induce direct DNA damage, however it induces increase in reactive oxygen species (ROS) formation, which in turn induce DNA damage and can also interfere with cell signalling. More important seems to be cadmium interaction with DNA repair mechanisms, cell cycle checkpoints and apoptosis as well as with epigenetic mechanisms of gene expression control. Cadmium mediated inhibition of DNA repair mechanisms and apoptosis leads to accumulation of cells with unrepaired DNA damage, which in turn increases the mutation rate and thus genomic instability. This increases the probability of developing not only cancer but also other diseases associated with genomic instability. In the in vitro experiments cadmium induced effects leading to genomic instability have been observed at low concentrations that were comparable to those observed in target organs and tissues of humans that were non-occupationally exposed to cadmium. Therefore, further studies aiming to clarify the relevance of these observations for human health risks due to cadmium exposure are needed.

  9. Photography - Determination of thiosulphate and other residual chemicals in processed photographic films, plates and papers - Methylene blue photometric method and silver sulphide densitometric method

    CERN Document Server

    International Organization for Standardization. Geneva

    1977-01-01

    Photography - Determination of thiosulphate and other residual chemicals in processed photographic films, plates and papers - Methylene blue photometric method and silver sulphide densitometric method

  10. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Chunsheng; Jiang, Wei; Ma, Ning; Zhu, Yinglian; Dong, Xiaoyan; Wang, Dongfeng; Meng, Xianghong; Xu, Ying

    2014-03-01

    Bioaccumulation via growing cells is a potential technique for heavy metal removal from food materials. The cadmium bioaccumulation characteristics by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae were investigated. Z. rouxii displayed powerful cadmium removal ability at low cadmium concentrations, which mainly depended on the intracellular cadmium bioaccumulation. The percentage of intracellular cadmium bioaccumulation of both yeasts obviously decreased with the increase of initial biomass and cadmium concentrations. Low pH and elevated concentrations of zinc and copper significantly decreased the intracellular cadmium bioaccumulation of both yeasts but improved the cadmium tolerance and the cell-surface cadmium bioaccumulation of Z. rouxii. Cadmium removal of Z. rouxii was improved by zinc and copper conditionally. Z. rouxii that possessed more powerful cadmium tolerance and removal ability at low pH and high concentration of competing ions can be developed into a potential cadmium removal agent using in complex food environment in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Modification of surfaces of silver nanoparticles for controlled deposition of silicon, manganese, and titanium dioxides

    Science.gov (United States)

    Apostolova, Tzveta; Obreshkov, B. D.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Mel'nik, N. N.; Rudenko, A. A.

    2018-01-01

    In this work we show that nanometric-thick layers of SiO2, MnO2, and TiO2 may be effectively deposited on various silver nanoparticles (including cubic Ag nanoparticles) covered by a very thin (below 0.4 nm) layer of silver sulphide. The background in Raman measurements generated by sulphide-protected Ag nanoparticles is significantly smaller than that for analogous Ag nanoparticles protected by a monolayer formed from alkanethiols - depositing alkanethiols on a surface of anisotropic silver nanoparticles is the current standard method used for protecting a surface of Ag nanoparticles before depositing a layer of silica. Because of significantly smaller generated Raman background, Ag@SiO2 nanostructures with an Ag2S linkage layer between the silver core and the silica shell are very promising low-background electromagnetic nanoresonators for carrying out Raman analysis of various surfaces - especially using what is known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Sample SHINERS analyses of various surfaces (including pesticide-contaminated surfaces of tomatoes) using cubic-Ag@SiO2 nanoparticles as electromagnetic nanoresonators are also presented.

  12. Cadmium content of plants as affected by soil cadmium concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lehoczky, E. [Pannon Univ. of Agricultural Sciences, Keszthely (Hungary); Szabados, I.; Marth, P. [Plant Health and Soil Conservation Station, Higany (Hungary)

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With the same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.

  13. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities

    Science.gov (United States)

    Richter, Patricia; Faroon, Obaid; Pappas, R. Steven

    2017-01-01

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs. PMID:28961214

  14. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities.

    Science.gov (United States)

    Richter, Patricia; Faroon, Obaid; Pappas, R Steven

    2017-09-29

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs.

  15. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities

    Directory of Open Access Journals (Sweden)

    Patricia Richter

    2017-09-01

    Full Text Available Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs.

  16. Relations between liver cadmium, cumulative exposure, and renal function in cadmium alloy workers.

    OpenAIRE

    Mason, H. J.; Davison, A G; Wright, A. L.; Guthrie, C J; Fayers, P M; Venables, K M; Smith, N J; Chettle, D R; Franklin, D M; Scott, M. C.

    1988-01-01

    Detailed biochemical investigations of renal function were made on 75 male workers exposed to cadmium and an equal number of referents matched for age, sex, and employment status. The exposed group consisted of current and retired workers who had been employed in the manufacture of copper-cadmium alloy at a single factory in the United Kingdom for periods of up to 39 years and for whom cumulative cadmium exposure indices could be calculated. In vivo measurements of liver and kidney cadmium bu...

  17. Cadmium resistance in Drosophila: a small cadmium binding substance

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K.B.; Williams, M.W.; Richter, L.J.; Holt, S.E.; Hook, G.J.; Knoop, S.M.; Sloop, F.V.; Faust, J.B.

    1985-01-01

    A small cadmium-binding substance (CdBS) has been observed in adult Drosophila melanogaster that were raised for their entire growth cycle on a diet that contained 0.15 mM CdCl/sub 2/. Induction of CdBS was observed in strains that differed widely in their sensitivity of CdCl/sub 2/. This report describes the induction of CdBS and some of its characteristics. 17 refs., 4 figs., 1 tab.

  18. [Effects of cadmium on testis function].

    Science.gov (United States)

    Martynowicz, Helena; Skoczyńska, Anna; Karczmarek-Wdowiak, Beata; Andrzejak, Ryszard

    2005-01-01

    The deterioration of male fertility, reported in numerous epidemiological studies over past decades, can be connected with growing exposure to environmental toxins. Heavy metals, especially cadmium, is widely spread and extremely toxic. The mechanisms of cadmium toxic effects vary and involve the damage of vascular endothelium, intracellular junctions, germ cells, Leydig and Sertoli cells. Cadmium can increase activity of reactive oxygen species and induce changes in activity of enzymatic systems and inflammatory reactions. The morphological changes caused by cadmium included the necrosis of seminiferous tubiles and interstitial edema. This metal can reduce testosterone synthesis at various levels and deteriorate spermatogenesis. Cadmium is also acknowledged carcinogen with confirmed mutagenic and genotoxic activity. Increasing environmental exposure to cadmium, currently existing occupational exposure and the prevalence of tobacco smoking results in constant increase in the number of diagnosed fertility impairments.

  19. Ligandless surfactant mediated solid phase extraction combined with Fe₃O₄ nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy.

    Science.gov (United States)

    Jalbani, N; Soylak, M

    2014-04-01

    In the present study, a microextraction technique combining Fe3O4 nano-particle with surfactant mediated solid phase extraction ((SM-SPE)) was successfully developed for the preconcentration/separation of Cd(II) and Pb(II) in water and soil samples. The analytes were determined by flame atomic absorption spectrometry (FAAS). The effective variables such as the amount of adsorbent (NPs), the pH, concentration of non-ionic (TX-114) and centrifugation time (min) were investigated by Plackett-Burman (PBD) design. The important variables were further optimized by central composite design (CCD). Under the optimized conditions, the detection limits (LODs) of Cd(II) and Pb(II) were 0.15 and 0.74 µg/L, respectively. The validation of the proposed procedure was checked by the analysis of certified reference materials of TMDA 53.3 fortified water and GBW07425 soil. The method was successfully applied for the determination of Cd(II) and Pb(II) in water and soil samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3′,5,5′-tetramethylbenzidine

    Energy Technology Data Exchange (ETDEWEB)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri, E-mail: vpavlov@cicbiomagune.es

    2015-06-30

    Highlights: • The light-powered nanosensor fabricated by enzymatic reactions was reported. • The sensor use energy of photons for oxidation of chromogenic enzymatic substrates. • Enzymatic assays for glucose oxidase and glutathione reductase were developed. - Abstract: It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd{sup 2+} and S{sup 2−} ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound.

  1. Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment.

    Science.gov (United States)

    González-Camejo, J; Serna-García, R; Viruela, A; Pachés, M; Durán, F; Robles, A; Ruano, M V; Barat, R; Seco, A

    2017-11-01

    Microalgae cultivation appears to be a promising technology for treating nutrient-rich effluents from anaerobic membrane bioreactors, as microalgae are able to consume nutrients from sewage without an organic carbon source, although the sulphide formed during the anaerobic treatment does have negative effects on microalgae growth. Short and long-term experiments were carried out on the effects of sulphide on a mixed microalgae culture. The short-term experiments showed that the oxygen production rate (OPR) dropped as sulphide concentration increased: a concentration of 5mgSL -1 reduced OPR by 43%, while a concentration of 50mgSL -1 came close to completely inhibiting microalgae growth. The long-term experiments revealed that the presence of sulphide in the influent had inhibitory effects at sulphide concentrations above 20mgSL -1 in the culture, but not at concentrations below 5mgSL -1 . These conditions favoured Chlorella growth over that of Scenedesmus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Electrodialytic Removal of Cadmium from Straw Ash

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne

    1999-01-01

    A problem with flyash from straw and wood combustion is the high level of heavy metals, especially cadmium. Two electrodialytic remediation experiments were carried out on cadmium polluted flyash from straw combustion. The flyash could be cleaned to 1/3 of its initial level after 24 days of remed......A problem with flyash from straw and wood combustion is the high level of heavy metals, especially cadmium. Two electrodialytic remediation experiments were carried out on cadmium polluted flyash from straw combustion. The flyash could be cleaned to 1/3 of its initial level after 24 days...

  3. Interplay of calcium and cadmium in mediating cadmium toxicity.

    Science.gov (United States)

    Choong, Grace; Liu, Ying; Templeton, Douglas M

    2014-03-25

    The environmentally important toxic metal, cadmium, exists as the Cd(2+) ion in biological systems, and in this state structurally resembles Ca(2+). Thus, although cadmium exerts a broad range of adverse actions on cells by virtue of its propensity to bind to protein thiol groups, it is now well appreciated that Cd(2+) participates in a number of Ca(2+)-dependent pathways, attributable to its actions as a Ca(2+) mimetic, with a central role for calmodulin, and the Ca(2+)/calmodlin-dependent protein kinase II (CaMK-II) that mediates effects on cytoskeletal dynamics and apoptotic cell death. Cadmium interacts with receptors and ion channels on the cell surface, and with the intracellular estrogen receptor where it binds competitively to residues shared by Ca(2+). It increases cytosolic [Ca(2+)] through several mechanisms, but also decreases transcript levels of some Ca(2+)-transporter genes. It initiates mitochondrial apoptotic pathways, and activates calpains, contributing to mitochondria-independent apoptosis. However, the recent discovery of the role CaMK-II plays in Cd(2+)-induced cell death, and subsequent implication of CaMK-II in Cd(2+)-dependent alterations of cytoskeletal dynamics, has opened a new area of mechanistic cadmium toxicology that is a focus of this review. Calmodulin is necessary for induction of apoptosis by several agents, yet induction of apoptosis by Cd(2+) is prevented by CaMK-II block, and Ca(2+)-dependent phosphorylation of CaMK-II has been linked to increased Cd(2+)-dependent apoptosis. Calmodulin antagonism suppresses Cd(2+)-induced phosphorylation of Erk1/2 and the Akt survival pathway. The involvement of CaMK-II in the effects of Cd(2+) on cell morphology, and particularly the actin cytoskeleton, is profound, favouring actin depolymerization, disrupting focal adhesions, and directing phosphorylated FAK into a cellular membrane. CaMK-II is also implicated in effects of Cd(2+) on microtubules and cadherin junctions. A key question for

  4. Anaerobic ciliates from a sulphide-rich solution lake in Spain.

    Science.gov (United States)

    Finlay, B J; Clarke, K J; Vicente, E; Miracle, M R

    1991-06-21

    We have examined and quantified the anaerobic ciliates living in the hypolimnion of a 14 m deep sulphide-rich (up to 0.73 mM) solution lake in Spain. At least seven ciliate species were found, numbering up to 50 ml-1 in total and reaching maximum abundance close to the sediment. Caenomorpha medusula, Lacrymaria elegans, L. sapropelica and Lagynus sp. were the most abundant species. Their vertical distributions were not related to the sulphide profile. Most ciliates were dependent on the sedimentation of cryptomonads, photosynthetic bacteria (especially Chromatium and Oscillatoria) and other bacteria from their sites of production in closely-juxtaposed mid-water plates. All anaerobic ciliates contained at least one type of symbiotic bacterium which showed methanogen autofluorescence. C. medusula, Lagynus sp. and Lacrymaria sapropelica also contained a large, non-fluorescing rod-shaped bacterium. In C. medusula, the methanogens and the non-fluorescing rods were both attached to the hydrogenosomes. In this ciliate alone, a third bacterial type was attached to the external ventral surface of the ciliate. Digestion of sulphide-oxidising bacteria by ciliates which harbour methanogenic bacteria provides a short bridge between the anaerobic sulphur and carbon cycles. Theoretical considerations of the rate of ciliate consumption of microbial carbon in the anoxic hypolimnion indicate that it is significant and that it may amount to 4 × 10(-5) g cm(-2)d(-1). Copyright © 1991 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  5. n-TiO{sub 2} and CdCl{sub 2} co-exposure to titanium dioxide nanoparticles and cadmium: Genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax)

    Energy Technology Data Exchange (ETDEWEB)

    Nigro, M.; Bernardeschi, M. [Department of Clinical and Experimental Medicine, Pisa University, Pisa (Italy); Costagliola, D. [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta (Italy); Della Torre, C. [Department of Physical, Earth and Environmental Sciences, University of Siena, Siena (Italy); Frenzilli, G., E-mail: giada@biomed.unipi.it [Department of Clinical and Experimental Medicine, Pisa University, Pisa (Italy); Guidi, P.; Lucchesi, P. [Department of Clinical and Experimental Medicine, Pisa University, Pisa (Italy); Mottola, F.; Santonastaso, M. [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta (Italy); Scarcelli, V. [Department of Clinical and Experimental Medicine, Pisa University, Pisa (Italy); Monaci, F.; Corsi, I. [Department of Physical, Earth and Environmental Sciences, University of Siena, Siena (Italy); Stingo, V.; Rocco, L. [Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta (Italy)

    2015-11-15

    Highlights: • European sea bass was exposed to CdCl{sub 2} and n-TiO{sub 2} alone and in combination. • Genotoxicity was evaluated by RAPD-assay, comet assay and cytome assay. • CdCl{sub 2} induced DNA primary damage but not chromosomal damage. • n-TiO{sub 2} induced chromosomal damage but not DNA primary damage. • Co-exposure effects depend on the biomarker used. - Abstract: Due to the large production and growing use of titanium dioxide nanoparticles (n-TiO{sub 2}), their release in the marine environment and their potential interaction with existing toxic contaminants represent a growing concern for biota. Different end-points of genotoxicity were investigated in the European sea bass Dicentrarchus labrax exposed to n-TiO{sub 2} (1 mg L{sup −1}) either alone and combined with CdCl{sub 2} (0.1 mg L{sup −1}) for 7 days. DNA primary damage (comet assay), apoptotic cells (diffusion assay), occurrence of micronuclei and nuclear abnormalities (cytome assay) were assessed in peripheral erythrocytes and genomic stability (random amplified polymorphism DNA-PCR, RAPD assay) in muscle tissue. Results showed that genome template stability was reduced after CdCl{sub 2} and n-TiO{sub 2} exposure. Exposure to n-TiO{sub 2} alone was responsible for chromosomal alteration but ineffective in terms of DNA damage; while the opposite was observed in CdCl{sub 2} exposed specimens. Co-exposure apparently prevents the chromosomal damage and leads to a partial recovery of the genome template stability.

  6. A Study of Substituted Aliphatic Sulphides on the Corrosion Behaviour of Zinc in Ammonium Chloride Solution

    Directory of Open Access Journals (Sweden)

    R. Venckatesh

    2007-01-01

    Full Text Available Sulphur containing organic compounds decreases the corrosion rate by increasing the hydrogen over potential on zinc metal due to their electron donating groups. Their inhibiting effect was found to be associated with their adsorption on the active centers of the metal. The inhibition efficiencies of some aliphatic sulphides in ammonium chloride solution have been studied by weight loss studies, polarization and impedance measurements. The effect of substituent groups is correlated with their inhibition performance. These studies due to their relevance in Zn-Manganese dry batteries assume their importance.

  7. Characterization of recycled rubber media for hydrogen sulphide (H2S) control.

    Science.gov (United States)

    Wang, Ning; Park, Jaeyoung; Evans, Eric A; Ellis, Timothy G

    2014-01-01

    Hydrogen sulphide (H2S) adsorption capacities on recycled rubber media, tyre-derived rubber particle (TDRP), and other rubber material (ORM) have been evaluated. As part of the research, densities, moisture contents, and surface properties of TDRP and ORM have been determined. The research team findings show that TDRP and ORM are more particulate in nature and not highly porous-like activated carbon. The characteristics of surface area, pore size, and moisture content support chemisorption on the macrosurface rather than physical adsorption in micropores. For example, moisture content is essential for H2S adsorption on ORM, and an increase in moisture content results in an increase in adsorption capacity.

  8. Pressure-induced phase transition of nanocrystalline iron sulphide coated by polyvinyl alcohol

    CERN Document Server

    Gao Wei; Kan-Shihai; Pan Yue Wu; Wang Xin; Zou Guang Tian; LiuJing

    2002-01-01

    Nanocrystalline iron sulphide (FeS) coated with polyvinyl alcohol, with particle size ranging from several to several tens of nanometres, has been prepared by the chemical precipitation synthesis method. The phase transition of FeS has been investigated by using in situ high-pressure diffraction with synchrotron radiation at pressures up to 42.5 GPa. Most of the diffraction lines are broadened and weakened. At the pressure of 11.8 GPa, a new phase transition was observed. However, only eleven x-ray reflections were recorded under high pressure; the crystal structure is unknown.

  9. Self-assembly and alignment of semiconductor nanoparticles on cellulose nanocrystals

    Science.gov (United States)

    Sonal Padalkar; Jeff R. Capadona; Stuart J. Rowan; Christoph Weder; Robert J. Moon; Lia A. Stanciu

    2011-01-01

    The synthesis of cadmium sulfide (CdS), zinc sulfide (ZnS), and lead sulfide (PbS) nanoparticle chains on cellulose nanocrystal (CNC) templates can be accomplished by the reaction of the precursor salts. The use of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was critical for the synthesis of well-defined semiconductor nanoparticle chains on the...

  10. Application of lithogeochemistry in the assessment of nickel-sulphide potential in komatiite belts from northern Finland and Norway

    Directory of Open Access Journals (Sweden)

    G.J. Heggie

    2013-12-01

    Full Text Available This study tests the application of chalcophile elements such as nickel, copper and the platinum-group elements as indicators of nickel-sulphide prospectivity in komatiites from terranes of the Karelian Craton in northern Finland and Norway. Major element abundances reflect volcanic processes associated with the emplacement dynamics of ultramafic lavas, whereas the variable chalcophile element concentrations record the ore-forming process, mainly as an anomalous metal depletion and enrichment relative to the calculated background. Geochemical data from this study indicate that Paleoproterozoic komatiites in the Pulju Greenstone Belts and Archean komatiites in the Enontekiö area are prospective for nickel-sulphide mineralisation. Conversely, on the basis of the present dataset, ultramafic rocks from the Palaeoproterozoic Karasjok Greenstone Belt display lower prospectivity for nickel-sulphides, although potential exists if high-volume flow conduits and channels within the large volcanic flow field could be identified.

  11. Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications

    DEFF Research Database (Denmark)

    Demetriou, Giorgos; Berube, Jean-Philippe; Vallee, Real

    2016-01-01

    The powerful ultrafast laser inscription technique is used to fabricate optical waveguides in gallium lanthanum sulphide substrates. For the first time the refractive index profile and the dispersion of such ultrafast laser inscribed waveguides are experimentally measured. In addition the Zero...... in gallium lanthanum sulphide glasses for near and mid-IR applications. (C) 2016 Optical Society of America...

  12. Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada

    Science.gov (United States)

    Lode, Stefanie; Piercey, Stephen J.; Layne, Graham D.; Piercey, Glenn; Cloutier, Jonathan

    2017-01-01

    Metalliferous sedimentary rocks (mudstones, exhalites) associated with the Cambrian precious metal-bearing Lemarchant Zn-Pb-Cu-Au-Ag-Ba volcanogenic massive sulphide (VMS) deposit, Tally Pond volcanic belt, precipitated both before and after VMS mineralization. Sulphur and Pb isotopic studies of sulphides within the Lemarchant exhalites provide insight into the sources of S and Pb in the exhalites as a function of paragenesis and evolution of the deposit and subsequent post-depositional modification. In situ S isotope microanalyses of polymetallic sulphides (euhedral and framboidal pyrite, anhedral chalcopyrite, pyrrhotite, galena and euhedral arsenopyrite) by secondary ion mass spectrometry (SIMS) yielded δ34S values ranging from -38.8 to +14.4 ‰, with an average of ˜ -12.8 ‰. The δ34S systematics indicate sulphur was predominantly biogenically derived via microbial/biogenic sulphate reduction of seawater sulphate, microbial sulphide oxidation and microbial disproportionation of intermediate S compounds. These biogenic processes are coupled and occur within layers of microbial mats consisting of different bacterial/archaeal species, i.e., sulphate reducers, sulphide oxidizers and those that disproportionate sulphur compounds. Inorganic processes or sources (i.e., thermochemical sulphate reduction of seawater sulphate, leached or direct igneous sulphur) also contributed to the S budget in the hydrothermal exhalites and are more pronounced in exhalites that are immediately associated with massive sulphides. Galena Pb isotopic compositions by SIMS microanalysis suggest derivation of Pb from underlying crustal basement (felsic volcanic rocks of Sandy Brook Group), whereas less radiogenic Pb derived from juvenile sources leached from mafic volcanic rocks of the Sandy Brook Group and/or Tally Pond group. This requires that the hydrothermal fluids interacted with juvenile and evolved crust during hydrothermal circulation, which is consistent with the existing

  13. Fundamental Studies on the Electrochemical Behaviour of Carbon Steel Exposed in Sulphide and Sulphate-Reducing Environments

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies and for recommendati......The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies...

  14. Structure identification and optical and electrical properties of cuprous sulphide layers in relation with solar energy application

    Energy Technology Data Exchange (ETDEWEB)

    Arjona, F.; Elizalde, E.; Garcia-Camarero, E.; Feu, A.; Lacal, B.; Leon, M.; Llabres, J.; Rueda, F.

    1979-06-01

    Polycrystalline thin films of cuprous sulphide having chalcocite as their main component have been obtained by two methods: (a) sulphuration of a copper film in a solution of thiourea; and (b) vacuum evaporation of a synthetic copper sulphide and condensation on a heated glass substrate. By x-ray diffraction the chalcocite ratio is estimated to be about 85% for a and 100% for b. Optical transmittance and reflectance measurements give values of the direct and indirect transition gaps and of the real part of the refraction index. Measurements of Hall effect and conductivity are also included.

  15. Zone refining of cadmium and related characterization

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 3. Zone refining of cadmium and related characterization. N R Munirathnam ... The boron impurity in cadmium can be avoided using quartz (GE 214 grade) boat in lieu of high pure graphite boat. The analytical results using inductively coupled plasma optical ...

  16. Cadmium Toxicity to Ringed Seals (Phoca hispida)

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, R.; Riget, F. F.

    Cadmium concentrations in kidneys from ringed seals (Phoca hispida) from North West Greenland (Qaanaaq) are high. Concentrations range at level known to induce renal toxic effects (mainly tubulopathy) and demineralisation (osteopenia) of the skeletal system (Fanconi's Syndrome) in humans as well...... the absence of toxic effects of cadmium in ringed seal...

  17. Subcellular localization of cadmium in hyperaccumulator Populus ...

    African Journals Online (AJOL)

    ... of damage to organs of grey poplar was as follows: root > stem> leaves. It was suggested that the Populus × canescens as a renewable resource has the potential to decontaminate cadmium stress development, accumulation and distribution. Key words: Cadmium, phytoremediation, hyperaccumulator, grey poplar, organ.

  18. REMOVAL OF CADMIUM FROM AQUEOUS SOLUTION USING ...

    African Journals Online (AJOL)

    The uptake of cadmium from aqueous solution appeared to follow adsorption mechanism and not ion exchange as characteristic of many other divalent hexacyanoferrates. The sorption data were fitted with Langmuir adsorption isotherm. KEY WORDS: Cadmium removal, Potassium manganese hexacynoferrates(II)/(III) Bull.

  19. Zone refining of cadmium and related characterization

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We present the zone refining results of cadmium using horizontal resistive zone refiner under constant flow of moisture free hydrogen gas. The boron impurity in cadmium can be avoided using quartz (GE 214 grade) boat in lieu of high pure graphite boat. The analytical results using inductively coupled plasma ...

  20. Temperature dependent rate coefficients for the reactions of Criegee biradicals with selected alcohols and sulphides

    Science.gov (United States)

    McGillen, Max; McMahon, Laura; Curchod, Basile; Shallcross, Dudley; Orr-Ewing, Andrew

    2017-04-01

    The reactions of Criegee biradicals have received much attention in recent years, yet few reactive systems have undergone direct experimental measurement, and fewer still have been measured as a function of temperature. In this study, absolute temperature-dependent rate coefficients for the gas-phase reactions of a suite of alcohols and sulphides with both formaldehyde oxide (CH2OO) and acetone oxide ((CH3)2COO) are determined experimentally between 254 and 328 K using cavity ringdown spectroscopy for detecting Criegee biradicals. Major differences in reactivity and temperature dependence are observed both in terms of the functionality (between alcohols and sulphides) and also the degree of alkyl substitution about the Criegee biradical. This diverse behaviour represents a uniquely challenging problem for atmospheric chemistry since the atmosphere contains a large variety of both functionalized compounds and Criegee biradicals, leading to a formidable parameter space which may be impossible to cover experimentally. Notwithstanding, new experimental data such as these are vital for understanding the general behaviour of Criegee biradicals in the atmosphere.

  1. Towards colloidal spintronics through Rashba spin-orbit interaction in lead sulphide nanosheets

    Science.gov (United States)

    Ramin Moayed, Mohammad Mehdi; Bielewicz, Thomas; Zöllner, Martin Sebastian; Herrmann, Carmen; Klinke, Christian

    2017-06-01

    Employing the spin degree of freedom of charge carriers offers the possibility to extend the functionality of conventional electronic devices, while colloidal chemistry can be used to synthesize inexpensive and tunable nanomaterials. Here, in order to benefit from both concepts, we investigate Rashba spin-orbit interaction in colloidal lead sulphide nanosheets by electrical measurements on the circular photo-galvanic effect. Lead sulphide nanosheets possess rock salt crystal structure, which is centrosymmetric. The symmetry can be broken by quantum confinement, asymmetric vertical interfaces and a gate electric field leading to Rashba-type band splitting in momentum space at the M points, which results in an unconventional selection mechanism for the excitation of the carriers. The effect, which is supported by simulations of the band structure using density functional theory, can be tuned by the gate electric field and by the thickness of the sheets. Spin-related electrical transport phenomena in colloidal materials open a promising pathway towards future inexpensive spintronic devices.

  2. Half-cell potentials of semiconductive simple binary sulphides in aqueous solution

    Science.gov (United States)

    Sato, M.

    1966-01-01

    Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.

  3. Controllable Phase Transformation in Extracting Valuable Metals from Chinese Low-Grade Nickel Sulphide Ore

    Science.gov (United States)

    Cui, Fuhui; Mu, Wenning; Wang, Shuai; Xu, Qian; Zhai, Yuchun; Luo, Shaohua

    2017-10-01

    In this work, a two-stage sulphuric acid roasting and water leaching system was chosen to extract valuable metals from Chinese low-grade nickel sulphide ore. By optimizing the two-stage roasting process, first roasting temperature at 295°C with particle size of 80-91 μm with an acid-ore ratio of 1.1:1 for 2 h, and second roasting temperature at 620°C for 2 h, it was found that more than 98% of the nickel and 99% of the copper but less than 14.38% of Fe were leached into the water. Attempts were made via x-ray diffraction analysis, scanning electron microscopy, chemical phase analysis, and differential thermal and thermogravimetric analysis to reveal the phase transformations for Ni, Cu, and Mg, which could be expressed as mineral phases → sulphates hydrate → sulphates and for iron as mineral phases → hydrated ferrous sulphate → ferric sulphates and ferric oxide → oxide. The results of this work suggest that a controllable phase transformation by using a two-stage sulphuric acid roasting process is a feasible method for efficiently extracting valuable metals from Chinese nickel sulphide ore.

  4. Novel Cadmium Resistance Determinant in Listeria monocytogenes.

    Science.gov (United States)

    Parsons, Cameron; Lee, Sangmi; Jayeola, Victor; Kathariou, Sophia

    2017-03-01

    Listeria monocytogenes is a foodborne pathogen that can cause severe disease (listeriosis) in susceptible individuals. It is ubiquitous in the environment and often exhibits resistance to heavy metals. One of the determinants that enables Listeria to tolerate exposure to cadmium is the cadAC efflux system, with CadA being a P-type ATPase. Three different cadA genes (designated cadA1 to cadA3) were previously characterized in L. monocytogenes A novel putative cadmium resistance gene (cadA4) was recently identified through whole-genome sequencing, but experimental confirmation for its involvement in cadmium resistance is lacking. In this study, we characterized cadA4 in L. monocytogenes strain F8027, a cadmium-resistant strain of serotype 4b. By screening a mariner-based transposon library of this strain, we identified a mutant with reduced tolerance to cadmium and that harbored a single transposon insertion in cadA4 The tolerance to cadmium was restored by genetic complementation with the cadmium resistance cassette (cadA4C), and enhanced cadmium tolerance was conferred to two unrelated cadmium-sensitive strains via heterologous complementation with cadA4C Cadmium exposure induced cadA4 expression, even at noninhibitory levels. Virulence assessments in the Galleria mellonella model suggested that a functional cadA4 suppressed virulence, potentially promoting commensal colonization of the insect larvae. Biofilm assays suggested that cadA4 inactivation reduced biofilm formation. These data not only confirm cadA4 as a novel cadmium resistance determinant in L. monocytogenes but also provide evidence for roles in virulence and biofilm formation.IMPORTANCEListeria monocytogenes is an intracellular foodborne pathogen causing the disease listeriosis, which is responsible for numerous hospitalizations and deaths every year. Among the adaptations that enable the survival of Listeria in the environment are the abilities to persist in biofilms, grow in the cold, and tolerate

  5. Cadmium mobility and accumulation in soils of the European Communities

    NARCIS (Netherlands)

    Fraters B; van Beurden AUCJ

    1993-01-01

    In this overview of the effects of cadmium pollution on agricultural soils in the European Community, both the cadmium loads on agricultural land and the soil sensitivity to cadmium accumulation have been estimated. Cadmium loads have been estimated separately for arable land and grassland. The

  6. A double Fe-Ti oxide and Fe-sulphide liquid immiscibility in the Itsindro Gabbro Complex, Madagascar

    Science.gov (United States)

    Augé, Thierry; Bailly, Laurent; Roig, Jean-Yves

    2017-11-01

    The petrology and mineralogy of the Itsindro complex in south-central Madagascar has been investigated through samples obtained from the 320.7 m-deep Lanjanina borehole. The section consists of a 254 m-thick pyroxenite unit with interbedded gabbro layers that overlies a gabbro unit and is itself overlain by a 19 m-thick granite unit. Most of the structures are sub-horizontal. A weak magmatic layering is locally observed but at the scale of the core, the intrusion does not appear to be a layered complex. Pyroxenite and gabbro show a systematic disseminated mineralization consisting of Fe-Ti-P oxides and Fe-(Cu-Ni) sulphides that takes the form of ilmenite-titanomagnetite ± apatite and pyrrhotite ± chalcopyrite ± pentlandite. In the upper zone, from 90 to 72 m, sub-massive centimetre-to decimetre-sized layers of oxides and sulphides comprise a total of 16 m of sub-massive sulphide (the main mineralized zone). In this mineralized zone the oxide/sulphide ratio is close to 1/1. The sulphide is strongly dominated by pyrrhotite, which may locally contain inclusions of molybdenite crystals with the Re sulphide rheniite (ReS2). Oxides are generally euhedral, included in or attached to the Fe-sulphide, and also locally form sub-massive centimetre-sized bands. Apatite as a cumulus phase is ubiquitous. Locally it may account for 30% of the ore-rich samples and some samples consist of apatite-Fe-Ti oxides-Fe-Cu-Ni sulphides with virtually no silicate. Apatite is the main REE carrier but the total REE content remains low (<90 ppm). Mineral compositions and whole rock geochemistry indicate that the rocks are highly differentiated, and in spite of a relatively limited thickness, the differentiation process is observed. Two zones can be distinguished: from the bottom to 162.8 m we see a decrease in the Mg number of olivine and pyroxene, and a drop in TiO2 and Al2O3 for the latter. A reverse trend is then observed within the pyroxenite unit from the 162.8 m level upwards. The

  7. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    Energy Technology Data Exchange (ETDEWEB)

    Hudlikar, Manish; Joglekar, Shreeram [University of Pune, Division of Biochemistry, Department of Chemistry (India); Dhaygude, Mayur [National Chemical Laboratory, Polymer Science and Engineering Division (India); Kodam, Kisan, E-mail: kodam@chem.unipune.ac.in [University of Pune, Division of Biochemistry, Department of Chemistry (India)

    2012-05-15

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S{sup -2}) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S{sup -2}) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S{sup -2}) ions.

  8. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    Science.gov (United States)

    Hudlikar, Manish; Joglekar, Shreeram; Dhaygude, Mayur; Kodam, Kisan

    2012-05-01

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S-2) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S-2) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S-2) ions.

  9. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  10. Laser-assisted synthesis, and structural and thermal properties of ZnS nanoparticles stabilised in polyvinylpyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Onwudiwe, Damian C. [Chemical Resource Beneficiation (CRB) Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Krüger, Tjaart P.J. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Jordaan, Anine [Laboratory for Electron Microscopy, CRB Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Strydom, Christien A., E-mail: christien.strydom@nwu.ac.za [Chemical Resource Beneficiation (CRB) Research Focus Area, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa)

    2014-12-01

    Graphical abstract: - Highlights: • Zinc sulphide (ZnS) nanoparticles were synthesised by laser irradiation. • The structural and morphological properties of the prepared samples were analysed. • Larger particles were obtained by using Na{sub 2}S instead of TAA as the sulphur source. • Phonon softening and line broadening of the peaks were observed. • Size reduction occurred in the samples obtained from both sources. - Abstract: Zinc sulphide (ZnS) nanoparticles have been synthesised by a green approach involving laser irradiation of an aqueous solution of zinc acetate (Znac{sub 2}) and sodium sulphide (Na{sub 2}S·9H{sub 2}O) or thioacetamide (TAA) in polyvinylpyrrolidone (PVP). The structural and morphological properties of the prepared samples were analysed using a transmission electron microscope, TEM, a high resolution transmission electron microscope, HRTEM, X-ray diffraction, and Raman spectroscopy. The thermal properties were studied using a simultaneous thermal analyser (SDTA). Better dispersed and larger particles were obtained by using sodium sulphide (Na{sub 2}S) instead of TAA as the sulphur source. X-ray diffraction (XRD) analyses and Raman measurement show that the particles have a cubic structure, which is usually a low temperature phase of ZnS. There were phonon softening and line broadening of the peaks which are attributed to the phonon confinement effect. The average crystallite size of the ZnS nanoparticles estimated from the XRD showed a reduction in size from 13.62 to 10.42 nm for samples obtained from Na{sub 2}S, and 9.13 to 8.16 nm for samples obtained from TAA, with an increase in the time of irradiation. The thermal stability of PVP was increased due to the incorporation of the ZnS nanoparticles in the matrices. The absorption spectra showed that the nanoparticles exhibit quantum confinement effects.

  11. Characterization of chemically synthesized CdS nanoparticles

    Indian Academy of Sciences (India)

    itation technique starting from analar grade cadmium salt and sodium sulfide, and using triethanolamine as capping agent. The nanoparticles are separated .... to the volume of the nanocrystal results in the relax- ation of the conservation of crystal momentum in the process of creation and decay. Pramana – J. Phys., Vol.

  12. The properties of protective oxide scales containing cerium on alloy 800H in oxidizing and oxidizing/sulphidizing environments

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; Fransen, T.; Geerdink, Bert; Gellings, P.J.; Stroosnijder, M.F.

    1991-01-01

    The corrosion protection of oxide scales formed by electrophoretic deposition in a cerium-containing sol on Alloy 800H, a 32Ni-20Cr steel, followed by firing in air at 1123 K was studied in oxidizing and mixed oxidizing/sulphidizing environments at elevated temperatures. In particular, the influence

  13. Utilization of X-ray computed micro-tomography to evaluate iron sulphide distribution in roofing slates

    Czech Academy of Sciences Publication Activity Database

    Vavro, Martin; Souček, Kamil; Daněk, T.; Matýsek, D.; Georgiovská, Lucie; Zajícová, Vendula

    (2018) ISSN 1470-9236 R&D Projects: GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : roofing slate * iron sulphides * X-ray CT * slate pathologies * dimension stone Subject RIV: JN - Civil Engineering Impact factor: 1.102, year: 2016 http://qjegh.lyellcollection.org/

  14. Conversion of calcium sulphide to calcium carbonate during the process of recovery of elemental sulphur from gypsum waste

    CSIR Research Space (South Africa)

    De Beer, Morris

    2014-11-01

    Full Text Available The production of elemental sulphur and calcium carbonate (CaCO(sub3)) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation...

  15. Silver and silver-bearing minerals at the Um Samiuki volcanogenic massive sulphide deposit, Eastern Desert, Egypt

    Science.gov (United States)

    Shalaby, Ibrahim M.; Stumpfl, Eugen; Helmy, Hassan M.; El Mahallawi, Mahmoud M.; Kamel, Omar A.

    2004-10-01

    The Um Samiuki Zn Cu Pb Ag mineralisation, south Eastern Desert, Egypt is hosted by felsic volcanic rocks which form part of the 712-Ma-old, east-west-trending Shadli Volcanic Belt. Two major occurrences of massive sulphides are present at the top of rhyolitic breccia in the Western and Eastern mine areas. In each occurrence, a bornite-bearing zone is overlain by a pyrite-chalcopyrite-bearing zone and underlain by a disseminated, Cu-depleted zone. In the massive sulphide ore, sphalerite, chalcopyrite, pyrite, galena, bornite and tetrahedrite tennantite are major minerals, whereas arsenopyrite, pyrrhotite, molybdenite and magnetite are accessory phases. Covellite and digenite are common secondary minerals. Bornite, tetrahedrite tennantite and covellite contain high amounts of silver (averages of 1.97, 1.39 and 1.82 wt% respectively). Based on mineralogical balance calculations, bornite and covellite accommodate 80% of silver in the Um Samiuki deposit. Ag was incorporated in the crystal structure of the early-crystallised copper sulphides and sulphosalts and silver minerals. The temperature, sequential precipitation of the fluids and the structure of the crystallising phases control the distribution of silver. Post-depositional deformation and metamorphic processes caused liberation, remobilisation and redeposition of silver within the massive sulphides.

  16. Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion.

    Science.gov (United States)

    Díaz, I; Lopes, A C; Pérez, S I; Fdz-Polanco, M

    2010-10-01

    The removal performance of hydrogen sulphide in severely polluted biogas produced during the anaerobic digestion of sludge was studied by employing pure oxygen, air and nitrate as oxidant reactives supplied to the biodigester. Research was performed in a 200-L digester with an hydraulic retention time (HRT) of ∼20 days under mesophilic conditions. The oxygen supply (0.25 N m³/m³ feed) to the bioreactor successfully reduced the hydrogen sulphide content from 15,811 mg/N m³ to less than 400 mg/N m³. The introduction of air (1.27 N m³/m³ feed) removed more than 99% of the hydrogen sulphide content, with a final concentration of ∼55 mg/N m³. COD removal, VS reduction and methane yield were not affected under microaerobic conditions; however, methane concentration in the biogas decreased when air was employed as a result of nitrogen dilution. The nitrate addition was not effective for hydrogen sulphide removal in the biogas. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Magnetic iron-nickel sulphides in the Pliocene and Pleistocene marine marls from the Vrica section (Calabria, Italy)

    NARCIS (Netherlands)

    Velzen, A.J. van; Dekkers, M.J.; Zijderveld, J.D.A.

    1993-01-01

    The rock magnetic properties of the late Pliocene and early Pleistocene open-marine marls from the Vrica section in Calabria (Italy) point to magnetic sulphide as the main magnetic mineral and remanence carrier. The maximum blocking temperatures, however, are between 340 and 360°C, which is too

  18. Cadmium action in synapses in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Akira; Takeda, Atsushi; Nishibaba, Daisuke; Tekefuta, Sachiyo; Oku, Naoto [Department of Radiobiochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka (Japan)

    2001-05-01

    Chronic exposure to cadmium causes central nervous system disorders, e.g., olfactory dysfunction. To clarify cadmium toxicity in synaptic neurotransmission in the brain, the movement and action of cadmium in the synapses was examined using in vivo microdialysis. One and 24 h after injection of {sup 109}CdCl{sub 2} into the amygdala of rats, {sup 109}Cd release into the extracellular space was facilitated by stimulation with high K{sup +}, suggesting that cadmium taken up in amygdalar neurons is released into the synaptic clefts in a calcium- and impulse-dependent manner. To examine the action of cadmium in the synapses, the amygdala was perfused with artificial cerebrospinal fluid containing 10-30 {mu}M CdCl{sub 2}. The release of excitatory neurotransmitters, i.e., glutamate and aspartate, into the extracellular space was decreased during perfusion with cadmium, while the release of inhibitory neurotransmitters, i.e., glycine and {gamma}-amino butyric acid (GABA), into the extracellular space was increased during the period. These results suggest that cadmium released from the amygdalar neuron terminals affects the degree and balance of excitation-inhibition in synaptic neurotransmission. (author)

  19. Response of Pleurotus ostreatus to cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Favero, N.; Bressa, G.; Costa, P. (Univ. of Padua (Italy))

    1990-08-01

    The possibility of utilizing agroindustrial wastes in the production of edible, high-quality products (e.g., mushrooms) implies the risk of bringing toxic substances, such as heavy metals, into the human food chain. Thus, growth in the presence of cadmium and cadmium accumulation limits have been studied in the industrially cultivated fungus P. ostreatus. Fruit body production is substantially unaffected in the presence of 25, 139, and 285 mg Cd/kg of dried substrate. Cadmium concentration in fruit bodies is related to cadmium substrate level, the metal being present at higher levels in caps (22-56 mg/kg dry wt) than in stems (13-36 mg/kg dry wt). Concentration factor (CF), very low in the controls (about 2), further decreases in treated specimens. The presence of a cadmium control mechanism in this fungi species is suggested. Fruit body cadmium levels could, however, represent a risk for P. ostreatus consumers, according to FAO/WHO limits related to weekly cadmium intake.

  20. Response of Saccharomyces cerevisiae to cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luciana Mara Costa; Ribeiro, Frederico Haddad; Neves, Maria Jose [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia], e-mail: luamatu@uol.com.br; Porto, Barbara Abranches Araujo; Amaral, Angela M.; Menezes, Maria Angela B.C. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Lab. de Ativacao Neutronica], e-mail: menezes@cdtn.br; Rosa, Carlos Augusto [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: carlrosa@icb.ufmg

    2009-07-01

    The intensification of industrial activity has been greatly contributing with the increase of heavy metals in the environment. Among these heavy metals, cadmium becomes a serious pervasive environmental pollutant. The cadmium is a heavy metal with no biological function, very toxic and carcinogenic at low concentrations. The toxicity of cadmium and several other metals can be mainly attributed to the multiplicity of coordination complexes and clusters that they can form. Some aspects of the cellular response to cadmium were extensively investigated in the yeast Saccharomyces cerevisiae. The primary site of interaction between many toxic metals and microbial cells is the plasma membrane. Plasma-membrane permeabilisation has been reported in a variety of microorganisms following cadmium exposure, and is considered one mechanism of cadmium toxicity in the yeast. In this work, using the yeast strain S. cerevisiae W303-WT, we have investigated the relationships between Cd uptake and release of cellular metal ions (K{sup +} and Na{sup +}) using neutron activation technique. The neutron activation was an easy, rapid and suitable technique for doing these metal determinations on yeast cells; was observed the change in morphology of the strains during the process of Cd accumulation, these alterations were observed by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) during incorporation of cadmium. (author)

  1. [Cadmium and selenium interaction in mammals].

    Science.gov (United States)

    Lazarus, Maja

    2010-09-01

    Cadmium occurs in the environment naturally and as a pollutant. Its exposure is inevitable and may produce toxic effects in many organs and organ systems through binding to biological structures, accumulation in internal organs or induction of free radical production. Another important aspect of Cd toxicity is its interaction, often anthagonistic, with essential elements. Vice versa, additional intake of the essential elements may have beneficial influence on distribution and toxic effects of cadmium. Selenium is an essential microelement and a constituent of many selenoproteins with antioxidant properties that bind cadmium (and other toxic elements such as mercury or arsenic). This review summarizes results, to date, of cadmium toxicokinetics and toxicodinamics, selenium biokinetics and biodinamics, as well as mechanisms of cadmium-selenium interaction and their impact on the oxidative status derived from the studies based upon mainly on animal experiments and on limited number of human studies. The wide variety of different doses, dose ratios, element administration modes and exposure lenghts of cadmium and selenium often yielded contradictory results. Future studies should be focused on assessment of effects of cadmium and selenium interaction in sensitive population groups and mechanisms of that interaction. Regarding animal studies, doses and exposure should be adjusted to long-term low exposure levels that are usually found in human population.

  2. Homogenisation of sulphide inclusions within diamonds: A new approach to diamond inclusion geochemistry

    Science.gov (United States)

    McDonald, Iain; Hughes, Hannah S. R.; Butler, Ian B.; Harris, Jeffrey W.; Muir, Duncan

    2017-11-01

    Base metal sulphide (BMS) inclusions in diamonds provide a unique insight into the chalcophile and highly siderophile element composition of the mantle. Entombed within their diamond hosts, these provide a more robust (closed system) sample, from which to determine the trace element, Re-Os and S-isotopic compositions of the mantle than mantle xenoliths or orogenic peridotites, as they are shielded from alteration during ascent to the Earth's crust and subsequent surface weathering. However, at temperatures below 1100 °C some BMS inclusions undergo subsolidus re-equilibration from an original monosulphide solid solution (Mss) and this causes fractionation of the major and trace elements within the inclusions. Thus to study the subjects noted above, current techniques require the entire BMS inclusion to be extracted for analyses. Unfortunately, 'flaking' of inclusions during break-out is a frequent occurrence and hence the risk of accidentally under-sampling a portion of the BMS inclusion is inherent in current practices. This loss may have significant implications for Re-Os isotope analyses where incomplete sampling of a Re-rich phase, such as chalcopyrite that typically occurs at the outer margins of BMS inclusions, may induce significant bias in the Re-Os and 187Os/188Os measurements and resulting model and isochron ages. We have developed a method for the homogenisation of BMS inclusions in diamond prior to their break-out from the host stone. Diamonds are heated to 1100 °C and then quenched to chemically homogenise any sulphide inclusions for both major and trace elements. Using X-ray Computed Microtomography (μCT) we determine the shape and spatial setting of multiple inclusions within a host stone and crucially show that the volume of a BMS inclusion is the same both before and after homogenisation. We show that the homogenisation process significantly reduces the inherent variability of in situ analysis when compared with unhomogenised BMS, thereby

  3. AN APPLICATION OF FLOW INJECTION ANALYSIS WITH GAS DIFFUSION AND SPECTROPHOTOMETRIC DETECTION FOR THE MONITORING OF DISSOLVED SULPHIDE CONCENTRATION IN ENVIRONMENTAL SAMPLES

    Directory of Open Access Journals (Sweden)

    Malwina Cykowska

    2014-10-01

    Full Text Available The monitoring of the concentration of sulphide is very important from the environment point of view because of high toxicity of hydrogen sulphide. What is more hydrogen sulphide is an important pollution indicator. In many cases the determination of sulphide is very difficult due to complicated matrix of some environmental samples, which causes that most analytical methods cannot be used. Flow injection analysis allows to avoid matrix problem what makes it suitable for a wide range of applications in analytical laboratories. In this paper determination of dissolved sulphide in environmental samples by gas-diffusion flow injection analysis with spectrophotometric detection was presented. Used gas-diffusion separation ensures the elimination of interferences caused by sample matrix and gives the ability of determination of sulphides in coloured and turbid samples. Studies to optimize the measurement conditions and to determine the value of the validation parameters (e.g. limit of detection, limit of quantification, precision, accuracy were carried out. Obtained results confirm the usefulness of the method for monitoring the concentration of dissolved sulphides in water and waste water. Full automation and work in a closed system greatly reduces time of analysis, minimizes consumption of sample and reagents and increases safety of analyst’s work.

  4. In vivo measurements of the internal pH of Hediste (Nereis) diversicolor (Annelida, Polychaeta) exposed to ambient sulphidic conditions using pH microelectrodes

    Science.gov (United States)

    Sommer, Stefan; Jahn, Andreas; Funke, Friederike; Brenke, Nils

    The effect of different ambient sulphide concentrations on the internal pH regime of Hediste (Nereis) diversicolor was studied under in vivo conditions using liquid membrane pH microelectrodes, a method which is new to marine sciences. As a case study, the hypothesis was tested whether organisms exposed to ambient sulphidic conditions are able to lower their internal pH which, in effect, would reduce sulphide influx into the animals and thus could represent an effective detoxification mechanism. It was shown that a significant lowering of the internal pH occurred within only 20min after adding sulphide. This pH lowering appeared to be dependent on the external sulphide concentration of the ambient medium and showed a saturation beyond a threshold level of about 130μM. It is discussed whether this sulphide-induced pH drop is an active regulatory mechanism and acts as an effective protection mechanism against sulphide during short-term exposures.

  5. Synthesis of SiO{sub x}@CdS core–shell nanoparticles by simple thermal decomposition approach and studies on their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kandula, Syam; Jeevanandam, P., E-mail: jeevafcy@iitr.ac.in

    2014-12-05

    Highlights: • SiO{sub x}@CdS nanoparticles have been synthesized by a novel thermal decomposition approach. • The method is easy and there is no need for surface functionalization of silica core. • SiO{sub x}@CdS nanoparticles show different optical properties compared to pure CdS. - Abstract: SiO{sub x}@CdS core–shell nanoparticles have been synthesized by a simple thermal decomposition approach. The synthesis involves two steps. In the first step, SiO{sub x} spheres were synthesized using StÖber’s process. Then, cadmium sulfide nanoparticles were deposited on the SiO{sub x} spheres by the thermal decomposition of cadmium acetate and thiourea in ethylene glycol at 180 °C. Electron microscopy results show uniform deposition of cadmium sulfide nanoparticles on the surface of SiO{sub x} spheres. Electron diffraction patterns confirm crystalline nature of the cadmium sulfide nanoparticles on silica and high resolution transmission electron microscopy images clearly show the lattice fringes due to cubic cadmium sulfide. Diffuse reflectance spectroscopy results show blue shift of band gap absorption of SiO{sub x}@CdS core–shell nanoparticles with respect to bulk cadmium sulfide and this is attributed to quantum size effect. Photoluminescence results show enhancement in intensity of band edge emission and weaker emission due to surface defects in SiO{sub x}@CdS core–shell nanoparticles compared to pure cadmium sulfide nanoparticles.

  6. Heat Exchange and Fouling Analysis on a Set of Hydrogen Sulphide Gas Coolers

    Directory of Open Access Journals (Sweden)

    Andrés Adrian Sánchez-Escalona

    2017-07-01

    Full Text Available The sulphide acid coolers are tube and shell jacketed heat exchangers designed to cool down the produced gas from 416,15 K to 310,15 K in addition to separate the sulphur carried over by the outlet gas from the reactor tower. The investigation was carried out by applying the passive experimentation process in an online cooler set in order to determine the heat transfer rates and fouling based on heat resistance. It was corroborated that the operation of this equipment outside design parameters increases outlet gas temperature and liquid sulphur carryovers. Efficiency loss is caused by fouling elements in the fluid, which results in changes in the overall heat transfer rate. The linear tendency of the fouling heat resistance based on time for three gas flowrates.

  7. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    Science.gov (United States)

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-11-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions.

  8. Evidence for a functional vasodilatatory role for hydrogen sulphide in the human cutaneous microvasculature.

    Science.gov (United States)

    Kutz, Jessica L; Greaney, Jody L; Santhanam, Lakshmi; Alexander, Lacy M

    2015-05-01

    Hydrogen sulphide (H2 S) is vasoprotective, attenuates inflammation and modulates blood pressure in animal models; however, its specific mechanistic role in the human vasculature remains unclear. In the present study, we report the novel finding that the enzymes responsible for endogenous H2 S production, cystathionine-γ-lyase and 3-mercaptopyruvate sulphurtransferase, are expressed in the human cutaneous circulation. Functionally, we show that H2 S-induced cutaneous vasodilatation is mediated, in part, by tetraethylammonium-sensitive calcium-dependent potassium channels and not by ATP-sensitive potassium channels. In addition, nitric oxide and cyclo-oxygenase-derived byproducts are required for full expression of exogenous H2 S-mediated cutaneous vasodilatation. Future investigations of the potential role for H2 S with respect to modulating vascular function in humans may have important clinical implications for understanding the mechanisms underlying vascular dysfunction characteristic of multiple cardiovascular pathologies. The present study aimed to identify the presence of cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulphurtransferase (3-MST), which endogenously produce hydrogen sulphide (H2 S), and to functionally examine the mechanisms of H2 S-induced vasodilatation in the human cutaneous microcirculation. CSE and 3-MST were quantified in forearm skin samples from 5 healthy adults (24 ± 3 years) using western blot analysis. For functional studies, microdialysis fibres were placed in the forearm skin of 12 healthy adults (25 ± 3 years) for graded infusions (0.01-100 mm) of sodium sulphide (Na2 S) and sodium hydrogen sulphide (NaHS). To define the mechanisms mediating H2 S-induced vasodilatation, microdialysis fibres were perfused with Ringer solution (control), a ATP-sensitive potassium channel (KATP ) inhibitor, an intermediate calcium-dependent potassium channel (KCa ) inhibitor, a non-specific KCa channel inhibitor or triple blockade. To

  9. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    Directory of Open Access Journals (Sweden)

    E. Romo

    2013-01-01

    Full Text Available The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control.

  10. Understanding the radiolabelling mechanism of 99mTc-antimony sulphide colloid.

    Science.gov (United States)

    Tsopelas, Chris

    2003-01-01

    The chemistry of antimony trisulphide colloid (ATC) was examined to elucidate the radiolabelling mechanism with 99mTcO4(-). Ion exchange chromatography and atomic absorption spectrophotometry techniques determined ATC to be resistant to hydrolysis in 0.1M hydrochloric acid (HCl) at 25 degrees C or 100 degrees C (>97% recovery, Sb3+ absent). Hydrogen sulphide gas detected did not participate in the mechanism, where antimony trisulphide and 99mTcO4(-) in HCl/100 degrees C yielded 96% 99mTc-product from a K2S-free formulation (versus 98% when K2S was present). 99mTcO4(-) was reduced >90% by DMSA or dithiothreitol under the same conditions, identifying involvement of thiol groups. Infrared analysis of Re-ATC showed S=O bonds, indicating excess thiol groups at the colloid surface were oxidised at the expense of 99mTcO4(-) reduction.

  11. Synthesis of CdS nanoparticles for photocatalytic application of methyleneblue degradation

    Energy Technology Data Exchange (ETDEWEB)

    Muthuraj, V., E-mail: muthuraj75@gmail.com [Research Department of Chemistry, VHNSN College, Virudhunagar-626001 (India); Umadevi, M. [Department of Chemistry, Nehru Memorial College, Puthanampatti, Trichy-621007, Tamilnadu (India); Sankarasubramanian, K.; Kajamuhideen, M. S. [School of Physics, Madurai Kamaraj University, Madurai-625 021, Tamilnadu (India)

    2014-04-24

    CdS nanoparticles were prepared by the reaction of cadmium acetate with thiourea in the presence and absence of methylene blue dye (MB). The nanoparticles were characterized by, XRD, FT-IR, UV-Vis. XRD study shows the presence of hexagonal phase for the nanoparticles whereas in case of the bulk samples only the hexagonal phase is observed. Fourier transform infrared spectroscopy (FT-IR) showed a strong interaction of methyl groups with CdS nanoparticles. The degradation of methylene blue was analysed using UV-Vis absorbance spectrum. Thus the results authenticate that methylene blue dye influences the structural and optical properties of the CdS nanoparticles.

  12. Optimization of Cu-Zn Massive Sulphide Flotation by Selective Reagents

    Science.gov (United States)

    Soltani, F.; Koleini, S. M. J.; Abdollahy, M.

    2014-10-01

    Selective floatation of base metal sulphide minerals can be achieved by using selective reagents. Sequential floatation of chalcopyrite-sphalerite from Taknar (Iran) massive sulphide ore with 3.5 % Zn and 1.26 % Cu was studied. D-optimal design of response surface methodology was used. Four mixed collector types (Aer238 + SIPX, Aero3477 + SIPX, TC1000 + SIPX and X231 + SIPX), two depressant systems (CuCN-ZnSO4 and dextrin-ZnSO4), pH and ZnSO4 dosage were considered as operational factors in the first stage of flotation. Different conditions of pH, CuSO4 dosage and SIPX dosage were studied for sphalerite flotation from first stage tailings. Aero238 + SIPX induced better selectivity for chalcopyrite against pyrite and sphalerite. Dextrin-ZnSO4 was as effective as CuCN-ZnSO4 in sphalerite-pyrite depression. Under optimum conditions, Cu recovery, Zn recovery and pyrite content in Cu concentrate were 88.99, 33.49 and 1.34 % by using Aero238 + SIPX as mixed collector, CuCN-ZnSO4 as depressant system, at ZnSO4 dosage of 200 g/t and pH 10.54. When CuCN was used at the first stage, CuSO4 consumption increased and Zn recovery decreased during the second stage. Maximum Zn recovery was 72.19 % by using 343.66 g/t of CuSO4, 22.22 g/t of SIPX and pH 9.99 at the second stage.

  13. POLYMETALLIC SULPHIDE OCCURRENCES IN THE UPPER PALEOZOIC COMPLEXES OF NORTHEASTERN MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Ivan Jurković

    2007-12-01

    Full Text Available In the NE Montenegro, in the area Mt. Javorje and in the surrounding of the towns Bijelo Polje, Mojkovac, Ivangrad (Berane, Murino, Plav and Konjusi (Konjuhe there are numerous small ore occurrences of pyrite and subordinately pyrrhotite with few per cent of Cu-, Zn- and Pb-sulphide in the small quantity of quartz and carbonate gangue minerals in Upper Paleozoic deposits. Different opinions considering the age of this ore occurrences exist in the literature of Montenegro: Upper Paleozoic or Middle Triassic. This study has revealed that most of this ore occurrences are of Permian age. Such statement relies on the discovery of Lower-Middle Permian fossils, on the specific occurrence of intercalated conglomerates, coarse grained sandstones and recrystallized limestones in the immediate vicinity and on the frequent stratiform (concordant form of the occurence of ore and magmatic lenses and layers, or on the stratabound occurrences of ore impregnations and veins, respectively. It was concluded that all Pb-Zn ore deposits of Montenegro were derived from the same magma. It gave in three successive pulsations Permian small ore occurrences in early rift stage, larger Lower Triassic ore occurrences in the intermediate rift stage and the largest Middle Triassic Pb-Zn ore deposits in the main rift stage. This hypothesis is based on the isogenetic character of Pb204 and on the uniform values of endogene sulphide sulphur S34 of galena and pyrite in the ore deposits of all three stratigraphic horizons. The important indicator is permanent presence of Cu minerals, what is typical for Paleozoic ore deposits of whole Dinarides.

  14. Hydrogen sulphide in the RVLM and PVN has no effect on cardiovascular regulation

    Directory of Open Access Journals (Sweden)

    Eloise eStreeter

    2011-09-01

    Full Text Available Hydrogen Sulphide (H2S is now recognised as an important signalling molecule and has been shown to have vasodilator and cardio-protectant effects. More recently it has been suggested that H2S may also act within the brain to reduce blood pressure. In the present study we have demonstrated the presence of the H2S producing enzyme, cystathionine  synthase (CBS in the rostral ventrolateral medulla (RVLM and the hypothalamic paraventricular nucleus (PVN, brain regions with key cardiovascular regulatory functions. The cardiovascular role of H2S was investigated by determining the blood pressure (BP, heart rate (HR and lumbar sympathetic nerve activity (LSNA responses elicited by a H2S donor (NaHS, sodium hydrogen sulphide or inhibitors of CBS, microinjected into the RVLM and PVN. In anaesthetised WKY rats bilateral microinjections of NaHS (0.2 – 2000 pmol/side into the RVLM did not significantly affect BP, HR or LSNA, compared to vehicle. Similarly, when the CBS inhibitors, amino-oxyacetate (AOA (0.1 – 1.0 nmol/side or hydroxylamine (HA (0.2 – 2.0 nmol/side, were administered into the RVLM, there were no significant effects on the cardiovascular variables compared to vehicle. Microinjections into the PVN of NaHS, HA and AOA had no consistent significant effects on BP, HR or LSNA compared to vehicle. We also investigated the cardiovascular responses to NaHS microinjected into the RVLM and PVN in SHR rats. Again, there were no significant effects on BP, HR and LSNA. Together, these results suggest that H2S in the RVLM and PVN does not have a major role in cardiovascular regulation.

  15. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation.

    Science.gov (United States)

    Innocenzi, Valentina; De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Kopacek, Bernd; Vegliò, Francesco

    2013-11-01

    This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2(2) full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3M of sulphuric acid, 10% v/v of H2O2 concentrated solution at 30% v/v, 10% w/w pulp density, 70°C and 3h of reaction. Two series of precipitation tests for zinc are carried out: a 2(2) full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2-2.5% and 10-12%v/v of Na2S concentrated solution at 10%w/v. In these conditions the coprecipitation of yttrium is of 15-20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75-80%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Low level determinations of environmental cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, K.J.R.; De Laeter, J.R.

    1976-06-24

    An isotope dilution technique has been developed to measure the concentration of cadmium in aqueous solutions with a sensitivity of 0.003 micrograms per liter. The concentrations of cadmium in two river systems in Western Australia has been measured to establish an accurate set of low level reference determinations in a region which is relatively free of sources of industrial pollution. The results of the study demonstrate that the cadmium content in the two major river systems in western Australia is about 100 times lower than the World Health Organization limits. The data indicate that the cadmium content tends to decrease upstream from the mouth of the river, and that in the reservoir areas the content is as low as 0.02 micrograms per liter. These values are substantially lower than waterways in other parts of the world. 13 references, 1 figure, 1 table.

  17. Cadmium substituted high permeability lithium ferrite

    Indian Academy of Sciences (India)

    , 0.5 and 0.6 were prepared by a double sintering ceramic technique and characterized by X-ray diffraction and scanning electron microscopy (SEM). The lattice parameter is found to increase monotonically with the cadmium content.

  18. Market for nickel-cadmium batteries

    Science.gov (United States)

    Putois, F.

    Besides the lead/acid battery market, which has seen a tremendous development linked with the car industry, the alkaline rechargeable battery market has also been expanded for more than twenty years, especially in the field of portable applications with nickel-cadmium batteries. Today, nickel-cadmium batteries have to face newcomers on the market, such as nickel-metal hydride, which is another alkaline couple, and rechargeable lithium batteries; these new battery systems have better performances in some areas. This work illustrates the status of the market for nickel-cadmium batteries and their applications. Also, for two major applications—the cordless tool and the electric vehicles—the competitive situation of nickel-cadmium batteries; facing new systems such as nickel-metal hydride and lithium ion cells are discussed.

  19. Lithogeochemical, mineralogical analyses and oxygen-hydrogen isotopes of the Hercynian Koudiat Aïcha massive sulphide deposit, Morocco

    Science.gov (United States)

    Lotfi, F.; Belkabir, A.; Brunet, S.; Brown, A. C.; Marcoux, E.

    2010-03-01

    Koudiat Aïcha is a Visean stratiform, volcanogenic massive sulphide (VMS) zinc-copper-lead deposit, situated northwest of Marrakech, within the Central Domain of the Jebilet massif of the Western Moroccan Meseta. The Central Domain is formed mainly of sedimentary (argillite, siltstone, sandstone, carbonate) and magmatic (gabbro and rhyodacite) rocks that host numerous massive sulphide deposits (e.g., Koudiat Aïcha, Kettara and Draa Sfar) in a thick grayish argillite sequence (rhythmic metapelite). The deposit is stratabound and consists of highly deformed, sheet-like lenses of massive sulphide located structurally on the eastern flank of a large anticline. Prior to metamorphism, the country rocks were subjected to hydrothermal alteration which is particularly pronounced in the immediate vicinity of the sulphide deposits where chloritization and sericitization are prevalent. Hydrothermal alteration extends into both the stratigraphic footwall and the stratigraphic hanging wall. The footwall lacks an obvious pipe zone (sulphide stringers or vent complex) beneath the sulphide mineralization, but is characterized by an increase in the modal proportion of Mg-chlorite and by the breakdown of feldspar and sericite. Chloritization, the most extensive and readily recognizable alteration useful in mineral exploration, is evident for more than 60 m above the subcropping sulphide deposits. The hanging wall rocks show a pervasive sericitization (over 30 m wide) and a weak chlorite alteration accompanied by disseminated nodules of pyrrhotite stretched parallel to the S 1 foliation. Because chlorite and sericite are metamorphic minerals that also occur in unaltered rocks surrounding the sulphide deposits, abundant Mg-rich chlorite and the absence of feldspar in the footwall are used to distinguish hydrothermal alteration facies from metamorphic facies. The chlorite geothermometer reveals temperatures between 250 and 330 °C. Higher temperatures (up to 300 °C) are associated

  20. Soil Cadmium Removal by Fulvic Acid-aided Hydroxyapatite Nanofluid

    Science.gov (United States)

    Zhuang, Jie; Li, Qi; Chen, Xin; Chen, Xijuan

    2017-04-01

    Engineered nanoparticles have a large potential for removing pollutants from contaminated soils. Elution of soil cadmium (Cd) by hydroxyapatite nanoparticles (nHAP) was investigated at different concentrations of nHAP and fulvic acid (FA). The adsorption capacity of Cd on nHAP was almost 123 times of that on the experimental loam soil. The nHAP nanofluid at 500 mg L-1increased the elution rate of soil Cd by ˜4.34 times (from 0.64% to 2.78%) compared with nHAP-free background solution. Increasing nHAP concentration enhanced Cd removal due to the improvement of nHAP transport through the soil. The peak breakthrough levels (C/C0) of nHAP at high input concentration (500 mg L-1) was 2.4 times of that at low concentration (100 mg L-1). The elution rate of soil Cd further increased to 3.31% after adding 20 mg L-1of FA to the 500 mg L-1nHAP nanofluid. This is primarily attributed to the increase in nHAP mobility and adsorption capacity of Cd on nHAP. Approximately 43% of nHAP (input concentration 500 mg L-1)readily passed through the packed soil in the presence of FA (20 mg L-1) in the influent. Results suggest that nHAP nanofluid could act as an effective tool to remove Cd from contaminated soil under flow conditions.

  1. Cadmium leaching from thermal treated and gamma irradiated Mexican aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Rangel, J.I. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico 11801, D.F. (Mexico); Unidad Academica Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas Cipres 10, Frac. La Penuela, Zacatecas, Zacatecas 98068 (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Instituto Literario No. 100 Col. Centro C.P. 50000, Toluca, Edo. de Mexico (Mexico); Solache-Rios, M. [Departamento de Quimica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico 11801, D.F. (Mexico)], E-mail: msr@nuclear.inin.mx

    2008-10-15

    Thermal and radiation effects on the leaching of cadmium from two cadmium exchanged zeolitic tuffs and one clay were determined. The cadmium exchanged aluminosilicates were heated at different temperatures (500, 700, 900 and 1100 {sup o}C), and the materials were then treated with NaCl (1 M and 5 M) and HNO{sub 3} (0.001 M and 1 M) solutions to determine the leaching behaviour of cadmium from the materials. The stability of cadmium in the materials increased as the heating temperature was increased. Cadmium leaching from gamma irradiated and heated materials at 1100 {sup o}C was higher than leaching from non-irradiated samples.

  2. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ranganaik Viswanath

    2014-01-01

    Full Text Available Pure ZnS and ZnS:Y nanoparticles were synthesized by a chemical coprecipitation route using EDTA-ethylenediamine as a stabilizing agent. X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectrometry (FTIR, thermogravimetric-differential scanning calorimetry (TG-DSC, and UV-visible and photoluminescence (PL spectroscopy were employed to characterize the as-synthesized ZnS and ZnS:Y nanoparticles, respectively. XRD and TEM studies show the formation of cubic ZnS:Y particles with an average size of ~4.5 nm. The doping did not alter the phase of the zinc sulphide, as a result the sample showed cubic zincblende structure. The UV-visible spectra of ZnS and ZnS:Y nanoparticles showed a band gap energy value, 3.85 eV and 3.73 eV, which corresponds to a semiconductor material. A luminescence characteristics such as strong and stable visible-light emissions in the orange region alone with the blue emission peaks were observed for doped ZnS nanoparticles at room temperature. The PL intensity of orange emission peak was found to be increased with an increase in yttrium ions concentration by suppressing blue emission peaks. These results strongly propose that yttrium doped zinc sulphide nanoparticles form a new class of luminescent material.

  3. Reviews of the environmental effects of pollutants: IV. Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, A.S.; Huff, J.E.; Braunstein, H.M.; Drury, J.S.; Shriner, C.R.; Lewis, E.B.; Whitfield, B.L.; Towill, L.E.

    1978-06-01

    This report is a comprehensive, multidisciplinary review of the health and environmental effects of cadmium and specific cadmium derivatives. More than 500 references are cited. The cadmium body burden in animals and humans results mainly from the diet. In the United States, the normal intake of cadmium for adult humans is estimated at about 50 ..mu..g per day. Tobacco smoke is a significant additional source of cadmium exposure. The kidneys and liver together contain about 50% of the total cadmium body burden. Acute cadmium poisoning is primarily an occupational problem, generally from inhalation of cadmium fumes or dusts. In the general population, incidents of acute poisoning by inhaled or ingested cadmium or its compounds are relatively rare. The kidney is the primary target organ for toxicity from prolonged low-level exposure to cadmium. No causal relationship has been established between cadmium exposure and human cancer, although a possible link between cadmium and prostate cancer has been indicated. Cadmium has been shown to be teratogenic in rats, hamsters, and mice, but no such effects have been proven in humans. Cadmium has been reported to increase the frequency of chromosomal aberrations in cultured Chinese hamster ovary cells and in human peripheral leukocytes. The major concern about environmental cadmium is the potential effects on the general population. There is no substantial evidence of hazard from current levels of cadmium in air, water, or food. However, because cadmium is a cumulative poison and because present intake provides a relatively small safety margin, there are adequate reasons for concern over possible future increases in background levels.

  4. Cadmium removal by Lemna minor and Spirodela polyrhiza.

    Science.gov (United States)

    Chaudhuri, Devaleena; Majumder, Arunabha; Misra, Amal K; Bandyopadhyay, Kaushik

    2014-01-01

    The present study investigates the ability of two genus of duckweed (Lemna minor and Spirodela polyrhiza) to phytoremediate cadmium from aqueous solution. Duckweed was exposed to six different cadmium concentrations, such as, 0.5,1.0,1.5, 2.0, 2.5, and 3.0 mg/L and the experiment was continued for 22 days. Water samples were collected periodically for estimation of residual cadmium content in aqueous solution. At the end of treatment period plant samples were collected and accumulated cadmium content was measured. Cadmium toxicity was observed through relative growth factor and changes in chlorophyll content Experimental results showed that Lemna minor and Spirodela polyrhiza were capable of removing 42-78% and 52-75% cadmium from media depending upon initial cadmium concentrations. Cadmium was removed following pseudo second order kinetic model Maximum cadmium accumulation in Lemna minor was 4734.56 mg/kg at 2 mg/L initial cadmium concentration and 7711.00 mg/kg in Spirodela polyrhiza at 3 mg/L initial cadmium concentration at the end of treatment period. Conversely in both cases maximum bioconcentration factor obtained at lowest initial cadmium concentrations, i.e., 0.5 mg/L, were 3295.61 and 4752.00 for Lemna minor and Spirodela polyrhiza respectively. The present study revealed that both Lemna minor and Spirodela polyrhiza was potential cadmium accumulator.

  5. Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure

    Science.gov (United States)

    Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.

    2015-01-01

    Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385

  6. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung

    2011-12-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  7. Adipose Tissue-Derived Stem Cell Imaging Using Cadmium-Free Quantum Dots

    OpenAIRE

    Miyazaki, Yoshiyuki; Yukawa, Hiroshi; Nishi, Hiroyasu; Okamoto, Yukihiro; Kaji, Noritada; Torimoto, Tsukasa; Baba, Yoshinobu

    2013-01-01

    Quantum dots (QDs) have received much attention for biomolecule and cell imaging applications because of their superior optical properties such as high quantum efficiency, size-tunable emission, and resistance to photobleaching process. However, QDs that are commercially available contain cadmium (Cd), a highly toxic element. Thus, the development of Cd-free and less toxic QDs is strongly desired. In this study, we developed Cd-free QDs (ZnS-coated ZnS-AgInS2 solid solution nanoparticles with...

  8. Imaging Seafloor Massive Sulphides at the TAG hydrothermal fields, from the Blue Mining seismic project

    Science.gov (United States)

    Gil de la Iglesia, Alba; Vardy, Mark; Bialas, Jörg; Dannowski, Anke; Schröder, Henning; Minshull, Tim; Chidlow, Kasia; Murton, Bramly

    2017-04-01

    The Trans-Atlantic Geotraverse (TAG) hydrothermal field, located at the Mid-Atlantic Ridge (26°N), is known for the existence of Seafloor Massive Sulphides (SMS) discovered by the Trans-Atlantic Geotraverse cruise (Rona et al., 1986). The TAG comprises a low-temperature alteration zone, five inactive, high-temperature hydrothermal deposits, and the hydrothermal active TAG mound. TAG is also known for being one of the eight known SMS with a size larger than 2M tones (Hannington et al., 2011). The known SMS deposits do not have the same dimensions as the Massive Sulphides (MS) found on land, covering areas from 10s-100s m2 and their accessibility is more complicated, being located at 800-6000 m water depth. Although they do not seem to be economically exploitable at present, those deep-sea mineral resources could be important targets in the near future. One of the aims of the European-funded Blue Mining project is to identify the SMS deposit dimensions for the future environmentally sustainable and clean deep-sea mining. The Blue Mining project is focused on the extinct Seafloor Massive Sulphides (eSMS) in the TAG hydrothermal field, in particular Shinkai, Southern and Shimmering mounds. In May/June 2016 the German RV METEOR carried out a seismic refraction/reflection wide-angle (WA) experiment acquiring thirty multichannel seismic (MCS) profiles crossing the TAG hydrothermal field. GEOMAR's 2-unit air-gun array with a total volume of 760 cubic-inches was used, triggering seismic pulses every 12 s along the MCS profiles. Reflected and refracted events from the shallow-towed sources were recorded by 20 Ocean Bottom Seismometers (OBS) and 5 Ocean Bottom Hydrophones (OBH). To obtain the internal velocities and gross geometries of these deposits, 10 of 20 OBS were located on top of the eSMS, Shinaki and Southern mounds, while the other 10 instruments were located in extension of the profiles, covering Shimmering mounds and regional targets. In this presentation, we

  9. Cadmium exposure induces hematuria in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Seok [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Kim, Myounghee, E-mail: dkkim73@gmail.com [Department of Dental Hygiene, College of Health Science, Eulji University, Gyeonggi-do 461-713 (Korea, Republic of); Lee, Su Mi [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jung Pyo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Sejoong [Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 463-707 (Korea, Republic of); Joo, Kwon Wook [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lim, Chun Soo [Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 156-707 (Korea, Republic of); Kim, Yon Su; Kim, Dong Ki [Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)

    2013-07-15

    Introduction: Toxic heavy metals have adverse effects on human health. However, the risk of hematuria caused by heavy metal exposure has not been evaluated. Methods: Data from 4701 Korean adults were obtained in the Korean National Health and Nutritional Examination Survey (2008–2010). Blood levels of the toxic heavy metals cadmium, lead, and mercury were measured. Hematuria was defined as a result of ≥+1 on a urine dipstick test. The odds ratios (ORs) for hematuria were measured according to the blood heavy metal levels after adjusting for multiple variables. Results: Individuals with blood cadmium levels in the 3rd and 4th quartiles had a greater OR for hematuria than those in the 1st quartile group: 3rd quartile, 1.35 (1.019–1.777; P=0.037); 4th quartile, 1.52 (1.140–2.017; P=0.004). When blood cadmium was considered as a log-transformed continuous variable, the correlation between blood cadmium and hematuria was significant: OR, 1.97 (1.224–3.160; P{sub trend}=0.005). In contrast, no significant correlations between hematuria and blood lead or mercury were found in the multivariate analyses. Discussion: The present study shows that high cadmium exposure is associated with a risk of hematuria. -- Highlights: • A high level of blood cadmium is associated with a high risk of hematuria. • This correlation is independent of several confounding factors. • Blood levels of lead and mercury are not associated with risk of hematuria. • This is the first study on the correlation between cadmium exposure and hematuria risk.

  10. Toxicity of cadmium to the developing lung

    Energy Technology Data Exchange (ETDEWEB)

    Daston, G.P.

    1981-01-01

    The effects of cadmium on the developing lung and pulmonary surfactant were studied. Pregnant rats received subcutaneous injections of cadmium chloride on days 12 to 15 of gestation and were sacrificed throughout late gestation. The treatment resulted in high embryonic mortality and growth regardation. Fetal lung weight was reduced 20 to 30% due to hypoplasia, as the number of lung cells (DNA/lung) but not cell size (protein/cell) was lowered. The ultrastructural development of alveolar epithelium was altered; cytodifferentiation was delayed; and the cytoplasmic inclusions which contain pulmonary surfactant, were reduced in the term fetus. Accumulation of phosphatidylcholine (PC), the major component of pulmonary surfactant, was diminished in the lungs of treated fetuses. The immediate cause of this lowered accumulation was a decreased rate of synthesis of PC from choline. Carbohydrates probably represent a major source of PC precursors and are present in large quantities in the fetal lung as glycogen. The pulmonary glycogen content of cadmium-exposed fetuses was diminished. It is postulated that this is a reason for the lowered rate of PC synthesis. Maternally administered cadmium did not pass through the placenta; thus, the mechanism of fetotoxicity was indirect. Maternal cadmium exposure did result in lowered fetal zinc levels. Coadministration of zinc with cadmium raised fetal zinc concentration to control values and alleviated all fetotoxicity. Fetal zinc deficiency is a possible mechanism for the toxic effects on the developing lung. Several dams were allowed to give birth and their offspring were observed for respiratory problems. Cadmium treatment delayed parturition by about a day. Symptoms of respiratory distress syndrome (RDS) were observed in 11% of the treated neonates. All but one of these individuals died and had lungs with hyaline membranes. This is the only known case of an environmental agent causing neonatal RDS.

  11. SULPHIDE MINERALIZATION IN UPPER WESTPHALIAN COAL SEAMS FROM THE EASTERN PART OF THE UPPER SILESIAN COAL BASIN

    Directory of Open Access Journals (Sweden)

    Lipiarski Ireneusz

    1997-10-01

    Full Text Available Morphologically diversified sulphide mineralization has been found in No. 301 and 302 coal seams (Westphalian B. The main sulphide is pyrite which forms veinlets cross-cutting the sedimentary fabrics of the coal, encrusts the cellular structures and intergrowths with oxysulphides. Two generations of pyrites were observed: the preceding and the following the oxysulphides. Pyrite composition is stoichiometric, rare admixtures are up to(in wt.%: Mn - 0.19, Co - 0.48, Ni - 0.42 and As - 1.41. Iron oxysulphides contain up to 35.06 wt.% oxygen. Their composition varies between FeS2O and FeS2O3. Increased contents of As (up to 1.46 wt.% and Pb (up to 0.96 wt.% were detected.

  12. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: a mesocosm experiment.

    Science.gov (United States)

    Geurts, Jeroen J M; Sarneel, Judith M; Willers, Bart J C; Roelofs, Jan G M; Verhoeven, Jos T A; Lamers, Leon P M

    2009-07-01

    Both eutrophication and SO4 pollution can lead to higher availability of nutrients and potentially toxic compounds in wetlands. To unravel the interaction between the level of eutrophication and toxicity at species and community level, effects of SO4 were tested in nutrient-poor and nutrient-rich fen mesocosms. Biomass production of aquatic and semi-aquatic macrophytes and colonization of the water layer increased after fertilization, leading to dominance of highly competitive species. SO4 addition increased alkalinity and sulphide concentrations, leading to decomposition and additional eutrophication. SO4 pollution and concomitant sulphide production considerably reduced biomass production and colonization, but macrophytes were less vulnerable in fertilized conditions. The experiment shows that competition between species, vegetation succession and terrestrialization are not only influenced by nutrient availability, but also by toxicity, which strongly interacts with the level of eutrophication. This implies that previously neutralized toxicity effects in eutrophied fens may appear after nutrient reduction measures have been taken.

  13. Uptake of cadmium from hydroponic solutions by willows ( Salix spp ...

    African Journals Online (AJOL)

    Salix integra 'Weishanhu') and Yizhibi (S. integra 'Yizhibi') were chosen as model plants to evaluate their potential for uptake of cadmium from hydroponic culture and relative uptake mechanism. Cadmium uptake showed a linear increase in the ...

  14. SUBSTITUTION OF CADMIUM CYANIDE ELECTROPLATING WITH ZINC CHLORIDE ELECTROPLATING

    Science.gov (United States)

    The study evaluated the zinc chloride electroplating process as a substitute for cadmium cyanide electroplating in the manufacture of industrial connectors and fittings at Aeroquip Corporation. The process substitution eliminates certain wastes, specifically cadmium and cyanide, ...

  15. Genotoxic Effect of Atrazine, Arsenic, Cadmium and Nitrate ...

    African Journals Online (AJOL)

    ATZ), Cadmium (Cd), Arsenic (As) and Nitrate (NO3) have both estrogenic activity and carcinogenic potential. Atrazine has clastogenic effects and may also act as tumor promoter as it induces the aromatase enzyme. Arsenic and Cadmium ...

  16. Enhanced protection of PDMS-embedded palladium catalysts by co-embedding of sulphide-scavengers.

    Science.gov (United States)

    Comandella, Daniele; Ahn, Min Hyung; Kim, Hojeong; Mackenzie, Katrin

    2017-12-01

    For Pd-containing hydrodechlorination catalysts, coating with poly(dimethyl siloxane) (PDMS) was proposed earlier as promising protection scheme against poisoning. The PDMS coating can effectively repel non-permeating poisons (such as SO3(2-)) retaining the hydrodechlorination Pd activity. In the present study, the previously achieved protection efficiency was enhanced by incorporation of sulphide scavengers into the polymer. The embedded scavengers were able to bind permeating non-ionic poisons (such as H2S) during their passage through PDMS prior to Pd contact which ensured an extended catalyst lifetime. Three scavenger types forming non-permeable sulphur species from H2S - alkaline, oxidative or iron-based compounds - were either incorporated into single-layer coats around individual Pd/Al2O3 particles or into a second layer above Pd-containing PDMS films (Pd-PDMS). Hydrodechlorination and hydrogenation were chosen as model reactions, carried out in batch and continuous-flow reactors. Batch tests with all scavenger-containing catalysts showed extended Pd protection compared to scavenger-free catalysts. Solid alkaline compounds (Ca(OH)2, NaOH, CaO) and MnO2 showed the highest instantaneous scavenger efficiencies (retained Pd activity=30-60%), while iron-based catalysts, such as nano zero-valent iron (nZVI) or ferrocene (FeCp2), proved less efficient (1-10%). When stepwise poisoning was applied, the protection efficiency of iron-based and oxidizing compounds was higher in the long term than that of alkaline solids. Long-term experiments in mixed-flow reactors were performed with selected scavengers, revealing the following trend of protection efficiency: CaO2>Ca(OH)2>FeCp2. Under field-simulating conditions using a fixed-bed reactor, the combination of sulphide pre-oxidation in the water phase by H2O2 and local scavenger-enhanced Pd protection was successful. The oxidizing agent H2O2 does not disturb the Pd-catalysed reduction, while the PDMS

  17. Determination of sulphide concentrates of ore copper by XRPD and chemical analysis

    Directory of Open Access Journals (Sweden)

    Cocić Mira B.

    2009-01-01

    Full Text Available Roasting process of sulphide copper concentrates in fluo-solid reactor is an oxidation process, and presents the first stage of copper concentrate processing in Copper Mining and Smelting Complex Bor, RTB Bor. Therefore, the importance of accurate and up to date process control is an apparent precondition for the correct treatment in the following stages and also for of high grade cathode copper. As concentrate is fed into the roaster, it is heated by a stream of hot air to about 590°C. The process takes place between solid and gaseous phases without the appearance of a liquid phase. The heat generated by the exothermic oxidation reaction of sulphur from cooper and iron minerals (chalcopyrite and pyrite is sufficient to carry out the entire process autogenously at temperature from 620 to 670°C. The temperature of sulphur firing which defines the start of roasting depends on physical traits, particle size of sulfides and characteristic product of oxidation. The obtained products of the roasting process are: calcine, ready for smelting in the furnace and gas-rich sulphure dioxide (SO2, well suited for the production of sulfuric acid. The relationship between the quantitative mineral composition of the charge and of the calcine directly points out to the efficiency of the roasting process in fluo-solid reactor. The amount of bornite and magnetite, resulting from the sulfide oxidation is the most important parameter. Hence, quantitative determination of mineral composition is of great interest. In this work, the results of the determination of quantitative mineral composition of the copper sulphide concentrate (charge and products of their roasting (calcine and overflow in fluo-solid reactor in the RTB Bor are presented. The aim was to compare the results of the iron, copper, sulfur and oxygen contents determined by two independent techniques, the chemical (HA and X-ray powder diffraction analysis (XRPD that is based on the quantitative mineral

  18. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); De Michelis, Ida; Ferella, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); Beolchini, Francesca [Department of Marine Sciences, Polytechnic Institute of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy)

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.

  19. Hydrochemical models of the sulphidic tailings dumps at Matchless (Namibia) and Selebi-Phikwe (Botswana)

    Science.gov (United States)

    Schwartz, M. O.; Schippers, A.; Hahn, L.

    2006-02-01

    The sulphidic tailings dumps at Matchless (Namibia) and Selebi-Phikwe (Botswana) are located in a similar semiarid environment but have a contrasting mineralogical composition. The Matchless tailings are pyrite-rich, whereas the Selebi-Phikwe tailings are dominated by pyrrhotite. Hydrochemical models are established with computer codes for water-balance, sulphide oxidation rate and hydrochemical equilibrium calculations. The data input is based on detailed mineralogical, chemical and kinetic investigations carried out on the core of boreholes drilled in 2000 and 2003. The oxidation of pyrrhotite proceeds at a much faster rate than the oxidation of pyrite. The PYROX code, which is used for kinetic calculations, can take these differences into account by applying different oxide-coating diffusion coefficients (D2) for pyrrhotite and pyrite. Humidity-cell testing is widely used to predict the post-mining composition of drainage water in humid climates. However, the semiarid conditions at Matchless and Selebi-Phikwe only allow a minimal water flux within the dump. Under such conditions, humidity-cell testing is likely to overestimate the seepage-water pH. This is suggested by the hydrochemical equilibrium calculations for the post-mining period at Selebi-Phikwe, which predict a seepage-water pH about one unit lower than the pH at the end of the 26-weeks humidity-cell testing period. The acidity of the seepage water can be reduced by about half a pH unit, if an oxygen barrier below the evaporation zone is installed. A clay layer 0.5 m thick covered by >1.5 m tailings represents the optimal design for a wet barrier. All three computer codes used for water-balance calculations (HELP3, UNSAT-H and HYDRUS-1D), predict >85% average water saturation for such a layer, which diminishes the diffusion of oxygen into the pile and production of SO{4/-2} and H+. The alternative design for a dry barrier consists of a vegetated silt layer 1 m thick on top of the tailings. This barrier

  20. New methodologies for volcanic-hosted copper sulphide mineralization on Cyprus: a GIS–prospectivity analysis-based approach

    OpenAIRE

    Naden, J.; Herrington, R.J.; Jowitt, S.M.; McEvoy, F.M.; Williamson, J.P.; Monhemius, A.J.

    2006-01-01

    This report documents the results of a three-year collaborative research project between the British Geological Survey (BGS), The Natural History Museum, London (NHM) and the Geological Survey Department, Cyprus (GSD). It was funded by the Ministry of Agriculture, Natural Resources and Environment, Cyprus. The objectives of the programme were to develop new methodologies for the exploration and exploitation of cupriferous sulphide ore and re-establish metalliferous mineral exploration resea...

  1. Long-term effects of sulphide on the enhanced biological removal of phosphorus: The symbiotic role of Thiothrix caldifontis.

    Science.gov (United States)

    Rubio-Rincón, F J; Welles, L; Lopez-Vazquez, C M; Nierychlo, M; Abbas, B; Geleijnse, M; Nielsen, P H; van Loosdrecht, M C M; Brdjanovic, D

    2017-06-01

    Thiothrix caldifontis was the dominant microorganism (with an estimated bio-volume of 65 ± 3%) in a lab-scale enhanced biological phosphorus removal (EBPR) system containing 100 mg of sulphide per litre in the influent. After a gradual exposure to the presence of sulphide, the EBPR system initially dominated by Candidatus Accumulibacter phosphatis Clade I (98 ± 3% bio-volume) (a known polyphosphate accumulating organism, PAO) became enriched with T. caldifontis. Throughout the different operating conditions studied, practically 100% phosphate removal was always achieved. The gradual increase of the sulphide content in the medium (added to the anaerobic stage of the alternating anaerobic-aerobic sequencing batch reactor) and the adjustment of the aerobic hydraulic retention time played a major role in the enrichment of T. caldifontis. T. caldifontis exhibited a mixotrophic metabolism by storing carbon anaerobically as poly-β-hydroxy-alkanoates (PHA) and generating the required energy through the hydrolysis of polyphosphate. PHA was used in the aerobic period as carbon and energy source for growth, polyphosphate, and glycogen formation. Apparently, extra energy was obtained by the initial accumulation of sulphide as an intracellular sulphur, followed by its gradual oxidation to sulphate. The culture enriched with T. caldifontis was able to store approximately 100 mg P/g VSS. This research suggests that T. caldifontis could behave like PAO with a mixotrophic metabolism for phosphorus removal using an intracellular sulphur pool as energy source. These findings can be of major interest for the biological removal of phosphorus from wastewaters with low organic carbon concentrations containing reduced S-compounds like those (pre-)treated in anaerobic systems or from anaerobic sewers. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Application of lithogeochemistry in the assessment of nickel-sulphide potential in komatiite belts from northern Finland and Norway

    OpenAIRE

    G.J. Heggie; S.J. Barnes; M.L. Fiorentini

    2013-01-01

    This study tests the application of chalcophile elements such as nickel, copper and the platinum-group elements as indicators of nickel-sulphide prospectivity in komatiites from terranes of the Karelian Craton in northern Finland and Norway. Major element abundances reflect volcanic processes associated with the emplacement dynamics of ultramafic lavas, whereas the variable chalcophile element concentrations record the ore-forming process, mainly as an anomalous metal depletion and enrichm...

  3. Antimicrobial Effects of Gold/Copper Sulphide (Au/Cus) Core/Shell Nanoparticles on Bacillus Anthracis Spores and Cells

    Science.gov (United States)

    2013-01-01

    higher than the safety of laser intensity for human skin exposure - has limited their applications. A combination of gold NPs and CuS NPs would...restorative: influence on physical and antibacterial properties. Journal of dentistry , 2011. 39(9): p. 589-98. 12. Sondi, I. and B. Salopek-Sondi

  4. Induction of Localized Hyperthermia by Millisecond Laser Pulses in the Presence of Gold-Gold Sulphide Nanoparticles in a Phantom

    Directory of Open Access Journals (Sweden)

    Zahra Shahamat

    2015-05-01

    Full Text Available Introduction Application of near-infrared absorbing nanostructures can induce hyperthermia, in addition to providing more efficient  photothermal effects. Gold-gold sulfide (GGS is considered as one of these nanostructures. This study was performed on a tissue-equivalent optical-thermal phantom to determine the temperature profile in the presence and absence of GGS and millisecond pulses of a near-infrared laser. Moreover, the feasibility of hyperthermia induction was investigated in a simulated tumor. Materials and Methods A tumor with its surrounding tissues was simulated in a phantom made of Agarose and Intralipid. The tumor was irradiated by 30 laser pulses with durations of 30, 100, and 400 ms and fluences of 40 and 60 J/cm2. Temperature variations in the phantom with and without GGS were recorded, using fast-response sensors of a digital thermometer, placed at different distances from the central axis at three depths. The temperature rise was recorded by varying duration and fluence of the laser pulses. Results The rise in temperature was recorded by increasing laser fluence and number of pulses for three durations. The temperature profile was obtained at each depth. The presence of GGS resulted in a significant increase in temperature in all cases (P

  5. Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Sohrab [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Kabir, Humayun [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Rahman, M. Mahbubur, E-mail: M.Rahman@Murdoch.edu.au [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Surface Analysis and Materials Engineering Research Group, School of Engineering & Information Technology, Murdoch University, Perth, Western Australia 6150 (Australia); Hasan, Kamrul [Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah (United Arab Emirates); Bashar, Muhammad Shahriar; Rahman, Mashudur [Institute of Fuel and Research Development, Bangladesh Council for Scientific and Industrial Research, Dhanmondi, Dhaka (Bangladesh); Gafur, Md. Abdul [Pilot Plant and Process Development Center, Bangladesh Council for Scientific and Industrial Research, Dhanmondi, Dhaka (Bangladesh); Islam, Shariful [Department of Physics, Comilla University, Comilla (Bangladesh); Amri, Amun [Department of Chemical Engineering, Universitas Riau, Pekanbaru (Indonesia); Jiang, Zhong-Tao [Surface Analysis and Materials Engineering Research Group, School of Engineering & Information Technology, Murdoch University, Perth, Western Australia 6150 (Australia); Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z. [School of Engineering & Information Technology, Murdoch University, Murdoch, WA 6150 (Australia)

    2017-01-15

    Highlights: • Cd-Zn sulphide films synthesized via chemical bath deposition technique. • Nanocrystalline phase of Cd-Zn sulphide films were seen in XRD studies. • Nanocrystalline structures of the films were also confirmed by the SEM. • The band gap of these films is a combination of composition and size. • E{sub U} and σ studies ascribed the shrinkage of absorption edges around the optical band-gaps. - Abstract: In this article Cd-Zn sulphide thin films deposited onto soda lime glass substrates via chemical bath deposition (CBD) technique were investigated for photovoltaic applications. The synthesized films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (UV–vis) spectroscopic methodologies. A higher degree of crystallinity of the films was attained with the increase of film thicknesses. SEM micrographs exhibited a partial crystalline structure with a particulate appearance surrounded by the amorphous grain boundaries. The optical absorbance and absorption coefficient of the films were also enhanced significantly with the increase in film thicknesses. Optical band-gap analysis indicated a monotonic decrease in direct and indirect band-gaps with the increase of thicknesses of the films. The presence of direct and indirect transitional energies due to the exponential falling edges of the absorption curves may either be due to the lack of long-range order or to the existence of defects in the films. The declination of the optical absorption edges was also confirmed via Urbach energy and steepness parameters studies.

  6. Effect of annealing on the properties of spray-pyrolysed lead sulphide thin films for solar cell application

    Science.gov (United States)

    Veena, E.; Bangera, Kasturi V.; Shivakumar, G. K.

    2017-05-01

    Annealing is the most important processing parameter perhaps as it directly affects the properties of the thin films. In the present article, lead sulphide thin films composed of (2 0 0) plane-oriented nano-rods were successfully synthesized on glass substrates using spray pyrolysis technique at annealing temperature 350 °C. Films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive analysis by X-ray (EDAX), UV-VIS-NIR spectrometry and two-probe experiments. The X-ray diffraction study confirmed that films exhibiting face-centred cubic structure with a preferred orientation along (2 0 0) plane were independent of annealing temperature. SEM photographs revealed the formation of nano-rods. The possible formation of nano-rods and its dependency on optical and electrical properties were discussed. Chemical composition in terms of atomic ratio of the constituents is determined from EDAX studies. The optical band gap of the lead sulphide thin films was found to decrease from 1.22 to 0.98 eV with an increase in annealing temperature. The electrical conductivity of the films at room temperature was of the order of 10-2 Ω-1 cm-1 with the low activation energy. Results prove that lead sulphide films grown by chemical method appeal its adoptability for potential solar cell applications.

  7. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Pan, Chongle [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  8. The environmental context of Acidithiobacillus ferrooxidans and its potential role as an ecosystem engineer in sulphidic mine waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebenaa, Gustav

    2001-06-01

    Microorganisms are the causative agent of the environmental problems since they catalyse the weathering of the (sulphidic) waste. The chemical oxidation alone is not fast enough to create any severe environmental problems. Acidithiobacillus ferrooxidans is thought to be a key organism in weathering of sulphide minerals. A. ferrooxidans is affected by several more or less abiotic factors. The influence of temperature, pH and nutrient deficiency as potentially limiting factors for the activity of A. ferrooxidans has been investigated. It seems that temperature has less influence on its activity, but rather reflects the origin of the bacterial isolate. An alkaline pH seems enough to hinder growth and activity. The nutrients do not seem to be a limiting factor in the studied environment. The possible regulation of the activity of A. ferrooxidans is therefore a way to, at least partly, mitigate the environmental impact from mine waste. Waste from the mining industry is the largest waste problem in Sweden. With amounts over 600 million tonnes one could easily imagine the tremendous cost involved in the abatement. The MiMi-programme, with researchers from several relevant fields, has as its aim to evaluate present and to find alternative techniques to mitigate the environmental impact from mine waste. The understanding of A. ferrooxidans and its role as an ecosystem engineer is essential both in evaluating present techniques and even more so in finding alternative abatement techniques for sulphidic mine waste.

  9. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens: A mesocosm experiment

    Energy Technology Data Exchange (ETDEWEB)

    Geurts, Jeroen J.M., E-mail: j.geurts@b-ware.e [Aquatic Ecology and Environmental Biology, Institute for Wetland and Water Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); B-WARE Research Centre, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Sarneel, Judith M. [Landscape Ecology, Institute of Environmental Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands); Willers, Bart J.C.; Roelofs, Jan G.M. [Aquatic Ecology and Environmental Biology, Institute for Wetland and Water Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands); Verhoeven, Jos T.A. [Landscape Ecology, Institute of Environmental Biology, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands); Lamers, Leon P.M. [Aquatic Ecology and Environmental Biology, Institute for Wetland and Water Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)

    2009-07-15

    Both eutrophication and SO{sub 4} pollution can lead to higher availability of nutrients and potentially toxic compounds in wetlands. To unravel the interaction between the level of eutrophication and toxicity at species and community level, effects of SO{sub 4} were tested in nutrient-poor and nutrient-rich fen mesocosms. Biomass production of aquatic and semi-aquatic macrophytes and colonization of the water layer increased after fertilization, leading to dominance of highly competitive species. SO{sub 4} addition increased alkalinity and sulphide concentrations, leading to decomposition and additional eutrophication. SO{sub 4} pollution and concomitant sulphide production considerably reduced biomass production and colonization, but macrophytes were less vulnerable in fertilized conditions. The experiment shows that competition between species, vegetation succession and terrestrialization are not only influenced by nutrient availability, but also by toxicity, which strongly interacts with the level of eutrophication. This implies that previously neutralized toxicity effects in eutrophied fens may appear after nutrient reduction measures have been taken. - Interspecific competition, vegetation succession and terrestrialization in fens depend on the interacting effects of SO{sub 4} pollution, sulphide toxicity and nutrient availability.

  10. Removal of Cd (II in Water Samples Using Modified Magnetic Iron Oxide Nanoparticle

    Directory of Open Access Journals (Sweden)

    Ahmad Kakaei

    2015-11-01

    Full Text Available Background: Heavy metals, even at low concentrations, are harmful to human health and environment. Cadmium as a heavy metal is highly toxic and can cause serious threat to living organisms. This research was designed to evaluate the adsorption potential of modified magnetic iron nanoparticles by 2-(5-bromo-2-pyridylazo-5-diethylaminophenol ligand for the removal of cadmium ions from water solutions. Methods: This study was conducted in Ilam Branch, Islamic Azad University, Iran, in 2014. Modified magnetic iron nanoparticle was used as adsorbent for the removal of cadmium from aqueous solution. In batch extraction, the effects of parameters like pH of sample solution (3.0-11.0, initial metal concentrations (50-300 mgL-1, contact time (1.0-10 min and adsorbent dose (10.0-60.0 mg were studied on the adsorption process. Modified magnetite nanoparticle was presented as the adsorbent for the removal of cadmium ions from aqueous samples and later was confirmed by flame atomic absorption spectrometry. Results: The adsorption of cadmium ions on modified magnetite nanoparticles strongly depends on pH. The experimental isothermal data were analyzed using the Langmuir and Freundlich equations. The removal process followed the Langmuir isotherm. Maximum adsorption capacity for the adsorption of cadmium ions by the sorbent was 24.09 mgg-1. Conclusion: The method was successfully applied to adsorption of cadmium in water samples with satisfactory results. Other advantages include high capacity, good stability and fast adsorption kinetics. High pre-concentration factor was obtained easily by this method (120 and low analysis cost.

  11. Cadmium exposure and health risks: Recent findings

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.G. [Huddinge Hospital (Sweden). Dept. of Renal Medicine; Jaerup, L. [Stockholm City Council (Sweden). Dept. of Environmental Health

    1996-08-01

    Environmental and/or occupational exposure to cadmium give rise to a tubular kidney dysfunction which may proceed to more generalized renal damage and bone disease if exposure has been high and prolonged. Recent scientific work shows that early renal effects develop at lower levels of exposure than previously anticipated. Previous risk assessments for cadmium were mainly based on studies on healthy male workers. The general population, however, also include particularly susceptible groups such as elderly and individuals with illnesses (e.g. diabetes) that may predispose to cadmium-induced health effects. A significant proportion of the general population displays early signs of toxicity already at urinary cadmium concentrations around 3 nmol mmol{sup -1} creatinine. In addition to early tubular effects, cadmium may exert direct or indirect effects on mineral metabolism and the mineralization of the skeleton at relatively low levels of exposure. This may have important health implications, as poor and easily fractured bone is a major problem among the elderly in all industrialized countries. 41 refs, 4 figs

  12. Cadmium recycling in the United States in 2000

    Science.gov (United States)

    Plachy, Jozef

    2003-01-01

    Recycling of cadmium is a young and growing industry that has been influenced by environmental concerns and regulatory constraints. Domestic recycling of cadmium began in 1989 as a byproduct of processing of spent nickel-cadmium batteries. In 1995, International Metals Reclamation Co. Inc. expanded its operations by building a dedicated cadmium recycling plant. In 2000, an estimated 13 percent of cadmium consumption in the United States was sourced from recycled cadmium, which is derived mainly from old scrap or, to lesser degree, new scrap. The easiest forms of old scrap to recycle are small spent nickel-cadmium batteries followed by flue dust generated during recycling of galvanized steel and small amounts of alloys that contain cadmium. Most of new scrap is generated during manufacturing processes, such as nickel-cadmium battery production. All other uses of cadmium are in low concentrations and, therefore, difficult to recycle. Consequently, much of this cadmium is dissipated and lost. The amount of cadmium in scrap that was unrecovered in 2000 was estimated to be 2,030 metric tons, and an estimated 285 tons was recovered. Recycling efficiency was estimated to be about 15 percent.

  13. Cadmium uptake by the green alga Chlorella emersonii | Arikpo ...

    African Journals Online (AJOL)

    Investigations were carried out on the uptake of the heavy metal cadmium (Cd) by the green alga Chlorella emersonii with the aid of an ion selective electrode. Cadmium uptake by Chlorella was very rapid with 70% of total uptake occurring during the first 10 seconds. Uptake of cadmium by Chlorella showed a direct ...

  14. Cadmium affects the social behaviour of rainbow trout, Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Sloman, Katherine A.; Scott, Graham R.; Diao Zhongyu; Rouleau, Claude; Wood, Chris M.; McDonald, D. Gord

    2003-10-29

    The present study investigated both the effects of cadmium on the social interactions of rainbow trout and the differential accumulation of waterborne cadmium among social ranks of fish. Fish exposed to waterborne cadmium concentrations of 2 {mu}g l{sup -1} for 24 h, followed by a 1, 2 or 3 day depuration period in clean water, had a decreased ability to compete with non-exposed fish. However, the competitive ability of exposed fish given a 5 day depuration period was not significantly impaired. Cadmium accumulated in the olfactory apparatus of fish exposed to waterborne cadmium for 24 h and decreased significantly only after 5 days depuration in clean water. Among groups of ten fish held in stream tanks, where all fish were exposed to cadmium, there were significant effects on social behaviour and growth rate. Dominance hierarchies formed faster among fish exposed to cadmium than among control fish, and overall growth rates were higher in the cadmium treatment. In groups of ten fish, social status also affected tissue accumulation of cadmium during waterborne exposure, with dominant fish accumulating more cadmium at the gill. In conclusion, exposure to low levels of cadmium, affects the social behaviour of fish, in part due to accumulation in the olfactory apparatus, and dominant fish accumulate more gill cadmium than subordinates during chronic waterborne exposure.

  15. Optical and electrical properties of chemical bath deposited cobalt sulphide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Govindasamy, Geetha [R& D Centre, Bharathiar University, Coimbatore (India); Murugasen, Priya, E-mail: priyamurugasen15@gmail.com [Department of Physics, Saveetha Engineering, Chennai, Tamil Nadu (India); Sagadevan, Suresh [Department of Physics, AMET University, Chennai, Tamil Nadu (India)

    2017-01-15

    Cobalt sulphide (CoS) thin films were synthesized using the Chemical Bath Deposition (CBD) technique. X-ray diffraction (XRD) analysis was used to study the structure and the crystallite size of CoS thin film. Scanning Electron Microscope (SEM) studies reveal the surface morphology of these films. The optical properties of the CoS thin films were determined using UV-Visible absorption spectrum. The optical band gap of the thin films was found to be 1.6 eV. Optical constants such as the refractive index, the extinction coefficient and the electric susceptibility were determined. The dielectric studies were carried out at different frequencies and at different temperatures for the prepared CoS thin films. In addition, the plasma energy of the valence electron, Penn gap or average energy gap, the Fermi energy and electronic polarizability of the thin films were determined. The AC electrical conductivity measurement was also carried out for the thin films. The activation energy was determined by using DC electrical conductivity measurement. (author)

  16. Synthesis and characterization of copper antimony tin sulphide thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, N., E-mail: nisar.ali@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Department of Physics, Govt. Post Graduate Jehanzeb College Saidu Sharif, Swat, 19200 (Pakistan); Hussain, A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Wan Shamsuri, W.N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [Department of Physics and Electrical Engineering, Faculty of Engineering & Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-12-30

    Highlights: • A new and novel material for solar cell applications is demonstrated as a replacement for toxic and expansive compounds. • The materials used in this compound are abundant and low cost. • Compound exhibit unusual optical and electrical properties. • The band gap was found to be comparable with that of GaAs. - Abstract: Low price thin film modules based on Copper antimony tin sulphide (CATS) are introduced for solar harvesting to compete for the already developed compound semiconductors. Here, CATS thin films were deposited on soda lime glass by thermal evaporation technique followed by a rapid thermal annealing in an argon atmosphere. From Our XRD analysis, it was revealed that the annealed samples were poly-crystalline and their crystallinity was improved with increasing annealing temperature. The constituent elements and their corresponding chemical states were identified using X-ray photoelectron spectroscopy. The obtained optical band gap of 1.4 eV for CATS thin film is found nearly equal to GaAs – one of the highly efficient thin film material for solar cell technology. Furthermore, our observed good optical absorbance and low transmittance for the annealed CATS thin films in the visible region of light spectrum assured the aptness of the CATS thin films for solar cell applications.

  17. Optical properties of silver sulphide thin films formed on evaporated Ag by a simple sulphurization method

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Calva, E., E-mail: ebc@xanum.uam.m [Departamento de Ingenieria de Procesos e hidraulica, Universidad Autonoma Metropolitana - Iztapalapa, Av. Purisima Esq. Michoacan, Col. Vicentina, Mexico, D.F., 09340 (Mexico); Ortega-Lopez, M.; Avila-Garcia, A.; Matsumoto-Kwabara, Y. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico DF 07360 (Mexico)

    2010-01-31

    Silver sulphide (Ag{sub 2}S) thin films were grown on the surface of silver films (Ag) deposited on glass substrate by using a simple chemical sulphurization method. According to X-ray diffraction analysis, the Ag{sub 2}S thin films display low intensity peaks at 34.48{sup o}, 36.56{sup o}, and 44.28{sup o}, corresponding to diffraction from (100), (112) and (103) planes of the acanthite phase (monoclinic). A model of the type Ag{sub 2}S/Ag/glass was deduced from spectroscopic ellipsometric measurements. Also, the optical constants (n, k) of the system were determined. Furthermore, the optical properties as solar selective absorber for collector applications were assessed. The optical reflectance of the Ag{sub 2}S/Ag thin film systems exhibits the expected behavior for an ideal selective absorber, showing a low reflectance in the wavelength range below 2 {mu}m and a high reflectance for wavelengths higher than that value. An absorptance about 70% and an emittance about 3% or less were calculated for several samples.

  18. Environmental Benign Process for Production of Molybdenum Metal from Sulphide Based Minerals

    Science.gov (United States)

    Rajput, Priyanka; Janakiram, Vangada; Jayasankar, Kalidoss; Angadi, Shivakumar; Bhoi, Bhagyadhar; Mukherjee, Partha Sarathi

    2017-10-01

    Molybdenum is a strategic and high temperature refractory metal which is not found in nature in free state, it is predominantly found in earth's crust in the form of MoO3/MoS2. The main disadvantage of the industrial treatment of Mo concentrate is that the process contains many stages and requires very high temperature. Almost in every step many gaseous, liquid, solid chemical substances are formed which require further treatment. To overcome the above drawback, a new alternative one step novel process is developed for the treatment of sulphide and trioxide molybdenum concentrates. This paper presents the results of the investigations on molybdenite dissociation (MoS2) using microwave assisted plasma unit as well as transferred arc thermal plasma torch. It is a single step process for the preparation of pure molybdenum metal from MoS2 by hydrogen reduction in thermal plasma. Process variable such as H2 gas, Ar gas, input current, voltage and time have been examined to prepare molybdenum metal. Molybdenum recovery of the order of 95% was achieved. The XRD results confirm the phases of molybdenum metal and the chemical analysis of the end product indicate the formation of metallic molybdenum (Mo 98%).

  19. Characterization of Silver Sulphide Thin Films Prepared by Spray Pyrolysis Using a New Precursor Silver Chloride

    Directory of Open Access Journals (Sweden)

    Kamel SAHRAOUI

    2014-05-01

    Full Text Available Silver sulphide is a semiconductor widely used as an infrared sensor and as an absorber material for solar cells. In this work, we report the preparation of Ag2S thin films from a new precursor using chemical spray pyrolysis technique. The thin films having various [CS(NH22]/[AgCl] were grown at different substrate temperatures and characterized using X-Ray diffraction, Scanning Electron Microscopy, transmission T(λ and reflectivity R(λ measurements. The diffraction patterns showed that the sample having x =[CS(NH22]/[AgCl]=5 ratio at the substrate temperature Ts =200 °C has the best crystallinity and exhibits a monoclinic structure preferentially oriented in the direction of (- 112 lattice plan . The optical properties have been investigated using spectrophotometric measurements in the wavelength range 200-2500 nm. The obtained values of the band gap energy were in the order of 1 eV. The refractive index n and the extinction coefficient k were determined from the absolute values of the measured transmittance and reflectance. The conductivity at room temperature was 32´10 –3(W cm-1, and the films were n type.

  20. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.

    Science.gov (United States)

    Ercikdi, Bayram; Cihangir, Ferdi; Kesimal, Ayhan; Deveci, Haci; Alp, Ibrahim

    2010-07-15

    This study presents the effect of three different water-reducing admixtures (WRAs) on the rheological and mechanical properties of cemented paste backfill (CPB) samples. A 28-day strength of > or = 0.7 MPa and the maintenance of the stability (i.e. > or = 0.7 MPa) over 360 days of curing were desired as the design criteria. Ordinary Portland cement (OPC) and Portland composite cement (PCC) were used as binders at 5 wt.% dose. WRAs were initially tested to determine the dosage of a WRA for a required consistency of 7'' for CPB mixtures. A total of 192 CPB samples were then prepared using WRAs. The utilization of WRAs enhanced the flow characteristics of the CPB mixture and allowed to achieve the same consistency at a lower water-to-cement ratio. For OPC, the addition of WRAs appeared to improve the both short- and long-term performance of CPB samples. However, only polycarboxylate-based superplasticiser produced the desired 28-day strength of > or = 0.7 MPa when PCC was used as the binder. These findings suggest that WRAs can be suitably exploited for CPB of sulphide-rich tailings to improve the strength and stability in short and long terms allowing to reduce binder costs in a CPB plant. 2010 Elsevier B.V. All rights reserved.

  1. Microwave-assisted total digestion of sulphide ores for multi-element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Al-Harahsheh, M., E-mail: al-harahsheh@ahu.edu.jo [College of Mining and Environmental Engineering, Al-Hussein Bin Talal University, P.O. Box 20, Ma' an 71111 (Jordan); Kingman, S.; Somerfield, C. [Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Ababneh, F. [Department of Chemistry, Al-Hussein Bin Talal University, P.O. Box 20, Ma' an (Jordan)

    2009-04-06

    A new two-stage microwave-assisted digestion procedure using concentrated HNO{sub 3}, HCl, HF and H{sub 3}BO{sub 3} has been developed for the chemical analysis of major and trace elements in sulphide ore samples prior to inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis. In the first stage 0.2 g of the certified reference material (CRM) sample was digested with a combination of acids (HNO{sub 3}, HCl, and HF) in a closed Teflon vessel and heated in the microwave to 200 deg. C for 30 min. After cooling, H{sub 3}BO{sub 3} was added and the vessel was reheated to 170 deg. C for 15 min. The precision of the method was checked by comparing the results against six certified reference materials. The analytical results obtained were in good agreement with the certified values, in most cases the recoveries were in the range 95-105%. Based on at least 17 replicates of sample preparation and analysis, the precision of the method was found to be {<=}5%.

  2. From lithotroph- to organotroph-dominant: directional shift of microbial community in sulphidic tailings during phytostabilization

    Science.gov (United States)

    Li, Xiaofang; Bond, Philip L.; van Nostrand, Joy D.; Zhou, Jizhong; Huang, Longbin

    2015-08-01

    Engineering microbial diversity to enhance soil functions may improve the success of direct revegetation in sulphidic mine tailings. Therefore, it is essential to explore how remediation and initial plant establishment can alter microbial communities, and, which edaphic factors control these changes under field conditions. A long-term revegetation trial was established at a Pb-Zn-Cu tailings impoundment in northwest Queensland. The control and amended and/or revegetated treatments were sampled from the 3-year-old trial. In total, 24 samples were examined using pyrosequencing of 16S rRNA genes and various chemical properties. The results showed that the microbial diversity was positively controlled by soil soluble Si and negatively controlled by soluble S, total Fe and total As, implying that pyrite weathering posed a substantial stress on microbial development in the tailings. All treatments were dominated by typical extremophiles and lithotrophs, typically Truepera, Thiobacillus, Rubrobacter; significant increases in microbial diversity, biomass and frequency of organotrophic genera (typically Nocardioides and Altererythrobacter) were detected in the revegetated and amended treatment. We concluded that appropriate phytostabilization options have the potential to drive the microbial diversity and community structure in the tailings toward those of natural soils, however, inherent environmental stressors may limit such changes.

  3. Chemical-oxidative scrubbing for the removal of hydrogen sulphide from raw biogas: potentials and economics.

    Science.gov (United States)

    Miltner, M; Makaruk, A; Krischan, J; Harasek, M

    2012-01-01

    In the present work chemical-oxidative scrubbing as a novel method for the desulphurisation of raw biogas is presented with a special focus on the process potentials and economics. The selective absorption of hydrogen sulphide from gas streams containing high amounts of carbon dioxide using caustic solutions is not trivial but has been treated in literature. However, the application of this method to biogas desulphurisation has not been established so far. Based on rigorous experimental work, an industrial-scale pilot plant has been designed, erected and commissioned at a biogas plant with biogas upgrading and gas grid injection in Austria. Data collected from the 12-month monitored operation has been used to elaborate performance as well as economic parameters for the novel desulphurisation method. The proposed technology offers significant operational advantages regarding the degree of automation and the flexibility towards fluctuations in process boundary conditions. Furthermore, the economic assessment revealed the high competitiveness of the chemical-oxidative scrubbing process compared with other desulphurisation technologies with the named advantageous operational behaviour.

  4. Determination of iron sulphides in roofing slates from the north west of Spain

    Directory of Open Access Journals (Sweden)

    García-Guinea, J.

    2002-06-01

    Full Text Available The most important production of roofing slates in the world is quarried from the Ordovician formations of the Truchas Syncline, which have the largest amount of working quarries. Roofing slates, sometimes, have crystallized iron sulphides such as pyrite, pyrrhotite and other minerals. These iron sulphides oxidise and stain the tiles when are exposed to atmospheric conditions, so much oxidized how much more inclined is the roof. Galician quarrymen distinguish between harmless pyrite (i.e., resistant cubes of pyrite and damaging pyrite (i.e., other alterable metallic minerals such as pyrrhotite, chalcopyrite, marcasite and arsenopyirite. An improved identification method is proposed using both methods (a chemical element ratios of samples under electron microprobes and (b quantitative determination of the iron sulphides in the slate measuring the oxidized areas by digital camera. The analysed Fe/S ratios, in an XY plot, of seventy metallic samples, define three separated zones: pyrite, pyrrhotite and iron oxi-hydroxides. Quantitative determination of iron sulphides in the slate tile were performed by sinking the tile horizontally for six hours in oxygen peroxide (3% diluted and capturing the oxidation areas with a magnetic camera and analysing the bitmap images with Sigma-Scan 5 software. The proposed method is faster than the Spanish UNE norm (UNE-EN- 12326-2 Sept.2000, which requires thermal strike cycles for a month. The necessary use of heavy analytical equipment such as electron microprobes can be facilitated by installing it in the Slate Technological Centre of Sobradelo de Valdeorras (Orense or by using a simple optical stereoscopic zoom microscope to classify the iron minerals.

    Las formaciones ordovícicas del Sinclinal de Duchas concentran la mayor producción mundial de pizarra para cubiertas y el mayor número de canteras en producción. Las pizarras para cubiertas muchas veces contienen sulfuros de hierro cristalizados en forma

  5. Preparation and characterization of polyaniline-cadmium sulfide nanocomposite for gas sensor application

    Science.gov (United States)

    Al-Jawad, Selma M. H.; Rafic, Sewench N.; Muhsen, Mustafa M.

    2017-09-01

    Polyaniline (PANI) was prepared by chemical oxidative polymerization of aniline monomers as emeraldine salt form. By the same method, polyaniline-cadmium sulfide nanocomposites were synthesized in the presence of different percentages (10-50 wt.%) of cadmium sulfide (CdS) which was prepared by using sol-gel method. The optical band gap was decrease with increasing of CdS concentration, that is obtained from UV-VIS measurements. From SEM and AFM, there is uniform distribution for cadmium sulfide nanoparticles in the PANI matrix. The electrical measurements of nanocomposites exhibit the effect of crystallite size and the high resistivity of CdS on the resistivity of nanocomposites. Emeraldine salt PANI, CdS and PANI-CdS nanocomposites were investigated as gas sensors. From this investigation, the sensitivity of PANI-CdS for NO2 gas increase with the increasing of operation temperature and the optimum sensitivity was obtained at 200∘C. The sensitivity of nanocomposites at best temperature (200∘C) was increased and faster response time with the increasing of CdS contents.

  6. Biosynthesis of nanoparticles using microbes- a review.

    Science.gov (United States)

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    P. Bala Ramudu

    2007-09-01

    Full Text Available This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself was used as the purging solution. Results showed that 49% reduction of cadmium concentration was achieved in the case of soil saturated (washed with ammonium citrate as well as purging solution also was ammonium citrate. The soil pH and washing solutions were the most important factors in controlling the removal of cadmium in electrokinetic remediation process.

  8. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  9. Toxic effects of Cadmium on the garden snail (Helix aspersa)

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L.K. (Northrop Services Inc., Corvallis, OR); DeHaven, J.I.; Botts, R.P.

    1981-05-01

    Spreading treated municipal wastes on agricultural and forest lands is becoming an established method of disposal. However, there is concern about the deleterious effects of toxicants, particularly cadmium, in the sludges. Cadmium concentrations in sewage sludge have been reported as high as 1500 ppM. The work reported here is a part of a larger project to investigate the ecological effects of municipal wastes on forest lands. Snails, Helix aspersa, were chosen to examine the entrance of cadmium into terrestrial food chains. This experiment was designed to determine cadmium accumulation, acute toxicity, and behavioral, reproductive and growth responses with increasing levels of cadmium.

  10. Cadmium-induced testicular injury.

    Science.gov (United States)

    Siu, Erica R; Mruk, Dolores D; Porto, Catarina S; Cheng, C Yan

    2009-08-01

    Cadmium (Cd) is an environmental toxicant and an endocrine disruptor in humans and rodents. Several organs (e.g., kidney, liver) are affected by Cd and recent studies have illustrated that the testis is exceedingly sensitive to Cd toxicity. More important, Cd and other toxicants, such as heavy metals (e.g., lead, mercury) and estrogenic-based compounds (e.g., bisphenols) may account for the recent declining fertility in men among developed countries by reducing sperm count and testis function. In this review, we critically discuss recent data in the field that have demonstrated the Cd-induced toxicity to the testis is probably the result of interactions of a complex network of causes. This is likely to involve the disruption of the blood-testis barrier (BTB) via specific signal transduction pathways and signaling molecules, such as p38 mitogen-activated protein kinase (MAPK). We also summarize current studies on factors that confer and/or regulate the testis sensitivity to Cd, such as Cd transporters and metallothioneins, the impact of Cd on the testis as an endocrine disruptor and oxidative stress inducer, and how it may disrupt the Zn(2+) and/or Ca(2+) mediated cellular events. While much work is needed before a unified mechanistic pathway of Cd-induced testicular toxicity emerges, recent studies have helped to identify some of the likely mechanisms and/or events that take place during Cd-induced testis injury. Furthermore, some of the recent studies have shed lights on potential therapeutic or preventive approaches that can be developed in future studies by blocking or minimizing the destructive effects of Cd to testicular function in men.

  11. Cadmium Exposure and Pancreatic Cancer in South Louisiana

    Directory of Open Access Journals (Sweden)

    Brian G. Luckett

    2012-01-01

    Full Text Available Cadmium has been hypothesized to be a pancreatic carcinogen. We test the hypothesis that cadmium exposure is a risk factor for pancreatic cancer with a population-based case-control study sampled from a population with persistently high rates of pancreatic cancer (south Louisiana. We tested potential dietary and nondietary sources of cadmium for their association with urinary cadmium concentrations which reflect long-term exposure to cadmium due to the accumulation of cadmium in the kidney cortex. Increasing urinary cadmium concentrations were significantly associated with an increasing risk of pancreatic cancer (2nd quartile OR = 3.34, 3rd = 5.58, 4th = 7.70; test for trend P≤0.0001. Potential sources of cadmium exposure, as documented in the scientific literature, found to be statistically significantly associated with increased risk of pancreatic cancer included working as a plumber, pipefitter or welder (OR = 5.88 and high consumption levels of red meat (4th quartile OR = 6.18 and grains (4th quartile OR = 3.38. Current cigarette smoking, at least 80 pack years of smoking, occupational exposure to cadmium and paints, working in a shipyard, and high consumption of grains were found to be statistically significantly associated with increased concentrations of urinary cadmium. This study provides epidemiologic evidence that cadmium is a potential human pancreatic carcinogen.

  12. Murine strain differences and the effects of zinc on cadmium concentrations in tissues after acute cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    King, L.M. [ARS USDA, Germplasm and Gamete Physiology Lab., Beltsville, MD (United States); Anderson, M.B. [Dept. of Anatomy, Tulane Univ. School of Medicine, New Orleans, LA (United States); Sikka, S.C. [Dept. of Urology, Tulane Univ. School of Medicine, New Orleans, LA (United States); George, W.J. [Dept. of Pharmacology, Tulane Univ. School of Medicine, New Orleans, LA (United States)

    1998-10-01

    The role of strain differences in cadmium tissue distribution was studied using sensitive (129/J) and resistant (A/J) mice. These murine strains have previously been shown to differ in their susceptibility to cadmium-induced testicular toxicity. Cadmium concentration was measured in testis, epididymis, seminal vesicle, liver, and kidney at 24 h after cadmium chloride exposure (4, 10, and 20 {mu}mol/kg CdCl{sub 2}). The 129/J mice exhibited a significant increase in cadmium concentration in testis, epididymis, and seminal vesicle at all cadmium doses used, compared to A/J mice. However, cadmium concentrations in liver and kidney were not different between the strains, at any dose, indicating that cadmium uptake is similar in these organs at 24 h. These murine strains demonstrate similar hepatic and renal cadmium uptake but significantly different cadmium accumulation in the reproductive organs at 24 h. The mechanism of the protective effect of zinc on cadmium toxicity was studied by assessing the impact of zinc acetate (ZnAc) treatment on cadmium concentrations in 129/J mice after 24 h. Zinc pretreatment (250 {mu}mol/kg ZnAc), given 24 h prior to 20 {mu}mol/kg CdCl{sub 2} administration, significantly decreased the amount of cadmium in the testis, epididymis, and seminal vesicle of 129/J mice, and significantly increased the cadmium content of the liver after 24 h. Cadmium levels in the kidney were unaffected at this time. Zinc pretreatment also prevented the cadmium-induced decrease in testicular sperm concentration and epididymal sperm motility seen in 129/J mice. These findings suggest that the differences in the two murine strains may be attributed partly to the differential accumulation of cadmium in murine gonads. This may be caused by strain differences in the specificity of cadmium transport mechanisms. The protective role of zinc in cadmium-induced testicular toxicity in the sensitive strain may be due to an interference in the cadmium uptake by susceptible

  13. Sulphide and sulphosalt mineralogy and paragenesis from the Sierra Almagrera veins, Betic Cordillera (SE Spain

    Directory of Open Access Journals (Sweden)

    Martínez Frías, J.

    1991-12-01

    Full Text Available The Sierra Almagrera vein-type mineralization contains base metal sulphides and Pb-Sb- Cu-Ag sulphosalts. The sulphides possess significant proportions of Ag, Sb (galena, Fe (sphalerite and Sb, Zn (chalcopyrite. Ore microscopy and electron microprobe have revealed a mineralogical and textural variation and confirmed the presence of bournonite, boulangerite and anomalous tetrahedrite. The average sulphosalt formulas are bournonite Cu0.98 Pb0. 96 Sb0.98 S3.04, boulangerite Pb4.8Sb3.8S11.34 and anomalous tetrahedrite Ag0.6Cu9.7 Zn3.6 Fe0. 44 Sb3.47 S13- The sequence of mineral deposition indicates the existance of four mineralizing stages and one supergene alteration: 1 Fe-(As; 2 Zn-Cu-Fe; 3 Pb-Sb-Cu-Ag; 4 Cu-Zn-Fe, and 5 carbonates, sulphates and supergene oxides. In broad terms, it is possible to establish the following conclusions: a there exist a mineralogical and textural variation with depth, the Pb-Sb-Cu-Ag stage reaching the maximum development; b a temperature decrease during the formation of sph. 1, linked to the progressive increase in Fe-content of the sphalerite has been detected; c the compositional homogeneity of the bournonite (and the fair lack of As in the tetrahedrite could indicate the existance of a possible tendancy to individually crystallise the Sb and As sulphosalts, according to the trend Bi → Sb → As.La mineralización filoniana de Sierra Almagrera presenta una interesante paragénesis caracterizada por la presencia de sulfuros de metales base y sulfosales de Pb-Sb-Cu-Ag. Se ha identificado una secuencialidad textural y química de las distintas fases minerales, según la cual los sulfuros poseen variaciones significativas de las proporciones de Ag, Sb (galena, Fe (esfalerita, y Sb, Zn (calcopirita, yen la que las sulfosales son fundamentalmente sulfoantimoniuros (bournonita: Cu0.98 Pb0. 96 Sb0.98 S3.04, boulangerita Pb4.8Sb3.8S11.34 y tetraedrita anómala Ag0.6Cu9.7 Zn3.6 Fe0. 44 Sb3.47 S13-. La secuencia de

  14. Remediation of cadmium by Indian mustard (Brassica juncea L. from cadmium contaminated soil: a phytoextraction study

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Bhadkariya

    2014-05-01

    Full Text Available Cadmium is a toxic metal for living organisms and an environmental contaminant. Soils in many parts of the world are slightly too moderately contaminated by Cd due to long term use and disposal of Cd-contaminated wastes. Cost effective technologies are needed to remove cadmium from the contaminated sites. Soil phytoextraction is engineering based, low cost and socially accepted developing technology that uses plants to clean up contaminants in soils. This technology can be adopted as a remediation of cadmium from Cd-contaminated soils with the help of Brassica juncea plant. The objective of this work was to evaluate the cadmium (Cd accumulate and the tolerance of Brassica juncea. The Cd accumulates in all parts of plants (roots, stems and leaves. It was found that accumulating efficiency increased with the increase in the concentration of applied cadmium metal solution. Maximum accumulation of cadmium was found in roots than stem and leaves. Phytoextraction coefficient and translocation factor were highest to show the validity of the Brassica juncea species for hyperaccumulation of the Cd metal. These results suggested that Brassica juncea has a high ability to tolerate and accumulate Cd, so it might be a promising plant to be used for phytoextraction of Cd contaminated soil. DOI: http://dx.doi.org/10.3126/ije.v3i2.10533 International Journal of the Environment Vol.3(2 2014: 229-237

  15. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.

    Science.gov (United States)

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-11-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Leaching of a gold bearing partially roasted sulphide. Laboratory scale studies

    Directory of Open Access Journals (Sweden)

    M.F. Almeida

    2001-10-01

    Full Text Available This research aimed at defining a route for recovering precious metals from a very heterogeneous gold bearing sulphide and arsenide concentrate that was partially roasted and dumped by the 1960s when Santo António mine closed. Gold occurs in this concentrate as free particles in the range of 10-100 mum, most of them still enclosed in the pyrite and arsenopyrite matrix. Its content varies from 20 to 150 g of Au/ton, being higher at the dump upper levels and in the finer concentrate fractions. Preliminary tests demonstrated the refractoriness of this product, since the leaching with conventional cyanide solutions and with other leaching solutions gave very low recoveries. However, high concentrated cyanide solutions recover more than 60% of Au, although with high NaCN and lime consumptions and poor settling characteristics. Iron was shown to be highly dissolved in these solutions. Some prior treatments clearly favoured the cyanidation process, in particular a roasting step. Thus, a large number of roasting experiments was carried out to define the most favourable conditions for recovering gold. However, no clear relationship between roasting conditions and gold dissolution was found due to the heterogeneity of the product and high variance of gold experimental recoveries. These recoveries were calculated considering gold contained in both the leaching residues and leachates, and uncertainties of these results are relatively high. Roasting the product at 450-700 °C for 1 h guarantees a high probability to dissolve at least 74% Au in a highly concentrated NaCN solution stirred for 24 h. The 600-700 °C roasting range is clearly preferable for consuming less cyanide and lime. Pre-washing the roasted product seems not to reduce the cyanide consumption. Regarding the silver recovery, the NaCN and lime consumption are higher while using the products roasted at the lowest tested temperatures. Products roasted at higher temperatures have better settling

  17. Phytotoxicity of cadmium on peroxidation, superoxide dismutase ...

    African Journals Online (AJOL)

    The results indicated that Cd destroyed the balance of free radical metabolisms, which resulted in increasing malondialdehyde (MDA) content and the relative cell membrane permeability (RMP). The kernel yield and kernel rate per pot showed significant decrease under cadmium stress (P < 0.05). The varieties FengHua3 ...

  18. Mobiliteit van cadmium in de bodem

    NARCIS (Netherlands)

    Chardon, W.J.

    1984-01-01

    The adsorption of cadmium by twelve Dutch soils was investigated under widely varying circumstances. The adsorption can be described with the Freundlich equation; the parameters of this equation can be predicted using the properties of the soil (pH, organic carbon and clay

  19. Cadmium versus phosphate in the world ocean

    NARCIS (Netherlands)

    Baar, Hein J.W. de; Saager, Paul M.; Nolting, Rob F.; Meer, Jaap van der

    1994-01-01

    Cadmium (Cd) is one of the best studied trace metals in seawater and at individual stations exhibits a more or less linear relation with phosphate. The compilation of all data from all oceans taken from over 30 different published sources into one global dataset yields only a broad scatterplot of Cd

  20. Enhanced Electrokinetic Remediation of Cadmium Contaminated Soil

    African Journals Online (AJOL)

    In an attempt to remediate contaminated soil, a new technique of purging cadmium from soil is examined by enhanced electrokinetic method. It involves the passage of low level direct current between two electrodes in the soil to remove contaminant. An apparatus consisting of four principal parts; soil cell, electrode ...

  1. ( Rattus norvegicus ) Fed with Dietary Cadmium

    African Journals Online (AJOL)

    Histological changes in the kidney tissues of albino rats (Rattus norvegicus) fed 100mg/kg body weight of cadmium sulphate incorporated as food material has been studied in vivo in an acute toxicological experiment. The behavioural pattern and physical changes in the rats were also investigated. Loss of weight and ...

  2. REPRODUCTIVE EFFECTS OF TRANSGENERATIONAL CADMIUM EXPOSURE

    Science.gov (United States)

    Japanese medaka (Oryzias latipes) were used to compare the effects of environmentally relevant cadmium (Cd) exposure on reproduction in adult animals previously exposed in ovo or as hatchlings. Adults were raised either from eggs produced during a two week exposure to 0, 1, 5, o...

  3. PHYSIOLOGICAL EFFECTS OF TRANSGENERATIONAL CADMIUM EXPOSURE.

    Science.gov (United States)

    A series of assays were modified or developed to use with small fish species, specifically Japanese medaka (Oryzias latipes). These assays were used to compare the effects of environmentally relevant cadmium (Cd) exposure on indicators of endocrine function in adult animals previ...

  4. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film deposition was ... 3.1 Reaction mechanism. CdTe thin films were grown on micro ...

  5. antioxidants, cadmium-induced toxicity, serum biochemical

    African Journals Online (AJOL)

    Daniel Owu

    (1.51/gm) and selenium (0.25mg) which on their own had little or no effects on the serum basal phosphatases, hormonal and histological stability caused a reversal of the cadmium-induced biochemical, hormonal and histological toxicities of the ..... accessory sex tissues atrophy such as the prostate. (Waalkes et al 1997a).

  6. Rising environmental cadmium levels in developing countries ...

    African Journals Online (AJOL)

    Summary: Cadmium (Cd) is a ubiquitous environmental pollutant of increasing worldwide concern. It is thought to be of greater concern to rapidly industrializing developing countries because of the increasing pace of industrial activities in these countries with increasing consumption and release into the environment.

  7. Geochemical processes in acidic water caused by the weathering of metal sulphides; Procesos geoquimicos en aguas acidas por meteorizacion de sulfuros

    Energy Technology Data Exchange (ETDEWEB)

    Asta Andres, M. P.; Acero Salazar, P.; Auque Sanz, L. F.; Gimeno Serrano, M. J.; Gomez Jimenez, J. B.

    2011-07-01

    Acid generated by the oxidative dissolution of metal sulphides is one of the main sources of pollution in runoff water, groundwater, soils and sediments throughout the world. These types of water are very acidic and contain high concentrations of sulphate and other potentially contaminating elements such Fe, As, Cd, Sb, Zn and Cu. The acidity generated by sulphide oxidation processes is mainly controlled by the type, quantity and distribution of the sulphide-rich rocks, by the physical characteristics of the rocks (since they determine the accessibility of aqueous solutions and gases to the sulphides), by the presence of microorganisms able to catalyze the main chemical reactions involved in the formation of acid drainage, and by the existence of minerals capable of neutralizing acidity. As a result, the generation of acidic water is a very complex problem, the study of which must be undertaken via a multidisciplinary approach, taking into account geological, geochemical, mineralogical and microbiological aspects among others. The aim of our work is to provide a general overview of these processes and other factors that influence the generation and evolution of these systems, together with information concerning current scientific knowledge about each of these approaches. Thus we hope to provide a basic background to the understanding and study of acid-water systems associated with the weathering of metal sulphides and the processes involved in the generation, migration, evolution and natural attenuation of acidic waters in these environments. (Author) 65 refs.

  8. Defects and diffusion in semiconductors XIII an annual retrospective

    CERN Document Server

    Fisher, D J

    2011-01-01

    This thirteenth volume in the series covering the latest results in the field includes abstracts of papers which have appeared since the publication of Annual Retrospective XII (Volumes 303-304). As well as the over 300 semiconductor-related abstracts, the issue includes the original papers: ""Effect of KCl Addition upon the Photocatalytic Activity of Zinc Sulphide"" (D.Vaya, A.Jain, S.Lodha, V.K.Sharma, S.C.Ameta), ""Localized Vibrational Mode in Manganese-Doped Zinc Sulphide and Cadmium Sulphide Nanoparticles"" (M.Ragam, N.Sankar, K.Ramachandran), ""The Effect of a Light Impurity on the Elec

  9. Synthesis and characterization of CdSe nanoparticles via thermal treatment technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    Full Text Available The synthesis of CdSe nanoparticles was undertaken via the thermal treatment method at varying calcination temperatures from 450 to 700 °C in alternate oxygen and nitrogen environment. Selenium powder was dissolved in ethylenediamine at 200 °C for 2 h before mixing with the metal precursor, cadmium nitrate and the capping agent polyvinylpyrrolidone to materialize the CdSe nanoparticles upon calcination. A series of measurements were employed to analyze the structural, elemental and optical properties of the attained nanoparticles at room temperatures using FTIR, XRD, EDX, SEM and TEM spectroscopies. XRD patterns and FTIR spectra revealed of the fact that, prior to calcination, an amorphous phase of the unheated material has taken shape, which after calcination achieved the crystalline structure of CdSe nanoparticles. The CdSe nanoparticle samples confirmed to be pure cadmium and selenium through EDX and FTIR analyses. The TEM images showed that as the calcination temperature raised from 450 to 700 °C the average particle size increased from 11 to 32 nm and the optical band gap energy decreased from 2.36 to 1.80 eV. Keywords: Cadmium selenide nanoparticles, Thermal treatment method, Structural and optical properties

  10. Synthesis and analysis of ZnO and CdSe nanoparticles

    Indian Academy of Sciences (India)

    Zinc oxide and cadmium selenide particles in the nanometer size regime have been synthesized using chemical routes. The particles were capped using thioglycerol in case of ZnO and 2-mercaptoethanol in case of CdSe to achieve the stability and avoid the coalescence. Zinc oxide nanoparticles were doped with ...

  11. Hepatoprotective activity of Moringa oleifera against cadmium toxicity in rats

    Directory of Open Access Journals (Sweden)

    Reetu Toppo

    2015-04-01

    Full Text Available Aim: The present investigation has been conducted to evaluate the hepatoprotective activity of Moringa oleifera against cadmium-induced toxicity in rats. Materials and Methods: For this study, 18 Wistar albino rats were taken. Control group, Group I rats were given cadmium chloride @ 200 ppm per kg and Group II rats were treated with M. oleifera extract @ 500 mg/kg along with cadmium chloride @ 200 ppm per kg (daily oral for 28 days. On 29th day, animals were slaughtered and various parameters were determined. Serum biomarkers, oxidative stress parameters, histomorphological examination were carried out with estimation of cadmium concentration in liver tissues. Results: Oral administration of cadmium chloride @ 200 ppm/kg for 28 days resulted in a significant increase in aspartate aminotransferase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP, significant (p≤0.01 increase of lipid peroxidation (LPO and decrease in superoxide dismutase (SOD, and increase in cadmium accumulation in liver. Treatment with M. oleifera @ 500 mg/kg significantly (p<0.01 decreased the elevated ALP, AST, ALT, LPO levels and increase in SOD levels, and as compared to cadmium chloride treated group. However, there was no significant difference in cadmium concentration in liver when compared with cadmium chloride treated group. Conclusion: The study conclude that supplementation of M. oleifera (500 mg/kg, daily oral for 28 days has shown protection against cadmium-induced hepatotoxicity.

  12. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  13. Acid leaching of oxide-sulphide copper ore prior the flotation: A way for an increased metal recovery

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2015-01-01

    Full Text Available Copper mine "Cerovo"- East Serbia as well as the other ore bodies in its vicinity contain a significant amount of oxide copper minerals in their uper layers (>40%. Processing of such mixed ores by the existing concentration technologies leads to a substantial copper losses (<60%. Reduction of "oxide copper", by acid leaching prior the flotation concentration, can increase the overall copper efficiency up to more than 70% in the single-stage leaching, achieving an efficiency in the flotation concentration stage higher than 75%. Based on the performed experimental results the flow sheet for processing of the mixed oxide-sulphide copper ore is proposed.

  14. Ecotoxicological studies of CdS nanoparticles on photosynthetic microorganisms.

    Science.gov (United States)

    Brayner, Roberta; Dahoumane, Si Amar; Nguyen, Julie Ngoc-Lan; Yéprémian, Claude; Djediat, Chakib; Couté, Alain; Fiévet, Fernand

    2011-03-01

    The potential ecotoxicity of nanosized cadmium sulfide (CdS), synthesized by the polyol process, was investigated using common Anabaena flos-aquae cyanobacteria and Euglena gracilis euglenoid microalgae. The photosynthetic activities of these microorganisms, after addition of free Cd2+ ions and CdS nanoparticles, varied with the presence of tri-n-octylphosphine oxide (TOPO) used to protect surface particle to avoid toxicity and also to control particle size and shape during the synthesis. The nanoparticle concentration was varied from 10(-3) to 5 x 10(-4) M. It was observed that the cadmium concentration, the addition of TOPO protective agent and the particle dissolution process in the culture medium play an important role during the ecotoxicological tests. Viability tests were followed by PAM fluorimetry. Cd2+ ions were very toxic for Anabaena flos aquae. The same behavior was observed after contact with CdS and CdS-TOPO nanoparticles. However, for Euglena gracilis, the photosynthetic activity was stable for more than 1 month in the presence of Cd2+ ions. Moreover, it was observed that the toxicity varies with the concentration of CdS and CdS-TOPO nanoparticles, both kind of nanoparticles are toxic for this microorganism. Transmission electron microscopy (TEM) analyses of microorganisms ultrathin sections showed that polysaccharides produced by Anabaena flos-aquae, after contact with CdS and CdS-TOPO nanoparticles, protect the microalgae against particle internalization. Only some particles were observed inside the cells. Moreover, the nanoparticle internalization was observed after contact with all nanoparticles in the presence of Euglena gracilis by endocytosis. All nanoparticles are inside vesicles formed by the cells.

  15. Enhanced cadmium phytoremediation of Glycine max L. through bioaugmentation of cadmium-resistant bacteria assisted by biostimulation.

    Science.gov (United States)

    Rojjanateeranaj, Pongsarun; Sangthong, Chirawee; Prapagdee, Benjaphorn

    2017-10-01

    This study examined the potential of three strains of cadmium-resistant bacteria, including Micrococcus sp., Pseudomonas sp. and Arthrobacter sp., to promote root elongation of Glycine max L. seedlings, soil cadmium solubility and cadmium phytoremediation in G. max L. planted in soil highly polluted with cadmium with and without nutrient biostimulation. Micrococcus sp. promoted root length in G. max L. seedlings under toxic cadmium conditions. Soil inoculation with Arthrobacter sp. increased the bioavailable fraction of soil cadmium, particularly in soil amended with a C:N ratio of 20:1. Pot culture experiments observed that the highest plant growth was in Micrococcus sp.-inoculated plants with nutrient biostimulation. Cadmium accumulation in the roots, stems and leaves of G. max L. was significantly enhanced by Arthrobacter sp. with nutrient biostimulation. A combined use of G. max L. and Arthrobacter sp. with nutrient biostimulation accelerated cadmium phytoremediation. In addition, cadmium was retained in roots more than in stems and leaves and G. max L. had the lowest translocation factor at all growth stages, suggesting that G. max L. is a phytostabilizing plant. We concluded that biostimulation-assisted bioaugmentation is an important strategy for improving cadmium phytoremediation efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Marine controlled-source electromagnetic sounding on submarine massive sulphides using 2.5-D simulation

    Science.gov (United States)

    Imamura, N.; Goto, T.; Takekawa, J.; Mikada, H.

    2010-12-01

    Recently, controlled-source electromagnetic (EM) method is widely used for shallow sub-seafloor explorations. In conventional marine CSEM methods, we need to connect a survey vehicle and an EM transmitter using a long cable, and also connect the EM transmitter and towed receiver using a cable. However, in practice, we must tow cables far from seafloor because of rough topography (e.g, chimneys) around submarine massive sulphides (SMS). Therefore, it is difficult to get information about shallow sub-seafloor structure. In this paper, we propose a new controlled-source electromagnetic method using two autonomous underwater vehicles (AUVs) for the exploration of SMS. We set an EM transmitter to one AUV, and also set an EM receiver to another AUV. Using this method, it is possible to keep a low height of diving AUVs from the seafloor, so we can carry out the exploration of SMS effectively. A numerical simulation code for 2.5 dimensional (2.5-D) electromagnetic fields in the frequency domain is developed in order to estimate electromagnetic responses on possible conductivity structures. In this research, we compared the behavior of electric fields as various functions such as the distance between source and receiver, and discussed the possibility of our CSEM method to be applied for the exploration of SMS. From the simulation results, we found that it is possible to detect the electric field for about 150~200m offsets even under the contamination of noise. Among various combination of source and receivers, we also found that the anomalous amplitude rate becomes greatest, in particular around the edge of SMS, when polarizing both the source and receiver in the horizontal direction. We next considered the sensitivity of electromagnetic field to the location of SMS using two model calculations. We found that the received electric field becomes steeply weaker as setting the receiver apart from the transmitter when the source was placed near SMS. Above all numerical

  17. Assessment and management of risk to wildlife from cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Joanna [Division of Life Sciences, Environmental and Occupational Health Sciences Institute, Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University, Piscataway, New Jersey, 08854-8082 (United States)], E-mail: burger@biology.rutgers.edu

    2008-01-15

    Cadmium, a nonessential heavy metal that comes from natural and anthropogenic sources, is a teratogen, carcinogen, and a possible mutagen. Assessment of potential risk from cadmium requires understanding environmental exposure, mainly from ingestion, although there is some local exposure through inhalation. Chronic exposure is more problematic than acute exposure for wildlife. There is evidence for bioaccumulation, particularly in freshwater organisms, but evidence for biomagnification up the food chain is inconsistent; in some bird studies, cadmium levels were higher in species that are higher on the food chain than those that are lower. Some freshwater and marine invertebrates are more adversely affected by cadmium exposure than are birds and mammals. There is very little experimental laboratory research on the effects of cadmium in amphibians, birds and reptiles, and almost no data from studies of wildlife in nature. Managing the risk from cadmium to wildlife involves assessment (including ecological risk assessment), biomonitoring, setting benchmarks of effects, regulations and enforcement, and source reduction.

  18. Estimation of Wear Behavior of Polyphenylene Sulphide Composites Reinforced with Glass/Carbon Fibers, Graphite and Polytetrafluoroethylene, by Pin-on-disc Test

    Directory of Open Access Journals (Sweden)

    M.A.C. Besnea

    2015-03-01

    Full Text Available Wear behavior of polyphenylene sulphide composites was investigated according to load and test speed. Two types of materials were studied: first, with 40 wt% glass fiber, and second, with 10 wt% carbon fiber, 10 wt% graphite and 10 wt%. Tribological tests were performed on the universal tribometer UMT-2, using a pin-on-disc device. The friction coefficient and wear rate for the composites were analyzed. As a result of experimental tests, it was established that polymer composite with polyphenylene sulphide matrix, carbon fibers, graphite and polytetrafluorethylene exhibit good wear behavior under operating conditions.

  19. Ammonia leaching of copper smelter dust and precipitation as copper sulphide; Lixiviacion amoniacal de polvos de fundicion de cobre y precipitacion como sulfuro de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Morales, A.; Hevia, J. F.; Cifuentes, G.

    2009-07-01

    The effect of ammonia on the leaching of copper smelter dust and copper precipitation from these solutions as sulphide using sulfur and sulfur dioxide was studied. The precipitation was done in ammoniacal media because this solution produced more satisfactory results at room temperature that a sulphuric media. A solid was precipitated containing 60 % of copper of the dust smelter. The other waste generated contained around 80 % of the arsenic of the original copper smelter dust. Based on the preliminary results obtained in this work it will propose a procedure for the recovery of copper as sulphide from copper smelter dust with parallel confinement of arsenic. (Author) 14 refs.

  20. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  1. Association of Environmental Cadmium Exposure with Pediatric Dental Caries

    OpenAIRE

    Arora, Manish; Weuve, Jennifer Lynn; Schwartz, Joel David; Robert O Wright

    2008-01-01

    Background: Although animal experiments have shown that cadmium exposure results in severe dental caries, limited epidemiologic data are available on this issue. Objectives: We aimed to examine the relationship between environmental cadmium exposure and dental caries in children 6–12 years of age. Methods: We analyzed cross-sectional data, including urine cadmium concentrations and counts of decayed or filled tooth surfaces, from the Third National Health and Nutrition Examination Survey. We ...

  2. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    Science.gov (United States)

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate.

    Science.gov (United States)

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Prevost, Philippe; Maloni, Pascal; Torre, Franck; Asia, Laurence; Josse, Denis; Doumenq, Pierre

    2017-04-01

    Chemical warfare agents are an actual threat and victims' decontamination is a main concern when mass exposure occurs. Skin decontamination with current protocols has been widely documented, as well as surface decontamination. However, considering hair ability to trap chemicals in vapour phase, we investigated hair decontamination after exposure to sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. Four decontamination protocols were tested on hair, combining showering and emergency decontamination (use of Fuller's earth or Reactive Skin Decontamination Lotion RSDL ® ). Both simulants were recovered from hair after treatment, but contents were significantly reduced (42-85% content allowance). Showering alone was the least efficient protocol. Concerning 2-chloroethyl ethyl sulphide, protocols did not display significant differences in decontamination efficacy. For MeS, use of emergency decontaminants significantly increased showering efficacy (10-20% rise), underlining their usefulness before thorough decontamination. Our results highlighted the need to extensively decontaminate hair after chemical exposure. Residual amounts after decontamination are challenging, as their release from hair could lead to health issues. Copyright © 2016. Published by Elsevier B.V.

  4. Bioremoval of cadmium by lemna minor in different aquatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Yagmur [Dept. of Environmental Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaras (Turkey); Taner, Fadime [Dept. of Environmental Engineering, Mersin University, Mersin (Turkey)

    2010-04-15

    This study was undertaken to determine the cadmium removal efficiency of Lemna minor when it was used for treatment of wastewater having different characteristics, i. e., pH, temperature and cadmium concentration. Plants were cultivated in different pH solutions (4.5-8.0) and temperatures (15-35 C) in the presence of cadmium (0.1-10.0 mg/L) for 168 h. The amount of biomass obtained in the study period, the concentrations of cadmium in the tissues and in the media and net uptake of cadmium by Lemna have been determined for each condition. The percentages of cadmium uptake (PMU) and bioconcentration factors (BCF) were also calculated. The highest accumulation was obtained for the highest cadmium concentration of 10.0 mg Cd/L as 11.668 mg Cd/g at pH 6.0, and as 38.650 mg Cd/g at 35 C and pH 5.0. The cadmium accumulation gradually increased with initial concentration of the medium, but the opposite trend was observed for the PMU. However, the maximum PMU was obtained as 52.2% in the solution with the lowest concentration of 0.1 mg Cd/L. A mathematical model was used to describe the cadmium uptake and the equation obtained was seen to fit the experimental data very well. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Short Communication Acute toxicity of cadmium against catfish ...

    African Journals Online (AJOL)

    Short Communication Acute toxicity of cadmium against catfish Heteropneustes Fossilis (Siluriformes: Heteropneustidae) in static renewal bioassays. Rubi Rai, Diwakar Mishra, Sunil Kumar Srivastav, Ajai Kumar Srivastav ...

  6. Inactivation of cadmium in contaminated soils using synthetic zeolites.

    Science.gov (United States)

    Gworek, B

    1992-01-01

    The addition of synthetic zeolite pellets to soils contaminated with cadmium significantly reduced the concentrations of cadmium in the roots and shoots of a range of crop plants. Use of synthetic foyazite group zeolites types 4A and 13X, at application rates of 1% by soil weight, caused reductions in cadmium concentrations of up to 86% in leaves of lettuce grown in pots, compared to controls with no added zeolites. The potential of these substances to reduce cadmium entry into the food chain, and as a clean up method, is noted.

  7. Mercury Cadmium Selenide for Infrared Detection

    Science.gov (United States)

    2013-06-01

    were grown using elemental mercury (Hg), cadmium (Cd), and selenium (Se) sources. The beam equiva- lent pressure ( BEP ) emanating from all sources was...flux), the BEP measured for the cracker source was found to vary with the cracking zone temperature, tracking with the data found in Ref. 7. This sug...The Se BEP measured for the typical cracking zone temperature of 800 C was found to be close to a factor of two lower than at the typical effusion cell

  8. Cadmium-binding proteins from blue crabs (Callinectes sapidus) environmentally exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Wiedow, M.A.; Kneip, T.J.; Garte, S.J.

    1982-06-01

    Two heat-stable (90/sup 0/C) cadmium-binding proteins were isolated from the hepatopancreas of Hudson River blue crabs (Callinectes sapidus) by Sephadex G-75 gel filtration chromatography. These proteins have molecular weights of 10,600 and 9,400, and ultraviolet absorbance ratios at 250/280 nm of 12.4 and 5.4, respectively. Repeated freezing and thawing and prolonged (3-6 weeks) storage resulted in protein degradation or loss of Cd-binding activity. These proteins were induced by laboratory injection of CdCl/sub 2/ in blue crabs from pristine (Chesapeake Bay) areas; however, injection of CdCl/sub 2/ into Hudson River animals yielded anomalous chromatography profiles. Cadmium-binding proteins were also identified in blue crab thoracic muscle and gill. The possibility is discussed that these proteins are a type of metallothionein and could contribute to the human toxicity of this cadmium-contaminated edible crustacean.

  9. Cadmium concentrations in the testes, sperm, and spermatids of mice subjected to long-term cadmium chloride exposure.

    Science.gov (United States)

    Bench, G; Corzett, M H; Martinelli, R; Balhorn, R

    1999-01-01

    Exposures to cadmium have been reported to reduce male fertility and there are several hypotheses that suggest how reduced male fertility may result from incorporation of cadmium into sperm chromatin. The purpose of this study was to determine whether mice subjected to long-term intraperitoneal cadmium exposure incorporated cadmium into their sperm chromatin. Male mice were exposed to 0.1 mg/kg body weight cadmium in the form of CdCl2 via intraperitoneal injection once per week for 4, 10, 26, and 52 weeks and then sacrificed. The cadmium contents of the liver, testes, pooled sperm, and pooled spermatids from dosed and control animals were determined by atomic absorption spectroscopy. Cadmium and zinc contents in individual sperm and spermatid heads were determined by particle-induced x-ray emission. Atomic absorption spectroscopy revealed that although cadmium accumulated in the liver and testes, cadmium was not detected in pooled sperm or spermatid samples down to minimum detectable limits of 0.02 microg/g dry weight. Particle-induced x-ray emission analyses did not show the presence of cadmium in any sperm or spermatid head down to minimum detectable limits of 15 microg/g dry weight. Particle-induced x-ray emission analyses also demonstrated that phosphorus, sulfur, and zinc concentrations in individual sperm and spermatid heads were not altered by exposure to CdCl2. Because cadmium was not incorporated into sperm chromatin at levels above 0.02 microg/g dry weight, the data cast doubt on hypotheses that suggest that reduced male fertility may result from incorporation of cadmium into sperm chromatin.

  10. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus.

    Science.gov (United States)

    Prapagdee, Benjaphorn; Chanprasert, Maesinee; Mongkolsuk, Skorn

    2013-07-01

    Micrococcus sp. MU1 and Klebsiella sp. BAM1, the cadmium-resistant plant growth-promoting rhizobacteria (PGPR), produce high levels of indole-3-acetic acid (IAA) during the late stationary phase of their growth. The ability of PGPR to promote root elongation, plant growth and cadmium uptake in sunflowers (Helianthus annuus) was evaluated. Both species of bacteria were able to remove cadmium ions from an aqueous solution and enhanced cadmium mobilization in contaminated soil. Micrococcus sp. and Klebsiella sp. use aminocyclopropane carboxylic acid as a nitrogen source to support their growth, and the minimum inhibitory concentrations of cadmium for Micrococcus sp. and Klebsiella sp. were 1000 and 800mM, respectively. These bacteria promoted root elongation in H. annuus seedlings in both the absence and presence of cadmium compared to uninoculated seedlings. Inoculation with these bacteria was found to increase the root lengths of H. annuus that had been planted in cadmium-contaminated soil. An increase in dry weight was observed for H. annuus inoculated with Micrococcus sp. Moreover, Micrococcus sp. enhanced the accumulation of cadmium in the root and leaf of H. annuus compared to untreated plants. The highest cadmium accumulation in the whole plant was observed when the plants were treated with EDTA following the treatment with Micrococcus sp. In addition, the highest translocation of cadmium from root to the above-ground tissues of H. annuus was found after treatment with Klebsiella sp. in the fourth week after planting. Our results show that plant growth and cadmium accumulation in H. annuus was significantly enhanced by cadmium-resistant PGPRs, and these bacterial inoculants are excellent promoters of phytoextraction for the rehabilitation of heavy metal-polluted environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Bioavailability of cadmium from linseed and cocoa

    DEFF Research Database (Denmark)

    Hansen, Max; Rasmussen, Rie Romme; Sloth, Jens Jørgen

    2014-01-01

    for the food authorities in order to give correct advises to the population. The aim of this study was to investigate the bioavailability of cadmium from whole linseed, crushed linseed, cocoa and cadmium chloride in rats. An experiment where 40 rats were divided into 4 groups and a control group and dosed...... with whole linseed, crushed linseed, cocoa and CdCl2 for 3 weeks was performed. Linseed or cocoa made up 10% of the feed (by weight) and was added as a replacement for carbohydrate source. The rats were dosed for 3 weeks and the cadmium content in the rats' kidneys was measured by ICPMS as a biomarker...... be measured in the kidney compared to the calculated total intake was as follows: Control 2.0 %, Crushed linseed 0.9 %, whole linseed, 1.5 %, cocoa 0.7 % and CdCl2 4.6 %. Based on this study it could not be concluded that the bioavailability in rats form whole linseed is lower that for crushed linseed...

  12. Acute fatal occupational cadmium poisoning by inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K.; Ueda, M.; Kikuchi, H.; Hattori, H.; Hiraoka, Y.

    1983-01-01

    A 43-year-old male smelter was admitted to a hospital on account of severe dyspnea about 2 days after exposure to brownish-yellow smoke produced by melting of ''copper'' scrap. On admission pronounced hypoxemia was revealed, and an oxygen-enriched gas was administered after intubation. Although inspired oxygen concentration was gradually increased, hypoxemia progressed and he died on day 11 in hospital. The principal autopsy finding was chiefly confined to the lungs. Both lungs were heavy (the left weighing 1,470 g; the right 1,710 g) and firm to the touch. Histologically, no normal alveoli were found throughout the entire lung. Some alveolar spaces were occupied by pneumocytes, others by organized exudate with fibrosis. Interstitial fibrosis was present. Patchy areas of inflammatory cell infiltrations as well as intra-alveolar hemorrhages were observed. On the basis of the above findings a diagnosis of diffuse alveolar damage was made. Based on the available evidence (presence of cadmium in the ''copper'' scrap, feature of the smoke, clinical signs with latent time, and high cadmium concentration of the lung), the diffuse alveolar damage was considered to have been caused by inhaled cadmium. The pulmonary change of the present case was more advanced in pathologic stage in comparison with those reported in the literature.

  13. Silver Nanoparticles

    Science.gov (United States)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  14. Correlative characteristic of cadmium in soils of steppe Dnieper region

    Directory of Open Access Journals (Sweden)

    N. M. Tsvetkova

    2015-09-01

    Full Text Available Much attention is paid to searching for methods of establishing environmental standards for objective assessment of admissibility of anthropogenic load on the biosphere. The main pollutants of the environment are xenobiotics; heavy metals such as cadmium occupy hold a special place among them. Cadmium is one of the most dangerous environmental toxic agents, belonging to the 1stclass of hazard. Due to insufficient and fragmented information available on the distribution of cadmium in the city edaphotopes, it’s necessary to conduct additional research, taking into account the properties of soils and the biological characteristics of every element. The paper shows the ratio of cadmium in soils and soil-forming rocks of steppe Dnieper region. Environmental assessment of cadmium content in Dniprodzerzhinsk city soilsis made, and the problem of topsoil contamination of the city as a territory of high anthropogenic load is considered. It is found that the content of cadmium down the profile in natural soil increases. Enrichment of the topsoil with cadmium occurs due to contamination. The value of movable forms content, expressed as a percentage of the total content, varies from 12% to 70%, providing the evidence of the technogenic origin of cadmium in Dniprodzerzhinsk city topsoil. General and proximate correlation analyses of interrelation of soil cadmium and specifically selected characteristics of soil (pH, humus, sulfate ions, dry solid, chloride ions, total alkalinity, hygroscopic moisture were made. It is established that cadmium concentration in the movable forms of natural soils of the steppe Dnieper region depends primarily on pH value. With the increase in pH value, concentration of movable cadmium in soil increases.

  15. Mutagenic effect of cadmium on tetranucleotide repeats in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Slebos, Robbert J.C. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States) and Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)]. E-mail: r.slebos@vanderbilt.edu; Li Ming [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Evjen, Amy N. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Coffa, Jordy [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Shyr, Yu [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)

    2006-12-01

    Cadmium is a human carcinogen that affects cell proliferation, apoptosis and DNA repair processes that are all important to carcinogenesis. We previously demonstrated that cadmium inhibits DNA mismatch repair (MMR) in yeast cells and in human cell-free extracts (H.W. Jin, A.B. Clark, R.J.C. Slebos, H. Al-Refai, J.A. Taylor, T.A. Kunkel, M.A. Resnick, D.A. Gordenin, Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet. 34 (3) (2003) 326-329), but cadmium also inhibits DNA excision repair. For this study, we selected a panel of three hypermutable tetranucleotide markers (MycL1, D7S1482 and DXS981) and studied their suitability as readout for the mutagenic effects of cadmium. We used a clonal derivative of the human fibrosarcoma cell line HT1080 to assess mutation levels in microsatellites after cadmium and/or N-methyl-N-nitro-N-nitrosoguanidine (MNNG) exposure to study effects of cadmium in the presence or absence of base damage. Mutations were measured in clonally expanded cells obtained by limiting dilution after exposure to zero dose, 0.5 {mu}M cadmium, 5 nM MNNG or a combination of 0.5 {mu}M cadmium and 5 nM MNNG. Exposure of HT1080-C1 to cadmium led to statistically significant increases in microsatellite mutations, either with or without concurrent exposure to MNNG. A majority of the observed mutant molecules involved 4-nucleotide shifts consistent with DNA slippage mutations that are normally repaired by MMR. These results provide evidence for the mutagenic effects of low, environmentally relevant levels of cadmium in intact human cells and suggest that inhibition of DNA repair is involved.

  16. Cadmium induces transcription independently of intracellular calcium mobilization.

    Directory of Open Access Journals (Sweden)

    Brooke E Tvermoes

    Full Text Available BACKGROUND: Exposure to cadmium is associated with human pathologies and altered gene expression. The molecular mechanisms by which cadmium affects transcription remain unclear. It has been proposed that cadmium activates transcription by altering intracellular calcium concentration ([Ca(2+](i and disrupting calcium-mediated intracellular signaling processes. This hypothesis is based on several studies that may be technically problematic; including the use of BAPTA chelators, BAPTA-based fluorescent sensors, and cytotoxic concentrations of metal. METHODOLOGY/PRINCIPAL FINDING: In the present report, the effects of cadmium on [Ca(2+](i under non-cytotoxic and cytotoxic conditions was monitored using the protein-based calcium sensor yellow cameleon (YC3.60, which was stably expressed in HEK293 cells. In HEK293 constitutively expressing YC3.60, this calcium sensor was found to be insensitive to cadmium. Exposing HEK293::YC3.60 cells to non-cytotoxic cadmium concentrations was sufficient to induce transcription of cadmium-responsive genes but did not affect [Ca(2+](i mobilization or increase steady-state mRNA levels of calcium-responsive genes. In contrast, exposure to cytotoxic concentrations of cadmium significantly reduced intracellular calcium stores and altered calcium-responsive gene expression. CONCLUSIONS/SIGNIFICANCE: These data indicate that at low levels, cadmium induces transcription independently of intracellular calcium mobilization. The results also support a model whereby cytotoxic levels of cadmium activate calcium-responsive transcription as a general response to metal-induced intracellular damage and not via a specific mechanism. Thus, the modulation of intracellular calcium may not be a primary mechanism by which cadmium regulates transcription.

  17. Sulphide-sulphate stability and melting in subducted sediment and its role in arc mantle redox and chalcophile cycling in space and time

    Science.gov (United States)

    Canil, Dante; Fellows, Steven A.

    2017-07-01

    The redox budget during subduction is tied to the evolution of oxygen and biogeochemical cycles on Earth's surface over time. The sulphide-sulphate couple in subducted crust has significant potential for redox and control on extraction of chalcophile metals from the arc mantle. We derive oxygen buffers for sulphide-sulphate stability ('SSO buffers') using mineral assemblages in subducted crust within the eclogite facies, and examine their disposition relative to the fO2 in the arc mantle along various P-T trajectories for subduction. The fO2 required for sulphide stability in subducted crust passing beneath an arc is shifted by variations in the bulk Ca/(Ca + Mg + Fe) of the subducting crust alone. Hotter slabs and more Fe-rich sediments stabilize sulphide and favour chalcophile sequestration deep into the mantle, whereas colder slabs and calcic sediment will stabilize anhydrite, in some cases at depths of melt generation in the arc mantle (earth history. Oxidation of arc mantle and the proliferation of porphyry Cu deposits may be latter-day advents in earth history partly due to the rise of planktic calcifiers in the oceans in only the past 250 million years.

  18. The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) - the relative importance of chemical and biological processes

    NARCIS (Netherlands)

    Heijs, SK; Jonkers, HM; van Gemerden, H; Schaub, BEM; Stal, LJ

    The Bassin d'Arcachon (south-west France) was chosen as a model ecosystem to study the chemical and microbiological buffering towards free sulphide. Data were collected on the vertical distribution of oxygen, sulphur and iron compounds and the vertical distribution of colourless sulphur bacteria and

  19. The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d'Arcachon, France) - the relative importance of chemical and biological processes

    NARCIS (Netherlands)

    Heijs, S.K.; Jonkers, H.M.; van Gemerden, H.; Schaub, B.; Stal, L.J.

    1999-01-01

    The Bassin d'Arcachon (south-west France) was chosen as a model ecosystem to study the chemical and microbiological buffering towards free sulphide. Data were collected on the vertical distribution of oxygen, sulphur and iron compounds and the vertical distribution of colourless sulphur bacteria and

  20. Simultaneous determination of nanomole amounts of sulphur dioxide and hydrogen sulphide by flow injection analysis with on-line preconcentration by means of capillary denuder tubes.

    Science.gov (United States)

    Achilli, Marco; Gács, Istvan

    2002-01-01

    A simple and rapid method for trace determination of SO2 and H2S in gaseous samples by using a flow injection system with on line preconcentration on capillary denuder is described. The gaseous samples are led through a 0.4 M sulphamic acid solution, retaining nitrogen dioxide, ammonia and hydrogen chloride. The sulphur dioxide is collected from the carrier gas stream (250 cm3 min-1) as sulphuric acid in a capillary denuder tube coated with a thin layer of 0.01-0.03 M hydrogen peroxide solution of 0.05 mM sulphuric acid; hydrogen sulphide passes into a second tube coated with 0.075 mM sodium sulphide solution of 0.1 M aqueous sodium hydroxide. The films containing the sulphuric acid and the sodium sulphide, respectively, are eluted with the corresponding circulating absorbent streams and pass through the detectors. Sulphuric acid is detected by conductimetry and sulphide is determined spectrophotometrically at 230 nm. If nanoequivalent amounts of H2S are present in the sample containing a large concentration of SO2 (SO2/H2S concentration ratio > 20), the sulphur dioxide is filtered out of the sample gas stream by solid sodium hydrogen carbonate. A limit of detection of 3.5 micrograms m-3 is obtained.

  1. An application of lithogeochemistry to the evaluation of the Ni-sulphide ore potential of weathered serpentinites in the Fortaleza de Minas Greenstone Belt, Minas Gerais, Brazil

    NARCIS (Netherlands)

    Oostindiër, J.; Taufen, P.M.; Vriend, S.P.

    1988-01-01

    A practical application of lithogeochemistry to the classification of weathered serpentinites as to whether or not serpentinites are host rocks to Ni-sulphide ore is presented. An effort is made to apply existing concepts used to distinguish between fertile and sterile unweathered ultramafics to

  2. Refractive index and dispersion control of ultrafast laser inscribed waveguides in gallium lanthanum sulphide for near and mid-infrared applications

    DEFF Research Database (Denmark)

    Demetriou, Giorgos; Berube, Jean-Philippe; Vallee, Real

    2016-01-01

    The powerful ultrafast laser inscription technique is used to fabricate optical waveguides in gallium lanthanum sulphide substrates. For the first time the refractive index profile and the dispersion of such ultrafast laser inscribed waveguides are experimentally measured. In addition the Zero...

  3. Cadmium cathodic deposition on polycrystalline p-selenium: Dark and photoelectrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Ragoisha, G.A., E-mail: ragoishag@bsu.b [Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, Minsk 220030 (Belarus); Streltsov, E.A.; Rabchynski, S.M.; Ivanou, D.K. [Chemistry Department, Belarusian State University, Minsk 220030 (Belarus)

    2011-04-01

    Cathodic reduction of Cd{sup 2+} on p-Se proceeds at low overpotential in the dark and results in bulk Cd, while the underpotential deposition is kinetically inhibited. Cadmium adlayer is photoelectrochemically deposited on illuminated electrode 0.7 V above E(Cd{sup 2+}/Cd). The adlayer cathodic deposition under illumination proceeds with simultaneous formation of CdSe nanoparticles. Potentiodynamic electrochemical impedance spectroscopy has discriminated the two products of the photoelectrochemical reaction both by their potentials of anodic oxidation and by characteristic dependences of impedance on potential. Anodic oxidation of CdSe nanoparticles gives a sharp peak of real impedance in low frequencies close to the corresponding anodic current peak in cyclic voltammogram. The impedance peak appears below a threshold frequency f{sub t}. The latter separates two modes of diffusion in anodic dissolution of CdSe nanoparticles. The diffusion proceeds independently at different particles above f{sub t} and turns to cooperative mode below the threshold frequency. Due to this effect, information on spatial distribution of growing nuclei on electrode surface in early stages of electrodeposition can be obtained from potentiodynamic impedance spectra.

  4. Determination of cadmium, lead and mercury residual levels in meat ...

    African Journals Online (AJOL)

    Determination of cadmium, lead and mercury residual levels in meat of canned light tuna ( Katsuwonus pelamis and Thunnus albacares ) and fresh little tunny ( Euthynnus alletteratus ) in Libya. ... Surveillance for mercury (Hg), lead (Pb) and cadmium (Cd) contamination in tuna products is crucial for consumer food safety.

  5. Biosorption of arsenic and cadmium from aqueous solutions ...

    African Journals Online (AJOL)

    The biosorption of cadmium and arsenic from aqueous solutions onto the unmodified compact biomass of microscopic filamentous fungus Aspergillus clavatus DESM. was studied in the concentration range of 0.25 – 100 mg.l-1. The experimental biosorption results for arsenic and cadmium followed well the Freundlich ...

  6. Synthesis and characterization of cadmium doped lead–borate ...

    Indian Academy of Sciences (India)

    Unknown

    No boroxol ring formation was observed in the structure of these glasses. Furthermore, doped cadmium atoms were not seen in tetrahedral coordination. But the conversion of three-fold to four-fold coordination of boron atoms in the structure of glasses was observed. Keywords. Cadmium; lead borate glasses. 1. Introduction.

  7. Cadmium ion removal using biosorbents derived from fruit peel wastes

    Directory of Open Access Journals (Sweden)

    Wanna Saikaew

    2009-11-01

    Full Text Available The ability of fruit peel wastes, corn, durian, pummelo, and banana, to remove cadmium ions from aqueous solution by biosorption were investigated. The experiments were carried out by batch method at 25oC. The influence of particle sizes, solution pH, and initial cadmium ion concentrations were evaluated on the biosorption studies. The result showed that banana peel had the highest cadmium ions removal followed by durian, pummelo, and corn peels at cadmium ions removal of 73.15, 72.17, 70.56, and 51.22%, respectively. There was a minimal effect when using different particle sizes of corn peel as biosorbent, while the particle size of the others had no influence on the removal of cadmium ions. The cadmium ions removal increased significantly as the pH of the solution increased rapidly from 1 to 5. At pH 5, the cadmium ions removal reached a maximum value. The equilibrium process was best described by the Langmuir isotherms, with maximum biosorption capacities of durian, pummelo, and banana peel of 18.55, 21.83, and 20.88 mg/g respectively. Fourier Transform Infrared Spectroscopy revealed that carboxyl, hydroxyl, and amide groups on the fruit peels’ surface and these groups were involved in the adsorption of the cadmium ions.

  8. Levels of cadmium in cigarette brands found in Zamfara state ...

    African Journals Online (AJOL)

    The levels of cadmium were determined in some cigarette brands found in Zamfara state, North-west Nigeria. The solutions of the samples were prepared using the dry-ash method. The levels of cadmium in the solution were determined using atomic absorption spectrometer. The absorbance readings of the elements were ...

  9. Levels of Lead, Cadmium and Chromium in Oreochromis Niloticus ...

    African Journals Online (AJOL)

    Lead (Pb), Cadmium (Cd) and Chromium (Cr) levels in Oreochromis niloticus, aquatic plants, water and sawdust were collected and analyzed for Lead, Cadmium and Chromium using atomic absorption spectroscopy. Results obtained showed that sawdust had the highest Lead and Chromium contents of 32.0 + 0.99 μg/g ...

  10. Evaluation of serum levels of cadmium and Lead in occupationally ...

    African Journals Online (AJOL)

    Cadmium and Lead are extremely toxic metals found in industrial workplaces. They are also found in some industrial paints and may represent hazards when sprayed.Exposure to Cadmium fumes may cause flu-like symptoms including chills, fever and muscle ache sometimes reffered to as "the cadium blues." Occupational ...

  11. Cadmium verification measurements of HFIR shroud assembly 22

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, J.A.; Schultz, F.J.

    1994-04-01

    This report discusses radiation-based nondestructive examination methods which have been used to successfully verify the presence of cadmium in High Flux Isotope Reactor (HFIR) spent-fuel shroud assembly number 22 (SA22). These measurements show, in part, that SA22 is certified to meet the criticality safety specifications for a proposed reconfiguration of the HFIR spent-fuel storage array. Measurement of the unique 558.6-keV gamma-ray from neutron radiative capture on cadmium provided conclusive evidence for the presence of cadmium in the outer shroud of the assembly. Cadmium verification in the center post and outer shroud was performed by measuring the degree of neutron transmission in SA22 relative to two calibration shroud assemblies. Each measurement was performed at a single location on the center post and outer shroud. These measurements do not provide information on the spatial distribution or uniformity of cadmium within an assembly. Separate measurements using analog and digital radiography were performed to (a) globally map the continuity of cadmium internal mass, and (b) locally determine the thickness of cadmium. Radiography results will be reported elsewhere. The measurements reported here should not be used to infer the thickness of cadmium in either the center post or outer shroud of an assembly.

  12. The relationship between maternal blood cadmium, zinc levels and ...

    African Journals Online (AJOL)

    The delivery of babies with low birth weight is a prognosis of neonatal mortality, morbidity and poor health outcomes later in life. This study evaluates the levels of cadmium, zinc and calculated cadmium/zinc ratio in non-occupationally exposed pregnant women at delivery and their relationship with birth weight of babies.

  13. Elevated cadmium exposure may be associated with periodontal bone loss.

    Science.gov (United States)

    Dye, Bruce A; Dillon, Charles F

    2010-06-01

    Association of environmental cadmium exposure with periodontal disease in US adults. Arora M, Weuve J, Schwartz J, Wright RO. Environ Health Perspect 2009;117:739-44. Bruce A. Dye, DDS, MPH, Charles F. Dillon, MD, PhD. Is environmental cadmium associated with periodontal disease? Information not available. Cross-sectional study. Level 3: Other evidence. Not applicable.

  14. Cadmium, an Environmental Pollutant: A Review | Adedapo | West ...

    African Journals Online (AJOL)

    Cadmium (Cd) is a toxic heavy metal and is considered to be an environmental pollutant. Cadmium levels in the environment vary widely. Several sources of human exposure to Cd, including employment in primary metal industries, production of certain batteries, foods, soil and cigarette smoke, are known. Its inhalation has ...

  15. Comparative Hepatotoxicity Test of Cadmium and Lead in Rats ...

    African Journals Online (AJOL)

    Conclusion: Studies indicate that liver function is impeded particularly with respect to protein synthesis, detoxification processes and the cellular integrity of the organ is damaged in the group that cadmium and lead were added (p<0.05). But the water sample from the mining pond, though containing higher cadmium and ...

  16. Effect of cadmium stress on antioxidative enzymes during the ...

    African Journals Online (AJOL)

    In this work, the influence of high cadmium concentrations on percentage germination, specific activities and isoenzyme patterns of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) during the germination of Serbian spruce [Picea omorika (Pan..) Purkynĕ] was studied. Cadmium chloride concentrations ...

  17. Levels of Cadmium and Lead in Water, Sediments and Selected ...

    African Journals Online (AJOL)

    Keywords: heavy metals, cadmium, lead, water, sediment, fish, Kenya coast. Flame absorption spectrophotometry was used to investigate the concentration and distribution of cadmium and lead in water, sediments and selected fish species in Makupa and Tudor creeks in Mombasa, Kenya between May 1997 and March ...

  18. Determination and estimation of Cadmium intake from Tarom rice 1 ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Malaysia. 27.74. Spain. 0.85. Philippines. 20.14. USA. 7.43. Dietary intake of Cadmium: The intake of Cd was estimated by multiplication of daily consumption ... cereals such as rice. JECFA has set PTWI for the. Cadmium at 7 µg/kg of body weight (WHO., 2004). According to the published papers, daily consumption of rice ...

  19. nitrosoguanidine-induced cadmium resistant mutants of Aspergillus ...

    Indian Academy of Sciences (India)

    Unknown

    of S. cerevisiae (Inouhe et al 1989) were used for under- standing the molecular genetics of cadmium toxicity and ... The pH of the medium was adjusted to 6⋅4 before autoclaving. Cadmium-resistant mutants after isolation ..... Saccharomyces cerevisiae; Biochem. Biophys. Acta 993 51–55. Kimura M, Otaki N and Imano M ...

  20. induced by cadmium using random amplified polymorphic DNA

    African Journals Online (AJOL)

    darya

    2013-04-17

    Apr 17, 2013 ... Jin YH, Clark AB, Slebos, RJC, Al-Refai H, Taylor JA, Kunkel TA,. Resnick MA, Gordenin DA (2003). Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat. Genet. 34(3):326-329. Joseph P (2009). Mechanisms of cadmium carcinogenesis. Toxicol. Appl. Pharmacol. 238:272-279. Azimi et al.

  1. Effects of Cadmium Exposure on Bone and Kidney Alkaline ...

    African Journals Online (AJOL)

    This paper examines the effects of varying doses of cadmium on bone and kidney alkaline phosphatase and on testis and prostate acid phosphatase after 4 weeks of administration to separate groups of rats. Relative to the cadmium-free control rats femur bone alkaline phosphatase activity was significantly (P<0.05) ...

  2. Cadmium Removal from Aqueous Solutions by Ground Pine Cone

    Directory of Open Access Journals (Sweden)

    H Izanloo, S Nasseri

    2005-01-01

    Full Text Available A study on the removal of cadmium ions from aqueous solutions by pine cone was conducted in batch conditions. Kinetic data and equilibrium removal isotherms were obtained. The influence of different experimental parameters such as contact time, initial concentration of cadmium, pine cone mass and particle size, and temperature on the kinetics of cadmium removal was studied. Results showed that the main parameters that played an important role in removal phenomenon were initial cadmium concentration, particle size and pine cone mass. The necessary time to reach equilibrium was between 4 and 7 hours based on the initial concentration of cadmium. The capacity of cadmium adsorption at equilibrium increased with the decrease of pine cone particle size. The capacity of cadmium adsorption at equilibrium by pine cone increased with the quantity of pine cone introduced (1–4 g/L. Temperature in the range of 20-30°C showed a restricted effect on the removal kinetics (13.56 mg/g at 20°C and a low capacity of adsorption about 11.48 mg/g at 30°C. The process followed pseudo second-order kinetics. The cadmium uptake of pine cone was quantitatively evaluated using adsorption isotherms. Results indicated that the Langmuir model gave a better fit to the experimental data in comparison with the Freundlich equation.

  3. Intermetallic nanoparticles

    Science.gov (United States)

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  4. Cadmium chronic administration to lactating ewes. Reproductive performance, cadmium tissue accumulation and placental transfer

    Energy Technology Data Exchange (ETDEWEB)

    Floris, B.; Bomboi, G.; Sechi, P.; Marongiu, M. L. [Sassari Univ., Sassari (Italy). Dipt. di Biologia Animale; Pirino, S. [Sassari Univ., Sassari (Italy). Ist. di Patologia Generale, Anatomia Patologica e Clinica Ostetrico-chirurgica Veterinaria

    2000-12-01

    20 lactating ewes were allotted to two groups: 10 subjects received orally 100 mg/day of CdCl{sub 2} for 108 consecutive days, and the remaining 10 acted as control. Reproductive performance in ewes and cadmium tissue accumulation, both in ewes and their lambs, were investigated. The results showed that in ewes: 1) the regular cadmium intestinal intake negatively influences all reproductive parameters; 2) cadmium is particularly accumulated in kidney and liver, bur also in mammary gland, although at distinctly lower level; 3) chronic administration does not increase cadmium placental transfer in lactating pregnant subjects. [Italian] 20 pecore in lattazione sono state suddivise in 2 gruppi: 10 soggetti ricevettero per os 100 mg/giorno di CdCl{sub 2} per 108 giorni consecutivi, e i restanti 10 funsero da controllo. Sono stati studiati i parametri riproduttivi delle pecore e l'accumulo di cadmio nei tessuti, sia delle pecore che dei loro agnelli. I risultati hanno mostrato che negli ovini: 1) il regolare assorbimento intestinale di cadmio influenza negativamente tutti i parametri riproduttivi; 2) il cadmio viene accumulato principalmente nei reni e nel fegato, ma anche dalla ghiandola mammaria, sebbene in misura nettamente inferiore; 3) la somministrazione cronica di cadmio nei soggetti gravidi non incrementa il suo passaggio transplacentare.

  5. The effect of phosphate fertilizer cadmium on cadmium in soils and crops

    NARCIS (Netherlands)

    Smilde, K.W.; Luit, van B.

    1983-01-01

    Een van de oorzaken, waardoor bodemvervuiling met cadmium optreedt en dus een bevordering van cadmiumopname door het gewas, is toepassing van fosfaatkunstmest, waarin zich verschillende gehaltes van dit zware metaal bevinden. Dit rapport behandelt het onderzoek naar de stijging van het

  6. Sulphide phases in Y zeolite for hydro-treatment reactions; Phase sulfures dans une zeolithe Y pour l'hydrotraitement

    Energy Technology Data Exchange (ETDEWEB)

    Leyrit, P.

    1999-06-28

    Several types of single (Mo, Co, Pd, Pt) or binary (MoCo, PdCo, PtCo) sulphides phases supported on a HY zeolite were studied. The catalysts were first prepared and characterised in the oxide form. Their reactivity was then evaluated in toluene hydrogenation and 4.6-dimethyl-dibenzo-thiophene hydro-desulfurization reactions. Characterisation of sulphide phases supported on HY zeolite was carried out by elemental analysis, X-Ray Diffraction (XRD), Transmission Electron Microscopy and Scanning Transmission Electron Microscopy (STEM), Extended X-Ray Absorption Fine Structure (EXAFS) and Temperature Programmed Reduction coupled with HS analysis. The results show that. compared with alumina supported catalysts, zeolite used as a support enables extremely active catalysts to be obtained. It appears in particular that molybdenum sulphide phases inside the zeolite have a very high intrinsic activity at low molybdenum content. This activity is attributed to highly dispersed molybdenum sulphide phases differing from MoS{sub 2} slabs and probably present as clusters. The influence of cobalt depends of its concentration. Thus at low loadings cobalt has a strong negative effect. It has been shown, in the molybdenum case, that cobalt interaction leads to an increase in the sulphur content of the molybdenum phases. At higher cobalt loading, the formation of a mixed phase is possible but the degree of promotion remains limited. This work emphasises the advantages of using zeolite supported sulphide phases, and especially Mo and Pd phases, in the hydro-treatment reactions. It seems however that single phases present a greater interest than binary phases. (author)

  7. Paradoxical co-existing base metal sulphides in the mantle: The multi-event record preserved in Loch Roag peridotite xenoliths, North Atlantic Craton

    Science.gov (United States)

    Hughes, Hannah S. R.; McDonald, Iain; Loocke, Matthew; Butler, Ian B.; Upton, Brian G. J.; Faithfull, John W.

    2017-04-01

    The role of the subcontinental lithospheric mantle as a source of precious metals for mafic magmas is contentious and, given the chalcophile (and siderophile) character of metals such as the platinum-group elements (PGE), Se, Te, Re, Cu and Au, the mobility of these metals is intimately linked with that of sulphur. Hence the nature of the host phase(s), and their age and stability in the subcontinental lithospheric mantle may be of critical importance. We investigate the sulphide mineralogy and sulphide in situ trace element compositions in base metal sulphides (BMS) in a suite of spinel lherzolite mantle xenoliths from northwest Scotland (Loch Roag, Isle of Lewis). This area is situated on the margin of the North Atlantic Craton which has been overprinted by a Palaeoproterozoic orogenic belt, and occurs in a region which has undergone magmatic events from the Palaeoproterozoic to the Eocene. We identify two populations of co-existing BMS within a single spinel lherzolite xenolith (LR80) and which can also be recognised in the peridotite xenolith suite as a whole. Both populations consist of a mixture of Fe-Ni-Cu sulphide minerals, and we distinguished between these according to BMS texture, petrographic setting (i.e., location within the xenolith in terms of 'interstitial' or within feldspar-spinel symplectites, as demonstrated by X-ray Computed Microtomography) and in situ trace element composition. Group A BMS are coarse, metasomatic, have low concentrations of total PGE (enrichment was associated with a pre-Carboniferous carbonatite episode. This method of mantle xenolith base metal sulphide documentation may ultimately permit the temporal and spatial mapping of the chalcophile metallogenic budget of the lithospheric mantle, providing a blueprint for assessing regional metallogenic potential.

  8. Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Brooks, Jordan; Lefebvre, Daniel D

    2017-04-01

    The biosynthesis of quantum dots has been explored as an alternative to traditional physicochemical methods; however, relatively few studies have determined optimal synthesis parameters. Saccharomyces cerevisiae sequentially treated with sodium selenite and cadmium chloride synthesized CdSe quantum dots in the cytoplasm. These nanoparticles displayed a prominent yellow fluorescence, with an emission maximum of approximately 540 nm. The requirement for glutathione in the biosynthetic mechanism was explored by depleting its intracellular content through cellular treatments with 1-chloro-2,4-dinitrobenzene and buthionine sulfoximine. Synthesis was significantly inhibited by both of these reagents when they were applied after selenite treatment prior to the addition of cadmium, thereby indicating that glutathione contributes to the biosynthetic process. Determining the optimum conditions for biosynthesis revealed that quantum dots were produced most efficiently at entry into stationary phase followed by direct addition of 1 mM selenite for only 6 h and then immediately incubating these cells in fresh growth medium containing 3 mM Cd (II). Synthesis of quantum dots reached a maximum at 84 h of reaction time. Biosynthesis of 800-μg g -1 fresh weight cells was achieved. For the first time, significant efforts have been undertaken to optimize each aspect of the CdSe biosynthetic procedure in S. cerevisiae, resulting in a 70% increased production.

  9. Nano-composites chitosan-curcumin synergistically inhibits the oxidative stress induced by toxic metal cadmium.

    Science.gov (United States)

    Ahmad, Mohammad; Taweel, Gasem M Abu; Hidayathulla, Syed

    2017-12-08

    The present study intends to compare the influence of pre-treatment with nanoparticles of curcumin (Cr-NPS), chitosan (Ch-NPS) and nanocomposites chitosan-curcumin (CC-NPS) on cadmium (Cd)-induced oxidative damage in the liver, kidneys, and blood indices in Swiss strain adult male mice. The pretreated mice with Cr-NPS, Ch-NPS, and CC-NPS were exposed to Cd (10mg/kg) for three weeks. The non-enzymatic Oxidative Stress (OS) indices like lipid peroxides (TBARS), reduced total glutathione (GSH), enzymatic OS indices like catalase (CAT), glutathione S-transferase (GST) and superoxide dismutase (SOD) were estimated together with some blood indices. Cadmium was able to induce a significant increase in TBARS and a significant decrease in GSH, GST, CAT and SOD levels in all the tissues, which were pretreated with nanocomposite. Furthermore, the blood indices like counts of red and white blood cells, platelets, hemoglobin and packed cell volume were also depleted due to Cd exposure but remained unaffected and kept under normal levels in pretreated mice group. The results indicate that Cr-NPS, Ch-NPS, and CC-NPS may act as natural antioxidants and when compared among the three, CC-NPS appears to be the best antioxidant. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cadmium content in soil at Heirisson Island, Western Australia

    Energy Technology Data Exchange (ETDEWEB)

    Hosie, D.J.; Bogoiais, A.; De Laeter, J.R.; Rosman, K.J.R.

    1978-01-01

    A study was initiated to determine the cadmium level of soil samples from Heirisson Island, western Australia. Cadmium is a particularly toxic element considered harmful to humans and vegetation. Experimental methods and materials are described. Results indicate that cadmium concentrations decrease markedly with distance from road edges, where the cadmium is thought to originate from automobile tires. Other results are detailed. Despite the fact that the amount of cadmium fallout from vehicular traffic is considerably smaller in Australia than was expected on the basis of overseas studies, it is still apparent that the accession rate in soil adjoining busy highways is sufficiently large to demand that care is taken to avoid growing vegetation for human consumption too close to such roadside locations. (3 graphs, 8 references)

  11. Effect of cadmium chloride on hepatic lipid peroxidation in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1988-01-01

    Intraperitoneal administration of cadmium chloride to 8-12 weeks old CBA-mice enhanced hepatic lipid peroxidation. A positive correlation between cadmium chloride dose and level of peroxidation was observed in both male and female mice. A sex-related difference in mortality was not observed...... but at a dose of 25 mumol CdCl2/kg the level of hepatic lipid peroxidation was higher in male mice than in female mice. The hepatic lipid peroxidation was not increased above the control level in 3 weeks old mice, while 6 weeks old mice responded with increased peroxidation as did 8-12 weeks old mice....... The mortality after an acute toxic dose of cadmium chloride was the same in the three age groups. Pretreatment of mice with several low intraperitoneal doses of cadmium chloride alleviated cadmium induced mortality and lipid peroxidation. The results demonstrate both age dependency and a protective effect...

  12. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun

    2012-10-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  13. Adsorption of cadmium from aqueous solutions by perlite.

    Science.gov (United States)

    Mathialagan, T; Viraraghavan, T

    2002-10-14

    The present study examined the use of perlite for the removal of cadmium from aqueous solutions. The effects of pH and contact time on the adsorption process were examined. The optimum pH for adsorption was found to be 6.0. Residual cadmium concentration reached equilibrium in 6h and the rate of cadmium adsorption by perlite was rapid in the first hour of the reaction time. Ho's pseudo-second-order model best described the kinetics of the reaction. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 55%. Thomas model was used to describe the adsorption data from column studies. The results generally showed that perlite could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

  14. Effect of pregnancy on cadmium-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Takizama, Y. (Akita Univ. School of Medicine, Japan); Nakamura, I.; Kurayama, R.; Hirasawa, F.; Kawai, K.

    1982-01-01

    It is well known that itai-itai disease with the osteopathy is broken out among multiparas, 40 years of age and up Japanese residents. In this paper we described an experimental study of effect of pregnancy on cadmium treated rats. Female mature rats were administered drinking water containing 50 and 200 ppm cadmium as CdCl/sub 2/. During 180 days of the experiment, three times of pregnancy were succesful, though slight depression of body weight gain was noticed in the 200 ppm group. The cadmium was accumulated in the kidneys, liver and bone proportionally to the amount of cadmium administered. No significant change was recognized in serum calcium, phosphorus and alkaline phosphatase levels after 180 days. Though cadmium 200 ppm treated rats showed slight histological lesions in the proximal convoluted tubules of the kidney, there appeared to be no osteomalacia including excess formation of osteoid tissue.

  15. Biochemical responses and accumulation of cadmium in Spirodela polyrhiza.

    Science.gov (United States)

    Rolli, N M; Suvarnakhandi, S S; Mulgund, G S; Ratageri, R H; Taranath, T C

    2010-07-01

    The present study focused on biochemical responses of Spirodela polyrhiza to cadmium stresses and its accumulation. The laboratory experiments were conducted for the assessment of biochemical responses and accumulation of cadmium in plants at its various concentrations (0.1, 0.5, 1.5 and 2.0 ppm) at the regular interval for twelve days exposure. Spirodela showed visible symptoms like withering of roots and chlorosis at higher concentration (2.0 ppm), however the plant showed normal growth at lower concentration (0.1 ppm). The estimation of biochemical parameters (total chlorophyll, protein and carbohydrate) of test plants showed a significant increase at lower concentration (0.1 ppm) of cadmium. The biochemical changes decrease with increase in exposure concentration and duration. The toxic effect of cadmium is directly proportional to its concentration and duration. The accumulation of cadmium by Spirodela polyrhiza was maximum at four days exposure duration and gradually decreases.

  16. Possible mechanism for cadmium-induced hypertension in rats

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N.

    1978-01-01

    The mechanism of cadmium-induced hypertension was explored by measuring noradrenaline metabolism. Cadmium in vitro was shown to inhibit both monoamine oxidase and catechol-O-methyltransferase, the two enzymes which inactivate the neurotransmitters noradrenaline and adrenaline. However, rats which were injected or fed (via the drinking water) with cadmium showed that, among the tissues surveyed, these two enzymes were inhibited significantly only in the aorta. In vitro, cadmium was found to inhibit noradrenaline binding to membranes from the heart, lung, and kidney, while stimulating binding to aortic membranes, which suggests that the effects may be specific. These results suggest that, in the aorta, cadmium may inhibit the two catabolic enzymes of noradrenaline, while at the same time stimulating noradrenaline-binding. Thus the effects of noradrenaline on vascular smooth muscle would be increased as well as prolonged.

  17. Possible mechanism for cadmium-induced hypertension in rats

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N.

    1978-02-13

    The mechanism of cadmium-induced hypertension was explored by measuring noradrenaline metabolism. Cadmium in vitro was shown to inhibit both monoamine oxidase and catechol-O-methyltransferase, the two enzymes which inactivate the neurotransmitters noradrenaline and adrenaline. However, rats which were injected or fed (via the drinking water) with cadmium showed that, among the tissues surveyed, these two enzymes were inhibited significantly only in the aorta. In vitro, cadmium was found to inhibit noradrenaline binding to membranes from the heart, lung, and kidney, while stimulating binding to aortic membranes, which suggests that the effects may be specific. These results suggest that, in the aorta, cadmium may inhibit the two catabolic enzymes of noradrenaline, while at the same time stimulating noradrenaline-binding. Thus the effects of noradrenaline on vascular smooth muscle would be increased as well as prolonged.

  18. Monte Carlo simulation optimisation of zinc sulphide based fast-neutron detector for radiography using a {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Meshkian, Mohsen, E-mail: mohsenm@ethz.ch

    2016-02-01

    Neutron radiography is rapidly extending as one of the methods for non-destructive screening of materials. There are various parameters to be studied for optimising imaging screens and image quality for different fast-neutron radiography systems. Herein, a Geant4 Monte Carlo simulation is employed to evaluate the response of a fast-neutron radiography system using a {sup 252}Cf neutron source. The neutron radiography system is comprised of a moderator as the neutron-to-proton converter with suspended silver-activated zinc sulphide (ZnS(Ag)) as the phosphor material. The neutron-induced protons deposit energy in the phosphor which consequently emits scintillation light. Further, radiographs are obtained by simulating the overall radiography system including source and sample. Two different standard samples are used to evaluate the quality of the radiographs.

  19. Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience.

    Science.gov (United States)

    Fdz-Polanco, M; Díaz, I; Pérez, S I; Lopes, A C; Fdz-Polanco, F

    2009-01-01

    H(2)S removal from biogas produced in anaerobic digestion of sludge through the introduction of oxygen under micro-aerobic conditions is studied. Research was carried out in two pilot plant reactors (working volume, 200 L each) treating sludge from WWTP with HRT of 20 days. Mixing was provided via sludge or biogas recirculation. Introduction of very low oxygen flow (0.013-0.024 L/L(reactor) d) successfully removed H(2)S content in biogas with an efficiency above 99%. Reactor performance during micro-aerobic operation in terms of biogas production, methane yield and COD removal were not affected by the amount of oxygen supplied, remaining stable and similar to the anaerobic behaviour. Sludge recirculation ( approximately 50 L/h) and biogas recirculation ( approximately 3.5 L/min) as mixing methods were found not significant in H(2)S removal from biogas while biogas recirculation reduced by 10 times dissolved sulphide concentration compared to sludge recirculation.

  20. Detection of Hydrogen Sulphide Gas Sensor Based Nanostructured Ba2CrMoO6 Thick Films

    Directory of Open Access Journals (Sweden)

    A. V. Kadu

    2007-11-01

    Full Text Available Nanocrystalline pure and doped Ba2CrMoO6, having an average crystallite size of 40 nm were synthesized by the sol-gel citrate method. Structural and gas-sensing characteristics were performed by using X-ray diffraction (XRD and sensitivity measurements. The gas sensing properties to reducing gases like Hydrogen sulphide (H2S, liquefied petroleum gas (LPG, carbon monoxide (CO and hydrogen gas (H2 were also discussed. The maximum sensitivity was obtained for 5 wt % Ni doped Ba2CrMoO6 at an operating temperature 250oC for H2S gas. Pd incorporation over 5 wt% Ni doped Ba2CrMoO6 improved the sensitivity, selectivity, response time, and reduced the operating temperature from 250 to 200oC of the sensor for H2S gas. This sensor also shows good satiability.

  1. Monte Carlo simulation optimisation of zinc sulphide based fast-neutron detector for radiography using a 252Cf source

    Science.gov (United States)

    Meshkian, Mohsen

    2016-02-01

    Neutron radiography is rapidly extending as one of the methods for non-destructive screening of materials. There are various parameters to be studied for optimising imaging screens and image quality for different fast-neutron radiography systems. Herein, a Geant4 Monte Carlo simulation is employed to evaluate the response of a fast-neutron radiography system using a 252Cf neutron source. The neutron radiography system is comprised of a moderator as the neutron-to-proton converter with suspended silver-activated zinc sulphide (ZnS(Ag)) as the phosphor material. The neutron-induced protons deposit energy in the phosphor which consequently emits scintillation light. Further, radiographs are obtained by simulating the overall radiography system including source and sample. Two different standard samples are used to evaluate the quality of the radiographs.

  2. Cadmium Chalcogenide Nano-Heteroplatelets: Creating Advanced Nanostructured Materials by Shell Growth, Substitution, and Attachment.

    Science.gov (United States)

    Kormilina, Tatiana K; Cherevkov, Sergei A; Fedorov, Anatoly V; Baranov, Alexander V

    2017-11-01

    The current direction in the evolution of 2D semiconductor nanocrystals involves the combination of metal and semiconductor components to form new nanoengineered materials called nano-heteroplatelets. This Review covers different heterostructure architectures that can be applied to cadmium chalcogenide nanoplatelets, including variously shaped shell, metal nanoparticle decoration, and doped and alloy systems. Here, for the first time a complete classification of nano-heteroplatelet types is provided with recommended notations and a systematization of the existing knowledge and experience concerning heterostructure formation techniques, addressing the morphology, optoelectronic and magnetic properties, and novel features of different heterostructures. This Review is also devoted to possible applications of these heterostructures and of one-component nanoplatelets in multiple fields, including light-emitting devices and biological imaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Laboratory testing results of kinetics and processing technology of the polymetallic sulphide concentrate Blagojev Kamen – Serbia

    Directory of Open Access Journals (Sweden)

    Milorad Ćirković

    2016-06-01

    Full Text Available This work presents the laboratory testing results of kinetics the oxidation process and sample processing of the sulphide polymetallic concentrate Blagojev Kamen. The aim of investigation is recovery of these types of raw material, present in large quantities in the peripheral parts of already used primary mineral deposits of copper, because of their high economic potential due to the content of a large number of metals and especially precious metals. Characterization of this raw material is based on the chemical analyses, XRD results, DTA analysis, etc. For these investigations, the sulphide concentrate with the following content was used in %: Cu – 2.3; Fe – 19.8; S – 27.19; Zn – 9.13; As – 0.167; Pb – 15.63; SiO2 – 17.93; CaO – 0.97; Al2O3 – 1.43; Ag – 480 g/t; Au – 659 g/t. Kinetic investigations of oxidation processes were carried out under the isothermal conditions within the temperature range of 400 to 625 oC. The Sharp's model was used for determination the kinetics parameters, and determined values of activation energy are 67 kJ/mole for the first period, and 47 kJ/mole for the second period. Pyrometallurgical treatment of this type of polymetallic concentrate, in the laboratory conditions, was carried out using the oxidative roasting and, then the reduction smelting was done in the Taman's furnace. Gold from 90.5 to 97.95% and silver from 77.28 to 93.37% are moved into the raw lead (smelting product. Gold from 1.1 to 3.92% and silver from 4.35 to 8.42% are moved into the polymetallic copper matte. Gold from 0.58 to 1.6% and silver from 2.45 to 6.82% are moved into the slag.

  4. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi.

    Science.gov (United States)

    Ibrahim, Isam M; Ali, Iftikhar M; Dheeb, Batol Imran; Abas, Qayes A; Asmeit Ramizy; Eisa, M H; Aljameel, A I

    2017-04-01

    The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~2.73nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dislocation Etching Solutions for Mercury Cadmium Selenide

    Science.gov (United States)

    2014-09-01

    mercury cadmium telluride (Hg1–xCdxTe) for infrared (IR) sensor applications, but etch pit density ( EPD ) measurements are required to measure...dislocations that affect device performance. No EPD solutions have been reported for Hg1–xCdxSe, and standard EPD solutions for Hg1–xCdxTe have proved...ineffective. Thus, a new etching solution is required for EPD measurements of Hg1–xCdxSe. Samples were etched in various solutions and the resulting pits

  6. The Effect of Selenium and +(-)Catechin on Lipid Peroxidation and Glutathione in Cadmium Fed Rats

    Science.gov (United States)

    Özdemir, Semra; Dursun, Şefik

    2007-04-01

    Cadmium performs its effect on living organisms by accumulating in various tissues and effects tissue antioxidant enzyme systems. The testes are critical target organ following cadmium exposure. The present study was planned to determine the possible protective roles of selenium and +(-) catechin against the toxic effects of cadmium. The study has been performed in Wistar Albino rats which divided into four groups as control, cadmium, cadmium+selenium and cadmium+ catechin received groups. Each experimental group consisted of ten rats. The experimental group rats have received cadmium sulphate, sodium selenite and +(-) catechin via there drinking water for thirty days. Cadmium concentration, lipid peroxidation and glutathione were measured in the homogenate of testes and blood. As a result of the study it may be said that: The cadmium accumulates in testes and its concentration increases in blood and possibly selenium administration is helpful against cadmium but not +(-)catechin.

  7. Sources of cadmium exposure among healthy premenopausal women

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Scott V., E-mail: sadams@fhcrc.org [Fred Hutchinson Cancer Research Center, PO Box 19024, M4-B402, Seattle, WA 98109 (United States); Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195 (United States); Newcomb, Polly A. [Fred Hutchinson Cancer Research Center, PO Box 19024, M4-B402, Seattle, WA 98109 (United States); Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195 (United States); Shafer, Martin M. [Environmental Chemistry and Technology Program, University of Wisconsin and Wisconsin State Laboratory of Hygiene, Madison, WI (United States); Atkinson, Charlotte [Department of Oral and Dental Science, Bristol Dental School, Bristol (United Kingdom); Bowles, Erin J. Aiello [Group Health Research Institute, Seattle, WA (United States); Newton, Katherine M. [Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195 (United States); Group Health Research Institute, Seattle, WA (United States); Lampe, Johanna W. [Fred Hutchinson Cancer Research Center, PO Box 19024, M4-B402, Seattle, WA 98109 (United States); Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195 (United States)

    2011-04-01

    Background: Cadmium, a persistent and widespread environmental pollutant, has been associated with kidney function impairment and several diseases. Cigarettes are the dominant source of cadmium exposure among smokers; the primary source of cadmium in non-smokers is food. We investigated sources of cadmium exposure in a sample of healthy women. Methods: In a cross-sectional study, 191 premenopausal women completed a health questionnaire and a food frequency questionnaire. The cadmium content of spot urine samples was measured with inductively-coupled plasma mass spectrometry and normalized to urine creatinine content. Multivariable linear regression was used to estimate the strength of association between smoking habits and, among non-smokers, usual foods consumed and urinary cadmium, adjusted for age, race, multivitamin and supplement use, education, estimated total energy intake, and parity. Results: Geometric mean urine creatinine-normalized cadmium concentration (uCd) of women with any history of cigarette smoking was 0.43 {mu}g/g (95% confidence interval (CI): 0.38-0.48 {mu}g/g) and 0.30 {mu}g/g (0.27-0.33 {mu}g/g) among never-smokers, and increased with pack-years of smoking. Analysis of dietary data among women with no reported history of smoking suggested that regular consumption of eggs, hot cereals, organ meats, tofu, vegetable soups, leafy greens, green salad, and yams was associated with uCd. Consumption of tofu products showed the most robust association with uCd; each weekly serving of tofu was associated with a 22% (95% CI: 11-33%) increase in uCd. Thus, uCd was estimated to be 0.11 {mu}g/g (95% CI: 0.06-0.15 {mu}g/g) higher among women who consumed any tofu than among those who consumed none. Conclusions: Cigarette smoking is likely the most important source of cadmium exposure among smokers. Among non-smokers, consumption of specific foods, notably tofu, is associated with increased urine cadmium concentration. - Research highlights: {yields

  8. Crystal structure, DNA interaction and thermal analysis data of two new antimicrobial active binuclear cadmium and mercury complexes

    Science.gov (United States)

    Musavi, S. A.; Montazerozohori, M.; Masoudiasl, A.; Naghiha, R.; Joohari, S.; Assoud, A.

    2017-10-01

    Two new binuclear Schiff base complexes with the general formula [CdLBr(μ-Br)]2 (1) and [Hg2L(μ-I)2I2] (2) were prepared by the reaction of 2,2-dimethyl-N,N'- bis-(3-phenyl-allylidene)-propane-1,3-diamine (L), CdBr2 and HgI2. The crystal structure of two complexes was determined by X-ray crystallography. The common structures for four-coordinated compounds are square planar or the tetrahedral geometries, which is evaluated by the Houser angular index (τ4). In [CdLBr(μ-Br)]2 (1), each cadmium center is five-coordinated by two iminic nitrogen atoms from Schiff base ligand, two μ2-bridging bromide anions and one terminal coordinating bromide anion. The metal center in this centrosymmetric dimer has a distorted square-pyramidal geometry. [Hg2L(μ-I)2I2] (2) consists of two four-coordinated mercury centers with different coordination spheres (HgN2I2 for Hg1 and HgI4 for Hg2). The TG/DTG diagrams showed that both complexes were completely decomposed under a nitrogen atmosphere. Furthermore, antibacterial activities of compounds have been screened against various bacteria and fungi by Disk diffusion method. Mercury complex inhibited the growth of the microorganisms more efficient than cadmium complex. DNA cleavage potential of compounds was evaluated by agarose gel electrophoresis method. Finally, nano-structure cadmium complex was sono-chemically synthesized and applied as precursor for preparation of cadmium oxide nanoparticles.

  9. How Does Oyster Shell Immobilize Cadmium?

    Science.gov (United States)

    Lee, Hyun Ho; Kim, Sang Yoon; Owens, Vance N; Park, Sungkyun; Kim, Jiwoong; Hong, Chang Oh

    2018-01-01

    The exact mechanism of cadmium (Cd) immobilization by oyster shell (OS) has not been reported. The effect of OS on Cd immobilization and the exact mechanism should be known before applying remediation technology using OS to Cd contaminated soils. Therefore, the objective of this study was to elucidate the mechanism of Cd immobilization by OS. Three grams of OS (< 0.84 mm) was reacted with 30 mL of 0-3.56 mg Cd L-1 solution at 25 °C for 48 h. Cadmium adsorption increased with increasing initial concentration of Cd in solution. The X-ray diffraction patterns clearly demonstrated that precipitation of CdCO3 did not take place in suspensions of OS after reacting with up to 3.56 mol Cd L-1. Interestingly, we found formation of Ca0.67Cd0.33CO3 crystalline in suspension of OS after reacting with maximum initial Cd concentrations. Precipitation and chemisorption might contribute to Cd immobilization together. However, we feel confident that chemisorption is the major mechanism by which Cd immobilization occurs with OS. In conclusion, OS could be an effective bioadsorbent to immobilize Cd through formation of geochemically stable Cd mineral.

  10. Cadmium hampers salt tolerance of Sesuvium portulacastrum.

    Science.gov (United States)

    Wali, Mariem; Martos, Soledad; Pérez-Martín, Laura; Abdelly, Chedly; Ghnaya, Tahar; Poschenrieder, Charlotte; Gunsé, Benet

    2017-06-01

    It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 μM CdCl 2 . Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na + concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H + -ATPase 1) and SOS1 (plasma membrane Na + transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na + concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Cadmium-Sensitive Mutants of Arabidopsis thaliana.

    Science.gov (United States)

    Howden, R; Cobbett, C S

    1992-09-01

    A screening procedure for identifying Cd-sensitive mutants of Arabidopsis thaliana is described. With this procedure, two Cd-sensitive mutants were isolated. These represent independent mutations in the same locus, referred to as CAD1. Genetic analysis has shown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Crosses of the mutant to marker strains showed that the mutation is closely linked to the tt3 locus on chromosome 5. In addition to Cd, the mutants are also significantly more sensitive to mercuric ions and only slightly more sensitive to Cu and Zn, while being no more sensitive than the wild type to Mn, thus indicating a degree of specificity in the mechanism affected by the mutation. Undifferentiated callus tissue is also Cd sensitive, suggesting that the mutant phenotype is expressed at the cellular level. Both wild-type and mutant plants showed increased sensitivity to Cd in the presence of buthionine sulfoximine, an inhibitor of the biosynthesis of the cadmium-binding (gamma-glutamylcysteine)(n)-glycine peptides, suggesting that the mutant is still able to synthesize these peptides. However, the effects of a cad1 mutation and buthionine sulfoximine together on cadmium sensitivity are essentially nonadditive, indicating that they may affect different aspects of the same detoxification mechanism. Assays of Cd uptake by intact plants indicate that the mutant is deficient in its ability to sequester Cd.

  12. Cadmium minimization in wheat: A critical review.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Cadmium determination in Lentinus edodes mushroom species

    Directory of Open Access Journals (Sweden)

    Vera Akiko Maihara

    2012-09-01

    Full Text Available Many studies have drawn attention to the occurrence and concentration of toxic elements found in the fruiting body of mushrooms. Some edible mushroom species are known to accumulate high levels of inorganic contaminants, mainly cadmium, mercury, and lead. There are about 2,000 known edible mushroom species, but only 25 of them are cultivated and used as food. In Brazil, the most marketed and consumed mushroom species are Agaricus bisporus, known as Paris champignon, Lentinus edodes, or Shitake and Pleurotus sp, also called Shimeji or Hiratake. In this study, the concentration of cadmium was determined in Lentinus edodes mushrooms from different cities in São Paulo state and some samples imported from Japan and China. The analyses were performed by graphite furnace atomic absorption spectrometry after HNO3-H2O2 digestion. The results showed a lower concentration of Cd in the mushrooms cultivated in São Paulo (0.0079 to 0.023 mg.kg-1 in natura than that of the mushrooms cultivated abroad (0.125 to 0.212 mg.kg-1 in natura. Although there is no tolerance limit for Cd in mushrooms in Brazil, the results show that Lentinus edodes mushrooms can be safely consumed.

  14. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Erah

    Purpose: To fabricate biodegradable nanoparticle formulation of bis-demethoxy curcumin analogue. (BDMCA) ... associated with peak systemic drug levels ..... Fabrication and. Investigations on. Hepatoprotective Activity of Sustained. Release. Biodegradable. Piperine. Microspheres. Int. J Pharm Sci and Nanotech. 2008; 1: ...

  15. Protective effect of cannabidiol against cadmium hepatotoxicity in rats.

    Science.gov (United States)

    Fouad, Amr A; Al-Mulhim, Abdulruhman S; Gomaa, Wafaey

    2013-10-01

    The protective effect of cannabidiol, the non-psychoactive component of Cannabis sativa, against liver toxicity induced by a single dose of cadmium chloride (6.5 mgkg(-1) i.p.) was investigated in rats. Cannabidiol treatment (5 mgkg(-1)/day, i.p.) was applied for five days starting three days before cadmium administration. Cannabidiol significantly reduced serum alanine aminotransferase, and suppressed hepatic lipid peroxidation, prevented the depletion of reduced glutathione and nitric oxide, and catalase activity, and attenuated the elevation of cadmium level in the liver tissue resulted from cadmium administration. Histopathological examination showed that cadmium-induced liver tissue injury was ameliorated by cannabidiol treatment. Immunohistochemical analysis revealed that cannabidiol significantly decreased the cadmium-induced expression of tumor necrosis factor-α, cyclooxygenase-2, nuclear factor-κB, caspase-3, and caspase-9, and increased the expression of endothelial nitric oxide synthase in liver tissue. It was concluded that cannabidiol may represent a potential option to protect the liver tissue from the detrimental effects of cadmium toxicity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Blood cadmium concentration and lipid profile in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kisok, E-mail: kimkisok@kmu.ac.kr [Department of Public Health, Keimyung University, 1000 Shindang-dong, Daegu 704-701 (Korea, Republic of)

    2012-01-15

    Although animal experiments have shown that cadmium exposure induces alterations in lipid profiles, no epidemiological study of this relationship has been performed. The objective of this study was to evaluate the association between blood cadmium concentration and blood lipid levels in Korean adults. A cross-sectional study comprising participants (n=3903) aged 20 years or older from the 2005, 2008, and 2009 Korea National Health and Nutrition Examination Surveys was conducted. Demographic characteristics and dietary intake were obtained from the participants by questionnaire, and cadmium and lipid levels were determined by analysis of blood samples. After adjusting for demographic and dietary factors, blood concentration of cadmium was positively associated with the risk of low high-density lipoprotein cholesterol (HDL-C) in a dose-dependent manner (p for trend <0.001). In addition, the odds ratios (ORs) of a high triglyceride to HDL-C ratio was significantly increased in the high blood cadmium groups [OR=1.36; 95% confidence interval (CI), 1.03-1.79 for fourth quintile and OR=1.41; 95% CI, 1.07-1.86 for fifth quintile] compared with the lowest quintile group. However, high blood cadmium was not associated with a risk of high total cholesterol, high low-density lipoprotein cholesterol, or high triglycerides. These data suggest that an increased cadmium body burden increases the risk of dyslipidemia, mainly due to the increased risk of low HDL-C and the high ratio of triglycerides to HDL-C.

  17. Accumulation and distribution of arsenic and cadmium by tea plants*

    Science.gov (United States)

    Shi, Yuan-zhi; Ruan, Jian-yun; Ma, Li-feng; Han, Wen-yan; Wang, Fang

    2008-01-01

    It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants, which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea. In this study, by field investigation and pot trial, we found that mobility of arsenic and cadmium in tea plants was low. Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts. Distribution of arsenic and cadmium, based on their concentrations of unit dry matter, in tea plants grown on un-contaminated soil was in the order: feeding roots>stems≈main roots>old leaves>young leaves. When tea plants were grown on polluted soils simulated by adding salts of these two metals, feeding roots possibly acted as a buffer and defense, and arsenic and cadmium were transported less to the above-ground parts. The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content, photosynthetic rate, transpiration rate and biomass production of tea plants. PMID:18357630

  18. Absorption of cadmium in bean cultivars variety black Jamapa

    Science.gov (United States)

    Ibarra, M. C. V.; Gomez, R.; Arriaga, R. M.

    2003-05-01

    (4) The cadmium is highly toxic and for all biota in very small concentrations, these study was to know the limit of phitotoxicity and nutrition of cadmium in bean cultivars variety black Jamapa, and to measure absorption of cadmium in roots, stem, leaves and grain. The experiment was carried out in plots with bean of the black variety Jamapa, in greenhouse, 6 treatments in the water of irrigation with 0, 25, 50, 100 y 200 micromoles of cadmium, to quantification of cadmium in plant, is carried out with ICP previous acid digest(I) method D4638-86 of ASTM 1990. Was carried out analysis of variation and results indicate that, there were been significant for the variables : number of leaves, foliate area, dry weight from root, height of plant; the threshold of toxicity for the plant in the condition that it was carried out the experiment were 100 200micromoles of cadmium applied in water of irrigation weekly, the visual symptom were: yellow of leaves, morphologic changes in leaves showed leaves bi-foliate and tetra-foliate in treatments upper of 100micromoles of cadmium.

  19. The distribution of trace elements in a range of deep-sea sulphide ore deposits and their impact on seafloor mining

    Science.gov (United States)

    Fallon, E. K.; Scott, T. B.; Brooker, R. A.

    2015-12-01

    Acid rock drainage is a natural weathering process that is often exacerbated by mining activities, common in onshore sulphide ore deposits, that can lead to considerable environmental impact. A similar 'weathering process' occurs at seafloor massive sulphide (SMS) ore deposits. In contrast to the onshore situation, the expected consequence in the marine environment is often considered to be oxide formation, negligible metal release and minimal net acid generation due to the high buffering capacity of seawater and low solubility of iron at near neutral pH. However, no dissolution studies exist that emulate the true composition of sulphide ore deposits that either sit passively on the seafloor or are actively mined in this colder, more saline, and alkaline environment. In particular, these deposits will include a variety of minerals, and it is the interaction of these minerals and inclusions in regards to galvanic cells that can subsequently increase the dissolution of metals into the water column. Any heavy metal release that is not balanced by subsequent oxidation and precipitation, has the potential to produce toxicity for benthic ecosystems, bioaccumulation and dispersal through currents. The present work has sought to provide a pilot investigation on the deep sea weathering of sulphide minerals, by identifying the mineral phases, trace elements and potential galvanic couples that may arise in sulphide mineral samples collected from various tectonic settings. Samples have been analysed using EMPA and LA-ICPMS in order to identify the range of trace elements and toxins that may be contributed to the water column, especially heavy metals and environmental toxins (e.g. Fe, Cu, Zn, Pb, Co, Ni, Cd, As, Sb, Sn, Hg). Our observations raise important questions about which ore deposits could have more or less environmental impact during any mining activity. These observations will be used to design oxidative dissolution experiments at deep-sea conditions utilising the

  20. Association of environmental cadmium exposure with pediatric dental caries.

    Science.gov (United States)

    Arora, Manish; Weuve, Jennifer; Schwartz, Joel; Wright, Robert O

    2008-06-01

    Although animal experiments have shown that cadmium exposure results in severe dental caries, limited epidemiologic data are available on this issue. We aimed to examine the relationship between environmental cadmium exposure and dental caries in children 6-12 years of age. We analyzed cross-sectional data, including urine cadmium concentrations and counts of decayed or filled tooth surfaces, from the Third National Health and Nutrition Examination Survey. We used logistic and zero-inflated negative binomial (ZINB) regression to estimate the association between urine cadmium concentrations and caries experience, adjusting these analyses for potential confounders including environmental tobacco smoke (ETS). Urine cadmium concentrations ranged from 0.01 to 3.38 ng/mL. Approximately 56% of children had experienced caries in their deciduous teeth, and almost 30% had been affected by caries in their permanent dentition. An interquartile range (IQR) increase in creatinine-corrected cadmium concentrations (0.21 microg/g creatinine) corresponded to a 16% increase in the odds of having experienced caries in deciduous teeth [prevalence odds ratio (OR)=1.16; 95% confidence interval (CI), 0.96-1.40]. This association was statistically significant in children with low ETS exposure (prevalence OR=1.30; 95% CI, 1.01-1.67). The results from the ZINB regression indicated that, among children with any caries history in their deciduous teeth, an IQR increase in cadmium was associated with 17% increase in the number of decayed or filled surfaces. We observed no association between cadmium and caries experience in permanent teeth. Environmental cadmium exposure may be associated with increased risk of dental caries in deciduous teeth of children.

  1. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kgobudi Frans Chepape

    2017-01-01

    Full Text Available Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM analysis of the samples showed that 50% PVP-capped CdSe nanoparticles were uniformly distributed in size with an average of 2.7 nm and shape which was spherical-like. The photocatalytic degradation of methyl blue (MB in water showed efficiencies of 31% and 48% when using uncapped and 50% PVP-capped CdSe nanoparticles as photocatalysts, respectively. The efficiency of PVP-capped CdSe nanoparticles indicated that a complete green process can be utilized for photocatalytic treatment of water and waste water.

  2. Removal of cadmium and cyanide from aqueous solutions through electrodialysis

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2003-01-01

    Full Text Available The discharge of galvanic industry wastewaters containing heavy metals and cyanide is one of the largest sources of water pollution. The use of the electrodialysis technique for the treatment of a synthetic wastewater containing approximately 0.0089 mol L-1 cadmium and 0.081 mol L-1 cyanide was studied using a five-compartment electrodialysis cell. The results demonstrate that the removal of cadmium and cyanide depends on the applied current density and it is limited by the precipitation of cadmium on the cation-exchange membrane in the diluate central cell compartment.

  3. Cadmium free lead alloy for reusable radiotherapy shielding.

    Science.gov (United States)

    Blackwell, C R; Amundson, K D

    1990-01-01

    A low melting point cadmium free fusible lead alloy suitable for custom radiotherapy shielding blocks is described. The alloy, referred to here as Alloy-203, differs in composition from the more common Lipowitz's metal (Cerrobend) by being cadmium free, having a slightly higher lead content and a 203 degrees F melting temperature. Attenuation properties have been studied for 4-18 MV X-rays. Alloy-203 has lower transmission than Lipowitz's metal, primarily due to the higher content of lead and bismuth. Daily use for the past 2 years at Mayo Clinic has not indicated any major problems associated with the use of this cadmium free alloy for custom shield fabrication.

  4. Effect of Chlorella intake on Cadmium metabolism in rats

    OpenAIRE

    Shim, Jee Ae; Son, Young Ae; Park, Ji Min; Kim, Mi Kyung

    2009-01-01

    This study was performed to investigate the effect of chlorella on cadmium (Cd) toxicity in Cd- administered rats. Sixty male Sprague-Dawley rats (14 week-old) were blocked into 6 groups. Cadmium chloride was given at levels of 0 or 325 mg (Cd: 0, 160 ppm), and chlorella powder at levels of 0, 3 and 5%. Cadmium was accumulated in blood and tissues (liver, kidney and small intestine) in the Cd-exposed groups, while the accumulation of Cd was decreased in the Cd-exposed chlorella groups. Fecal ...

  5. Exposure dose response relationships of the freshwater bivalve Hyridella australis to cadmium spiked sediments

    Energy Technology Data Exchange (ETDEWEB)

    Marasinghe Wadige, Chamani P.M., E-mail: chamani.marasinghe.wadige@canberra.edu.au; Maher, William A.; Taylor, Anne M.; Krikowa, Frank

    2014-07-01

    Highlights: • The exposure–dose–response approach was used to assess cadmium exposure and toxicity. • Accumulated cadmium in H. australis reflected the sediment cadmium exposure. • Spill over of cadmium into the biologically active pool was observed. • Increased cadmium resulted in measurable biological effects. • H. australis has the potential to be a cadmium biomonitor in freshwater environments. - Abstract: To understand how benthic biota may respond to the additive or antagonistic effects of metal mixtures in the environment it is first necessary to examine their responses to the individual metals. In this context, laboratory controlled single metal-spiked sediment toxicity tests are useful to assess this. The exposure–dose–response relationships of Hyridella australis to cadmium-spiked sediments were, therefore, investigated in laboratory microcosms. H. australis was exposed to individual cadmium spiked sediments (<0.05 (control), 4 ± 0.3 (low) and 15 ± 1 (high) μg/g dry mass) for 28 days. Dose was measured as cadmium accumulation in whole soft body and individual tissues at weekly intervals over the exposure period. Dose was further examined as sub-cellular localisation of cadmium in hepatopancreas tissues. The biological responses in terms of enzymatic and cellular biomarkers were measured in hepatopancreas tissues at day 28. H. australis accumulated cadmium from spiked sediments with an 8-fold (low exposure organisms) and 16-fold (high exposure organisms) increase at day 28 compared to control organisms. The accumulated tissue cadmium concentrations reflected the sediment cadmium exposure at day 28. Cadmium accumulation in high exposure organisms was inversely related to the tissue calcium concentrations. Gills of H. australis showed significantly higher cadmium accumulation than the other tissues. Accumulated cadmium in biologically active and biologically detoxified metal pools was not significantly different in cadmium exposed

  6. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    Science.gov (United States)

    Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  7. Studies on growth and nucleation kinetics of cadmium thiourea sulphate and magnesium cadmium thiourea sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mekala [Quaid-e-Milleth College, Chennai 600002 (India)], E-mail: mekaladaniel@rediffmail.com; Malliga, M. Jeyarani [Bharathi Women College, Chennai 600108 (India); Sankar, R. [Kings Engineering College, Irungatukottai, Sriperumbudhur, Chennai 602105 (India); Jayaraman, D. [Presidency College, Chennai 600 004 (India)

    2009-03-15

    Semiorganic materials, in general possess high non-linear coefficient and mechanical strength which will be more applicable for device fabrication. Cadmium thiourea sulphate (CTS) and magnesium cadmium thiourea sulphate (MCTS) are better semiorganic materials which find applications in the field of optoelectronics. Single crystals of CTS and MCTS have been successfully grown from aqueous solution by slow evaporation technique using predetermined solubility data. The basic growth parameters of the crystal nuclei of the grown crystals of CTS and MCTS were evaluated based on the classical theory of homogeneous nucleation. The classical nucleation theory makes use of capillarity approximation which has certain limitations. A correction has to be applied for it and the classical nucleation theory has been suitably modified in order to calculate the critical nucleus parameters.

  8. Novel route to synthesize Pt-Ws2 nanoparticles for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gochi-Ponce, Y. [Inst. Tecnologico de Oaxaca, Oaxaca (Mexico). Dept. of Mechanical Engineering; Research Center on Advanced Materials, Chihuahua, (Mexico). Dept. of Chemical Materials; Morales, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro (Mexico); Chinas-Castillo, F. [Inst. Tecnologico de Oaxaca, Oaxaca (Mexico). Dept. of Mechanical Engineering; Alonso-Nunez, G. [Research Center on Advanced Materials, Chihuahua, (Mexico). Dept. of Chemical Materials; Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro (Mexico)

    2008-07-01

    This paper reported on a new and easier way to prepare platinum (Pt)-WS2 nanostructures supported on Vulcan carbon and multi-walled carbon nanotubes (MWCNTs). The chemical synthesis included heat treatment. The study focused on the influence of exfoliated sulphide on Pt that modifies the catalytic properties and enhances the activity of pure Pt. The resulting material was characterized by X-ray Diffraction, Scanning Electron Microscopy and High-Resolution Transmission Electron Microscopy. The material was compared to commercial Pt/C. Synthesized Pt-WS2 nanoparticles exhibited high dispersion on both supporting carbon materials. The study showed that the amount of platinum can be optimized to be lower when diluted or coordinated in the chalcogenic environment. This represents a good alternative to tailor new materials based essentially on non-noble metals for electrochemical applications. It was concluded that the WS2 modified Pt nanoparticles are a promising material for electrochemical applications. 7 refs., 4 figs.

  9. Blood and urine cadmium and bioelements profile in nickel-cadmium battery workers in Serbia.

    Science.gov (United States)

    Bulat, Z Plamenac; Dukic-Cosic, D; Dokic, M; Bulat, P; Matovic, V

    2009-03-01

    Although cadmium (Cd) is extensively used for nickel-cadmium battery production, few recent reports are available on the effect of this toxic metal on the imbalance of biometals in occupational exposure. The current study was carried out to determine the Cd level and its effect on the content of bioelements: zinc, cooper, magnesium, and iron in blood and urine of workers exposed to Cd during nickel-cadmium battery production. beta(2)-microglobulins (beta(2)-MG), as indicators of kidney damage, were determined in urine.The study group comprised 32 male nickel-cadmium battery workers, and the control group had 15 male construction workers with no history of Cd exposure. Levels of Cd and bioelements were determined in blood and urine by atomic absorption spectrophotometry.Cd concentration in blood of exposed workers was around 10 microg/L and in urine ranged from 1.93 to 8.76 microg/g creatinine (cr). Urine Cd concentration was significantly higher in exposed workers than in the controls, although no statistical difference in beta(2)-MG content was observed in urine between the two groups. Blood Zn and Mg level were significantly reduced and urine Zn level was increased in Cd-exposed group when compared with controls.The mean Cd concentrations in blood and urine did not exceed the recommended reference values of 10 microg/L in blood and 10 microg/g cr in urine. Cd exposure resulted in disturbances of Zn in blood and urine and Mg in blood but had no effect on Cu and Fe content in biological fluids.

  10. Modelling of Cavitation of Wash-Out Water, Ammonia Water, Ammonia Water with Increased Content Ammonia and Hydrogen Sulphide, Tar Condensate

    Directory of Open Access Journals (Sweden)

    Josef DOBEŠ

    2013-12-01

    Full Text Available The aim is to design and implement a procedure of numerical modelling of cavitation of working mixtures: wash-out water, ammonia water, ammonia water with an increased content of hydrogen sulphide and ammonia, tar condensate. The numeric modelling is designed in the program Ansys Fluent using Schnerr-Sauer cavitation model. The issue of these liquids modelling can be solved by the cavitation simulation of water admixtures. Working fluids contain the following main ingredients: water, ammonia, carbon dioxide and hydrogen sulphide. Subsequently, a comparison of the amount of water vapor (reference liquid and given fluid vapor is executed. The Schnerr-Sauer model is chosen because of good results in previous simulations for water cavitation. As a geometry is selected Laval nozzle. Modelled liquid mixtures are used in the petrochemical industry, as a filling for fluid circuits where cavitation may occur and therefore the research is needed.

  11. Diamond growth beneath Letlhakane established by Re-Os and Sm-Nd systematics of individual eclogitic sulphide, garnet and clinopyroxene inclusions

    Science.gov (United States)

    Gress, Michael U.; Pearson, D. Graham; Timmerman, Suzette; Chinn, Ingrid L.; Koornneef, Janne M.; Davies, Gareth R.

    2017-04-01

    The diamondiferous Letlhakane kimberlites are part of the Orapa kimberlite cluster (˜ 93.1 Ma) in north-eastern Botswana, located on the edge of the Zimbabwe Craton, close to the Proterozoic Magondi Mobile Belt. Here we report the first Re-Os ages of six individual eclogitic sulphide inclusions (3.0 to 35.7μg) from Letlhakane diamonds along with their rhenium, osmium, iridium and platinum concentrations, and carbon isotope, nitrogen content and N-aggregation data from the corresponding growth zones of the host diamonds. For the first time, Re-Os data will be compared to Sm-Nd ages of individual eclogitic silicate inclusions recovered from the same diamonds using a Triton Plus equipped with four 1013Ω amplifiers. The analysed inclusion set currently encompasses pairs of individual sulphides from two diamonds (LK040 sf4 & 5, LK113 sf1 & 2) and two sulphide inclusions from separate diamonds (LK048, LK362). Ongoing work will determine the Sm-Nd ages and element composition of multiple individual eclogitic garnets (LK113/LK362, n=4) and an eclogitic clinopyroxene (LK040) inclusion. TMA ages of the six sulphides range from 1.06 to 2.38 Ga (± 0.1 to 0.54 Ga) with Re and Os contents between 7 and 68 ppb and 0.03 and 0.3 ppb, respectively. The host diamond growth zones have low nitrogen abundances (21 to 43 ppm N) and high N-aggregation (53 to 90% IaB). Carbon isotope data suggests the involvement of crustal carbon (δ13C between -19.3 to -22.7 ± 0.2 per mill) during diamond precipitation. Cathodoluminescence imaging of central plates from LK040 and LK113 displays homogenous internal structure with no distinct zonation. The two sulphide inclusions from LK040 define an 'isochron' of 0.92 ± 0.23 Ga (2SD) with initial 187Os/188Os = 1.31 ± 0.24. Sulphides from LK113 have clear imposed diamond morphology and indicate diamond formation at 0.93 ± 0.36 Ga (2SD) with initial 187Os/188Os = 0.69 ± 0.44. The variation in the initial 187Os/188Os does not justify including these

  12. Interactive effects of cadmium and Microcystis aeruginosa (cyanobacterium) on the growth, antioxidative responses and accumulation of cadmium and microcystins in rice seedlings.

    Science.gov (United States)

    Kuang, Xiaolin; Gu, Ji-Dong; Tie, BaiQing; Yao, Bangsong; Shao, Jihai

    2016-10-01

    Cadmium pollution and harmful cyanobacterial blooms are two prominent environmental problems. The interactive effects of cadmium(II) and harmful cyanobacteria on rice seedlings remain unknown. In order to elucidate this issue, the interactive effects of cadmium(II) and Microcystis aeruginosa FACHB905 on the growth and antioxidant responses of rice seedling were investigated in this study, as well as the accumulation of cadmium(II) and microcystins. The results showed that the growth of rice seedlings was inhibited by cadmium(II) stress but promoted by inoculation of M. aeruginosa FACHB905. cadmium(II) stress induced oxidative damage on rice seedlings. Inoculation of M. aeruginosa FACHB905 alleviated the toxicity of cadmium(II) on rice seedlings. The accumulation of cadmium(II) in rice seedlings was decreased by M. aeruginosa FACHB905, but the translocation of cadmium(II) from root to shoot was increased by this cyanobacterium. The accumulation of microcystins in rice seedlings was decreased by cadmium(II). Results presented in this study indicated that cadmium(II) and M. aeruginosa had antagonistic toxicity on rice seedlings. The findings of this study throw new light on evaluation of ecological- and public health-risks for the co-contamination of cadmium(II) and harmful cyanobacteria.

  13. Study on workers exposed to cadmium in alkaline storage battery manufacturing and PVC compounding

    Energy Technology Data Exchange (ETDEWEB)

    Chan, O.Y.; Tan, K.T.; Kwok, S.F.; Chio, L.F.

    1982-01-01

    The extent of cadmium exposure was studied in a cadmium-nickel battery factory and 8 PVC factories using cadmium stabilisers in the compounding of PVC. A total of 101 cadmium-exposed workers and 21 control subjects matched by sex, age, ethnic group and smoking history was investigated. Blood and urine cadmium levels were considerably elevated in the battery workers but were not raised in the PVC workers. These findings were consistent with the results of cadmium-in-air assessments. Among the female battery workers, urine cadmium excretion increased significantly with employment time. There was good correlation between blood and urine cadmium levels among the female subjects. A significant association between blood cadmium levels and prevalence of chest pain was also noted among the females. No low molecular weight proteinuria was detected, but two female battery workers had slight albuminuria and one male PVC worker had glucosuria but had abnormal GTT results.

  14. Integrated photovoltaics in nickel cadmium battery electric vehicles.

    Science.gov (United States)

    2008-12-01

    This research report presents Connecticut Department of Transportations (ConnDOTs) : evaluation of preproduction prototype nickel-cadmium (NiCd) battery-powered electric : vehicles (BEVs) as an alternative-fuel (alt-fuel) option for local trips...

  15. Low molecular weight organic acids in root exudates and cadmium ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    –234. Cieslinski G, Van Rees KCJ, Szmigielska AM, Krishnamurti GSR,. Huang PM (1998). Lowmolecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil, 203: ...

  16. Protective effect of zinc against cadmium toxicity on pregnant rats ...

    African Journals Online (AJOL)

    Protective effect of zinc against cadmium toxicity on pregnant rats and their fetuses at morphological, physiological and molecular level. Ashraf El-Sayed, Salem M Salem, Amany A El-Garhy, Zeinab A Rahman, Asmaa M Kandil ...

  17. Two new hexacoordinated coordination polymers of cadmium (II ...

    Indian Academy of Sciences (India)

    Two new hexacoordinated coordination polymers of cadmium(II) containing bridging units only: Syntheses, structures and molecular properties. DIPU SUTRADHAR HABIBAR CHOWDHURY SUSHOVAN KONER SUBHASIS ROY BARINDRA KUMAR GHOSH. Regular Article Volume 128 Issue 9 September 2016 pp 1377- ...

  18. Transfer and accumulation of lead, zinc, cadmium and copper in ...

    African Journals Online (AJOL)

    Transfer and accumulation of lead, zinc, cadmium and copper in plants growing in abandoned mining-district area. HK Chakroun, F Souissi, JL Bouchardon, R Souissi, J Moutte, O Faure, E Remon, S Abdeljaoued ...

  19. Cadmium affects the mitochondrial viability and the acid soluble ...

    African Journals Online (AJOL)

    Cadmium affects the mitochondrial viability and the acid soluble thiols concentration in liver, kidney, heart and gills of Ancistrus brevifilis (Eigenmann, 1920). P Velasquez-Vottelerd, Y Anton, R Salazar-Lugo ...

  20. Analysis and determination of mercury, cadmium and lead in ...

    African Journals Online (AJOL)

    Analysis and determination of mercury, cadmium and lead in canned tuna fish marketed in Iran. E Rahimi, M Hajisalehi, HR Kazemeini, A Chakeri, A Khodabakhsh, M Derakhshesh, M Mirdamadi, AG Ebadi, A Rezvani, FM Kashkahi ...